Linux Audio

Check our new training course

Loading...
v3.15
   1#ifndef _LINUX_SCHED_H
   2#define _LINUX_SCHED_H
   3
   4#include <uapi/linux/sched.h>
   5
   6#include <linux/sched/prio.h>
   7
   8
   9struct sched_param {
  10	int sched_priority;
  11};
  12
  13#include <asm/param.h>	/* for HZ */
  14
  15#include <linux/capability.h>
  16#include <linux/threads.h>
  17#include <linux/kernel.h>
  18#include <linux/types.h>
  19#include <linux/timex.h>
  20#include <linux/jiffies.h>
  21#include <linux/plist.h>
  22#include <linux/rbtree.h>
  23#include <linux/thread_info.h>
  24#include <linux/cpumask.h>
  25#include <linux/errno.h>
  26#include <linux/nodemask.h>
  27#include <linux/mm_types.h>
  28#include <linux/preempt_mask.h>
  29
  30#include <asm/page.h>
  31#include <asm/ptrace.h>
  32#include <linux/cputime.h>
  33
  34#include <linux/smp.h>
  35#include <linux/sem.h>
 
  36#include <linux/signal.h>
  37#include <linux/compiler.h>
  38#include <linux/completion.h>
  39#include <linux/pid.h>
  40#include <linux/percpu.h>
  41#include <linux/topology.h>
  42#include <linux/proportions.h>
  43#include <linux/seccomp.h>
  44#include <linux/rcupdate.h>
  45#include <linux/rculist.h>
  46#include <linux/rtmutex.h>
  47
  48#include <linux/time.h>
  49#include <linux/param.h>
  50#include <linux/resource.h>
  51#include <linux/timer.h>
  52#include <linux/hrtimer.h>
 
  53#include <linux/task_io_accounting.h>
  54#include <linux/latencytop.h>
  55#include <linux/cred.h>
  56#include <linux/llist.h>
  57#include <linux/uidgid.h>
  58#include <linux/gfp.h>
 
 
  59
  60#include <asm/processor.h>
  61
  62#define SCHED_ATTR_SIZE_VER0	48	/* sizeof first published struct */
  63
  64/*
  65 * Extended scheduling parameters data structure.
  66 *
  67 * This is needed because the original struct sched_param can not be
  68 * altered without introducing ABI issues with legacy applications
  69 * (e.g., in sched_getparam()).
  70 *
  71 * However, the possibility of specifying more than just a priority for
  72 * the tasks may be useful for a wide variety of application fields, e.g.,
  73 * multimedia, streaming, automation and control, and many others.
  74 *
  75 * This variant (sched_attr) is meant at describing a so-called
  76 * sporadic time-constrained task. In such model a task is specified by:
  77 *  - the activation period or minimum instance inter-arrival time;
  78 *  - the maximum (or average, depending on the actual scheduling
  79 *    discipline) computation time of all instances, a.k.a. runtime;
  80 *  - the deadline (relative to the actual activation time) of each
  81 *    instance.
  82 * Very briefly, a periodic (sporadic) task asks for the execution of
  83 * some specific computation --which is typically called an instance--
  84 * (at most) every period. Moreover, each instance typically lasts no more
  85 * than the runtime and must be completed by time instant t equal to
  86 * the instance activation time + the deadline.
  87 *
  88 * This is reflected by the actual fields of the sched_attr structure:
  89 *
  90 *  @size		size of the structure, for fwd/bwd compat.
  91 *
  92 *  @sched_policy	task's scheduling policy
  93 *  @sched_flags	for customizing the scheduler behaviour
  94 *  @sched_nice		task's nice value      (SCHED_NORMAL/BATCH)
  95 *  @sched_priority	task's static priority (SCHED_FIFO/RR)
  96 *  @sched_deadline	representative of the task's deadline
  97 *  @sched_runtime	representative of the task's runtime
  98 *  @sched_period	representative of the task's period
  99 *
 100 * Given this task model, there are a multiplicity of scheduling algorithms
 101 * and policies, that can be used to ensure all the tasks will make their
 102 * timing constraints.
 103 *
 104 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
 105 * only user of this new interface. More information about the algorithm
 106 * available in the scheduling class file or in Documentation/.
 107 */
 108struct sched_attr {
 109	u32 size;
 110
 111	u32 sched_policy;
 112	u64 sched_flags;
 113
 114	/* SCHED_NORMAL, SCHED_BATCH */
 115	s32 sched_nice;
 116
 117	/* SCHED_FIFO, SCHED_RR */
 118	u32 sched_priority;
 119
 120	/* SCHED_DEADLINE */
 121	u64 sched_runtime;
 122	u64 sched_deadline;
 123	u64 sched_period;
 124};
 125
 126struct exec_domain;
 127struct futex_pi_state;
 128struct robust_list_head;
 129struct bio_list;
 130struct fs_struct;
 131struct perf_event_context;
 132struct blk_plug;
 133struct filename;
 
 134
 135#define VMACACHE_BITS 2
 136#define VMACACHE_SIZE (1U << VMACACHE_BITS)
 137#define VMACACHE_MASK (VMACACHE_SIZE - 1)
 138
 139/*
 140 * List of flags we want to share for kernel threads,
 141 * if only because they are not used by them anyway.
 142 */
 143#define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
 144
 145/*
 146 * These are the constant used to fake the fixed-point load-average
 147 * counting. Some notes:
 148 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
 149 *    a load-average precision of 10 bits integer + 11 bits fractional
 150 *  - if you want to count load-averages more often, you need more
 151 *    precision, or rounding will get you. With 2-second counting freq,
 152 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
 153 *    11 bit fractions.
 154 */
 155extern unsigned long avenrun[];		/* Load averages */
 156extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
 157
 158#define FSHIFT		11		/* nr of bits of precision */
 159#define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
 160#define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
 161#define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
 162#define EXP_5		2014		/* 1/exp(5sec/5min) */
 163#define EXP_15		2037		/* 1/exp(5sec/15min) */
 164
 165#define CALC_LOAD(load,exp,n) \
 166	load *= exp; \
 167	load += n*(FIXED_1-exp); \
 168	load >>= FSHIFT;
 169
 170extern unsigned long total_forks;
 171extern int nr_threads;
 172DECLARE_PER_CPU(unsigned long, process_counts);
 173extern int nr_processes(void);
 174extern unsigned long nr_running(void);
 
 175extern unsigned long nr_iowait(void);
 176extern unsigned long nr_iowait_cpu(int cpu);
 177extern unsigned long this_cpu_load(void);
 178
 179
 180extern void calc_global_load(unsigned long ticks);
 181extern void update_cpu_load_nohz(void);
 182
 183extern unsigned long get_parent_ip(unsigned long addr);
 
 
 
 
 
 
 184
 185extern void dump_cpu_task(int cpu);
 186
 187struct seq_file;
 188struct cfs_rq;
 189struct task_group;
 190#ifdef CONFIG_SCHED_DEBUG
 191extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
 192extern void proc_sched_set_task(struct task_struct *p);
 193extern void
 194print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
 195#endif
 196
 197/*
 198 * Task state bitmask. NOTE! These bits are also
 199 * encoded in fs/proc/array.c: get_task_state().
 200 *
 201 * We have two separate sets of flags: task->state
 202 * is about runnability, while task->exit_state are
 203 * about the task exiting. Confusing, but this way
 204 * modifying one set can't modify the other one by
 205 * mistake.
 206 */
 207#define TASK_RUNNING		0
 208#define TASK_INTERRUPTIBLE	1
 209#define TASK_UNINTERRUPTIBLE	2
 210#define __TASK_STOPPED		4
 211#define __TASK_TRACED		8
 212/* in tsk->exit_state */
 213#define EXIT_DEAD		16
 214#define EXIT_ZOMBIE		32
 215#define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
 216/* in tsk->state again */
 217#define TASK_DEAD		64
 218#define TASK_WAKEKILL		128
 219#define TASK_WAKING		256
 220#define TASK_PARKED		512
 221#define TASK_STATE_MAX		1024
 
 
 222
 223#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWP"
 224
 225extern char ___assert_task_state[1 - 2*!!(
 226		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
 227
 228/* Convenience macros for the sake of set_task_state */
 229#define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
 230#define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
 231#define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
 232
 
 
 233/* Convenience macros for the sake of wake_up */
 234#define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 235#define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
 236
 237/* get_task_state() */
 238#define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
 239				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 240				 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
 241
 242#define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
 243#define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
 244#define task_is_stopped_or_traced(task)	\
 245			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 246#define task_contributes_to_load(task)	\
 247				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
 248				 (task->flags & PF_FROZEN) == 0)
 
 249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 250#define __set_task_state(tsk, state_value)		\
 251	do { (tsk)->state = (state_value); } while (0)
 252#define set_task_state(tsk, state_value)		\
 253	set_mb((tsk)->state, (state_value))
 254
 255/*
 256 * set_current_state() includes a barrier so that the write of current->state
 257 * is correctly serialised wrt the caller's subsequent test of whether to
 258 * actually sleep:
 259 *
 
 260 *	set_current_state(TASK_UNINTERRUPTIBLE);
 261 *	if (do_i_need_to_sleep())
 262 *		schedule();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 263 *
 264 * If the caller does not need such serialisation then use __set_current_state()
 
 
 
 
 
 
 265 */
 266#define __set_current_state(state_value)			\
 267	do { current->state = (state_value); } while (0)
 268#define set_current_state(state_value)		\
 269	set_mb(current->state, (state_value))
 
 
 270
 271/* Task command name length */
 272#define TASK_COMM_LEN 16
 273
 274#include <linux/spinlock.h>
 275
 276/*
 277 * This serializes "schedule()" and also protects
 278 * the run-queue from deletions/modifications (but
 279 * _adding_ to the beginning of the run-queue has
 280 * a separate lock).
 281 */
 282extern rwlock_t tasklist_lock;
 283extern spinlock_t mmlist_lock;
 284
 285struct task_struct;
 286
 287#ifdef CONFIG_PROVE_RCU
 288extern int lockdep_tasklist_lock_is_held(void);
 289#endif /* #ifdef CONFIG_PROVE_RCU */
 290
 291extern void sched_init(void);
 292extern void sched_init_smp(void);
 293extern asmlinkage void schedule_tail(struct task_struct *prev);
 294extern void init_idle(struct task_struct *idle, int cpu);
 295extern void init_idle_bootup_task(struct task_struct *idle);
 296
 
 
 297extern int runqueue_is_locked(int cpu);
 298
 299#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 300extern void nohz_balance_enter_idle(int cpu);
 301extern void set_cpu_sd_state_idle(void);
 302extern int get_nohz_timer_target(int pinned);
 303#else
 304static inline void nohz_balance_enter_idle(int cpu) { }
 305static inline void set_cpu_sd_state_idle(void) { }
 306static inline int get_nohz_timer_target(int pinned)
 307{
 308	return smp_processor_id();
 309}
 310#endif
 311
 312/*
 313 * Only dump TASK_* tasks. (0 for all tasks)
 314 */
 315extern void show_state_filter(unsigned long state_filter);
 316
 317static inline void show_state(void)
 318{
 319	show_state_filter(0);
 320}
 321
 322extern void show_regs(struct pt_regs *);
 323
 324/*
 325 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
 326 * task), SP is the stack pointer of the first frame that should be shown in the back
 327 * trace (or NULL if the entire call-chain of the task should be shown).
 328 */
 329extern void show_stack(struct task_struct *task, unsigned long *sp);
 330
 331void io_schedule(void);
 332long io_schedule_timeout(long timeout);
 333
 334extern void cpu_init (void);
 335extern void trap_init(void);
 336extern void update_process_times(int user);
 337extern void scheduler_tick(void);
 
 
 
 
 
 
 
 
 
 338
 339extern void sched_show_task(struct task_struct *p);
 340
 341#ifdef CONFIG_LOCKUP_DETECTOR
 
 342extern void touch_softlockup_watchdog(void);
 343extern void touch_softlockup_watchdog_sync(void);
 344extern void touch_all_softlockup_watchdogs(void);
 345extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
 346				  void __user *buffer,
 347				  size_t *lenp, loff_t *ppos);
 348extern unsigned int  softlockup_panic;
 
 349void lockup_detector_init(void);
 350#else
 
 
 
 351static inline void touch_softlockup_watchdog(void)
 352{
 353}
 354static inline void touch_softlockup_watchdog_sync(void)
 355{
 356}
 357static inline void touch_all_softlockup_watchdogs(void)
 358{
 359}
 360static inline void lockup_detector_init(void)
 361{
 362}
 363#endif
 364
 365#ifdef CONFIG_DETECT_HUNG_TASK
 366void reset_hung_task_detector(void);
 367#else
 368static inline void reset_hung_task_detector(void)
 369{
 370}
 371#endif
 372
 373/* Attach to any functions which should be ignored in wchan output. */
 374#define __sched		__attribute__((__section__(".sched.text")))
 375
 376/* Linker adds these: start and end of __sched functions */
 377extern char __sched_text_start[], __sched_text_end[];
 378
 379/* Is this address in the __sched functions? */
 380extern int in_sched_functions(unsigned long addr);
 381
 382#define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
 383extern signed long schedule_timeout(signed long timeout);
 384extern signed long schedule_timeout_interruptible(signed long timeout);
 385extern signed long schedule_timeout_killable(signed long timeout);
 386extern signed long schedule_timeout_uninterruptible(signed long timeout);
 
 387asmlinkage void schedule(void);
 388extern void schedule_preempt_disabled(void);
 389
 
 
 
 
 
 
 
 
 
 390struct nsproxy;
 391struct user_namespace;
 392
 393#ifdef CONFIG_MMU
 394extern void arch_pick_mmap_layout(struct mm_struct *mm);
 395extern unsigned long
 396arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
 397		       unsigned long, unsigned long);
 398extern unsigned long
 399arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 400			  unsigned long len, unsigned long pgoff,
 401			  unsigned long flags);
 402#else
 403static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
 404#endif
 405
 406#define SUID_DUMP_DISABLE	0	/* No setuid dumping */
 407#define SUID_DUMP_USER		1	/* Dump as user of process */
 408#define SUID_DUMP_ROOT		2	/* Dump as root */
 409
 410/* mm flags */
 411
 412/* for SUID_DUMP_* above */
 413#define MMF_DUMPABLE_BITS 2
 414#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
 415
 416extern void set_dumpable(struct mm_struct *mm, int value);
 417/*
 418 * This returns the actual value of the suid_dumpable flag. For things
 419 * that are using this for checking for privilege transitions, it must
 420 * test against SUID_DUMP_USER rather than treating it as a boolean
 421 * value.
 422 */
 423static inline int __get_dumpable(unsigned long mm_flags)
 424{
 425	return mm_flags & MMF_DUMPABLE_MASK;
 426}
 427
 428static inline int get_dumpable(struct mm_struct *mm)
 429{
 430	return __get_dumpable(mm->flags);
 431}
 432
 433/* coredump filter bits */
 434#define MMF_DUMP_ANON_PRIVATE	2
 435#define MMF_DUMP_ANON_SHARED	3
 436#define MMF_DUMP_MAPPED_PRIVATE	4
 437#define MMF_DUMP_MAPPED_SHARED	5
 438#define MMF_DUMP_ELF_HEADERS	6
 439#define MMF_DUMP_HUGETLB_PRIVATE 7
 440#define MMF_DUMP_HUGETLB_SHARED  8
 
 
 441
 442#define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
 443#define MMF_DUMP_FILTER_BITS	7
 444#define MMF_DUMP_FILTER_MASK \
 445	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
 446#define MMF_DUMP_FILTER_DEFAULT \
 447	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
 448	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
 449
 450#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
 451# define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
 452#else
 453# define MMF_DUMP_MASK_DEFAULT_ELF	0
 454#endif
 455					/* leave room for more dump flags */
 456#define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
 457#define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
 458#define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */
 
 
 
 
 459
 460#define MMF_HAS_UPROBES		19	/* has uprobes */
 461#define MMF_RECALC_UPROBES	20	/* MMF_HAS_UPROBES can be wrong */
 
 
 
 462
 463#define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
 464
 465struct sighand_struct {
 466	atomic_t		count;
 467	struct k_sigaction	action[_NSIG];
 468	spinlock_t		siglock;
 469	wait_queue_head_t	signalfd_wqh;
 470};
 471
 472struct pacct_struct {
 473	int			ac_flag;
 474	long			ac_exitcode;
 475	unsigned long		ac_mem;
 476	cputime_t		ac_utime, ac_stime;
 477	unsigned long		ac_minflt, ac_majflt;
 478};
 479
 480struct cpu_itimer {
 481	cputime_t expires;
 482	cputime_t incr;
 483	u32 error;
 484	u32 incr_error;
 485};
 486
 487/**
 488 * struct cputime - snaphsot of system and user cputime
 489 * @utime: time spent in user mode
 490 * @stime: time spent in system mode
 
 491 *
 492 * Gathers a generic snapshot of user and system time.
 
 493 */
 494struct cputime {
 
 495	cputime_t utime;
 496	cputime_t stime;
 
 
 497};
 498
 
 
 
 
 
 
 
 
 499/**
 500 * struct task_cputime - collected CPU time counts
 501 * @utime:		time spent in user mode, in &cputime_t units
 502 * @stime:		time spent in kernel mode, in &cputime_t units
 503 * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
 504 *
 505 * This is an extension of struct cputime that includes the total runtime
 506 * spent by the task from the scheduler point of view.
 507 *
 508 * As a result, this structure groups together three kinds of CPU time
 509 * that are tracked for threads and thread groups.  Most things considering
 510 * CPU time want to group these counts together and treat all three
 511 * of them in parallel.
 512 */
 513struct task_cputime {
 514	cputime_t utime;
 515	cputime_t stime;
 516	unsigned long long sum_exec_runtime;
 517};
 
 518/* Alternate field names when used to cache expirations. */
 519#define prof_exp	stime
 520#define virt_exp	utime
 
 521#define sched_exp	sum_exec_runtime
 522
 523#define INIT_CPUTIME	\
 524	(struct task_cputime) {					\
 525		.utime = 0,					\
 526		.stime = 0,					\
 527		.sum_exec_runtime = 0,				\
 528	}
 529
 530#ifdef CONFIG_PREEMPT_COUNT
 531#define PREEMPT_DISABLED	(1 + PREEMPT_ENABLED)
 532#else
 533#define PREEMPT_DISABLED	PREEMPT_ENABLED
 534#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 535
 536/*
 537 * Disable preemption until the scheduler is running.
 538 * Reset by start_kernel()->sched_init()->init_idle().
 539 *
 540 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
 541 * before the scheduler is active -- see should_resched().
 542 */
 543#define INIT_PREEMPT_COUNT	(PREEMPT_DISABLED + PREEMPT_ACTIVE)
 
 
 
 
 
 
 
 
 
 
 
 544
 545/**
 546 * struct thread_group_cputimer - thread group interval timer counts
 547 * @cputime:		thread group interval timers.
 548 * @running:		non-zero when there are timers running and
 549 * 			@cputime receives updates.
 550 * @lock:		lock for fields in this struct.
 
 551 *
 552 * This structure contains the version of task_cputime, above, that is
 553 * used for thread group CPU timer calculations.
 554 */
 555struct thread_group_cputimer {
 556	struct task_cputime cputime;
 557	int running;
 558	raw_spinlock_t lock;
 559};
 560
 561#include <linux/rwsem.h>
 562struct autogroup;
 563
 564/*
 565 * NOTE! "signal_struct" does not have its own
 566 * locking, because a shared signal_struct always
 567 * implies a shared sighand_struct, so locking
 568 * sighand_struct is always a proper superset of
 569 * the locking of signal_struct.
 570 */
 571struct signal_struct {
 572	atomic_t		sigcnt;
 573	atomic_t		live;
 574	int			nr_threads;
 575	struct list_head	thread_head;
 576
 577	wait_queue_head_t	wait_chldexit;	/* for wait4() */
 578
 579	/* current thread group signal load-balancing target: */
 580	struct task_struct	*curr_target;
 581
 582	/* shared signal handling: */
 583	struct sigpending	shared_pending;
 584
 585	/* thread group exit support */
 586	int			group_exit_code;
 587	/* overloaded:
 588	 * - notify group_exit_task when ->count is equal to notify_count
 589	 * - everyone except group_exit_task is stopped during signal delivery
 590	 *   of fatal signals, group_exit_task processes the signal.
 591	 */
 592	int			notify_count;
 593	struct task_struct	*group_exit_task;
 594
 595	/* thread group stop support, overloads group_exit_code too */
 596	int			group_stop_count;
 597	unsigned int		flags; /* see SIGNAL_* flags below */
 598
 599	/*
 600	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
 601	 * manager, to re-parent orphan (double-forking) child processes
 602	 * to this process instead of 'init'. The service manager is
 603	 * able to receive SIGCHLD signals and is able to investigate
 604	 * the process until it calls wait(). All children of this
 605	 * process will inherit a flag if they should look for a
 606	 * child_subreaper process at exit.
 607	 */
 608	unsigned int		is_child_subreaper:1;
 609	unsigned int		has_child_subreaper:1;
 610
 611	/* POSIX.1b Interval Timers */
 612	int			posix_timer_id;
 613	struct list_head	posix_timers;
 614
 615	/* ITIMER_REAL timer for the process */
 616	struct hrtimer real_timer;
 617	struct pid *leader_pid;
 618	ktime_t it_real_incr;
 619
 620	/*
 621	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
 622	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
 623	 * values are defined to 0 and 1 respectively
 624	 */
 625	struct cpu_itimer it[2];
 626
 627	/*
 628	 * Thread group totals for process CPU timers.
 629	 * See thread_group_cputimer(), et al, for details.
 630	 */
 631	struct thread_group_cputimer cputimer;
 632
 633	/* Earliest-expiration cache. */
 634	struct task_cputime cputime_expires;
 635
 
 
 
 
 636	struct list_head cpu_timers[3];
 637
 638	struct pid *tty_old_pgrp;
 639
 640	/* boolean value for session group leader */
 641	int leader;
 642
 643	struct tty_struct *tty; /* NULL if no tty */
 644
 645#ifdef CONFIG_SCHED_AUTOGROUP
 646	struct autogroup *autogroup;
 647#endif
 648	/*
 649	 * Cumulative resource counters for dead threads in the group,
 650	 * and for reaped dead child processes forked by this group.
 651	 * Live threads maintain their own counters and add to these
 652	 * in __exit_signal, except for the group leader.
 653	 */
 
 654	cputime_t utime, stime, cutime, cstime;
 655	cputime_t gtime;
 656	cputime_t cgtime;
 657#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 658	struct cputime prev_cputime;
 659#endif
 660	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 661	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 662	unsigned long inblock, oublock, cinblock, coublock;
 663	unsigned long maxrss, cmaxrss;
 664	struct task_io_accounting ioac;
 665
 666	/*
 667	 * Cumulative ns of schedule CPU time fo dead threads in the
 668	 * group, not including a zombie group leader, (This only differs
 669	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
 670	 * other than jiffies.)
 671	 */
 672	unsigned long long sum_sched_runtime;
 673
 674	/*
 675	 * We don't bother to synchronize most readers of this at all,
 676	 * because there is no reader checking a limit that actually needs
 677	 * to get both rlim_cur and rlim_max atomically, and either one
 678	 * alone is a single word that can safely be read normally.
 679	 * getrlimit/setrlimit use task_lock(current->group_leader) to
 680	 * protect this instead of the siglock, because they really
 681	 * have no need to disable irqs.
 682	 */
 683	struct rlimit rlim[RLIM_NLIMITS];
 684
 685#ifdef CONFIG_BSD_PROCESS_ACCT
 686	struct pacct_struct pacct;	/* per-process accounting information */
 687#endif
 688#ifdef CONFIG_TASKSTATS
 689	struct taskstats *stats;
 690#endif
 691#ifdef CONFIG_AUDIT
 692	unsigned audit_tty;
 693	unsigned audit_tty_log_passwd;
 694	struct tty_audit_buf *tty_audit_buf;
 695#endif
 696#ifdef CONFIG_CGROUPS
 697	/*
 698	 * group_rwsem prevents new tasks from entering the threadgroup and
 699	 * member tasks from exiting,a more specifically, setting of
 700	 * PF_EXITING.  fork and exit paths are protected with this rwsem
 701	 * using threadgroup_change_begin/end().  Users which require
 702	 * threadgroup to remain stable should use threadgroup_[un]lock()
 703	 * which also takes care of exec path.  Currently, cgroup is the
 704	 * only user.
 705	 */
 706	struct rw_semaphore group_rwsem;
 707#endif
 708
 709	oom_flags_t oom_flags;
 710	short oom_score_adj;		/* OOM kill score adjustment */
 711	short oom_score_adj_min;	/* OOM kill score adjustment min value.
 712					 * Only settable by CAP_SYS_RESOURCE. */
 
 
 713
 714	struct mutex cred_guard_mutex;	/* guard against foreign influences on
 715					 * credential calculations
 716					 * (notably. ptrace) */
 717};
 718
 719/*
 720 * Bits in flags field of signal_struct.
 721 */
 722#define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
 723#define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
 724#define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
 725#define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
 726/*
 727 * Pending notifications to parent.
 728 */
 729#define SIGNAL_CLD_STOPPED	0x00000010
 730#define SIGNAL_CLD_CONTINUED	0x00000020
 731#define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
 732
 733#define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
 734
 
 
 
 
 
 
 
 
 
 
 735/* If true, all threads except ->group_exit_task have pending SIGKILL */
 736static inline int signal_group_exit(const struct signal_struct *sig)
 737{
 738	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
 739		(sig->group_exit_task != NULL);
 740}
 741
 742/*
 743 * Some day this will be a full-fledged user tracking system..
 744 */
 745struct user_struct {
 746	atomic_t __count;	/* reference count */
 747	atomic_t processes;	/* How many processes does this user have? */
 748	atomic_t files;		/* How many open files does this user have? */
 749	atomic_t sigpending;	/* How many pending signals does this user have? */
 750#ifdef CONFIG_INOTIFY_USER
 751	atomic_t inotify_watches; /* How many inotify watches does this user have? */
 752	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
 753#endif
 754#ifdef CONFIG_FANOTIFY
 755	atomic_t fanotify_listeners;
 756#endif
 757#ifdef CONFIG_EPOLL
 758	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
 759#endif
 760#ifdef CONFIG_POSIX_MQUEUE
 761	/* protected by mq_lock	*/
 762	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
 763#endif
 764	unsigned long locked_shm; /* How many pages of mlocked shm ? */
 
 
 765
 766#ifdef CONFIG_KEYS
 767	struct key *uid_keyring;	/* UID specific keyring */
 768	struct key *session_keyring;	/* UID's default session keyring */
 769#endif
 770
 771	/* Hash table maintenance information */
 772	struct hlist_node uidhash_node;
 773	kuid_t uid;
 774
 775#ifdef CONFIG_PERF_EVENTS
 776	atomic_long_t locked_vm;
 777#endif
 778};
 779
 780extern int uids_sysfs_init(void);
 781
 782extern struct user_struct *find_user(kuid_t);
 783
 784extern struct user_struct root_user;
 785#define INIT_USER (&root_user)
 786
 787
 788struct backing_dev_info;
 789struct reclaim_state;
 790
 791#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
 792struct sched_info {
 793	/* cumulative counters */
 794	unsigned long pcount;	      /* # of times run on this cpu */
 795	unsigned long long run_delay; /* time spent waiting on a runqueue */
 796
 797	/* timestamps */
 798	unsigned long long last_arrival,/* when we last ran on a cpu */
 799			   last_queued;	/* when we were last queued to run */
 800};
 801#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
 802
 803#ifdef CONFIG_TASK_DELAY_ACCT
 804struct task_delay_info {
 805	spinlock_t	lock;
 806	unsigned int	flags;	/* Private per-task flags */
 807
 808	/* For each stat XXX, add following, aligned appropriately
 809	 *
 810	 * struct timespec XXX_start, XXX_end;
 811	 * u64 XXX_delay;
 812	 * u32 XXX_count;
 813	 *
 814	 * Atomicity of updates to XXX_delay, XXX_count protected by
 815	 * single lock above (split into XXX_lock if contention is an issue).
 816	 */
 817
 818	/*
 819	 * XXX_count is incremented on every XXX operation, the delay
 820	 * associated with the operation is added to XXX_delay.
 821	 * XXX_delay contains the accumulated delay time in nanoseconds.
 822	 */
 823	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
 824	u64 blkio_delay;	/* wait for sync block io completion */
 825	u64 swapin_delay;	/* wait for swapin block io completion */
 826	u32 blkio_count;	/* total count of the number of sync block */
 827				/* io operations performed */
 828	u32 swapin_count;	/* total count of the number of swapin block */
 829				/* io operations performed */
 830
 831	struct timespec freepages_start, freepages_end;
 832	u64 freepages_delay;	/* wait for memory reclaim */
 833	u32 freepages_count;	/* total count of memory reclaim */
 834};
 835#endif	/* CONFIG_TASK_DELAY_ACCT */
 836
 837static inline int sched_info_on(void)
 838{
 839#ifdef CONFIG_SCHEDSTATS
 840	return 1;
 841#elif defined(CONFIG_TASK_DELAY_ACCT)
 842	extern int delayacct_on;
 843	return delayacct_on;
 844#else
 845	return 0;
 846#endif
 847}
 848
 
 
 
 
 849enum cpu_idle_type {
 850	CPU_IDLE,
 851	CPU_NOT_IDLE,
 852	CPU_NEWLY_IDLE,
 853	CPU_MAX_IDLE_TYPES
 854};
 855
 856/*
 857 * Increase resolution of cpu_power calculations
 
 
 
 
 
 
 
 
 
 
 858 */
 859#define SCHED_POWER_SHIFT	10
 860#define SCHED_POWER_SCALE	(1L << SCHED_POWER_SHIFT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861
 862/*
 863 * sched-domains (multiprocessor balancing) declarations:
 864 */
 865#ifdef CONFIG_SMP
 866#define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
 867#define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
 868#define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
 869#define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
 870#define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
 871#define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
 872#define SD_SHARE_CPUPOWER	0x0080	/* Domain members share cpu power */
 
 
 873#define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
 874#define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
 875#define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
 876#define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
 877#define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
 878#define SD_NUMA			0x4000	/* cross-node balancing */
 879
 880extern int __weak arch_sd_sibiling_asym_packing(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 881
 882struct sched_domain_attr {
 883	int relax_domain_level;
 884};
 885
 886#define SD_ATTR_INIT	(struct sched_domain_attr) {	\
 887	.relax_domain_level = -1,			\
 888}
 889
 890extern int sched_domain_level_max;
 891
 892struct sched_group;
 893
 
 
 
 
 
 
 894struct sched_domain {
 895	/* These fields must be setup */
 896	struct sched_domain *parent;	/* top domain must be null terminated */
 897	struct sched_domain *child;	/* bottom domain must be null terminated */
 898	struct sched_group *groups;	/* the balancing groups of the domain */
 899	unsigned long min_interval;	/* Minimum balance interval ms */
 900	unsigned long max_interval;	/* Maximum balance interval ms */
 901	unsigned int busy_factor;	/* less balancing by factor if busy */
 902	unsigned int imbalance_pct;	/* No balance until over watermark */
 903	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
 904	unsigned int busy_idx;
 905	unsigned int idle_idx;
 906	unsigned int newidle_idx;
 907	unsigned int wake_idx;
 908	unsigned int forkexec_idx;
 909	unsigned int smt_gain;
 910
 911	int nohz_idle;			/* NOHZ IDLE status */
 912	int flags;			/* See SD_* */
 913	int level;
 914
 915	/* Runtime fields. */
 916	unsigned long last_balance;	/* init to jiffies. units in jiffies */
 917	unsigned int balance_interval;	/* initialise to 1. units in ms. */
 918	unsigned int nr_balance_failed; /* initialise to 0 */
 919
 920	/* idle_balance() stats */
 921	u64 max_newidle_lb_cost;
 922	unsigned long next_decay_max_lb_cost;
 923
 
 
 924#ifdef CONFIG_SCHEDSTATS
 925	/* load_balance() stats */
 926	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
 927	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
 928	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
 929	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
 930	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
 931	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
 932	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
 933	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
 934
 935	/* Active load balancing */
 936	unsigned int alb_count;
 937	unsigned int alb_failed;
 938	unsigned int alb_pushed;
 939
 940	/* SD_BALANCE_EXEC stats */
 941	unsigned int sbe_count;
 942	unsigned int sbe_balanced;
 943	unsigned int sbe_pushed;
 944
 945	/* SD_BALANCE_FORK stats */
 946	unsigned int sbf_count;
 947	unsigned int sbf_balanced;
 948	unsigned int sbf_pushed;
 949
 950	/* try_to_wake_up() stats */
 951	unsigned int ttwu_wake_remote;
 952	unsigned int ttwu_move_affine;
 953	unsigned int ttwu_move_balance;
 954#endif
 955#ifdef CONFIG_SCHED_DEBUG
 956	char *name;
 957#endif
 958	union {
 959		void *private;		/* used during construction */
 960		struct rcu_head rcu;	/* used during destruction */
 961	};
 
 962
 963	unsigned int span_weight;
 964	/*
 965	 * Span of all CPUs in this domain.
 966	 *
 967	 * NOTE: this field is variable length. (Allocated dynamically
 968	 * by attaching extra space to the end of the structure,
 969	 * depending on how many CPUs the kernel has booted up with)
 970	 */
 971	unsigned long span[0];
 972};
 973
 974static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
 975{
 976	return to_cpumask(sd->span);
 977}
 978
 979extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 980				    struct sched_domain_attr *dattr_new);
 981
 982/* Allocate an array of sched domains, for partition_sched_domains(). */
 983cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
 984void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
 985
 986bool cpus_share_cache(int this_cpu, int that_cpu);
 987
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 988#else /* CONFIG_SMP */
 989
 990struct sched_domain_attr;
 991
 992static inline void
 993partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 994			struct sched_domain_attr *dattr_new)
 995{
 996}
 997
 998static inline bool cpus_share_cache(int this_cpu, int that_cpu)
 999{
1000	return true;
1001}
1002
1003#endif	/* !CONFIG_SMP */
1004
1005
1006struct io_context;			/* See blkdev.h */
1007
1008
1009#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1010extern void prefetch_stack(struct task_struct *t);
1011#else
1012static inline void prefetch_stack(struct task_struct *t) { }
1013#endif
1014
1015struct audit_context;		/* See audit.c */
1016struct mempolicy;
1017struct pipe_inode_info;
1018struct uts_namespace;
1019
1020struct load_weight {
1021	unsigned long weight;
1022	u32 inv_weight;
1023};
1024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1025struct sched_avg {
1026	/*
1027	 * These sums represent an infinite geometric series and so are bound
1028	 * above by 1024/(1-y).  Thus we only need a u32 to store them for all
1029	 * choices of y < 1-2^(-32)*1024.
1030	 */
1031	u32 runnable_avg_sum, runnable_avg_period;
1032	u64 last_runnable_update;
1033	s64 decay_count;
1034	unsigned long load_avg_contrib;
1035};
1036
1037#ifdef CONFIG_SCHEDSTATS
1038struct sched_statistics {
1039	u64			wait_start;
1040	u64			wait_max;
1041	u64			wait_count;
1042	u64			wait_sum;
1043	u64			iowait_count;
1044	u64			iowait_sum;
1045
1046	u64			sleep_start;
1047	u64			sleep_max;
1048	s64			sum_sleep_runtime;
1049
1050	u64			block_start;
1051	u64			block_max;
1052	u64			exec_max;
1053	u64			slice_max;
1054
1055	u64			nr_migrations_cold;
1056	u64			nr_failed_migrations_affine;
1057	u64			nr_failed_migrations_running;
1058	u64			nr_failed_migrations_hot;
1059	u64			nr_forced_migrations;
1060
1061	u64			nr_wakeups;
1062	u64			nr_wakeups_sync;
1063	u64			nr_wakeups_migrate;
1064	u64			nr_wakeups_local;
1065	u64			nr_wakeups_remote;
1066	u64			nr_wakeups_affine;
1067	u64			nr_wakeups_affine_attempts;
1068	u64			nr_wakeups_passive;
1069	u64			nr_wakeups_idle;
1070};
1071#endif
1072
1073struct sched_entity {
1074	struct load_weight	load;		/* for load-balancing */
1075	struct rb_node		run_node;
1076	struct list_head	group_node;
1077	unsigned int		on_rq;
1078
1079	u64			exec_start;
1080	u64			sum_exec_runtime;
1081	u64			vruntime;
1082	u64			prev_sum_exec_runtime;
1083
1084	u64			nr_migrations;
1085
1086#ifdef CONFIG_SCHEDSTATS
1087	struct sched_statistics statistics;
1088#endif
1089
1090#ifdef CONFIG_FAIR_GROUP_SCHED
1091	int			depth;
1092	struct sched_entity	*parent;
1093	/* rq on which this entity is (to be) queued: */
1094	struct cfs_rq		*cfs_rq;
1095	/* rq "owned" by this entity/group: */
1096	struct cfs_rq		*my_q;
1097#endif
1098
1099#ifdef CONFIG_SMP
1100	/* Per-entity load-tracking */
1101	struct sched_avg	avg;
 
 
 
 
 
1102#endif
1103};
1104
1105struct sched_rt_entity {
1106	struct list_head run_list;
1107	unsigned long timeout;
1108	unsigned long watchdog_stamp;
1109	unsigned int time_slice;
 
 
1110
1111	struct sched_rt_entity *back;
1112#ifdef CONFIG_RT_GROUP_SCHED
1113	struct sched_rt_entity	*parent;
1114	/* rq on which this entity is (to be) queued: */
1115	struct rt_rq		*rt_rq;
1116	/* rq "owned" by this entity/group: */
1117	struct rt_rq		*my_q;
1118#endif
1119};
1120
1121struct sched_dl_entity {
1122	struct rb_node	rb_node;
1123
1124	/*
1125	 * Original scheduling parameters. Copied here from sched_attr
1126	 * during sched_setscheduler2(), they will remain the same until
1127	 * the next sched_setscheduler2().
1128	 */
1129	u64 dl_runtime;		/* maximum runtime for each instance	*/
1130	u64 dl_deadline;	/* relative deadline of each instance	*/
1131	u64 dl_period;		/* separation of two instances (period) */
1132	u64 dl_bw;		/* dl_runtime / dl_deadline		*/
1133
1134	/*
1135	 * Actual scheduling parameters. Initialized with the values above,
1136	 * they are continously updated during task execution. Note that
1137	 * the remaining runtime could be < 0 in case we are in overrun.
1138	 */
1139	s64 runtime;		/* remaining runtime for this instance	*/
1140	u64 deadline;		/* absolute deadline for this instance	*/
1141	unsigned int flags;	/* specifying the scheduler behaviour	*/
1142
1143	/*
1144	 * Some bool flags:
1145	 *
1146	 * @dl_throttled tells if we exhausted the runtime. If so, the
1147	 * task has to wait for a replenishment to be performed at the
1148	 * next firing of dl_timer.
1149	 *
1150	 * @dl_new tells if a new instance arrived. If so we must
1151	 * start executing it with full runtime and reset its absolute
1152	 * deadline;
1153	 *
1154	 * @dl_boosted tells if we are boosted due to DI. If so we are
1155	 * outside bandwidth enforcement mechanism (but only until we
1156	 * exit the critical section);
1157	 *
1158	 * @dl_yielded tells if task gave up the cpu before consuming
1159	 * all its available runtime during the last job.
1160	 */
1161	int dl_throttled, dl_new, dl_boosted, dl_yielded;
1162
1163	/*
1164	 * Bandwidth enforcement timer. Each -deadline task has its
1165	 * own bandwidth to be enforced, thus we need one timer per task.
1166	 */
1167	struct hrtimer dl_timer;
1168};
1169
 
 
 
 
 
 
 
 
 
1170struct rcu_node;
1171
1172enum perf_event_task_context {
1173	perf_invalid_context = -1,
1174	perf_hw_context = 0,
1175	perf_sw_context,
1176	perf_nr_task_contexts,
1177};
1178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1179struct task_struct {
 
 
 
 
 
 
 
1180	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1181	void *stack;
1182	atomic_t usage;
1183	unsigned int flags;	/* per process flags, defined below */
1184	unsigned int ptrace;
1185
1186#ifdef CONFIG_SMP
1187	struct llist_node wake_entry;
1188	int on_cpu;
1189	struct task_struct *last_wakee;
1190	unsigned long wakee_flips;
 
 
1191	unsigned long wakee_flip_decay_ts;
 
1192
1193	int wake_cpu;
1194#endif
1195	int on_rq;
1196
1197	int prio, static_prio, normal_prio;
1198	unsigned int rt_priority;
1199	const struct sched_class *sched_class;
1200	struct sched_entity se;
1201	struct sched_rt_entity rt;
1202#ifdef CONFIG_CGROUP_SCHED
1203	struct task_group *sched_task_group;
1204#endif
1205	struct sched_dl_entity dl;
1206
1207#ifdef CONFIG_PREEMPT_NOTIFIERS
1208	/* list of struct preempt_notifier: */
1209	struct hlist_head preempt_notifiers;
1210#endif
1211
1212#ifdef CONFIG_BLK_DEV_IO_TRACE
1213	unsigned int btrace_seq;
1214#endif
1215
1216	unsigned int policy;
1217	int nr_cpus_allowed;
1218	cpumask_t cpus_allowed;
1219
1220#ifdef CONFIG_PREEMPT_RCU
1221	int rcu_read_lock_nesting;
1222	char rcu_read_unlock_special;
1223	struct list_head rcu_node_entry;
1224#endif /* #ifdef CONFIG_PREEMPT_RCU */
1225#ifdef CONFIG_TREE_PREEMPT_RCU
1226	struct rcu_node *rcu_blocked_node;
1227#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1228#ifdef CONFIG_RCU_BOOST
1229	struct rt_mutex *rcu_boost_mutex;
1230#endif /* #ifdef CONFIG_RCU_BOOST */
 
 
 
1231
1232#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1233	struct sched_info sched_info;
1234#endif
1235
1236	struct list_head tasks;
1237#ifdef CONFIG_SMP
1238	struct plist_node pushable_tasks;
1239	struct rb_node pushable_dl_tasks;
1240#endif
1241
1242	struct mm_struct *mm, *active_mm;
1243#ifdef CONFIG_COMPAT_BRK
1244	unsigned brk_randomized:1;
1245#endif
1246	/* per-thread vma caching */
1247	u32 vmacache_seqnum;
1248	struct vm_area_struct *vmacache[VMACACHE_SIZE];
1249#if defined(SPLIT_RSS_COUNTING)
1250	struct task_rss_stat	rss_stat;
1251#endif
1252/* task state */
1253	int exit_state;
1254	int exit_code, exit_signal;
1255	int pdeath_signal;  /*  The signal sent when the parent dies  */
1256	unsigned int jobctl;	/* JOBCTL_*, siglock protected */
1257
1258	/* Used for emulating ABI behavior of previous Linux versions */
1259	unsigned int personality;
1260
1261	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1262				 * execve */
 
 
 
 
 
 
 
1263	unsigned in_iowait:1;
 
 
 
 
 
 
 
 
 
 
 
 
1264
1265	/* task may not gain privileges */
1266	unsigned no_new_privs:1;
1267
1268	/* Revert to default priority/policy when forking */
1269	unsigned sched_reset_on_fork:1;
1270	unsigned sched_contributes_to_load:1;
1271
1272	pid_t pid;
1273	pid_t tgid;
1274
1275#ifdef CONFIG_CC_STACKPROTECTOR
1276	/* Canary value for the -fstack-protector gcc feature */
1277	unsigned long stack_canary;
1278#endif
1279	/*
1280	 * pointers to (original) parent process, youngest child, younger sibling,
1281	 * older sibling, respectively.  (p->father can be replaced with
1282	 * p->real_parent->pid)
1283	 */
1284	struct task_struct __rcu *real_parent; /* real parent process */
1285	struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1286	/*
1287	 * children/sibling forms the list of my natural children
1288	 */
1289	struct list_head children;	/* list of my children */
1290	struct list_head sibling;	/* linkage in my parent's children list */
1291	struct task_struct *group_leader;	/* threadgroup leader */
1292
1293	/*
1294	 * ptraced is the list of tasks this task is using ptrace on.
1295	 * This includes both natural children and PTRACE_ATTACH targets.
1296	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1297	 */
1298	struct list_head ptraced;
1299	struct list_head ptrace_entry;
1300
1301	/* PID/PID hash table linkage. */
1302	struct pid_link pids[PIDTYPE_MAX];
1303	struct list_head thread_group;
1304	struct list_head thread_node;
1305
1306	struct completion *vfork_done;		/* for vfork() */
1307	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1308	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1309
1310	cputime_t utime, stime, utimescaled, stimescaled;
1311	cputime_t gtime;
1312#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1313	struct cputime prev_cputime;
1314#endif
 
 
1315#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1316	seqlock_t vtime_seqlock;
1317	unsigned long long vtime_snap;
1318	enum {
1319		VTIME_SLEEPING = 0,
 
 
1320		VTIME_USER,
 
1321		VTIME_SYS,
1322	} vtime_snap_whence;
1323#endif
 
 
 
 
1324	unsigned long nvcsw, nivcsw; /* context switch counts */
1325	struct timespec start_time; 		/* monotonic time */
1326	struct timespec real_start_time;	/* boot based time */
1327/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1328	unsigned long min_flt, maj_flt;
1329
1330	struct task_cputime cputime_expires;
1331	struct list_head cpu_timers[3];
1332
1333/* process credentials */
 
1334	const struct cred __rcu *real_cred; /* objective and real subjective task
1335					 * credentials (COW) */
1336	const struct cred __rcu *cred;	/* effective (overridable) subjective task
1337					 * credentials (COW) */
1338	char comm[TASK_COMM_LEN]; /* executable name excluding path
1339				     - access with [gs]et_task_comm (which lock
1340				       it with task_lock())
1341				     - initialized normally by setup_new_exec */
1342/* file system info */
1343	int link_count, total_link_count;
1344#ifdef CONFIG_SYSVIPC
1345/* ipc stuff */
1346	struct sysv_sem sysvsem;
 
1347#endif
1348#ifdef CONFIG_DETECT_HUNG_TASK
1349/* hung task detection */
1350	unsigned long last_switch_count;
1351#endif
1352/* CPU-specific state of this task */
1353	struct thread_struct thread;
1354/* filesystem information */
1355	struct fs_struct *fs;
1356/* open file information */
1357	struct files_struct *files;
1358/* namespaces */
1359	struct nsproxy *nsproxy;
1360/* signal handlers */
1361	struct signal_struct *signal;
1362	struct sighand_struct *sighand;
1363
1364	sigset_t blocked, real_blocked;
1365	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1366	struct sigpending pending;
1367
1368	unsigned long sas_ss_sp;
1369	size_t sas_ss_size;
1370	int (*notifier)(void *priv);
1371	void *notifier_data;
1372	sigset_t *notifier_mask;
1373	struct callback_head *task_works;
1374
1375	struct audit_context *audit_context;
1376#ifdef CONFIG_AUDITSYSCALL
1377	kuid_t loginuid;
1378	unsigned int sessionid;
1379#endif
1380	struct seccomp seccomp;
1381
1382/* Thread group tracking */
1383   	u32 parent_exec_id;
1384   	u32 self_exec_id;
1385/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1386 * mempolicy */
1387	spinlock_t alloc_lock;
1388
1389	/* Protection of the PI data structures: */
1390	raw_spinlock_t pi_lock;
1391
 
 
1392#ifdef CONFIG_RT_MUTEXES
1393	/* PI waiters blocked on a rt_mutex held by this task */
1394	struct rb_root pi_waiters;
1395	struct rb_node *pi_waiters_leftmost;
1396	/* Deadlock detection and priority inheritance handling */
1397	struct rt_mutex_waiter *pi_blocked_on;
1398	/* Top pi_waiters task */
1399	struct task_struct *pi_top_task;
1400#endif
1401
1402#ifdef CONFIG_DEBUG_MUTEXES
1403	/* mutex deadlock detection */
1404	struct mutex_waiter *blocked_on;
1405#endif
1406#ifdef CONFIG_TRACE_IRQFLAGS
1407	unsigned int irq_events;
1408	unsigned long hardirq_enable_ip;
1409	unsigned long hardirq_disable_ip;
1410	unsigned int hardirq_enable_event;
1411	unsigned int hardirq_disable_event;
1412	int hardirqs_enabled;
1413	int hardirq_context;
1414	unsigned long softirq_disable_ip;
1415	unsigned long softirq_enable_ip;
1416	unsigned int softirq_disable_event;
1417	unsigned int softirq_enable_event;
1418	int softirqs_enabled;
1419	int softirq_context;
1420#endif
1421#ifdef CONFIG_LOCKDEP
1422# define MAX_LOCK_DEPTH 48UL
1423	u64 curr_chain_key;
1424	int lockdep_depth;
1425	unsigned int lockdep_recursion;
1426	struct held_lock held_locks[MAX_LOCK_DEPTH];
1427	gfp_t lockdep_reclaim_gfp;
1428#endif
 
 
 
1429
1430/* journalling filesystem info */
1431	void *journal_info;
1432
1433/* stacked block device info */
1434	struct bio_list *bio_list;
1435
1436#ifdef CONFIG_BLOCK
1437/* stack plugging */
1438	struct blk_plug *plug;
1439#endif
1440
1441/* VM state */
1442	struct reclaim_state *reclaim_state;
1443
1444	struct backing_dev_info *backing_dev_info;
1445
1446	struct io_context *io_context;
1447
1448	unsigned long ptrace_message;
1449	siginfo_t *last_siginfo; /* For ptrace use.  */
1450	struct task_io_accounting ioac;
1451#if defined(CONFIG_TASK_XACCT)
1452	u64 acct_rss_mem1;	/* accumulated rss usage */
1453	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1454	cputime_t acct_timexpd;	/* stime + utime since last update */
1455#endif
1456#ifdef CONFIG_CPUSETS
1457	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1458	seqcount_t mems_allowed_seq;	/* Seqence no to catch updates */
1459	int cpuset_mem_spread_rotor;
1460	int cpuset_slab_spread_rotor;
1461#endif
1462#ifdef CONFIG_CGROUPS
1463	/* Control Group info protected by css_set_lock */
1464	struct css_set __rcu *cgroups;
1465	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1466	struct list_head cg_list;
1467#endif
 
 
 
1468#ifdef CONFIG_FUTEX
1469	struct robust_list_head __user *robust_list;
1470#ifdef CONFIG_COMPAT
1471	struct compat_robust_list_head __user *compat_robust_list;
1472#endif
1473	struct list_head pi_state_list;
1474	struct futex_pi_state *pi_state_cache;
1475#endif
1476#ifdef CONFIG_PERF_EVENTS
1477	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1478	struct mutex perf_event_mutex;
1479	struct list_head perf_event_list;
1480#endif
1481#ifdef CONFIG_DEBUG_PREEMPT
1482	unsigned long preempt_disable_ip;
1483#endif
1484#ifdef CONFIG_NUMA
1485	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1486	short il_next;
1487	short pref_node_fork;
1488#endif
1489#ifdef CONFIG_NUMA_BALANCING
1490	int numa_scan_seq;
1491	unsigned int numa_scan_period;
1492	unsigned int numa_scan_period_max;
1493	int numa_preferred_nid;
1494	unsigned long numa_migrate_retry;
1495	u64 node_stamp;			/* migration stamp  */
1496	u64 last_task_numa_placement;
1497	u64 last_sum_exec_runtime;
1498	struct callback_head numa_work;
1499
1500	struct list_head numa_entry;
1501	struct numa_group *numa_group;
1502
1503	/*
1504	 * Exponential decaying average of faults on a per-node basis.
1505	 * Scheduling placement decisions are made based on the these counts.
1506	 * The values remain static for the duration of a PTE scan
 
 
 
 
 
 
 
 
 
1507	 */
1508	unsigned long *numa_faults_memory;
1509	unsigned long total_numa_faults;
1510
1511	/*
1512	 * numa_faults_buffer records faults per node during the current
1513	 * scan window. When the scan completes, the counts in
1514	 * numa_faults_memory decay and these values are copied.
1515	 */
1516	unsigned long *numa_faults_buffer_memory;
1517
1518	/*
1519	 * Track the nodes the process was running on when a NUMA hinting
1520	 * fault was incurred.
1521	 */
1522	unsigned long *numa_faults_cpu;
1523	unsigned long *numa_faults_buffer_cpu;
1524
1525	/*
1526	 * numa_faults_locality tracks if faults recorded during the last
1527	 * scan window were remote/local. The task scan period is adapted
1528	 * based on the locality of the faults with different weights
1529	 * depending on whether they were shared or private faults
1530	 */
1531	unsigned long numa_faults_locality[2];
1532
1533	unsigned long numa_pages_migrated;
1534#endif /* CONFIG_NUMA_BALANCING */
1535
 
 
 
 
1536	struct rcu_head rcu;
1537
1538	/*
1539	 * cache last used pipe for splice
1540	 */
1541	struct pipe_inode_info *splice_pipe;
1542
1543	struct page_frag task_frag;
1544
1545#ifdef	CONFIG_TASK_DELAY_ACCT
1546	struct task_delay_info *delays;
1547#endif
1548#ifdef CONFIG_FAULT_INJECTION
1549	int make_it_fail;
1550#endif
1551	/*
1552	 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1553	 * balance_dirty_pages() for some dirty throttling pause
1554	 */
1555	int nr_dirtied;
1556	int nr_dirtied_pause;
1557	unsigned long dirty_paused_when; /* start of a write-and-pause period */
1558
1559#ifdef CONFIG_LATENCYTOP
1560	int latency_record_count;
1561	struct latency_record latency_record[LT_SAVECOUNT];
1562#endif
1563	/*
1564	 * time slack values; these are used to round up poll() and
1565	 * select() etc timeout values. These are in nanoseconds.
1566	 */
1567	unsigned long timer_slack_ns;
1568	unsigned long default_timer_slack_ns;
1569
 
 
 
1570#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1571	/* Index of current stored address in ret_stack */
1572	int curr_ret_stack;
1573	/* Stack of return addresses for return function tracing */
1574	struct ftrace_ret_stack	*ret_stack;
1575	/* time stamp for last schedule */
1576	unsigned long long ftrace_timestamp;
1577	/*
1578	 * Number of functions that haven't been traced
1579	 * because of depth overrun.
1580	 */
1581	atomic_t trace_overrun;
1582	/* Pause for the tracing */
1583	atomic_t tracing_graph_pause;
1584#endif
1585#ifdef CONFIG_TRACING
1586	/* state flags for use by tracers */
1587	unsigned long trace;
1588	/* bitmask and counter of trace recursion */
1589	unsigned long trace_recursion;
1590#endif /* CONFIG_TRACING */
1591#ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1592	struct memcg_batch_info {
1593		int do_batch;	/* incremented when batch uncharge started */
1594		struct mem_cgroup *memcg; /* target memcg of uncharge */
1595		unsigned long nr_pages;	/* uncharged usage */
1596		unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1597	} memcg_batch;
1598	unsigned int memcg_kmem_skip_account;
1599	struct memcg_oom_info {
1600		struct mem_cgroup *memcg;
1601		gfp_t gfp_mask;
1602		int order;
1603		unsigned int may_oom:1;
1604	} memcg_oom;
 
 
 
1605#endif
1606#ifdef CONFIG_UPROBES
1607	struct uprobe_task *utask;
1608#endif
1609#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1610	unsigned int	sequential_io;
1611	unsigned int	sequential_io_avg;
1612#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1613};
1614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1615/* Future-safe accessor for struct task_struct's cpus_allowed. */
1616#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1617
 
 
 
 
 
1618#define TNF_MIGRATED	0x01
1619#define TNF_NO_GROUP	0x02
1620#define TNF_SHARED	0x04
1621#define TNF_FAULT_LOCAL	0x08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1622
1623#ifdef CONFIG_NUMA_BALANCING
1624extern void task_numa_fault(int last_node, int node, int pages, int flags);
1625extern pid_t task_numa_group_id(struct task_struct *p);
1626extern void set_numabalancing_state(bool enabled);
1627extern void task_numa_free(struct task_struct *p);
1628extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1629					int src_nid, int dst_cpu);
1630#else
1631static inline void task_numa_fault(int last_node, int node, int pages,
1632				   int flags)
1633{
1634}
1635static inline pid_t task_numa_group_id(struct task_struct *p)
1636{
1637	return 0;
1638}
1639static inline void set_numabalancing_state(bool enabled)
1640{
1641}
1642static inline void task_numa_free(struct task_struct *p)
1643{
1644}
1645static inline bool should_numa_migrate_memory(struct task_struct *p,
1646				struct page *page, int src_nid, int dst_cpu)
1647{
1648	return true;
1649}
1650#endif
1651
1652static inline struct pid *task_pid(struct task_struct *task)
1653{
1654	return task->pids[PIDTYPE_PID].pid;
1655}
1656
1657static inline struct pid *task_tgid(struct task_struct *task)
1658{
1659	return task->group_leader->pids[PIDTYPE_PID].pid;
1660}
1661
1662/*
1663 * Without tasklist or rcu lock it is not safe to dereference
1664 * the result of task_pgrp/task_session even if task == current,
1665 * we can race with another thread doing sys_setsid/sys_setpgid.
1666 */
1667static inline struct pid *task_pgrp(struct task_struct *task)
1668{
1669	return task->group_leader->pids[PIDTYPE_PGID].pid;
1670}
1671
1672static inline struct pid *task_session(struct task_struct *task)
1673{
1674	return task->group_leader->pids[PIDTYPE_SID].pid;
1675}
1676
1677struct pid_namespace;
1678
1679/*
1680 * the helpers to get the task's different pids as they are seen
1681 * from various namespaces
1682 *
1683 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1684 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1685 *                     current.
1686 * task_xid_nr_ns()  : id seen from the ns specified;
1687 *
1688 * set_task_vxid()   : assigns a virtual id to a task;
1689 *
1690 * see also pid_nr() etc in include/linux/pid.h
1691 */
1692pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1693			struct pid_namespace *ns);
1694
1695static inline pid_t task_pid_nr(struct task_struct *tsk)
1696{
1697	return tsk->pid;
1698}
1699
1700static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1701					struct pid_namespace *ns)
1702{
1703	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1704}
1705
1706static inline pid_t task_pid_vnr(struct task_struct *tsk)
1707{
1708	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1709}
1710
1711
1712static inline pid_t task_tgid_nr(struct task_struct *tsk)
1713{
1714	return tsk->tgid;
1715}
1716
1717pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1718
1719static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1720{
1721	return pid_vnr(task_tgid(tsk));
1722}
1723
1724
1725static inline int pid_alive(const struct task_struct *p);
1726static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1727{
1728	pid_t pid = 0;
1729
1730	rcu_read_lock();
1731	if (pid_alive(tsk))
1732		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1733	rcu_read_unlock();
1734
1735	return pid;
1736}
1737
1738static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1739{
1740	return task_ppid_nr_ns(tsk, &init_pid_ns);
1741}
1742
1743static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1744					struct pid_namespace *ns)
1745{
1746	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1747}
1748
1749static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1750{
1751	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1752}
1753
1754
1755static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1756					struct pid_namespace *ns)
1757{
1758	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1759}
1760
1761static inline pid_t task_session_vnr(struct task_struct *tsk)
1762{
1763	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1764}
1765
1766/* obsolete, do not use */
1767static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1768{
1769	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1770}
1771
1772/**
1773 * pid_alive - check that a task structure is not stale
1774 * @p: Task structure to be checked.
1775 *
1776 * Test if a process is not yet dead (at most zombie state)
1777 * If pid_alive fails, then pointers within the task structure
1778 * can be stale and must not be dereferenced.
1779 *
1780 * Return: 1 if the process is alive. 0 otherwise.
1781 */
1782static inline int pid_alive(const struct task_struct *p)
1783{
1784	return p->pids[PIDTYPE_PID].pid != NULL;
1785}
1786
1787/**
1788 * is_global_init - check if a task structure is init
 
1789 * @tsk: Task structure to be checked.
1790 *
1791 * Check if a task structure is the first user space task the kernel created.
1792 *
1793 * Return: 1 if the task structure is init. 0 otherwise.
1794 */
1795static inline int is_global_init(struct task_struct *tsk)
1796{
1797	return tsk->pid == 1;
1798}
1799
1800extern struct pid *cad_pid;
1801
1802extern void free_task(struct task_struct *tsk);
1803#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1804
1805extern void __put_task_struct(struct task_struct *t);
1806
1807static inline void put_task_struct(struct task_struct *t)
1808{
1809	if (atomic_dec_and_test(&t->usage))
1810		__put_task_struct(t);
1811}
1812
 
 
 
1813#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1814extern void task_cputime(struct task_struct *t,
1815			 cputime_t *utime, cputime_t *stime);
1816extern void task_cputime_scaled(struct task_struct *t,
1817				cputime_t *utimescaled, cputime_t *stimescaled);
1818extern cputime_t task_gtime(struct task_struct *t);
1819#else
1820static inline void task_cputime(struct task_struct *t,
1821				cputime_t *utime, cputime_t *stime)
1822{
1823	if (utime)
1824		*utime = t->utime;
1825	if (stime)
1826		*stime = t->stime;
1827}
1828
 
 
 
 
 
 
 
1829static inline void task_cputime_scaled(struct task_struct *t,
1830				       cputime_t *utimescaled,
1831				       cputime_t *stimescaled)
1832{
1833	if (utimescaled)
1834		*utimescaled = t->utimescaled;
1835	if (stimescaled)
1836		*stimescaled = t->stimescaled;
1837}
1838
1839static inline cputime_t task_gtime(struct task_struct *t)
 
 
1840{
1841	return t->gtime;
1842}
1843#endif
 
1844extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1845extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1846
1847/*
1848 * Per process flags
1849 */
 
1850#define PF_EXITING	0x00000004	/* getting shut down */
1851#define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1852#define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1853#define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
1854#define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1855#define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1856#define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1857#define PF_DUMPCORE	0x00000200	/* dumped core */
1858#define PF_SIGNALED	0x00000400	/* killed by a signal */
1859#define PF_MEMALLOC	0x00000800	/* Allocating memory */
1860#define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
1861#define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1862#define PF_USED_ASYNC	0x00004000	/* used async_schedule*(), used by module init */
1863#define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1864#define PF_FROZEN	0x00010000	/* frozen for system suspend */
1865#define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1866#define PF_KSWAPD	0x00040000	/* I am kswapd */
1867#define PF_MEMALLOC_NOIO 0x00080000	/* Allocating memory without IO involved */
1868#define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1869#define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1870#define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1871#define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1872#define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1873#define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1874#define PF_NO_SETAFFINITY 0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
1875#define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1876#define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1877#define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
1878#define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
1879
1880/*
1881 * Only the _current_ task can read/write to tsk->flags, but other
1882 * tasks can access tsk->flags in readonly mode for example
1883 * with tsk_used_math (like during threaded core dumping).
1884 * There is however an exception to this rule during ptrace
1885 * or during fork: the ptracer task is allowed to write to the
1886 * child->flags of its traced child (same goes for fork, the parent
1887 * can write to the child->flags), because we're guaranteed the
1888 * child is not running and in turn not changing child->flags
1889 * at the same time the parent does it.
1890 */
1891#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1892#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1893#define clear_used_math() clear_stopped_child_used_math(current)
1894#define set_used_math() set_stopped_child_used_math(current)
1895#define conditional_stopped_child_used_math(condition, child) \
1896	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1897#define conditional_used_math(condition) \
1898	conditional_stopped_child_used_math(condition, current)
1899#define copy_to_stopped_child_used_math(child) \
1900	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1901/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1902#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1903#define used_math() tsk_used_math(current)
1904
1905/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
 
 
1906static inline gfp_t memalloc_noio_flags(gfp_t flags)
1907{
1908	if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1909		flags &= ~__GFP_IO;
1910	return flags;
1911}
1912
1913static inline unsigned int memalloc_noio_save(void)
1914{
1915	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1916	current->flags |= PF_MEMALLOC_NOIO;
1917	return flags;
1918}
1919
1920static inline void memalloc_noio_restore(unsigned int flags)
1921{
1922	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1923}
1924
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1925/*
1926 * task->jobctl flags
1927 */
1928#define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */
1929
1930#define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */
1931#define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */
1932#define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */
1933#define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */
1934#define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */
1935#define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */
1936#define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */
1937
1938#define JOBCTL_STOP_DEQUEUED	(1 << JOBCTL_STOP_DEQUEUED_BIT)
1939#define JOBCTL_STOP_PENDING	(1 << JOBCTL_STOP_PENDING_BIT)
1940#define JOBCTL_STOP_CONSUME	(1 << JOBCTL_STOP_CONSUME_BIT)
1941#define JOBCTL_TRAP_STOP	(1 << JOBCTL_TRAP_STOP_BIT)
1942#define JOBCTL_TRAP_NOTIFY	(1 << JOBCTL_TRAP_NOTIFY_BIT)
1943#define JOBCTL_TRAPPING		(1 << JOBCTL_TRAPPING_BIT)
1944#define JOBCTL_LISTENING	(1 << JOBCTL_LISTENING_BIT)
1945
1946#define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1947#define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1948
1949extern bool task_set_jobctl_pending(struct task_struct *task,
1950				    unsigned int mask);
1951extern void task_clear_jobctl_trapping(struct task_struct *task);
1952extern void task_clear_jobctl_pending(struct task_struct *task,
1953				      unsigned int mask);
1954
1955#ifdef CONFIG_PREEMPT_RCU
1956
1957#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1958#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1959
1960static inline void rcu_copy_process(struct task_struct *p)
1961{
 
1962	p->rcu_read_lock_nesting = 0;
1963	p->rcu_read_unlock_special = 0;
1964#ifdef CONFIG_TREE_PREEMPT_RCU
1965	p->rcu_blocked_node = NULL;
1966#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1967#ifdef CONFIG_RCU_BOOST
1968	p->rcu_boost_mutex = NULL;
1969#endif /* #ifdef CONFIG_RCU_BOOST */
1970	INIT_LIST_HEAD(&p->rcu_node_entry);
 
 
 
 
 
 
1971}
1972
1973#else
1974
1975static inline void rcu_copy_process(struct task_struct *p)
1976{
1977}
1978
1979#endif
1980
1981static inline void tsk_restore_flags(struct task_struct *task,
1982				unsigned long orig_flags, unsigned long flags)
1983{
1984	task->flags &= ~flags;
1985	task->flags |= orig_flags & flags;
1986}
1987
 
 
 
 
1988#ifdef CONFIG_SMP
1989extern void do_set_cpus_allowed(struct task_struct *p,
1990			       const struct cpumask *new_mask);
1991
1992extern int set_cpus_allowed_ptr(struct task_struct *p,
1993				const struct cpumask *new_mask);
1994#else
1995static inline void do_set_cpus_allowed(struct task_struct *p,
1996				      const struct cpumask *new_mask)
1997{
1998}
1999static inline int set_cpus_allowed_ptr(struct task_struct *p,
2000				       const struct cpumask *new_mask)
2001{
2002	if (!cpumask_test_cpu(0, new_mask))
2003		return -EINVAL;
2004	return 0;
2005}
2006#endif
2007
2008#ifdef CONFIG_NO_HZ_COMMON
2009void calc_load_enter_idle(void);
2010void calc_load_exit_idle(void);
2011#else
2012static inline void calc_load_enter_idle(void) { }
2013static inline void calc_load_exit_idle(void) { }
2014#endif /* CONFIG_NO_HZ_COMMON */
2015
2016#ifndef CONFIG_CPUMASK_OFFSTACK
2017static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
2018{
2019	return set_cpus_allowed_ptr(p, &new_mask);
2020}
2021#endif
2022
2023/*
2024 * Do not use outside of architecture code which knows its limitations.
2025 *
2026 * sched_clock() has no promise of monotonicity or bounded drift between
2027 * CPUs, use (which you should not) requires disabling IRQs.
2028 *
2029 * Please use one of the three interfaces below.
2030 */
2031extern unsigned long long notrace sched_clock(void);
2032/*
2033 * See the comment in kernel/sched/clock.c
2034 */
2035extern u64 cpu_clock(int cpu);
2036extern u64 local_clock(void);
2037extern u64 sched_clock_cpu(int cpu);
2038
2039
2040extern void sched_clock_init(void);
2041
2042#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2043static inline void sched_clock_tick(void)
2044{
2045}
2046
2047static inline void sched_clock_idle_sleep_event(void)
2048{
2049}
2050
2051static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2052{
2053}
 
 
 
 
 
 
 
 
 
 
2054#else
2055/*
2056 * Architectures can set this to 1 if they have specified
2057 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2058 * but then during bootup it turns out that sched_clock()
2059 * is reliable after all:
2060 */
2061extern int sched_clock_stable(void);
2062extern void set_sched_clock_stable(void);
2063extern void clear_sched_clock_stable(void);
2064
2065extern void sched_clock_tick(void);
2066extern void sched_clock_idle_sleep_event(void);
2067extern void sched_clock_idle_wakeup_event(u64 delta_ns);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2068#endif
2069
2070#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2071/*
2072 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2073 * The reason for this explicit opt-in is not to have perf penalty with
2074 * slow sched_clocks.
2075 */
2076extern void enable_sched_clock_irqtime(void);
2077extern void disable_sched_clock_irqtime(void);
2078#else
2079static inline void enable_sched_clock_irqtime(void) {}
2080static inline void disable_sched_clock_irqtime(void) {}
2081#endif
2082
2083extern unsigned long long
2084task_sched_runtime(struct task_struct *task);
2085
2086/* sched_exec is called by processes performing an exec */
2087#ifdef CONFIG_SMP
2088extern void sched_exec(void);
2089#else
2090#define sched_exec()   {}
2091#endif
2092
2093extern void sched_clock_idle_sleep_event(void);
2094extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2095
2096#ifdef CONFIG_HOTPLUG_CPU
2097extern void idle_task_exit(void);
2098#else
2099static inline void idle_task_exit(void) {}
2100#endif
2101
2102#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2103extern void wake_up_nohz_cpu(int cpu);
2104#else
2105static inline void wake_up_nohz_cpu(int cpu) { }
2106#endif
2107
2108#ifdef CONFIG_NO_HZ_FULL
2109extern bool sched_can_stop_tick(void);
2110extern u64 scheduler_tick_max_deferment(void);
2111#else
2112static inline bool sched_can_stop_tick(void) { return false; }
2113#endif
2114
2115#ifdef CONFIG_SCHED_AUTOGROUP
2116extern void sched_autogroup_create_attach(struct task_struct *p);
2117extern void sched_autogroup_detach(struct task_struct *p);
2118extern void sched_autogroup_fork(struct signal_struct *sig);
2119extern void sched_autogroup_exit(struct signal_struct *sig);
 
2120#ifdef CONFIG_PROC_FS
2121extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2122extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2123#endif
2124#else
2125static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2126static inline void sched_autogroup_detach(struct task_struct *p) { }
2127static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2128static inline void sched_autogroup_exit(struct signal_struct *sig) { }
 
2129#endif
2130
2131extern bool yield_to(struct task_struct *p, bool preempt);
2132extern void set_user_nice(struct task_struct *p, long nice);
2133extern int task_prio(const struct task_struct *p);
2134/**
2135 * task_nice - return the nice value of a given task.
2136 * @p: the task in question.
2137 *
2138 * Return: The nice value [ -20 ... 0 ... 19 ].
2139 */
2140static inline int task_nice(const struct task_struct *p)
2141{
2142	return PRIO_TO_NICE((p)->static_prio);
2143}
2144extern int can_nice(const struct task_struct *p, const int nice);
2145extern int task_curr(const struct task_struct *p);
2146extern int idle_cpu(int cpu);
2147extern int sched_setscheduler(struct task_struct *, int,
2148			      const struct sched_param *);
2149extern int sched_setscheduler_nocheck(struct task_struct *, int,
2150				      const struct sched_param *);
2151extern int sched_setattr(struct task_struct *,
2152			 const struct sched_attr *);
2153extern struct task_struct *idle_task(int cpu);
2154/**
2155 * is_idle_task - is the specified task an idle task?
2156 * @p: the task in question.
2157 *
2158 * Return: 1 if @p is an idle task. 0 otherwise.
2159 */
2160static inline bool is_idle_task(const struct task_struct *p)
2161{
2162	return p->pid == 0;
2163}
2164extern struct task_struct *curr_task(int cpu);
2165extern void set_curr_task(int cpu, struct task_struct *p);
2166
2167void yield(void);
2168
2169/*
2170 * The default (Linux) execution domain.
2171 */
2172extern struct exec_domain	default_exec_domain;
2173
2174union thread_union {
 
2175	struct thread_info thread_info;
 
2176	unsigned long stack[THREAD_SIZE/sizeof(long)];
2177};
2178
2179#ifndef __HAVE_ARCH_KSTACK_END
2180static inline int kstack_end(void *addr)
2181{
2182	/* Reliable end of stack detection:
2183	 * Some APM bios versions misalign the stack
2184	 */
2185	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2186}
2187#endif
2188
2189extern union thread_union init_thread_union;
2190extern struct task_struct init_task;
2191
2192extern struct   mm_struct init_mm;
2193
2194extern struct pid_namespace init_pid_ns;
2195
2196/*
2197 * find a task by one of its numerical ids
2198 *
2199 * find_task_by_pid_ns():
2200 *      finds a task by its pid in the specified namespace
2201 * find_task_by_vpid():
2202 *      finds a task by its virtual pid
2203 *
2204 * see also find_vpid() etc in include/linux/pid.h
2205 */
2206
2207extern struct task_struct *find_task_by_vpid(pid_t nr);
2208extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2209		struct pid_namespace *ns);
2210
2211/* per-UID process charging. */
2212extern struct user_struct * alloc_uid(kuid_t);
2213static inline struct user_struct *get_uid(struct user_struct *u)
2214{
2215	atomic_inc(&u->__count);
2216	return u;
2217}
2218extern void free_uid(struct user_struct *);
2219
2220#include <asm/current.h>
2221
2222extern void xtime_update(unsigned long ticks);
2223
2224extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2225extern int wake_up_process(struct task_struct *tsk);
2226extern void wake_up_new_task(struct task_struct *tsk);
2227#ifdef CONFIG_SMP
2228 extern void kick_process(struct task_struct *tsk);
2229#else
2230 static inline void kick_process(struct task_struct *tsk) { }
2231#endif
2232extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2233extern void sched_dead(struct task_struct *p);
2234
2235extern void proc_caches_init(void);
2236extern void flush_signals(struct task_struct *);
2237extern void __flush_signals(struct task_struct *);
2238extern void ignore_signals(struct task_struct *);
2239extern void flush_signal_handlers(struct task_struct *, int force_default);
2240extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2241
2242static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2243{
2244	unsigned long flags;
 
2245	int ret;
2246
2247	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2248	ret = dequeue_signal(tsk, mask, info);
2249	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2250
2251	return ret;
2252}
2253
2254extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2255			      sigset_t *mask);
2256extern void unblock_all_signals(void);
 
 
 
 
 
 
 
2257extern void release_task(struct task_struct * p);
2258extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2259extern int force_sigsegv(int, struct task_struct *);
2260extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2261extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2262extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2263extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2264				const struct cred *, u32);
2265extern int kill_pgrp(struct pid *pid, int sig, int priv);
2266extern int kill_pid(struct pid *pid, int sig, int priv);
2267extern int kill_proc_info(int, struct siginfo *, pid_t);
2268extern __must_check bool do_notify_parent(struct task_struct *, int);
2269extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2270extern void force_sig(int, struct task_struct *);
2271extern int send_sig(int, struct task_struct *, int);
2272extern int zap_other_threads(struct task_struct *p);
2273extern struct sigqueue *sigqueue_alloc(void);
2274extern void sigqueue_free(struct sigqueue *);
2275extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2276extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2278static inline void restore_saved_sigmask(void)
2279{
2280	if (test_and_clear_restore_sigmask())
2281		__set_current_blocked(&current->saved_sigmask);
2282}
2283
2284static inline sigset_t *sigmask_to_save(void)
2285{
2286	sigset_t *res = &current->blocked;
2287	if (unlikely(test_restore_sigmask()))
2288		res = &current->saved_sigmask;
2289	return res;
2290}
2291
2292static inline int kill_cad_pid(int sig, int priv)
2293{
2294	return kill_pid(cad_pid, sig, priv);
2295}
2296
2297/* These can be the second arg to send_sig_info/send_group_sig_info.  */
2298#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2299#define SEND_SIG_PRIV	((struct siginfo *) 1)
2300#define SEND_SIG_FORCED	((struct siginfo *) 2)
2301
2302/*
2303 * True if we are on the alternate signal stack.
2304 */
2305static inline int on_sig_stack(unsigned long sp)
2306{
 
 
 
 
 
 
 
 
 
 
 
 
2307#ifdef CONFIG_STACK_GROWSUP
2308	return sp >= current->sas_ss_sp &&
2309		sp - current->sas_ss_sp < current->sas_ss_size;
2310#else
2311	return sp > current->sas_ss_sp &&
2312		sp - current->sas_ss_sp <= current->sas_ss_size;
2313#endif
2314}
2315
2316static inline int sas_ss_flags(unsigned long sp)
2317{
2318	return (current->sas_ss_size == 0 ? SS_DISABLE
2319		: on_sig_stack(sp) ? SS_ONSTACK : 0);
 
 
 
 
 
 
 
 
 
2320}
2321
2322static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2323{
2324	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2325#ifdef CONFIG_STACK_GROWSUP
2326		return current->sas_ss_sp;
2327#else
2328		return current->sas_ss_sp + current->sas_ss_size;
2329#endif
2330	return sp;
2331}
2332
2333/*
2334 * Routines for handling mm_structs
2335 */
2336extern struct mm_struct * mm_alloc(void);
2337
2338/* mmdrop drops the mm and the page tables */
2339extern void __mmdrop(struct mm_struct *);
2340static inline void mmdrop(struct mm_struct * mm)
2341{
2342	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2343		__mmdrop(mm);
2344}
2345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2346/* mmput gets rid of the mappings and all user-space */
2347extern void mmput(struct mm_struct *);
 
 
 
 
 
 
 
2348/* Grab a reference to a task's mm, if it is not already going away */
2349extern struct mm_struct *get_task_mm(struct task_struct *task);
2350/*
2351 * Grab a reference to a task's mm, if it is not already going away
2352 * and ptrace_may_access with the mode parameter passed to it
2353 * succeeds.
2354 */
2355extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2356/* Remove the current tasks stale references to the old mm_struct */
2357extern void mm_release(struct task_struct *, struct mm_struct *);
2358
 
 
 
 
2359extern int copy_thread(unsigned long, unsigned long, unsigned long,
2360			struct task_struct *);
 
 
 
 
 
 
 
 
 
 
2361extern void flush_thread(void);
2362extern void exit_thread(void);
 
 
 
 
 
 
 
2363
2364extern void exit_files(struct task_struct *);
2365extern void __cleanup_sighand(struct sighand_struct *);
2366
2367extern void exit_itimers(struct signal_struct *);
2368extern void flush_itimer_signals(void);
2369
2370extern void do_group_exit(int);
2371
2372extern int allow_signal(int);
2373extern int disallow_signal(int);
2374
2375extern int do_execve(struct filename *,
2376		     const char __user * const __user *,
2377		     const char __user * const __user *);
 
 
 
 
 
2378extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2379struct task_struct *fork_idle(int);
2380extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2381
2382extern void set_task_comm(struct task_struct *tsk, const char *from);
 
 
 
 
2383extern char *get_task_comm(char *to, struct task_struct *tsk);
2384
2385#ifdef CONFIG_SMP
2386void scheduler_ipi(void);
2387extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2388#else
2389static inline void scheduler_ipi(void) { }
2390static inline unsigned long wait_task_inactive(struct task_struct *p,
2391					       long match_state)
2392{
2393	return 1;
2394}
2395#endif
2396
 
 
 
2397#define next_task(p) \
2398	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2399
2400#define for_each_process(p) \
2401	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2402
2403extern bool current_is_single_threaded(void);
2404
2405/*
2406 * Careful: do_each_thread/while_each_thread is a double loop so
2407 *          'break' will not work as expected - use goto instead.
2408 */
2409#define do_each_thread(g, t) \
2410	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2411
2412#define while_each_thread(g, t) \
2413	while ((t = next_thread(t)) != g)
2414
2415#define __for_each_thread(signal, t)	\
2416	list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2417
2418#define for_each_thread(p, t)		\
2419	__for_each_thread((p)->signal, t)
2420
2421/* Careful: this is a double loop, 'break' won't work as expected. */
2422#define for_each_process_thread(p, t)	\
2423	for_each_process(p) for_each_thread(p, t)
2424
2425static inline int get_nr_threads(struct task_struct *tsk)
2426{
2427	return tsk->signal->nr_threads;
2428}
2429
2430static inline bool thread_group_leader(struct task_struct *p)
2431{
2432	return p->exit_signal >= 0;
2433}
2434
2435/* Do to the insanities of de_thread it is possible for a process
2436 * to have the pid of the thread group leader without actually being
2437 * the thread group leader.  For iteration through the pids in proc
2438 * all we care about is that we have a task with the appropriate
2439 * pid, we don't actually care if we have the right task.
2440 */
2441static inline bool has_group_leader_pid(struct task_struct *p)
2442{
2443	return task_pid(p) == p->signal->leader_pid;
2444}
2445
2446static inline
2447bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2448{
2449	return p1->signal == p2->signal;
2450}
2451
2452static inline struct task_struct *next_thread(const struct task_struct *p)
2453{
2454	return list_entry_rcu(p->thread_group.next,
2455			      struct task_struct, thread_group);
2456}
2457
2458static inline int thread_group_empty(struct task_struct *p)
2459{
2460	return list_empty(&p->thread_group);
2461}
2462
2463#define delay_group_leader(p) \
2464		(thread_group_leader(p) && !thread_group_empty(p))
2465
2466/*
2467 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2468 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2469 * pins the final release of task.io_context.  Also protects ->cpuset and
2470 * ->cgroup.subsys[]. And ->vfork_done.
2471 *
2472 * Nests both inside and outside of read_lock(&tasklist_lock).
2473 * It must not be nested with write_lock_irq(&tasklist_lock),
2474 * neither inside nor outside.
2475 */
2476static inline void task_lock(struct task_struct *p)
2477{
2478	spin_lock(&p->alloc_lock);
2479}
2480
2481static inline void task_unlock(struct task_struct *p)
2482{
2483	spin_unlock(&p->alloc_lock);
2484}
2485
2486extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2487							unsigned long *flags);
2488
2489static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2490						       unsigned long *flags)
2491{
2492	struct sighand_struct *ret;
2493
2494	ret = __lock_task_sighand(tsk, flags);
2495	(void)__cond_lock(&tsk->sighand->siglock, ret);
2496	return ret;
2497}
2498
2499static inline void unlock_task_sighand(struct task_struct *tsk,
2500						unsigned long *flags)
2501{
2502	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2503}
2504
2505#ifdef CONFIG_CGROUPS
 
 
 
 
 
 
 
 
 
 
2506static inline void threadgroup_change_begin(struct task_struct *tsk)
2507{
2508	down_read(&tsk->signal->group_rwsem);
2509}
2510static inline void threadgroup_change_end(struct task_struct *tsk)
2511{
2512	up_read(&tsk->signal->group_rwsem);
2513}
2514
2515/**
2516 * threadgroup_lock - lock threadgroup
2517 * @tsk: member task of the threadgroup to lock
2518 *
2519 * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2520 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2521 * change ->group_leader/pid.  This is useful for cases where the threadgroup
2522 * needs to stay stable across blockable operations.
2523 *
2524 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2525 * synchronization.  While held, no new task will be added to threadgroup
2526 * and no existing live task will have its PF_EXITING set.
2527 *
2528 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2529 * sub-thread becomes a new leader.
2530 */
2531static inline void threadgroup_lock(struct task_struct *tsk)
2532{
2533	down_write(&tsk->signal->group_rwsem);
2534}
2535
2536/**
2537 * threadgroup_unlock - unlock threadgroup
2538 * @tsk: member task of the threadgroup to unlock
2539 *
2540 * Reverse threadgroup_lock().
 
 
 
 
 
 
2541 */
2542static inline void threadgroup_unlock(struct task_struct *tsk)
2543{
2544	up_write(&tsk->signal->group_rwsem);
2545}
2546#else
2547static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2548static inline void threadgroup_change_end(struct task_struct *tsk) {}
2549static inline void threadgroup_lock(struct task_struct *tsk) {}
2550static inline void threadgroup_unlock(struct task_struct *tsk) {}
2551#endif
2552
2553#ifndef __HAVE_THREAD_FUNCTIONS
 
 
 
 
 
 
 
2554
2555#define task_thread_info(task)	((struct thread_info *)(task)->stack)
2556#define task_stack_page(task)	((task)->stack)
2557
2558static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2559{
2560	*task_thread_info(p) = *task_thread_info(org);
2561	task_thread_info(p)->task = p;
2562}
2563
 
 
 
 
 
 
 
 
 
2564static inline unsigned long *end_of_stack(struct task_struct *p)
2565{
 
 
 
2566	return (unsigned long *)(task_thread_info(p) + 1);
 
 
 
 
 
 
 
 
 
 
2567}
2568
 
 
 
 
 
 
 
 
2569#endif
2570
 
 
 
2571static inline int object_is_on_stack(void *obj)
2572{
2573	void *stack = task_stack_page(current);
2574
2575	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2576}
2577
2578extern void thread_info_cache_init(void);
2579
2580#ifdef CONFIG_DEBUG_STACK_USAGE
2581static inline unsigned long stack_not_used(struct task_struct *p)
2582{
2583	unsigned long *n = end_of_stack(p);
2584
2585	do { 	/* Skip over canary */
 
 
 
2586		n++;
 
2587	} while (!*n);
2588
 
 
 
2589	return (unsigned long)n - (unsigned long)end_of_stack(p);
 
2590}
2591#endif
 
2592
2593/* set thread flags in other task's structures
2594 * - see asm/thread_info.h for TIF_xxxx flags available
2595 */
2596static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2597{
2598	set_ti_thread_flag(task_thread_info(tsk), flag);
2599}
2600
2601static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2602{
2603	clear_ti_thread_flag(task_thread_info(tsk), flag);
2604}
2605
2606static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2607{
2608	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2609}
2610
2611static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2612{
2613	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2614}
2615
2616static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2617{
2618	return test_ti_thread_flag(task_thread_info(tsk), flag);
2619}
2620
2621static inline void set_tsk_need_resched(struct task_struct *tsk)
2622{
2623	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2624}
2625
2626static inline void clear_tsk_need_resched(struct task_struct *tsk)
2627{
2628	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2629}
2630
2631static inline int test_tsk_need_resched(struct task_struct *tsk)
2632{
2633	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2634}
2635
2636static inline int restart_syscall(void)
2637{
2638	set_tsk_thread_flag(current, TIF_SIGPENDING);
2639	return -ERESTARTNOINTR;
2640}
2641
2642static inline int signal_pending(struct task_struct *p)
2643{
2644	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2645}
2646
2647static inline int __fatal_signal_pending(struct task_struct *p)
2648{
2649	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2650}
2651
2652static inline int fatal_signal_pending(struct task_struct *p)
2653{
2654	return signal_pending(p) && __fatal_signal_pending(p);
2655}
2656
2657static inline int signal_pending_state(long state, struct task_struct *p)
2658{
2659	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2660		return 0;
2661	if (!signal_pending(p))
2662		return 0;
2663
2664	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2665}
2666
2667/*
2668 * cond_resched() and cond_resched_lock(): latency reduction via
2669 * explicit rescheduling in places that are safe. The return
2670 * value indicates whether a reschedule was done in fact.
2671 * cond_resched_lock() will drop the spinlock before scheduling,
2672 * cond_resched_softirq() will enable bhs before scheduling.
2673 */
 
2674extern int _cond_resched(void);
 
 
 
2675
2676#define cond_resched() ({			\
2677	__might_sleep(__FILE__, __LINE__, 0);	\
2678	_cond_resched();			\
2679})
2680
2681extern int __cond_resched_lock(spinlock_t *lock);
2682
2683#ifdef CONFIG_PREEMPT_COUNT
2684#define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
2685#else
2686#define PREEMPT_LOCK_OFFSET	0
2687#endif
2688
2689#define cond_resched_lock(lock) ({				\
2690	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
2691	__cond_resched_lock(lock);				\
2692})
2693
2694extern int __cond_resched_softirq(void);
2695
2696#define cond_resched_softirq() ({					\
2697	__might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
2698	__cond_resched_softirq();					\
2699})
2700
2701static inline void cond_resched_rcu(void)
2702{
2703#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2704	rcu_read_unlock();
2705	cond_resched();
2706	rcu_read_lock();
2707#endif
2708}
2709
 
 
 
 
 
 
 
 
 
2710/*
2711 * Does a critical section need to be broken due to another
2712 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2713 * but a general need for low latency)
2714 */
2715static inline int spin_needbreak(spinlock_t *lock)
2716{
2717#ifdef CONFIG_PREEMPT
2718	return spin_is_contended(lock);
2719#else
2720	return 0;
2721#endif
2722}
2723
2724/*
2725 * Idle thread specific functions to determine the need_resched
2726 * polling state. We have two versions, one based on TS_POLLING in
2727 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2728 * thread_info.flags
2729 */
2730#ifdef TS_POLLING
2731static inline int tsk_is_polling(struct task_struct *p)
2732{
2733	return task_thread_info(p)->status & TS_POLLING;
2734}
2735static inline void __current_set_polling(void)
2736{
2737	current_thread_info()->status |= TS_POLLING;
2738}
2739
2740static inline bool __must_check current_set_polling_and_test(void)
2741{
2742	__current_set_polling();
2743
2744	/*
2745	 * Polling state must be visible before we test NEED_RESCHED,
2746	 * paired by resched_task()
2747	 */
2748	smp_mb();
2749
2750	return unlikely(tif_need_resched());
2751}
2752
2753static inline void __current_clr_polling(void)
2754{
2755	current_thread_info()->status &= ~TS_POLLING;
2756}
2757
2758static inline bool __must_check current_clr_polling_and_test(void)
2759{
2760	__current_clr_polling();
2761
2762	/*
2763	 * Polling state must be visible before we test NEED_RESCHED,
2764	 * paired by resched_task()
2765	 */
2766	smp_mb();
2767
2768	return unlikely(tif_need_resched());
2769}
2770#elif defined(TIF_POLLING_NRFLAG)
2771static inline int tsk_is_polling(struct task_struct *p)
2772{
2773	return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2774}
2775
2776static inline void __current_set_polling(void)
2777{
2778	set_thread_flag(TIF_POLLING_NRFLAG);
2779}
2780
2781static inline bool __must_check current_set_polling_and_test(void)
2782{
2783	__current_set_polling();
2784
2785	/*
2786	 * Polling state must be visible before we test NEED_RESCHED,
2787	 * paired by resched_task()
2788	 *
2789	 * XXX: assumes set/clear bit are identical barrier wise.
2790	 */
2791	smp_mb__after_clear_bit();
2792
2793	return unlikely(tif_need_resched());
2794}
2795
2796static inline void __current_clr_polling(void)
2797{
2798	clear_thread_flag(TIF_POLLING_NRFLAG);
2799}
2800
2801static inline bool __must_check current_clr_polling_and_test(void)
2802{
2803	__current_clr_polling();
2804
2805	/*
2806	 * Polling state must be visible before we test NEED_RESCHED,
2807	 * paired by resched_task()
2808	 */
2809	smp_mb__after_clear_bit();
2810
2811	return unlikely(tif_need_resched());
2812}
2813
2814#else
2815static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2816static inline void __current_set_polling(void) { }
2817static inline void __current_clr_polling(void) { }
2818
2819static inline bool __must_check current_set_polling_and_test(void)
2820{
2821	return unlikely(tif_need_resched());
2822}
2823static inline bool __must_check current_clr_polling_and_test(void)
2824{
2825	return unlikely(tif_need_resched());
2826}
2827#endif
2828
2829static inline void current_clr_polling(void)
2830{
2831	__current_clr_polling();
2832
2833	/*
2834	 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
2835	 * Once the bit is cleared, we'll get IPIs with every new
2836	 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
2837	 * fold.
2838	 */
2839	smp_mb(); /* paired with resched_task() */
2840
2841	preempt_fold_need_resched();
2842}
2843
2844static __always_inline bool need_resched(void)
2845{
2846	return unlikely(tif_need_resched());
2847}
2848
2849/*
2850 * Thread group CPU time accounting.
2851 */
2852void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2853void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2854
2855static inline void thread_group_cputime_init(struct signal_struct *sig)
2856{
2857	raw_spin_lock_init(&sig->cputimer.lock);
2858}
2859
2860/*
2861 * Reevaluate whether the task has signals pending delivery.
2862 * Wake the task if so.
2863 * This is required every time the blocked sigset_t changes.
2864 * callers must hold sighand->siglock.
2865 */
2866extern void recalc_sigpending_and_wake(struct task_struct *t);
2867extern void recalc_sigpending(void);
2868
2869extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2870
2871static inline void signal_wake_up(struct task_struct *t, bool resume)
2872{
2873	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2874}
2875static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2876{
2877	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2878}
2879
2880/*
2881 * Wrappers for p->thread_info->cpu access. No-op on UP.
2882 */
2883#ifdef CONFIG_SMP
2884
2885static inline unsigned int task_cpu(const struct task_struct *p)
2886{
 
 
 
2887	return task_thread_info(p)->cpu;
 
2888}
2889
2890static inline int task_node(const struct task_struct *p)
2891{
2892	return cpu_to_node(task_cpu(p));
2893}
2894
2895extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2896
2897#else
2898
2899static inline unsigned int task_cpu(const struct task_struct *p)
2900{
2901	return 0;
2902}
2903
2904static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2905{
2906}
2907
2908#endif /* CONFIG_SMP */
2909
 
 
 
 
 
 
 
 
 
 
 
 
2910extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2911extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2912
2913#ifdef CONFIG_CGROUP_SCHED
2914extern struct task_group root_task_group;
2915#endif /* CONFIG_CGROUP_SCHED */
2916
2917extern int task_can_switch_user(struct user_struct *up,
2918					struct task_struct *tsk);
2919
2920#ifdef CONFIG_TASK_XACCT
2921static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2922{
2923	tsk->ioac.rchar += amt;
2924}
2925
2926static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2927{
2928	tsk->ioac.wchar += amt;
2929}
2930
2931static inline void inc_syscr(struct task_struct *tsk)
2932{
2933	tsk->ioac.syscr++;
2934}
2935
2936static inline void inc_syscw(struct task_struct *tsk)
2937{
2938	tsk->ioac.syscw++;
2939}
2940#else
2941static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2942{
2943}
2944
2945static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2946{
2947}
2948
2949static inline void inc_syscr(struct task_struct *tsk)
2950{
2951}
2952
2953static inline void inc_syscw(struct task_struct *tsk)
2954{
2955}
2956#endif
2957
2958#ifndef TASK_SIZE_OF
2959#define TASK_SIZE_OF(tsk)	TASK_SIZE
2960#endif
2961
2962#ifdef CONFIG_MM_OWNER
2963extern void mm_update_next_owner(struct mm_struct *mm);
2964extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2965#else
2966static inline void mm_update_next_owner(struct mm_struct *mm)
2967{
2968}
2969
2970static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2971{
2972}
2973#endif /* CONFIG_MM_OWNER */
2974
2975static inline unsigned long task_rlimit(const struct task_struct *tsk,
2976		unsigned int limit)
2977{
2978	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2979}
2980
2981static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2982		unsigned int limit)
2983{
2984	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2985}
2986
2987static inline unsigned long rlimit(unsigned int limit)
2988{
2989	return task_rlimit(current, limit);
2990}
2991
2992static inline unsigned long rlimit_max(unsigned int limit)
2993{
2994	return task_rlimit_max(current, limit);
2995}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2996
2997#endif
v4.10.11
   1#ifndef _LINUX_SCHED_H
   2#define _LINUX_SCHED_H
   3
   4#include <uapi/linux/sched.h>
   5
   6#include <linux/sched/prio.h>
   7
   8
   9struct sched_param {
  10	int sched_priority;
  11};
  12
  13#include <asm/param.h>	/* for HZ */
  14
  15#include <linux/capability.h>
  16#include <linux/threads.h>
  17#include <linux/kernel.h>
  18#include <linux/types.h>
  19#include <linux/timex.h>
  20#include <linux/jiffies.h>
  21#include <linux/plist.h>
  22#include <linux/rbtree.h>
  23#include <linux/thread_info.h>
  24#include <linux/cpumask.h>
  25#include <linux/errno.h>
  26#include <linux/nodemask.h>
  27#include <linux/mm_types.h>
  28#include <linux/preempt.h>
  29
  30#include <asm/page.h>
  31#include <asm/ptrace.h>
  32#include <linux/cputime.h>
  33
  34#include <linux/smp.h>
  35#include <linux/sem.h>
  36#include <linux/shm.h>
  37#include <linux/signal.h>
  38#include <linux/compiler.h>
  39#include <linux/completion.h>
  40#include <linux/pid.h>
  41#include <linux/percpu.h>
  42#include <linux/topology.h>
 
  43#include <linux/seccomp.h>
  44#include <linux/rcupdate.h>
  45#include <linux/rculist.h>
  46#include <linux/rtmutex.h>
  47
  48#include <linux/time.h>
  49#include <linux/param.h>
  50#include <linux/resource.h>
  51#include <linux/timer.h>
  52#include <linux/hrtimer.h>
  53#include <linux/kcov.h>
  54#include <linux/task_io_accounting.h>
  55#include <linux/latencytop.h>
  56#include <linux/cred.h>
  57#include <linux/llist.h>
  58#include <linux/uidgid.h>
  59#include <linux/gfp.h>
  60#include <linux/magic.h>
  61#include <linux/cgroup-defs.h>
  62
  63#include <asm/processor.h>
  64
  65#define SCHED_ATTR_SIZE_VER0	48	/* sizeof first published struct */
  66
  67/*
  68 * Extended scheduling parameters data structure.
  69 *
  70 * This is needed because the original struct sched_param can not be
  71 * altered without introducing ABI issues with legacy applications
  72 * (e.g., in sched_getparam()).
  73 *
  74 * However, the possibility of specifying more than just a priority for
  75 * the tasks may be useful for a wide variety of application fields, e.g.,
  76 * multimedia, streaming, automation and control, and many others.
  77 *
  78 * This variant (sched_attr) is meant at describing a so-called
  79 * sporadic time-constrained task. In such model a task is specified by:
  80 *  - the activation period or minimum instance inter-arrival time;
  81 *  - the maximum (or average, depending on the actual scheduling
  82 *    discipline) computation time of all instances, a.k.a. runtime;
  83 *  - the deadline (relative to the actual activation time) of each
  84 *    instance.
  85 * Very briefly, a periodic (sporadic) task asks for the execution of
  86 * some specific computation --which is typically called an instance--
  87 * (at most) every period. Moreover, each instance typically lasts no more
  88 * than the runtime and must be completed by time instant t equal to
  89 * the instance activation time + the deadline.
  90 *
  91 * This is reflected by the actual fields of the sched_attr structure:
  92 *
  93 *  @size		size of the structure, for fwd/bwd compat.
  94 *
  95 *  @sched_policy	task's scheduling policy
  96 *  @sched_flags	for customizing the scheduler behaviour
  97 *  @sched_nice		task's nice value      (SCHED_NORMAL/BATCH)
  98 *  @sched_priority	task's static priority (SCHED_FIFO/RR)
  99 *  @sched_deadline	representative of the task's deadline
 100 *  @sched_runtime	representative of the task's runtime
 101 *  @sched_period	representative of the task's period
 102 *
 103 * Given this task model, there are a multiplicity of scheduling algorithms
 104 * and policies, that can be used to ensure all the tasks will make their
 105 * timing constraints.
 106 *
 107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
 108 * only user of this new interface. More information about the algorithm
 109 * available in the scheduling class file or in Documentation/.
 110 */
 111struct sched_attr {
 112	u32 size;
 113
 114	u32 sched_policy;
 115	u64 sched_flags;
 116
 117	/* SCHED_NORMAL, SCHED_BATCH */
 118	s32 sched_nice;
 119
 120	/* SCHED_FIFO, SCHED_RR */
 121	u32 sched_priority;
 122
 123	/* SCHED_DEADLINE */
 124	u64 sched_runtime;
 125	u64 sched_deadline;
 126	u64 sched_period;
 127};
 128
 
 129struct futex_pi_state;
 130struct robust_list_head;
 131struct bio_list;
 132struct fs_struct;
 133struct perf_event_context;
 134struct blk_plug;
 135struct filename;
 136struct nameidata;
 137
 138#define VMACACHE_BITS 2
 139#define VMACACHE_SIZE (1U << VMACACHE_BITS)
 140#define VMACACHE_MASK (VMACACHE_SIZE - 1)
 141
 142/*
 
 
 
 
 
 
 143 * These are the constant used to fake the fixed-point load-average
 144 * counting. Some notes:
 145 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
 146 *    a load-average precision of 10 bits integer + 11 bits fractional
 147 *  - if you want to count load-averages more often, you need more
 148 *    precision, or rounding will get you. With 2-second counting freq,
 149 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
 150 *    11 bit fractions.
 151 */
 152extern unsigned long avenrun[];		/* Load averages */
 153extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
 154
 155#define FSHIFT		11		/* nr of bits of precision */
 156#define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
 157#define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
 158#define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
 159#define EXP_5		2014		/* 1/exp(5sec/5min) */
 160#define EXP_15		2037		/* 1/exp(5sec/15min) */
 161
 162#define CALC_LOAD(load,exp,n) \
 163	load *= exp; \
 164	load += n*(FIXED_1-exp); \
 165	load >>= FSHIFT;
 166
 167extern unsigned long total_forks;
 168extern int nr_threads;
 169DECLARE_PER_CPU(unsigned long, process_counts);
 170extern int nr_processes(void);
 171extern unsigned long nr_running(void);
 172extern bool single_task_running(void);
 173extern unsigned long nr_iowait(void);
 174extern unsigned long nr_iowait_cpu(int cpu);
 175extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
 
 176
 177extern void calc_global_load(unsigned long ticks);
 
 178
 179#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 180extern void cpu_load_update_nohz_start(void);
 181extern void cpu_load_update_nohz_stop(void);
 182#else
 183static inline void cpu_load_update_nohz_start(void) { }
 184static inline void cpu_load_update_nohz_stop(void) { }
 185#endif
 186
 187extern void dump_cpu_task(int cpu);
 188
 189struct seq_file;
 190struct cfs_rq;
 191struct task_group;
 192#ifdef CONFIG_SCHED_DEBUG
 193extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
 194extern void proc_sched_set_task(struct task_struct *p);
 
 
 195#endif
 196
 197/*
 198 * Task state bitmask. NOTE! These bits are also
 199 * encoded in fs/proc/array.c: get_task_state().
 200 *
 201 * We have two separate sets of flags: task->state
 202 * is about runnability, while task->exit_state are
 203 * about the task exiting. Confusing, but this way
 204 * modifying one set can't modify the other one by
 205 * mistake.
 206 */
 207#define TASK_RUNNING		0
 208#define TASK_INTERRUPTIBLE	1
 209#define TASK_UNINTERRUPTIBLE	2
 210#define __TASK_STOPPED		4
 211#define __TASK_TRACED		8
 212/* in tsk->exit_state */
 213#define EXIT_DEAD		16
 214#define EXIT_ZOMBIE		32
 215#define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
 216/* in tsk->state again */
 217#define TASK_DEAD		64
 218#define TASK_WAKEKILL		128
 219#define TASK_WAKING		256
 220#define TASK_PARKED		512
 221#define TASK_NOLOAD		1024
 222#define TASK_NEW		2048
 223#define TASK_STATE_MAX		4096
 224
 225#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
 226
 227extern char ___assert_task_state[1 - 2*!!(
 228		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
 229
 230/* Convenience macros for the sake of set_task_state */
 231#define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
 232#define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
 233#define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
 234
 235#define TASK_IDLE		(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
 236
 237/* Convenience macros for the sake of wake_up */
 238#define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 239#define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
 240
 241/* get_task_state() */
 242#define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
 243				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 244				 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
 245
 246#define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
 247#define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
 248#define task_is_stopped_or_traced(task)	\
 249			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 250#define task_contributes_to_load(task)	\
 251				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
 252				 (task->flags & PF_FROZEN) == 0 && \
 253				 (task->state & TASK_NOLOAD) == 0)
 254
 255#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 256
 257#define __set_task_state(tsk, state_value)			\
 258	do {							\
 259		(tsk)->task_state_change = _THIS_IP_;		\
 260		(tsk)->state = (state_value);			\
 261	} while (0)
 262#define set_task_state(tsk, state_value)			\
 263	do {							\
 264		(tsk)->task_state_change = _THIS_IP_;		\
 265		smp_store_mb((tsk)->state, (state_value));	\
 266	} while (0)
 267
 268#define __set_current_state(state_value)			\
 269	do {							\
 270		current->task_state_change = _THIS_IP_;		\
 271		current->state = (state_value);			\
 272	} while (0)
 273#define set_current_state(state_value)				\
 274	do {							\
 275		current->task_state_change = _THIS_IP_;		\
 276		smp_store_mb(current->state, (state_value));	\
 277	} while (0)
 278
 279#else
 280
 281/*
 282 * @tsk had better be current, or you get to keep the pieces.
 283 *
 284 * The only reason is that computing current can be more expensive than
 285 * using a pointer that's already available.
 286 *
 287 * Therefore, see set_current_state().
 288 */
 289#define __set_task_state(tsk, state_value)		\
 290	do { (tsk)->state = (state_value); } while (0)
 291#define set_task_state(tsk, state_value)		\
 292	smp_store_mb((tsk)->state, (state_value))
 293
 294/*
 295 * set_current_state() includes a barrier so that the write of current->state
 296 * is correctly serialised wrt the caller's subsequent test of whether to
 297 * actually sleep:
 298 *
 299 *   for (;;) {
 300 *	set_current_state(TASK_UNINTERRUPTIBLE);
 301 *	if (!need_sleep)
 302 *		break;
 303 *
 304 *	schedule();
 305 *   }
 306 *   __set_current_state(TASK_RUNNING);
 307 *
 308 * If the caller does not need such serialisation (because, for instance, the
 309 * condition test and condition change and wakeup are under the same lock) then
 310 * use __set_current_state().
 311 *
 312 * The above is typically ordered against the wakeup, which does:
 313 *
 314 *	need_sleep = false;
 315 *	wake_up_state(p, TASK_UNINTERRUPTIBLE);
 316 *
 317 * Where wake_up_state() (and all other wakeup primitives) imply enough
 318 * barriers to order the store of the variable against wakeup.
 319 *
 320 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
 321 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
 322 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
 323 *
 324 * This is obviously fine, since they both store the exact same value.
 325 *
 326 * Also see the comments of try_to_wake_up().
 327 */
 328#define __set_current_state(state_value)		\
 329	do { current->state = (state_value); } while (0)
 330#define set_current_state(state_value)			\
 331	smp_store_mb(current->state, (state_value))
 332
 333#endif
 334
 335/* Task command name length */
 336#define TASK_COMM_LEN 16
 337
 338#include <linux/spinlock.h>
 339
 340/*
 341 * This serializes "schedule()" and also protects
 342 * the run-queue from deletions/modifications (but
 343 * _adding_ to the beginning of the run-queue has
 344 * a separate lock).
 345 */
 346extern rwlock_t tasklist_lock;
 347extern spinlock_t mmlist_lock;
 348
 349struct task_struct;
 350
 351#ifdef CONFIG_PROVE_RCU
 352extern int lockdep_tasklist_lock_is_held(void);
 353#endif /* #ifdef CONFIG_PROVE_RCU */
 354
 355extern void sched_init(void);
 356extern void sched_init_smp(void);
 357extern asmlinkage void schedule_tail(struct task_struct *prev);
 358extern void init_idle(struct task_struct *idle, int cpu);
 359extern void init_idle_bootup_task(struct task_struct *idle);
 360
 361extern cpumask_var_t cpu_isolated_map;
 362
 363extern int runqueue_is_locked(int cpu);
 364
 365#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 366extern void nohz_balance_enter_idle(int cpu);
 367extern void set_cpu_sd_state_idle(void);
 368extern int get_nohz_timer_target(void);
 369#else
 370static inline void nohz_balance_enter_idle(int cpu) { }
 371static inline void set_cpu_sd_state_idle(void) { }
 
 
 
 
 372#endif
 373
 374/*
 375 * Only dump TASK_* tasks. (0 for all tasks)
 376 */
 377extern void show_state_filter(unsigned long state_filter);
 378
 379static inline void show_state(void)
 380{
 381	show_state_filter(0);
 382}
 383
 384extern void show_regs(struct pt_regs *);
 385
 386/*
 387 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
 388 * task), SP is the stack pointer of the first frame that should be shown in the back
 389 * trace (or NULL if the entire call-chain of the task should be shown).
 390 */
 391extern void show_stack(struct task_struct *task, unsigned long *sp);
 392
 
 
 
 393extern void cpu_init (void);
 394extern void trap_init(void);
 395extern void update_process_times(int user);
 396extern void scheduler_tick(void);
 397extern int sched_cpu_starting(unsigned int cpu);
 398extern int sched_cpu_activate(unsigned int cpu);
 399extern int sched_cpu_deactivate(unsigned int cpu);
 400
 401#ifdef CONFIG_HOTPLUG_CPU
 402extern int sched_cpu_dying(unsigned int cpu);
 403#else
 404# define sched_cpu_dying	NULL
 405#endif
 406
 407extern void sched_show_task(struct task_struct *p);
 408
 409#ifdef CONFIG_LOCKUP_DETECTOR
 410extern void touch_softlockup_watchdog_sched(void);
 411extern void touch_softlockup_watchdog(void);
 412extern void touch_softlockup_watchdog_sync(void);
 413extern void touch_all_softlockup_watchdogs(void);
 414extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
 415				  void __user *buffer,
 416				  size_t *lenp, loff_t *ppos);
 417extern unsigned int  softlockup_panic;
 418extern unsigned int  hardlockup_panic;
 419void lockup_detector_init(void);
 420#else
 421static inline void touch_softlockup_watchdog_sched(void)
 422{
 423}
 424static inline void touch_softlockup_watchdog(void)
 425{
 426}
 427static inline void touch_softlockup_watchdog_sync(void)
 428{
 429}
 430static inline void touch_all_softlockup_watchdogs(void)
 431{
 432}
 433static inline void lockup_detector_init(void)
 434{
 435}
 436#endif
 437
 438#ifdef CONFIG_DETECT_HUNG_TASK
 439void reset_hung_task_detector(void);
 440#else
 441static inline void reset_hung_task_detector(void)
 442{
 443}
 444#endif
 445
 446/* Attach to any functions which should be ignored in wchan output. */
 447#define __sched		__attribute__((__section__(".sched.text")))
 448
 449/* Linker adds these: start and end of __sched functions */
 450extern char __sched_text_start[], __sched_text_end[];
 451
 452/* Is this address in the __sched functions? */
 453extern int in_sched_functions(unsigned long addr);
 454
 455#define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
 456extern signed long schedule_timeout(signed long timeout);
 457extern signed long schedule_timeout_interruptible(signed long timeout);
 458extern signed long schedule_timeout_killable(signed long timeout);
 459extern signed long schedule_timeout_uninterruptible(signed long timeout);
 460extern signed long schedule_timeout_idle(signed long timeout);
 461asmlinkage void schedule(void);
 462extern void schedule_preempt_disabled(void);
 463
 464extern long io_schedule_timeout(long timeout);
 465
 466static inline void io_schedule(void)
 467{
 468	io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
 469}
 470
 471void __noreturn do_task_dead(void);
 472
 473struct nsproxy;
 474struct user_namespace;
 475
 476#ifdef CONFIG_MMU
 477extern void arch_pick_mmap_layout(struct mm_struct *mm);
 478extern unsigned long
 479arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
 480		       unsigned long, unsigned long);
 481extern unsigned long
 482arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 483			  unsigned long len, unsigned long pgoff,
 484			  unsigned long flags);
 485#else
 486static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
 487#endif
 488
 489#define SUID_DUMP_DISABLE	0	/* No setuid dumping */
 490#define SUID_DUMP_USER		1	/* Dump as user of process */
 491#define SUID_DUMP_ROOT		2	/* Dump as root */
 492
 493/* mm flags */
 494
 495/* for SUID_DUMP_* above */
 496#define MMF_DUMPABLE_BITS 2
 497#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
 498
 499extern void set_dumpable(struct mm_struct *mm, int value);
 500/*
 501 * This returns the actual value of the suid_dumpable flag. For things
 502 * that are using this for checking for privilege transitions, it must
 503 * test against SUID_DUMP_USER rather than treating it as a boolean
 504 * value.
 505 */
 506static inline int __get_dumpable(unsigned long mm_flags)
 507{
 508	return mm_flags & MMF_DUMPABLE_MASK;
 509}
 510
 511static inline int get_dumpable(struct mm_struct *mm)
 512{
 513	return __get_dumpable(mm->flags);
 514}
 515
 516/* coredump filter bits */
 517#define MMF_DUMP_ANON_PRIVATE	2
 518#define MMF_DUMP_ANON_SHARED	3
 519#define MMF_DUMP_MAPPED_PRIVATE	4
 520#define MMF_DUMP_MAPPED_SHARED	5
 521#define MMF_DUMP_ELF_HEADERS	6
 522#define MMF_DUMP_HUGETLB_PRIVATE 7
 523#define MMF_DUMP_HUGETLB_SHARED  8
 524#define MMF_DUMP_DAX_PRIVATE	9
 525#define MMF_DUMP_DAX_SHARED	10
 526
 527#define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
 528#define MMF_DUMP_FILTER_BITS	9
 529#define MMF_DUMP_FILTER_MASK \
 530	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
 531#define MMF_DUMP_FILTER_DEFAULT \
 532	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
 533	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
 534
 535#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
 536# define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
 537#else
 538# define MMF_DUMP_MASK_DEFAULT_ELF	0
 539#endif
 540					/* leave room for more dump flags */
 541#define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
 542#define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
 543/*
 544 * This one-shot flag is dropped due to necessity of changing exe once again
 545 * on NFS restore
 546 */
 547//#define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */
 548
 549#define MMF_HAS_UPROBES		19	/* has uprobes */
 550#define MMF_RECALC_UPROBES	20	/* MMF_HAS_UPROBES can be wrong */
 551#define MMF_OOM_SKIP		21	/* mm is of no interest for the OOM killer */
 552#define MMF_UNSTABLE		22	/* mm is unstable for copy_from_user */
 553#define MMF_HUGE_ZERO_PAGE	23      /* mm has ever used the global huge zero page */
 554
 555#define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
 556
 557struct sighand_struct {
 558	atomic_t		count;
 559	struct k_sigaction	action[_NSIG];
 560	spinlock_t		siglock;
 561	wait_queue_head_t	signalfd_wqh;
 562};
 563
 564struct pacct_struct {
 565	int			ac_flag;
 566	long			ac_exitcode;
 567	unsigned long		ac_mem;
 568	cputime_t		ac_utime, ac_stime;
 569	unsigned long		ac_minflt, ac_majflt;
 570};
 571
 572struct cpu_itimer {
 573	cputime_t expires;
 574	cputime_t incr;
 575	u32 error;
 576	u32 incr_error;
 577};
 578
 579/**
 580 * struct prev_cputime - snaphsot of system and user cputime
 581 * @utime: time spent in user mode
 582 * @stime: time spent in system mode
 583 * @lock: protects the above two fields
 584 *
 585 * Stores previous user/system time values such that we can guarantee
 586 * monotonicity.
 587 */
 588struct prev_cputime {
 589#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 590	cputime_t utime;
 591	cputime_t stime;
 592	raw_spinlock_t lock;
 593#endif
 594};
 595
 596static inline void prev_cputime_init(struct prev_cputime *prev)
 597{
 598#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 599	prev->utime = prev->stime = 0;
 600	raw_spin_lock_init(&prev->lock);
 601#endif
 602}
 603
 604/**
 605 * struct task_cputime - collected CPU time counts
 606 * @utime:		time spent in user mode, in &cputime_t units
 607 * @stime:		time spent in kernel mode, in &cputime_t units
 608 * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
 609 *
 610 * This structure groups together three kinds of CPU time that are tracked for
 611 * threads and thread groups.  Most things considering CPU time want to group
 612 * these counts together and treat all three of them in parallel.
 
 
 
 
 613 */
 614struct task_cputime {
 615	cputime_t utime;
 616	cputime_t stime;
 617	unsigned long long sum_exec_runtime;
 618};
 619
 620/* Alternate field names when used to cache expirations. */
 
 621#define virt_exp	utime
 622#define prof_exp	stime
 623#define sched_exp	sum_exec_runtime
 624
 625#define INIT_CPUTIME	\
 626	(struct task_cputime) {					\
 627		.utime = 0,					\
 628		.stime = 0,					\
 629		.sum_exec_runtime = 0,				\
 630	}
 631
 632/*
 633 * This is the atomic variant of task_cputime, which can be used for
 634 * storing and updating task_cputime statistics without locking.
 635 */
 636struct task_cputime_atomic {
 637	atomic64_t utime;
 638	atomic64_t stime;
 639	atomic64_t sum_exec_runtime;
 640};
 641
 642#define INIT_CPUTIME_ATOMIC \
 643	(struct task_cputime_atomic) {				\
 644		.utime = ATOMIC64_INIT(0),			\
 645		.stime = ATOMIC64_INIT(0),			\
 646		.sum_exec_runtime = ATOMIC64_INIT(0),		\
 647	}
 648
 649#define PREEMPT_DISABLED	(PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
 650
 651/*
 652 * Disable preemption until the scheduler is running -- use an unconditional
 653 * value so that it also works on !PREEMPT_COUNT kernels.
 654 *
 655 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
 
 656 */
 657#define INIT_PREEMPT_COUNT	PREEMPT_OFFSET
 658
 659/*
 660 * Initial preempt_count value; reflects the preempt_count schedule invariant
 661 * which states that during context switches:
 662 *
 663 *    preempt_count() == 2*PREEMPT_DISABLE_OFFSET
 664 *
 665 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
 666 * Note: See finish_task_switch().
 667 */
 668#define FORK_PREEMPT_COUNT	(2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
 669
 670/**
 671 * struct thread_group_cputimer - thread group interval timer counts
 672 * @cputime_atomic:	atomic thread group interval timers.
 673 * @running:		true when there are timers running and
 674 *			@cputime_atomic receives updates.
 675 * @checking_timer:	true when a thread in the group is in the
 676 *			process of checking for thread group timers.
 677 *
 678 * This structure contains the version of task_cputime, above, that is
 679 * used for thread group CPU timer calculations.
 680 */
 681struct thread_group_cputimer {
 682	struct task_cputime_atomic cputime_atomic;
 683	bool running;
 684	bool checking_timer;
 685};
 686
 687#include <linux/rwsem.h>
 688struct autogroup;
 689
 690/*
 691 * NOTE! "signal_struct" does not have its own
 692 * locking, because a shared signal_struct always
 693 * implies a shared sighand_struct, so locking
 694 * sighand_struct is always a proper superset of
 695 * the locking of signal_struct.
 696 */
 697struct signal_struct {
 698	atomic_t		sigcnt;
 699	atomic_t		live;
 700	int			nr_threads;
 701	struct list_head	thread_head;
 702
 703	wait_queue_head_t	wait_chldexit;	/* for wait4() */
 704
 705	/* current thread group signal load-balancing target: */
 706	struct task_struct	*curr_target;
 707
 708	/* shared signal handling: */
 709	struct sigpending	shared_pending;
 710
 711	/* thread group exit support */
 712	int			group_exit_code;
 713	/* overloaded:
 714	 * - notify group_exit_task when ->count is equal to notify_count
 715	 * - everyone except group_exit_task is stopped during signal delivery
 716	 *   of fatal signals, group_exit_task processes the signal.
 717	 */
 718	int			notify_count;
 719	struct task_struct	*group_exit_task;
 720
 721	/* thread group stop support, overloads group_exit_code too */
 722	int			group_stop_count;
 723	unsigned int		flags; /* see SIGNAL_* flags below */
 724
 725	/*
 726	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
 727	 * manager, to re-parent orphan (double-forking) child processes
 728	 * to this process instead of 'init'. The service manager is
 729	 * able to receive SIGCHLD signals and is able to investigate
 730	 * the process until it calls wait(). All children of this
 731	 * process will inherit a flag if they should look for a
 732	 * child_subreaper process at exit.
 733	 */
 734	unsigned int		is_child_subreaper:1;
 735	unsigned int		has_child_subreaper:1;
 736
 737	/* POSIX.1b Interval Timers */
 738	int			posix_timer_id;
 739	struct list_head	posix_timers;
 740
 741	/* ITIMER_REAL timer for the process */
 742	struct hrtimer real_timer;
 743	struct pid *leader_pid;
 744	ktime_t it_real_incr;
 745
 746	/*
 747	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
 748	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
 749	 * values are defined to 0 and 1 respectively
 750	 */
 751	struct cpu_itimer it[2];
 752
 753	/*
 754	 * Thread group totals for process CPU timers.
 755	 * See thread_group_cputimer(), et al, for details.
 756	 */
 757	struct thread_group_cputimer cputimer;
 758
 759	/* Earliest-expiration cache. */
 760	struct task_cputime cputime_expires;
 761
 762#ifdef CONFIG_NO_HZ_FULL
 763	atomic_t tick_dep_mask;
 764#endif
 765
 766	struct list_head cpu_timers[3];
 767
 768	struct pid *tty_old_pgrp;
 769
 770	/* boolean value for session group leader */
 771	int leader;
 772
 773	struct tty_struct *tty; /* NULL if no tty */
 774
 775#ifdef CONFIG_SCHED_AUTOGROUP
 776	struct autogroup *autogroup;
 777#endif
 778	/*
 779	 * Cumulative resource counters for dead threads in the group,
 780	 * and for reaped dead child processes forked by this group.
 781	 * Live threads maintain their own counters and add to these
 782	 * in __exit_signal, except for the group leader.
 783	 */
 784	seqlock_t stats_lock;
 785	cputime_t utime, stime, cutime, cstime;
 786	cputime_t gtime;
 787	cputime_t cgtime;
 788	struct prev_cputime prev_cputime;
 
 
 789	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 790	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 791	unsigned long inblock, oublock, cinblock, coublock;
 792	unsigned long maxrss, cmaxrss;
 793	struct task_io_accounting ioac;
 794
 795	/*
 796	 * Cumulative ns of schedule CPU time fo dead threads in the
 797	 * group, not including a zombie group leader, (This only differs
 798	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
 799	 * other than jiffies.)
 800	 */
 801	unsigned long long sum_sched_runtime;
 802
 803	/*
 804	 * We don't bother to synchronize most readers of this at all,
 805	 * because there is no reader checking a limit that actually needs
 806	 * to get both rlim_cur and rlim_max atomically, and either one
 807	 * alone is a single word that can safely be read normally.
 808	 * getrlimit/setrlimit use task_lock(current->group_leader) to
 809	 * protect this instead of the siglock, because they really
 810	 * have no need to disable irqs.
 811	 */
 812	struct rlimit rlim[RLIM_NLIMITS];
 813
 814#ifdef CONFIG_BSD_PROCESS_ACCT
 815	struct pacct_struct pacct;	/* per-process accounting information */
 816#endif
 817#ifdef CONFIG_TASKSTATS
 818	struct taskstats *stats;
 819#endif
 820#ifdef CONFIG_AUDIT
 821	unsigned audit_tty;
 
 822	struct tty_audit_buf *tty_audit_buf;
 823#endif
 824
 825	/*
 826	 * Thread is the potential origin of an oom condition; kill first on
 827	 * oom
 
 
 
 
 
 828	 */
 829	bool oom_flag_origin;
 
 
 
 830	short oom_score_adj;		/* OOM kill score adjustment */
 831	short oom_score_adj_min;	/* OOM kill score adjustment min value.
 832					 * Only settable by CAP_SYS_RESOURCE. */
 833	struct mm_struct *oom_mm;	/* recorded mm when the thread group got
 834					 * killed by the oom killer */
 835
 836	struct mutex cred_guard_mutex;	/* guard against foreign influences on
 837					 * credential calculations
 838					 * (notably. ptrace) */
 839};
 840
 841/*
 842 * Bits in flags field of signal_struct.
 843 */
 844#define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
 845#define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
 846#define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
 847#define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
 848/*
 849 * Pending notifications to parent.
 850 */
 851#define SIGNAL_CLD_STOPPED	0x00000010
 852#define SIGNAL_CLD_CONTINUED	0x00000020
 853#define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
 854
 855#define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
 856
 857#define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
 858			  SIGNAL_STOP_CONTINUED)
 859
 860static inline void signal_set_stop_flags(struct signal_struct *sig,
 861					 unsigned int flags)
 862{
 863	WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
 864	sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
 865}
 866
 867/* If true, all threads except ->group_exit_task have pending SIGKILL */
 868static inline int signal_group_exit(const struct signal_struct *sig)
 869{
 870	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
 871		(sig->group_exit_task != NULL);
 872}
 873
 874/*
 875 * Some day this will be a full-fledged user tracking system..
 876 */
 877struct user_struct {
 878	atomic_t __count;	/* reference count */
 879	atomic_t processes;	/* How many processes does this user have? */
 
 880	atomic_t sigpending;	/* How many pending signals does this user have? */
 881#ifdef CONFIG_INOTIFY_USER
 882	atomic_t inotify_watches; /* How many inotify watches does this user have? */
 883	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
 884#endif
 885#ifdef CONFIG_FANOTIFY
 886	atomic_t fanotify_listeners;
 887#endif
 888#ifdef CONFIG_EPOLL
 889	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
 890#endif
 891#ifdef CONFIG_POSIX_MQUEUE
 892	/* protected by mq_lock	*/
 893	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
 894#endif
 895	unsigned long locked_shm; /* How many pages of mlocked shm ? */
 896	unsigned long unix_inflight;	/* How many files in flight in unix sockets */
 897	atomic_long_t pipe_bufs;  /* how many pages are allocated in pipe buffers */
 898
 899#ifdef CONFIG_KEYS
 900	struct key *uid_keyring;	/* UID specific keyring */
 901	struct key *session_keyring;	/* UID's default session keyring */
 902#endif
 903
 904	/* Hash table maintenance information */
 905	struct hlist_node uidhash_node;
 906	kuid_t uid;
 907
 908#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
 909	atomic_long_t locked_vm;
 910#endif
 911};
 912
 913extern int uids_sysfs_init(void);
 914
 915extern struct user_struct *find_user(kuid_t);
 916
 917extern struct user_struct root_user;
 918#define INIT_USER (&root_user)
 919
 920
 921struct backing_dev_info;
 922struct reclaim_state;
 923
 924#ifdef CONFIG_SCHED_INFO
 925struct sched_info {
 926	/* cumulative counters */
 927	unsigned long pcount;	      /* # of times run on this cpu */
 928	unsigned long long run_delay; /* time spent waiting on a runqueue */
 929
 930	/* timestamps */
 931	unsigned long long last_arrival,/* when we last ran on a cpu */
 932			   last_queued;	/* when we were last queued to run */
 933};
 934#endif /* CONFIG_SCHED_INFO */
 935
 936#ifdef CONFIG_TASK_DELAY_ACCT
 937struct task_delay_info {
 938	spinlock_t	lock;
 939	unsigned int	flags;	/* Private per-task flags */
 940
 941	/* For each stat XXX, add following, aligned appropriately
 942	 *
 943	 * struct timespec XXX_start, XXX_end;
 944	 * u64 XXX_delay;
 945	 * u32 XXX_count;
 946	 *
 947	 * Atomicity of updates to XXX_delay, XXX_count protected by
 948	 * single lock above (split into XXX_lock if contention is an issue).
 949	 */
 950
 951	/*
 952	 * XXX_count is incremented on every XXX operation, the delay
 953	 * associated with the operation is added to XXX_delay.
 954	 * XXX_delay contains the accumulated delay time in nanoseconds.
 955	 */
 956	u64 blkio_start;	/* Shared by blkio, swapin */
 957	u64 blkio_delay;	/* wait for sync block io completion */
 958	u64 swapin_delay;	/* wait for swapin block io completion */
 959	u32 blkio_count;	/* total count of the number of sync block */
 960				/* io operations performed */
 961	u32 swapin_count;	/* total count of the number of swapin block */
 962				/* io operations performed */
 963
 964	u64 freepages_start;
 965	u64 freepages_delay;	/* wait for memory reclaim */
 966	u32 freepages_count;	/* total count of memory reclaim */
 967};
 968#endif	/* CONFIG_TASK_DELAY_ACCT */
 969
 970static inline int sched_info_on(void)
 971{
 972#ifdef CONFIG_SCHEDSTATS
 973	return 1;
 974#elif defined(CONFIG_TASK_DELAY_ACCT)
 975	extern int delayacct_on;
 976	return delayacct_on;
 977#else
 978	return 0;
 979#endif
 980}
 981
 982#ifdef CONFIG_SCHEDSTATS
 983void force_schedstat_enabled(void);
 984#endif
 985
 986enum cpu_idle_type {
 987	CPU_IDLE,
 988	CPU_NOT_IDLE,
 989	CPU_NEWLY_IDLE,
 990	CPU_MAX_IDLE_TYPES
 991};
 992
 993/*
 994 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 995 * has a few: load, load_avg, util_avg, freq, and capacity.
 996 *
 997 * We define a basic fixed point arithmetic range, and then formalize
 998 * all these metrics based on that basic range.
 999 */
1000# define SCHED_FIXEDPOINT_SHIFT	10
1001# define SCHED_FIXEDPOINT_SCALE	(1L << SCHED_FIXEDPOINT_SHIFT)
1002
1003/*
1004 * Increase resolution of cpu_capacity calculations
1005 */
1006#define SCHED_CAPACITY_SHIFT	SCHED_FIXEDPOINT_SHIFT
1007#define SCHED_CAPACITY_SCALE	(1L << SCHED_CAPACITY_SHIFT)
1008
1009/*
1010 * Wake-queues are lists of tasks with a pending wakeup, whose
1011 * callers have already marked the task as woken internally,
1012 * and can thus carry on. A common use case is being able to
1013 * do the wakeups once the corresponding user lock as been
1014 * released.
1015 *
1016 * We hold reference to each task in the list across the wakeup,
1017 * thus guaranteeing that the memory is still valid by the time
1018 * the actual wakeups are performed in wake_up_q().
1019 *
1020 * One per task suffices, because there's never a need for a task to be
1021 * in two wake queues simultaneously; it is forbidden to abandon a task
1022 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
1023 * already in a wake queue, the wakeup will happen soon and the second
1024 * waker can just skip it.
1025 *
1026 * The DEFINE_WAKE_Q macro declares and initializes the list head.
1027 * wake_up_q() does NOT reinitialize the list; it's expected to be
1028 * called near the end of a function, where the fact that the queue is
1029 * not used again will be easy to see by inspection.
1030 *
1031 * Note that this can cause spurious wakeups. schedule() callers
1032 * must ensure the call is done inside a loop, confirming that the
1033 * wakeup condition has in fact occurred.
1034 */
1035struct wake_q_node {
1036	struct wake_q_node *next;
1037};
1038
1039struct wake_q_head {
1040	struct wake_q_node *first;
1041	struct wake_q_node **lastp;
1042};
1043
1044#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1045
1046#define DEFINE_WAKE_Q(name)				\
1047	struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1048
1049extern void wake_q_add(struct wake_q_head *head,
1050		       struct task_struct *task);
1051extern void wake_up_q(struct wake_q_head *head);
1052
1053/*
1054 * sched-domains (multiprocessor balancing) declarations:
1055 */
1056#ifdef CONFIG_SMP
1057#define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
1058#define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
1059#define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
1060#define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
1061#define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
1062#define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
1063#define SD_ASYM_CPUCAPACITY	0x0040  /* Groups have different max cpu capacities */
1064#define SD_SHARE_CPUCAPACITY	0x0080	/* Domain members share cpu capacity */
1065#define SD_SHARE_POWERDOMAIN	0x0100	/* Domain members share power domain */
1066#define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
1067#define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
1068#define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
1069#define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
1070#define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
1071#define SD_NUMA			0x4000	/* cross-node balancing */
1072
1073#ifdef CONFIG_SCHED_SMT
1074static inline int cpu_smt_flags(void)
1075{
1076	return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1077}
1078#endif
1079
1080#ifdef CONFIG_SCHED_MC
1081static inline int cpu_core_flags(void)
1082{
1083	return SD_SHARE_PKG_RESOURCES;
1084}
1085#endif
1086
1087#ifdef CONFIG_NUMA
1088static inline int cpu_numa_flags(void)
1089{
1090	return SD_NUMA;
1091}
1092#endif
1093
1094extern int arch_asym_cpu_priority(int cpu);
1095
1096struct sched_domain_attr {
1097	int relax_domain_level;
1098};
1099
1100#define SD_ATTR_INIT	(struct sched_domain_attr) {	\
1101	.relax_domain_level = -1,			\
1102}
1103
1104extern int sched_domain_level_max;
1105
1106struct sched_group;
1107
1108struct sched_domain_shared {
1109	atomic_t	ref;
1110	atomic_t	nr_busy_cpus;
1111	int		has_idle_cores;
1112};
1113
1114struct sched_domain {
1115	/* These fields must be setup */
1116	struct sched_domain *parent;	/* top domain must be null terminated */
1117	struct sched_domain *child;	/* bottom domain must be null terminated */
1118	struct sched_group *groups;	/* the balancing groups of the domain */
1119	unsigned long min_interval;	/* Minimum balance interval ms */
1120	unsigned long max_interval;	/* Maximum balance interval ms */
1121	unsigned int busy_factor;	/* less balancing by factor if busy */
1122	unsigned int imbalance_pct;	/* No balance until over watermark */
1123	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
1124	unsigned int busy_idx;
1125	unsigned int idle_idx;
1126	unsigned int newidle_idx;
1127	unsigned int wake_idx;
1128	unsigned int forkexec_idx;
1129	unsigned int smt_gain;
1130
1131	int nohz_idle;			/* NOHZ IDLE status */
1132	int flags;			/* See SD_* */
1133	int level;
1134
1135	/* Runtime fields. */
1136	unsigned long last_balance;	/* init to jiffies. units in jiffies */
1137	unsigned int balance_interval;	/* initialise to 1. units in ms. */
1138	unsigned int nr_balance_failed; /* initialise to 0 */
1139
1140	/* idle_balance() stats */
1141	u64 max_newidle_lb_cost;
1142	unsigned long next_decay_max_lb_cost;
1143
1144	u64 avg_scan_cost;		/* select_idle_sibling */
1145
1146#ifdef CONFIG_SCHEDSTATS
1147	/* load_balance() stats */
1148	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1149	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1150	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1151	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1152	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1153	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1154	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1155	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1156
1157	/* Active load balancing */
1158	unsigned int alb_count;
1159	unsigned int alb_failed;
1160	unsigned int alb_pushed;
1161
1162	/* SD_BALANCE_EXEC stats */
1163	unsigned int sbe_count;
1164	unsigned int sbe_balanced;
1165	unsigned int sbe_pushed;
1166
1167	/* SD_BALANCE_FORK stats */
1168	unsigned int sbf_count;
1169	unsigned int sbf_balanced;
1170	unsigned int sbf_pushed;
1171
1172	/* try_to_wake_up() stats */
1173	unsigned int ttwu_wake_remote;
1174	unsigned int ttwu_move_affine;
1175	unsigned int ttwu_move_balance;
1176#endif
1177#ifdef CONFIG_SCHED_DEBUG
1178	char *name;
1179#endif
1180	union {
1181		void *private;		/* used during construction */
1182		struct rcu_head rcu;	/* used during destruction */
1183	};
1184	struct sched_domain_shared *shared;
1185
1186	unsigned int span_weight;
1187	/*
1188	 * Span of all CPUs in this domain.
1189	 *
1190	 * NOTE: this field is variable length. (Allocated dynamically
1191	 * by attaching extra space to the end of the structure,
1192	 * depending on how many CPUs the kernel has booted up with)
1193	 */
1194	unsigned long span[0];
1195};
1196
1197static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1198{
1199	return to_cpumask(sd->span);
1200}
1201
1202extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1203				    struct sched_domain_attr *dattr_new);
1204
1205/* Allocate an array of sched domains, for partition_sched_domains(). */
1206cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1207void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1208
1209bool cpus_share_cache(int this_cpu, int that_cpu);
1210
1211typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1212typedef int (*sched_domain_flags_f)(void);
1213
1214#define SDTL_OVERLAP	0x01
1215
1216struct sd_data {
1217	struct sched_domain **__percpu sd;
1218	struct sched_domain_shared **__percpu sds;
1219	struct sched_group **__percpu sg;
1220	struct sched_group_capacity **__percpu sgc;
1221};
1222
1223struct sched_domain_topology_level {
1224	sched_domain_mask_f mask;
1225	sched_domain_flags_f sd_flags;
1226	int		    flags;
1227	int		    numa_level;
1228	struct sd_data      data;
1229#ifdef CONFIG_SCHED_DEBUG
1230	char                *name;
1231#endif
1232};
1233
1234extern void set_sched_topology(struct sched_domain_topology_level *tl);
1235extern void wake_up_if_idle(int cpu);
1236
1237#ifdef CONFIG_SCHED_DEBUG
1238# define SD_INIT_NAME(type)		.name = #type
1239#else
1240# define SD_INIT_NAME(type)
1241#endif
1242
1243#else /* CONFIG_SMP */
1244
1245struct sched_domain_attr;
1246
1247static inline void
1248partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1249			struct sched_domain_attr *dattr_new)
1250{
1251}
1252
1253static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1254{
1255	return true;
1256}
1257
1258#endif	/* !CONFIG_SMP */
1259
1260
1261struct io_context;			/* See blkdev.h */
1262
1263
1264#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1265extern void prefetch_stack(struct task_struct *t);
1266#else
1267static inline void prefetch_stack(struct task_struct *t) { }
1268#endif
1269
1270struct audit_context;		/* See audit.c */
1271struct mempolicy;
1272struct pipe_inode_info;
1273struct uts_namespace;
1274
1275struct load_weight {
1276	unsigned long weight;
1277	u32 inv_weight;
1278};
1279
1280/*
1281 * The load_avg/util_avg accumulates an infinite geometric series
1282 * (see __update_load_avg() in kernel/sched/fair.c).
1283 *
1284 * [load_avg definition]
1285 *
1286 *   load_avg = runnable% * scale_load_down(load)
1287 *
1288 * where runnable% is the time ratio that a sched_entity is runnable.
1289 * For cfs_rq, it is the aggregated load_avg of all runnable and
1290 * blocked sched_entities.
1291 *
1292 * load_avg may also take frequency scaling into account:
1293 *
1294 *   load_avg = runnable% * scale_load_down(load) * freq%
1295 *
1296 * where freq% is the CPU frequency normalized to the highest frequency.
1297 *
1298 * [util_avg definition]
1299 *
1300 *   util_avg = running% * SCHED_CAPACITY_SCALE
1301 *
1302 * where running% is the time ratio that a sched_entity is running on
1303 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1304 * and blocked sched_entities.
1305 *
1306 * util_avg may also factor frequency scaling and CPU capacity scaling:
1307 *
1308 *   util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1309 *
1310 * where freq% is the same as above, and capacity% is the CPU capacity
1311 * normalized to the greatest capacity (due to uarch differences, etc).
1312 *
1313 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1314 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1315 * we therefore scale them to as large a range as necessary. This is for
1316 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1317 *
1318 * [Overflow issue]
1319 *
1320 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1321 * with the highest load (=88761), always runnable on a single cfs_rq,
1322 * and should not overflow as the number already hits PID_MAX_LIMIT.
1323 *
1324 * For all other cases (including 32-bit kernels), struct load_weight's
1325 * weight will overflow first before we do, because:
1326 *
1327 *    Max(load_avg) <= Max(load.weight)
1328 *
1329 * Then it is the load_weight's responsibility to consider overflow
1330 * issues.
1331 */
1332struct sched_avg {
1333	u64 last_update_time, load_sum;
1334	u32 util_sum, period_contrib;
1335	unsigned long load_avg, util_avg;
 
 
 
 
 
 
1336};
1337
1338#ifdef CONFIG_SCHEDSTATS
1339struct sched_statistics {
1340	u64			wait_start;
1341	u64			wait_max;
1342	u64			wait_count;
1343	u64			wait_sum;
1344	u64			iowait_count;
1345	u64			iowait_sum;
1346
1347	u64			sleep_start;
1348	u64			sleep_max;
1349	s64			sum_sleep_runtime;
1350
1351	u64			block_start;
1352	u64			block_max;
1353	u64			exec_max;
1354	u64			slice_max;
1355
1356	u64			nr_migrations_cold;
1357	u64			nr_failed_migrations_affine;
1358	u64			nr_failed_migrations_running;
1359	u64			nr_failed_migrations_hot;
1360	u64			nr_forced_migrations;
1361
1362	u64			nr_wakeups;
1363	u64			nr_wakeups_sync;
1364	u64			nr_wakeups_migrate;
1365	u64			nr_wakeups_local;
1366	u64			nr_wakeups_remote;
1367	u64			nr_wakeups_affine;
1368	u64			nr_wakeups_affine_attempts;
1369	u64			nr_wakeups_passive;
1370	u64			nr_wakeups_idle;
1371};
1372#endif
1373
1374struct sched_entity {
1375	struct load_weight	load;		/* for load-balancing */
1376	struct rb_node		run_node;
1377	struct list_head	group_node;
1378	unsigned int		on_rq;
1379
1380	u64			exec_start;
1381	u64			sum_exec_runtime;
1382	u64			vruntime;
1383	u64			prev_sum_exec_runtime;
1384
1385	u64			nr_migrations;
1386
1387#ifdef CONFIG_SCHEDSTATS
1388	struct sched_statistics statistics;
1389#endif
1390
1391#ifdef CONFIG_FAIR_GROUP_SCHED
1392	int			depth;
1393	struct sched_entity	*parent;
1394	/* rq on which this entity is (to be) queued: */
1395	struct cfs_rq		*cfs_rq;
1396	/* rq "owned" by this entity/group: */
1397	struct cfs_rq		*my_q;
1398#endif
1399
1400#ifdef CONFIG_SMP
1401	/*
1402	 * Per entity load average tracking.
1403	 *
1404	 * Put into separate cache line so it does not
1405	 * collide with read-mostly values above.
1406	 */
1407	struct sched_avg	avg ____cacheline_aligned_in_smp;
1408#endif
1409};
1410
1411struct sched_rt_entity {
1412	struct list_head run_list;
1413	unsigned long timeout;
1414	unsigned long watchdog_stamp;
1415	unsigned int time_slice;
1416	unsigned short on_rq;
1417	unsigned short on_list;
1418
1419	struct sched_rt_entity *back;
1420#ifdef CONFIG_RT_GROUP_SCHED
1421	struct sched_rt_entity	*parent;
1422	/* rq on which this entity is (to be) queued: */
1423	struct rt_rq		*rt_rq;
1424	/* rq "owned" by this entity/group: */
1425	struct rt_rq		*my_q;
1426#endif
1427};
1428
1429struct sched_dl_entity {
1430	struct rb_node	rb_node;
1431
1432	/*
1433	 * Original scheduling parameters. Copied here from sched_attr
1434	 * during sched_setattr(), they will remain the same until
1435	 * the next sched_setattr().
1436	 */
1437	u64 dl_runtime;		/* maximum runtime for each instance	*/
1438	u64 dl_deadline;	/* relative deadline of each instance	*/
1439	u64 dl_period;		/* separation of two instances (period) */
1440	u64 dl_bw;		/* dl_runtime / dl_deadline		*/
1441
1442	/*
1443	 * Actual scheduling parameters. Initialized with the values above,
1444	 * they are continously updated during task execution. Note that
1445	 * the remaining runtime could be < 0 in case we are in overrun.
1446	 */
1447	s64 runtime;		/* remaining runtime for this instance	*/
1448	u64 deadline;		/* absolute deadline for this instance	*/
1449	unsigned int flags;	/* specifying the scheduler behaviour	*/
1450
1451	/*
1452	 * Some bool flags:
1453	 *
1454	 * @dl_throttled tells if we exhausted the runtime. If so, the
1455	 * task has to wait for a replenishment to be performed at the
1456	 * next firing of dl_timer.
1457	 *
 
 
 
 
1458	 * @dl_boosted tells if we are boosted due to DI. If so we are
1459	 * outside bandwidth enforcement mechanism (but only until we
1460	 * exit the critical section);
1461	 *
1462	 * @dl_yielded tells if task gave up the cpu before consuming
1463	 * all its available runtime during the last job.
1464	 */
1465	int dl_throttled, dl_boosted, dl_yielded;
1466
1467	/*
1468	 * Bandwidth enforcement timer. Each -deadline task has its
1469	 * own bandwidth to be enforced, thus we need one timer per task.
1470	 */
1471	struct hrtimer dl_timer;
1472};
1473
1474union rcu_special {
1475	struct {
1476		u8 blocked;
1477		u8 need_qs;
1478		u8 exp_need_qs;
1479		u8 pad;	/* Otherwise the compiler can store garbage here. */
1480	} b; /* Bits. */
1481	u32 s; /* Set of bits. */
1482};
1483struct rcu_node;
1484
1485enum perf_event_task_context {
1486	perf_invalid_context = -1,
1487	perf_hw_context = 0,
1488	perf_sw_context,
1489	perf_nr_task_contexts,
1490};
1491
1492/* Track pages that require TLB flushes */
1493struct tlbflush_unmap_batch {
1494	/*
1495	 * Each bit set is a CPU that potentially has a TLB entry for one of
1496	 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1497	 */
1498	struct cpumask cpumask;
1499
1500	/* True if any bit in cpumask is set */
1501	bool flush_required;
1502
1503	/*
1504	 * If true then the PTE was dirty when unmapped. The entry must be
1505	 * flushed before IO is initiated or a stale TLB entry potentially
1506	 * allows an update without redirtying the page.
1507	 */
1508	bool writable;
1509};
1510
1511struct task_struct {
1512#ifdef CONFIG_THREAD_INFO_IN_TASK
1513	/*
1514	 * For reasons of header soup (see current_thread_info()), this
1515	 * must be the first element of task_struct.
1516	 */
1517	struct thread_info thread_info;
1518#endif
1519	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1520	void *stack;
1521	atomic_t usage;
1522	unsigned int flags;	/* per process flags, defined below */
1523	unsigned int ptrace;
1524
1525#ifdef CONFIG_SMP
1526	struct llist_node wake_entry;
1527	int on_cpu;
1528#ifdef CONFIG_THREAD_INFO_IN_TASK
1529	unsigned int cpu;	/* current CPU */
1530#endif
1531	unsigned int wakee_flips;
1532	unsigned long wakee_flip_decay_ts;
1533	struct task_struct *last_wakee;
1534
1535	int wake_cpu;
1536#endif
1537	int on_rq;
1538
1539	int prio, static_prio, normal_prio;
1540	unsigned int rt_priority;
1541	const struct sched_class *sched_class;
1542	struct sched_entity se;
1543	struct sched_rt_entity rt;
1544#ifdef CONFIG_CGROUP_SCHED
1545	struct task_group *sched_task_group;
1546#endif
1547	struct sched_dl_entity dl;
1548
1549#ifdef CONFIG_PREEMPT_NOTIFIERS
1550	/* list of struct preempt_notifier: */
1551	struct hlist_head preempt_notifiers;
1552#endif
1553
1554#ifdef CONFIG_BLK_DEV_IO_TRACE
1555	unsigned int btrace_seq;
1556#endif
1557
1558	unsigned int policy;
1559	int nr_cpus_allowed;
1560	cpumask_t cpus_allowed;
1561
1562#ifdef CONFIG_PREEMPT_RCU
1563	int rcu_read_lock_nesting;
1564	union rcu_special rcu_read_unlock_special;
1565	struct list_head rcu_node_entry;
 
 
1566	struct rcu_node *rcu_blocked_node;
1567#endif /* #ifdef CONFIG_PREEMPT_RCU */
1568#ifdef CONFIG_TASKS_RCU
1569	unsigned long rcu_tasks_nvcsw;
1570	bool rcu_tasks_holdout;
1571	struct list_head rcu_tasks_holdout_list;
1572	int rcu_tasks_idle_cpu;
1573#endif /* #ifdef CONFIG_TASKS_RCU */
1574
1575#ifdef CONFIG_SCHED_INFO
1576	struct sched_info sched_info;
1577#endif
1578
1579	struct list_head tasks;
1580#ifdef CONFIG_SMP
1581	struct plist_node pushable_tasks;
1582	struct rb_node pushable_dl_tasks;
1583#endif
1584
1585	struct mm_struct *mm, *active_mm;
 
 
 
1586	/* per-thread vma caching */
1587	u32 vmacache_seqnum;
1588	struct vm_area_struct *vmacache[VMACACHE_SIZE];
1589#if defined(SPLIT_RSS_COUNTING)
1590	struct task_rss_stat	rss_stat;
1591#endif
1592/* task state */
1593	int exit_state;
1594	int exit_code, exit_signal;
1595	int pdeath_signal;  /*  The signal sent when the parent dies  */
1596	unsigned long jobctl;	/* JOBCTL_*, siglock protected */
1597
1598	/* Used for emulating ABI behavior of previous Linux versions */
1599	unsigned int personality;
1600
1601	/* scheduler bits, serialized by scheduler locks */
1602	unsigned sched_reset_on_fork:1;
1603	unsigned sched_contributes_to_load:1;
1604	unsigned sched_migrated:1;
1605	unsigned sched_remote_wakeup:1;
1606	unsigned :0; /* force alignment to the next boundary */
1607
1608	/* unserialized, strictly 'current' */
1609	unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1610	unsigned in_iowait:1;
1611#if !defined(TIF_RESTORE_SIGMASK)
1612	unsigned restore_sigmask:1;
1613#endif
1614#ifdef CONFIG_MEMCG
1615	unsigned memcg_may_oom:1;
1616#ifndef CONFIG_SLOB
1617	unsigned memcg_kmem_skip_account:1;
1618#endif
1619#endif
1620#ifdef CONFIG_COMPAT_BRK
1621	unsigned brk_randomized:1;
1622#endif
1623
1624	unsigned long atomic_flags; /* Flags needing atomic access. */
 
1625
1626	struct restart_block restart_block;
 
 
1627
1628	pid_t pid;
1629	pid_t tgid;
1630
1631#ifdef CONFIG_CC_STACKPROTECTOR
1632	/* Canary value for the -fstack-protector gcc feature */
1633	unsigned long stack_canary;
1634#endif
1635	/*
1636	 * pointers to (original) parent process, youngest child, younger sibling,
1637	 * older sibling, respectively.  (p->father can be replaced with
1638	 * p->real_parent->pid)
1639	 */
1640	struct task_struct __rcu *real_parent; /* real parent process */
1641	struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1642	/*
1643	 * children/sibling forms the list of my natural children
1644	 */
1645	struct list_head children;	/* list of my children */
1646	struct list_head sibling;	/* linkage in my parent's children list */
1647	struct task_struct *group_leader;	/* threadgroup leader */
1648
1649	/*
1650	 * ptraced is the list of tasks this task is using ptrace on.
1651	 * This includes both natural children and PTRACE_ATTACH targets.
1652	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1653	 */
1654	struct list_head ptraced;
1655	struct list_head ptrace_entry;
1656
1657	/* PID/PID hash table linkage. */
1658	struct pid_link pids[PIDTYPE_MAX];
1659	struct list_head thread_group;
1660	struct list_head thread_node;
1661
1662	struct completion *vfork_done;		/* for vfork() */
1663	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1664	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1665
1666	cputime_t utime, stime;
1667#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1668	cputime_t utimescaled, stimescaled;
 
1669#endif
1670	cputime_t gtime;
1671	struct prev_cputime prev_cputime;
1672#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1673	seqcount_t vtime_seqcount;
1674	unsigned long long vtime_snap;
1675	enum {
1676		/* Task is sleeping or running in a CPU with VTIME inactive */
1677		VTIME_INACTIVE = 0,
1678		/* Task runs in userspace in a CPU with VTIME active */
1679		VTIME_USER,
1680		/* Task runs in kernelspace in a CPU with VTIME active */
1681		VTIME_SYS,
1682	} vtime_snap_whence;
1683#endif
1684
1685#ifdef CONFIG_NO_HZ_FULL
1686	atomic_t tick_dep_mask;
1687#endif
1688	unsigned long nvcsw, nivcsw; /* context switch counts */
1689	u64 start_time;		/* monotonic time in nsec */
1690	u64 real_start_time;	/* boot based time in nsec */
1691/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1692	unsigned long min_flt, maj_flt;
1693
1694	struct task_cputime cputime_expires;
1695	struct list_head cpu_timers[3];
1696
1697/* process credentials */
1698	const struct cred __rcu *ptracer_cred; /* Tracer's credentials at attach */
1699	const struct cred __rcu *real_cred; /* objective and real subjective task
1700					 * credentials (COW) */
1701	const struct cred __rcu *cred;	/* effective (overridable) subjective task
1702					 * credentials (COW) */
1703	char comm[TASK_COMM_LEN]; /* executable name excluding path
1704				     - access with [gs]et_task_comm (which lock
1705				       it with task_lock())
1706				     - initialized normally by setup_new_exec */
1707/* file system info */
1708	struct nameidata *nameidata;
1709#ifdef CONFIG_SYSVIPC
1710/* ipc stuff */
1711	struct sysv_sem sysvsem;
1712	struct sysv_shm sysvshm;
1713#endif
1714#ifdef CONFIG_DETECT_HUNG_TASK
1715/* hung task detection */
1716	unsigned long last_switch_count;
1717#endif
 
 
1718/* filesystem information */
1719	struct fs_struct *fs;
1720/* open file information */
1721	struct files_struct *files;
1722/* namespaces */
1723	struct nsproxy *nsproxy;
1724/* signal handlers */
1725	struct signal_struct *signal;
1726	struct sighand_struct *sighand;
1727
1728	sigset_t blocked, real_blocked;
1729	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1730	struct sigpending pending;
1731
1732	unsigned long sas_ss_sp;
1733	size_t sas_ss_size;
1734	unsigned sas_ss_flags;
1735
 
1736	struct callback_head *task_works;
1737
1738	struct audit_context *audit_context;
1739#ifdef CONFIG_AUDITSYSCALL
1740	kuid_t loginuid;
1741	unsigned int sessionid;
1742#endif
1743	struct seccomp seccomp;
1744
1745/* Thread group tracking */
1746   	u32 parent_exec_id;
1747   	u32 self_exec_id;
1748/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1749 * mempolicy */
1750	spinlock_t alloc_lock;
1751
1752	/* Protection of the PI data structures: */
1753	raw_spinlock_t pi_lock;
1754
1755	struct wake_q_node wake_q;
1756
1757#ifdef CONFIG_RT_MUTEXES
1758	/* PI waiters blocked on a rt_mutex held by this task */
1759	struct rb_root pi_waiters;
1760	struct rb_node *pi_waiters_leftmost;
1761	/* Deadlock detection and priority inheritance handling */
1762	struct rt_mutex_waiter *pi_blocked_on;
 
 
1763#endif
1764
1765#ifdef CONFIG_DEBUG_MUTEXES
1766	/* mutex deadlock detection */
1767	struct mutex_waiter *blocked_on;
1768#endif
1769#ifdef CONFIG_TRACE_IRQFLAGS
1770	unsigned int irq_events;
1771	unsigned long hardirq_enable_ip;
1772	unsigned long hardirq_disable_ip;
1773	unsigned int hardirq_enable_event;
1774	unsigned int hardirq_disable_event;
1775	int hardirqs_enabled;
1776	int hardirq_context;
1777	unsigned long softirq_disable_ip;
1778	unsigned long softirq_enable_ip;
1779	unsigned int softirq_disable_event;
1780	unsigned int softirq_enable_event;
1781	int softirqs_enabled;
1782	int softirq_context;
1783#endif
1784#ifdef CONFIG_LOCKDEP
1785# define MAX_LOCK_DEPTH 48UL
1786	u64 curr_chain_key;
1787	int lockdep_depth;
1788	unsigned int lockdep_recursion;
1789	struct held_lock held_locks[MAX_LOCK_DEPTH];
1790	gfp_t lockdep_reclaim_gfp;
1791#endif
1792#ifdef CONFIG_UBSAN
1793	unsigned int in_ubsan;
1794#endif
1795
1796/* journalling filesystem info */
1797	void *journal_info;
1798
1799/* stacked block device info */
1800	struct bio_list *bio_list;
1801
1802#ifdef CONFIG_BLOCK
1803/* stack plugging */
1804	struct blk_plug *plug;
1805#endif
1806
1807/* VM state */
1808	struct reclaim_state *reclaim_state;
1809
1810	struct backing_dev_info *backing_dev_info;
1811
1812	struct io_context *io_context;
1813
1814	unsigned long ptrace_message;
1815	siginfo_t *last_siginfo; /* For ptrace use.  */
1816	struct task_io_accounting ioac;
1817#if defined(CONFIG_TASK_XACCT)
1818	u64 acct_rss_mem1;	/* accumulated rss usage */
1819	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1820	cputime_t acct_timexpd;	/* stime + utime since last update */
1821#endif
1822#ifdef CONFIG_CPUSETS
1823	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1824	seqcount_t mems_allowed_seq;	/* Seqence no to catch updates */
1825	int cpuset_mem_spread_rotor;
1826	int cpuset_slab_spread_rotor;
1827#endif
1828#ifdef CONFIG_CGROUPS
1829	/* Control Group info protected by css_set_lock */
1830	struct css_set __rcu *cgroups;
1831	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1832	struct list_head cg_list;
1833#endif
1834#ifdef CONFIG_INTEL_RDT_A
1835	int closid;
1836#endif
1837#ifdef CONFIG_FUTEX
1838	struct robust_list_head __user *robust_list;
1839#ifdef CONFIG_COMPAT
1840	struct compat_robust_list_head __user *compat_robust_list;
1841#endif
1842	struct list_head pi_state_list;
1843	struct futex_pi_state *pi_state_cache;
1844#endif
1845#ifdef CONFIG_PERF_EVENTS
1846	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1847	struct mutex perf_event_mutex;
1848	struct list_head perf_event_list;
1849#endif
1850#ifdef CONFIG_DEBUG_PREEMPT
1851	unsigned long preempt_disable_ip;
1852#endif
1853#ifdef CONFIG_NUMA
1854	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1855	short il_next;
1856	short pref_node_fork;
1857#endif
1858#ifdef CONFIG_NUMA_BALANCING
1859	int numa_scan_seq;
1860	unsigned int numa_scan_period;
1861	unsigned int numa_scan_period_max;
1862	int numa_preferred_nid;
1863	unsigned long numa_migrate_retry;
1864	u64 node_stamp;			/* migration stamp  */
1865	u64 last_task_numa_placement;
1866	u64 last_sum_exec_runtime;
1867	struct callback_head numa_work;
1868
1869	struct list_head numa_entry;
1870	struct numa_group *numa_group;
1871
1872	/*
1873	 * numa_faults is an array split into four regions:
1874	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1875	 * in this precise order.
1876	 *
1877	 * faults_memory: Exponential decaying average of faults on a per-node
1878	 * basis. Scheduling placement decisions are made based on these
1879	 * counts. The values remain static for the duration of a PTE scan.
1880	 * faults_cpu: Track the nodes the process was running on when a NUMA
1881	 * hinting fault was incurred.
1882	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1883	 * during the current scan window. When the scan completes, the counts
1884	 * in faults_memory and faults_cpu decay and these values are copied.
1885	 */
1886	unsigned long *numa_faults;
1887	unsigned long total_numa_faults;
1888
1889	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1890	 * numa_faults_locality tracks if faults recorded during the last
1891	 * scan window were remote/local or failed to migrate. The task scan
1892	 * period is adapted based on the locality of the faults with different
1893	 * weights depending on whether they were shared or private faults
1894	 */
1895	unsigned long numa_faults_locality[3];
1896
1897	unsigned long numa_pages_migrated;
1898#endif /* CONFIG_NUMA_BALANCING */
1899
1900#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1901	struct tlbflush_unmap_batch tlb_ubc;
1902#endif
1903
1904	struct rcu_head rcu;
1905
1906	/*
1907	 * cache last used pipe for splice
1908	 */
1909	struct pipe_inode_info *splice_pipe;
1910
1911	struct page_frag task_frag;
1912
1913#ifdef	CONFIG_TASK_DELAY_ACCT
1914	struct task_delay_info *delays;
1915#endif
1916#ifdef CONFIG_FAULT_INJECTION
1917	int make_it_fail;
1918#endif
1919	/*
1920	 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1921	 * balance_dirty_pages() for some dirty throttling pause
1922	 */
1923	int nr_dirtied;
1924	int nr_dirtied_pause;
1925	unsigned long dirty_paused_when; /* start of a write-and-pause period */
1926
1927#ifdef CONFIG_LATENCYTOP
1928	int latency_record_count;
1929	struct latency_record latency_record[LT_SAVECOUNT];
1930#endif
1931	/*
1932	 * time slack values; these are used to round up poll() and
1933	 * select() etc timeout values. These are in nanoseconds.
1934	 */
1935	u64 timer_slack_ns;
1936	u64 default_timer_slack_ns;
1937
1938#ifdef CONFIG_KASAN
1939	unsigned int kasan_depth;
1940#endif
1941#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1942	/* Index of current stored address in ret_stack */
1943	int curr_ret_stack;
1944	/* Stack of return addresses for return function tracing */
1945	struct ftrace_ret_stack	*ret_stack;
1946	/* time stamp for last schedule */
1947	unsigned long long ftrace_timestamp;
1948	/*
1949	 * Number of functions that haven't been traced
1950	 * because of depth overrun.
1951	 */
1952	atomic_t trace_overrun;
1953	/* Pause for the tracing */
1954	atomic_t tracing_graph_pause;
1955#endif
1956#ifdef CONFIG_TRACING
1957	/* state flags for use by tracers */
1958	unsigned long trace;
1959	/* bitmask and counter of trace recursion */
1960	unsigned long trace_recursion;
1961#endif /* CONFIG_TRACING */
1962#ifdef CONFIG_KCOV
1963	/* Coverage collection mode enabled for this task (0 if disabled). */
1964	enum kcov_mode kcov_mode;
1965	/* Size of the kcov_area. */
1966	unsigned	kcov_size;
1967	/* Buffer for coverage collection. */
1968	void		*kcov_area;
1969	/* kcov desciptor wired with this task or NULL. */
1970	struct kcov	*kcov;
1971#endif
1972#ifdef CONFIG_MEMCG
1973	struct mem_cgroup *memcg_in_oom;
1974	gfp_t memcg_oom_gfp_mask;
1975	int memcg_oom_order;
1976
1977	/* number of pages to reclaim on returning to userland */
1978	unsigned int memcg_nr_pages_over_high;
1979#endif
1980#ifdef CONFIG_UPROBES
1981	struct uprobe_task *utask;
1982#endif
1983#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1984	unsigned int	sequential_io;
1985	unsigned int	sequential_io_avg;
1986#endif
1987#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1988	unsigned long	task_state_change;
1989#endif
1990	int pagefault_disabled;
1991#ifdef CONFIG_MMU
1992	struct task_struct *oom_reaper_list;
1993#endif
1994#ifdef CONFIG_VMAP_STACK
1995	struct vm_struct *stack_vm_area;
1996#endif
1997#ifdef CONFIG_THREAD_INFO_IN_TASK
1998	/* A live task holds one reference. */
1999	atomic_t stack_refcount;
2000#endif
2001/* CPU-specific state of this task */
2002	struct thread_struct thread;
2003/*
2004 * WARNING: on x86, 'thread_struct' contains a variable-sized
2005 * structure.  It *MUST* be at the end of 'task_struct'.
2006 *
2007 * Do not put anything below here!
2008 */
2009};
2010
2011#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
2012extern int arch_task_struct_size __read_mostly;
2013#else
2014# define arch_task_struct_size (sizeof(struct task_struct))
2015#endif
2016
2017#ifdef CONFIG_VMAP_STACK
2018static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
2019{
2020	return t->stack_vm_area;
2021}
2022#else
2023static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
2024{
2025	return NULL;
2026}
2027#endif
2028
2029/* Future-safe accessor for struct task_struct's cpus_allowed. */
2030#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
2031
2032static inline int tsk_nr_cpus_allowed(struct task_struct *p)
2033{
2034	return p->nr_cpus_allowed;
2035}
2036
2037#define TNF_MIGRATED	0x01
2038#define TNF_NO_GROUP	0x02
2039#define TNF_SHARED	0x04
2040#define TNF_FAULT_LOCAL	0x08
2041#define TNF_MIGRATE_FAIL 0x10
2042
2043static inline bool in_vfork(struct task_struct *tsk)
2044{
2045	bool ret;
2046
2047	/*
2048	 * need RCU to access ->real_parent if CLONE_VM was used along with
2049	 * CLONE_PARENT.
2050	 *
2051	 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
2052	 * imply CLONE_VM
2053	 *
2054	 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
2055	 * ->real_parent is not necessarily the task doing vfork(), so in
2056	 * theory we can't rely on task_lock() if we want to dereference it.
2057	 *
2058	 * And in this case we can't trust the real_parent->mm == tsk->mm
2059	 * check, it can be false negative. But we do not care, if init or
2060	 * another oom-unkillable task does this it should blame itself.
2061	 */
2062	rcu_read_lock();
2063	ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
2064	rcu_read_unlock();
2065
2066	return ret;
2067}
2068
2069#ifdef CONFIG_NUMA_BALANCING
2070extern void task_numa_fault(int last_node, int node, int pages, int flags);
2071extern pid_t task_numa_group_id(struct task_struct *p);
2072extern void set_numabalancing_state(bool enabled);
2073extern void task_numa_free(struct task_struct *p);
2074extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
2075					int src_nid, int dst_cpu);
2076#else
2077static inline void task_numa_fault(int last_node, int node, int pages,
2078				   int flags)
2079{
2080}
2081static inline pid_t task_numa_group_id(struct task_struct *p)
2082{
2083	return 0;
2084}
2085static inline void set_numabalancing_state(bool enabled)
2086{
2087}
2088static inline void task_numa_free(struct task_struct *p)
2089{
2090}
2091static inline bool should_numa_migrate_memory(struct task_struct *p,
2092				struct page *page, int src_nid, int dst_cpu)
2093{
2094	return true;
2095}
2096#endif
2097
2098static inline struct pid *task_pid(struct task_struct *task)
2099{
2100	return task->pids[PIDTYPE_PID].pid;
2101}
2102
2103static inline struct pid *task_tgid(struct task_struct *task)
2104{
2105	return task->group_leader->pids[PIDTYPE_PID].pid;
2106}
2107
2108/*
2109 * Without tasklist or rcu lock it is not safe to dereference
2110 * the result of task_pgrp/task_session even if task == current,
2111 * we can race with another thread doing sys_setsid/sys_setpgid.
2112 */
2113static inline struct pid *task_pgrp(struct task_struct *task)
2114{
2115	return task->group_leader->pids[PIDTYPE_PGID].pid;
2116}
2117
2118static inline struct pid *task_session(struct task_struct *task)
2119{
2120	return task->group_leader->pids[PIDTYPE_SID].pid;
2121}
2122
2123struct pid_namespace;
2124
2125/*
2126 * the helpers to get the task's different pids as they are seen
2127 * from various namespaces
2128 *
2129 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
2130 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
2131 *                     current.
2132 * task_xid_nr_ns()  : id seen from the ns specified;
2133 *
2134 * set_task_vxid()   : assigns a virtual id to a task;
2135 *
2136 * see also pid_nr() etc in include/linux/pid.h
2137 */
2138pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2139			struct pid_namespace *ns);
2140
2141static inline pid_t task_pid_nr(struct task_struct *tsk)
2142{
2143	return tsk->pid;
2144}
2145
2146static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2147					struct pid_namespace *ns)
2148{
2149	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2150}
2151
2152static inline pid_t task_pid_vnr(struct task_struct *tsk)
2153{
2154	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
2155}
2156
2157
2158static inline pid_t task_tgid_nr(struct task_struct *tsk)
2159{
2160	return tsk->tgid;
2161}
2162
2163pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
2164
2165static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2166{
2167	return pid_vnr(task_tgid(tsk));
2168}
2169
2170
2171static inline int pid_alive(const struct task_struct *p);
2172static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2173{
2174	pid_t pid = 0;
2175
2176	rcu_read_lock();
2177	if (pid_alive(tsk))
2178		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2179	rcu_read_unlock();
2180
2181	return pid;
2182}
2183
2184static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2185{
2186	return task_ppid_nr_ns(tsk, &init_pid_ns);
2187}
2188
2189static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2190					struct pid_namespace *ns)
2191{
2192	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
2193}
2194
2195static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2196{
2197	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
2198}
2199
2200
2201static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2202					struct pid_namespace *ns)
2203{
2204	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
2205}
2206
2207static inline pid_t task_session_vnr(struct task_struct *tsk)
2208{
2209	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
2210}
2211
2212/* obsolete, do not use */
2213static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2214{
2215	return task_pgrp_nr_ns(tsk, &init_pid_ns);
2216}
2217
2218/**
2219 * pid_alive - check that a task structure is not stale
2220 * @p: Task structure to be checked.
2221 *
2222 * Test if a process is not yet dead (at most zombie state)
2223 * If pid_alive fails, then pointers within the task structure
2224 * can be stale and must not be dereferenced.
2225 *
2226 * Return: 1 if the process is alive. 0 otherwise.
2227 */
2228static inline int pid_alive(const struct task_struct *p)
2229{
2230	return p->pids[PIDTYPE_PID].pid != NULL;
2231}
2232
2233/**
2234 * is_global_init - check if a task structure is init. Since init
2235 * is free to have sub-threads we need to check tgid.
2236 * @tsk: Task structure to be checked.
2237 *
2238 * Check if a task structure is the first user space task the kernel created.
2239 *
2240 * Return: 1 if the task structure is init. 0 otherwise.
2241 */
2242static inline int is_global_init(struct task_struct *tsk)
2243{
2244	return task_tgid_nr(tsk) == 1;
2245}
2246
2247extern struct pid *cad_pid;
2248
2249extern void free_task(struct task_struct *tsk);
2250#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2251
2252extern void __put_task_struct(struct task_struct *t);
2253
2254static inline void put_task_struct(struct task_struct *t)
2255{
2256	if (atomic_dec_and_test(&t->usage))
2257		__put_task_struct(t);
2258}
2259
2260struct task_struct *task_rcu_dereference(struct task_struct **ptask);
2261struct task_struct *try_get_task_struct(struct task_struct **ptask);
2262
2263#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2264extern void task_cputime(struct task_struct *t,
2265			 cputime_t *utime, cputime_t *stime);
 
 
2266extern cputime_t task_gtime(struct task_struct *t);
2267#else
2268static inline void task_cputime(struct task_struct *t,
2269				cputime_t *utime, cputime_t *stime)
2270{
2271	*utime = t->utime;
2272	*stime = t->stime;
 
 
2273}
2274
2275static inline cputime_t task_gtime(struct task_struct *t)
2276{
2277	return t->gtime;
2278}
2279#endif
2280
2281#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2282static inline void task_cputime_scaled(struct task_struct *t,
2283				       cputime_t *utimescaled,
2284				       cputime_t *stimescaled)
2285{
2286	*utimescaled = t->utimescaled;
2287	*stimescaled = t->stimescaled;
 
 
2288}
2289#else
2290static inline void task_cputime_scaled(struct task_struct *t,
2291				       cputime_t *utimescaled,
2292				       cputime_t *stimescaled)
2293{
2294	task_cputime(t, utimescaled, stimescaled);
2295}
2296#endif
2297
2298extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2299extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2300
2301/*
2302 * Per process flags
2303 */
2304#define PF_IDLE		0x00000002	/* I am an IDLE thread */
2305#define PF_EXITING	0x00000004	/* getting shut down */
2306#define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
2307#define PF_VCPU		0x00000010	/* I'm a virtual CPU */
2308#define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
2309#define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
2310#define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
2311#define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
2312#define PF_DUMPCORE	0x00000200	/* dumped core */
2313#define PF_SIGNALED	0x00000400	/* killed by a signal */
2314#define PF_MEMALLOC	0x00000800	/* Allocating memory */
2315#define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
2316#define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
2317#define PF_USED_ASYNC	0x00004000	/* used async_schedule*(), used by module init */
2318#define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
2319#define PF_FROZEN	0x00010000	/* frozen for system suspend */
2320#define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
2321#define PF_KSWAPD	0x00040000	/* I am kswapd */
2322#define PF_MEMALLOC_NOIO 0x00080000	/* Allocating memory without IO involved */
2323#define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
2324#define PF_KTHREAD	0x00200000	/* I am a kernel thread */
2325#define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
2326#define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
 
 
2327#define PF_NO_SETAFFINITY 0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
2328#define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
2329#define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
2330#define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
2331#define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
2332
2333/*
2334 * Only the _current_ task can read/write to tsk->flags, but other
2335 * tasks can access tsk->flags in readonly mode for example
2336 * with tsk_used_math (like during threaded core dumping).
2337 * There is however an exception to this rule during ptrace
2338 * or during fork: the ptracer task is allowed to write to the
2339 * child->flags of its traced child (same goes for fork, the parent
2340 * can write to the child->flags), because we're guaranteed the
2341 * child is not running and in turn not changing child->flags
2342 * at the same time the parent does it.
2343 */
2344#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2345#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2346#define clear_used_math() clear_stopped_child_used_math(current)
2347#define set_used_math() set_stopped_child_used_math(current)
2348#define conditional_stopped_child_used_math(condition, child) \
2349	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2350#define conditional_used_math(condition) \
2351	conditional_stopped_child_used_math(condition, current)
2352#define copy_to_stopped_child_used_math(child) \
2353	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2354/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2355#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2356#define used_math() tsk_used_math(current)
2357
2358/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2359 * __GFP_FS is also cleared as it implies __GFP_IO.
2360 */
2361static inline gfp_t memalloc_noio_flags(gfp_t flags)
2362{
2363	if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2364		flags &= ~(__GFP_IO | __GFP_FS);
2365	return flags;
2366}
2367
2368static inline unsigned int memalloc_noio_save(void)
2369{
2370	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2371	current->flags |= PF_MEMALLOC_NOIO;
2372	return flags;
2373}
2374
2375static inline void memalloc_noio_restore(unsigned int flags)
2376{
2377	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2378}
2379
2380/* Per-process atomic flags. */
2381#define PFA_NO_NEW_PRIVS 0	/* May not gain new privileges. */
2382#define PFA_SPREAD_PAGE  1      /* Spread page cache over cpuset */
2383#define PFA_SPREAD_SLAB  2      /* Spread some slab caches over cpuset */
2384#define PFA_LMK_WAITING  3      /* Lowmemorykiller is waiting */
2385
2386
2387#define TASK_PFA_TEST(name, func)					\
2388	static inline bool task_##func(struct task_struct *p)		\
2389	{ return test_bit(PFA_##name, &p->atomic_flags); }
2390#define TASK_PFA_SET(name, func)					\
2391	static inline void task_set_##func(struct task_struct *p)	\
2392	{ set_bit(PFA_##name, &p->atomic_flags); }
2393#define TASK_PFA_CLEAR(name, func)					\
2394	static inline void task_clear_##func(struct task_struct *p)	\
2395	{ clear_bit(PFA_##name, &p->atomic_flags); }
2396
2397TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2398TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2399
2400TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2401TASK_PFA_SET(SPREAD_PAGE, spread_page)
2402TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2403
2404TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2405TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2406TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2407
2408TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
2409TASK_PFA_SET(LMK_WAITING, lmk_waiting)
2410
2411/*
2412 * task->jobctl flags
2413 */
2414#define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */
2415
2416#define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */
2417#define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */
2418#define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */
2419#define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */
2420#define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */
2421#define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */
2422#define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */
2423
2424#define JOBCTL_STOP_DEQUEUED	(1UL << JOBCTL_STOP_DEQUEUED_BIT)
2425#define JOBCTL_STOP_PENDING	(1UL << JOBCTL_STOP_PENDING_BIT)
2426#define JOBCTL_STOP_CONSUME	(1UL << JOBCTL_STOP_CONSUME_BIT)
2427#define JOBCTL_TRAP_STOP	(1UL << JOBCTL_TRAP_STOP_BIT)
2428#define JOBCTL_TRAP_NOTIFY	(1UL << JOBCTL_TRAP_NOTIFY_BIT)
2429#define JOBCTL_TRAPPING		(1UL << JOBCTL_TRAPPING_BIT)
2430#define JOBCTL_LISTENING	(1UL << JOBCTL_LISTENING_BIT)
2431
2432#define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2433#define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2434
2435extern bool task_set_jobctl_pending(struct task_struct *task,
2436				    unsigned long mask);
2437extern void task_clear_jobctl_trapping(struct task_struct *task);
2438extern void task_clear_jobctl_pending(struct task_struct *task,
2439				      unsigned long mask);
 
 
 
 
 
2440
2441static inline void rcu_copy_process(struct task_struct *p)
2442{
2443#ifdef CONFIG_PREEMPT_RCU
2444	p->rcu_read_lock_nesting = 0;
2445	p->rcu_read_unlock_special.s = 0;
 
2446	p->rcu_blocked_node = NULL;
 
 
 
 
2447	INIT_LIST_HEAD(&p->rcu_node_entry);
2448#endif /* #ifdef CONFIG_PREEMPT_RCU */
2449#ifdef CONFIG_TASKS_RCU
2450	p->rcu_tasks_holdout = false;
2451	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2452	p->rcu_tasks_idle_cpu = -1;
2453#endif /* #ifdef CONFIG_TASKS_RCU */
2454}
2455
 
 
 
 
 
 
 
 
2456static inline void tsk_restore_flags(struct task_struct *task,
2457				unsigned long orig_flags, unsigned long flags)
2458{
2459	task->flags &= ~flags;
2460	task->flags |= orig_flags & flags;
2461}
2462
2463extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2464				     const struct cpumask *trial);
2465extern int task_can_attach(struct task_struct *p,
2466			   const struct cpumask *cs_cpus_allowed);
2467#ifdef CONFIG_SMP
2468extern void do_set_cpus_allowed(struct task_struct *p,
2469			       const struct cpumask *new_mask);
2470
2471extern int set_cpus_allowed_ptr(struct task_struct *p,
2472				const struct cpumask *new_mask);
2473#else
2474static inline void do_set_cpus_allowed(struct task_struct *p,
2475				      const struct cpumask *new_mask)
2476{
2477}
2478static inline int set_cpus_allowed_ptr(struct task_struct *p,
2479				       const struct cpumask *new_mask)
2480{
2481	if (!cpumask_test_cpu(0, new_mask))
2482		return -EINVAL;
2483	return 0;
2484}
2485#endif
2486
2487#ifdef CONFIG_NO_HZ_COMMON
2488void calc_load_enter_idle(void);
2489void calc_load_exit_idle(void);
2490#else
2491static inline void calc_load_enter_idle(void) { }
2492static inline void calc_load_exit_idle(void) { }
2493#endif /* CONFIG_NO_HZ_COMMON */
2494
2495#ifndef cpu_relax_yield
2496#define cpu_relax_yield() cpu_relax()
 
 
 
2497#endif
2498
2499/*
2500 * Do not use outside of architecture code which knows its limitations.
2501 *
2502 * sched_clock() has no promise of monotonicity or bounded drift between
2503 * CPUs, use (which you should not) requires disabling IRQs.
2504 *
2505 * Please use one of the three interfaces below.
2506 */
2507extern unsigned long long notrace sched_clock(void);
2508/*
2509 * See the comment in kernel/sched/clock.c
2510 */
2511extern u64 running_clock(void);
 
2512extern u64 sched_clock_cpu(int cpu);
2513
2514
2515extern void sched_clock_init(void);
2516
2517#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2518static inline void sched_clock_tick(void)
2519{
2520}
2521
2522static inline void sched_clock_idle_sleep_event(void)
2523{
2524}
2525
2526static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2527{
2528}
2529
2530static inline u64 cpu_clock(int cpu)
2531{
2532	return sched_clock();
2533}
2534
2535static inline u64 local_clock(void)
2536{
2537	return sched_clock();
2538}
2539#else
2540/*
2541 * Architectures can set this to 1 if they have specified
2542 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2543 * but then during bootup it turns out that sched_clock()
2544 * is reliable after all:
2545 */
2546extern int sched_clock_stable(void);
2547extern void set_sched_clock_stable(void);
2548extern void clear_sched_clock_stable(void);
2549
2550extern void sched_clock_tick(void);
2551extern void sched_clock_idle_sleep_event(void);
2552extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2553
2554/*
2555 * As outlined in clock.c, provides a fast, high resolution, nanosecond
2556 * time source that is monotonic per cpu argument and has bounded drift
2557 * between cpus.
2558 *
2559 * ######################### BIG FAT WARNING ##########################
2560 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2561 * # go backwards !!                                                  #
2562 * ####################################################################
2563 */
2564static inline u64 cpu_clock(int cpu)
2565{
2566	return sched_clock_cpu(cpu);
2567}
2568
2569static inline u64 local_clock(void)
2570{
2571	return sched_clock_cpu(raw_smp_processor_id());
2572}
2573#endif
2574
2575#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2576/*
2577 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2578 * The reason for this explicit opt-in is not to have perf penalty with
2579 * slow sched_clocks.
2580 */
2581extern void enable_sched_clock_irqtime(void);
2582extern void disable_sched_clock_irqtime(void);
2583#else
2584static inline void enable_sched_clock_irqtime(void) {}
2585static inline void disable_sched_clock_irqtime(void) {}
2586#endif
2587
2588extern unsigned long long
2589task_sched_runtime(struct task_struct *task);
2590
2591/* sched_exec is called by processes performing an exec */
2592#ifdef CONFIG_SMP
2593extern void sched_exec(void);
2594#else
2595#define sched_exec()   {}
2596#endif
2597
2598extern void sched_clock_idle_sleep_event(void);
2599extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2600
2601#ifdef CONFIG_HOTPLUG_CPU
2602extern void idle_task_exit(void);
2603#else
2604static inline void idle_task_exit(void) {}
2605#endif
2606
2607#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2608extern void wake_up_nohz_cpu(int cpu);
2609#else
2610static inline void wake_up_nohz_cpu(int cpu) { }
2611#endif
2612
2613#ifdef CONFIG_NO_HZ_FULL
 
2614extern u64 scheduler_tick_max_deferment(void);
 
 
2615#endif
2616
2617#ifdef CONFIG_SCHED_AUTOGROUP
2618extern void sched_autogroup_create_attach(struct task_struct *p);
2619extern void sched_autogroup_detach(struct task_struct *p);
2620extern void sched_autogroup_fork(struct signal_struct *sig);
2621extern void sched_autogroup_exit(struct signal_struct *sig);
2622extern void sched_autogroup_exit_task(struct task_struct *p);
2623#ifdef CONFIG_PROC_FS
2624extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2625extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2626#endif
2627#else
2628static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2629static inline void sched_autogroup_detach(struct task_struct *p) { }
2630static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2631static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2632static inline void sched_autogroup_exit_task(struct task_struct *p) { }
2633#endif
2634
2635extern int yield_to(struct task_struct *p, bool preempt);
2636extern void set_user_nice(struct task_struct *p, long nice);
2637extern int task_prio(const struct task_struct *p);
2638/**
2639 * task_nice - return the nice value of a given task.
2640 * @p: the task in question.
2641 *
2642 * Return: The nice value [ -20 ... 0 ... 19 ].
2643 */
2644static inline int task_nice(const struct task_struct *p)
2645{
2646	return PRIO_TO_NICE((p)->static_prio);
2647}
2648extern int can_nice(const struct task_struct *p, const int nice);
2649extern int task_curr(const struct task_struct *p);
2650extern int idle_cpu(int cpu);
2651extern int sched_setscheduler(struct task_struct *, int,
2652			      const struct sched_param *);
2653extern int sched_setscheduler_nocheck(struct task_struct *, int,
2654				      const struct sched_param *);
2655extern int sched_setattr(struct task_struct *,
2656			 const struct sched_attr *);
2657extern struct task_struct *idle_task(int cpu);
2658/**
2659 * is_idle_task - is the specified task an idle task?
2660 * @p: the task in question.
2661 *
2662 * Return: 1 if @p is an idle task. 0 otherwise.
2663 */
2664static inline bool is_idle_task(const struct task_struct *p)
2665{
2666	return !!(p->flags & PF_IDLE);
2667}
2668extern struct task_struct *curr_task(int cpu);
2669extern void ia64_set_curr_task(int cpu, struct task_struct *p);
2670
2671void yield(void);
2672
 
 
 
 
 
2673union thread_union {
2674#ifndef CONFIG_THREAD_INFO_IN_TASK
2675	struct thread_info thread_info;
2676#endif
2677	unsigned long stack[THREAD_SIZE/sizeof(long)];
2678};
2679
2680#ifndef __HAVE_ARCH_KSTACK_END
2681static inline int kstack_end(void *addr)
2682{
2683	/* Reliable end of stack detection:
2684	 * Some APM bios versions misalign the stack
2685	 */
2686	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2687}
2688#endif
2689
2690extern union thread_union init_thread_union;
2691extern struct task_struct init_task;
2692
2693extern struct   mm_struct init_mm;
2694
2695extern struct pid_namespace init_pid_ns;
2696
2697/*
2698 * find a task by one of its numerical ids
2699 *
2700 * find_task_by_pid_ns():
2701 *      finds a task by its pid in the specified namespace
2702 * find_task_by_vpid():
2703 *      finds a task by its virtual pid
2704 *
2705 * see also find_vpid() etc in include/linux/pid.h
2706 */
2707
2708extern struct task_struct *find_task_by_vpid(pid_t nr);
2709extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2710		struct pid_namespace *ns);
2711
2712/* per-UID process charging. */
2713extern struct user_struct * alloc_uid(kuid_t);
2714static inline struct user_struct *get_uid(struct user_struct *u)
2715{
2716	atomic_inc(&u->__count);
2717	return u;
2718}
2719extern void free_uid(struct user_struct *);
2720
2721#include <asm/current.h>
2722
2723extern void xtime_update(unsigned long ticks);
2724
2725extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2726extern int wake_up_process(struct task_struct *tsk);
2727extern void wake_up_new_task(struct task_struct *tsk);
2728#ifdef CONFIG_SMP
2729 extern void kick_process(struct task_struct *tsk);
2730#else
2731 static inline void kick_process(struct task_struct *tsk) { }
2732#endif
2733extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2734extern void sched_dead(struct task_struct *p);
2735
2736extern void proc_caches_init(void);
2737extern void flush_signals(struct task_struct *);
 
2738extern void ignore_signals(struct task_struct *);
2739extern void flush_signal_handlers(struct task_struct *, int force_default);
2740extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2741
2742static inline int kernel_dequeue_signal(siginfo_t *info)
2743{
2744	struct task_struct *tsk = current;
2745	siginfo_t __info;
2746	int ret;
2747
2748	spin_lock_irq(&tsk->sighand->siglock);
2749	ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2750	spin_unlock_irq(&tsk->sighand->siglock);
2751
2752	return ret;
2753}
2754
2755static inline void kernel_signal_stop(void)
2756{
2757	spin_lock_irq(&current->sighand->siglock);
2758	if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2759		__set_current_state(TASK_STOPPED);
2760	spin_unlock_irq(&current->sighand->siglock);
2761
2762	schedule();
2763}
2764
2765extern void release_task(struct task_struct * p);
2766extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2767extern int force_sigsegv(int, struct task_struct *);
2768extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2769extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2770extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2771extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2772				const struct cred *, u32);
2773extern int kill_pgrp(struct pid *pid, int sig, int priv);
2774extern int kill_pid(struct pid *pid, int sig, int priv);
2775extern int kill_proc_info(int, struct siginfo *, pid_t);
2776extern __must_check bool do_notify_parent(struct task_struct *, int);
2777extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2778extern void force_sig(int, struct task_struct *);
2779extern int send_sig(int, struct task_struct *, int);
2780extern int zap_other_threads(struct task_struct *p);
2781extern struct sigqueue *sigqueue_alloc(void);
2782extern void sigqueue_free(struct sigqueue *);
2783extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2784extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2785
2786#ifdef TIF_RESTORE_SIGMASK
2787/*
2788 * Legacy restore_sigmask accessors.  These are inefficient on
2789 * SMP architectures because they require atomic operations.
2790 */
2791
2792/**
2793 * set_restore_sigmask() - make sure saved_sigmask processing gets done
2794 *
2795 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
2796 * will run before returning to user mode, to process the flag.  For
2797 * all callers, TIF_SIGPENDING is already set or it's no harm to set
2798 * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
2799 * arch code will notice on return to user mode, in case those bits
2800 * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
2801 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
2802 */
2803static inline void set_restore_sigmask(void)
2804{
2805	set_thread_flag(TIF_RESTORE_SIGMASK);
2806	WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2807}
2808static inline void clear_restore_sigmask(void)
2809{
2810	clear_thread_flag(TIF_RESTORE_SIGMASK);
2811}
2812static inline bool test_restore_sigmask(void)
2813{
2814	return test_thread_flag(TIF_RESTORE_SIGMASK);
2815}
2816static inline bool test_and_clear_restore_sigmask(void)
2817{
2818	return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
2819}
2820
2821#else	/* TIF_RESTORE_SIGMASK */
2822
2823/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
2824static inline void set_restore_sigmask(void)
2825{
2826	current->restore_sigmask = true;
2827	WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2828}
2829static inline void clear_restore_sigmask(void)
2830{
2831	current->restore_sigmask = false;
2832}
2833static inline bool test_restore_sigmask(void)
2834{
2835	return current->restore_sigmask;
2836}
2837static inline bool test_and_clear_restore_sigmask(void)
2838{
2839	if (!current->restore_sigmask)
2840		return false;
2841	current->restore_sigmask = false;
2842	return true;
2843}
2844#endif
2845
2846static inline void restore_saved_sigmask(void)
2847{
2848	if (test_and_clear_restore_sigmask())
2849		__set_current_blocked(&current->saved_sigmask);
2850}
2851
2852static inline sigset_t *sigmask_to_save(void)
2853{
2854	sigset_t *res = &current->blocked;
2855	if (unlikely(test_restore_sigmask()))
2856		res = &current->saved_sigmask;
2857	return res;
2858}
2859
2860static inline int kill_cad_pid(int sig, int priv)
2861{
2862	return kill_pid(cad_pid, sig, priv);
2863}
2864
2865/* These can be the second arg to send_sig_info/send_group_sig_info.  */
2866#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2867#define SEND_SIG_PRIV	((struct siginfo *) 1)
2868#define SEND_SIG_FORCED	((struct siginfo *) 2)
2869
2870/*
2871 * True if we are on the alternate signal stack.
2872 */
2873static inline int on_sig_stack(unsigned long sp)
2874{
2875	/*
2876	 * If the signal stack is SS_AUTODISARM then, by construction, we
2877	 * can't be on the signal stack unless user code deliberately set
2878	 * SS_AUTODISARM when we were already on it.
2879	 *
2880	 * This improves reliability: if user state gets corrupted such that
2881	 * the stack pointer points very close to the end of the signal stack,
2882	 * then this check will enable the signal to be handled anyway.
2883	 */
2884	if (current->sas_ss_flags & SS_AUTODISARM)
2885		return 0;
2886
2887#ifdef CONFIG_STACK_GROWSUP
2888	return sp >= current->sas_ss_sp &&
2889		sp - current->sas_ss_sp < current->sas_ss_size;
2890#else
2891	return sp > current->sas_ss_sp &&
2892		sp - current->sas_ss_sp <= current->sas_ss_size;
2893#endif
2894}
2895
2896static inline int sas_ss_flags(unsigned long sp)
2897{
2898	if (!current->sas_ss_size)
2899		return SS_DISABLE;
2900
2901	return on_sig_stack(sp) ? SS_ONSTACK : 0;
2902}
2903
2904static inline void sas_ss_reset(struct task_struct *p)
2905{
2906	p->sas_ss_sp = 0;
2907	p->sas_ss_size = 0;
2908	p->sas_ss_flags = SS_DISABLE;
2909}
2910
2911static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2912{
2913	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2914#ifdef CONFIG_STACK_GROWSUP
2915		return current->sas_ss_sp;
2916#else
2917		return current->sas_ss_sp + current->sas_ss_size;
2918#endif
2919	return sp;
2920}
2921
2922/*
2923 * Routines for handling mm_structs
2924 */
2925extern struct mm_struct * mm_alloc(void);
2926
2927/* mmdrop drops the mm and the page tables */
2928extern void __mmdrop(struct mm_struct *);
2929static inline void mmdrop(struct mm_struct *mm)
2930{
2931	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2932		__mmdrop(mm);
2933}
2934
2935static inline void mmdrop_async_fn(struct work_struct *work)
2936{
2937	struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
2938	__mmdrop(mm);
2939}
2940
2941static inline void mmdrop_async(struct mm_struct *mm)
2942{
2943	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
2944		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
2945		schedule_work(&mm->async_put_work);
2946	}
2947}
2948
2949static inline bool mmget_not_zero(struct mm_struct *mm)
2950{
2951	return atomic_inc_not_zero(&mm->mm_users);
2952}
2953
2954/* mmput gets rid of the mappings and all user-space */
2955extern void mmput(struct mm_struct *);
2956#ifdef CONFIG_MMU
2957/* same as above but performs the slow path from the async context. Can
2958 * be called from the atomic context as well
2959 */
2960extern void mmput_async(struct mm_struct *);
2961#endif
2962
2963/* Grab a reference to a task's mm, if it is not already going away */
2964extern struct mm_struct *get_task_mm(struct task_struct *task);
2965/*
2966 * Grab a reference to a task's mm, if it is not already going away
2967 * and ptrace_may_access with the mode parameter passed to it
2968 * succeeds.
2969 */
2970extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2971/* Remove the current tasks stale references to the old mm_struct */
2972extern void mm_release(struct task_struct *, struct mm_struct *);
2973
2974#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2975extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2976			struct task_struct *, unsigned long);
2977#else
2978extern int copy_thread(unsigned long, unsigned long, unsigned long,
2979			struct task_struct *);
2980
2981/* Architectures that haven't opted into copy_thread_tls get the tls argument
2982 * via pt_regs, so ignore the tls argument passed via C. */
2983static inline int copy_thread_tls(
2984		unsigned long clone_flags, unsigned long sp, unsigned long arg,
2985		struct task_struct *p, unsigned long tls)
2986{
2987	return copy_thread(clone_flags, sp, arg, p);
2988}
2989#endif
2990extern void flush_thread(void);
2991
2992#ifdef CONFIG_HAVE_EXIT_THREAD
2993extern void exit_thread(struct task_struct *tsk);
2994#else
2995static inline void exit_thread(struct task_struct *tsk)
2996{
2997}
2998#endif
2999
3000extern void exit_files(struct task_struct *);
3001extern void __cleanup_sighand(struct sighand_struct *);
3002
3003extern void exit_itimers(struct signal_struct *);
3004extern void flush_itimer_signals(void);
3005
3006extern void do_group_exit(int);
3007
 
 
 
3008extern int do_execve(struct filename *,
3009		     const char __user * const __user *,
3010		     const char __user * const __user *);
3011extern int do_execveat(int, struct filename *,
3012		       const char __user * const __user *,
3013		       const char __user * const __user *,
3014		       int);
3015extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
3016extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
3017struct task_struct *fork_idle(int);
3018extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
3019
3020extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
3021static inline void set_task_comm(struct task_struct *tsk, const char *from)
3022{
3023	__set_task_comm(tsk, from, false);
3024}
3025extern char *get_task_comm(char *to, struct task_struct *tsk);
3026
3027#ifdef CONFIG_SMP
3028void scheduler_ipi(void);
3029extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
3030#else
3031static inline void scheduler_ipi(void) { }
3032static inline unsigned long wait_task_inactive(struct task_struct *p,
3033					       long match_state)
3034{
3035	return 1;
3036}
3037#endif
3038
3039#define tasklist_empty() \
3040	list_empty(&init_task.tasks)
3041
3042#define next_task(p) \
3043	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
3044
3045#define for_each_process(p) \
3046	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
3047
3048extern bool current_is_single_threaded(void);
3049
3050/*
3051 * Careful: do_each_thread/while_each_thread is a double loop so
3052 *          'break' will not work as expected - use goto instead.
3053 */
3054#define do_each_thread(g, t) \
3055	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
3056
3057#define while_each_thread(g, t) \
3058	while ((t = next_thread(t)) != g)
3059
3060#define __for_each_thread(signal, t)	\
3061	list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
3062
3063#define for_each_thread(p, t)		\
3064	__for_each_thread((p)->signal, t)
3065
3066/* Careful: this is a double loop, 'break' won't work as expected. */
3067#define for_each_process_thread(p, t)	\
3068	for_each_process(p) for_each_thread(p, t)
3069
3070static inline int get_nr_threads(struct task_struct *tsk)
3071{
3072	return tsk->signal->nr_threads;
3073}
3074
3075static inline bool thread_group_leader(struct task_struct *p)
3076{
3077	return p->exit_signal >= 0;
3078}
3079
3080/* Do to the insanities of de_thread it is possible for a process
3081 * to have the pid of the thread group leader without actually being
3082 * the thread group leader.  For iteration through the pids in proc
3083 * all we care about is that we have a task with the appropriate
3084 * pid, we don't actually care if we have the right task.
3085 */
3086static inline bool has_group_leader_pid(struct task_struct *p)
3087{
3088	return task_pid(p) == p->signal->leader_pid;
3089}
3090
3091static inline
3092bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
3093{
3094	return p1->signal == p2->signal;
3095}
3096
3097static inline struct task_struct *next_thread(const struct task_struct *p)
3098{
3099	return list_entry_rcu(p->thread_group.next,
3100			      struct task_struct, thread_group);
3101}
3102
3103static inline int thread_group_empty(struct task_struct *p)
3104{
3105	return list_empty(&p->thread_group);
3106}
3107
3108#define delay_group_leader(p) \
3109		(thread_group_leader(p) && !thread_group_empty(p))
3110
3111/*
3112 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
3113 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
3114 * pins the final release of task.io_context.  Also protects ->cpuset and
3115 * ->cgroup.subsys[]. And ->vfork_done.
3116 *
3117 * Nests both inside and outside of read_lock(&tasklist_lock).
3118 * It must not be nested with write_lock_irq(&tasklist_lock),
3119 * neither inside nor outside.
3120 */
3121static inline void task_lock(struct task_struct *p)
3122{
3123	spin_lock(&p->alloc_lock);
3124}
3125
3126static inline void task_unlock(struct task_struct *p)
3127{
3128	spin_unlock(&p->alloc_lock);
3129}
3130
3131extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
3132							unsigned long *flags);
3133
3134static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
3135						       unsigned long *flags)
3136{
3137	struct sighand_struct *ret;
3138
3139	ret = __lock_task_sighand(tsk, flags);
3140	(void)__cond_lock(&tsk->sighand->siglock, ret);
3141	return ret;
3142}
3143
3144static inline void unlock_task_sighand(struct task_struct *tsk,
3145						unsigned long *flags)
3146{
3147	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
3148}
3149
3150/**
3151 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
3152 * @tsk: task causing the changes
3153 *
3154 * All operations which modify a threadgroup - a new thread joining the
3155 * group, death of a member thread (the assertion of PF_EXITING) and
3156 * exec(2) dethreading the process and replacing the leader - are wrapped
3157 * by threadgroup_change_{begin|end}().  This is to provide a place which
3158 * subsystems needing threadgroup stability can hook into for
3159 * synchronization.
3160 */
3161static inline void threadgroup_change_begin(struct task_struct *tsk)
3162{
3163	might_sleep();
3164	cgroup_threadgroup_change_begin(tsk);
 
 
 
3165}
3166
3167/**
3168 * threadgroup_change_end - mark the end of changes to a threadgroup
3169 * @tsk: task causing the changes
 
 
 
 
 
 
 
 
 
3170 *
3171 * See threadgroup_change_begin().
 
3172 */
3173static inline void threadgroup_change_end(struct task_struct *tsk)
3174{
3175	cgroup_threadgroup_change_end(tsk);
3176}
3177
3178#ifdef CONFIG_THREAD_INFO_IN_TASK
3179
3180static inline struct thread_info *task_thread_info(struct task_struct *task)
3181{
3182	return &task->thread_info;
3183}
3184
3185/*
3186 * When accessing the stack of a non-current task that might exit, use
3187 * try_get_task_stack() instead.  task_stack_page will return a pointer
3188 * that could get freed out from under you.
3189 */
3190static inline void *task_stack_page(const struct task_struct *task)
3191{
3192	return task->stack;
3193}
 
 
 
 
 
 
3194
3195#define setup_thread_stack(new,old)	do { } while(0)
3196
3197static inline unsigned long *end_of_stack(const struct task_struct *task)
3198{
3199	return task->stack;
3200}
3201
3202#elif !defined(__HAVE_THREAD_FUNCTIONS)
3203
3204#define task_thread_info(task)	((struct thread_info *)(task)->stack)
3205#define task_stack_page(task)	((void *)(task)->stack)
3206
3207static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
3208{
3209	*task_thread_info(p) = *task_thread_info(org);
3210	task_thread_info(p)->task = p;
3211}
3212
3213/*
3214 * Return the address of the last usable long on the stack.
3215 *
3216 * When the stack grows down, this is just above the thread
3217 * info struct. Going any lower will corrupt the threadinfo.
3218 *
3219 * When the stack grows up, this is the highest address.
3220 * Beyond that position, we corrupt data on the next page.
3221 */
3222static inline unsigned long *end_of_stack(struct task_struct *p)
3223{
3224#ifdef CONFIG_STACK_GROWSUP
3225	return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
3226#else
3227	return (unsigned long *)(task_thread_info(p) + 1);
3228#endif
3229}
3230
3231#endif
3232
3233#ifdef CONFIG_THREAD_INFO_IN_TASK
3234static inline void *try_get_task_stack(struct task_struct *tsk)
3235{
3236	return atomic_inc_not_zero(&tsk->stack_refcount) ?
3237		task_stack_page(tsk) : NULL;
3238}
3239
3240extern void put_task_stack(struct task_struct *tsk);
3241#else
3242static inline void *try_get_task_stack(struct task_struct *tsk)
3243{
3244	return task_stack_page(tsk);
3245}
3246
3247static inline void put_task_stack(struct task_struct *tsk) {}
3248#endif
3249
3250#define task_stack_end_corrupted(task) \
3251		(*(end_of_stack(task)) != STACK_END_MAGIC)
3252
3253static inline int object_is_on_stack(void *obj)
3254{
3255	void *stack = task_stack_page(current);
3256
3257	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
3258}
3259
3260extern void thread_stack_cache_init(void);
3261
3262#ifdef CONFIG_DEBUG_STACK_USAGE
3263static inline unsigned long stack_not_used(struct task_struct *p)
3264{
3265	unsigned long *n = end_of_stack(p);
3266
3267	do { 	/* Skip over canary */
3268# ifdef CONFIG_STACK_GROWSUP
3269		n--;
3270# else
3271		n++;
3272# endif
3273	} while (!*n);
3274
3275# ifdef CONFIG_STACK_GROWSUP
3276	return (unsigned long)end_of_stack(p) - (unsigned long)n;
3277# else
3278	return (unsigned long)n - (unsigned long)end_of_stack(p);
3279# endif
3280}
3281#endif
3282extern void set_task_stack_end_magic(struct task_struct *tsk);
3283
3284/* set thread flags in other task's structures
3285 * - see asm/thread_info.h for TIF_xxxx flags available
3286 */
3287static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3288{
3289	set_ti_thread_flag(task_thread_info(tsk), flag);
3290}
3291
3292static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3293{
3294	clear_ti_thread_flag(task_thread_info(tsk), flag);
3295}
3296
3297static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3298{
3299	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
3300}
3301
3302static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3303{
3304	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
3305}
3306
3307static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3308{
3309	return test_ti_thread_flag(task_thread_info(tsk), flag);
3310}
3311
3312static inline void set_tsk_need_resched(struct task_struct *tsk)
3313{
3314	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3315}
3316
3317static inline void clear_tsk_need_resched(struct task_struct *tsk)
3318{
3319	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3320}
3321
3322static inline int test_tsk_need_resched(struct task_struct *tsk)
3323{
3324	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3325}
3326
3327static inline int restart_syscall(void)
3328{
3329	set_tsk_thread_flag(current, TIF_SIGPENDING);
3330	return -ERESTARTNOINTR;
3331}
3332
3333static inline int signal_pending(struct task_struct *p)
3334{
3335	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3336}
3337
3338static inline int __fatal_signal_pending(struct task_struct *p)
3339{
3340	return unlikely(sigismember(&p->pending.signal, SIGKILL));
3341}
3342
3343static inline int fatal_signal_pending(struct task_struct *p)
3344{
3345	return signal_pending(p) && __fatal_signal_pending(p);
3346}
3347
3348static inline int signal_pending_state(long state, struct task_struct *p)
3349{
3350	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3351		return 0;
3352	if (!signal_pending(p))
3353		return 0;
3354
3355	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3356}
3357
3358/*
3359 * cond_resched() and cond_resched_lock(): latency reduction via
3360 * explicit rescheduling in places that are safe. The return
3361 * value indicates whether a reschedule was done in fact.
3362 * cond_resched_lock() will drop the spinlock before scheduling,
3363 * cond_resched_softirq() will enable bhs before scheduling.
3364 */
3365#ifndef CONFIG_PREEMPT
3366extern int _cond_resched(void);
3367#else
3368static inline int _cond_resched(void) { return 0; }
3369#endif
3370
3371#define cond_resched() ({			\
3372	___might_sleep(__FILE__, __LINE__, 0);	\
3373	_cond_resched();			\
3374})
3375
3376extern int __cond_resched_lock(spinlock_t *lock);
3377
 
 
 
 
 
 
3378#define cond_resched_lock(lock) ({				\
3379	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
3380	__cond_resched_lock(lock);				\
3381})
3382
3383extern int __cond_resched_softirq(void);
3384
3385#define cond_resched_softirq() ({					\
3386	___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
3387	__cond_resched_softirq();					\
3388})
3389
3390static inline void cond_resched_rcu(void)
3391{
3392#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3393	rcu_read_unlock();
3394	cond_resched();
3395	rcu_read_lock();
3396#endif
3397}
3398
3399static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3400{
3401#ifdef CONFIG_DEBUG_PREEMPT
3402	return p->preempt_disable_ip;
3403#else
3404	return 0;
3405#endif
3406}
3407
3408/*
3409 * Does a critical section need to be broken due to another
3410 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3411 * but a general need for low latency)
3412 */
3413static inline int spin_needbreak(spinlock_t *lock)
3414{
3415#ifdef CONFIG_PREEMPT
3416	return spin_is_contended(lock);
3417#else
3418	return 0;
3419#endif
3420}
3421
3422/*
3423 * Idle thread specific functions to determine the need_resched
3424 * polling state.
 
 
3425 */
3426#ifdef TIF_POLLING_NRFLAG
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3427static inline int tsk_is_polling(struct task_struct *p)
3428{
3429	return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3430}
3431
3432static inline void __current_set_polling(void)
3433{
3434	set_thread_flag(TIF_POLLING_NRFLAG);
3435}
3436
3437static inline bool __must_check current_set_polling_and_test(void)
3438{
3439	__current_set_polling();
3440
3441	/*
3442	 * Polling state must be visible before we test NEED_RESCHED,
3443	 * paired by resched_curr()
 
 
3444	 */
3445	smp_mb__after_atomic();
3446
3447	return unlikely(tif_need_resched());
3448}
3449
3450static inline void __current_clr_polling(void)
3451{
3452	clear_thread_flag(TIF_POLLING_NRFLAG);
3453}
3454
3455static inline bool __must_check current_clr_polling_and_test(void)
3456{
3457	__current_clr_polling();
3458
3459	/*
3460	 * Polling state must be visible before we test NEED_RESCHED,
3461	 * paired by resched_curr()
3462	 */
3463	smp_mb__after_atomic();
3464
3465	return unlikely(tif_need_resched());
3466}
3467
3468#else
3469static inline int tsk_is_polling(struct task_struct *p) { return 0; }
3470static inline void __current_set_polling(void) { }
3471static inline void __current_clr_polling(void) { }
3472
3473static inline bool __must_check current_set_polling_and_test(void)
3474{
3475	return unlikely(tif_need_resched());
3476}
3477static inline bool __must_check current_clr_polling_and_test(void)
3478{
3479	return unlikely(tif_need_resched());
3480}
3481#endif
3482
3483static inline void current_clr_polling(void)
3484{
3485	__current_clr_polling();
3486
3487	/*
3488	 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3489	 * Once the bit is cleared, we'll get IPIs with every new
3490	 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3491	 * fold.
3492	 */
3493	smp_mb(); /* paired with resched_curr() */
3494
3495	preempt_fold_need_resched();
3496}
3497
3498static __always_inline bool need_resched(void)
3499{
3500	return unlikely(tif_need_resched());
3501}
3502
3503/*
3504 * Thread group CPU time accounting.
3505 */
3506void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3507void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3508
 
 
 
 
 
3509/*
3510 * Reevaluate whether the task has signals pending delivery.
3511 * Wake the task if so.
3512 * This is required every time the blocked sigset_t changes.
3513 * callers must hold sighand->siglock.
3514 */
3515extern void recalc_sigpending_and_wake(struct task_struct *t);
3516extern void recalc_sigpending(void);
3517
3518extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3519
3520static inline void signal_wake_up(struct task_struct *t, bool resume)
3521{
3522	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3523}
3524static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3525{
3526	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3527}
3528
3529/*
3530 * Wrappers for p->thread_info->cpu access. No-op on UP.
3531 */
3532#ifdef CONFIG_SMP
3533
3534static inline unsigned int task_cpu(const struct task_struct *p)
3535{
3536#ifdef CONFIG_THREAD_INFO_IN_TASK
3537	return p->cpu;
3538#else
3539	return task_thread_info(p)->cpu;
3540#endif
3541}
3542
3543static inline int task_node(const struct task_struct *p)
3544{
3545	return cpu_to_node(task_cpu(p));
3546}
3547
3548extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3549
3550#else
3551
3552static inline unsigned int task_cpu(const struct task_struct *p)
3553{
3554	return 0;
3555}
3556
3557static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3558{
3559}
3560
3561#endif /* CONFIG_SMP */
3562
3563/*
3564 * In order to reduce various lock holder preemption latencies provide an
3565 * interface to see if a vCPU is currently running or not.
3566 *
3567 * This allows us to terminate optimistic spin loops and block, analogous to
3568 * the native optimistic spin heuristic of testing if the lock owner task is
3569 * running or not.
3570 */
3571#ifndef vcpu_is_preempted
3572# define vcpu_is_preempted(cpu)	false
3573#endif
3574
3575extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3576extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3577
3578#ifdef CONFIG_CGROUP_SCHED
3579extern struct task_group root_task_group;
3580#endif /* CONFIG_CGROUP_SCHED */
3581
3582extern int task_can_switch_user(struct user_struct *up,
3583					struct task_struct *tsk);
3584
3585#ifdef CONFIG_TASK_XACCT
3586static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3587{
3588	tsk->ioac.rchar += amt;
3589}
3590
3591static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3592{
3593	tsk->ioac.wchar += amt;
3594}
3595
3596static inline void inc_syscr(struct task_struct *tsk)
3597{
3598	tsk->ioac.syscr++;
3599}
3600
3601static inline void inc_syscw(struct task_struct *tsk)
3602{
3603	tsk->ioac.syscw++;
3604}
3605#else
3606static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3607{
3608}
3609
3610static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3611{
3612}
3613
3614static inline void inc_syscr(struct task_struct *tsk)
3615{
3616}
3617
3618static inline void inc_syscw(struct task_struct *tsk)
3619{
3620}
3621#endif
3622
3623#ifndef TASK_SIZE_OF
3624#define TASK_SIZE_OF(tsk)	TASK_SIZE
3625#endif
3626
3627#ifdef CONFIG_MEMCG
3628extern void mm_update_next_owner(struct mm_struct *mm);
 
3629#else
3630static inline void mm_update_next_owner(struct mm_struct *mm)
3631{
3632}
3633#endif /* CONFIG_MEMCG */
 
 
 
 
3634
3635static inline unsigned long task_rlimit(const struct task_struct *tsk,
3636		unsigned int limit)
3637{
3638	return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3639}
3640
3641static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3642		unsigned int limit)
3643{
3644	return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3645}
3646
3647static inline unsigned long rlimit(unsigned int limit)
3648{
3649	return task_rlimit(current, limit);
3650}
3651
3652static inline unsigned long rlimit_max(unsigned int limit)
3653{
3654	return task_rlimit_max(current, limit);
3655}
3656
3657#define SCHED_CPUFREQ_RT	(1U << 0)
3658#define SCHED_CPUFREQ_DL	(1U << 1)
3659#define SCHED_CPUFREQ_IOWAIT	(1U << 2)
3660
3661#define SCHED_CPUFREQ_RT_DL	(SCHED_CPUFREQ_RT | SCHED_CPUFREQ_DL)
3662
3663#ifdef CONFIG_CPU_FREQ
3664struct update_util_data {
3665       void (*func)(struct update_util_data *data, u64 time, unsigned int flags);
3666};
3667
3668void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
3669                       void (*func)(struct update_util_data *data, u64 time,
3670				    unsigned int flags));
3671void cpufreq_remove_update_util_hook(int cpu);
3672#endif /* CONFIG_CPU_FREQ */
3673
3674#endif