Linux Audio

Check our new training course

Loading...
v3.15
   1#ifndef _LINUX_SCHED_H
   2#define _LINUX_SCHED_H
   3
   4#include <uapi/linux/sched.h>
   5
   6#include <linux/sched/prio.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7
 
   8
   9struct sched_param {
  10	int sched_priority;
  11};
  12
  13#include <asm/param.h>	/* for HZ */
  14
  15#include <linux/capability.h>
  16#include <linux/threads.h>
  17#include <linux/kernel.h>
  18#include <linux/types.h>
  19#include <linux/timex.h>
  20#include <linux/jiffies.h>
  21#include <linux/plist.h>
  22#include <linux/rbtree.h>
  23#include <linux/thread_info.h>
  24#include <linux/cpumask.h>
  25#include <linux/errno.h>
  26#include <linux/nodemask.h>
  27#include <linux/mm_types.h>
  28#include <linux/preempt_mask.h>
  29
 
  30#include <asm/page.h>
  31#include <asm/ptrace.h>
  32#include <linux/cputime.h>
  33
  34#include <linux/smp.h>
  35#include <linux/sem.h>
  36#include <linux/signal.h>
  37#include <linux/compiler.h>
  38#include <linux/completion.h>
  39#include <linux/pid.h>
  40#include <linux/percpu.h>
  41#include <linux/topology.h>
  42#include <linux/proportions.h>
  43#include <linux/seccomp.h>
  44#include <linux/rcupdate.h>
  45#include <linux/rculist.h>
  46#include <linux/rtmutex.h>
  47
  48#include <linux/time.h>
  49#include <linux/param.h>
  50#include <linux/resource.h>
  51#include <linux/timer.h>
  52#include <linux/hrtimer.h>
  53#include <linux/task_io_accounting.h>
  54#include <linux/latencytop.h>
  55#include <linux/cred.h>
  56#include <linux/llist.h>
  57#include <linux/uidgid.h>
  58#include <linux/gfp.h>
  59
  60#include <asm/processor.h>
  61
  62#define SCHED_ATTR_SIZE_VER0	48	/* sizeof first published struct */
  63
  64/*
  65 * Extended scheduling parameters data structure.
  66 *
  67 * This is needed because the original struct sched_param can not be
  68 * altered without introducing ABI issues with legacy applications
  69 * (e.g., in sched_getparam()).
  70 *
  71 * However, the possibility of specifying more than just a priority for
  72 * the tasks may be useful for a wide variety of application fields, e.g.,
  73 * multimedia, streaming, automation and control, and many others.
  74 *
  75 * This variant (sched_attr) is meant at describing a so-called
  76 * sporadic time-constrained task. In such model a task is specified by:
  77 *  - the activation period or minimum instance inter-arrival time;
  78 *  - the maximum (or average, depending on the actual scheduling
  79 *    discipline) computation time of all instances, a.k.a. runtime;
  80 *  - the deadline (relative to the actual activation time) of each
  81 *    instance.
  82 * Very briefly, a periodic (sporadic) task asks for the execution of
  83 * some specific computation --which is typically called an instance--
  84 * (at most) every period. Moreover, each instance typically lasts no more
  85 * than the runtime and must be completed by time instant t equal to
  86 * the instance activation time + the deadline.
  87 *
  88 * This is reflected by the actual fields of the sched_attr structure:
  89 *
  90 *  @size		size of the structure, for fwd/bwd compat.
  91 *
  92 *  @sched_policy	task's scheduling policy
  93 *  @sched_flags	for customizing the scheduler behaviour
  94 *  @sched_nice		task's nice value      (SCHED_NORMAL/BATCH)
  95 *  @sched_priority	task's static priority (SCHED_FIFO/RR)
  96 *  @sched_deadline	representative of the task's deadline
  97 *  @sched_runtime	representative of the task's runtime
  98 *  @sched_period	representative of the task's period
  99 *
 100 * Given this task model, there are a multiplicity of scheduling algorithms
 101 * and policies, that can be used to ensure all the tasks will make their
 102 * timing constraints.
 103 *
 104 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
 105 * only user of this new interface. More information about the algorithm
 106 * available in the scheduling class file or in Documentation/.
 107 */
 108struct sched_attr {
 109	u32 size;
 110
 111	u32 sched_policy;
 112	u64 sched_flags;
 113
 114	/* SCHED_NORMAL, SCHED_BATCH */
 115	s32 sched_nice;
 116
 117	/* SCHED_FIFO, SCHED_RR */
 118	u32 sched_priority;
 119
 120	/* SCHED_DEADLINE */
 121	u64 sched_runtime;
 122	u64 sched_deadline;
 123	u64 sched_period;
 124};
 125
 126struct exec_domain;
 127struct futex_pi_state;
 128struct robust_list_head;
 129struct bio_list;
 130struct fs_struct;
 131struct perf_event_context;
 132struct blk_plug;
 133struct filename;
 134
 135#define VMACACHE_BITS 2
 136#define VMACACHE_SIZE (1U << VMACACHE_BITS)
 137#define VMACACHE_MASK (VMACACHE_SIZE - 1)
 138
 139/*
 140 * List of flags we want to share for kernel threads,
 141 * if only because they are not used by them anyway.
 142 */
 143#define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
 144
 145/*
 146 * These are the constant used to fake the fixed-point load-average
 147 * counting. Some notes:
 148 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
 149 *    a load-average precision of 10 bits integer + 11 bits fractional
 150 *  - if you want to count load-averages more often, you need more
 151 *    precision, or rounding will get you. With 2-second counting freq,
 152 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
 153 *    11 bit fractions.
 154 */
 155extern unsigned long avenrun[];		/* Load averages */
 156extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
 157
 158#define FSHIFT		11		/* nr of bits of precision */
 159#define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
 160#define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
 161#define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
 162#define EXP_5		2014		/* 1/exp(5sec/5min) */
 163#define EXP_15		2037		/* 1/exp(5sec/15min) */
 164
 165#define CALC_LOAD(load,exp,n) \
 166	load *= exp; \
 167	load += n*(FIXED_1-exp); \
 168	load >>= FSHIFT;
 169
 170extern unsigned long total_forks;
 171extern int nr_threads;
 172DECLARE_PER_CPU(unsigned long, process_counts);
 173extern int nr_processes(void);
 174extern unsigned long nr_running(void);
 
 175extern unsigned long nr_iowait(void);
 176extern unsigned long nr_iowait_cpu(int cpu);
 177extern unsigned long this_cpu_load(void);
 178
 179
 180extern void calc_global_load(unsigned long ticks);
 181extern void update_cpu_load_nohz(void);
 182
 183extern unsigned long get_parent_ip(unsigned long addr);
 184
 185extern void dump_cpu_task(int cpu);
 186
 187struct seq_file;
 188struct cfs_rq;
 189struct task_group;
 190#ifdef CONFIG_SCHED_DEBUG
 191extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
 192extern void proc_sched_set_task(struct task_struct *p);
 193extern void
 194print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
 
 
 
 
 
 
 
 
 
 
 
 
 195#endif
 196
 197/*
 198 * Task state bitmask. NOTE! These bits are also
 199 * encoded in fs/proc/array.c: get_task_state().
 200 *
 201 * We have two separate sets of flags: task->state
 202 * is about runnability, while task->exit_state are
 203 * about the task exiting. Confusing, but this way
 204 * modifying one set can't modify the other one by
 205 * mistake.
 206 */
 207#define TASK_RUNNING		0
 208#define TASK_INTERRUPTIBLE	1
 209#define TASK_UNINTERRUPTIBLE	2
 210#define __TASK_STOPPED		4
 211#define __TASK_TRACED		8
 212/* in tsk->exit_state */
 213#define EXIT_DEAD		16
 214#define EXIT_ZOMBIE		32
 215#define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
 216/* in tsk->state again */
 217#define TASK_DEAD		64
 218#define TASK_WAKEKILL		128
 219#define TASK_WAKING		256
 220#define TASK_PARKED		512
 221#define TASK_STATE_MAX		1024
 222
 223#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWP"
 224
 225extern char ___assert_task_state[1 - 2*!!(
 226		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
 227
 228/* Convenience macros for the sake of set_task_state */
 229#define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
 230#define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
 231#define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
 232
 233/* Convenience macros for the sake of wake_up */
 234#define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 235#define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
 236
 237/* get_task_state() */
 238#define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
 239				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 240				 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
 241
 242#define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
 243#define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
 
 244#define task_is_stopped_or_traced(task)	\
 245			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 246#define task_contributes_to_load(task)	\
 247				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
 248				 (task->flags & PF_FROZEN) == 0)
 249
 250#define __set_task_state(tsk, state_value)		\
 251	do { (tsk)->state = (state_value); } while (0)
 252#define set_task_state(tsk, state_value)		\
 253	set_mb((tsk)->state, (state_value))
 254
 255/*
 256 * set_current_state() includes a barrier so that the write of current->state
 257 * is correctly serialised wrt the caller's subsequent test of whether to
 258 * actually sleep:
 259 *
 260 *	set_current_state(TASK_UNINTERRUPTIBLE);
 261 *	if (do_i_need_to_sleep())
 262 *		schedule();
 263 *
 264 * If the caller does not need such serialisation then use __set_current_state()
 265 */
 266#define __set_current_state(state_value)			\
 267	do { current->state = (state_value); } while (0)
 268#define set_current_state(state_value)		\
 269	set_mb(current->state, (state_value))
 270
 271/* Task command name length */
 272#define TASK_COMM_LEN 16
 273
 274#include <linux/spinlock.h>
 275
 276/*
 277 * This serializes "schedule()" and also protects
 278 * the run-queue from deletions/modifications (but
 279 * _adding_ to the beginning of the run-queue has
 280 * a separate lock).
 281 */
 282extern rwlock_t tasklist_lock;
 283extern spinlock_t mmlist_lock;
 284
 285struct task_struct;
 286
 287#ifdef CONFIG_PROVE_RCU
 288extern int lockdep_tasklist_lock_is_held(void);
 289#endif /* #ifdef CONFIG_PROVE_RCU */
 290
 291extern void sched_init(void);
 292extern void sched_init_smp(void);
 293extern asmlinkage void schedule_tail(struct task_struct *prev);
 294extern void init_idle(struct task_struct *idle, int cpu);
 295extern void init_idle_bootup_task(struct task_struct *idle);
 296
 297extern int runqueue_is_locked(int cpu);
 298
 299#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 300extern void nohz_balance_enter_idle(int cpu);
 301extern void set_cpu_sd_state_idle(void);
 302extern int get_nohz_timer_target(int pinned);
 303#else
 304static inline void nohz_balance_enter_idle(int cpu) { }
 305static inline void set_cpu_sd_state_idle(void) { }
 306static inline int get_nohz_timer_target(int pinned)
 307{
 308	return smp_processor_id();
 309}
 310#endif
 311
 312/*
 313 * Only dump TASK_* tasks. (0 for all tasks)
 314 */
 315extern void show_state_filter(unsigned long state_filter);
 316
 317static inline void show_state(void)
 318{
 319	show_state_filter(0);
 320}
 321
 322extern void show_regs(struct pt_regs *);
 323
 324/*
 325 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
 326 * task), SP is the stack pointer of the first frame that should be shown in the back
 327 * trace (or NULL if the entire call-chain of the task should be shown).
 328 */
 329extern void show_stack(struct task_struct *task, unsigned long *sp);
 330
 331void io_schedule(void);
 332long io_schedule_timeout(long timeout);
 333
 334extern void cpu_init (void);
 335extern void trap_init(void);
 336extern void update_process_times(int user);
 337extern void scheduler_tick(void);
 338
 339extern void sched_show_task(struct task_struct *p);
 340
 341#ifdef CONFIG_LOCKUP_DETECTOR
 342extern void touch_softlockup_watchdog(void);
 343extern void touch_softlockup_watchdog_sync(void);
 344extern void touch_all_softlockup_watchdogs(void);
 345extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
 346				  void __user *buffer,
 347				  size_t *lenp, loff_t *ppos);
 348extern unsigned int  softlockup_panic;
 349void lockup_detector_init(void);
 350#else
 351static inline void touch_softlockup_watchdog(void)
 352{
 353}
 354static inline void touch_softlockup_watchdog_sync(void)
 355{
 356}
 357static inline void touch_all_softlockup_watchdogs(void)
 358{
 359}
 360static inline void lockup_detector_init(void)
 361{
 362}
 363#endif
 364
 365#ifdef CONFIG_DETECT_HUNG_TASK
 366void reset_hung_task_detector(void);
 
 
 
 
 
 
 367#else
 368static inline void reset_hung_task_detector(void)
 369{
 370}
 371#endif
 372
 373/* Attach to any functions which should be ignored in wchan output. */
 374#define __sched		__attribute__((__section__(".sched.text")))
 375
 376/* Linker adds these: start and end of __sched functions */
 377extern char __sched_text_start[], __sched_text_end[];
 378
 379/* Is this address in the __sched functions? */
 380extern int in_sched_functions(unsigned long addr);
 381
 382#define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
 383extern signed long schedule_timeout(signed long timeout);
 384extern signed long schedule_timeout_interruptible(signed long timeout);
 385extern signed long schedule_timeout_killable(signed long timeout);
 386extern signed long schedule_timeout_uninterruptible(signed long timeout);
 387asmlinkage void schedule(void);
 388extern void schedule_preempt_disabled(void);
 389
 390struct nsproxy;
 391struct user_namespace;
 392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 393#ifdef CONFIG_MMU
 394extern void arch_pick_mmap_layout(struct mm_struct *mm);
 395extern unsigned long
 396arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
 397		       unsigned long, unsigned long);
 398extern unsigned long
 399arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 400			  unsigned long len, unsigned long pgoff,
 401			  unsigned long flags);
 
 
 402#else
 403static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
 404#endif
 405
 406#define SUID_DUMP_DISABLE	0	/* No setuid dumping */
 407#define SUID_DUMP_USER		1	/* Dump as user of process */
 408#define SUID_DUMP_ROOT		2	/* Dump as root */
 409
 410/* mm flags */
 
 
 
 411
 412/* for SUID_DUMP_* above */
 413#define MMF_DUMPABLE_BITS 2
 414#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
 415
 416extern void set_dumpable(struct mm_struct *mm, int value);
 417/*
 418 * This returns the actual value of the suid_dumpable flag. For things
 419 * that are using this for checking for privilege transitions, it must
 420 * test against SUID_DUMP_USER rather than treating it as a boolean
 421 * value.
 422 */
 423static inline int __get_dumpable(unsigned long mm_flags)
 424{
 425	return mm_flags & MMF_DUMPABLE_MASK;
 426}
 427
 428static inline int get_dumpable(struct mm_struct *mm)
 429{
 430	return __get_dumpable(mm->flags);
 431}
 432
 433/* coredump filter bits */
 434#define MMF_DUMP_ANON_PRIVATE	2
 435#define MMF_DUMP_ANON_SHARED	3
 436#define MMF_DUMP_MAPPED_PRIVATE	4
 437#define MMF_DUMP_MAPPED_SHARED	5
 438#define MMF_DUMP_ELF_HEADERS	6
 439#define MMF_DUMP_HUGETLB_PRIVATE 7
 440#define MMF_DUMP_HUGETLB_SHARED  8
 441
 442#define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
 443#define MMF_DUMP_FILTER_BITS	7
 444#define MMF_DUMP_FILTER_MASK \
 445	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
 446#define MMF_DUMP_FILTER_DEFAULT \
 447	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
 448	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
 449
 450#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
 451# define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
 452#else
 453# define MMF_DUMP_MASK_DEFAULT_ELF	0
 454#endif
 455					/* leave room for more dump flags */
 456#define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
 457#define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
 458#define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */
 459
 460#define MMF_HAS_UPROBES		19	/* has uprobes */
 461#define MMF_RECALC_UPROBES	20	/* MMF_HAS_UPROBES can be wrong */
 462
 463#define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
 464
 465struct sighand_struct {
 466	atomic_t		count;
 467	struct k_sigaction	action[_NSIG];
 468	spinlock_t		siglock;
 469	wait_queue_head_t	signalfd_wqh;
 470};
 471
 472struct pacct_struct {
 473	int			ac_flag;
 474	long			ac_exitcode;
 475	unsigned long		ac_mem;
 476	cputime_t		ac_utime, ac_stime;
 477	unsigned long		ac_minflt, ac_majflt;
 478};
 479
 480struct cpu_itimer {
 481	cputime_t expires;
 482	cputime_t incr;
 483	u32 error;
 484	u32 incr_error;
 485};
 486
 487/**
 488 * struct cputime - snaphsot of system and user cputime
 489 * @utime: time spent in user mode
 490 * @stime: time spent in system mode
 491 *
 492 * Gathers a generic snapshot of user and system time.
 493 */
 494struct cputime {
 495	cputime_t utime;
 496	cputime_t stime;
 497};
 498
 499/**
 500 * struct task_cputime - collected CPU time counts
 501 * @utime:		time spent in user mode, in &cputime_t units
 502 * @stime:		time spent in kernel mode, in &cputime_t units
 503 * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
 504 *
 505 * This is an extension of struct cputime that includes the total runtime
 506 * spent by the task from the scheduler point of view.
 507 *
 508 * As a result, this structure groups together three kinds of CPU time
 509 * that are tracked for threads and thread groups.  Most things considering
 510 * CPU time want to group these counts together and treat all three
 511 * of them in parallel.
 512 */
 513struct task_cputime {
 514	cputime_t utime;
 515	cputime_t stime;
 516	unsigned long long sum_exec_runtime;
 517};
 518/* Alternate field names when used to cache expirations. */
 519#define prof_exp	stime
 520#define virt_exp	utime
 521#define sched_exp	sum_exec_runtime
 522
 523#define INIT_CPUTIME	\
 524	(struct task_cputime) {					\
 525		.utime = 0,					\
 526		.stime = 0,					\
 527		.sum_exec_runtime = 0,				\
 528	}
 529
 530#ifdef CONFIG_PREEMPT_COUNT
 531#define PREEMPT_DISABLED	(1 + PREEMPT_ENABLED)
 532#else
 533#define PREEMPT_DISABLED	PREEMPT_ENABLED
 534#endif
 535
 536/*
 537 * Disable preemption until the scheduler is running.
 538 * Reset by start_kernel()->sched_init()->init_idle().
 539 *
 540 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
 541 * before the scheduler is active -- see should_resched().
 542 */
 543#define INIT_PREEMPT_COUNT	(PREEMPT_DISABLED + PREEMPT_ACTIVE)
 544
 545/**
 546 * struct thread_group_cputimer - thread group interval timer counts
 547 * @cputime:		thread group interval timers.
 548 * @running:		non-zero when there are timers running and
 549 * 			@cputime receives updates.
 550 * @lock:		lock for fields in this struct.
 551 *
 552 * This structure contains the version of task_cputime, above, that is
 553 * used for thread group CPU timer calculations.
 554 */
 555struct thread_group_cputimer {
 556	struct task_cputime cputime;
 557	int running;
 558	raw_spinlock_t lock;
 559};
 560
 561#include <linux/rwsem.h>
 562struct autogroup;
 563
 564/*
 565 * NOTE! "signal_struct" does not have its own
 566 * locking, because a shared signal_struct always
 567 * implies a shared sighand_struct, so locking
 568 * sighand_struct is always a proper superset of
 569 * the locking of signal_struct.
 570 */
 571struct signal_struct {
 572	atomic_t		sigcnt;
 573	atomic_t		live;
 574	int			nr_threads;
 575	struct list_head	thread_head;
 576
 577	wait_queue_head_t	wait_chldexit;	/* for wait4() */
 578
 579	/* current thread group signal load-balancing target: */
 580	struct task_struct	*curr_target;
 581
 582	/* shared signal handling: */
 583	struct sigpending	shared_pending;
 584
 585	/* thread group exit support */
 586	int			group_exit_code;
 587	/* overloaded:
 588	 * - notify group_exit_task when ->count is equal to notify_count
 589	 * - everyone except group_exit_task is stopped during signal delivery
 590	 *   of fatal signals, group_exit_task processes the signal.
 591	 */
 592	int			notify_count;
 593	struct task_struct	*group_exit_task;
 594
 595	/* thread group stop support, overloads group_exit_code too */
 596	int			group_stop_count;
 597	unsigned int		flags; /* see SIGNAL_* flags below */
 598
 599	/*
 600	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
 601	 * manager, to re-parent orphan (double-forking) child processes
 602	 * to this process instead of 'init'. The service manager is
 603	 * able to receive SIGCHLD signals and is able to investigate
 604	 * the process until it calls wait(). All children of this
 605	 * process will inherit a flag if they should look for a
 606	 * child_subreaper process at exit.
 607	 */
 608	unsigned int		is_child_subreaper:1;
 609	unsigned int		has_child_subreaper:1;
 610
 611	/* POSIX.1b Interval Timers */
 612	int			posix_timer_id;
 613	struct list_head	posix_timers;
 614
 615	/* ITIMER_REAL timer for the process */
 616	struct hrtimer real_timer;
 617	struct pid *leader_pid;
 618	ktime_t it_real_incr;
 619
 620	/*
 621	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
 622	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
 623	 * values are defined to 0 and 1 respectively
 624	 */
 625	struct cpu_itimer it[2];
 626
 627	/*
 628	 * Thread group totals for process CPU timers.
 629	 * See thread_group_cputimer(), et al, for details.
 630	 */
 631	struct thread_group_cputimer cputimer;
 632
 633	/* Earliest-expiration cache. */
 634	struct task_cputime cputime_expires;
 635
 636	struct list_head cpu_timers[3];
 637
 638	struct pid *tty_old_pgrp;
 639
 640	/* boolean value for session group leader */
 641	int leader;
 642
 643	struct tty_struct *tty; /* NULL if no tty */
 644
 645#ifdef CONFIG_SCHED_AUTOGROUP
 646	struct autogroup *autogroup;
 647#endif
 648	/*
 649	 * Cumulative resource counters for dead threads in the group,
 650	 * and for reaped dead child processes forked by this group.
 651	 * Live threads maintain their own counters and add to these
 652	 * in __exit_signal, except for the group leader.
 653	 */
 654	cputime_t utime, stime, cutime, cstime;
 655	cputime_t gtime;
 656	cputime_t cgtime;
 657#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 658	struct cputime prev_cputime;
 659#endif
 660	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 661	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 662	unsigned long inblock, oublock, cinblock, coublock;
 663	unsigned long maxrss, cmaxrss;
 664	struct task_io_accounting ioac;
 665
 666	/*
 667	 * Cumulative ns of schedule CPU time fo dead threads in the
 668	 * group, not including a zombie group leader, (This only differs
 669	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
 670	 * other than jiffies.)
 671	 */
 672	unsigned long long sum_sched_runtime;
 673
 674	/*
 675	 * We don't bother to synchronize most readers of this at all,
 676	 * because there is no reader checking a limit that actually needs
 677	 * to get both rlim_cur and rlim_max atomically, and either one
 678	 * alone is a single word that can safely be read normally.
 679	 * getrlimit/setrlimit use task_lock(current->group_leader) to
 680	 * protect this instead of the siglock, because they really
 681	 * have no need to disable irqs.
 682	 */
 683	struct rlimit rlim[RLIM_NLIMITS];
 684
 685#ifdef CONFIG_BSD_PROCESS_ACCT
 686	struct pacct_struct pacct;	/* per-process accounting information */
 687#endif
 688#ifdef CONFIG_TASKSTATS
 689	struct taskstats *stats;
 690#endif
 691#ifdef CONFIG_AUDIT
 692	unsigned audit_tty;
 693	unsigned audit_tty_log_passwd;
 694	struct tty_audit_buf *tty_audit_buf;
 695#endif
 696#ifdef CONFIG_CGROUPS
 697	/*
 698	 * group_rwsem prevents new tasks from entering the threadgroup and
 699	 * member tasks from exiting,a more specifically, setting of
 700	 * PF_EXITING.  fork and exit paths are protected with this rwsem
 701	 * using threadgroup_change_begin/end().  Users which require
 702	 * threadgroup to remain stable should use threadgroup_[un]lock()
 703	 * which also takes care of exec path.  Currently, cgroup is the
 704	 * only user.
 705	 */
 706	struct rw_semaphore group_rwsem;
 707#endif
 708
 709	oom_flags_t oom_flags;
 710	short oom_score_adj;		/* OOM kill score adjustment */
 711	short oom_score_adj_min;	/* OOM kill score adjustment min value.
 712					 * Only settable by CAP_SYS_RESOURCE. */
 713
 714	struct mutex cred_guard_mutex;	/* guard against foreign influences on
 715					 * credential calculations
 716					 * (notably. ptrace) */
 717};
 718
 
 
 
 
 
 719/*
 720 * Bits in flags field of signal_struct.
 721 */
 722#define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
 723#define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
 724#define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
 725#define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
 726/*
 727 * Pending notifications to parent.
 728 */
 729#define SIGNAL_CLD_STOPPED	0x00000010
 730#define SIGNAL_CLD_CONTINUED	0x00000020
 731#define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
 732
 733#define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
 734
 735/* If true, all threads except ->group_exit_task have pending SIGKILL */
 736static inline int signal_group_exit(const struct signal_struct *sig)
 737{
 738	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
 739		(sig->group_exit_task != NULL);
 740}
 741
 742/*
 743 * Some day this will be a full-fledged user tracking system..
 744 */
 745struct user_struct {
 746	atomic_t __count;	/* reference count */
 747	atomic_t processes;	/* How many processes does this user have? */
 748	atomic_t files;		/* How many open files does this user have? */
 749	atomic_t sigpending;	/* How many pending signals does this user have? */
 750#ifdef CONFIG_INOTIFY_USER
 751	atomic_t inotify_watches; /* How many inotify watches does this user have? */
 752	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
 753#endif
 754#ifdef CONFIG_FANOTIFY
 755	atomic_t fanotify_listeners;
 756#endif
 757#ifdef CONFIG_EPOLL
 758	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
 759#endif
 760#ifdef CONFIG_POSIX_MQUEUE
 761	/* protected by mq_lock	*/
 762	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
 763#endif
 764	unsigned long locked_shm; /* How many pages of mlocked shm ? */
 765
 766#ifdef CONFIG_KEYS
 767	struct key *uid_keyring;	/* UID specific keyring */
 768	struct key *session_keyring;	/* UID's default session keyring */
 769#endif
 770
 771	/* Hash table maintenance information */
 772	struct hlist_node uidhash_node;
 773	kuid_t uid;
 
 774
 775#ifdef CONFIG_PERF_EVENTS
 776	atomic_long_t locked_vm;
 777#endif
 778};
 779
 780extern int uids_sysfs_init(void);
 781
 782extern struct user_struct *find_user(kuid_t);
 783
 784extern struct user_struct root_user;
 785#define INIT_USER (&root_user)
 786
 787
 788struct backing_dev_info;
 789struct reclaim_state;
 790
 791#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
 792struct sched_info {
 793	/* cumulative counters */
 794	unsigned long pcount;	      /* # of times run on this cpu */
 795	unsigned long long run_delay; /* time spent waiting on a runqueue */
 796
 797	/* timestamps */
 798	unsigned long long last_arrival,/* when we last ran on a cpu */
 799			   last_queued;	/* when we were last queued to run */
 800};
 801#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
 802
 803#ifdef CONFIG_TASK_DELAY_ACCT
 804struct task_delay_info {
 805	spinlock_t	lock;
 806	unsigned int	flags;	/* Private per-task flags */
 807
 808	/* For each stat XXX, add following, aligned appropriately
 809	 *
 810	 * struct timespec XXX_start, XXX_end;
 811	 * u64 XXX_delay;
 812	 * u32 XXX_count;
 813	 *
 814	 * Atomicity of updates to XXX_delay, XXX_count protected by
 815	 * single lock above (split into XXX_lock if contention is an issue).
 816	 */
 817
 818	/*
 819	 * XXX_count is incremented on every XXX operation, the delay
 820	 * associated with the operation is added to XXX_delay.
 821	 * XXX_delay contains the accumulated delay time in nanoseconds.
 822	 */
 823	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
 824	u64 blkio_delay;	/* wait for sync block io completion */
 825	u64 swapin_delay;	/* wait for swapin block io completion */
 826	u32 blkio_count;	/* total count of the number of sync block */
 827				/* io operations performed */
 828	u32 swapin_count;	/* total count of the number of swapin block */
 829				/* io operations performed */
 830
 831	struct timespec freepages_start, freepages_end;
 832	u64 freepages_delay;	/* wait for memory reclaim */
 833	u32 freepages_count;	/* total count of memory reclaim */
 834};
 835#endif	/* CONFIG_TASK_DELAY_ACCT */
 836
 837static inline int sched_info_on(void)
 838{
 839#ifdef CONFIG_SCHEDSTATS
 840	return 1;
 841#elif defined(CONFIG_TASK_DELAY_ACCT)
 842	extern int delayacct_on;
 843	return delayacct_on;
 844#else
 845	return 0;
 846#endif
 847}
 848
 849enum cpu_idle_type {
 850	CPU_IDLE,
 851	CPU_NOT_IDLE,
 852	CPU_NEWLY_IDLE,
 853	CPU_MAX_IDLE_TYPES
 854};
 855
 856/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 857 * Increase resolution of cpu_power calculations
 858 */
 859#define SCHED_POWER_SHIFT	10
 860#define SCHED_POWER_SCALE	(1L << SCHED_POWER_SHIFT)
 861
 862/*
 863 * sched-domains (multiprocessor balancing) declarations:
 864 */
 865#ifdef CONFIG_SMP
 866#define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
 867#define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
 868#define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
 869#define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
 870#define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
 871#define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
 
 872#define SD_SHARE_CPUPOWER	0x0080	/* Domain members share cpu power */
 
 873#define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
 874#define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
 875#define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
 876#define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
 877#define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
 878#define SD_NUMA			0x4000	/* cross-node balancing */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879
 880extern int __weak arch_sd_sibiling_asym_packing(void);
 881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 882struct sched_domain_attr {
 883	int relax_domain_level;
 884};
 885
 886#define SD_ATTR_INIT	(struct sched_domain_attr) {	\
 887	.relax_domain_level = -1,			\
 888}
 889
 890extern int sched_domain_level_max;
 891
 892struct sched_group;
 893
 894struct sched_domain {
 895	/* These fields must be setup */
 896	struct sched_domain *parent;	/* top domain must be null terminated */
 897	struct sched_domain *child;	/* bottom domain must be null terminated */
 898	struct sched_group *groups;	/* the balancing groups of the domain */
 899	unsigned long min_interval;	/* Minimum balance interval ms */
 900	unsigned long max_interval;	/* Maximum balance interval ms */
 901	unsigned int busy_factor;	/* less balancing by factor if busy */
 902	unsigned int imbalance_pct;	/* No balance until over watermark */
 903	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
 904	unsigned int busy_idx;
 905	unsigned int idle_idx;
 906	unsigned int newidle_idx;
 907	unsigned int wake_idx;
 908	unsigned int forkexec_idx;
 909	unsigned int smt_gain;
 910
 911	int nohz_idle;			/* NOHZ IDLE status */
 912	int flags;			/* See SD_* */
 913	int level;
 914
 915	/* Runtime fields. */
 916	unsigned long last_balance;	/* init to jiffies. units in jiffies */
 917	unsigned int balance_interval;	/* initialise to 1. units in ms. */
 918	unsigned int nr_balance_failed; /* initialise to 0 */
 919
 920	/* idle_balance() stats */
 921	u64 max_newidle_lb_cost;
 922	unsigned long next_decay_max_lb_cost;
 923
 924#ifdef CONFIG_SCHEDSTATS
 925	/* load_balance() stats */
 926	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
 927	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
 928	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
 929	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
 930	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
 931	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
 932	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
 933	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
 934
 935	/* Active load balancing */
 936	unsigned int alb_count;
 937	unsigned int alb_failed;
 938	unsigned int alb_pushed;
 939
 940	/* SD_BALANCE_EXEC stats */
 941	unsigned int sbe_count;
 942	unsigned int sbe_balanced;
 943	unsigned int sbe_pushed;
 944
 945	/* SD_BALANCE_FORK stats */
 946	unsigned int sbf_count;
 947	unsigned int sbf_balanced;
 948	unsigned int sbf_pushed;
 949
 950	/* try_to_wake_up() stats */
 951	unsigned int ttwu_wake_remote;
 952	unsigned int ttwu_move_affine;
 953	unsigned int ttwu_move_balance;
 954#endif
 955#ifdef CONFIG_SCHED_DEBUG
 956	char *name;
 957#endif
 958	union {
 959		void *private;		/* used during construction */
 960		struct rcu_head rcu;	/* used during destruction */
 961	};
 962
 963	unsigned int span_weight;
 964	/*
 965	 * Span of all CPUs in this domain.
 966	 *
 967	 * NOTE: this field is variable length. (Allocated dynamically
 968	 * by attaching extra space to the end of the structure,
 969	 * depending on how many CPUs the kernel has booted up with)
 970	 */
 971	unsigned long span[0];
 972};
 973
 974static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
 975{
 976	return to_cpumask(sd->span);
 977}
 978
 979extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 980				    struct sched_domain_attr *dattr_new);
 981
 982/* Allocate an array of sched domains, for partition_sched_domains(). */
 983cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
 984void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
 985
 986bool cpus_share_cache(int this_cpu, int that_cpu);
 
 
 
 
 
 
 
 
 
 
 987
 988#else /* CONFIG_SMP */
 989
 990struct sched_domain_attr;
 991
 992static inline void
 993partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 994			struct sched_domain_attr *dattr_new)
 995{
 996}
 997
 998static inline bool cpus_share_cache(int this_cpu, int that_cpu)
 999{
1000	return true;
1001}
1002
1003#endif	/* !CONFIG_SMP */
1004
1005
1006struct io_context;			/* See blkdev.h */
1007
1008
1009#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1010extern void prefetch_stack(struct task_struct *t);
1011#else
1012static inline void prefetch_stack(struct task_struct *t) { }
1013#endif
1014
1015struct audit_context;		/* See audit.c */
1016struct mempolicy;
1017struct pipe_inode_info;
1018struct uts_namespace;
1019
1020struct load_weight {
1021	unsigned long weight;
1022	u32 inv_weight;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023};
1024
1025struct sched_avg {
1026	/*
1027	 * These sums represent an infinite geometric series and so are bound
1028	 * above by 1024/(1-y).  Thus we only need a u32 to store them for all
1029	 * choices of y < 1-2^(-32)*1024.
1030	 */
1031	u32 runnable_avg_sum, runnable_avg_period;
1032	u64 last_runnable_update;
1033	s64 decay_count;
1034	unsigned long load_avg_contrib;
1035};
1036
1037#ifdef CONFIG_SCHEDSTATS
1038struct sched_statistics {
1039	u64			wait_start;
1040	u64			wait_max;
1041	u64			wait_count;
1042	u64			wait_sum;
1043	u64			iowait_count;
1044	u64			iowait_sum;
1045
1046	u64			sleep_start;
1047	u64			sleep_max;
1048	s64			sum_sleep_runtime;
1049
1050	u64			block_start;
1051	u64			block_max;
1052	u64			exec_max;
1053	u64			slice_max;
1054
1055	u64			nr_migrations_cold;
1056	u64			nr_failed_migrations_affine;
1057	u64			nr_failed_migrations_running;
1058	u64			nr_failed_migrations_hot;
1059	u64			nr_forced_migrations;
1060
1061	u64			nr_wakeups;
1062	u64			nr_wakeups_sync;
1063	u64			nr_wakeups_migrate;
1064	u64			nr_wakeups_local;
1065	u64			nr_wakeups_remote;
1066	u64			nr_wakeups_affine;
1067	u64			nr_wakeups_affine_attempts;
1068	u64			nr_wakeups_passive;
1069	u64			nr_wakeups_idle;
1070};
1071#endif
1072
1073struct sched_entity {
1074	struct load_weight	load;		/* for load-balancing */
1075	struct rb_node		run_node;
1076	struct list_head	group_node;
1077	unsigned int		on_rq;
1078
1079	u64			exec_start;
1080	u64			sum_exec_runtime;
1081	u64			vruntime;
1082	u64			prev_sum_exec_runtime;
1083
1084	u64			nr_migrations;
1085
1086#ifdef CONFIG_SCHEDSTATS
1087	struct sched_statistics statistics;
1088#endif
1089
1090#ifdef CONFIG_FAIR_GROUP_SCHED
1091	int			depth;
1092	struct sched_entity	*parent;
1093	/* rq on which this entity is (to be) queued: */
1094	struct cfs_rq		*cfs_rq;
1095	/* rq "owned" by this entity/group: */
1096	struct cfs_rq		*my_q;
1097#endif
1098
1099#ifdef CONFIG_SMP
1100	/* Per-entity load-tracking */
1101	struct sched_avg	avg;
1102#endif
1103};
1104
1105struct sched_rt_entity {
1106	struct list_head run_list;
1107	unsigned long timeout;
1108	unsigned long watchdog_stamp;
1109	unsigned int time_slice;
 
1110
1111	struct sched_rt_entity *back;
1112#ifdef CONFIG_RT_GROUP_SCHED
1113	struct sched_rt_entity	*parent;
1114	/* rq on which this entity is (to be) queued: */
1115	struct rt_rq		*rt_rq;
1116	/* rq "owned" by this entity/group: */
1117	struct rt_rq		*my_q;
1118#endif
1119};
1120
1121struct sched_dl_entity {
1122	struct rb_node	rb_node;
1123
1124	/*
1125	 * Original scheduling parameters. Copied here from sched_attr
1126	 * during sched_setscheduler2(), they will remain the same until
1127	 * the next sched_setscheduler2().
1128	 */
1129	u64 dl_runtime;		/* maximum runtime for each instance	*/
1130	u64 dl_deadline;	/* relative deadline of each instance	*/
1131	u64 dl_period;		/* separation of two instances (period) */
1132	u64 dl_bw;		/* dl_runtime / dl_deadline		*/
1133
1134	/*
1135	 * Actual scheduling parameters. Initialized with the values above,
1136	 * they are continously updated during task execution. Note that
1137	 * the remaining runtime could be < 0 in case we are in overrun.
1138	 */
1139	s64 runtime;		/* remaining runtime for this instance	*/
1140	u64 deadline;		/* absolute deadline for this instance	*/
1141	unsigned int flags;	/* specifying the scheduler behaviour	*/
1142
1143	/*
1144	 * Some bool flags:
1145	 *
1146	 * @dl_throttled tells if we exhausted the runtime. If so, the
1147	 * task has to wait for a replenishment to be performed at the
1148	 * next firing of dl_timer.
1149	 *
1150	 * @dl_new tells if a new instance arrived. If so we must
1151	 * start executing it with full runtime and reset its absolute
1152	 * deadline;
1153	 *
1154	 * @dl_boosted tells if we are boosted due to DI. If so we are
1155	 * outside bandwidth enforcement mechanism (but only until we
1156	 * exit the critical section);
1157	 *
1158	 * @dl_yielded tells if task gave up the cpu before consuming
1159	 * all its available runtime during the last job.
1160	 */
1161	int dl_throttled, dl_new, dl_boosted, dl_yielded;
1162
1163	/*
1164	 * Bandwidth enforcement timer. Each -deadline task has its
1165	 * own bandwidth to be enforced, thus we need one timer per task.
1166	 */
1167	struct hrtimer dl_timer;
1168};
1169
1170struct rcu_node;
1171
1172enum perf_event_task_context {
1173	perf_invalid_context = -1,
1174	perf_hw_context = 0,
1175	perf_sw_context,
1176	perf_nr_task_contexts,
1177};
1178
1179struct task_struct {
1180	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1181	void *stack;
1182	atomic_t usage;
1183	unsigned int flags;	/* per process flags, defined below */
1184	unsigned int ptrace;
1185
1186#ifdef CONFIG_SMP
1187	struct llist_node wake_entry;
1188	int on_cpu;
1189	struct task_struct *last_wakee;
1190	unsigned long wakee_flips;
1191	unsigned long wakee_flip_decay_ts;
1192
1193	int wake_cpu;
1194#endif
1195	int on_rq;
1196
1197	int prio, static_prio, normal_prio;
1198	unsigned int rt_priority;
1199	const struct sched_class *sched_class;
1200	struct sched_entity se;
1201	struct sched_rt_entity rt;
1202#ifdef CONFIG_CGROUP_SCHED
1203	struct task_group *sched_task_group;
1204#endif
1205	struct sched_dl_entity dl;
1206
1207#ifdef CONFIG_PREEMPT_NOTIFIERS
1208	/* list of struct preempt_notifier: */
1209	struct hlist_head preempt_notifiers;
1210#endif
1211
 
 
 
 
 
 
 
 
 
1212#ifdef CONFIG_BLK_DEV_IO_TRACE
1213	unsigned int btrace_seq;
1214#endif
1215
1216	unsigned int policy;
1217	int nr_cpus_allowed;
1218	cpumask_t cpus_allowed;
1219
1220#ifdef CONFIG_PREEMPT_RCU
1221	int rcu_read_lock_nesting;
1222	char rcu_read_unlock_special;
 
 
 
1223	struct list_head rcu_node_entry;
1224#endif /* #ifdef CONFIG_PREEMPT_RCU */
1225#ifdef CONFIG_TREE_PREEMPT_RCU
1226	struct rcu_node *rcu_blocked_node;
1227#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1228#ifdef CONFIG_RCU_BOOST
1229	struct rt_mutex *rcu_boost_mutex;
1230#endif /* #ifdef CONFIG_RCU_BOOST */
1231
1232#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1233	struct sched_info sched_info;
1234#endif
1235
1236	struct list_head tasks;
1237#ifdef CONFIG_SMP
1238	struct plist_node pushable_tasks;
1239	struct rb_node pushable_dl_tasks;
1240#endif
1241
1242	struct mm_struct *mm, *active_mm;
1243#ifdef CONFIG_COMPAT_BRK
1244	unsigned brk_randomized:1;
1245#endif
1246	/* per-thread vma caching */
1247	u32 vmacache_seqnum;
1248	struct vm_area_struct *vmacache[VMACACHE_SIZE];
1249#if defined(SPLIT_RSS_COUNTING)
1250	struct task_rss_stat	rss_stat;
1251#endif
1252/* task state */
1253	int exit_state;
1254	int exit_code, exit_signal;
1255	int pdeath_signal;  /*  The signal sent when the parent dies  */
1256	unsigned int jobctl;	/* JOBCTL_*, siglock protected */
1257
1258	/* Used for emulating ABI behavior of previous Linux versions */
1259	unsigned int personality;
1260
1261	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1262				 * execve */
1263	unsigned in_iowait:1;
1264
1265	/* task may not gain privileges */
1266	unsigned no_new_privs:1;
1267
1268	/* Revert to default priority/policy when forking */
1269	unsigned sched_reset_on_fork:1;
1270	unsigned sched_contributes_to_load:1;
1271
1272	pid_t pid;
1273	pid_t tgid;
1274
1275#ifdef CONFIG_CC_STACKPROTECTOR
1276	/* Canary value for the -fstack-protector gcc feature */
1277	unsigned long stack_canary;
1278#endif
1279	/*
 
1280	 * pointers to (original) parent process, youngest child, younger sibling,
1281	 * older sibling, respectively.  (p->father can be replaced with
1282	 * p->real_parent->pid)
1283	 */
1284	struct task_struct __rcu *real_parent; /* real parent process */
1285	struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1286	/*
1287	 * children/sibling forms the list of my natural children
1288	 */
1289	struct list_head children;	/* list of my children */
1290	struct list_head sibling;	/* linkage in my parent's children list */
1291	struct task_struct *group_leader;	/* threadgroup leader */
1292
1293	/*
1294	 * ptraced is the list of tasks this task is using ptrace on.
1295	 * This includes both natural children and PTRACE_ATTACH targets.
1296	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1297	 */
1298	struct list_head ptraced;
1299	struct list_head ptrace_entry;
1300
1301	/* PID/PID hash table linkage. */
1302	struct pid_link pids[PIDTYPE_MAX];
1303	struct list_head thread_group;
1304	struct list_head thread_node;
1305
1306	struct completion *vfork_done;		/* for vfork() */
1307	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1308	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1309
1310	cputime_t utime, stime, utimescaled, stimescaled;
1311	cputime_t gtime;
1312#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1313	struct cputime prev_cputime;
1314#endif
1315#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1316	seqlock_t vtime_seqlock;
1317	unsigned long long vtime_snap;
1318	enum {
1319		VTIME_SLEEPING = 0,
1320		VTIME_USER,
1321		VTIME_SYS,
1322	} vtime_snap_whence;
1323#endif
1324	unsigned long nvcsw, nivcsw; /* context switch counts */
1325	struct timespec start_time; 		/* monotonic time */
1326	struct timespec real_start_time;	/* boot based time */
1327/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1328	unsigned long min_flt, maj_flt;
1329
1330	struct task_cputime cputime_expires;
1331	struct list_head cpu_timers[3];
1332
1333/* process credentials */
1334	const struct cred __rcu *real_cred; /* objective and real subjective task
1335					 * credentials (COW) */
1336	const struct cred __rcu *cred;	/* effective (overridable) subjective task
1337					 * credentials (COW) */
 
 
1338	char comm[TASK_COMM_LEN]; /* executable name excluding path
1339				     - access with [gs]et_task_comm (which lock
1340				       it with task_lock())
1341				     - initialized normally by setup_new_exec */
1342/* file system info */
1343	int link_count, total_link_count;
1344#ifdef CONFIG_SYSVIPC
1345/* ipc stuff */
1346	struct sysv_sem sysvsem;
1347#endif
1348#ifdef CONFIG_DETECT_HUNG_TASK
1349/* hung task detection */
1350	unsigned long last_switch_count;
1351#endif
1352/* CPU-specific state of this task */
1353	struct thread_struct thread;
1354/* filesystem information */
1355	struct fs_struct *fs;
1356/* open file information */
1357	struct files_struct *files;
1358/* namespaces */
1359	struct nsproxy *nsproxy;
1360/* signal handlers */
1361	struct signal_struct *signal;
1362	struct sighand_struct *sighand;
1363
1364	sigset_t blocked, real_blocked;
1365	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1366	struct sigpending pending;
1367
1368	unsigned long sas_ss_sp;
1369	size_t sas_ss_size;
1370	int (*notifier)(void *priv);
1371	void *notifier_data;
1372	sigset_t *notifier_mask;
1373	struct callback_head *task_works;
1374
1375	struct audit_context *audit_context;
1376#ifdef CONFIG_AUDITSYSCALL
1377	kuid_t loginuid;
1378	unsigned int sessionid;
1379#endif
1380	struct seccomp seccomp;
1381
1382/* Thread group tracking */
1383   	u32 parent_exec_id;
1384   	u32 self_exec_id;
1385/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1386 * mempolicy */
1387	spinlock_t alloc_lock;
1388
 
 
 
 
 
1389	/* Protection of the PI data structures: */
1390	raw_spinlock_t pi_lock;
1391
1392#ifdef CONFIG_RT_MUTEXES
1393	/* PI waiters blocked on a rt_mutex held by this task */
1394	struct rb_root pi_waiters;
1395	struct rb_node *pi_waiters_leftmost;
1396	/* Deadlock detection and priority inheritance handling */
1397	struct rt_mutex_waiter *pi_blocked_on;
1398	/* Top pi_waiters task */
1399	struct task_struct *pi_top_task;
1400#endif
1401
1402#ifdef CONFIG_DEBUG_MUTEXES
1403	/* mutex deadlock detection */
1404	struct mutex_waiter *blocked_on;
1405#endif
1406#ifdef CONFIG_TRACE_IRQFLAGS
1407	unsigned int irq_events;
1408	unsigned long hardirq_enable_ip;
1409	unsigned long hardirq_disable_ip;
1410	unsigned int hardirq_enable_event;
1411	unsigned int hardirq_disable_event;
1412	int hardirqs_enabled;
1413	int hardirq_context;
1414	unsigned long softirq_disable_ip;
1415	unsigned long softirq_enable_ip;
1416	unsigned int softirq_disable_event;
1417	unsigned int softirq_enable_event;
1418	int softirqs_enabled;
1419	int softirq_context;
1420#endif
1421#ifdef CONFIG_LOCKDEP
1422# define MAX_LOCK_DEPTH 48UL
1423	u64 curr_chain_key;
1424	int lockdep_depth;
1425	unsigned int lockdep_recursion;
1426	struct held_lock held_locks[MAX_LOCK_DEPTH];
1427	gfp_t lockdep_reclaim_gfp;
1428#endif
1429
1430/* journalling filesystem info */
1431	void *journal_info;
1432
1433/* stacked block device info */
1434	struct bio_list *bio_list;
1435
1436#ifdef CONFIG_BLOCK
1437/* stack plugging */
1438	struct blk_plug *plug;
1439#endif
1440
1441/* VM state */
1442	struct reclaim_state *reclaim_state;
1443
1444	struct backing_dev_info *backing_dev_info;
1445
1446	struct io_context *io_context;
1447
1448	unsigned long ptrace_message;
1449	siginfo_t *last_siginfo; /* For ptrace use.  */
1450	struct task_io_accounting ioac;
1451#if defined(CONFIG_TASK_XACCT)
1452	u64 acct_rss_mem1;	/* accumulated rss usage */
1453	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1454	cputime_t acct_timexpd;	/* stime + utime since last update */
1455#endif
1456#ifdef CONFIG_CPUSETS
1457	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1458	seqcount_t mems_allowed_seq;	/* Seqence no to catch updates */
1459	int cpuset_mem_spread_rotor;
1460	int cpuset_slab_spread_rotor;
1461#endif
1462#ifdef CONFIG_CGROUPS
1463	/* Control Group info protected by css_set_lock */
1464	struct css_set __rcu *cgroups;
1465	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1466	struct list_head cg_list;
1467#endif
1468#ifdef CONFIG_FUTEX
1469	struct robust_list_head __user *robust_list;
1470#ifdef CONFIG_COMPAT
1471	struct compat_robust_list_head __user *compat_robust_list;
1472#endif
1473	struct list_head pi_state_list;
1474	struct futex_pi_state *pi_state_cache;
1475#endif
1476#ifdef CONFIG_PERF_EVENTS
1477	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1478	struct mutex perf_event_mutex;
1479	struct list_head perf_event_list;
1480#endif
1481#ifdef CONFIG_DEBUG_PREEMPT
1482	unsigned long preempt_disable_ip;
1483#endif
1484#ifdef CONFIG_NUMA
1485	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1486	short il_next;
1487	short pref_node_fork;
1488#endif
1489#ifdef CONFIG_NUMA_BALANCING
1490	int numa_scan_seq;
1491	unsigned int numa_scan_period;
1492	unsigned int numa_scan_period_max;
1493	int numa_preferred_nid;
1494	unsigned long numa_migrate_retry;
1495	u64 node_stamp;			/* migration stamp  */
1496	u64 last_task_numa_placement;
1497	u64 last_sum_exec_runtime;
1498	struct callback_head numa_work;
1499
1500	struct list_head numa_entry;
1501	struct numa_group *numa_group;
1502
1503	/*
1504	 * Exponential decaying average of faults on a per-node basis.
1505	 * Scheduling placement decisions are made based on the these counts.
1506	 * The values remain static for the duration of a PTE scan
1507	 */
1508	unsigned long *numa_faults_memory;
1509	unsigned long total_numa_faults;
1510
1511	/*
1512	 * numa_faults_buffer records faults per node during the current
1513	 * scan window. When the scan completes, the counts in
1514	 * numa_faults_memory decay and these values are copied.
1515	 */
1516	unsigned long *numa_faults_buffer_memory;
1517
1518	/*
1519	 * Track the nodes the process was running on when a NUMA hinting
1520	 * fault was incurred.
1521	 */
1522	unsigned long *numa_faults_cpu;
1523	unsigned long *numa_faults_buffer_cpu;
1524
1525	/*
1526	 * numa_faults_locality tracks if faults recorded during the last
1527	 * scan window were remote/local. The task scan period is adapted
1528	 * based on the locality of the faults with different weights
1529	 * depending on whether they were shared or private faults
1530	 */
1531	unsigned long numa_faults_locality[2];
1532
1533	unsigned long numa_pages_migrated;
1534#endif /* CONFIG_NUMA_BALANCING */
1535
1536	struct rcu_head rcu;
1537
1538	/*
1539	 * cache last used pipe for splice
1540	 */
1541	struct pipe_inode_info *splice_pipe;
1542
1543	struct page_frag task_frag;
1544
1545#ifdef	CONFIG_TASK_DELAY_ACCT
1546	struct task_delay_info *delays;
1547#endif
1548#ifdef CONFIG_FAULT_INJECTION
1549	int make_it_fail;
1550#endif
1551	/*
1552	 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1553	 * balance_dirty_pages() for some dirty throttling pause
1554	 */
1555	int nr_dirtied;
1556	int nr_dirtied_pause;
1557	unsigned long dirty_paused_when; /* start of a write-and-pause period */
1558
1559#ifdef CONFIG_LATENCYTOP
1560	int latency_record_count;
1561	struct latency_record latency_record[LT_SAVECOUNT];
1562#endif
1563	/*
1564	 * time slack values; these are used to round up poll() and
1565	 * select() etc timeout values. These are in nanoseconds.
1566	 */
1567	unsigned long timer_slack_ns;
1568	unsigned long default_timer_slack_ns;
1569
 
1570#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1571	/* Index of current stored address in ret_stack */
1572	int curr_ret_stack;
1573	/* Stack of return addresses for return function tracing */
1574	struct ftrace_ret_stack	*ret_stack;
1575	/* time stamp for last schedule */
1576	unsigned long long ftrace_timestamp;
1577	/*
1578	 * Number of functions that haven't been traced
1579	 * because of depth overrun.
1580	 */
1581	atomic_t trace_overrun;
1582	/* Pause for the tracing */
1583	atomic_t tracing_graph_pause;
1584#endif
1585#ifdef CONFIG_TRACING
1586	/* state flags for use by tracers */
1587	unsigned long trace;
1588	/* bitmask and counter of trace recursion */
1589	unsigned long trace_recursion;
1590#endif /* CONFIG_TRACING */
1591#ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1592	struct memcg_batch_info {
1593		int do_batch;	/* incremented when batch uncharge started */
1594		struct mem_cgroup *memcg; /* target memcg of uncharge */
1595		unsigned long nr_pages;	/* uncharged usage */
1596		unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1597	} memcg_batch;
1598	unsigned int memcg_kmem_skip_account;
1599	struct memcg_oom_info {
1600		struct mem_cgroup *memcg;
1601		gfp_t gfp_mask;
1602		int order;
1603		unsigned int may_oom:1;
1604	} memcg_oom;
1605#endif
1606#ifdef CONFIG_UPROBES
1607	struct uprobe_task *utask;
1608#endif
1609#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1610	unsigned int	sequential_io;
1611	unsigned int	sequential_io_avg;
1612#endif
1613};
1614
1615/* Future-safe accessor for struct task_struct's cpus_allowed. */
1616#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1617
1618#define TNF_MIGRATED	0x01
1619#define TNF_NO_GROUP	0x02
1620#define TNF_SHARED	0x04
1621#define TNF_FAULT_LOCAL	0x08
1622
1623#ifdef CONFIG_NUMA_BALANCING
1624extern void task_numa_fault(int last_node, int node, int pages, int flags);
1625extern pid_t task_numa_group_id(struct task_struct *p);
1626extern void set_numabalancing_state(bool enabled);
1627extern void task_numa_free(struct task_struct *p);
1628extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1629					int src_nid, int dst_cpu);
1630#else
1631static inline void task_numa_fault(int last_node, int node, int pages,
1632				   int flags)
1633{
1634}
1635static inline pid_t task_numa_group_id(struct task_struct *p)
 
 
1636{
 
 
1637	return 0;
1638}
1639static inline void set_numabalancing_state(bool enabled)
1640{
1641}
1642static inline void task_numa_free(struct task_struct *p)
1643{
1644}
1645static inline bool should_numa_migrate_memory(struct task_struct *p,
1646				struct page *page, int src_nid, int dst_cpu)
1647{
1648	return true;
1649}
1650#endif
1651
1652static inline struct pid *task_pid(struct task_struct *task)
1653{
1654	return task->pids[PIDTYPE_PID].pid;
1655}
1656
1657static inline struct pid *task_tgid(struct task_struct *task)
1658{
1659	return task->group_leader->pids[PIDTYPE_PID].pid;
1660}
1661
1662/*
1663 * Without tasklist or rcu lock it is not safe to dereference
1664 * the result of task_pgrp/task_session even if task == current,
1665 * we can race with another thread doing sys_setsid/sys_setpgid.
1666 */
1667static inline struct pid *task_pgrp(struct task_struct *task)
1668{
1669	return task->group_leader->pids[PIDTYPE_PGID].pid;
1670}
1671
1672static inline struct pid *task_session(struct task_struct *task)
1673{
1674	return task->group_leader->pids[PIDTYPE_SID].pid;
1675}
1676
1677struct pid_namespace;
1678
1679/*
1680 * the helpers to get the task's different pids as they are seen
1681 * from various namespaces
1682 *
1683 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1684 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1685 *                     current.
1686 * task_xid_nr_ns()  : id seen from the ns specified;
1687 *
1688 * set_task_vxid()   : assigns a virtual id to a task;
1689 *
1690 * see also pid_nr() etc in include/linux/pid.h
1691 */
1692pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1693			struct pid_namespace *ns);
1694
1695static inline pid_t task_pid_nr(struct task_struct *tsk)
1696{
1697	return tsk->pid;
1698}
1699
1700static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1701					struct pid_namespace *ns)
1702{
1703	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1704}
1705
1706static inline pid_t task_pid_vnr(struct task_struct *tsk)
1707{
1708	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1709}
1710
1711
1712static inline pid_t task_tgid_nr(struct task_struct *tsk)
1713{
1714	return tsk->tgid;
1715}
1716
1717pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1718
1719static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1720{
1721	return pid_vnr(task_tgid(tsk));
1722}
1723
1724
1725static inline int pid_alive(const struct task_struct *p);
1726static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1727{
1728	pid_t pid = 0;
1729
1730	rcu_read_lock();
1731	if (pid_alive(tsk))
1732		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1733	rcu_read_unlock();
1734
1735	return pid;
1736}
1737
1738static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1739{
1740	return task_ppid_nr_ns(tsk, &init_pid_ns);
1741}
1742
1743static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1744					struct pid_namespace *ns)
1745{
1746	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1747}
1748
1749static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1750{
1751	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1752}
1753
1754
1755static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1756					struct pid_namespace *ns)
1757{
1758	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1759}
1760
1761static inline pid_t task_session_vnr(struct task_struct *tsk)
1762{
1763	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1764}
1765
1766/* obsolete, do not use */
1767static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1768{
1769	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1770}
1771
1772/**
1773 * pid_alive - check that a task structure is not stale
1774 * @p: Task structure to be checked.
1775 *
1776 * Test if a process is not yet dead (at most zombie state)
1777 * If pid_alive fails, then pointers within the task structure
1778 * can be stale and must not be dereferenced.
1779 *
1780 * Return: 1 if the process is alive. 0 otherwise.
1781 */
1782static inline int pid_alive(const struct task_struct *p)
1783{
1784	return p->pids[PIDTYPE_PID].pid != NULL;
1785}
1786
1787/**
1788 * is_global_init - check if a task structure is init
1789 * @tsk: Task structure to be checked.
1790 *
1791 * Check if a task structure is the first user space task the kernel created.
1792 *
1793 * Return: 1 if the task structure is init. 0 otherwise.
1794 */
1795static inline int is_global_init(struct task_struct *tsk)
1796{
1797	return tsk->pid == 1;
1798}
1799
 
 
 
 
 
 
1800extern struct pid *cad_pid;
1801
1802extern void free_task(struct task_struct *tsk);
1803#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1804
1805extern void __put_task_struct(struct task_struct *t);
1806
1807static inline void put_task_struct(struct task_struct *t)
1808{
1809	if (atomic_dec_and_test(&t->usage))
1810		__put_task_struct(t);
1811}
1812
1813#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1814extern void task_cputime(struct task_struct *t,
1815			 cputime_t *utime, cputime_t *stime);
1816extern void task_cputime_scaled(struct task_struct *t,
1817				cputime_t *utimescaled, cputime_t *stimescaled);
1818extern cputime_t task_gtime(struct task_struct *t);
1819#else
1820static inline void task_cputime(struct task_struct *t,
1821				cputime_t *utime, cputime_t *stime)
1822{
1823	if (utime)
1824		*utime = t->utime;
1825	if (stime)
1826		*stime = t->stime;
1827}
1828
1829static inline void task_cputime_scaled(struct task_struct *t,
1830				       cputime_t *utimescaled,
1831				       cputime_t *stimescaled)
1832{
1833	if (utimescaled)
1834		*utimescaled = t->utimescaled;
1835	if (stimescaled)
1836		*stimescaled = t->stimescaled;
1837}
1838
1839static inline cputime_t task_gtime(struct task_struct *t)
1840{
1841	return t->gtime;
1842}
1843#endif
1844extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1845extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1846
1847/*
1848 * Per process flags
1849 */
 
1850#define PF_EXITING	0x00000004	/* getting shut down */
1851#define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1852#define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1853#define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
1854#define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1855#define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1856#define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1857#define PF_DUMPCORE	0x00000200	/* dumped core */
1858#define PF_SIGNALED	0x00000400	/* killed by a signal */
1859#define PF_MEMALLOC	0x00000800	/* Allocating memory */
1860#define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
1861#define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1862#define PF_USED_ASYNC	0x00004000	/* used async_schedule*(), used by module init */
1863#define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1864#define PF_FROZEN	0x00010000	/* frozen for system suspend */
1865#define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1866#define PF_KSWAPD	0x00040000	/* I am kswapd */
1867#define PF_MEMALLOC_NOIO 0x00080000	/* Allocating memory without IO involved */
1868#define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1869#define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1870#define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1871#define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1872#define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1873#define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1874#define PF_NO_SETAFFINITY 0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
1875#define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
 
1876#define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1877#define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
1878#define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
1879
1880/*
1881 * Only the _current_ task can read/write to tsk->flags, but other
1882 * tasks can access tsk->flags in readonly mode for example
1883 * with tsk_used_math (like during threaded core dumping).
1884 * There is however an exception to this rule during ptrace
1885 * or during fork: the ptracer task is allowed to write to the
1886 * child->flags of its traced child (same goes for fork, the parent
1887 * can write to the child->flags), because we're guaranteed the
1888 * child is not running and in turn not changing child->flags
1889 * at the same time the parent does it.
1890 */
1891#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1892#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1893#define clear_used_math() clear_stopped_child_used_math(current)
1894#define set_used_math() set_stopped_child_used_math(current)
1895#define conditional_stopped_child_used_math(condition, child) \
1896	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1897#define conditional_used_math(condition) \
1898	conditional_stopped_child_used_math(condition, current)
1899#define copy_to_stopped_child_used_math(child) \
1900	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1901/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1902#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1903#define used_math() tsk_used_math(current)
1904
1905/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1906static inline gfp_t memalloc_noio_flags(gfp_t flags)
1907{
1908	if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1909		flags &= ~__GFP_IO;
1910	return flags;
1911}
1912
1913static inline unsigned int memalloc_noio_save(void)
1914{
1915	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1916	current->flags |= PF_MEMALLOC_NOIO;
1917	return flags;
1918}
1919
1920static inline void memalloc_noio_restore(unsigned int flags)
1921{
1922	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1923}
1924
1925/*
1926 * task->jobctl flags
1927 */
1928#define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */
1929
1930#define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */
1931#define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */
1932#define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */
1933#define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */
1934#define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */
1935#define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */
1936#define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */
1937
1938#define JOBCTL_STOP_DEQUEUED	(1 << JOBCTL_STOP_DEQUEUED_BIT)
1939#define JOBCTL_STOP_PENDING	(1 << JOBCTL_STOP_PENDING_BIT)
1940#define JOBCTL_STOP_CONSUME	(1 << JOBCTL_STOP_CONSUME_BIT)
1941#define JOBCTL_TRAP_STOP	(1 << JOBCTL_TRAP_STOP_BIT)
1942#define JOBCTL_TRAP_NOTIFY	(1 << JOBCTL_TRAP_NOTIFY_BIT)
1943#define JOBCTL_TRAPPING		(1 << JOBCTL_TRAPPING_BIT)
1944#define JOBCTL_LISTENING	(1 << JOBCTL_LISTENING_BIT)
1945
1946#define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1947#define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1948
1949extern bool task_set_jobctl_pending(struct task_struct *task,
1950				    unsigned int mask);
1951extern void task_clear_jobctl_trapping(struct task_struct *task);
1952extern void task_clear_jobctl_pending(struct task_struct *task,
1953				      unsigned int mask);
1954
1955#ifdef CONFIG_PREEMPT_RCU
1956
1957#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1958#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
 
1959
1960static inline void rcu_copy_process(struct task_struct *p)
1961{
1962	p->rcu_read_lock_nesting = 0;
1963	p->rcu_read_unlock_special = 0;
1964#ifdef CONFIG_TREE_PREEMPT_RCU
1965	p->rcu_blocked_node = NULL;
1966#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1967#ifdef CONFIG_RCU_BOOST
1968	p->rcu_boost_mutex = NULL;
1969#endif /* #ifdef CONFIG_RCU_BOOST */
1970	INIT_LIST_HEAD(&p->rcu_node_entry);
1971}
1972
1973#else
1974
1975static inline void rcu_copy_process(struct task_struct *p)
1976{
1977}
1978
1979#endif
1980
1981static inline void tsk_restore_flags(struct task_struct *task,
1982				unsigned long orig_flags, unsigned long flags)
1983{
1984	task->flags &= ~flags;
1985	task->flags |= orig_flags & flags;
1986}
1987
1988#ifdef CONFIG_SMP
1989extern void do_set_cpus_allowed(struct task_struct *p,
1990			       const struct cpumask *new_mask);
1991
1992extern int set_cpus_allowed_ptr(struct task_struct *p,
1993				const struct cpumask *new_mask);
1994#else
1995static inline void do_set_cpus_allowed(struct task_struct *p,
1996				      const struct cpumask *new_mask)
1997{
1998}
1999static inline int set_cpus_allowed_ptr(struct task_struct *p,
2000				       const struct cpumask *new_mask)
2001{
2002	if (!cpumask_test_cpu(0, new_mask))
2003		return -EINVAL;
2004	return 0;
2005}
2006#endif
2007
2008#ifdef CONFIG_NO_HZ_COMMON
2009void calc_load_enter_idle(void);
2010void calc_load_exit_idle(void);
2011#else
2012static inline void calc_load_enter_idle(void) { }
2013static inline void calc_load_exit_idle(void) { }
2014#endif /* CONFIG_NO_HZ_COMMON */
2015
2016#ifndef CONFIG_CPUMASK_OFFSTACK
2017static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
2018{
2019	return set_cpus_allowed_ptr(p, &new_mask);
2020}
2021#endif
2022
2023/*
2024 * Do not use outside of architecture code which knows its limitations.
2025 *
2026 * sched_clock() has no promise of monotonicity or bounded drift between
2027 * CPUs, use (which you should not) requires disabling IRQs.
2028 *
2029 * Please use one of the three interfaces below.
2030 */
2031extern unsigned long long notrace sched_clock(void);
2032/*
2033 * See the comment in kernel/sched/clock.c
2034 */
2035extern u64 cpu_clock(int cpu);
2036extern u64 local_clock(void);
2037extern u64 sched_clock_cpu(int cpu);
2038
2039
2040extern void sched_clock_init(void);
2041
2042#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2043static inline void sched_clock_tick(void)
2044{
2045}
2046
2047static inline void sched_clock_idle_sleep_event(void)
2048{
2049}
2050
2051static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2052{
2053}
2054#else
2055/*
2056 * Architectures can set this to 1 if they have specified
2057 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2058 * but then during bootup it turns out that sched_clock()
2059 * is reliable after all:
2060 */
2061extern int sched_clock_stable(void);
2062extern void set_sched_clock_stable(void);
2063extern void clear_sched_clock_stable(void);
2064
2065extern void sched_clock_tick(void);
2066extern void sched_clock_idle_sleep_event(void);
2067extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2068#endif
2069
2070#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2071/*
2072 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2073 * The reason for this explicit opt-in is not to have perf penalty with
2074 * slow sched_clocks.
2075 */
2076extern void enable_sched_clock_irqtime(void);
2077extern void disable_sched_clock_irqtime(void);
2078#else
2079static inline void enable_sched_clock_irqtime(void) {}
2080static inline void disable_sched_clock_irqtime(void) {}
2081#endif
2082
2083extern unsigned long long
2084task_sched_runtime(struct task_struct *task);
2085
2086/* sched_exec is called by processes performing an exec */
2087#ifdef CONFIG_SMP
2088extern void sched_exec(void);
2089#else
2090#define sched_exec()   {}
2091#endif
2092
2093extern void sched_clock_idle_sleep_event(void);
2094extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2095
2096#ifdef CONFIG_HOTPLUG_CPU
2097extern void idle_task_exit(void);
2098#else
2099static inline void idle_task_exit(void) {}
2100#endif
2101
2102#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2103extern void wake_up_nohz_cpu(int cpu);
2104#else
2105static inline void wake_up_nohz_cpu(int cpu) { }
2106#endif
2107
2108#ifdef CONFIG_NO_HZ_FULL
2109extern bool sched_can_stop_tick(void);
2110extern u64 scheduler_tick_max_deferment(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2111#else
2112static inline bool sched_can_stop_tick(void) { return false; }
 
 
 
2113#endif
 
 
 
 
 
 
2114
2115#ifdef CONFIG_SCHED_AUTOGROUP
 
 
2116extern void sched_autogroup_create_attach(struct task_struct *p);
2117extern void sched_autogroup_detach(struct task_struct *p);
2118extern void sched_autogroup_fork(struct signal_struct *sig);
2119extern void sched_autogroup_exit(struct signal_struct *sig);
2120#ifdef CONFIG_PROC_FS
2121extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2122extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2123#endif
2124#else
2125static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2126static inline void sched_autogroup_detach(struct task_struct *p) { }
2127static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2128static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2129#endif
2130
 
 
 
 
 
 
 
 
 
 
 
 
2131extern bool yield_to(struct task_struct *p, bool preempt);
2132extern void set_user_nice(struct task_struct *p, long nice);
2133extern int task_prio(const struct task_struct *p);
2134/**
2135 * task_nice - return the nice value of a given task.
2136 * @p: the task in question.
2137 *
2138 * Return: The nice value [ -20 ... 0 ... 19 ].
2139 */
2140static inline int task_nice(const struct task_struct *p)
2141{
2142	return PRIO_TO_NICE((p)->static_prio);
2143}
2144extern int can_nice(const struct task_struct *p, const int nice);
2145extern int task_curr(const struct task_struct *p);
2146extern int idle_cpu(int cpu);
2147extern int sched_setscheduler(struct task_struct *, int,
2148			      const struct sched_param *);
2149extern int sched_setscheduler_nocheck(struct task_struct *, int,
2150				      const struct sched_param *);
2151extern int sched_setattr(struct task_struct *,
2152			 const struct sched_attr *);
2153extern struct task_struct *idle_task(int cpu);
2154/**
2155 * is_idle_task - is the specified task an idle task?
2156 * @p: the task in question.
2157 *
2158 * Return: 1 if @p is an idle task. 0 otherwise.
2159 */
2160static inline bool is_idle_task(const struct task_struct *p)
2161{
2162	return p->pid == 0;
2163}
2164extern struct task_struct *curr_task(int cpu);
2165extern void set_curr_task(int cpu, struct task_struct *p);
2166
2167void yield(void);
2168
2169/*
2170 * The default (Linux) execution domain.
2171 */
2172extern struct exec_domain	default_exec_domain;
2173
2174union thread_union {
2175	struct thread_info thread_info;
2176	unsigned long stack[THREAD_SIZE/sizeof(long)];
2177};
2178
2179#ifndef __HAVE_ARCH_KSTACK_END
2180static inline int kstack_end(void *addr)
2181{
2182	/* Reliable end of stack detection:
2183	 * Some APM bios versions misalign the stack
2184	 */
2185	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2186}
2187#endif
2188
2189extern union thread_union init_thread_union;
2190extern struct task_struct init_task;
2191
2192extern struct   mm_struct init_mm;
2193
2194extern struct pid_namespace init_pid_ns;
2195
2196/*
2197 * find a task by one of its numerical ids
2198 *
2199 * find_task_by_pid_ns():
2200 *      finds a task by its pid in the specified namespace
2201 * find_task_by_vpid():
2202 *      finds a task by its virtual pid
2203 *
2204 * see also find_vpid() etc in include/linux/pid.h
2205 */
2206
2207extern struct task_struct *find_task_by_vpid(pid_t nr);
2208extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2209		struct pid_namespace *ns);
2210
 
 
2211/* per-UID process charging. */
2212extern struct user_struct * alloc_uid(kuid_t);
2213static inline struct user_struct *get_uid(struct user_struct *u)
2214{
2215	atomic_inc(&u->__count);
2216	return u;
2217}
2218extern void free_uid(struct user_struct *);
 
2219
2220#include <asm/current.h>
2221
2222extern void xtime_update(unsigned long ticks);
2223
2224extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2225extern int wake_up_process(struct task_struct *tsk);
2226extern void wake_up_new_task(struct task_struct *tsk);
2227#ifdef CONFIG_SMP
2228 extern void kick_process(struct task_struct *tsk);
2229#else
2230 static inline void kick_process(struct task_struct *tsk) { }
2231#endif
2232extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2233extern void sched_dead(struct task_struct *p);
2234
2235extern void proc_caches_init(void);
2236extern void flush_signals(struct task_struct *);
2237extern void __flush_signals(struct task_struct *);
2238extern void ignore_signals(struct task_struct *);
2239extern void flush_signal_handlers(struct task_struct *, int force_default);
2240extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2241
2242static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2243{
2244	unsigned long flags;
2245	int ret;
2246
2247	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2248	ret = dequeue_signal(tsk, mask, info);
2249	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2250
2251	return ret;
2252}
2253
2254extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2255			      sigset_t *mask);
2256extern void unblock_all_signals(void);
2257extern void release_task(struct task_struct * p);
2258extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2259extern int force_sigsegv(int, struct task_struct *);
2260extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2261extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2262extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2263extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2264				const struct cred *, u32);
2265extern int kill_pgrp(struct pid *pid, int sig, int priv);
2266extern int kill_pid(struct pid *pid, int sig, int priv);
2267extern int kill_proc_info(int, struct siginfo *, pid_t);
2268extern __must_check bool do_notify_parent(struct task_struct *, int);
2269extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2270extern void force_sig(int, struct task_struct *);
2271extern int send_sig(int, struct task_struct *, int);
2272extern int zap_other_threads(struct task_struct *p);
2273extern struct sigqueue *sigqueue_alloc(void);
2274extern void sigqueue_free(struct sigqueue *);
2275extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2276extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2277
2278static inline void restore_saved_sigmask(void)
2279{
2280	if (test_and_clear_restore_sigmask())
2281		__set_current_blocked(&current->saved_sigmask);
2282}
2283
2284static inline sigset_t *sigmask_to_save(void)
2285{
2286	sigset_t *res = &current->blocked;
2287	if (unlikely(test_restore_sigmask()))
2288		res = &current->saved_sigmask;
2289	return res;
2290}
2291
2292static inline int kill_cad_pid(int sig, int priv)
2293{
2294	return kill_pid(cad_pid, sig, priv);
2295}
2296
2297/* These can be the second arg to send_sig_info/send_group_sig_info.  */
2298#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2299#define SEND_SIG_PRIV	((struct siginfo *) 1)
2300#define SEND_SIG_FORCED	((struct siginfo *) 2)
2301
2302/*
2303 * True if we are on the alternate signal stack.
2304 */
2305static inline int on_sig_stack(unsigned long sp)
2306{
2307#ifdef CONFIG_STACK_GROWSUP
2308	return sp >= current->sas_ss_sp &&
2309		sp - current->sas_ss_sp < current->sas_ss_size;
2310#else
2311	return sp > current->sas_ss_sp &&
2312		sp - current->sas_ss_sp <= current->sas_ss_size;
2313#endif
2314}
2315
2316static inline int sas_ss_flags(unsigned long sp)
2317{
2318	return (current->sas_ss_size == 0 ? SS_DISABLE
2319		: on_sig_stack(sp) ? SS_ONSTACK : 0);
2320}
2321
2322static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2323{
2324	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2325#ifdef CONFIG_STACK_GROWSUP
2326		return current->sas_ss_sp;
2327#else
2328		return current->sas_ss_sp + current->sas_ss_size;
2329#endif
2330	return sp;
2331}
2332
2333/*
2334 * Routines for handling mm_structs
2335 */
2336extern struct mm_struct * mm_alloc(void);
2337
2338/* mmdrop drops the mm and the page tables */
2339extern void __mmdrop(struct mm_struct *);
2340static inline void mmdrop(struct mm_struct * mm)
2341{
2342	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2343		__mmdrop(mm);
2344}
2345
2346/* mmput gets rid of the mappings and all user-space */
2347extern void mmput(struct mm_struct *);
2348/* Grab a reference to a task's mm, if it is not already going away */
2349extern struct mm_struct *get_task_mm(struct task_struct *task);
2350/*
2351 * Grab a reference to a task's mm, if it is not already going away
2352 * and ptrace_may_access with the mode parameter passed to it
2353 * succeeds.
2354 */
2355extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2356/* Remove the current tasks stale references to the old mm_struct */
2357extern void mm_release(struct task_struct *, struct mm_struct *);
 
 
2358
2359extern int copy_thread(unsigned long, unsigned long, unsigned long,
2360			struct task_struct *);
2361extern void flush_thread(void);
2362extern void exit_thread(void);
2363
2364extern void exit_files(struct task_struct *);
2365extern void __cleanup_sighand(struct sighand_struct *);
2366
2367extern void exit_itimers(struct signal_struct *);
2368extern void flush_itimer_signals(void);
2369
2370extern void do_group_exit(int);
2371
 
2372extern int allow_signal(int);
2373extern int disallow_signal(int);
2374
2375extern int do_execve(struct filename *,
2376		     const char __user * const __user *,
2377		     const char __user * const __user *);
2378extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2379struct task_struct *fork_idle(int);
2380extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2381
2382extern void set_task_comm(struct task_struct *tsk, const char *from);
2383extern char *get_task_comm(char *to, struct task_struct *tsk);
2384
2385#ifdef CONFIG_SMP
2386void scheduler_ipi(void);
2387extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2388#else
2389static inline void scheduler_ipi(void) { }
2390static inline unsigned long wait_task_inactive(struct task_struct *p,
2391					       long match_state)
2392{
2393	return 1;
2394}
2395#endif
2396
2397#define next_task(p) \
2398	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2399
2400#define for_each_process(p) \
2401	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2402
2403extern bool current_is_single_threaded(void);
2404
2405/*
2406 * Careful: do_each_thread/while_each_thread is a double loop so
2407 *          'break' will not work as expected - use goto instead.
2408 */
2409#define do_each_thread(g, t) \
2410	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2411
2412#define while_each_thread(g, t) \
2413	while ((t = next_thread(t)) != g)
2414
2415#define __for_each_thread(signal, t)	\
2416	list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2417
2418#define for_each_thread(p, t)		\
2419	__for_each_thread((p)->signal, t)
2420
2421/* Careful: this is a double loop, 'break' won't work as expected. */
2422#define for_each_process_thread(p, t)	\
2423	for_each_process(p) for_each_thread(p, t)
2424
2425static inline int get_nr_threads(struct task_struct *tsk)
2426{
2427	return tsk->signal->nr_threads;
2428}
2429
2430static inline bool thread_group_leader(struct task_struct *p)
2431{
2432	return p->exit_signal >= 0;
2433}
2434
2435/* Do to the insanities of de_thread it is possible for a process
2436 * to have the pid of the thread group leader without actually being
2437 * the thread group leader.  For iteration through the pids in proc
2438 * all we care about is that we have a task with the appropriate
2439 * pid, we don't actually care if we have the right task.
2440 */
2441static inline bool has_group_leader_pid(struct task_struct *p)
2442{
2443	return task_pid(p) == p->signal->leader_pid;
2444}
2445
2446static inline
2447bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2448{
2449	return p1->signal == p2->signal;
2450}
2451
2452static inline struct task_struct *next_thread(const struct task_struct *p)
2453{
2454	return list_entry_rcu(p->thread_group.next,
2455			      struct task_struct, thread_group);
2456}
2457
2458static inline int thread_group_empty(struct task_struct *p)
2459{
2460	return list_empty(&p->thread_group);
2461}
2462
2463#define delay_group_leader(p) \
2464		(thread_group_leader(p) && !thread_group_empty(p))
2465
2466/*
2467 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2468 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2469 * pins the final release of task.io_context.  Also protects ->cpuset and
2470 * ->cgroup.subsys[]. And ->vfork_done.
2471 *
2472 * Nests both inside and outside of read_lock(&tasklist_lock).
2473 * It must not be nested with write_lock_irq(&tasklist_lock),
2474 * neither inside nor outside.
2475 */
2476static inline void task_lock(struct task_struct *p)
2477{
2478	spin_lock(&p->alloc_lock);
2479}
2480
2481static inline void task_unlock(struct task_struct *p)
2482{
2483	spin_unlock(&p->alloc_lock);
2484}
2485
2486extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2487							unsigned long *flags);
2488
2489static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2490						       unsigned long *flags)
2491{
2492	struct sighand_struct *ret;
2493
2494	ret = __lock_task_sighand(tsk, flags);
2495	(void)__cond_lock(&tsk->sighand->siglock, ret);
2496	return ret;
2497}
2498
2499static inline void unlock_task_sighand(struct task_struct *tsk,
2500						unsigned long *flags)
2501{
2502	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2503}
2504
 
2505#ifdef CONFIG_CGROUPS
2506static inline void threadgroup_change_begin(struct task_struct *tsk)
2507{
2508	down_read(&tsk->signal->group_rwsem);
2509}
2510static inline void threadgroup_change_end(struct task_struct *tsk)
2511{
2512	up_read(&tsk->signal->group_rwsem);
2513}
2514
2515/**
2516 * threadgroup_lock - lock threadgroup
2517 * @tsk: member task of the threadgroup to lock
2518 *
2519 * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2520 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2521 * change ->group_leader/pid.  This is useful for cases where the threadgroup
2522 * needs to stay stable across blockable operations.
2523 *
2524 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2525 * synchronization.  While held, no new task will be added to threadgroup
2526 * and no existing live task will have its PF_EXITING set.
2527 *
2528 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2529 * sub-thread becomes a new leader.
2530 */
2531static inline void threadgroup_lock(struct task_struct *tsk)
2532{
2533	down_write(&tsk->signal->group_rwsem);
2534}
2535
2536/**
2537 * threadgroup_unlock - unlock threadgroup
2538 * @tsk: member task of the threadgroup to unlock
2539 *
2540 * Reverse threadgroup_lock().
2541 */
2542static inline void threadgroup_unlock(struct task_struct *tsk)
2543{
2544	up_write(&tsk->signal->group_rwsem);
2545}
2546#else
2547static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2548static inline void threadgroup_change_end(struct task_struct *tsk) {}
2549static inline void threadgroup_lock(struct task_struct *tsk) {}
2550static inline void threadgroup_unlock(struct task_struct *tsk) {}
2551#endif
2552
2553#ifndef __HAVE_THREAD_FUNCTIONS
2554
2555#define task_thread_info(task)	((struct thread_info *)(task)->stack)
2556#define task_stack_page(task)	((task)->stack)
2557
2558static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2559{
2560	*task_thread_info(p) = *task_thread_info(org);
2561	task_thread_info(p)->task = p;
2562}
2563
2564static inline unsigned long *end_of_stack(struct task_struct *p)
2565{
2566	return (unsigned long *)(task_thread_info(p) + 1);
2567}
2568
2569#endif
2570
2571static inline int object_is_on_stack(void *obj)
2572{
2573	void *stack = task_stack_page(current);
2574
2575	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2576}
2577
2578extern void thread_info_cache_init(void);
2579
2580#ifdef CONFIG_DEBUG_STACK_USAGE
2581static inline unsigned long stack_not_used(struct task_struct *p)
2582{
2583	unsigned long *n = end_of_stack(p);
2584
2585	do { 	/* Skip over canary */
2586		n++;
2587	} while (!*n);
2588
2589	return (unsigned long)n - (unsigned long)end_of_stack(p);
2590}
2591#endif
2592
2593/* set thread flags in other task's structures
2594 * - see asm/thread_info.h for TIF_xxxx flags available
2595 */
2596static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2597{
2598	set_ti_thread_flag(task_thread_info(tsk), flag);
2599}
2600
2601static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2602{
2603	clear_ti_thread_flag(task_thread_info(tsk), flag);
2604}
2605
2606static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2607{
2608	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2609}
2610
2611static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2612{
2613	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2614}
2615
2616static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2617{
2618	return test_ti_thread_flag(task_thread_info(tsk), flag);
2619}
2620
2621static inline void set_tsk_need_resched(struct task_struct *tsk)
2622{
2623	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2624}
2625
2626static inline void clear_tsk_need_resched(struct task_struct *tsk)
2627{
2628	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2629}
2630
2631static inline int test_tsk_need_resched(struct task_struct *tsk)
2632{
2633	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2634}
2635
2636static inline int restart_syscall(void)
2637{
2638	set_tsk_thread_flag(current, TIF_SIGPENDING);
2639	return -ERESTARTNOINTR;
2640}
2641
2642static inline int signal_pending(struct task_struct *p)
2643{
2644	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2645}
2646
2647static inline int __fatal_signal_pending(struct task_struct *p)
2648{
2649	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2650}
2651
2652static inline int fatal_signal_pending(struct task_struct *p)
2653{
2654	return signal_pending(p) && __fatal_signal_pending(p);
2655}
2656
2657static inline int signal_pending_state(long state, struct task_struct *p)
2658{
2659	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2660		return 0;
2661	if (!signal_pending(p))
2662		return 0;
2663
2664	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2665}
2666
 
 
 
 
 
2667/*
2668 * cond_resched() and cond_resched_lock(): latency reduction via
2669 * explicit rescheduling in places that are safe. The return
2670 * value indicates whether a reschedule was done in fact.
2671 * cond_resched_lock() will drop the spinlock before scheduling,
2672 * cond_resched_softirq() will enable bhs before scheduling.
2673 */
2674extern int _cond_resched(void);
2675
2676#define cond_resched() ({			\
2677	__might_sleep(__FILE__, __LINE__, 0);	\
2678	_cond_resched();			\
2679})
2680
2681extern int __cond_resched_lock(spinlock_t *lock);
2682
2683#ifdef CONFIG_PREEMPT_COUNT
2684#define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
2685#else
2686#define PREEMPT_LOCK_OFFSET	0
2687#endif
2688
2689#define cond_resched_lock(lock) ({				\
2690	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
2691	__cond_resched_lock(lock);				\
2692})
2693
2694extern int __cond_resched_softirq(void);
2695
2696#define cond_resched_softirq() ({					\
2697	__might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
2698	__cond_resched_softirq();					\
2699})
2700
2701static inline void cond_resched_rcu(void)
2702{
2703#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2704	rcu_read_unlock();
2705	cond_resched();
2706	rcu_read_lock();
2707#endif
2708}
2709
2710/*
2711 * Does a critical section need to be broken due to another
2712 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2713 * but a general need for low latency)
2714 */
2715static inline int spin_needbreak(spinlock_t *lock)
2716{
2717#ifdef CONFIG_PREEMPT
2718	return spin_is_contended(lock);
2719#else
2720	return 0;
2721#endif
2722}
2723
2724/*
2725 * Idle thread specific functions to determine the need_resched
2726 * polling state. We have two versions, one based on TS_POLLING in
2727 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2728 * thread_info.flags
2729 */
2730#ifdef TS_POLLING
2731static inline int tsk_is_polling(struct task_struct *p)
2732{
2733	return task_thread_info(p)->status & TS_POLLING;
2734}
2735static inline void __current_set_polling(void)
2736{
2737	current_thread_info()->status |= TS_POLLING;
2738}
2739
2740static inline bool __must_check current_set_polling_and_test(void)
2741{
2742	__current_set_polling();
2743
2744	/*
2745	 * Polling state must be visible before we test NEED_RESCHED,
2746	 * paired by resched_task()
2747	 */
2748	smp_mb();
2749
2750	return unlikely(tif_need_resched());
2751}
2752
2753static inline void __current_clr_polling(void)
2754{
2755	current_thread_info()->status &= ~TS_POLLING;
2756}
2757
2758static inline bool __must_check current_clr_polling_and_test(void)
2759{
2760	__current_clr_polling();
2761
2762	/*
2763	 * Polling state must be visible before we test NEED_RESCHED,
2764	 * paired by resched_task()
2765	 */
2766	smp_mb();
2767
2768	return unlikely(tif_need_resched());
2769}
2770#elif defined(TIF_POLLING_NRFLAG)
2771static inline int tsk_is_polling(struct task_struct *p)
2772{
2773	return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2774}
2775
2776static inline void __current_set_polling(void)
2777{
2778	set_thread_flag(TIF_POLLING_NRFLAG);
2779}
2780
2781static inline bool __must_check current_set_polling_and_test(void)
2782{
2783	__current_set_polling();
2784
2785	/*
2786	 * Polling state must be visible before we test NEED_RESCHED,
2787	 * paired by resched_task()
2788	 *
2789	 * XXX: assumes set/clear bit are identical barrier wise.
2790	 */
2791	smp_mb__after_clear_bit();
2792
2793	return unlikely(tif_need_resched());
2794}
2795
2796static inline void __current_clr_polling(void)
2797{
2798	clear_thread_flag(TIF_POLLING_NRFLAG);
2799}
2800
2801static inline bool __must_check current_clr_polling_and_test(void)
2802{
2803	__current_clr_polling();
2804
2805	/*
2806	 * Polling state must be visible before we test NEED_RESCHED,
2807	 * paired by resched_task()
2808	 */
2809	smp_mb__after_clear_bit();
2810
2811	return unlikely(tif_need_resched());
2812}
2813
2814#else
2815static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2816static inline void __current_set_polling(void) { }
2817static inline void __current_clr_polling(void) { }
2818
2819static inline bool __must_check current_set_polling_and_test(void)
2820{
2821	return unlikely(tif_need_resched());
2822}
2823static inline bool __must_check current_clr_polling_and_test(void)
2824{
2825	return unlikely(tif_need_resched());
2826}
2827#endif
2828
2829static inline void current_clr_polling(void)
2830{
2831	__current_clr_polling();
2832
2833	/*
2834	 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
2835	 * Once the bit is cleared, we'll get IPIs with every new
2836	 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
2837	 * fold.
2838	 */
2839	smp_mb(); /* paired with resched_task() */
2840
2841	preempt_fold_need_resched();
2842}
2843
2844static __always_inline bool need_resched(void)
2845{
2846	return unlikely(tif_need_resched());
2847}
2848
2849/*
2850 * Thread group CPU time accounting.
2851 */
2852void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2853void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2854
2855static inline void thread_group_cputime_init(struct signal_struct *sig)
2856{
2857	raw_spin_lock_init(&sig->cputimer.lock);
2858}
2859
2860/*
2861 * Reevaluate whether the task has signals pending delivery.
2862 * Wake the task if so.
2863 * This is required every time the blocked sigset_t changes.
2864 * callers must hold sighand->siglock.
2865 */
2866extern void recalc_sigpending_and_wake(struct task_struct *t);
2867extern void recalc_sigpending(void);
2868
2869extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2870
2871static inline void signal_wake_up(struct task_struct *t, bool resume)
2872{
2873	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2874}
2875static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2876{
2877	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2878}
2879
2880/*
2881 * Wrappers for p->thread_info->cpu access. No-op on UP.
2882 */
2883#ifdef CONFIG_SMP
2884
2885static inline unsigned int task_cpu(const struct task_struct *p)
2886{
2887	return task_thread_info(p)->cpu;
2888}
2889
2890static inline int task_node(const struct task_struct *p)
2891{
2892	return cpu_to_node(task_cpu(p));
2893}
2894
2895extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2896
2897#else
2898
2899static inline unsigned int task_cpu(const struct task_struct *p)
2900{
2901	return 0;
2902}
2903
2904static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2905{
2906}
2907
2908#endif /* CONFIG_SMP */
2909
2910extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2911extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2912
 
 
2913#ifdef CONFIG_CGROUP_SCHED
 
2914extern struct task_group root_task_group;
2915#endif /* CONFIG_CGROUP_SCHED */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2916
2917extern int task_can_switch_user(struct user_struct *up,
2918					struct task_struct *tsk);
2919
2920#ifdef CONFIG_TASK_XACCT
2921static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2922{
2923	tsk->ioac.rchar += amt;
2924}
2925
2926static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2927{
2928	tsk->ioac.wchar += amt;
2929}
2930
2931static inline void inc_syscr(struct task_struct *tsk)
2932{
2933	tsk->ioac.syscr++;
2934}
2935
2936static inline void inc_syscw(struct task_struct *tsk)
2937{
2938	tsk->ioac.syscw++;
2939}
2940#else
2941static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2942{
2943}
2944
2945static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2946{
2947}
2948
2949static inline void inc_syscr(struct task_struct *tsk)
2950{
2951}
2952
2953static inline void inc_syscw(struct task_struct *tsk)
2954{
2955}
2956#endif
2957
2958#ifndef TASK_SIZE_OF
2959#define TASK_SIZE_OF(tsk)	TASK_SIZE
2960#endif
2961
2962#ifdef CONFIG_MM_OWNER
2963extern void mm_update_next_owner(struct mm_struct *mm);
2964extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2965#else
2966static inline void mm_update_next_owner(struct mm_struct *mm)
2967{
2968}
2969
2970static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2971{
2972}
2973#endif /* CONFIG_MM_OWNER */
2974
2975static inline unsigned long task_rlimit(const struct task_struct *tsk,
2976		unsigned int limit)
2977{
2978	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2979}
2980
2981static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2982		unsigned int limit)
2983{
2984	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2985}
2986
2987static inline unsigned long rlimit(unsigned int limit)
2988{
2989	return task_rlimit(current, limit);
2990}
2991
2992static inline unsigned long rlimit_max(unsigned int limit)
2993{
2994	return task_rlimit_max(current, limit);
2995}
 
 
2996
2997#endif
v3.1
   1#ifndef _LINUX_SCHED_H
   2#define _LINUX_SCHED_H
   3
   4/*
   5 * cloning flags:
   6 */
   7#define CSIGNAL		0x000000ff	/* signal mask to be sent at exit */
   8#define CLONE_VM	0x00000100	/* set if VM shared between processes */
   9#define CLONE_FS	0x00000200	/* set if fs info shared between processes */
  10#define CLONE_FILES	0x00000400	/* set if open files shared between processes */
  11#define CLONE_SIGHAND	0x00000800	/* set if signal handlers and blocked signals shared */
  12#define CLONE_PTRACE	0x00002000	/* set if we want to let tracing continue on the child too */
  13#define CLONE_VFORK	0x00004000	/* set if the parent wants the child to wake it up on mm_release */
  14#define CLONE_PARENT	0x00008000	/* set if we want to have the same parent as the cloner */
  15#define CLONE_THREAD	0x00010000	/* Same thread group? */
  16#define CLONE_NEWNS	0x00020000	/* New namespace group? */
  17#define CLONE_SYSVSEM	0x00040000	/* share system V SEM_UNDO semantics */
  18#define CLONE_SETTLS	0x00080000	/* create a new TLS for the child */
  19#define CLONE_PARENT_SETTID	0x00100000	/* set the TID in the parent */
  20#define CLONE_CHILD_CLEARTID	0x00200000	/* clear the TID in the child */
  21#define CLONE_DETACHED		0x00400000	/* Unused, ignored */
  22#define CLONE_UNTRACED		0x00800000	/* set if the tracing process can't force CLONE_PTRACE on this clone */
  23#define CLONE_CHILD_SETTID	0x01000000	/* set the TID in the child */
  24/* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state)
  25   and is now available for re-use. */
  26#define CLONE_NEWUTS		0x04000000	/* New utsname group? */
  27#define CLONE_NEWIPC		0x08000000	/* New ipcs */
  28#define CLONE_NEWUSER		0x10000000	/* New user namespace */
  29#define CLONE_NEWPID		0x20000000	/* New pid namespace */
  30#define CLONE_NEWNET		0x40000000	/* New network namespace */
  31#define CLONE_IO		0x80000000	/* Clone io context */
  32
  33/*
  34 * Scheduling policies
  35 */
  36#define SCHED_NORMAL		0
  37#define SCHED_FIFO		1
  38#define SCHED_RR		2
  39#define SCHED_BATCH		3
  40/* SCHED_ISO: reserved but not implemented yet */
  41#define SCHED_IDLE		5
  42/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
  43#define SCHED_RESET_ON_FORK     0x40000000
  44
  45#ifdef __KERNEL__
  46
  47struct sched_param {
  48	int sched_priority;
  49};
  50
  51#include <asm/param.h>	/* for HZ */
  52
  53#include <linux/capability.h>
  54#include <linux/threads.h>
  55#include <linux/kernel.h>
  56#include <linux/types.h>
  57#include <linux/timex.h>
  58#include <linux/jiffies.h>
 
  59#include <linux/rbtree.h>
  60#include <linux/thread_info.h>
  61#include <linux/cpumask.h>
  62#include <linux/errno.h>
  63#include <linux/nodemask.h>
  64#include <linux/mm_types.h>
 
  65
  66#include <asm/system.h>
  67#include <asm/page.h>
  68#include <asm/ptrace.h>
  69#include <asm/cputime.h>
  70
  71#include <linux/smp.h>
  72#include <linux/sem.h>
  73#include <linux/signal.h>
  74#include <linux/compiler.h>
  75#include <linux/completion.h>
  76#include <linux/pid.h>
  77#include <linux/percpu.h>
  78#include <linux/topology.h>
  79#include <linux/proportions.h>
  80#include <linux/seccomp.h>
  81#include <linux/rcupdate.h>
  82#include <linux/rculist.h>
  83#include <linux/rtmutex.h>
  84
  85#include <linux/time.h>
  86#include <linux/param.h>
  87#include <linux/resource.h>
  88#include <linux/timer.h>
  89#include <linux/hrtimer.h>
  90#include <linux/task_io_accounting.h>
  91#include <linux/latencytop.h>
  92#include <linux/cred.h>
 
 
 
  93
  94#include <asm/processor.h>
  95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96struct exec_domain;
  97struct futex_pi_state;
  98struct robust_list_head;
  99struct bio_list;
 100struct fs_struct;
 101struct perf_event_context;
 102struct blk_plug;
 
 
 
 
 
 103
 104/*
 105 * List of flags we want to share for kernel threads,
 106 * if only because they are not used by them anyway.
 107 */
 108#define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
 109
 110/*
 111 * These are the constant used to fake the fixed-point load-average
 112 * counting. Some notes:
 113 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
 114 *    a load-average precision of 10 bits integer + 11 bits fractional
 115 *  - if you want to count load-averages more often, you need more
 116 *    precision, or rounding will get you. With 2-second counting freq,
 117 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
 118 *    11 bit fractions.
 119 */
 120extern unsigned long avenrun[];		/* Load averages */
 121extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
 122
 123#define FSHIFT		11		/* nr of bits of precision */
 124#define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
 125#define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
 126#define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
 127#define EXP_5		2014		/* 1/exp(5sec/5min) */
 128#define EXP_15		2037		/* 1/exp(5sec/15min) */
 129
 130#define CALC_LOAD(load,exp,n) \
 131	load *= exp; \
 132	load += n*(FIXED_1-exp); \
 133	load >>= FSHIFT;
 134
 135extern unsigned long total_forks;
 136extern int nr_threads;
 137DECLARE_PER_CPU(unsigned long, process_counts);
 138extern int nr_processes(void);
 139extern unsigned long nr_running(void);
 140extern unsigned long nr_uninterruptible(void);
 141extern unsigned long nr_iowait(void);
 142extern unsigned long nr_iowait_cpu(int cpu);
 143extern unsigned long this_cpu_load(void);
 144
 145
 146extern void calc_global_load(unsigned long ticks);
 
 147
 148extern unsigned long get_parent_ip(unsigned long addr);
 149
 
 
 150struct seq_file;
 151struct cfs_rq;
 152struct task_group;
 153#ifdef CONFIG_SCHED_DEBUG
 154extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
 155extern void proc_sched_set_task(struct task_struct *p);
 156extern void
 157print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
 158#else
 159static inline void
 160proc_sched_show_task(struct task_struct *p, struct seq_file *m)
 161{
 162}
 163static inline void proc_sched_set_task(struct task_struct *p)
 164{
 165}
 166static inline void
 167print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
 168{
 169}
 170#endif
 171
 172/*
 173 * Task state bitmask. NOTE! These bits are also
 174 * encoded in fs/proc/array.c: get_task_state().
 175 *
 176 * We have two separate sets of flags: task->state
 177 * is about runnability, while task->exit_state are
 178 * about the task exiting. Confusing, but this way
 179 * modifying one set can't modify the other one by
 180 * mistake.
 181 */
 182#define TASK_RUNNING		0
 183#define TASK_INTERRUPTIBLE	1
 184#define TASK_UNINTERRUPTIBLE	2
 185#define __TASK_STOPPED		4
 186#define __TASK_TRACED		8
 187/* in tsk->exit_state */
 188#define EXIT_ZOMBIE		16
 189#define EXIT_DEAD		32
 
 190/* in tsk->state again */
 191#define TASK_DEAD		64
 192#define TASK_WAKEKILL		128
 193#define TASK_WAKING		256
 194#define TASK_STATE_MAX		512
 
 195
 196#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
 197
 198extern char ___assert_task_state[1 - 2*!!(
 199		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
 200
 201/* Convenience macros for the sake of set_task_state */
 202#define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
 203#define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
 204#define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
 205
 206/* Convenience macros for the sake of wake_up */
 207#define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 208#define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
 209
 210/* get_task_state() */
 211#define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
 212				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 213				 __TASK_TRACED)
 214
 215#define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
 216#define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
 217#define task_is_dead(task)	((task)->exit_state != 0)
 218#define task_is_stopped_or_traced(task)	\
 219			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 220#define task_contributes_to_load(task)	\
 221				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
 222				 (task->flags & PF_FREEZING) == 0)
 223
 224#define __set_task_state(tsk, state_value)		\
 225	do { (tsk)->state = (state_value); } while (0)
 226#define set_task_state(tsk, state_value)		\
 227	set_mb((tsk)->state, (state_value))
 228
 229/*
 230 * set_current_state() includes a barrier so that the write of current->state
 231 * is correctly serialised wrt the caller's subsequent test of whether to
 232 * actually sleep:
 233 *
 234 *	set_current_state(TASK_UNINTERRUPTIBLE);
 235 *	if (do_i_need_to_sleep())
 236 *		schedule();
 237 *
 238 * If the caller does not need such serialisation then use __set_current_state()
 239 */
 240#define __set_current_state(state_value)			\
 241	do { current->state = (state_value); } while (0)
 242#define set_current_state(state_value)		\
 243	set_mb(current->state, (state_value))
 244
 245/* Task command name length */
 246#define TASK_COMM_LEN 16
 247
 248#include <linux/spinlock.h>
 249
 250/*
 251 * This serializes "schedule()" and also protects
 252 * the run-queue from deletions/modifications (but
 253 * _adding_ to the beginning of the run-queue has
 254 * a separate lock).
 255 */
 256extern rwlock_t tasklist_lock;
 257extern spinlock_t mmlist_lock;
 258
 259struct task_struct;
 260
 261#ifdef CONFIG_PROVE_RCU
 262extern int lockdep_tasklist_lock_is_held(void);
 263#endif /* #ifdef CONFIG_PROVE_RCU */
 264
 265extern void sched_init(void);
 266extern void sched_init_smp(void);
 267extern asmlinkage void schedule_tail(struct task_struct *prev);
 268extern void init_idle(struct task_struct *idle, int cpu);
 269extern void init_idle_bootup_task(struct task_struct *idle);
 270
 271extern int runqueue_is_locked(int cpu);
 272
 273extern cpumask_var_t nohz_cpu_mask;
 274#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
 275extern void select_nohz_load_balancer(int stop_tick);
 276extern int get_nohz_timer_target(void);
 277#else
 278static inline void select_nohz_load_balancer(int stop_tick) { }
 
 
 
 
 
 279#endif
 280
 281/*
 282 * Only dump TASK_* tasks. (0 for all tasks)
 283 */
 284extern void show_state_filter(unsigned long state_filter);
 285
 286static inline void show_state(void)
 287{
 288	show_state_filter(0);
 289}
 290
 291extern void show_regs(struct pt_regs *);
 292
 293/*
 294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
 295 * task), SP is the stack pointer of the first frame that should be shown in the back
 296 * trace (or NULL if the entire call-chain of the task should be shown).
 297 */
 298extern void show_stack(struct task_struct *task, unsigned long *sp);
 299
 300void io_schedule(void);
 301long io_schedule_timeout(long timeout);
 302
 303extern void cpu_init (void);
 304extern void trap_init(void);
 305extern void update_process_times(int user);
 306extern void scheduler_tick(void);
 307
 308extern void sched_show_task(struct task_struct *p);
 309
 310#ifdef CONFIG_LOCKUP_DETECTOR
 311extern void touch_softlockup_watchdog(void);
 312extern void touch_softlockup_watchdog_sync(void);
 313extern void touch_all_softlockup_watchdogs(void);
 314extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
 315				  void __user *buffer,
 316				  size_t *lenp, loff_t *ppos);
 317extern unsigned int  softlockup_panic;
 318void lockup_detector_init(void);
 319#else
 320static inline void touch_softlockup_watchdog(void)
 321{
 322}
 323static inline void touch_softlockup_watchdog_sync(void)
 324{
 325}
 326static inline void touch_all_softlockup_watchdogs(void)
 327{
 328}
 329static inline void lockup_detector_init(void)
 330{
 331}
 332#endif
 333
 334#ifdef CONFIG_DETECT_HUNG_TASK
 335extern unsigned int  sysctl_hung_task_panic;
 336extern unsigned long sysctl_hung_task_check_count;
 337extern unsigned long sysctl_hung_task_timeout_secs;
 338extern unsigned long sysctl_hung_task_warnings;
 339extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
 340					 void __user *buffer,
 341					 size_t *lenp, loff_t *ppos);
 342#else
 343/* Avoid need for ifdefs elsewhere in the code */
 344enum { sysctl_hung_task_timeout_secs = 0 };
 
 345#endif
 346
 347/* Attach to any functions which should be ignored in wchan output. */
 348#define __sched		__attribute__((__section__(".sched.text")))
 349
 350/* Linker adds these: start and end of __sched functions */
 351extern char __sched_text_start[], __sched_text_end[];
 352
 353/* Is this address in the __sched functions? */
 354extern int in_sched_functions(unsigned long addr);
 355
 356#define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
 357extern signed long schedule_timeout(signed long timeout);
 358extern signed long schedule_timeout_interruptible(signed long timeout);
 359extern signed long schedule_timeout_killable(signed long timeout);
 360extern signed long schedule_timeout_uninterruptible(signed long timeout);
 361asmlinkage void schedule(void);
 362extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
 363
 364struct nsproxy;
 365struct user_namespace;
 366
 367/*
 368 * Default maximum number of active map areas, this limits the number of vmas
 369 * per mm struct. Users can overwrite this number by sysctl but there is a
 370 * problem.
 371 *
 372 * When a program's coredump is generated as ELF format, a section is created
 373 * per a vma. In ELF, the number of sections is represented in unsigned short.
 374 * This means the number of sections should be smaller than 65535 at coredump.
 375 * Because the kernel adds some informative sections to a image of program at
 376 * generating coredump, we need some margin. The number of extra sections is
 377 * 1-3 now and depends on arch. We use "5" as safe margin, here.
 378 */
 379#define MAPCOUNT_ELF_CORE_MARGIN	(5)
 380#define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
 381
 382extern int sysctl_max_map_count;
 383
 384#include <linux/aio.h>
 385
 386#ifdef CONFIG_MMU
 387extern void arch_pick_mmap_layout(struct mm_struct *mm);
 388extern unsigned long
 389arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
 390		       unsigned long, unsigned long);
 391extern unsigned long
 392arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 393			  unsigned long len, unsigned long pgoff,
 394			  unsigned long flags);
 395extern void arch_unmap_area(struct mm_struct *, unsigned long);
 396extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
 397#else
 398static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
 399#endif
 400
 401
 402extern void set_dumpable(struct mm_struct *mm, int value);
 403extern int get_dumpable(struct mm_struct *mm);
 404
 405/* mm flags */
 406/* dumpable bits */
 407#define MMF_DUMPABLE      0  /* core dump is permitted */
 408#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
 409
 
 410#define MMF_DUMPABLE_BITS 2
 411#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
 412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 413/* coredump filter bits */
 414#define MMF_DUMP_ANON_PRIVATE	2
 415#define MMF_DUMP_ANON_SHARED	3
 416#define MMF_DUMP_MAPPED_PRIVATE	4
 417#define MMF_DUMP_MAPPED_SHARED	5
 418#define MMF_DUMP_ELF_HEADERS	6
 419#define MMF_DUMP_HUGETLB_PRIVATE 7
 420#define MMF_DUMP_HUGETLB_SHARED  8
 421
 422#define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
 423#define MMF_DUMP_FILTER_BITS	7
 424#define MMF_DUMP_FILTER_MASK \
 425	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
 426#define MMF_DUMP_FILTER_DEFAULT \
 427	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
 428	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
 429
 430#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
 431# define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
 432#else
 433# define MMF_DUMP_MASK_DEFAULT_ELF	0
 434#endif
 435					/* leave room for more dump flags */
 436#define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
 437#define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
 
 
 
 
 438
 439#define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
 440
 441struct sighand_struct {
 442	atomic_t		count;
 443	struct k_sigaction	action[_NSIG];
 444	spinlock_t		siglock;
 445	wait_queue_head_t	signalfd_wqh;
 446};
 447
 448struct pacct_struct {
 449	int			ac_flag;
 450	long			ac_exitcode;
 451	unsigned long		ac_mem;
 452	cputime_t		ac_utime, ac_stime;
 453	unsigned long		ac_minflt, ac_majflt;
 454};
 455
 456struct cpu_itimer {
 457	cputime_t expires;
 458	cputime_t incr;
 459	u32 error;
 460	u32 incr_error;
 461};
 462
 463/**
 
 
 
 
 
 
 
 
 
 
 
 
 464 * struct task_cputime - collected CPU time counts
 465 * @utime:		time spent in user mode, in &cputime_t units
 466 * @stime:		time spent in kernel mode, in &cputime_t units
 467 * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
 468 *
 469 * This structure groups together three kinds of CPU time that are
 470 * tracked for threads and thread groups.  Most things considering
 
 
 
 471 * CPU time want to group these counts together and treat all three
 472 * of them in parallel.
 473 */
 474struct task_cputime {
 475	cputime_t utime;
 476	cputime_t stime;
 477	unsigned long long sum_exec_runtime;
 478};
 479/* Alternate field names when used to cache expirations. */
 480#define prof_exp	stime
 481#define virt_exp	utime
 482#define sched_exp	sum_exec_runtime
 483
 484#define INIT_CPUTIME	\
 485	(struct task_cputime) {					\
 486		.utime = cputime_zero,				\
 487		.stime = cputime_zero,				\
 488		.sum_exec_runtime = 0,				\
 489	}
 490
 
 
 
 
 
 
 491/*
 492 * Disable preemption until the scheduler is running.
 493 * Reset by start_kernel()->sched_init()->init_idle().
 494 *
 495 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
 496 * before the scheduler is active -- see should_resched().
 497 */
 498#define INIT_PREEMPT_COUNT	(1 + PREEMPT_ACTIVE)
 499
 500/**
 501 * struct thread_group_cputimer - thread group interval timer counts
 502 * @cputime:		thread group interval timers.
 503 * @running:		non-zero when there are timers running and
 504 * 			@cputime receives updates.
 505 * @lock:		lock for fields in this struct.
 506 *
 507 * This structure contains the version of task_cputime, above, that is
 508 * used for thread group CPU timer calculations.
 509 */
 510struct thread_group_cputimer {
 511	struct task_cputime cputime;
 512	int running;
 513	spinlock_t lock;
 514};
 515
 516#include <linux/rwsem.h>
 517struct autogroup;
 518
 519/*
 520 * NOTE! "signal_struct" does not have its own
 521 * locking, because a shared signal_struct always
 522 * implies a shared sighand_struct, so locking
 523 * sighand_struct is always a proper superset of
 524 * the locking of signal_struct.
 525 */
 526struct signal_struct {
 527	atomic_t		sigcnt;
 528	atomic_t		live;
 529	int			nr_threads;
 
 530
 531	wait_queue_head_t	wait_chldexit;	/* for wait4() */
 532
 533	/* current thread group signal load-balancing target: */
 534	struct task_struct	*curr_target;
 535
 536	/* shared signal handling: */
 537	struct sigpending	shared_pending;
 538
 539	/* thread group exit support */
 540	int			group_exit_code;
 541	/* overloaded:
 542	 * - notify group_exit_task when ->count is equal to notify_count
 543	 * - everyone except group_exit_task is stopped during signal delivery
 544	 *   of fatal signals, group_exit_task processes the signal.
 545	 */
 546	int			notify_count;
 547	struct task_struct	*group_exit_task;
 548
 549	/* thread group stop support, overloads group_exit_code too */
 550	int			group_stop_count;
 551	unsigned int		flags; /* see SIGNAL_* flags below */
 552
 
 
 
 
 
 
 
 
 
 
 
 
 553	/* POSIX.1b Interval Timers */
 554	struct list_head posix_timers;
 
 555
 556	/* ITIMER_REAL timer for the process */
 557	struct hrtimer real_timer;
 558	struct pid *leader_pid;
 559	ktime_t it_real_incr;
 560
 561	/*
 562	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
 563	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
 564	 * values are defined to 0 and 1 respectively
 565	 */
 566	struct cpu_itimer it[2];
 567
 568	/*
 569	 * Thread group totals for process CPU timers.
 570	 * See thread_group_cputimer(), et al, for details.
 571	 */
 572	struct thread_group_cputimer cputimer;
 573
 574	/* Earliest-expiration cache. */
 575	struct task_cputime cputime_expires;
 576
 577	struct list_head cpu_timers[3];
 578
 579	struct pid *tty_old_pgrp;
 580
 581	/* boolean value for session group leader */
 582	int leader;
 583
 584	struct tty_struct *tty; /* NULL if no tty */
 585
 586#ifdef CONFIG_SCHED_AUTOGROUP
 587	struct autogroup *autogroup;
 588#endif
 589	/*
 590	 * Cumulative resource counters for dead threads in the group,
 591	 * and for reaped dead child processes forked by this group.
 592	 * Live threads maintain their own counters and add to these
 593	 * in __exit_signal, except for the group leader.
 594	 */
 595	cputime_t utime, stime, cutime, cstime;
 596	cputime_t gtime;
 597	cputime_t cgtime;
 598#ifndef CONFIG_VIRT_CPU_ACCOUNTING
 599	cputime_t prev_utime, prev_stime;
 600#endif
 601	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 602	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 603	unsigned long inblock, oublock, cinblock, coublock;
 604	unsigned long maxrss, cmaxrss;
 605	struct task_io_accounting ioac;
 606
 607	/*
 608	 * Cumulative ns of schedule CPU time fo dead threads in the
 609	 * group, not including a zombie group leader, (This only differs
 610	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
 611	 * other than jiffies.)
 612	 */
 613	unsigned long long sum_sched_runtime;
 614
 615	/*
 616	 * We don't bother to synchronize most readers of this at all,
 617	 * because there is no reader checking a limit that actually needs
 618	 * to get both rlim_cur and rlim_max atomically, and either one
 619	 * alone is a single word that can safely be read normally.
 620	 * getrlimit/setrlimit use task_lock(current->group_leader) to
 621	 * protect this instead of the siglock, because they really
 622	 * have no need to disable irqs.
 623	 */
 624	struct rlimit rlim[RLIM_NLIMITS];
 625
 626#ifdef CONFIG_BSD_PROCESS_ACCT
 627	struct pacct_struct pacct;	/* per-process accounting information */
 628#endif
 629#ifdef CONFIG_TASKSTATS
 630	struct taskstats *stats;
 631#endif
 632#ifdef CONFIG_AUDIT
 633	unsigned audit_tty;
 
 634	struct tty_audit_buf *tty_audit_buf;
 635#endif
 636#ifdef CONFIG_CGROUPS
 637	/*
 638	 * The threadgroup_fork_lock prevents threads from forking with
 639	 * CLONE_THREAD while held for writing. Use this for fork-sensitive
 640	 * threadgroup-wide operations. It's taken for reading in fork.c in
 641	 * copy_process().
 642	 * Currently only needed write-side by cgroups.
 643	 */
 644	struct rw_semaphore threadgroup_fork_lock;
 
 
 645#endif
 646
 647	int oom_adj;		/* OOM kill score adjustment (bit shift) */
 648	int oom_score_adj;	/* OOM kill score adjustment */
 649	int oom_score_adj_min;	/* OOM kill score adjustment minimum value.
 650				 * Only settable by CAP_SYS_RESOURCE. */
 651
 652	struct mutex cred_guard_mutex;	/* guard against foreign influences on
 653					 * credential calculations
 654					 * (notably. ptrace) */
 655};
 656
 657/* Context switch must be unlocked if interrupts are to be enabled */
 658#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 659# define __ARCH_WANT_UNLOCKED_CTXSW
 660#endif
 661
 662/*
 663 * Bits in flags field of signal_struct.
 664 */
 665#define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
 666#define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
 667#define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
 
 668/*
 669 * Pending notifications to parent.
 670 */
 671#define SIGNAL_CLD_STOPPED	0x00000010
 672#define SIGNAL_CLD_CONTINUED	0x00000020
 673#define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
 674
 675#define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
 676
 677/* If true, all threads except ->group_exit_task have pending SIGKILL */
 678static inline int signal_group_exit(const struct signal_struct *sig)
 679{
 680	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
 681		(sig->group_exit_task != NULL);
 682}
 683
 684/*
 685 * Some day this will be a full-fledged user tracking system..
 686 */
 687struct user_struct {
 688	atomic_t __count;	/* reference count */
 689	atomic_t processes;	/* How many processes does this user have? */
 690	atomic_t files;		/* How many open files does this user have? */
 691	atomic_t sigpending;	/* How many pending signals does this user have? */
 692#ifdef CONFIG_INOTIFY_USER
 693	atomic_t inotify_watches; /* How many inotify watches does this user have? */
 694	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
 695#endif
 696#ifdef CONFIG_FANOTIFY
 697	atomic_t fanotify_listeners;
 698#endif
 699#ifdef CONFIG_EPOLL
 700	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
 701#endif
 702#ifdef CONFIG_POSIX_MQUEUE
 703	/* protected by mq_lock	*/
 704	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
 705#endif
 706	unsigned long locked_shm; /* How many pages of mlocked shm ? */
 707
 708#ifdef CONFIG_KEYS
 709	struct key *uid_keyring;	/* UID specific keyring */
 710	struct key *session_keyring;	/* UID's default session keyring */
 711#endif
 712
 713	/* Hash table maintenance information */
 714	struct hlist_node uidhash_node;
 715	uid_t uid;
 716	struct user_namespace *user_ns;
 717
 718#ifdef CONFIG_PERF_EVENTS
 719	atomic_long_t locked_vm;
 720#endif
 721};
 722
 723extern int uids_sysfs_init(void);
 724
 725extern struct user_struct *find_user(uid_t);
 726
 727extern struct user_struct root_user;
 728#define INIT_USER (&root_user)
 729
 730
 731struct backing_dev_info;
 732struct reclaim_state;
 733
 734#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
 735struct sched_info {
 736	/* cumulative counters */
 737	unsigned long pcount;	      /* # of times run on this cpu */
 738	unsigned long long run_delay; /* time spent waiting on a runqueue */
 739
 740	/* timestamps */
 741	unsigned long long last_arrival,/* when we last ran on a cpu */
 742			   last_queued;	/* when we were last queued to run */
 743};
 744#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
 745
 746#ifdef CONFIG_TASK_DELAY_ACCT
 747struct task_delay_info {
 748	spinlock_t	lock;
 749	unsigned int	flags;	/* Private per-task flags */
 750
 751	/* For each stat XXX, add following, aligned appropriately
 752	 *
 753	 * struct timespec XXX_start, XXX_end;
 754	 * u64 XXX_delay;
 755	 * u32 XXX_count;
 756	 *
 757	 * Atomicity of updates to XXX_delay, XXX_count protected by
 758	 * single lock above (split into XXX_lock if contention is an issue).
 759	 */
 760
 761	/*
 762	 * XXX_count is incremented on every XXX operation, the delay
 763	 * associated with the operation is added to XXX_delay.
 764	 * XXX_delay contains the accumulated delay time in nanoseconds.
 765	 */
 766	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
 767	u64 blkio_delay;	/* wait for sync block io completion */
 768	u64 swapin_delay;	/* wait for swapin block io completion */
 769	u32 blkio_count;	/* total count of the number of sync block */
 770				/* io operations performed */
 771	u32 swapin_count;	/* total count of the number of swapin block */
 772				/* io operations performed */
 773
 774	struct timespec freepages_start, freepages_end;
 775	u64 freepages_delay;	/* wait for memory reclaim */
 776	u32 freepages_count;	/* total count of memory reclaim */
 777};
 778#endif	/* CONFIG_TASK_DELAY_ACCT */
 779
 780static inline int sched_info_on(void)
 781{
 782#ifdef CONFIG_SCHEDSTATS
 783	return 1;
 784#elif defined(CONFIG_TASK_DELAY_ACCT)
 785	extern int delayacct_on;
 786	return delayacct_on;
 787#else
 788	return 0;
 789#endif
 790}
 791
 792enum cpu_idle_type {
 793	CPU_IDLE,
 794	CPU_NOT_IDLE,
 795	CPU_NEWLY_IDLE,
 796	CPU_MAX_IDLE_TYPES
 797};
 798
 799/*
 800 * Increase resolution of nice-level calculations for 64-bit architectures.
 801 * The extra resolution improves shares distribution and load balancing of
 802 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
 803 * hierarchies, especially on larger systems. This is not a user-visible change
 804 * and does not change the user-interface for setting shares/weights.
 805 *
 806 * We increase resolution only if we have enough bits to allow this increased
 807 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
 808 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
 809 * increased costs.
 810 */
 811#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
 812# define SCHED_LOAD_RESOLUTION	10
 813# define scale_load(w)		((w) << SCHED_LOAD_RESOLUTION)
 814# define scale_load_down(w)	((w) >> SCHED_LOAD_RESOLUTION)
 815#else
 816# define SCHED_LOAD_RESOLUTION	0
 817# define scale_load(w)		(w)
 818# define scale_load_down(w)	(w)
 819#endif
 820
 821#define SCHED_LOAD_SHIFT	(10 + SCHED_LOAD_RESOLUTION)
 822#define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
 823
 824/*
 825 * Increase resolution of cpu_power calculations
 826 */
 827#define SCHED_POWER_SHIFT	10
 828#define SCHED_POWER_SCALE	(1L << SCHED_POWER_SHIFT)
 829
 830/*
 831 * sched-domains (multiprocessor balancing) declarations:
 832 */
 833#ifdef CONFIG_SMP
 834#define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
 835#define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
 836#define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
 837#define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
 838#define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
 839#define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
 840#define SD_PREFER_LOCAL		0x0040  /* Prefer to keep tasks local to this domain */
 841#define SD_SHARE_CPUPOWER	0x0080	/* Domain members share cpu power */
 842#define SD_POWERSAVINGS_BALANCE	0x0100	/* Balance for power savings */
 843#define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
 844#define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
 845#define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
 846#define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
 847#define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
 848
 849enum powersavings_balance_level {
 850	POWERSAVINGS_BALANCE_NONE = 0,  /* No power saving load balance */
 851	POWERSAVINGS_BALANCE_BASIC,	/* Fill one thread/core/package
 852					 * first for long running threads
 853					 */
 854	POWERSAVINGS_BALANCE_WAKEUP,	/* Also bias task wakeups to semi-idle
 855					 * cpu package for power savings
 856					 */
 857	MAX_POWERSAVINGS_BALANCE_LEVELS
 858};
 859
 860extern int sched_mc_power_savings, sched_smt_power_savings;
 861
 862static inline int sd_balance_for_mc_power(void)
 863{
 864	if (sched_smt_power_savings)
 865		return SD_POWERSAVINGS_BALANCE;
 866
 867	if (!sched_mc_power_savings)
 868		return SD_PREFER_SIBLING;
 869
 870	return 0;
 871}
 872
 873static inline int sd_balance_for_package_power(void)
 874{
 875	if (sched_mc_power_savings | sched_smt_power_savings)
 876		return SD_POWERSAVINGS_BALANCE;
 877
 878	return SD_PREFER_SIBLING;
 879}
 880
 881extern int __weak arch_sd_sibiling_asym_packing(void);
 882
 883/*
 884 * Optimise SD flags for power savings:
 885 * SD_BALANCE_NEWIDLE helps aggressive task consolidation and power savings.
 886 * Keep default SD flags if sched_{smt,mc}_power_saving=0
 887 */
 888
 889static inline int sd_power_saving_flags(void)
 890{
 891	if (sched_mc_power_savings | sched_smt_power_savings)
 892		return SD_BALANCE_NEWIDLE;
 893
 894	return 0;
 895}
 896
 897struct sched_group_power {
 898	atomic_t ref;
 899	/*
 900	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
 901	 * single CPU.
 902	 */
 903	unsigned int power, power_orig;
 904};
 905
 906struct sched_group {
 907	struct sched_group *next;	/* Must be a circular list */
 908	atomic_t ref;
 909
 910	unsigned int group_weight;
 911	struct sched_group_power *sgp;
 912
 913	/*
 914	 * The CPUs this group covers.
 915	 *
 916	 * NOTE: this field is variable length. (Allocated dynamically
 917	 * by attaching extra space to the end of the structure,
 918	 * depending on how many CPUs the kernel has booted up with)
 919	 */
 920	unsigned long cpumask[0];
 921};
 922
 923static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
 924{
 925	return to_cpumask(sg->cpumask);
 926}
 927
 928struct sched_domain_attr {
 929	int relax_domain_level;
 930};
 931
 932#define SD_ATTR_INIT	(struct sched_domain_attr) {	\
 933	.relax_domain_level = -1,			\
 934}
 935
 936extern int sched_domain_level_max;
 937
 
 
 938struct sched_domain {
 939	/* These fields must be setup */
 940	struct sched_domain *parent;	/* top domain must be null terminated */
 941	struct sched_domain *child;	/* bottom domain must be null terminated */
 942	struct sched_group *groups;	/* the balancing groups of the domain */
 943	unsigned long min_interval;	/* Minimum balance interval ms */
 944	unsigned long max_interval;	/* Maximum balance interval ms */
 945	unsigned int busy_factor;	/* less balancing by factor if busy */
 946	unsigned int imbalance_pct;	/* No balance until over watermark */
 947	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
 948	unsigned int busy_idx;
 949	unsigned int idle_idx;
 950	unsigned int newidle_idx;
 951	unsigned int wake_idx;
 952	unsigned int forkexec_idx;
 953	unsigned int smt_gain;
 
 
 954	int flags;			/* See SD_* */
 955	int level;
 956
 957	/* Runtime fields. */
 958	unsigned long last_balance;	/* init to jiffies. units in jiffies */
 959	unsigned int balance_interval;	/* initialise to 1. units in ms. */
 960	unsigned int nr_balance_failed; /* initialise to 0 */
 961
 962	u64 last_update;
 
 
 963
 964#ifdef CONFIG_SCHEDSTATS
 965	/* load_balance() stats */
 966	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
 967	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
 968	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
 969	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
 970	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
 971	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
 972	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
 973	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
 974
 975	/* Active load balancing */
 976	unsigned int alb_count;
 977	unsigned int alb_failed;
 978	unsigned int alb_pushed;
 979
 980	/* SD_BALANCE_EXEC stats */
 981	unsigned int sbe_count;
 982	unsigned int sbe_balanced;
 983	unsigned int sbe_pushed;
 984
 985	/* SD_BALANCE_FORK stats */
 986	unsigned int sbf_count;
 987	unsigned int sbf_balanced;
 988	unsigned int sbf_pushed;
 989
 990	/* try_to_wake_up() stats */
 991	unsigned int ttwu_wake_remote;
 992	unsigned int ttwu_move_affine;
 993	unsigned int ttwu_move_balance;
 994#endif
 995#ifdef CONFIG_SCHED_DEBUG
 996	char *name;
 997#endif
 998	union {
 999		void *private;		/* used during construction */
1000		struct rcu_head rcu;	/* used during destruction */
1001	};
1002
1003	unsigned int span_weight;
1004	/*
1005	 * Span of all CPUs in this domain.
1006	 *
1007	 * NOTE: this field is variable length. (Allocated dynamically
1008	 * by attaching extra space to the end of the structure,
1009	 * depending on how many CPUs the kernel has booted up with)
1010	 */
1011	unsigned long span[0];
1012};
1013
1014static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1015{
1016	return to_cpumask(sd->span);
1017}
1018
1019extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1020				    struct sched_domain_attr *dattr_new);
1021
1022/* Allocate an array of sched domains, for partition_sched_domains(). */
1023cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1024void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1025
1026/* Test a flag in parent sched domain */
1027static inline int test_sd_parent(struct sched_domain *sd, int flag)
1028{
1029	if (sd->parent && (sd->parent->flags & flag))
1030		return 1;
1031
1032	return 0;
1033}
1034
1035unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1036unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1037
1038#else /* CONFIG_SMP */
1039
1040struct sched_domain_attr;
1041
1042static inline void
1043partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1044			struct sched_domain_attr *dattr_new)
1045{
1046}
 
 
 
 
 
 
1047#endif	/* !CONFIG_SMP */
1048
1049
1050struct io_context;			/* See blkdev.h */
1051
1052
1053#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1054extern void prefetch_stack(struct task_struct *t);
1055#else
1056static inline void prefetch_stack(struct task_struct *t) { }
1057#endif
1058
1059struct audit_context;		/* See audit.c */
1060struct mempolicy;
1061struct pipe_inode_info;
1062struct uts_namespace;
1063
1064struct rq;
1065struct sched_domain;
1066
1067/*
1068 * wake flags
1069 */
1070#define WF_SYNC		0x01		/* waker goes to sleep after wakup */
1071#define WF_FORK		0x02		/* child wakeup after fork */
1072#define WF_MIGRATED	0x04		/* internal use, task got migrated */
1073
1074#define ENQUEUE_WAKEUP		1
1075#define ENQUEUE_HEAD		2
1076#ifdef CONFIG_SMP
1077#define ENQUEUE_WAKING		4	/* sched_class::task_waking was called */
1078#else
1079#define ENQUEUE_WAKING		0
1080#endif
1081
1082#define DEQUEUE_SLEEP		1
1083
1084struct sched_class {
1085	const struct sched_class *next;
1086
1087	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1088	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1089	void (*yield_task) (struct rq *rq);
1090	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1091
1092	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1093
1094	struct task_struct * (*pick_next_task) (struct rq *rq);
1095	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1096
1097#ifdef CONFIG_SMP
1098	int  (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1099
1100	void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1101	void (*post_schedule) (struct rq *this_rq);
1102	void (*task_waking) (struct task_struct *task);
1103	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1104
1105	void (*set_cpus_allowed)(struct task_struct *p,
1106				 const struct cpumask *newmask);
1107
1108	void (*rq_online)(struct rq *rq);
1109	void (*rq_offline)(struct rq *rq);
1110#endif
1111
1112	void (*set_curr_task) (struct rq *rq);
1113	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1114	void (*task_fork) (struct task_struct *p);
1115
1116	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1117	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1118	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1119			     int oldprio);
1120
1121	unsigned int (*get_rr_interval) (struct rq *rq,
1122					 struct task_struct *task);
1123
1124#ifdef CONFIG_FAIR_GROUP_SCHED
1125	void (*task_move_group) (struct task_struct *p, int on_rq);
1126#endif
1127};
1128
1129struct load_weight {
1130	unsigned long weight, inv_weight;
 
 
 
 
 
 
 
 
1131};
1132
1133#ifdef CONFIG_SCHEDSTATS
1134struct sched_statistics {
1135	u64			wait_start;
1136	u64			wait_max;
1137	u64			wait_count;
1138	u64			wait_sum;
1139	u64			iowait_count;
1140	u64			iowait_sum;
1141
1142	u64			sleep_start;
1143	u64			sleep_max;
1144	s64			sum_sleep_runtime;
1145
1146	u64			block_start;
1147	u64			block_max;
1148	u64			exec_max;
1149	u64			slice_max;
1150
1151	u64			nr_migrations_cold;
1152	u64			nr_failed_migrations_affine;
1153	u64			nr_failed_migrations_running;
1154	u64			nr_failed_migrations_hot;
1155	u64			nr_forced_migrations;
1156
1157	u64			nr_wakeups;
1158	u64			nr_wakeups_sync;
1159	u64			nr_wakeups_migrate;
1160	u64			nr_wakeups_local;
1161	u64			nr_wakeups_remote;
1162	u64			nr_wakeups_affine;
1163	u64			nr_wakeups_affine_attempts;
1164	u64			nr_wakeups_passive;
1165	u64			nr_wakeups_idle;
1166};
1167#endif
1168
1169struct sched_entity {
1170	struct load_weight	load;		/* for load-balancing */
1171	struct rb_node		run_node;
1172	struct list_head	group_node;
1173	unsigned int		on_rq;
1174
1175	u64			exec_start;
1176	u64			sum_exec_runtime;
1177	u64			vruntime;
1178	u64			prev_sum_exec_runtime;
1179
1180	u64			nr_migrations;
1181
1182#ifdef CONFIG_SCHEDSTATS
1183	struct sched_statistics statistics;
1184#endif
1185
1186#ifdef CONFIG_FAIR_GROUP_SCHED
 
1187	struct sched_entity	*parent;
1188	/* rq on which this entity is (to be) queued: */
1189	struct cfs_rq		*cfs_rq;
1190	/* rq "owned" by this entity/group: */
1191	struct cfs_rq		*my_q;
1192#endif
 
 
 
 
 
1193};
1194
1195struct sched_rt_entity {
1196	struct list_head run_list;
1197	unsigned long timeout;
 
1198	unsigned int time_slice;
1199	int nr_cpus_allowed;
1200
1201	struct sched_rt_entity *back;
1202#ifdef CONFIG_RT_GROUP_SCHED
1203	struct sched_rt_entity	*parent;
1204	/* rq on which this entity is (to be) queued: */
1205	struct rt_rq		*rt_rq;
1206	/* rq "owned" by this entity/group: */
1207	struct rt_rq		*my_q;
1208#endif
1209};
1210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1211struct rcu_node;
1212
1213enum perf_event_task_context {
1214	perf_invalid_context = -1,
1215	perf_hw_context = 0,
1216	perf_sw_context,
1217	perf_nr_task_contexts,
1218};
1219
1220struct task_struct {
1221	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1222	void *stack;
1223	atomic_t usage;
1224	unsigned int flags;	/* per process flags, defined below */
1225	unsigned int ptrace;
1226
1227#ifdef CONFIG_SMP
1228	struct task_struct *wake_entry;
1229	int on_cpu;
 
 
 
 
 
1230#endif
1231	int on_rq;
1232
1233	int prio, static_prio, normal_prio;
1234	unsigned int rt_priority;
1235	const struct sched_class *sched_class;
1236	struct sched_entity se;
1237	struct sched_rt_entity rt;
 
 
 
 
1238
1239#ifdef CONFIG_PREEMPT_NOTIFIERS
1240	/* list of struct preempt_notifier: */
1241	struct hlist_head preempt_notifiers;
1242#endif
1243
1244	/*
1245	 * fpu_counter contains the number of consecutive context switches
1246	 * that the FPU is used. If this is over a threshold, the lazy fpu
1247	 * saving becomes unlazy to save the trap. This is an unsigned char
1248	 * so that after 256 times the counter wraps and the behavior turns
1249	 * lazy again; this to deal with bursty apps that only use FPU for
1250	 * a short time
1251	 */
1252	unsigned char fpu_counter;
1253#ifdef CONFIG_BLK_DEV_IO_TRACE
1254	unsigned int btrace_seq;
1255#endif
1256
1257	unsigned int policy;
 
1258	cpumask_t cpus_allowed;
1259
1260#ifdef CONFIG_PREEMPT_RCU
1261	int rcu_read_lock_nesting;
1262	char rcu_read_unlock_special;
1263#if defined(CONFIG_RCU_BOOST) && defined(CONFIG_TREE_PREEMPT_RCU)
1264	int rcu_boosted;
1265#endif /* #if defined(CONFIG_RCU_BOOST) && defined(CONFIG_TREE_PREEMPT_RCU) */
1266	struct list_head rcu_node_entry;
1267#endif /* #ifdef CONFIG_PREEMPT_RCU */
1268#ifdef CONFIG_TREE_PREEMPT_RCU
1269	struct rcu_node *rcu_blocked_node;
1270#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1271#ifdef CONFIG_RCU_BOOST
1272	struct rt_mutex *rcu_boost_mutex;
1273#endif /* #ifdef CONFIG_RCU_BOOST */
1274
1275#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1276	struct sched_info sched_info;
1277#endif
1278
1279	struct list_head tasks;
1280#ifdef CONFIG_SMP
1281	struct plist_node pushable_tasks;
 
1282#endif
1283
1284	struct mm_struct *mm, *active_mm;
1285#ifdef CONFIG_COMPAT_BRK
1286	unsigned brk_randomized:1;
1287#endif
 
 
 
1288#if defined(SPLIT_RSS_COUNTING)
1289	struct task_rss_stat	rss_stat;
1290#endif
1291/* task state */
1292	int exit_state;
1293	int exit_code, exit_signal;
1294	int pdeath_signal;  /*  The signal sent when the parent dies  */
1295	unsigned int jobctl;	/* JOBCTL_*, siglock protected */
1296	/* ??? */
 
1297	unsigned int personality;
1298	unsigned did_exec:1;
1299	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1300				 * execve */
1301	unsigned in_iowait:1;
1302
 
 
1303
1304	/* Revert to default priority/policy when forking */
1305	unsigned sched_reset_on_fork:1;
1306	unsigned sched_contributes_to_load:1;
1307
1308	pid_t pid;
1309	pid_t tgid;
1310
1311#ifdef CONFIG_CC_STACKPROTECTOR
1312	/* Canary value for the -fstack-protector gcc feature */
1313	unsigned long stack_canary;
1314#endif
1315
1316	/* 
1317	 * pointers to (original) parent process, youngest child, younger sibling,
1318	 * older sibling, respectively.  (p->father can be replaced with 
1319	 * p->real_parent->pid)
1320	 */
1321	struct task_struct *real_parent; /* real parent process */
1322	struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1323	/*
1324	 * children/sibling forms the list of my natural children
1325	 */
1326	struct list_head children;	/* list of my children */
1327	struct list_head sibling;	/* linkage in my parent's children list */
1328	struct task_struct *group_leader;	/* threadgroup leader */
1329
1330	/*
1331	 * ptraced is the list of tasks this task is using ptrace on.
1332	 * This includes both natural children and PTRACE_ATTACH targets.
1333	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1334	 */
1335	struct list_head ptraced;
1336	struct list_head ptrace_entry;
1337
1338	/* PID/PID hash table linkage. */
1339	struct pid_link pids[PIDTYPE_MAX];
1340	struct list_head thread_group;
 
1341
1342	struct completion *vfork_done;		/* for vfork() */
1343	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1344	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1345
1346	cputime_t utime, stime, utimescaled, stimescaled;
1347	cputime_t gtime;
1348#ifndef CONFIG_VIRT_CPU_ACCOUNTING
1349	cputime_t prev_utime, prev_stime;
 
 
 
 
 
 
 
 
 
1350#endif
1351	unsigned long nvcsw, nivcsw; /* context switch counts */
1352	struct timespec start_time; 		/* monotonic time */
1353	struct timespec real_start_time;	/* boot based time */
1354/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1355	unsigned long min_flt, maj_flt;
1356
1357	struct task_cputime cputime_expires;
1358	struct list_head cpu_timers[3];
1359
1360/* process credentials */
1361	const struct cred __rcu *real_cred; /* objective and real subjective task
1362					 * credentials (COW) */
1363	const struct cred __rcu *cred;	/* effective (overridable) subjective task
1364					 * credentials (COW) */
1365	struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1366
1367	char comm[TASK_COMM_LEN]; /* executable name excluding path
1368				     - access with [gs]et_task_comm (which lock
1369				       it with task_lock())
1370				     - initialized normally by setup_new_exec */
1371/* file system info */
1372	int link_count, total_link_count;
1373#ifdef CONFIG_SYSVIPC
1374/* ipc stuff */
1375	struct sysv_sem sysvsem;
1376#endif
1377#ifdef CONFIG_DETECT_HUNG_TASK
1378/* hung task detection */
1379	unsigned long last_switch_count;
1380#endif
1381/* CPU-specific state of this task */
1382	struct thread_struct thread;
1383/* filesystem information */
1384	struct fs_struct *fs;
1385/* open file information */
1386	struct files_struct *files;
1387/* namespaces */
1388	struct nsproxy *nsproxy;
1389/* signal handlers */
1390	struct signal_struct *signal;
1391	struct sighand_struct *sighand;
1392
1393	sigset_t blocked, real_blocked;
1394	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1395	struct sigpending pending;
1396
1397	unsigned long sas_ss_sp;
1398	size_t sas_ss_size;
1399	int (*notifier)(void *priv);
1400	void *notifier_data;
1401	sigset_t *notifier_mask;
 
 
1402	struct audit_context *audit_context;
1403#ifdef CONFIG_AUDITSYSCALL
1404	uid_t loginuid;
1405	unsigned int sessionid;
1406#endif
1407	seccomp_t seccomp;
1408
1409/* Thread group tracking */
1410   	u32 parent_exec_id;
1411   	u32 self_exec_id;
1412/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1413 * mempolicy */
1414	spinlock_t alloc_lock;
1415
1416#ifdef CONFIG_GENERIC_HARDIRQS
1417	/* IRQ handler threads */
1418	struct irqaction *irqaction;
1419#endif
1420
1421	/* Protection of the PI data structures: */
1422	raw_spinlock_t pi_lock;
1423
1424#ifdef CONFIG_RT_MUTEXES
1425	/* PI waiters blocked on a rt_mutex held by this task */
1426	struct plist_head pi_waiters;
 
1427	/* Deadlock detection and priority inheritance handling */
1428	struct rt_mutex_waiter *pi_blocked_on;
 
 
1429#endif
1430
1431#ifdef CONFIG_DEBUG_MUTEXES
1432	/* mutex deadlock detection */
1433	struct mutex_waiter *blocked_on;
1434#endif
1435#ifdef CONFIG_TRACE_IRQFLAGS
1436	unsigned int irq_events;
1437	unsigned long hardirq_enable_ip;
1438	unsigned long hardirq_disable_ip;
1439	unsigned int hardirq_enable_event;
1440	unsigned int hardirq_disable_event;
1441	int hardirqs_enabled;
1442	int hardirq_context;
1443	unsigned long softirq_disable_ip;
1444	unsigned long softirq_enable_ip;
1445	unsigned int softirq_disable_event;
1446	unsigned int softirq_enable_event;
1447	int softirqs_enabled;
1448	int softirq_context;
1449#endif
1450#ifdef CONFIG_LOCKDEP
1451# define MAX_LOCK_DEPTH 48UL
1452	u64 curr_chain_key;
1453	int lockdep_depth;
1454	unsigned int lockdep_recursion;
1455	struct held_lock held_locks[MAX_LOCK_DEPTH];
1456	gfp_t lockdep_reclaim_gfp;
1457#endif
1458
1459/* journalling filesystem info */
1460	void *journal_info;
1461
1462/* stacked block device info */
1463	struct bio_list *bio_list;
1464
1465#ifdef CONFIG_BLOCK
1466/* stack plugging */
1467	struct blk_plug *plug;
1468#endif
1469
1470/* VM state */
1471	struct reclaim_state *reclaim_state;
1472
1473	struct backing_dev_info *backing_dev_info;
1474
1475	struct io_context *io_context;
1476
1477	unsigned long ptrace_message;
1478	siginfo_t *last_siginfo; /* For ptrace use.  */
1479	struct task_io_accounting ioac;
1480#if defined(CONFIG_TASK_XACCT)
1481	u64 acct_rss_mem1;	/* accumulated rss usage */
1482	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1483	cputime_t acct_timexpd;	/* stime + utime since last update */
1484#endif
1485#ifdef CONFIG_CPUSETS
1486	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1487	int mems_allowed_change_disable;
1488	int cpuset_mem_spread_rotor;
1489	int cpuset_slab_spread_rotor;
1490#endif
1491#ifdef CONFIG_CGROUPS
1492	/* Control Group info protected by css_set_lock */
1493	struct css_set __rcu *cgroups;
1494	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1495	struct list_head cg_list;
1496#endif
1497#ifdef CONFIG_FUTEX
1498	struct robust_list_head __user *robust_list;
1499#ifdef CONFIG_COMPAT
1500	struct compat_robust_list_head __user *compat_robust_list;
1501#endif
1502	struct list_head pi_state_list;
1503	struct futex_pi_state *pi_state_cache;
1504#endif
1505#ifdef CONFIG_PERF_EVENTS
1506	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1507	struct mutex perf_event_mutex;
1508	struct list_head perf_event_list;
1509#endif
 
 
 
1510#ifdef CONFIG_NUMA
1511	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1512	short il_next;
1513	short pref_node_fork;
1514#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1515	struct rcu_head rcu;
1516
1517	/*
1518	 * cache last used pipe for splice
1519	 */
1520	struct pipe_inode_info *splice_pipe;
 
 
 
1521#ifdef	CONFIG_TASK_DELAY_ACCT
1522	struct task_delay_info *delays;
1523#endif
1524#ifdef CONFIG_FAULT_INJECTION
1525	int make_it_fail;
1526#endif
1527	struct prop_local_single dirties;
 
 
 
 
 
 
 
1528#ifdef CONFIG_LATENCYTOP
1529	int latency_record_count;
1530	struct latency_record latency_record[LT_SAVECOUNT];
1531#endif
1532	/*
1533	 * time slack values; these are used to round up poll() and
1534	 * select() etc timeout values. These are in nanoseconds.
1535	 */
1536	unsigned long timer_slack_ns;
1537	unsigned long default_timer_slack_ns;
1538
1539	struct list_head	*scm_work_list;
1540#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1541	/* Index of current stored address in ret_stack */
1542	int curr_ret_stack;
1543	/* Stack of return addresses for return function tracing */
1544	struct ftrace_ret_stack	*ret_stack;
1545	/* time stamp for last schedule */
1546	unsigned long long ftrace_timestamp;
1547	/*
1548	 * Number of functions that haven't been traced
1549	 * because of depth overrun.
1550	 */
1551	atomic_t trace_overrun;
1552	/* Pause for the tracing */
1553	atomic_t tracing_graph_pause;
1554#endif
1555#ifdef CONFIG_TRACING
1556	/* state flags for use by tracers */
1557	unsigned long trace;
1558	/* bitmask and counter of trace recursion */
1559	unsigned long trace_recursion;
1560#endif /* CONFIG_TRACING */
1561#ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1562	struct memcg_batch_info {
1563		int do_batch;	/* incremented when batch uncharge started */
1564		struct mem_cgroup *memcg; /* target memcg of uncharge */
1565		unsigned long nr_pages;	/* uncharged usage */
1566		unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1567	} memcg_batch;
1568#endif
1569#ifdef CONFIG_HAVE_HW_BREAKPOINT
1570	atomic_t ptrace_bp_refcnt;
 
 
 
 
 
 
 
 
 
 
 
1571#endif
1572};
1573
1574/* Future-safe accessor for struct task_struct's cpus_allowed. */
1575#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1576
1577/*
1578 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1579 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1580 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1581 * values are inverted: lower p->prio value means higher priority.
1582 *
1583 * The MAX_USER_RT_PRIO value allows the actual maximum
1584 * RT priority to be separate from the value exported to
1585 * user-space.  This allows kernel threads to set their
1586 * priority to a value higher than any user task. Note:
1587 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1588 */
1589
1590#define MAX_USER_RT_PRIO	100
1591#define MAX_RT_PRIO		MAX_USER_RT_PRIO
1592
1593#define MAX_PRIO		(MAX_RT_PRIO + 40)
1594#define DEFAULT_PRIO		(MAX_RT_PRIO + 20)
1595
1596static inline int rt_prio(int prio)
1597{
1598	if (unlikely(prio < MAX_RT_PRIO))
1599		return 1;
1600	return 0;
1601}
1602
1603static inline int rt_task(struct task_struct *p)
 
 
 
 
 
 
1604{
1605	return rt_prio(p->prio);
1606}
 
1607
1608static inline struct pid *task_pid(struct task_struct *task)
1609{
1610	return task->pids[PIDTYPE_PID].pid;
1611}
1612
1613static inline struct pid *task_tgid(struct task_struct *task)
1614{
1615	return task->group_leader->pids[PIDTYPE_PID].pid;
1616}
1617
1618/*
1619 * Without tasklist or rcu lock it is not safe to dereference
1620 * the result of task_pgrp/task_session even if task == current,
1621 * we can race with another thread doing sys_setsid/sys_setpgid.
1622 */
1623static inline struct pid *task_pgrp(struct task_struct *task)
1624{
1625	return task->group_leader->pids[PIDTYPE_PGID].pid;
1626}
1627
1628static inline struct pid *task_session(struct task_struct *task)
1629{
1630	return task->group_leader->pids[PIDTYPE_SID].pid;
1631}
1632
1633struct pid_namespace;
1634
1635/*
1636 * the helpers to get the task's different pids as they are seen
1637 * from various namespaces
1638 *
1639 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1640 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1641 *                     current.
1642 * task_xid_nr_ns()  : id seen from the ns specified;
1643 *
1644 * set_task_vxid()   : assigns a virtual id to a task;
1645 *
1646 * see also pid_nr() etc in include/linux/pid.h
1647 */
1648pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1649			struct pid_namespace *ns);
1650
1651static inline pid_t task_pid_nr(struct task_struct *tsk)
1652{
1653	return tsk->pid;
1654}
1655
1656static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1657					struct pid_namespace *ns)
1658{
1659	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1660}
1661
1662static inline pid_t task_pid_vnr(struct task_struct *tsk)
1663{
1664	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1665}
1666
1667
1668static inline pid_t task_tgid_nr(struct task_struct *tsk)
1669{
1670	return tsk->tgid;
1671}
1672
1673pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1674
1675static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1676{
1677	return pid_vnr(task_tgid(tsk));
1678}
1679
1680
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1681static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1682					struct pid_namespace *ns)
1683{
1684	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1685}
1686
1687static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1688{
1689	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1690}
1691
1692
1693static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1694					struct pid_namespace *ns)
1695{
1696	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1697}
1698
1699static inline pid_t task_session_vnr(struct task_struct *tsk)
1700{
1701	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1702}
1703
1704/* obsolete, do not use */
1705static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1706{
1707	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1708}
1709
1710/**
1711 * pid_alive - check that a task structure is not stale
1712 * @p: Task structure to be checked.
1713 *
1714 * Test if a process is not yet dead (at most zombie state)
1715 * If pid_alive fails, then pointers within the task structure
1716 * can be stale and must not be dereferenced.
 
 
1717 */
1718static inline int pid_alive(struct task_struct *p)
1719{
1720	return p->pids[PIDTYPE_PID].pid != NULL;
1721}
1722
1723/**
1724 * is_global_init - check if a task structure is init
1725 * @tsk: Task structure to be checked.
1726 *
1727 * Check if a task structure is the first user space task the kernel created.
 
 
1728 */
1729static inline int is_global_init(struct task_struct *tsk)
1730{
1731	return tsk->pid == 1;
1732}
1733
1734/*
1735 * is_container_init:
1736 * check whether in the task is init in its own pid namespace.
1737 */
1738extern int is_container_init(struct task_struct *tsk);
1739
1740extern struct pid *cad_pid;
1741
1742extern void free_task(struct task_struct *tsk);
1743#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1744
1745extern void __put_task_struct(struct task_struct *t);
1746
1747static inline void put_task_struct(struct task_struct *t)
1748{
1749	if (atomic_dec_and_test(&t->usage))
1750		__put_task_struct(t);
1751}
1752
1753extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1754extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1755
1756/*
1757 * Per process flags
1758 */
1759#define PF_STARTING	0x00000002	/* being created */
1760#define PF_EXITING	0x00000004	/* getting shut down */
1761#define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1762#define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1763#define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
1764#define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1765#define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1766#define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1767#define PF_DUMPCORE	0x00000200	/* dumped core */
1768#define PF_SIGNALED	0x00000400	/* killed by a signal */
1769#define PF_MEMALLOC	0x00000800	/* Allocating memory */
1770#define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
1771#define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1772#define PF_FREEZING	0x00004000	/* freeze in progress. do not account to load */
1773#define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1774#define PF_FROZEN	0x00010000	/* frozen for system suspend */
1775#define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1776#define PF_KSWAPD	0x00040000	/* I am kswapd */
 
1777#define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1778#define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1779#define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1780#define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1781#define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1782#define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1783#define PF_THREAD_BOUND	0x04000000	/* Thread bound to specific cpu */
1784#define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1785#define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1786#define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1787#define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
1788#define PF_FREEZER_NOSIG 0x80000000	/* Freezer won't send signals to it */
1789
1790/*
1791 * Only the _current_ task can read/write to tsk->flags, but other
1792 * tasks can access tsk->flags in readonly mode for example
1793 * with tsk_used_math (like during threaded core dumping).
1794 * There is however an exception to this rule during ptrace
1795 * or during fork: the ptracer task is allowed to write to the
1796 * child->flags of its traced child (same goes for fork, the parent
1797 * can write to the child->flags), because we're guaranteed the
1798 * child is not running and in turn not changing child->flags
1799 * at the same time the parent does it.
1800 */
1801#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1802#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1803#define clear_used_math() clear_stopped_child_used_math(current)
1804#define set_used_math() set_stopped_child_used_math(current)
1805#define conditional_stopped_child_used_math(condition, child) \
1806	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1807#define conditional_used_math(condition) \
1808	conditional_stopped_child_used_math(condition, current)
1809#define copy_to_stopped_child_used_math(child) \
1810	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1811/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1812#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1813#define used_math() tsk_used_math(current)
1814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1815/*
1816 * task->jobctl flags
1817 */
1818#define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */
1819
1820#define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */
1821#define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */
1822#define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */
1823#define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */
1824#define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */
1825#define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */
1826#define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */
1827
1828#define JOBCTL_STOP_DEQUEUED	(1 << JOBCTL_STOP_DEQUEUED_BIT)
1829#define JOBCTL_STOP_PENDING	(1 << JOBCTL_STOP_PENDING_BIT)
1830#define JOBCTL_STOP_CONSUME	(1 << JOBCTL_STOP_CONSUME_BIT)
1831#define JOBCTL_TRAP_STOP	(1 << JOBCTL_TRAP_STOP_BIT)
1832#define JOBCTL_TRAP_NOTIFY	(1 << JOBCTL_TRAP_NOTIFY_BIT)
1833#define JOBCTL_TRAPPING		(1 << JOBCTL_TRAPPING_BIT)
1834#define JOBCTL_LISTENING	(1 << JOBCTL_LISTENING_BIT)
1835
1836#define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1837#define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1838
1839extern bool task_set_jobctl_pending(struct task_struct *task,
1840				    unsigned int mask);
1841extern void task_clear_jobctl_trapping(struct task_struct *task);
1842extern void task_clear_jobctl_pending(struct task_struct *task,
1843				      unsigned int mask);
1844
1845#ifdef CONFIG_PREEMPT_RCU
1846
1847#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1848#define RCU_READ_UNLOCK_BOOSTED (1 << 1) /* boosted while in RCU read-side. */
1849#define RCU_READ_UNLOCK_NEED_QS (1 << 2) /* RCU core needs CPU response. */
1850
1851static inline void rcu_copy_process(struct task_struct *p)
1852{
1853	p->rcu_read_lock_nesting = 0;
1854	p->rcu_read_unlock_special = 0;
1855#ifdef CONFIG_TREE_PREEMPT_RCU
1856	p->rcu_blocked_node = NULL;
1857#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1858#ifdef CONFIG_RCU_BOOST
1859	p->rcu_boost_mutex = NULL;
1860#endif /* #ifdef CONFIG_RCU_BOOST */
1861	INIT_LIST_HEAD(&p->rcu_node_entry);
1862}
1863
1864#else
1865
1866static inline void rcu_copy_process(struct task_struct *p)
1867{
1868}
1869
1870#endif
1871
 
 
 
 
 
 
 
1872#ifdef CONFIG_SMP
1873extern void do_set_cpus_allowed(struct task_struct *p,
1874			       const struct cpumask *new_mask);
1875
1876extern int set_cpus_allowed_ptr(struct task_struct *p,
1877				const struct cpumask *new_mask);
1878#else
1879static inline void do_set_cpus_allowed(struct task_struct *p,
1880				      const struct cpumask *new_mask)
1881{
1882}
1883static inline int set_cpus_allowed_ptr(struct task_struct *p,
1884				       const struct cpumask *new_mask)
1885{
1886	if (!cpumask_test_cpu(0, new_mask))
1887		return -EINVAL;
1888	return 0;
1889}
1890#endif
1891
 
 
 
 
 
 
 
 
1892#ifndef CONFIG_CPUMASK_OFFSTACK
1893static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1894{
1895	return set_cpus_allowed_ptr(p, &new_mask);
1896}
1897#endif
1898
1899/*
1900 * Do not use outside of architecture code which knows its limitations.
1901 *
1902 * sched_clock() has no promise of monotonicity or bounded drift between
1903 * CPUs, use (which you should not) requires disabling IRQs.
1904 *
1905 * Please use one of the three interfaces below.
1906 */
1907extern unsigned long long notrace sched_clock(void);
1908/*
1909 * See the comment in kernel/sched_clock.c
1910 */
1911extern u64 cpu_clock(int cpu);
1912extern u64 local_clock(void);
1913extern u64 sched_clock_cpu(int cpu);
1914
1915
1916extern void sched_clock_init(void);
1917
1918#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1919static inline void sched_clock_tick(void)
1920{
1921}
1922
1923static inline void sched_clock_idle_sleep_event(void)
1924{
1925}
1926
1927static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1928{
1929}
1930#else
1931/*
1932 * Architectures can set this to 1 if they have specified
1933 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1934 * but then during bootup it turns out that sched_clock()
1935 * is reliable after all:
1936 */
1937extern int sched_clock_stable;
 
 
1938
1939extern void sched_clock_tick(void);
1940extern void sched_clock_idle_sleep_event(void);
1941extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1942#endif
1943
1944#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1945/*
1946 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1947 * The reason for this explicit opt-in is not to have perf penalty with
1948 * slow sched_clocks.
1949 */
1950extern void enable_sched_clock_irqtime(void);
1951extern void disable_sched_clock_irqtime(void);
1952#else
1953static inline void enable_sched_clock_irqtime(void) {}
1954static inline void disable_sched_clock_irqtime(void) {}
1955#endif
1956
1957extern unsigned long long
1958task_sched_runtime(struct task_struct *task);
1959
1960/* sched_exec is called by processes performing an exec */
1961#ifdef CONFIG_SMP
1962extern void sched_exec(void);
1963#else
1964#define sched_exec()   {}
1965#endif
1966
1967extern void sched_clock_idle_sleep_event(void);
1968extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1969
1970#ifdef CONFIG_HOTPLUG_CPU
1971extern void idle_task_exit(void);
1972#else
1973static inline void idle_task_exit(void) {}
1974#endif
1975
1976#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1977extern void wake_up_idle_cpu(int cpu);
1978#else
1979static inline void wake_up_idle_cpu(int cpu) { }
1980#endif
1981
1982extern unsigned int sysctl_sched_latency;
1983extern unsigned int sysctl_sched_min_granularity;
1984extern unsigned int sysctl_sched_wakeup_granularity;
1985extern unsigned int sysctl_sched_child_runs_first;
1986
1987enum sched_tunable_scaling {
1988	SCHED_TUNABLESCALING_NONE,
1989	SCHED_TUNABLESCALING_LOG,
1990	SCHED_TUNABLESCALING_LINEAR,
1991	SCHED_TUNABLESCALING_END,
1992};
1993extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1994
1995#ifdef CONFIG_SCHED_DEBUG
1996extern unsigned int sysctl_sched_migration_cost;
1997extern unsigned int sysctl_sched_nr_migrate;
1998extern unsigned int sysctl_sched_time_avg;
1999extern unsigned int sysctl_timer_migration;
2000extern unsigned int sysctl_sched_shares_window;
2001
2002int sched_proc_update_handler(struct ctl_table *table, int write,
2003		void __user *buffer, size_t *length,
2004		loff_t *ppos);
2005#endif
2006#ifdef CONFIG_SCHED_DEBUG
2007static inline unsigned int get_sysctl_timer_migration(void)
2008{
2009	return sysctl_timer_migration;
2010}
2011#else
2012static inline unsigned int get_sysctl_timer_migration(void)
2013{
2014	return 1;
2015}
2016#endif
2017extern unsigned int sysctl_sched_rt_period;
2018extern int sysctl_sched_rt_runtime;
2019
2020int sched_rt_handler(struct ctl_table *table, int write,
2021		void __user *buffer, size_t *lenp,
2022		loff_t *ppos);
2023
2024#ifdef CONFIG_SCHED_AUTOGROUP
2025extern unsigned int sysctl_sched_autogroup_enabled;
2026
2027extern void sched_autogroup_create_attach(struct task_struct *p);
2028extern void sched_autogroup_detach(struct task_struct *p);
2029extern void sched_autogroup_fork(struct signal_struct *sig);
2030extern void sched_autogroup_exit(struct signal_struct *sig);
2031#ifdef CONFIG_PROC_FS
2032extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2033extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice);
2034#endif
2035#else
2036static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2037static inline void sched_autogroup_detach(struct task_struct *p) { }
2038static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2039static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2040#endif
2041
2042#ifdef CONFIG_RT_MUTEXES
2043extern int rt_mutex_getprio(struct task_struct *p);
2044extern void rt_mutex_setprio(struct task_struct *p, int prio);
2045extern void rt_mutex_adjust_pi(struct task_struct *p);
2046#else
2047static inline int rt_mutex_getprio(struct task_struct *p)
2048{
2049	return p->normal_prio;
2050}
2051# define rt_mutex_adjust_pi(p)		do { } while (0)
2052#endif
2053
2054extern bool yield_to(struct task_struct *p, bool preempt);
2055extern void set_user_nice(struct task_struct *p, long nice);
2056extern int task_prio(const struct task_struct *p);
2057extern int task_nice(const struct task_struct *p);
 
 
 
 
 
 
 
 
 
2058extern int can_nice(const struct task_struct *p, const int nice);
2059extern int task_curr(const struct task_struct *p);
2060extern int idle_cpu(int cpu);
2061extern int sched_setscheduler(struct task_struct *, int,
2062			      const struct sched_param *);
2063extern int sched_setscheduler_nocheck(struct task_struct *, int,
2064				      const struct sched_param *);
 
 
2065extern struct task_struct *idle_task(int cpu);
 
 
 
 
 
 
 
 
 
 
2066extern struct task_struct *curr_task(int cpu);
2067extern void set_curr_task(int cpu, struct task_struct *p);
2068
2069void yield(void);
2070
2071/*
2072 * The default (Linux) execution domain.
2073 */
2074extern struct exec_domain	default_exec_domain;
2075
2076union thread_union {
2077	struct thread_info thread_info;
2078	unsigned long stack[THREAD_SIZE/sizeof(long)];
2079};
2080
2081#ifndef __HAVE_ARCH_KSTACK_END
2082static inline int kstack_end(void *addr)
2083{
2084	/* Reliable end of stack detection:
2085	 * Some APM bios versions misalign the stack
2086	 */
2087	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2088}
2089#endif
2090
2091extern union thread_union init_thread_union;
2092extern struct task_struct init_task;
2093
2094extern struct   mm_struct init_mm;
2095
2096extern struct pid_namespace init_pid_ns;
2097
2098/*
2099 * find a task by one of its numerical ids
2100 *
2101 * find_task_by_pid_ns():
2102 *      finds a task by its pid in the specified namespace
2103 * find_task_by_vpid():
2104 *      finds a task by its virtual pid
2105 *
2106 * see also find_vpid() etc in include/linux/pid.h
2107 */
2108
2109extern struct task_struct *find_task_by_vpid(pid_t nr);
2110extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2111		struct pid_namespace *ns);
2112
2113extern void __set_special_pids(struct pid *pid);
2114
2115/* per-UID process charging. */
2116extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2117static inline struct user_struct *get_uid(struct user_struct *u)
2118{
2119	atomic_inc(&u->__count);
2120	return u;
2121}
2122extern void free_uid(struct user_struct *);
2123extern void release_uids(struct user_namespace *ns);
2124
2125#include <asm/current.h>
2126
2127extern void xtime_update(unsigned long ticks);
2128
2129extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2130extern int wake_up_process(struct task_struct *tsk);
2131extern void wake_up_new_task(struct task_struct *tsk);
2132#ifdef CONFIG_SMP
2133 extern void kick_process(struct task_struct *tsk);
2134#else
2135 static inline void kick_process(struct task_struct *tsk) { }
2136#endif
2137extern void sched_fork(struct task_struct *p);
2138extern void sched_dead(struct task_struct *p);
2139
2140extern void proc_caches_init(void);
2141extern void flush_signals(struct task_struct *);
2142extern void __flush_signals(struct task_struct *);
2143extern void ignore_signals(struct task_struct *);
2144extern void flush_signal_handlers(struct task_struct *, int force_default);
2145extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2146
2147static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2148{
2149	unsigned long flags;
2150	int ret;
2151
2152	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2153	ret = dequeue_signal(tsk, mask, info);
2154	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2155
2156	return ret;
2157}
2158
2159extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2160			      sigset_t *mask);
2161extern void unblock_all_signals(void);
2162extern void release_task(struct task_struct * p);
2163extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2164extern int force_sigsegv(int, struct task_struct *);
2165extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2166extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2167extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2168extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
 
2169extern int kill_pgrp(struct pid *pid, int sig, int priv);
2170extern int kill_pid(struct pid *pid, int sig, int priv);
2171extern int kill_proc_info(int, struct siginfo *, pid_t);
2172extern __must_check bool do_notify_parent(struct task_struct *, int);
2173extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2174extern void force_sig(int, struct task_struct *);
2175extern int send_sig(int, struct task_struct *, int);
2176extern int zap_other_threads(struct task_struct *p);
2177extern struct sigqueue *sigqueue_alloc(void);
2178extern void sigqueue_free(struct sigqueue *);
2179extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2180extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2181extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
 
 
 
 
 
 
 
 
 
 
 
 
 
2182
2183static inline int kill_cad_pid(int sig, int priv)
2184{
2185	return kill_pid(cad_pid, sig, priv);
2186}
2187
2188/* These can be the second arg to send_sig_info/send_group_sig_info.  */
2189#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2190#define SEND_SIG_PRIV	((struct siginfo *) 1)
2191#define SEND_SIG_FORCED	((struct siginfo *) 2)
2192
2193/*
2194 * True if we are on the alternate signal stack.
2195 */
2196static inline int on_sig_stack(unsigned long sp)
2197{
2198#ifdef CONFIG_STACK_GROWSUP
2199	return sp >= current->sas_ss_sp &&
2200		sp - current->sas_ss_sp < current->sas_ss_size;
2201#else
2202	return sp > current->sas_ss_sp &&
2203		sp - current->sas_ss_sp <= current->sas_ss_size;
2204#endif
2205}
2206
2207static inline int sas_ss_flags(unsigned long sp)
2208{
2209	return (current->sas_ss_size == 0 ? SS_DISABLE
2210		: on_sig_stack(sp) ? SS_ONSTACK : 0);
2211}
2212
 
 
 
 
 
 
 
 
 
 
 
2213/*
2214 * Routines for handling mm_structs
2215 */
2216extern struct mm_struct * mm_alloc(void);
2217
2218/* mmdrop drops the mm and the page tables */
2219extern void __mmdrop(struct mm_struct *);
2220static inline void mmdrop(struct mm_struct * mm)
2221{
2222	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2223		__mmdrop(mm);
2224}
2225
2226/* mmput gets rid of the mappings and all user-space */
2227extern void mmput(struct mm_struct *);
2228/* Grab a reference to a task's mm, if it is not already going away */
2229extern struct mm_struct *get_task_mm(struct task_struct *task);
 
 
 
 
 
 
2230/* Remove the current tasks stale references to the old mm_struct */
2231extern void mm_release(struct task_struct *, struct mm_struct *);
2232/* Allocate a new mm structure and copy contents from tsk->mm */
2233extern struct mm_struct *dup_mm(struct task_struct *tsk);
2234
2235extern int copy_thread(unsigned long, unsigned long, unsigned long,
2236			struct task_struct *, struct pt_regs *);
2237extern void flush_thread(void);
2238extern void exit_thread(void);
2239
2240extern void exit_files(struct task_struct *);
2241extern void __cleanup_sighand(struct sighand_struct *);
2242
2243extern void exit_itimers(struct signal_struct *);
2244extern void flush_itimer_signals(void);
2245
2246extern NORET_TYPE void do_group_exit(int);
2247
2248extern void daemonize(const char *, ...);
2249extern int allow_signal(int);
2250extern int disallow_signal(int);
2251
2252extern int do_execve(const char *,
2253		     const char __user * const __user *,
2254		     const char __user * const __user *, struct pt_regs *);
2255extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2256struct task_struct *fork_idle(int);
 
2257
2258extern void set_task_comm(struct task_struct *tsk, char *from);
2259extern char *get_task_comm(char *to, struct task_struct *tsk);
2260
2261#ifdef CONFIG_SMP
2262void scheduler_ipi(void);
2263extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2264#else
2265static inline void scheduler_ipi(void) { }
2266static inline unsigned long wait_task_inactive(struct task_struct *p,
2267					       long match_state)
2268{
2269	return 1;
2270}
2271#endif
2272
2273#define next_task(p) \
2274	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2275
2276#define for_each_process(p) \
2277	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2278
2279extern bool current_is_single_threaded(void);
2280
2281/*
2282 * Careful: do_each_thread/while_each_thread is a double loop so
2283 *          'break' will not work as expected - use goto instead.
2284 */
2285#define do_each_thread(g, t) \
2286	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2287
2288#define while_each_thread(g, t) \
2289	while ((t = next_thread(t)) != g)
2290
 
 
 
 
 
 
 
 
 
 
2291static inline int get_nr_threads(struct task_struct *tsk)
2292{
2293	return tsk->signal->nr_threads;
2294}
2295
2296static inline bool thread_group_leader(struct task_struct *p)
2297{
2298	return p->exit_signal >= 0;
2299}
2300
2301/* Do to the insanities of de_thread it is possible for a process
2302 * to have the pid of the thread group leader without actually being
2303 * the thread group leader.  For iteration through the pids in proc
2304 * all we care about is that we have a task with the appropriate
2305 * pid, we don't actually care if we have the right task.
2306 */
2307static inline int has_group_leader_pid(struct task_struct *p)
2308{
2309	return p->pid == p->tgid;
2310}
2311
2312static inline
2313int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2314{
2315	return p1->tgid == p2->tgid;
2316}
2317
2318static inline struct task_struct *next_thread(const struct task_struct *p)
2319{
2320	return list_entry_rcu(p->thread_group.next,
2321			      struct task_struct, thread_group);
2322}
2323
2324static inline int thread_group_empty(struct task_struct *p)
2325{
2326	return list_empty(&p->thread_group);
2327}
2328
2329#define delay_group_leader(p) \
2330		(thread_group_leader(p) && !thread_group_empty(p))
2331
2332/*
2333 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2334 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2335 * pins the final release of task.io_context.  Also protects ->cpuset and
2336 * ->cgroup.subsys[].
2337 *
2338 * Nests both inside and outside of read_lock(&tasklist_lock).
2339 * It must not be nested with write_lock_irq(&tasklist_lock),
2340 * neither inside nor outside.
2341 */
2342static inline void task_lock(struct task_struct *p)
2343{
2344	spin_lock(&p->alloc_lock);
2345}
2346
2347static inline void task_unlock(struct task_struct *p)
2348{
2349	spin_unlock(&p->alloc_lock);
2350}
2351
2352extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2353							unsigned long *flags);
2354
2355#define lock_task_sighand(tsk, flags)					\
2356({	struct sighand_struct *__ss;					\
2357	__cond_lock(&(tsk)->sighand->siglock,				\
2358		    (__ss = __lock_task_sighand(tsk, flags)));		\
2359	__ss;								\
2360})									\
 
 
 
2361
2362static inline void unlock_task_sighand(struct task_struct *tsk,
2363						unsigned long *flags)
2364{
2365	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2366}
2367
2368/* See the declaration of threadgroup_fork_lock in signal_struct. */
2369#ifdef CONFIG_CGROUPS
2370static inline void threadgroup_fork_read_lock(struct task_struct *tsk)
2371{
2372	down_read(&tsk->signal->threadgroup_fork_lock);
2373}
2374static inline void threadgroup_fork_read_unlock(struct task_struct *tsk)
2375{
2376	up_read(&tsk->signal->threadgroup_fork_lock);
2377}
2378static inline void threadgroup_fork_write_lock(struct task_struct *tsk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2379{
2380	down_write(&tsk->signal->threadgroup_fork_lock);
2381}
2382static inline void threadgroup_fork_write_unlock(struct task_struct *tsk)
 
 
 
 
 
 
 
2383{
2384	up_write(&tsk->signal->threadgroup_fork_lock);
2385}
2386#else
2387static inline void threadgroup_fork_read_lock(struct task_struct *tsk) {}
2388static inline void threadgroup_fork_read_unlock(struct task_struct *tsk) {}
2389static inline void threadgroup_fork_write_lock(struct task_struct *tsk) {}
2390static inline void threadgroup_fork_write_unlock(struct task_struct *tsk) {}
2391#endif
2392
2393#ifndef __HAVE_THREAD_FUNCTIONS
2394
2395#define task_thread_info(task)	((struct thread_info *)(task)->stack)
2396#define task_stack_page(task)	((task)->stack)
2397
2398static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2399{
2400	*task_thread_info(p) = *task_thread_info(org);
2401	task_thread_info(p)->task = p;
2402}
2403
2404static inline unsigned long *end_of_stack(struct task_struct *p)
2405{
2406	return (unsigned long *)(task_thread_info(p) + 1);
2407}
2408
2409#endif
2410
2411static inline int object_is_on_stack(void *obj)
2412{
2413	void *stack = task_stack_page(current);
2414
2415	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2416}
2417
2418extern void thread_info_cache_init(void);
2419
2420#ifdef CONFIG_DEBUG_STACK_USAGE
2421static inline unsigned long stack_not_used(struct task_struct *p)
2422{
2423	unsigned long *n = end_of_stack(p);
2424
2425	do { 	/* Skip over canary */
2426		n++;
2427	} while (!*n);
2428
2429	return (unsigned long)n - (unsigned long)end_of_stack(p);
2430}
2431#endif
2432
2433/* set thread flags in other task's structures
2434 * - see asm/thread_info.h for TIF_xxxx flags available
2435 */
2436static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2437{
2438	set_ti_thread_flag(task_thread_info(tsk), flag);
2439}
2440
2441static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2442{
2443	clear_ti_thread_flag(task_thread_info(tsk), flag);
2444}
2445
2446static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2447{
2448	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2449}
2450
2451static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2452{
2453	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2454}
2455
2456static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2457{
2458	return test_ti_thread_flag(task_thread_info(tsk), flag);
2459}
2460
2461static inline void set_tsk_need_resched(struct task_struct *tsk)
2462{
2463	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2464}
2465
2466static inline void clear_tsk_need_resched(struct task_struct *tsk)
2467{
2468	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2469}
2470
2471static inline int test_tsk_need_resched(struct task_struct *tsk)
2472{
2473	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2474}
2475
2476static inline int restart_syscall(void)
2477{
2478	set_tsk_thread_flag(current, TIF_SIGPENDING);
2479	return -ERESTARTNOINTR;
2480}
2481
2482static inline int signal_pending(struct task_struct *p)
2483{
2484	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2485}
2486
2487static inline int __fatal_signal_pending(struct task_struct *p)
2488{
2489	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2490}
2491
2492static inline int fatal_signal_pending(struct task_struct *p)
2493{
2494	return signal_pending(p) && __fatal_signal_pending(p);
2495}
2496
2497static inline int signal_pending_state(long state, struct task_struct *p)
2498{
2499	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2500		return 0;
2501	if (!signal_pending(p))
2502		return 0;
2503
2504	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2505}
2506
2507static inline int need_resched(void)
2508{
2509	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2510}
2511
2512/*
2513 * cond_resched() and cond_resched_lock(): latency reduction via
2514 * explicit rescheduling in places that are safe. The return
2515 * value indicates whether a reschedule was done in fact.
2516 * cond_resched_lock() will drop the spinlock before scheduling,
2517 * cond_resched_softirq() will enable bhs before scheduling.
2518 */
2519extern int _cond_resched(void);
2520
2521#define cond_resched() ({			\
2522	__might_sleep(__FILE__, __LINE__, 0);	\
2523	_cond_resched();			\
2524})
2525
2526extern int __cond_resched_lock(spinlock_t *lock);
2527
2528#ifdef CONFIG_PREEMPT_COUNT
2529#define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
2530#else
2531#define PREEMPT_LOCK_OFFSET	0
2532#endif
2533
2534#define cond_resched_lock(lock) ({				\
2535	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
2536	__cond_resched_lock(lock);				\
2537})
2538
2539extern int __cond_resched_softirq(void);
2540
2541#define cond_resched_softirq() ({					\
2542	__might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
2543	__cond_resched_softirq();					\
2544})
2545
 
 
 
 
 
 
 
 
 
2546/*
2547 * Does a critical section need to be broken due to another
2548 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2549 * but a general need for low latency)
2550 */
2551static inline int spin_needbreak(spinlock_t *lock)
2552{
2553#ifdef CONFIG_PREEMPT
2554	return spin_is_contended(lock);
2555#else
2556	return 0;
2557#endif
2558}
2559
2560/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2561 * Thread group CPU time accounting.
2562 */
2563void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2564void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2565
2566static inline void thread_group_cputime_init(struct signal_struct *sig)
2567{
2568	spin_lock_init(&sig->cputimer.lock);
2569}
2570
2571/*
2572 * Reevaluate whether the task has signals pending delivery.
2573 * Wake the task if so.
2574 * This is required every time the blocked sigset_t changes.
2575 * callers must hold sighand->siglock.
2576 */
2577extern void recalc_sigpending_and_wake(struct task_struct *t);
2578extern void recalc_sigpending(void);
2579
2580extern void signal_wake_up(struct task_struct *t, int resume_stopped);
 
 
 
 
 
 
 
 
 
2581
2582/*
2583 * Wrappers for p->thread_info->cpu access. No-op on UP.
2584 */
2585#ifdef CONFIG_SMP
2586
2587static inline unsigned int task_cpu(const struct task_struct *p)
2588{
2589	return task_thread_info(p)->cpu;
2590}
2591
 
 
 
 
 
2592extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2593
2594#else
2595
2596static inline unsigned int task_cpu(const struct task_struct *p)
2597{
2598	return 0;
2599}
2600
2601static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2602{
2603}
2604
2605#endif /* CONFIG_SMP */
2606
2607extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2608extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2609
2610extern void normalize_rt_tasks(void);
2611
2612#ifdef CONFIG_CGROUP_SCHED
2613
2614extern struct task_group root_task_group;
2615
2616extern struct task_group *sched_create_group(struct task_group *parent);
2617extern void sched_destroy_group(struct task_group *tg);
2618extern void sched_move_task(struct task_struct *tsk);
2619#ifdef CONFIG_FAIR_GROUP_SCHED
2620extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2621extern unsigned long sched_group_shares(struct task_group *tg);
2622#endif
2623#ifdef CONFIG_RT_GROUP_SCHED
2624extern int sched_group_set_rt_runtime(struct task_group *tg,
2625				      long rt_runtime_us);
2626extern long sched_group_rt_runtime(struct task_group *tg);
2627extern int sched_group_set_rt_period(struct task_group *tg,
2628				      long rt_period_us);
2629extern long sched_group_rt_period(struct task_group *tg);
2630extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2631#endif
2632#endif
2633
2634extern int task_can_switch_user(struct user_struct *up,
2635					struct task_struct *tsk);
2636
2637#ifdef CONFIG_TASK_XACCT
2638static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2639{
2640	tsk->ioac.rchar += amt;
2641}
2642
2643static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2644{
2645	tsk->ioac.wchar += amt;
2646}
2647
2648static inline void inc_syscr(struct task_struct *tsk)
2649{
2650	tsk->ioac.syscr++;
2651}
2652
2653static inline void inc_syscw(struct task_struct *tsk)
2654{
2655	tsk->ioac.syscw++;
2656}
2657#else
2658static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2659{
2660}
2661
2662static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2663{
2664}
2665
2666static inline void inc_syscr(struct task_struct *tsk)
2667{
2668}
2669
2670static inline void inc_syscw(struct task_struct *tsk)
2671{
2672}
2673#endif
2674
2675#ifndef TASK_SIZE_OF
2676#define TASK_SIZE_OF(tsk)	TASK_SIZE
2677#endif
2678
2679#ifdef CONFIG_MM_OWNER
2680extern void mm_update_next_owner(struct mm_struct *mm);
2681extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2682#else
2683static inline void mm_update_next_owner(struct mm_struct *mm)
2684{
2685}
2686
2687static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2688{
2689}
2690#endif /* CONFIG_MM_OWNER */
2691
2692static inline unsigned long task_rlimit(const struct task_struct *tsk,
2693		unsigned int limit)
2694{
2695	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2696}
2697
2698static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2699		unsigned int limit)
2700{
2701	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2702}
2703
2704static inline unsigned long rlimit(unsigned int limit)
2705{
2706	return task_rlimit(current, limit);
2707}
2708
2709static inline unsigned long rlimit_max(unsigned int limit)
2710{
2711	return task_rlimit_max(current, limit);
2712}
2713
2714#endif /* __KERNEL__ */
2715
2716#endif