Loading...
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4#include <uapi/linux/sched.h>
5
6#include <linux/sched/prio.h>
7
8
9struct sched_param {
10 int sched_priority;
11};
12
13#include <asm/param.h> /* for HZ */
14
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
21#include <linux/plist.h>
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
27#include <linux/mm_types.h>
28#include <linux/preempt_mask.h>
29
30#include <asm/page.h>
31#include <asm/ptrace.h>
32#include <linux/cputime.h>
33
34#include <linux/smp.h>
35#include <linux/sem.h>
36#include <linux/signal.h>
37#include <linux/compiler.h>
38#include <linux/completion.h>
39#include <linux/pid.h>
40#include <linux/percpu.h>
41#include <linux/topology.h>
42#include <linux/proportions.h>
43#include <linux/seccomp.h>
44#include <linux/rcupdate.h>
45#include <linux/rculist.h>
46#include <linux/rtmutex.h>
47
48#include <linux/time.h>
49#include <linux/param.h>
50#include <linux/resource.h>
51#include <linux/timer.h>
52#include <linux/hrtimer.h>
53#include <linux/task_io_accounting.h>
54#include <linux/latencytop.h>
55#include <linux/cred.h>
56#include <linux/llist.h>
57#include <linux/uidgid.h>
58#include <linux/gfp.h>
59
60#include <asm/processor.h>
61
62#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
63
64/*
65 * Extended scheduling parameters data structure.
66 *
67 * This is needed because the original struct sched_param can not be
68 * altered without introducing ABI issues with legacy applications
69 * (e.g., in sched_getparam()).
70 *
71 * However, the possibility of specifying more than just a priority for
72 * the tasks may be useful for a wide variety of application fields, e.g.,
73 * multimedia, streaming, automation and control, and many others.
74 *
75 * This variant (sched_attr) is meant at describing a so-called
76 * sporadic time-constrained task. In such model a task is specified by:
77 * - the activation period or minimum instance inter-arrival time;
78 * - the maximum (or average, depending on the actual scheduling
79 * discipline) computation time of all instances, a.k.a. runtime;
80 * - the deadline (relative to the actual activation time) of each
81 * instance.
82 * Very briefly, a periodic (sporadic) task asks for the execution of
83 * some specific computation --which is typically called an instance--
84 * (at most) every period. Moreover, each instance typically lasts no more
85 * than the runtime and must be completed by time instant t equal to
86 * the instance activation time + the deadline.
87 *
88 * This is reflected by the actual fields of the sched_attr structure:
89 *
90 * @size size of the structure, for fwd/bwd compat.
91 *
92 * @sched_policy task's scheduling policy
93 * @sched_flags for customizing the scheduler behaviour
94 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
95 * @sched_priority task's static priority (SCHED_FIFO/RR)
96 * @sched_deadline representative of the task's deadline
97 * @sched_runtime representative of the task's runtime
98 * @sched_period representative of the task's period
99 *
100 * Given this task model, there are a multiplicity of scheduling algorithms
101 * and policies, that can be used to ensure all the tasks will make their
102 * timing constraints.
103 *
104 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
105 * only user of this new interface. More information about the algorithm
106 * available in the scheduling class file or in Documentation/.
107 */
108struct sched_attr {
109 u32 size;
110
111 u32 sched_policy;
112 u64 sched_flags;
113
114 /* SCHED_NORMAL, SCHED_BATCH */
115 s32 sched_nice;
116
117 /* SCHED_FIFO, SCHED_RR */
118 u32 sched_priority;
119
120 /* SCHED_DEADLINE */
121 u64 sched_runtime;
122 u64 sched_deadline;
123 u64 sched_period;
124};
125
126struct exec_domain;
127struct futex_pi_state;
128struct robust_list_head;
129struct bio_list;
130struct fs_struct;
131struct perf_event_context;
132struct blk_plug;
133struct filename;
134
135#define VMACACHE_BITS 2
136#define VMACACHE_SIZE (1U << VMACACHE_BITS)
137#define VMACACHE_MASK (VMACACHE_SIZE - 1)
138
139/*
140 * List of flags we want to share for kernel threads,
141 * if only because they are not used by them anyway.
142 */
143#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
144
145/*
146 * These are the constant used to fake the fixed-point load-average
147 * counting. Some notes:
148 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
149 * a load-average precision of 10 bits integer + 11 bits fractional
150 * - if you want to count load-averages more often, you need more
151 * precision, or rounding will get you. With 2-second counting freq,
152 * the EXP_n values would be 1981, 2034 and 2043 if still using only
153 * 11 bit fractions.
154 */
155extern unsigned long avenrun[]; /* Load averages */
156extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
157
158#define FSHIFT 11 /* nr of bits of precision */
159#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
160#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
161#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
162#define EXP_5 2014 /* 1/exp(5sec/5min) */
163#define EXP_15 2037 /* 1/exp(5sec/15min) */
164
165#define CALC_LOAD(load,exp,n) \
166 load *= exp; \
167 load += n*(FIXED_1-exp); \
168 load >>= FSHIFT;
169
170extern unsigned long total_forks;
171extern int nr_threads;
172DECLARE_PER_CPU(unsigned long, process_counts);
173extern int nr_processes(void);
174extern unsigned long nr_running(void);
175extern unsigned long nr_iowait(void);
176extern unsigned long nr_iowait_cpu(int cpu);
177extern unsigned long this_cpu_load(void);
178
179
180extern void calc_global_load(unsigned long ticks);
181extern void update_cpu_load_nohz(void);
182
183extern unsigned long get_parent_ip(unsigned long addr);
184
185extern void dump_cpu_task(int cpu);
186
187struct seq_file;
188struct cfs_rq;
189struct task_group;
190#ifdef CONFIG_SCHED_DEBUG
191extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
192extern void proc_sched_set_task(struct task_struct *p);
193extern void
194print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
195#endif
196
197/*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
207#define TASK_RUNNING 0
208#define TASK_INTERRUPTIBLE 1
209#define TASK_UNINTERRUPTIBLE 2
210#define __TASK_STOPPED 4
211#define __TASK_TRACED 8
212/* in tsk->exit_state */
213#define EXIT_DEAD 16
214#define EXIT_ZOMBIE 32
215#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
216/* in tsk->state again */
217#define TASK_DEAD 64
218#define TASK_WAKEKILL 128
219#define TASK_WAKING 256
220#define TASK_PARKED 512
221#define TASK_STATE_MAX 1024
222
223#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWP"
224
225extern char ___assert_task_state[1 - 2*!!(
226 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
227
228/* Convenience macros for the sake of set_task_state */
229#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
230#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
231#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
232
233/* Convenience macros for the sake of wake_up */
234#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
235#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
236
237/* get_task_state() */
238#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
239 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
240 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
241
242#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
243#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
244#define task_is_stopped_or_traced(task) \
245 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
246#define task_contributes_to_load(task) \
247 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
248 (task->flags & PF_FROZEN) == 0)
249
250#define __set_task_state(tsk, state_value) \
251 do { (tsk)->state = (state_value); } while (0)
252#define set_task_state(tsk, state_value) \
253 set_mb((tsk)->state, (state_value))
254
255/*
256 * set_current_state() includes a barrier so that the write of current->state
257 * is correctly serialised wrt the caller's subsequent test of whether to
258 * actually sleep:
259 *
260 * set_current_state(TASK_UNINTERRUPTIBLE);
261 * if (do_i_need_to_sleep())
262 * schedule();
263 *
264 * If the caller does not need such serialisation then use __set_current_state()
265 */
266#define __set_current_state(state_value) \
267 do { current->state = (state_value); } while (0)
268#define set_current_state(state_value) \
269 set_mb(current->state, (state_value))
270
271/* Task command name length */
272#define TASK_COMM_LEN 16
273
274#include <linux/spinlock.h>
275
276/*
277 * This serializes "schedule()" and also protects
278 * the run-queue from deletions/modifications (but
279 * _adding_ to the beginning of the run-queue has
280 * a separate lock).
281 */
282extern rwlock_t tasklist_lock;
283extern spinlock_t mmlist_lock;
284
285struct task_struct;
286
287#ifdef CONFIG_PROVE_RCU
288extern int lockdep_tasklist_lock_is_held(void);
289#endif /* #ifdef CONFIG_PROVE_RCU */
290
291extern void sched_init(void);
292extern void sched_init_smp(void);
293extern asmlinkage void schedule_tail(struct task_struct *prev);
294extern void init_idle(struct task_struct *idle, int cpu);
295extern void init_idle_bootup_task(struct task_struct *idle);
296
297extern int runqueue_is_locked(int cpu);
298
299#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
300extern void nohz_balance_enter_idle(int cpu);
301extern void set_cpu_sd_state_idle(void);
302extern int get_nohz_timer_target(int pinned);
303#else
304static inline void nohz_balance_enter_idle(int cpu) { }
305static inline void set_cpu_sd_state_idle(void) { }
306static inline int get_nohz_timer_target(int pinned)
307{
308 return smp_processor_id();
309}
310#endif
311
312/*
313 * Only dump TASK_* tasks. (0 for all tasks)
314 */
315extern void show_state_filter(unsigned long state_filter);
316
317static inline void show_state(void)
318{
319 show_state_filter(0);
320}
321
322extern void show_regs(struct pt_regs *);
323
324/*
325 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
326 * task), SP is the stack pointer of the first frame that should be shown in the back
327 * trace (or NULL if the entire call-chain of the task should be shown).
328 */
329extern void show_stack(struct task_struct *task, unsigned long *sp);
330
331void io_schedule(void);
332long io_schedule_timeout(long timeout);
333
334extern void cpu_init (void);
335extern void trap_init(void);
336extern void update_process_times(int user);
337extern void scheduler_tick(void);
338
339extern void sched_show_task(struct task_struct *p);
340
341#ifdef CONFIG_LOCKUP_DETECTOR
342extern void touch_softlockup_watchdog(void);
343extern void touch_softlockup_watchdog_sync(void);
344extern void touch_all_softlockup_watchdogs(void);
345extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
346 void __user *buffer,
347 size_t *lenp, loff_t *ppos);
348extern unsigned int softlockup_panic;
349void lockup_detector_init(void);
350#else
351static inline void touch_softlockup_watchdog(void)
352{
353}
354static inline void touch_softlockup_watchdog_sync(void)
355{
356}
357static inline void touch_all_softlockup_watchdogs(void)
358{
359}
360static inline void lockup_detector_init(void)
361{
362}
363#endif
364
365#ifdef CONFIG_DETECT_HUNG_TASK
366void reset_hung_task_detector(void);
367#else
368static inline void reset_hung_task_detector(void)
369{
370}
371#endif
372
373/* Attach to any functions which should be ignored in wchan output. */
374#define __sched __attribute__((__section__(".sched.text")))
375
376/* Linker adds these: start and end of __sched functions */
377extern char __sched_text_start[], __sched_text_end[];
378
379/* Is this address in the __sched functions? */
380extern int in_sched_functions(unsigned long addr);
381
382#define MAX_SCHEDULE_TIMEOUT LONG_MAX
383extern signed long schedule_timeout(signed long timeout);
384extern signed long schedule_timeout_interruptible(signed long timeout);
385extern signed long schedule_timeout_killable(signed long timeout);
386extern signed long schedule_timeout_uninterruptible(signed long timeout);
387asmlinkage void schedule(void);
388extern void schedule_preempt_disabled(void);
389
390struct nsproxy;
391struct user_namespace;
392
393#ifdef CONFIG_MMU
394extern void arch_pick_mmap_layout(struct mm_struct *mm);
395extern unsigned long
396arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
397 unsigned long, unsigned long);
398extern unsigned long
399arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
400 unsigned long len, unsigned long pgoff,
401 unsigned long flags);
402#else
403static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
404#endif
405
406#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
407#define SUID_DUMP_USER 1 /* Dump as user of process */
408#define SUID_DUMP_ROOT 2 /* Dump as root */
409
410/* mm flags */
411
412/* for SUID_DUMP_* above */
413#define MMF_DUMPABLE_BITS 2
414#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
415
416extern void set_dumpable(struct mm_struct *mm, int value);
417/*
418 * This returns the actual value of the suid_dumpable flag. For things
419 * that are using this for checking for privilege transitions, it must
420 * test against SUID_DUMP_USER rather than treating it as a boolean
421 * value.
422 */
423static inline int __get_dumpable(unsigned long mm_flags)
424{
425 return mm_flags & MMF_DUMPABLE_MASK;
426}
427
428static inline int get_dumpable(struct mm_struct *mm)
429{
430 return __get_dumpable(mm->flags);
431}
432
433/* coredump filter bits */
434#define MMF_DUMP_ANON_PRIVATE 2
435#define MMF_DUMP_ANON_SHARED 3
436#define MMF_DUMP_MAPPED_PRIVATE 4
437#define MMF_DUMP_MAPPED_SHARED 5
438#define MMF_DUMP_ELF_HEADERS 6
439#define MMF_DUMP_HUGETLB_PRIVATE 7
440#define MMF_DUMP_HUGETLB_SHARED 8
441
442#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
443#define MMF_DUMP_FILTER_BITS 7
444#define MMF_DUMP_FILTER_MASK \
445 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
446#define MMF_DUMP_FILTER_DEFAULT \
447 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
448 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
449
450#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
451# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
452#else
453# define MMF_DUMP_MASK_DEFAULT_ELF 0
454#endif
455 /* leave room for more dump flags */
456#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
457#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
458#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
459
460#define MMF_HAS_UPROBES 19 /* has uprobes */
461#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
462
463#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
464
465struct sighand_struct {
466 atomic_t count;
467 struct k_sigaction action[_NSIG];
468 spinlock_t siglock;
469 wait_queue_head_t signalfd_wqh;
470};
471
472struct pacct_struct {
473 int ac_flag;
474 long ac_exitcode;
475 unsigned long ac_mem;
476 cputime_t ac_utime, ac_stime;
477 unsigned long ac_minflt, ac_majflt;
478};
479
480struct cpu_itimer {
481 cputime_t expires;
482 cputime_t incr;
483 u32 error;
484 u32 incr_error;
485};
486
487/**
488 * struct cputime - snaphsot of system and user cputime
489 * @utime: time spent in user mode
490 * @stime: time spent in system mode
491 *
492 * Gathers a generic snapshot of user and system time.
493 */
494struct cputime {
495 cputime_t utime;
496 cputime_t stime;
497};
498
499/**
500 * struct task_cputime - collected CPU time counts
501 * @utime: time spent in user mode, in &cputime_t units
502 * @stime: time spent in kernel mode, in &cputime_t units
503 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
504 *
505 * This is an extension of struct cputime that includes the total runtime
506 * spent by the task from the scheduler point of view.
507 *
508 * As a result, this structure groups together three kinds of CPU time
509 * that are tracked for threads and thread groups. Most things considering
510 * CPU time want to group these counts together and treat all three
511 * of them in parallel.
512 */
513struct task_cputime {
514 cputime_t utime;
515 cputime_t stime;
516 unsigned long long sum_exec_runtime;
517};
518/* Alternate field names when used to cache expirations. */
519#define prof_exp stime
520#define virt_exp utime
521#define sched_exp sum_exec_runtime
522
523#define INIT_CPUTIME \
524 (struct task_cputime) { \
525 .utime = 0, \
526 .stime = 0, \
527 .sum_exec_runtime = 0, \
528 }
529
530#ifdef CONFIG_PREEMPT_COUNT
531#define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
532#else
533#define PREEMPT_DISABLED PREEMPT_ENABLED
534#endif
535
536/*
537 * Disable preemption until the scheduler is running.
538 * Reset by start_kernel()->sched_init()->init_idle().
539 *
540 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
541 * before the scheduler is active -- see should_resched().
542 */
543#define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE)
544
545/**
546 * struct thread_group_cputimer - thread group interval timer counts
547 * @cputime: thread group interval timers.
548 * @running: non-zero when there are timers running and
549 * @cputime receives updates.
550 * @lock: lock for fields in this struct.
551 *
552 * This structure contains the version of task_cputime, above, that is
553 * used for thread group CPU timer calculations.
554 */
555struct thread_group_cputimer {
556 struct task_cputime cputime;
557 int running;
558 raw_spinlock_t lock;
559};
560
561#include <linux/rwsem.h>
562struct autogroup;
563
564/*
565 * NOTE! "signal_struct" does not have its own
566 * locking, because a shared signal_struct always
567 * implies a shared sighand_struct, so locking
568 * sighand_struct is always a proper superset of
569 * the locking of signal_struct.
570 */
571struct signal_struct {
572 atomic_t sigcnt;
573 atomic_t live;
574 int nr_threads;
575 struct list_head thread_head;
576
577 wait_queue_head_t wait_chldexit; /* for wait4() */
578
579 /* current thread group signal load-balancing target: */
580 struct task_struct *curr_target;
581
582 /* shared signal handling: */
583 struct sigpending shared_pending;
584
585 /* thread group exit support */
586 int group_exit_code;
587 /* overloaded:
588 * - notify group_exit_task when ->count is equal to notify_count
589 * - everyone except group_exit_task is stopped during signal delivery
590 * of fatal signals, group_exit_task processes the signal.
591 */
592 int notify_count;
593 struct task_struct *group_exit_task;
594
595 /* thread group stop support, overloads group_exit_code too */
596 int group_stop_count;
597 unsigned int flags; /* see SIGNAL_* flags below */
598
599 /*
600 * PR_SET_CHILD_SUBREAPER marks a process, like a service
601 * manager, to re-parent orphan (double-forking) child processes
602 * to this process instead of 'init'. The service manager is
603 * able to receive SIGCHLD signals and is able to investigate
604 * the process until it calls wait(). All children of this
605 * process will inherit a flag if they should look for a
606 * child_subreaper process at exit.
607 */
608 unsigned int is_child_subreaper:1;
609 unsigned int has_child_subreaper:1;
610
611 /* POSIX.1b Interval Timers */
612 int posix_timer_id;
613 struct list_head posix_timers;
614
615 /* ITIMER_REAL timer for the process */
616 struct hrtimer real_timer;
617 struct pid *leader_pid;
618 ktime_t it_real_incr;
619
620 /*
621 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
622 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
623 * values are defined to 0 and 1 respectively
624 */
625 struct cpu_itimer it[2];
626
627 /*
628 * Thread group totals for process CPU timers.
629 * See thread_group_cputimer(), et al, for details.
630 */
631 struct thread_group_cputimer cputimer;
632
633 /* Earliest-expiration cache. */
634 struct task_cputime cputime_expires;
635
636 struct list_head cpu_timers[3];
637
638 struct pid *tty_old_pgrp;
639
640 /* boolean value for session group leader */
641 int leader;
642
643 struct tty_struct *tty; /* NULL if no tty */
644
645#ifdef CONFIG_SCHED_AUTOGROUP
646 struct autogroup *autogroup;
647#endif
648 /*
649 * Cumulative resource counters for dead threads in the group,
650 * and for reaped dead child processes forked by this group.
651 * Live threads maintain their own counters and add to these
652 * in __exit_signal, except for the group leader.
653 */
654 cputime_t utime, stime, cutime, cstime;
655 cputime_t gtime;
656 cputime_t cgtime;
657#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
658 struct cputime prev_cputime;
659#endif
660 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
661 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
662 unsigned long inblock, oublock, cinblock, coublock;
663 unsigned long maxrss, cmaxrss;
664 struct task_io_accounting ioac;
665
666 /*
667 * Cumulative ns of schedule CPU time fo dead threads in the
668 * group, not including a zombie group leader, (This only differs
669 * from jiffies_to_ns(utime + stime) if sched_clock uses something
670 * other than jiffies.)
671 */
672 unsigned long long sum_sched_runtime;
673
674 /*
675 * We don't bother to synchronize most readers of this at all,
676 * because there is no reader checking a limit that actually needs
677 * to get both rlim_cur and rlim_max atomically, and either one
678 * alone is a single word that can safely be read normally.
679 * getrlimit/setrlimit use task_lock(current->group_leader) to
680 * protect this instead of the siglock, because they really
681 * have no need to disable irqs.
682 */
683 struct rlimit rlim[RLIM_NLIMITS];
684
685#ifdef CONFIG_BSD_PROCESS_ACCT
686 struct pacct_struct pacct; /* per-process accounting information */
687#endif
688#ifdef CONFIG_TASKSTATS
689 struct taskstats *stats;
690#endif
691#ifdef CONFIG_AUDIT
692 unsigned audit_tty;
693 unsigned audit_tty_log_passwd;
694 struct tty_audit_buf *tty_audit_buf;
695#endif
696#ifdef CONFIG_CGROUPS
697 /*
698 * group_rwsem prevents new tasks from entering the threadgroup and
699 * member tasks from exiting,a more specifically, setting of
700 * PF_EXITING. fork and exit paths are protected with this rwsem
701 * using threadgroup_change_begin/end(). Users which require
702 * threadgroup to remain stable should use threadgroup_[un]lock()
703 * which also takes care of exec path. Currently, cgroup is the
704 * only user.
705 */
706 struct rw_semaphore group_rwsem;
707#endif
708
709 oom_flags_t oom_flags;
710 short oom_score_adj; /* OOM kill score adjustment */
711 short oom_score_adj_min; /* OOM kill score adjustment min value.
712 * Only settable by CAP_SYS_RESOURCE. */
713
714 struct mutex cred_guard_mutex; /* guard against foreign influences on
715 * credential calculations
716 * (notably. ptrace) */
717};
718
719/*
720 * Bits in flags field of signal_struct.
721 */
722#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
723#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
724#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
725#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
726/*
727 * Pending notifications to parent.
728 */
729#define SIGNAL_CLD_STOPPED 0x00000010
730#define SIGNAL_CLD_CONTINUED 0x00000020
731#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
732
733#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
734
735/* If true, all threads except ->group_exit_task have pending SIGKILL */
736static inline int signal_group_exit(const struct signal_struct *sig)
737{
738 return (sig->flags & SIGNAL_GROUP_EXIT) ||
739 (sig->group_exit_task != NULL);
740}
741
742/*
743 * Some day this will be a full-fledged user tracking system..
744 */
745struct user_struct {
746 atomic_t __count; /* reference count */
747 atomic_t processes; /* How many processes does this user have? */
748 atomic_t files; /* How many open files does this user have? */
749 atomic_t sigpending; /* How many pending signals does this user have? */
750#ifdef CONFIG_INOTIFY_USER
751 atomic_t inotify_watches; /* How many inotify watches does this user have? */
752 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
753#endif
754#ifdef CONFIG_FANOTIFY
755 atomic_t fanotify_listeners;
756#endif
757#ifdef CONFIG_EPOLL
758 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
759#endif
760#ifdef CONFIG_POSIX_MQUEUE
761 /* protected by mq_lock */
762 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
763#endif
764 unsigned long locked_shm; /* How many pages of mlocked shm ? */
765
766#ifdef CONFIG_KEYS
767 struct key *uid_keyring; /* UID specific keyring */
768 struct key *session_keyring; /* UID's default session keyring */
769#endif
770
771 /* Hash table maintenance information */
772 struct hlist_node uidhash_node;
773 kuid_t uid;
774
775#ifdef CONFIG_PERF_EVENTS
776 atomic_long_t locked_vm;
777#endif
778};
779
780extern int uids_sysfs_init(void);
781
782extern struct user_struct *find_user(kuid_t);
783
784extern struct user_struct root_user;
785#define INIT_USER (&root_user)
786
787
788struct backing_dev_info;
789struct reclaim_state;
790
791#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
792struct sched_info {
793 /* cumulative counters */
794 unsigned long pcount; /* # of times run on this cpu */
795 unsigned long long run_delay; /* time spent waiting on a runqueue */
796
797 /* timestamps */
798 unsigned long long last_arrival,/* when we last ran on a cpu */
799 last_queued; /* when we were last queued to run */
800};
801#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
802
803#ifdef CONFIG_TASK_DELAY_ACCT
804struct task_delay_info {
805 spinlock_t lock;
806 unsigned int flags; /* Private per-task flags */
807
808 /* For each stat XXX, add following, aligned appropriately
809 *
810 * struct timespec XXX_start, XXX_end;
811 * u64 XXX_delay;
812 * u32 XXX_count;
813 *
814 * Atomicity of updates to XXX_delay, XXX_count protected by
815 * single lock above (split into XXX_lock if contention is an issue).
816 */
817
818 /*
819 * XXX_count is incremented on every XXX operation, the delay
820 * associated with the operation is added to XXX_delay.
821 * XXX_delay contains the accumulated delay time in nanoseconds.
822 */
823 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
824 u64 blkio_delay; /* wait for sync block io completion */
825 u64 swapin_delay; /* wait for swapin block io completion */
826 u32 blkio_count; /* total count of the number of sync block */
827 /* io operations performed */
828 u32 swapin_count; /* total count of the number of swapin block */
829 /* io operations performed */
830
831 struct timespec freepages_start, freepages_end;
832 u64 freepages_delay; /* wait for memory reclaim */
833 u32 freepages_count; /* total count of memory reclaim */
834};
835#endif /* CONFIG_TASK_DELAY_ACCT */
836
837static inline int sched_info_on(void)
838{
839#ifdef CONFIG_SCHEDSTATS
840 return 1;
841#elif defined(CONFIG_TASK_DELAY_ACCT)
842 extern int delayacct_on;
843 return delayacct_on;
844#else
845 return 0;
846#endif
847}
848
849enum cpu_idle_type {
850 CPU_IDLE,
851 CPU_NOT_IDLE,
852 CPU_NEWLY_IDLE,
853 CPU_MAX_IDLE_TYPES
854};
855
856/*
857 * Increase resolution of cpu_power calculations
858 */
859#define SCHED_POWER_SHIFT 10
860#define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
861
862/*
863 * sched-domains (multiprocessor balancing) declarations:
864 */
865#ifdef CONFIG_SMP
866#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
867#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
868#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
869#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
870#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
871#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
872#define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
873#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
874#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
875#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
876#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
877#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
878#define SD_NUMA 0x4000 /* cross-node balancing */
879
880extern int __weak arch_sd_sibiling_asym_packing(void);
881
882struct sched_domain_attr {
883 int relax_domain_level;
884};
885
886#define SD_ATTR_INIT (struct sched_domain_attr) { \
887 .relax_domain_level = -1, \
888}
889
890extern int sched_domain_level_max;
891
892struct sched_group;
893
894struct sched_domain {
895 /* These fields must be setup */
896 struct sched_domain *parent; /* top domain must be null terminated */
897 struct sched_domain *child; /* bottom domain must be null terminated */
898 struct sched_group *groups; /* the balancing groups of the domain */
899 unsigned long min_interval; /* Minimum balance interval ms */
900 unsigned long max_interval; /* Maximum balance interval ms */
901 unsigned int busy_factor; /* less balancing by factor if busy */
902 unsigned int imbalance_pct; /* No balance until over watermark */
903 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
904 unsigned int busy_idx;
905 unsigned int idle_idx;
906 unsigned int newidle_idx;
907 unsigned int wake_idx;
908 unsigned int forkexec_idx;
909 unsigned int smt_gain;
910
911 int nohz_idle; /* NOHZ IDLE status */
912 int flags; /* See SD_* */
913 int level;
914
915 /* Runtime fields. */
916 unsigned long last_balance; /* init to jiffies. units in jiffies */
917 unsigned int balance_interval; /* initialise to 1. units in ms. */
918 unsigned int nr_balance_failed; /* initialise to 0 */
919
920 /* idle_balance() stats */
921 u64 max_newidle_lb_cost;
922 unsigned long next_decay_max_lb_cost;
923
924#ifdef CONFIG_SCHEDSTATS
925 /* load_balance() stats */
926 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
927 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
928 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
929 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
930 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
931 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
932 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
933 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
934
935 /* Active load balancing */
936 unsigned int alb_count;
937 unsigned int alb_failed;
938 unsigned int alb_pushed;
939
940 /* SD_BALANCE_EXEC stats */
941 unsigned int sbe_count;
942 unsigned int sbe_balanced;
943 unsigned int sbe_pushed;
944
945 /* SD_BALANCE_FORK stats */
946 unsigned int sbf_count;
947 unsigned int sbf_balanced;
948 unsigned int sbf_pushed;
949
950 /* try_to_wake_up() stats */
951 unsigned int ttwu_wake_remote;
952 unsigned int ttwu_move_affine;
953 unsigned int ttwu_move_balance;
954#endif
955#ifdef CONFIG_SCHED_DEBUG
956 char *name;
957#endif
958 union {
959 void *private; /* used during construction */
960 struct rcu_head rcu; /* used during destruction */
961 };
962
963 unsigned int span_weight;
964 /*
965 * Span of all CPUs in this domain.
966 *
967 * NOTE: this field is variable length. (Allocated dynamically
968 * by attaching extra space to the end of the structure,
969 * depending on how many CPUs the kernel has booted up with)
970 */
971 unsigned long span[0];
972};
973
974static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
975{
976 return to_cpumask(sd->span);
977}
978
979extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
980 struct sched_domain_attr *dattr_new);
981
982/* Allocate an array of sched domains, for partition_sched_domains(). */
983cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
984void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
985
986bool cpus_share_cache(int this_cpu, int that_cpu);
987
988#else /* CONFIG_SMP */
989
990struct sched_domain_attr;
991
992static inline void
993partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
994 struct sched_domain_attr *dattr_new)
995{
996}
997
998static inline bool cpus_share_cache(int this_cpu, int that_cpu)
999{
1000 return true;
1001}
1002
1003#endif /* !CONFIG_SMP */
1004
1005
1006struct io_context; /* See blkdev.h */
1007
1008
1009#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1010extern void prefetch_stack(struct task_struct *t);
1011#else
1012static inline void prefetch_stack(struct task_struct *t) { }
1013#endif
1014
1015struct audit_context; /* See audit.c */
1016struct mempolicy;
1017struct pipe_inode_info;
1018struct uts_namespace;
1019
1020struct load_weight {
1021 unsigned long weight;
1022 u32 inv_weight;
1023};
1024
1025struct sched_avg {
1026 /*
1027 * These sums represent an infinite geometric series and so are bound
1028 * above by 1024/(1-y). Thus we only need a u32 to store them for all
1029 * choices of y < 1-2^(-32)*1024.
1030 */
1031 u32 runnable_avg_sum, runnable_avg_period;
1032 u64 last_runnable_update;
1033 s64 decay_count;
1034 unsigned long load_avg_contrib;
1035};
1036
1037#ifdef CONFIG_SCHEDSTATS
1038struct sched_statistics {
1039 u64 wait_start;
1040 u64 wait_max;
1041 u64 wait_count;
1042 u64 wait_sum;
1043 u64 iowait_count;
1044 u64 iowait_sum;
1045
1046 u64 sleep_start;
1047 u64 sleep_max;
1048 s64 sum_sleep_runtime;
1049
1050 u64 block_start;
1051 u64 block_max;
1052 u64 exec_max;
1053 u64 slice_max;
1054
1055 u64 nr_migrations_cold;
1056 u64 nr_failed_migrations_affine;
1057 u64 nr_failed_migrations_running;
1058 u64 nr_failed_migrations_hot;
1059 u64 nr_forced_migrations;
1060
1061 u64 nr_wakeups;
1062 u64 nr_wakeups_sync;
1063 u64 nr_wakeups_migrate;
1064 u64 nr_wakeups_local;
1065 u64 nr_wakeups_remote;
1066 u64 nr_wakeups_affine;
1067 u64 nr_wakeups_affine_attempts;
1068 u64 nr_wakeups_passive;
1069 u64 nr_wakeups_idle;
1070};
1071#endif
1072
1073struct sched_entity {
1074 struct load_weight load; /* for load-balancing */
1075 struct rb_node run_node;
1076 struct list_head group_node;
1077 unsigned int on_rq;
1078
1079 u64 exec_start;
1080 u64 sum_exec_runtime;
1081 u64 vruntime;
1082 u64 prev_sum_exec_runtime;
1083
1084 u64 nr_migrations;
1085
1086#ifdef CONFIG_SCHEDSTATS
1087 struct sched_statistics statistics;
1088#endif
1089
1090#ifdef CONFIG_FAIR_GROUP_SCHED
1091 int depth;
1092 struct sched_entity *parent;
1093 /* rq on which this entity is (to be) queued: */
1094 struct cfs_rq *cfs_rq;
1095 /* rq "owned" by this entity/group: */
1096 struct cfs_rq *my_q;
1097#endif
1098
1099#ifdef CONFIG_SMP
1100 /* Per-entity load-tracking */
1101 struct sched_avg avg;
1102#endif
1103};
1104
1105struct sched_rt_entity {
1106 struct list_head run_list;
1107 unsigned long timeout;
1108 unsigned long watchdog_stamp;
1109 unsigned int time_slice;
1110
1111 struct sched_rt_entity *back;
1112#ifdef CONFIG_RT_GROUP_SCHED
1113 struct sched_rt_entity *parent;
1114 /* rq on which this entity is (to be) queued: */
1115 struct rt_rq *rt_rq;
1116 /* rq "owned" by this entity/group: */
1117 struct rt_rq *my_q;
1118#endif
1119};
1120
1121struct sched_dl_entity {
1122 struct rb_node rb_node;
1123
1124 /*
1125 * Original scheduling parameters. Copied here from sched_attr
1126 * during sched_setscheduler2(), they will remain the same until
1127 * the next sched_setscheduler2().
1128 */
1129 u64 dl_runtime; /* maximum runtime for each instance */
1130 u64 dl_deadline; /* relative deadline of each instance */
1131 u64 dl_period; /* separation of two instances (period) */
1132 u64 dl_bw; /* dl_runtime / dl_deadline */
1133
1134 /*
1135 * Actual scheduling parameters. Initialized with the values above,
1136 * they are continously updated during task execution. Note that
1137 * the remaining runtime could be < 0 in case we are in overrun.
1138 */
1139 s64 runtime; /* remaining runtime for this instance */
1140 u64 deadline; /* absolute deadline for this instance */
1141 unsigned int flags; /* specifying the scheduler behaviour */
1142
1143 /*
1144 * Some bool flags:
1145 *
1146 * @dl_throttled tells if we exhausted the runtime. If so, the
1147 * task has to wait for a replenishment to be performed at the
1148 * next firing of dl_timer.
1149 *
1150 * @dl_new tells if a new instance arrived. If so we must
1151 * start executing it with full runtime and reset its absolute
1152 * deadline;
1153 *
1154 * @dl_boosted tells if we are boosted due to DI. If so we are
1155 * outside bandwidth enforcement mechanism (but only until we
1156 * exit the critical section);
1157 *
1158 * @dl_yielded tells if task gave up the cpu before consuming
1159 * all its available runtime during the last job.
1160 */
1161 int dl_throttled, dl_new, dl_boosted, dl_yielded;
1162
1163 /*
1164 * Bandwidth enforcement timer. Each -deadline task has its
1165 * own bandwidth to be enforced, thus we need one timer per task.
1166 */
1167 struct hrtimer dl_timer;
1168};
1169
1170struct rcu_node;
1171
1172enum perf_event_task_context {
1173 perf_invalid_context = -1,
1174 perf_hw_context = 0,
1175 perf_sw_context,
1176 perf_nr_task_contexts,
1177};
1178
1179struct task_struct {
1180 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1181 void *stack;
1182 atomic_t usage;
1183 unsigned int flags; /* per process flags, defined below */
1184 unsigned int ptrace;
1185
1186#ifdef CONFIG_SMP
1187 struct llist_node wake_entry;
1188 int on_cpu;
1189 struct task_struct *last_wakee;
1190 unsigned long wakee_flips;
1191 unsigned long wakee_flip_decay_ts;
1192
1193 int wake_cpu;
1194#endif
1195 int on_rq;
1196
1197 int prio, static_prio, normal_prio;
1198 unsigned int rt_priority;
1199 const struct sched_class *sched_class;
1200 struct sched_entity se;
1201 struct sched_rt_entity rt;
1202#ifdef CONFIG_CGROUP_SCHED
1203 struct task_group *sched_task_group;
1204#endif
1205 struct sched_dl_entity dl;
1206
1207#ifdef CONFIG_PREEMPT_NOTIFIERS
1208 /* list of struct preempt_notifier: */
1209 struct hlist_head preempt_notifiers;
1210#endif
1211
1212#ifdef CONFIG_BLK_DEV_IO_TRACE
1213 unsigned int btrace_seq;
1214#endif
1215
1216 unsigned int policy;
1217 int nr_cpus_allowed;
1218 cpumask_t cpus_allowed;
1219
1220#ifdef CONFIG_PREEMPT_RCU
1221 int rcu_read_lock_nesting;
1222 char rcu_read_unlock_special;
1223 struct list_head rcu_node_entry;
1224#endif /* #ifdef CONFIG_PREEMPT_RCU */
1225#ifdef CONFIG_TREE_PREEMPT_RCU
1226 struct rcu_node *rcu_blocked_node;
1227#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1228#ifdef CONFIG_RCU_BOOST
1229 struct rt_mutex *rcu_boost_mutex;
1230#endif /* #ifdef CONFIG_RCU_BOOST */
1231
1232#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1233 struct sched_info sched_info;
1234#endif
1235
1236 struct list_head tasks;
1237#ifdef CONFIG_SMP
1238 struct plist_node pushable_tasks;
1239 struct rb_node pushable_dl_tasks;
1240#endif
1241
1242 struct mm_struct *mm, *active_mm;
1243#ifdef CONFIG_COMPAT_BRK
1244 unsigned brk_randomized:1;
1245#endif
1246 /* per-thread vma caching */
1247 u32 vmacache_seqnum;
1248 struct vm_area_struct *vmacache[VMACACHE_SIZE];
1249#if defined(SPLIT_RSS_COUNTING)
1250 struct task_rss_stat rss_stat;
1251#endif
1252/* task state */
1253 int exit_state;
1254 int exit_code, exit_signal;
1255 int pdeath_signal; /* The signal sent when the parent dies */
1256 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1257
1258 /* Used for emulating ABI behavior of previous Linux versions */
1259 unsigned int personality;
1260
1261 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1262 * execve */
1263 unsigned in_iowait:1;
1264
1265 /* task may not gain privileges */
1266 unsigned no_new_privs:1;
1267
1268 /* Revert to default priority/policy when forking */
1269 unsigned sched_reset_on_fork:1;
1270 unsigned sched_contributes_to_load:1;
1271
1272 pid_t pid;
1273 pid_t tgid;
1274
1275#ifdef CONFIG_CC_STACKPROTECTOR
1276 /* Canary value for the -fstack-protector gcc feature */
1277 unsigned long stack_canary;
1278#endif
1279 /*
1280 * pointers to (original) parent process, youngest child, younger sibling,
1281 * older sibling, respectively. (p->father can be replaced with
1282 * p->real_parent->pid)
1283 */
1284 struct task_struct __rcu *real_parent; /* real parent process */
1285 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1286 /*
1287 * children/sibling forms the list of my natural children
1288 */
1289 struct list_head children; /* list of my children */
1290 struct list_head sibling; /* linkage in my parent's children list */
1291 struct task_struct *group_leader; /* threadgroup leader */
1292
1293 /*
1294 * ptraced is the list of tasks this task is using ptrace on.
1295 * This includes both natural children and PTRACE_ATTACH targets.
1296 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1297 */
1298 struct list_head ptraced;
1299 struct list_head ptrace_entry;
1300
1301 /* PID/PID hash table linkage. */
1302 struct pid_link pids[PIDTYPE_MAX];
1303 struct list_head thread_group;
1304 struct list_head thread_node;
1305
1306 struct completion *vfork_done; /* for vfork() */
1307 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1308 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1309
1310 cputime_t utime, stime, utimescaled, stimescaled;
1311 cputime_t gtime;
1312#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1313 struct cputime prev_cputime;
1314#endif
1315#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1316 seqlock_t vtime_seqlock;
1317 unsigned long long vtime_snap;
1318 enum {
1319 VTIME_SLEEPING = 0,
1320 VTIME_USER,
1321 VTIME_SYS,
1322 } vtime_snap_whence;
1323#endif
1324 unsigned long nvcsw, nivcsw; /* context switch counts */
1325 struct timespec start_time; /* monotonic time */
1326 struct timespec real_start_time; /* boot based time */
1327/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1328 unsigned long min_flt, maj_flt;
1329
1330 struct task_cputime cputime_expires;
1331 struct list_head cpu_timers[3];
1332
1333/* process credentials */
1334 const struct cred __rcu *real_cred; /* objective and real subjective task
1335 * credentials (COW) */
1336 const struct cred __rcu *cred; /* effective (overridable) subjective task
1337 * credentials (COW) */
1338 char comm[TASK_COMM_LEN]; /* executable name excluding path
1339 - access with [gs]et_task_comm (which lock
1340 it with task_lock())
1341 - initialized normally by setup_new_exec */
1342/* file system info */
1343 int link_count, total_link_count;
1344#ifdef CONFIG_SYSVIPC
1345/* ipc stuff */
1346 struct sysv_sem sysvsem;
1347#endif
1348#ifdef CONFIG_DETECT_HUNG_TASK
1349/* hung task detection */
1350 unsigned long last_switch_count;
1351#endif
1352/* CPU-specific state of this task */
1353 struct thread_struct thread;
1354/* filesystem information */
1355 struct fs_struct *fs;
1356/* open file information */
1357 struct files_struct *files;
1358/* namespaces */
1359 struct nsproxy *nsproxy;
1360/* signal handlers */
1361 struct signal_struct *signal;
1362 struct sighand_struct *sighand;
1363
1364 sigset_t blocked, real_blocked;
1365 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1366 struct sigpending pending;
1367
1368 unsigned long sas_ss_sp;
1369 size_t sas_ss_size;
1370 int (*notifier)(void *priv);
1371 void *notifier_data;
1372 sigset_t *notifier_mask;
1373 struct callback_head *task_works;
1374
1375 struct audit_context *audit_context;
1376#ifdef CONFIG_AUDITSYSCALL
1377 kuid_t loginuid;
1378 unsigned int sessionid;
1379#endif
1380 struct seccomp seccomp;
1381
1382/* Thread group tracking */
1383 u32 parent_exec_id;
1384 u32 self_exec_id;
1385/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1386 * mempolicy */
1387 spinlock_t alloc_lock;
1388
1389 /* Protection of the PI data structures: */
1390 raw_spinlock_t pi_lock;
1391
1392#ifdef CONFIG_RT_MUTEXES
1393 /* PI waiters blocked on a rt_mutex held by this task */
1394 struct rb_root pi_waiters;
1395 struct rb_node *pi_waiters_leftmost;
1396 /* Deadlock detection and priority inheritance handling */
1397 struct rt_mutex_waiter *pi_blocked_on;
1398 /* Top pi_waiters task */
1399 struct task_struct *pi_top_task;
1400#endif
1401
1402#ifdef CONFIG_DEBUG_MUTEXES
1403 /* mutex deadlock detection */
1404 struct mutex_waiter *blocked_on;
1405#endif
1406#ifdef CONFIG_TRACE_IRQFLAGS
1407 unsigned int irq_events;
1408 unsigned long hardirq_enable_ip;
1409 unsigned long hardirq_disable_ip;
1410 unsigned int hardirq_enable_event;
1411 unsigned int hardirq_disable_event;
1412 int hardirqs_enabled;
1413 int hardirq_context;
1414 unsigned long softirq_disable_ip;
1415 unsigned long softirq_enable_ip;
1416 unsigned int softirq_disable_event;
1417 unsigned int softirq_enable_event;
1418 int softirqs_enabled;
1419 int softirq_context;
1420#endif
1421#ifdef CONFIG_LOCKDEP
1422# define MAX_LOCK_DEPTH 48UL
1423 u64 curr_chain_key;
1424 int lockdep_depth;
1425 unsigned int lockdep_recursion;
1426 struct held_lock held_locks[MAX_LOCK_DEPTH];
1427 gfp_t lockdep_reclaim_gfp;
1428#endif
1429
1430/* journalling filesystem info */
1431 void *journal_info;
1432
1433/* stacked block device info */
1434 struct bio_list *bio_list;
1435
1436#ifdef CONFIG_BLOCK
1437/* stack plugging */
1438 struct blk_plug *plug;
1439#endif
1440
1441/* VM state */
1442 struct reclaim_state *reclaim_state;
1443
1444 struct backing_dev_info *backing_dev_info;
1445
1446 struct io_context *io_context;
1447
1448 unsigned long ptrace_message;
1449 siginfo_t *last_siginfo; /* For ptrace use. */
1450 struct task_io_accounting ioac;
1451#if defined(CONFIG_TASK_XACCT)
1452 u64 acct_rss_mem1; /* accumulated rss usage */
1453 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1454 cputime_t acct_timexpd; /* stime + utime since last update */
1455#endif
1456#ifdef CONFIG_CPUSETS
1457 nodemask_t mems_allowed; /* Protected by alloc_lock */
1458 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1459 int cpuset_mem_spread_rotor;
1460 int cpuset_slab_spread_rotor;
1461#endif
1462#ifdef CONFIG_CGROUPS
1463 /* Control Group info protected by css_set_lock */
1464 struct css_set __rcu *cgroups;
1465 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1466 struct list_head cg_list;
1467#endif
1468#ifdef CONFIG_FUTEX
1469 struct robust_list_head __user *robust_list;
1470#ifdef CONFIG_COMPAT
1471 struct compat_robust_list_head __user *compat_robust_list;
1472#endif
1473 struct list_head pi_state_list;
1474 struct futex_pi_state *pi_state_cache;
1475#endif
1476#ifdef CONFIG_PERF_EVENTS
1477 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1478 struct mutex perf_event_mutex;
1479 struct list_head perf_event_list;
1480#endif
1481#ifdef CONFIG_DEBUG_PREEMPT
1482 unsigned long preempt_disable_ip;
1483#endif
1484#ifdef CONFIG_NUMA
1485 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1486 short il_next;
1487 short pref_node_fork;
1488#endif
1489#ifdef CONFIG_NUMA_BALANCING
1490 int numa_scan_seq;
1491 unsigned int numa_scan_period;
1492 unsigned int numa_scan_period_max;
1493 int numa_preferred_nid;
1494 unsigned long numa_migrate_retry;
1495 u64 node_stamp; /* migration stamp */
1496 u64 last_task_numa_placement;
1497 u64 last_sum_exec_runtime;
1498 struct callback_head numa_work;
1499
1500 struct list_head numa_entry;
1501 struct numa_group *numa_group;
1502
1503 /*
1504 * Exponential decaying average of faults on a per-node basis.
1505 * Scheduling placement decisions are made based on the these counts.
1506 * The values remain static for the duration of a PTE scan
1507 */
1508 unsigned long *numa_faults_memory;
1509 unsigned long total_numa_faults;
1510
1511 /*
1512 * numa_faults_buffer records faults per node during the current
1513 * scan window. When the scan completes, the counts in
1514 * numa_faults_memory decay and these values are copied.
1515 */
1516 unsigned long *numa_faults_buffer_memory;
1517
1518 /*
1519 * Track the nodes the process was running on when a NUMA hinting
1520 * fault was incurred.
1521 */
1522 unsigned long *numa_faults_cpu;
1523 unsigned long *numa_faults_buffer_cpu;
1524
1525 /*
1526 * numa_faults_locality tracks if faults recorded during the last
1527 * scan window were remote/local. The task scan period is adapted
1528 * based on the locality of the faults with different weights
1529 * depending on whether they were shared or private faults
1530 */
1531 unsigned long numa_faults_locality[2];
1532
1533 unsigned long numa_pages_migrated;
1534#endif /* CONFIG_NUMA_BALANCING */
1535
1536 struct rcu_head rcu;
1537
1538 /*
1539 * cache last used pipe for splice
1540 */
1541 struct pipe_inode_info *splice_pipe;
1542
1543 struct page_frag task_frag;
1544
1545#ifdef CONFIG_TASK_DELAY_ACCT
1546 struct task_delay_info *delays;
1547#endif
1548#ifdef CONFIG_FAULT_INJECTION
1549 int make_it_fail;
1550#endif
1551 /*
1552 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1553 * balance_dirty_pages() for some dirty throttling pause
1554 */
1555 int nr_dirtied;
1556 int nr_dirtied_pause;
1557 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1558
1559#ifdef CONFIG_LATENCYTOP
1560 int latency_record_count;
1561 struct latency_record latency_record[LT_SAVECOUNT];
1562#endif
1563 /*
1564 * time slack values; these are used to round up poll() and
1565 * select() etc timeout values. These are in nanoseconds.
1566 */
1567 unsigned long timer_slack_ns;
1568 unsigned long default_timer_slack_ns;
1569
1570#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1571 /* Index of current stored address in ret_stack */
1572 int curr_ret_stack;
1573 /* Stack of return addresses for return function tracing */
1574 struct ftrace_ret_stack *ret_stack;
1575 /* time stamp for last schedule */
1576 unsigned long long ftrace_timestamp;
1577 /*
1578 * Number of functions that haven't been traced
1579 * because of depth overrun.
1580 */
1581 atomic_t trace_overrun;
1582 /* Pause for the tracing */
1583 atomic_t tracing_graph_pause;
1584#endif
1585#ifdef CONFIG_TRACING
1586 /* state flags for use by tracers */
1587 unsigned long trace;
1588 /* bitmask and counter of trace recursion */
1589 unsigned long trace_recursion;
1590#endif /* CONFIG_TRACING */
1591#ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1592 struct memcg_batch_info {
1593 int do_batch; /* incremented when batch uncharge started */
1594 struct mem_cgroup *memcg; /* target memcg of uncharge */
1595 unsigned long nr_pages; /* uncharged usage */
1596 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1597 } memcg_batch;
1598 unsigned int memcg_kmem_skip_account;
1599 struct memcg_oom_info {
1600 struct mem_cgroup *memcg;
1601 gfp_t gfp_mask;
1602 int order;
1603 unsigned int may_oom:1;
1604 } memcg_oom;
1605#endif
1606#ifdef CONFIG_UPROBES
1607 struct uprobe_task *utask;
1608#endif
1609#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1610 unsigned int sequential_io;
1611 unsigned int sequential_io_avg;
1612#endif
1613};
1614
1615/* Future-safe accessor for struct task_struct's cpus_allowed. */
1616#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1617
1618#define TNF_MIGRATED 0x01
1619#define TNF_NO_GROUP 0x02
1620#define TNF_SHARED 0x04
1621#define TNF_FAULT_LOCAL 0x08
1622
1623#ifdef CONFIG_NUMA_BALANCING
1624extern void task_numa_fault(int last_node, int node, int pages, int flags);
1625extern pid_t task_numa_group_id(struct task_struct *p);
1626extern void set_numabalancing_state(bool enabled);
1627extern void task_numa_free(struct task_struct *p);
1628extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1629 int src_nid, int dst_cpu);
1630#else
1631static inline void task_numa_fault(int last_node, int node, int pages,
1632 int flags)
1633{
1634}
1635static inline pid_t task_numa_group_id(struct task_struct *p)
1636{
1637 return 0;
1638}
1639static inline void set_numabalancing_state(bool enabled)
1640{
1641}
1642static inline void task_numa_free(struct task_struct *p)
1643{
1644}
1645static inline bool should_numa_migrate_memory(struct task_struct *p,
1646 struct page *page, int src_nid, int dst_cpu)
1647{
1648 return true;
1649}
1650#endif
1651
1652static inline struct pid *task_pid(struct task_struct *task)
1653{
1654 return task->pids[PIDTYPE_PID].pid;
1655}
1656
1657static inline struct pid *task_tgid(struct task_struct *task)
1658{
1659 return task->group_leader->pids[PIDTYPE_PID].pid;
1660}
1661
1662/*
1663 * Without tasklist or rcu lock it is not safe to dereference
1664 * the result of task_pgrp/task_session even if task == current,
1665 * we can race with another thread doing sys_setsid/sys_setpgid.
1666 */
1667static inline struct pid *task_pgrp(struct task_struct *task)
1668{
1669 return task->group_leader->pids[PIDTYPE_PGID].pid;
1670}
1671
1672static inline struct pid *task_session(struct task_struct *task)
1673{
1674 return task->group_leader->pids[PIDTYPE_SID].pid;
1675}
1676
1677struct pid_namespace;
1678
1679/*
1680 * the helpers to get the task's different pids as they are seen
1681 * from various namespaces
1682 *
1683 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1684 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1685 * current.
1686 * task_xid_nr_ns() : id seen from the ns specified;
1687 *
1688 * set_task_vxid() : assigns a virtual id to a task;
1689 *
1690 * see also pid_nr() etc in include/linux/pid.h
1691 */
1692pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1693 struct pid_namespace *ns);
1694
1695static inline pid_t task_pid_nr(struct task_struct *tsk)
1696{
1697 return tsk->pid;
1698}
1699
1700static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1701 struct pid_namespace *ns)
1702{
1703 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1704}
1705
1706static inline pid_t task_pid_vnr(struct task_struct *tsk)
1707{
1708 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1709}
1710
1711
1712static inline pid_t task_tgid_nr(struct task_struct *tsk)
1713{
1714 return tsk->tgid;
1715}
1716
1717pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1718
1719static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1720{
1721 return pid_vnr(task_tgid(tsk));
1722}
1723
1724
1725static inline int pid_alive(const struct task_struct *p);
1726static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1727{
1728 pid_t pid = 0;
1729
1730 rcu_read_lock();
1731 if (pid_alive(tsk))
1732 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1733 rcu_read_unlock();
1734
1735 return pid;
1736}
1737
1738static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1739{
1740 return task_ppid_nr_ns(tsk, &init_pid_ns);
1741}
1742
1743static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1744 struct pid_namespace *ns)
1745{
1746 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1747}
1748
1749static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1750{
1751 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1752}
1753
1754
1755static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1756 struct pid_namespace *ns)
1757{
1758 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1759}
1760
1761static inline pid_t task_session_vnr(struct task_struct *tsk)
1762{
1763 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1764}
1765
1766/* obsolete, do not use */
1767static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1768{
1769 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1770}
1771
1772/**
1773 * pid_alive - check that a task structure is not stale
1774 * @p: Task structure to be checked.
1775 *
1776 * Test if a process is not yet dead (at most zombie state)
1777 * If pid_alive fails, then pointers within the task structure
1778 * can be stale and must not be dereferenced.
1779 *
1780 * Return: 1 if the process is alive. 0 otherwise.
1781 */
1782static inline int pid_alive(const struct task_struct *p)
1783{
1784 return p->pids[PIDTYPE_PID].pid != NULL;
1785}
1786
1787/**
1788 * is_global_init - check if a task structure is init
1789 * @tsk: Task structure to be checked.
1790 *
1791 * Check if a task structure is the first user space task the kernel created.
1792 *
1793 * Return: 1 if the task structure is init. 0 otherwise.
1794 */
1795static inline int is_global_init(struct task_struct *tsk)
1796{
1797 return tsk->pid == 1;
1798}
1799
1800extern struct pid *cad_pid;
1801
1802extern void free_task(struct task_struct *tsk);
1803#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1804
1805extern void __put_task_struct(struct task_struct *t);
1806
1807static inline void put_task_struct(struct task_struct *t)
1808{
1809 if (atomic_dec_and_test(&t->usage))
1810 __put_task_struct(t);
1811}
1812
1813#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1814extern void task_cputime(struct task_struct *t,
1815 cputime_t *utime, cputime_t *stime);
1816extern void task_cputime_scaled(struct task_struct *t,
1817 cputime_t *utimescaled, cputime_t *stimescaled);
1818extern cputime_t task_gtime(struct task_struct *t);
1819#else
1820static inline void task_cputime(struct task_struct *t,
1821 cputime_t *utime, cputime_t *stime)
1822{
1823 if (utime)
1824 *utime = t->utime;
1825 if (stime)
1826 *stime = t->stime;
1827}
1828
1829static inline void task_cputime_scaled(struct task_struct *t,
1830 cputime_t *utimescaled,
1831 cputime_t *stimescaled)
1832{
1833 if (utimescaled)
1834 *utimescaled = t->utimescaled;
1835 if (stimescaled)
1836 *stimescaled = t->stimescaled;
1837}
1838
1839static inline cputime_t task_gtime(struct task_struct *t)
1840{
1841 return t->gtime;
1842}
1843#endif
1844extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1845extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1846
1847/*
1848 * Per process flags
1849 */
1850#define PF_EXITING 0x00000004 /* getting shut down */
1851#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1852#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1853#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1854#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1855#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1856#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1857#define PF_DUMPCORE 0x00000200 /* dumped core */
1858#define PF_SIGNALED 0x00000400 /* killed by a signal */
1859#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1860#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1861#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1862#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1863#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1864#define PF_FROZEN 0x00010000 /* frozen for system suspend */
1865#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1866#define PF_KSWAPD 0x00040000 /* I am kswapd */
1867#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1868#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1869#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1870#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1871#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1872#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1873#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1874#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1875#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1876#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1877#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1878#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1879
1880/*
1881 * Only the _current_ task can read/write to tsk->flags, but other
1882 * tasks can access tsk->flags in readonly mode for example
1883 * with tsk_used_math (like during threaded core dumping).
1884 * There is however an exception to this rule during ptrace
1885 * or during fork: the ptracer task is allowed to write to the
1886 * child->flags of its traced child (same goes for fork, the parent
1887 * can write to the child->flags), because we're guaranteed the
1888 * child is not running and in turn not changing child->flags
1889 * at the same time the parent does it.
1890 */
1891#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1892#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1893#define clear_used_math() clear_stopped_child_used_math(current)
1894#define set_used_math() set_stopped_child_used_math(current)
1895#define conditional_stopped_child_used_math(condition, child) \
1896 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1897#define conditional_used_math(condition) \
1898 conditional_stopped_child_used_math(condition, current)
1899#define copy_to_stopped_child_used_math(child) \
1900 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1901/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1902#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1903#define used_math() tsk_used_math(current)
1904
1905/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1906static inline gfp_t memalloc_noio_flags(gfp_t flags)
1907{
1908 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1909 flags &= ~__GFP_IO;
1910 return flags;
1911}
1912
1913static inline unsigned int memalloc_noio_save(void)
1914{
1915 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1916 current->flags |= PF_MEMALLOC_NOIO;
1917 return flags;
1918}
1919
1920static inline void memalloc_noio_restore(unsigned int flags)
1921{
1922 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1923}
1924
1925/*
1926 * task->jobctl flags
1927 */
1928#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1929
1930#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1931#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1932#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1933#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1934#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1935#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1936#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1937
1938#define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1939#define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1940#define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1941#define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1942#define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1943#define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1944#define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1945
1946#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1947#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1948
1949extern bool task_set_jobctl_pending(struct task_struct *task,
1950 unsigned int mask);
1951extern void task_clear_jobctl_trapping(struct task_struct *task);
1952extern void task_clear_jobctl_pending(struct task_struct *task,
1953 unsigned int mask);
1954
1955#ifdef CONFIG_PREEMPT_RCU
1956
1957#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1958#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1959
1960static inline void rcu_copy_process(struct task_struct *p)
1961{
1962 p->rcu_read_lock_nesting = 0;
1963 p->rcu_read_unlock_special = 0;
1964#ifdef CONFIG_TREE_PREEMPT_RCU
1965 p->rcu_blocked_node = NULL;
1966#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1967#ifdef CONFIG_RCU_BOOST
1968 p->rcu_boost_mutex = NULL;
1969#endif /* #ifdef CONFIG_RCU_BOOST */
1970 INIT_LIST_HEAD(&p->rcu_node_entry);
1971}
1972
1973#else
1974
1975static inline void rcu_copy_process(struct task_struct *p)
1976{
1977}
1978
1979#endif
1980
1981static inline void tsk_restore_flags(struct task_struct *task,
1982 unsigned long orig_flags, unsigned long flags)
1983{
1984 task->flags &= ~flags;
1985 task->flags |= orig_flags & flags;
1986}
1987
1988#ifdef CONFIG_SMP
1989extern void do_set_cpus_allowed(struct task_struct *p,
1990 const struct cpumask *new_mask);
1991
1992extern int set_cpus_allowed_ptr(struct task_struct *p,
1993 const struct cpumask *new_mask);
1994#else
1995static inline void do_set_cpus_allowed(struct task_struct *p,
1996 const struct cpumask *new_mask)
1997{
1998}
1999static inline int set_cpus_allowed_ptr(struct task_struct *p,
2000 const struct cpumask *new_mask)
2001{
2002 if (!cpumask_test_cpu(0, new_mask))
2003 return -EINVAL;
2004 return 0;
2005}
2006#endif
2007
2008#ifdef CONFIG_NO_HZ_COMMON
2009void calc_load_enter_idle(void);
2010void calc_load_exit_idle(void);
2011#else
2012static inline void calc_load_enter_idle(void) { }
2013static inline void calc_load_exit_idle(void) { }
2014#endif /* CONFIG_NO_HZ_COMMON */
2015
2016#ifndef CONFIG_CPUMASK_OFFSTACK
2017static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
2018{
2019 return set_cpus_allowed_ptr(p, &new_mask);
2020}
2021#endif
2022
2023/*
2024 * Do not use outside of architecture code which knows its limitations.
2025 *
2026 * sched_clock() has no promise of monotonicity or bounded drift between
2027 * CPUs, use (which you should not) requires disabling IRQs.
2028 *
2029 * Please use one of the three interfaces below.
2030 */
2031extern unsigned long long notrace sched_clock(void);
2032/*
2033 * See the comment in kernel/sched/clock.c
2034 */
2035extern u64 cpu_clock(int cpu);
2036extern u64 local_clock(void);
2037extern u64 sched_clock_cpu(int cpu);
2038
2039
2040extern void sched_clock_init(void);
2041
2042#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2043static inline void sched_clock_tick(void)
2044{
2045}
2046
2047static inline void sched_clock_idle_sleep_event(void)
2048{
2049}
2050
2051static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2052{
2053}
2054#else
2055/*
2056 * Architectures can set this to 1 if they have specified
2057 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2058 * but then during bootup it turns out that sched_clock()
2059 * is reliable after all:
2060 */
2061extern int sched_clock_stable(void);
2062extern void set_sched_clock_stable(void);
2063extern void clear_sched_clock_stable(void);
2064
2065extern void sched_clock_tick(void);
2066extern void sched_clock_idle_sleep_event(void);
2067extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2068#endif
2069
2070#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2071/*
2072 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2073 * The reason for this explicit opt-in is not to have perf penalty with
2074 * slow sched_clocks.
2075 */
2076extern void enable_sched_clock_irqtime(void);
2077extern void disable_sched_clock_irqtime(void);
2078#else
2079static inline void enable_sched_clock_irqtime(void) {}
2080static inline void disable_sched_clock_irqtime(void) {}
2081#endif
2082
2083extern unsigned long long
2084task_sched_runtime(struct task_struct *task);
2085
2086/* sched_exec is called by processes performing an exec */
2087#ifdef CONFIG_SMP
2088extern void sched_exec(void);
2089#else
2090#define sched_exec() {}
2091#endif
2092
2093extern void sched_clock_idle_sleep_event(void);
2094extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2095
2096#ifdef CONFIG_HOTPLUG_CPU
2097extern void idle_task_exit(void);
2098#else
2099static inline void idle_task_exit(void) {}
2100#endif
2101
2102#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2103extern void wake_up_nohz_cpu(int cpu);
2104#else
2105static inline void wake_up_nohz_cpu(int cpu) { }
2106#endif
2107
2108#ifdef CONFIG_NO_HZ_FULL
2109extern bool sched_can_stop_tick(void);
2110extern u64 scheduler_tick_max_deferment(void);
2111#else
2112static inline bool sched_can_stop_tick(void) { return false; }
2113#endif
2114
2115#ifdef CONFIG_SCHED_AUTOGROUP
2116extern void sched_autogroup_create_attach(struct task_struct *p);
2117extern void sched_autogroup_detach(struct task_struct *p);
2118extern void sched_autogroup_fork(struct signal_struct *sig);
2119extern void sched_autogroup_exit(struct signal_struct *sig);
2120#ifdef CONFIG_PROC_FS
2121extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2122extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2123#endif
2124#else
2125static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2126static inline void sched_autogroup_detach(struct task_struct *p) { }
2127static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2128static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2129#endif
2130
2131extern bool yield_to(struct task_struct *p, bool preempt);
2132extern void set_user_nice(struct task_struct *p, long nice);
2133extern int task_prio(const struct task_struct *p);
2134/**
2135 * task_nice - return the nice value of a given task.
2136 * @p: the task in question.
2137 *
2138 * Return: The nice value [ -20 ... 0 ... 19 ].
2139 */
2140static inline int task_nice(const struct task_struct *p)
2141{
2142 return PRIO_TO_NICE((p)->static_prio);
2143}
2144extern int can_nice(const struct task_struct *p, const int nice);
2145extern int task_curr(const struct task_struct *p);
2146extern int idle_cpu(int cpu);
2147extern int sched_setscheduler(struct task_struct *, int,
2148 const struct sched_param *);
2149extern int sched_setscheduler_nocheck(struct task_struct *, int,
2150 const struct sched_param *);
2151extern int sched_setattr(struct task_struct *,
2152 const struct sched_attr *);
2153extern struct task_struct *idle_task(int cpu);
2154/**
2155 * is_idle_task - is the specified task an idle task?
2156 * @p: the task in question.
2157 *
2158 * Return: 1 if @p is an idle task. 0 otherwise.
2159 */
2160static inline bool is_idle_task(const struct task_struct *p)
2161{
2162 return p->pid == 0;
2163}
2164extern struct task_struct *curr_task(int cpu);
2165extern void set_curr_task(int cpu, struct task_struct *p);
2166
2167void yield(void);
2168
2169/*
2170 * The default (Linux) execution domain.
2171 */
2172extern struct exec_domain default_exec_domain;
2173
2174union thread_union {
2175 struct thread_info thread_info;
2176 unsigned long stack[THREAD_SIZE/sizeof(long)];
2177};
2178
2179#ifndef __HAVE_ARCH_KSTACK_END
2180static inline int kstack_end(void *addr)
2181{
2182 /* Reliable end of stack detection:
2183 * Some APM bios versions misalign the stack
2184 */
2185 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2186}
2187#endif
2188
2189extern union thread_union init_thread_union;
2190extern struct task_struct init_task;
2191
2192extern struct mm_struct init_mm;
2193
2194extern struct pid_namespace init_pid_ns;
2195
2196/*
2197 * find a task by one of its numerical ids
2198 *
2199 * find_task_by_pid_ns():
2200 * finds a task by its pid in the specified namespace
2201 * find_task_by_vpid():
2202 * finds a task by its virtual pid
2203 *
2204 * see also find_vpid() etc in include/linux/pid.h
2205 */
2206
2207extern struct task_struct *find_task_by_vpid(pid_t nr);
2208extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2209 struct pid_namespace *ns);
2210
2211/* per-UID process charging. */
2212extern struct user_struct * alloc_uid(kuid_t);
2213static inline struct user_struct *get_uid(struct user_struct *u)
2214{
2215 atomic_inc(&u->__count);
2216 return u;
2217}
2218extern void free_uid(struct user_struct *);
2219
2220#include <asm/current.h>
2221
2222extern void xtime_update(unsigned long ticks);
2223
2224extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2225extern int wake_up_process(struct task_struct *tsk);
2226extern void wake_up_new_task(struct task_struct *tsk);
2227#ifdef CONFIG_SMP
2228 extern void kick_process(struct task_struct *tsk);
2229#else
2230 static inline void kick_process(struct task_struct *tsk) { }
2231#endif
2232extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2233extern void sched_dead(struct task_struct *p);
2234
2235extern void proc_caches_init(void);
2236extern void flush_signals(struct task_struct *);
2237extern void __flush_signals(struct task_struct *);
2238extern void ignore_signals(struct task_struct *);
2239extern void flush_signal_handlers(struct task_struct *, int force_default);
2240extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2241
2242static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2243{
2244 unsigned long flags;
2245 int ret;
2246
2247 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2248 ret = dequeue_signal(tsk, mask, info);
2249 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2250
2251 return ret;
2252}
2253
2254extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2255 sigset_t *mask);
2256extern void unblock_all_signals(void);
2257extern void release_task(struct task_struct * p);
2258extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2259extern int force_sigsegv(int, struct task_struct *);
2260extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2261extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2262extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2263extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2264 const struct cred *, u32);
2265extern int kill_pgrp(struct pid *pid, int sig, int priv);
2266extern int kill_pid(struct pid *pid, int sig, int priv);
2267extern int kill_proc_info(int, struct siginfo *, pid_t);
2268extern __must_check bool do_notify_parent(struct task_struct *, int);
2269extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2270extern void force_sig(int, struct task_struct *);
2271extern int send_sig(int, struct task_struct *, int);
2272extern int zap_other_threads(struct task_struct *p);
2273extern struct sigqueue *sigqueue_alloc(void);
2274extern void sigqueue_free(struct sigqueue *);
2275extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2276extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2277
2278static inline void restore_saved_sigmask(void)
2279{
2280 if (test_and_clear_restore_sigmask())
2281 __set_current_blocked(¤t->saved_sigmask);
2282}
2283
2284static inline sigset_t *sigmask_to_save(void)
2285{
2286 sigset_t *res = ¤t->blocked;
2287 if (unlikely(test_restore_sigmask()))
2288 res = ¤t->saved_sigmask;
2289 return res;
2290}
2291
2292static inline int kill_cad_pid(int sig, int priv)
2293{
2294 return kill_pid(cad_pid, sig, priv);
2295}
2296
2297/* These can be the second arg to send_sig_info/send_group_sig_info. */
2298#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2299#define SEND_SIG_PRIV ((struct siginfo *) 1)
2300#define SEND_SIG_FORCED ((struct siginfo *) 2)
2301
2302/*
2303 * True if we are on the alternate signal stack.
2304 */
2305static inline int on_sig_stack(unsigned long sp)
2306{
2307#ifdef CONFIG_STACK_GROWSUP
2308 return sp >= current->sas_ss_sp &&
2309 sp - current->sas_ss_sp < current->sas_ss_size;
2310#else
2311 return sp > current->sas_ss_sp &&
2312 sp - current->sas_ss_sp <= current->sas_ss_size;
2313#endif
2314}
2315
2316static inline int sas_ss_flags(unsigned long sp)
2317{
2318 return (current->sas_ss_size == 0 ? SS_DISABLE
2319 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2320}
2321
2322static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2323{
2324 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2325#ifdef CONFIG_STACK_GROWSUP
2326 return current->sas_ss_sp;
2327#else
2328 return current->sas_ss_sp + current->sas_ss_size;
2329#endif
2330 return sp;
2331}
2332
2333/*
2334 * Routines for handling mm_structs
2335 */
2336extern struct mm_struct * mm_alloc(void);
2337
2338/* mmdrop drops the mm and the page tables */
2339extern void __mmdrop(struct mm_struct *);
2340static inline void mmdrop(struct mm_struct * mm)
2341{
2342 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2343 __mmdrop(mm);
2344}
2345
2346/* mmput gets rid of the mappings and all user-space */
2347extern void mmput(struct mm_struct *);
2348/* Grab a reference to a task's mm, if it is not already going away */
2349extern struct mm_struct *get_task_mm(struct task_struct *task);
2350/*
2351 * Grab a reference to a task's mm, if it is not already going away
2352 * and ptrace_may_access with the mode parameter passed to it
2353 * succeeds.
2354 */
2355extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2356/* Remove the current tasks stale references to the old mm_struct */
2357extern void mm_release(struct task_struct *, struct mm_struct *);
2358
2359extern int copy_thread(unsigned long, unsigned long, unsigned long,
2360 struct task_struct *);
2361extern void flush_thread(void);
2362extern void exit_thread(void);
2363
2364extern void exit_files(struct task_struct *);
2365extern void __cleanup_sighand(struct sighand_struct *);
2366
2367extern void exit_itimers(struct signal_struct *);
2368extern void flush_itimer_signals(void);
2369
2370extern void do_group_exit(int);
2371
2372extern int allow_signal(int);
2373extern int disallow_signal(int);
2374
2375extern int do_execve(struct filename *,
2376 const char __user * const __user *,
2377 const char __user * const __user *);
2378extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2379struct task_struct *fork_idle(int);
2380extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2381
2382extern void set_task_comm(struct task_struct *tsk, const char *from);
2383extern char *get_task_comm(char *to, struct task_struct *tsk);
2384
2385#ifdef CONFIG_SMP
2386void scheduler_ipi(void);
2387extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2388#else
2389static inline void scheduler_ipi(void) { }
2390static inline unsigned long wait_task_inactive(struct task_struct *p,
2391 long match_state)
2392{
2393 return 1;
2394}
2395#endif
2396
2397#define next_task(p) \
2398 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2399
2400#define for_each_process(p) \
2401 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2402
2403extern bool current_is_single_threaded(void);
2404
2405/*
2406 * Careful: do_each_thread/while_each_thread is a double loop so
2407 * 'break' will not work as expected - use goto instead.
2408 */
2409#define do_each_thread(g, t) \
2410 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2411
2412#define while_each_thread(g, t) \
2413 while ((t = next_thread(t)) != g)
2414
2415#define __for_each_thread(signal, t) \
2416 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2417
2418#define for_each_thread(p, t) \
2419 __for_each_thread((p)->signal, t)
2420
2421/* Careful: this is a double loop, 'break' won't work as expected. */
2422#define for_each_process_thread(p, t) \
2423 for_each_process(p) for_each_thread(p, t)
2424
2425static inline int get_nr_threads(struct task_struct *tsk)
2426{
2427 return tsk->signal->nr_threads;
2428}
2429
2430static inline bool thread_group_leader(struct task_struct *p)
2431{
2432 return p->exit_signal >= 0;
2433}
2434
2435/* Do to the insanities of de_thread it is possible for a process
2436 * to have the pid of the thread group leader without actually being
2437 * the thread group leader. For iteration through the pids in proc
2438 * all we care about is that we have a task with the appropriate
2439 * pid, we don't actually care if we have the right task.
2440 */
2441static inline bool has_group_leader_pid(struct task_struct *p)
2442{
2443 return task_pid(p) == p->signal->leader_pid;
2444}
2445
2446static inline
2447bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2448{
2449 return p1->signal == p2->signal;
2450}
2451
2452static inline struct task_struct *next_thread(const struct task_struct *p)
2453{
2454 return list_entry_rcu(p->thread_group.next,
2455 struct task_struct, thread_group);
2456}
2457
2458static inline int thread_group_empty(struct task_struct *p)
2459{
2460 return list_empty(&p->thread_group);
2461}
2462
2463#define delay_group_leader(p) \
2464 (thread_group_leader(p) && !thread_group_empty(p))
2465
2466/*
2467 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2468 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2469 * pins the final release of task.io_context. Also protects ->cpuset and
2470 * ->cgroup.subsys[]. And ->vfork_done.
2471 *
2472 * Nests both inside and outside of read_lock(&tasklist_lock).
2473 * It must not be nested with write_lock_irq(&tasklist_lock),
2474 * neither inside nor outside.
2475 */
2476static inline void task_lock(struct task_struct *p)
2477{
2478 spin_lock(&p->alloc_lock);
2479}
2480
2481static inline void task_unlock(struct task_struct *p)
2482{
2483 spin_unlock(&p->alloc_lock);
2484}
2485
2486extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2487 unsigned long *flags);
2488
2489static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2490 unsigned long *flags)
2491{
2492 struct sighand_struct *ret;
2493
2494 ret = __lock_task_sighand(tsk, flags);
2495 (void)__cond_lock(&tsk->sighand->siglock, ret);
2496 return ret;
2497}
2498
2499static inline void unlock_task_sighand(struct task_struct *tsk,
2500 unsigned long *flags)
2501{
2502 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2503}
2504
2505#ifdef CONFIG_CGROUPS
2506static inline void threadgroup_change_begin(struct task_struct *tsk)
2507{
2508 down_read(&tsk->signal->group_rwsem);
2509}
2510static inline void threadgroup_change_end(struct task_struct *tsk)
2511{
2512 up_read(&tsk->signal->group_rwsem);
2513}
2514
2515/**
2516 * threadgroup_lock - lock threadgroup
2517 * @tsk: member task of the threadgroup to lock
2518 *
2519 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2520 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2521 * change ->group_leader/pid. This is useful for cases where the threadgroup
2522 * needs to stay stable across blockable operations.
2523 *
2524 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2525 * synchronization. While held, no new task will be added to threadgroup
2526 * and no existing live task will have its PF_EXITING set.
2527 *
2528 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2529 * sub-thread becomes a new leader.
2530 */
2531static inline void threadgroup_lock(struct task_struct *tsk)
2532{
2533 down_write(&tsk->signal->group_rwsem);
2534}
2535
2536/**
2537 * threadgroup_unlock - unlock threadgroup
2538 * @tsk: member task of the threadgroup to unlock
2539 *
2540 * Reverse threadgroup_lock().
2541 */
2542static inline void threadgroup_unlock(struct task_struct *tsk)
2543{
2544 up_write(&tsk->signal->group_rwsem);
2545}
2546#else
2547static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2548static inline void threadgroup_change_end(struct task_struct *tsk) {}
2549static inline void threadgroup_lock(struct task_struct *tsk) {}
2550static inline void threadgroup_unlock(struct task_struct *tsk) {}
2551#endif
2552
2553#ifndef __HAVE_THREAD_FUNCTIONS
2554
2555#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2556#define task_stack_page(task) ((task)->stack)
2557
2558static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2559{
2560 *task_thread_info(p) = *task_thread_info(org);
2561 task_thread_info(p)->task = p;
2562}
2563
2564static inline unsigned long *end_of_stack(struct task_struct *p)
2565{
2566 return (unsigned long *)(task_thread_info(p) + 1);
2567}
2568
2569#endif
2570
2571static inline int object_is_on_stack(void *obj)
2572{
2573 void *stack = task_stack_page(current);
2574
2575 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2576}
2577
2578extern void thread_info_cache_init(void);
2579
2580#ifdef CONFIG_DEBUG_STACK_USAGE
2581static inline unsigned long stack_not_used(struct task_struct *p)
2582{
2583 unsigned long *n = end_of_stack(p);
2584
2585 do { /* Skip over canary */
2586 n++;
2587 } while (!*n);
2588
2589 return (unsigned long)n - (unsigned long)end_of_stack(p);
2590}
2591#endif
2592
2593/* set thread flags in other task's structures
2594 * - see asm/thread_info.h for TIF_xxxx flags available
2595 */
2596static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2597{
2598 set_ti_thread_flag(task_thread_info(tsk), flag);
2599}
2600
2601static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2602{
2603 clear_ti_thread_flag(task_thread_info(tsk), flag);
2604}
2605
2606static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2607{
2608 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2609}
2610
2611static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2612{
2613 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2614}
2615
2616static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2617{
2618 return test_ti_thread_flag(task_thread_info(tsk), flag);
2619}
2620
2621static inline void set_tsk_need_resched(struct task_struct *tsk)
2622{
2623 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2624}
2625
2626static inline void clear_tsk_need_resched(struct task_struct *tsk)
2627{
2628 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2629}
2630
2631static inline int test_tsk_need_resched(struct task_struct *tsk)
2632{
2633 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2634}
2635
2636static inline int restart_syscall(void)
2637{
2638 set_tsk_thread_flag(current, TIF_SIGPENDING);
2639 return -ERESTARTNOINTR;
2640}
2641
2642static inline int signal_pending(struct task_struct *p)
2643{
2644 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2645}
2646
2647static inline int __fatal_signal_pending(struct task_struct *p)
2648{
2649 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2650}
2651
2652static inline int fatal_signal_pending(struct task_struct *p)
2653{
2654 return signal_pending(p) && __fatal_signal_pending(p);
2655}
2656
2657static inline int signal_pending_state(long state, struct task_struct *p)
2658{
2659 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2660 return 0;
2661 if (!signal_pending(p))
2662 return 0;
2663
2664 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2665}
2666
2667/*
2668 * cond_resched() and cond_resched_lock(): latency reduction via
2669 * explicit rescheduling in places that are safe. The return
2670 * value indicates whether a reschedule was done in fact.
2671 * cond_resched_lock() will drop the spinlock before scheduling,
2672 * cond_resched_softirq() will enable bhs before scheduling.
2673 */
2674extern int _cond_resched(void);
2675
2676#define cond_resched() ({ \
2677 __might_sleep(__FILE__, __LINE__, 0); \
2678 _cond_resched(); \
2679})
2680
2681extern int __cond_resched_lock(spinlock_t *lock);
2682
2683#ifdef CONFIG_PREEMPT_COUNT
2684#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2685#else
2686#define PREEMPT_LOCK_OFFSET 0
2687#endif
2688
2689#define cond_resched_lock(lock) ({ \
2690 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2691 __cond_resched_lock(lock); \
2692})
2693
2694extern int __cond_resched_softirq(void);
2695
2696#define cond_resched_softirq() ({ \
2697 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2698 __cond_resched_softirq(); \
2699})
2700
2701static inline void cond_resched_rcu(void)
2702{
2703#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2704 rcu_read_unlock();
2705 cond_resched();
2706 rcu_read_lock();
2707#endif
2708}
2709
2710/*
2711 * Does a critical section need to be broken due to another
2712 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2713 * but a general need for low latency)
2714 */
2715static inline int spin_needbreak(spinlock_t *lock)
2716{
2717#ifdef CONFIG_PREEMPT
2718 return spin_is_contended(lock);
2719#else
2720 return 0;
2721#endif
2722}
2723
2724/*
2725 * Idle thread specific functions to determine the need_resched
2726 * polling state. We have two versions, one based on TS_POLLING in
2727 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2728 * thread_info.flags
2729 */
2730#ifdef TS_POLLING
2731static inline int tsk_is_polling(struct task_struct *p)
2732{
2733 return task_thread_info(p)->status & TS_POLLING;
2734}
2735static inline void __current_set_polling(void)
2736{
2737 current_thread_info()->status |= TS_POLLING;
2738}
2739
2740static inline bool __must_check current_set_polling_and_test(void)
2741{
2742 __current_set_polling();
2743
2744 /*
2745 * Polling state must be visible before we test NEED_RESCHED,
2746 * paired by resched_task()
2747 */
2748 smp_mb();
2749
2750 return unlikely(tif_need_resched());
2751}
2752
2753static inline void __current_clr_polling(void)
2754{
2755 current_thread_info()->status &= ~TS_POLLING;
2756}
2757
2758static inline bool __must_check current_clr_polling_and_test(void)
2759{
2760 __current_clr_polling();
2761
2762 /*
2763 * Polling state must be visible before we test NEED_RESCHED,
2764 * paired by resched_task()
2765 */
2766 smp_mb();
2767
2768 return unlikely(tif_need_resched());
2769}
2770#elif defined(TIF_POLLING_NRFLAG)
2771static inline int tsk_is_polling(struct task_struct *p)
2772{
2773 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2774}
2775
2776static inline void __current_set_polling(void)
2777{
2778 set_thread_flag(TIF_POLLING_NRFLAG);
2779}
2780
2781static inline bool __must_check current_set_polling_and_test(void)
2782{
2783 __current_set_polling();
2784
2785 /*
2786 * Polling state must be visible before we test NEED_RESCHED,
2787 * paired by resched_task()
2788 *
2789 * XXX: assumes set/clear bit are identical barrier wise.
2790 */
2791 smp_mb__after_clear_bit();
2792
2793 return unlikely(tif_need_resched());
2794}
2795
2796static inline void __current_clr_polling(void)
2797{
2798 clear_thread_flag(TIF_POLLING_NRFLAG);
2799}
2800
2801static inline bool __must_check current_clr_polling_and_test(void)
2802{
2803 __current_clr_polling();
2804
2805 /*
2806 * Polling state must be visible before we test NEED_RESCHED,
2807 * paired by resched_task()
2808 */
2809 smp_mb__after_clear_bit();
2810
2811 return unlikely(tif_need_resched());
2812}
2813
2814#else
2815static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2816static inline void __current_set_polling(void) { }
2817static inline void __current_clr_polling(void) { }
2818
2819static inline bool __must_check current_set_polling_and_test(void)
2820{
2821 return unlikely(tif_need_resched());
2822}
2823static inline bool __must_check current_clr_polling_and_test(void)
2824{
2825 return unlikely(tif_need_resched());
2826}
2827#endif
2828
2829static inline void current_clr_polling(void)
2830{
2831 __current_clr_polling();
2832
2833 /*
2834 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
2835 * Once the bit is cleared, we'll get IPIs with every new
2836 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
2837 * fold.
2838 */
2839 smp_mb(); /* paired with resched_task() */
2840
2841 preempt_fold_need_resched();
2842}
2843
2844static __always_inline bool need_resched(void)
2845{
2846 return unlikely(tif_need_resched());
2847}
2848
2849/*
2850 * Thread group CPU time accounting.
2851 */
2852void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2853void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2854
2855static inline void thread_group_cputime_init(struct signal_struct *sig)
2856{
2857 raw_spin_lock_init(&sig->cputimer.lock);
2858}
2859
2860/*
2861 * Reevaluate whether the task has signals pending delivery.
2862 * Wake the task if so.
2863 * This is required every time the blocked sigset_t changes.
2864 * callers must hold sighand->siglock.
2865 */
2866extern void recalc_sigpending_and_wake(struct task_struct *t);
2867extern void recalc_sigpending(void);
2868
2869extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2870
2871static inline void signal_wake_up(struct task_struct *t, bool resume)
2872{
2873 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2874}
2875static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2876{
2877 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2878}
2879
2880/*
2881 * Wrappers for p->thread_info->cpu access. No-op on UP.
2882 */
2883#ifdef CONFIG_SMP
2884
2885static inline unsigned int task_cpu(const struct task_struct *p)
2886{
2887 return task_thread_info(p)->cpu;
2888}
2889
2890static inline int task_node(const struct task_struct *p)
2891{
2892 return cpu_to_node(task_cpu(p));
2893}
2894
2895extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2896
2897#else
2898
2899static inline unsigned int task_cpu(const struct task_struct *p)
2900{
2901 return 0;
2902}
2903
2904static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2905{
2906}
2907
2908#endif /* CONFIG_SMP */
2909
2910extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2911extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2912
2913#ifdef CONFIG_CGROUP_SCHED
2914extern struct task_group root_task_group;
2915#endif /* CONFIG_CGROUP_SCHED */
2916
2917extern int task_can_switch_user(struct user_struct *up,
2918 struct task_struct *tsk);
2919
2920#ifdef CONFIG_TASK_XACCT
2921static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2922{
2923 tsk->ioac.rchar += amt;
2924}
2925
2926static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2927{
2928 tsk->ioac.wchar += amt;
2929}
2930
2931static inline void inc_syscr(struct task_struct *tsk)
2932{
2933 tsk->ioac.syscr++;
2934}
2935
2936static inline void inc_syscw(struct task_struct *tsk)
2937{
2938 tsk->ioac.syscw++;
2939}
2940#else
2941static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2942{
2943}
2944
2945static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2946{
2947}
2948
2949static inline void inc_syscr(struct task_struct *tsk)
2950{
2951}
2952
2953static inline void inc_syscw(struct task_struct *tsk)
2954{
2955}
2956#endif
2957
2958#ifndef TASK_SIZE_OF
2959#define TASK_SIZE_OF(tsk) TASK_SIZE
2960#endif
2961
2962#ifdef CONFIG_MM_OWNER
2963extern void mm_update_next_owner(struct mm_struct *mm);
2964extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2965#else
2966static inline void mm_update_next_owner(struct mm_struct *mm)
2967{
2968}
2969
2970static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2971{
2972}
2973#endif /* CONFIG_MM_OWNER */
2974
2975static inline unsigned long task_rlimit(const struct task_struct *tsk,
2976 unsigned int limit)
2977{
2978 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2979}
2980
2981static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2982 unsigned int limit)
2983{
2984 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2985}
2986
2987static inline unsigned long rlimit(unsigned int limit)
2988{
2989 return task_rlimit(current, limit);
2990}
2991
2992static inline unsigned long rlimit_max(unsigned int limit)
2993{
2994 return task_rlimit_max(current, limit);
2995}
2996
2997#endif
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4/*
5 * cloning flags:
6 */
7#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8#define CLONE_VM 0x00000100 /* set if VM shared between processes */
9#define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10#define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15#define CLONE_THREAD 0x00010000 /* Same thread group? */
16#define CLONE_NEWNS 0x00020000 /* New namespace group? */
17#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21#define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24/* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state)
25 and is now available for re-use. */
26#define CLONE_NEWUTS 0x04000000 /* New utsname group? */
27#define CLONE_NEWIPC 0x08000000 /* New ipcs */
28#define CLONE_NEWUSER 0x10000000 /* New user namespace */
29#define CLONE_NEWPID 0x20000000 /* New pid namespace */
30#define CLONE_NEWNET 0x40000000 /* New network namespace */
31#define CLONE_IO 0x80000000 /* Clone io context */
32
33/*
34 * Scheduling policies
35 */
36#define SCHED_NORMAL 0
37#define SCHED_FIFO 1
38#define SCHED_RR 2
39#define SCHED_BATCH 3
40/* SCHED_ISO: reserved but not implemented yet */
41#define SCHED_IDLE 5
42/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
43#define SCHED_RESET_ON_FORK 0x40000000
44
45#ifdef __KERNEL__
46
47struct sched_param {
48 int sched_priority;
49};
50
51#include <asm/param.h> /* for HZ */
52
53#include <linux/capability.h>
54#include <linux/threads.h>
55#include <linux/kernel.h>
56#include <linux/types.h>
57#include <linux/timex.h>
58#include <linux/jiffies.h>
59#include <linux/rbtree.h>
60#include <linux/thread_info.h>
61#include <linux/cpumask.h>
62#include <linux/errno.h>
63#include <linux/nodemask.h>
64#include <linux/mm_types.h>
65
66#include <asm/system.h>
67#include <asm/page.h>
68#include <asm/ptrace.h>
69#include <asm/cputime.h>
70
71#include <linux/smp.h>
72#include <linux/sem.h>
73#include <linux/signal.h>
74#include <linux/compiler.h>
75#include <linux/completion.h>
76#include <linux/pid.h>
77#include <linux/percpu.h>
78#include <linux/topology.h>
79#include <linux/proportions.h>
80#include <linux/seccomp.h>
81#include <linux/rcupdate.h>
82#include <linux/rculist.h>
83#include <linux/rtmutex.h>
84
85#include <linux/time.h>
86#include <linux/param.h>
87#include <linux/resource.h>
88#include <linux/timer.h>
89#include <linux/hrtimer.h>
90#include <linux/task_io_accounting.h>
91#include <linux/latencytop.h>
92#include <linux/cred.h>
93
94#include <asm/processor.h>
95
96struct exec_domain;
97struct futex_pi_state;
98struct robust_list_head;
99struct bio_list;
100struct fs_struct;
101struct perf_event_context;
102struct blk_plug;
103
104/*
105 * List of flags we want to share for kernel threads,
106 * if only because they are not used by them anyway.
107 */
108#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
109
110/*
111 * These are the constant used to fake the fixed-point load-average
112 * counting. Some notes:
113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
114 * a load-average precision of 10 bits integer + 11 bits fractional
115 * - if you want to count load-averages more often, you need more
116 * precision, or rounding will get you. With 2-second counting freq,
117 * the EXP_n values would be 1981, 2034 and 2043 if still using only
118 * 11 bit fractions.
119 */
120extern unsigned long avenrun[]; /* Load averages */
121extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
122
123#define FSHIFT 11 /* nr of bits of precision */
124#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
125#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
126#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
127#define EXP_5 2014 /* 1/exp(5sec/5min) */
128#define EXP_15 2037 /* 1/exp(5sec/15min) */
129
130#define CALC_LOAD(load,exp,n) \
131 load *= exp; \
132 load += n*(FIXED_1-exp); \
133 load >>= FSHIFT;
134
135extern unsigned long total_forks;
136extern int nr_threads;
137DECLARE_PER_CPU(unsigned long, process_counts);
138extern int nr_processes(void);
139extern unsigned long nr_running(void);
140extern unsigned long nr_uninterruptible(void);
141extern unsigned long nr_iowait(void);
142extern unsigned long nr_iowait_cpu(int cpu);
143extern unsigned long this_cpu_load(void);
144
145
146extern void calc_global_load(unsigned long ticks);
147
148extern unsigned long get_parent_ip(unsigned long addr);
149
150struct seq_file;
151struct cfs_rq;
152struct task_group;
153#ifdef CONFIG_SCHED_DEBUG
154extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
155extern void proc_sched_set_task(struct task_struct *p);
156extern void
157print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
158#else
159static inline void
160proc_sched_show_task(struct task_struct *p, struct seq_file *m)
161{
162}
163static inline void proc_sched_set_task(struct task_struct *p)
164{
165}
166static inline void
167print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
168{
169}
170#endif
171
172/*
173 * Task state bitmask. NOTE! These bits are also
174 * encoded in fs/proc/array.c: get_task_state().
175 *
176 * We have two separate sets of flags: task->state
177 * is about runnability, while task->exit_state are
178 * about the task exiting. Confusing, but this way
179 * modifying one set can't modify the other one by
180 * mistake.
181 */
182#define TASK_RUNNING 0
183#define TASK_INTERRUPTIBLE 1
184#define TASK_UNINTERRUPTIBLE 2
185#define __TASK_STOPPED 4
186#define __TASK_TRACED 8
187/* in tsk->exit_state */
188#define EXIT_ZOMBIE 16
189#define EXIT_DEAD 32
190/* in tsk->state again */
191#define TASK_DEAD 64
192#define TASK_WAKEKILL 128
193#define TASK_WAKING 256
194#define TASK_STATE_MAX 512
195
196#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
197
198extern char ___assert_task_state[1 - 2*!!(
199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
200
201/* Convenience macros for the sake of set_task_state */
202#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
203#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
204#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
205
206/* Convenience macros for the sake of wake_up */
207#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
208#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
209
210/* get_task_state() */
211#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
213 __TASK_TRACED)
214
215#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
216#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
217#define task_is_dead(task) ((task)->exit_state != 0)
218#define task_is_stopped_or_traced(task) \
219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
220#define task_contributes_to_load(task) \
221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
222 (task->flags & PF_FREEZING) == 0)
223
224#define __set_task_state(tsk, state_value) \
225 do { (tsk)->state = (state_value); } while (0)
226#define set_task_state(tsk, state_value) \
227 set_mb((tsk)->state, (state_value))
228
229/*
230 * set_current_state() includes a barrier so that the write of current->state
231 * is correctly serialised wrt the caller's subsequent test of whether to
232 * actually sleep:
233 *
234 * set_current_state(TASK_UNINTERRUPTIBLE);
235 * if (do_i_need_to_sleep())
236 * schedule();
237 *
238 * If the caller does not need such serialisation then use __set_current_state()
239 */
240#define __set_current_state(state_value) \
241 do { current->state = (state_value); } while (0)
242#define set_current_state(state_value) \
243 set_mb(current->state, (state_value))
244
245/* Task command name length */
246#define TASK_COMM_LEN 16
247
248#include <linux/spinlock.h>
249
250/*
251 * This serializes "schedule()" and also protects
252 * the run-queue from deletions/modifications (but
253 * _adding_ to the beginning of the run-queue has
254 * a separate lock).
255 */
256extern rwlock_t tasklist_lock;
257extern spinlock_t mmlist_lock;
258
259struct task_struct;
260
261#ifdef CONFIG_PROVE_RCU
262extern int lockdep_tasklist_lock_is_held(void);
263#endif /* #ifdef CONFIG_PROVE_RCU */
264
265extern void sched_init(void);
266extern void sched_init_smp(void);
267extern asmlinkage void schedule_tail(struct task_struct *prev);
268extern void init_idle(struct task_struct *idle, int cpu);
269extern void init_idle_bootup_task(struct task_struct *idle);
270
271extern int runqueue_is_locked(int cpu);
272
273extern cpumask_var_t nohz_cpu_mask;
274#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
275extern void select_nohz_load_balancer(int stop_tick);
276extern int get_nohz_timer_target(void);
277#else
278static inline void select_nohz_load_balancer(int stop_tick) { }
279#endif
280
281/*
282 * Only dump TASK_* tasks. (0 for all tasks)
283 */
284extern void show_state_filter(unsigned long state_filter);
285
286static inline void show_state(void)
287{
288 show_state_filter(0);
289}
290
291extern void show_regs(struct pt_regs *);
292
293/*
294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
295 * task), SP is the stack pointer of the first frame that should be shown in the back
296 * trace (or NULL if the entire call-chain of the task should be shown).
297 */
298extern void show_stack(struct task_struct *task, unsigned long *sp);
299
300void io_schedule(void);
301long io_schedule_timeout(long timeout);
302
303extern void cpu_init (void);
304extern void trap_init(void);
305extern void update_process_times(int user);
306extern void scheduler_tick(void);
307
308extern void sched_show_task(struct task_struct *p);
309
310#ifdef CONFIG_LOCKUP_DETECTOR
311extern void touch_softlockup_watchdog(void);
312extern void touch_softlockup_watchdog_sync(void);
313extern void touch_all_softlockup_watchdogs(void);
314extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
315 void __user *buffer,
316 size_t *lenp, loff_t *ppos);
317extern unsigned int softlockup_panic;
318void lockup_detector_init(void);
319#else
320static inline void touch_softlockup_watchdog(void)
321{
322}
323static inline void touch_softlockup_watchdog_sync(void)
324{
325}
326static inline void touch_all_softlockup_watchdogs(void)
327{
328}
329static inline void lockup_detector_init(void)
330{
331}
332#endif
333
334#ifdef CONFIG_DETECT_HUNG_TASK
335extern unsigned int sysctl_hung_task_panic;
336extern unsigned long sysctl_hung_task_check_count;
337extern unsigned long sysctl_hung_task_timeout_secs;
338extern unsigned long sysctl_hung_task_warnings;
339extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
340 void __user *buffer,
341 size_t *lenp, loff_t *ppos);
342#else
343/* Avoid need for ifdefs elsewhere in the code */
344enum { sysctl_hung_task_timeout_secs = 0 };
345#endif
346
347/* Attach to any functions which should be ignored in wchan output. */
348#define __sched __attribute__((__section__(".sched.text")))
349
350/* Linker adds these: start and end of __sched functions */
351extern char __sched_text_start[], __sched_text_end[];
352
353/* Is this address in the __sched functions? */
354extern int in_sched_functions(unsigned long addr);
355
356#define MAX_SCHEDULE_TIMEOUT LONG_MAX
357extern signed long schedule_timeout(signed long timeout);
358extern signed long schedule_timeout_interruptible(signed long timeout);
359extern signed long schedule_timeout_killable(signed long timeout);
360extern signed long schedule_timeout_uninterruptible(signed long timeout);
361asmlinkage void schedule(void);
362extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
363
364struct nsproxy;
365struct user_namespace;
366
367/*
368 * Default maximum number of active map areas, this limits the number of vmas
369 * per mm struct. Users can overwrite this number by sysctl but there is a
370 * problem.
371 *
372 * When a program's coredump is generated as ELF format, a section is created
373 * per a vma. In ELF, the number of sections is represented in unsigned short.
374 * This means the number of sections should be smaller than 65535 at coredump.
375 * Because the kernel adds some informative sections to a image of program at
376 * generating coredump, we need some margin. The number of extra sections is
377 * 1-3 now and depends on arch. We use "5" as safe margin, here.
378 */
379#define MAPCOUNT_ELF_CORE_MARGIN (5)
380#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
381
382extern int sysctl_max_map_count;
383
384#include <linux/aio.h>
385
386#ifdef CONFIG_MMU
387extern void arch_pick_mmap_layout(struct mm_struct *mm);
388extern unsigned long
389arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
390 unsigned long, unsigned long);
391extern unsigned long
392arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
393 unsigned long len, unsigned long pgoff,
394 unsigned long flags);
395extern void arch_unmap_area(struct mm_struct *, unsigned long);
396extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
397#else
398static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
399#endif
400
401
402extern void set_dumpable(struct mm_struct *mm, int value);
403extern int get_dumpable(struct mm_struct *mm);
404
405/* mm flags */
406/* dumpable bits */
407#define MMF_DUMPABLE 0 /* core dump is permitted */
408#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
409
410#define MMF_DUMPABLE_BITS 2
411#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
412
413/* coredump filter bits */
414#define MMF_DUMP_ANON_PRIVATE 2
415#define MMF_DUMP_ANON_SHARED 3
416#define MMF_DUMP_MAPPED_PRIVATE 4
417#define MMF_DUMP_MAPPED_SHARED 5
418#define MMF_DUMP_ELF_HEADERS 6
419#define MMF_DUMP_HUGETLB_PRIVATE 7
420#define MMF_DUMP_HUGETLB_SHARED 8
421
422#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
423#define MMF_DUMP_FILTER_BITS 7
424#define MMF_DUMP_FILTER_MASK \
425 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
426#define MMF_DUMP_FILTER_DEFAULT \
427 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
428 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
429
430#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
431# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
432#else
433# define MMF_DUMP_MASK_DEFAULT_ELF 0
434#endif
435 /* leave room for more dump flags */
436#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
437#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
438
439#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
440
441struct sighand_struct {
442 atomic_t count;
443 struct k_sigaction action[_NSIG];
444 spinlock_t siglock;
445 wait_queue_head_t signalfd_wqh;
446};
447
448struct pacct_struct {
449 int ac_flag;
450 long ac_exitcode;
451 unsigned long ac_mem;
452 cputime_t ac_utime, ac_stime;
453 unsigned long ac_minflt, ac_majflt;
454};
455
456struct cpu_itimer {
457 cputime_t expires;
458 cputime_t incr;
459 u32 error;
460 u32 incr_error;
461};
462
463/**
464 * struct task_cputime - collected CPU time counts
465 * @utime: time spent in user mode, in &cputime_t units
466 * @stime: time spent in kernel mode, in &cputime_t units
467 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
468 *
469 * This structure groups together three kinds of CPU time that are
470 * tracked for threads and thread groups. Most things considering
471 * CPU time want to group these counts together and treat all three
472 * of them in parallel.
473 */
474struct task_cputime {
475 cputime_t utime;
476 cputime_t stime;
477 unsigned long long sum_exec_runtime;
478};
479/* Alternate field names when used to cache expirations. */
480#define prof_exp stime
481#define virt_exp utime
482#define sched_exp sum_exec_runtime
483
484#define INIT_CPUTIME \
485 (struct task_cputime) { \
486 .utime = cputime_zero, \
487 .stime = cputime_zero, \
488 .sum_exec_runtime = 0, \
489 }
490
491/*
492 * Disable preemption until the scheduler is running.
493 * Reset by start_kernel()->sched_init()->init_idle().
494 *
495 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
496 * before the scheduler is active -- see should_resched().
497 */
498#define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
499
500/**
501 * struct thread_group_cputimer - thread group interval timer counts
502 * @cputime: thread group interval timers.
503 * @running: non-zero when there are timers running and
504 * @cputime receives updates.
505 * @lock: lock for fields in this struct.
506 *
507 * This structure contains the version of task_cputime, above, that is
508 * used for thread group CPU timer calculations.
509 */
510struct thread_group_cputimer {
511 struct task_cputime cputime;
512 int running;
513 spinlock_t lock;
514};
515
516#include <linux/rwsem.h>
517struct autogroup;
518
519/*
520 * NOTE! "signal_struct" does not have its own
521 * locking, because a shared signal_struct always
522 * implies a shared sighand_struct, so locking
523 * sighand_struct is always a proper superset of
524 * the locking of signal_struct.
525 */
526struct signal_struct {
527 atomic_t sigcnt;
528 atomic_t live;
529 int nr_threads;
530
531 wait_queue_head_t wait_chldexit; /* for wait4() */
532
533 /* current thread group signal load-balancing target: */
534 struct task_struct *curr_target;
535
536 /* shared signal handling: */
537 struct sigpending shared_pending;
538
539 /* thread group exit support */
540 int group_exit_code;
541 /* overloaded:
542 * - notify group_exit_task when ->count is equal to notify_count
543 * - everyone except group_exit_task is stopped during signal delivery
544 * of fatal signals, group_exit_task processes the signal.
545 */
546 int notify_count;
547 struct task_struct *group_exit_task;
548
549 /* thread group stop support, overloads group_exit_code too */
550 int group_stop_count;
551 unsigned int flags; /* see SIGNAL_* flags below */
552
553 /* POSIX.1b Interval Timers */
554 struct list_head posix_timers;
555
556 /* ITIMER_REAL timer for the process */
557 struct hrtimer real_timer;
558 struct pid *leader_pid;
559 ktime_t it_real_incr;
560
561 /*
562 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
563 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
564 * values are defined to 0 and 1 respectively
565 */
566 struct cpu_itimer it[2];
567
568 /*
569 * Thread group totals for process CPU timers.
570 * See thread_group_cputimer(), et al, for details.
571 */
572 struct thread_group_cputimer cputimer;
573
574 /* Earliest-expiration cache. */
575 struct task_cputime cputime_expires;
576
577 struct list_head cpu_timers[3];
578
579 struct pid *tty_old_pgrp;
580
581 /* boolean value for session group leader */
582 int leader;
583
584 struct tty_struct *tty; /* NULL if no tty */
585
586#ifdef CONFIG_SCHED_AUTOGROUP
587 struct autogroup *autogroup;
588#endif
589 /*
590 * Cumulative resource counters for dead threads in the group,
591 * and for reaped dead child processes forked by this group.
592 * Live threads maintain their own counters and add to these
593 * in __exit_signal, except for the group leader.
594 */
595 cputime_t utime, stime, cutime, cstime;
596 cputime_t gtime;
597 cputime_t cgtime;
598#ifndef CONFIG_VIRT_CPU_ACCOUNTING
599 cputime_t prev_utime, prev_stime;
600#endif
601 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
602 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
603 unsigned long inblock, oublock, cinblock, coublock;
604 unsigned long maxrss, cmaxrss;
605 struct task_io_accounting ioac;
606
607 /*
608 * Cumulative ns of schedule CPU time fo dead threads in the
609 * group, not including a zombie group leader, (This only differs
610 * from jiffies_to_ns(utime + stime) if sched_clock uses something
611 * other than jiffies.)
612 */
613 unsigned long long sum_sched_runtime;
614
615 /*
616 * We don't bother to synchronize most readers of this at all,
617 * because there is no reader checking a limit that actually needs
618 * to get both rlim_cur and rlim_max atomically, and either one
619 * alone is a single word that can safely be read normally.
620 * getrlimit/setrlimit use task_lock(current->group_leader) to
621 * protect this instead of the siglock, because they really
622 * have no need to disable irqs.
623 */
624 struct rlimit rlim[RLIM_NLIMITS];
625
626#ifdef CONFIG_BSD_PROCESS_ACCT
627 struct pacct_struct pacct; /* per-process accounting information */
628#endif
629#ifdef CONFIG_TASKSTATS
630 struct taskstats *stats;
631#endif
632#ifdef CONFIG_AUDIT
633 unsigned audit_tty;
634 struct tty_audit_buf *tty_audit_buf;
635#endif
636#ifdef CONFIG_CGROUPS
637 /*
638 * The threadgroup_fork_lock prevents threads from forking with
639 * CLONE_THREAD while held for writing. Use this for fork-sensitive
640 * threadgroup-wide operations. It's taken for reading in fork.c in
641 * copy_process().
642 * Currently only needed write-side by cgroups.
643 */
644 struct rw_semaphore threadgroup_fork_lock;
645#endif
646
647 int oom_adj; /* OOM kill score adjustment (bit shift) */
648 int oom_score_adj; /* OOM kill score adjustment */
649 int oom_score_adj_min; /* OOM kill score adjustment minimum value.
650 * Only settable by CAP_SYS_RESOURCE. */
651
652 struct mutex cred_guard_mutex; /* guard against foreign influences on
653 * credential calculations
654 * (notably. ptrace) */
655};
656
657/* Context switch must be unlocked if interrupts are to be enabled */
658#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
659# define __ARCH_WANT_UNLOCKED_CTXSW
660#endif
661
662/*
663 * Bits in flags field of signal_struct.
664 */
665#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
666#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
667#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
668/*
669 * Pending notifications to parent.
670 */
671#define SIGNAL_CLD_STOPPED 0x00000010
672#define SIGNAL_CLD_CONTINUED 0x00000020
673#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
674
675#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
676
677/* If true, all threads except ->group_exit_task have pending SIGKILL */
678static inline int signal_group_exit(const struct signal_struct *sig)
679{
680 return (sig->flags & SIGNAL_GROUP_EXIT) ||
681 (sig->group_exit_task != NULL);
682}
683
684/*
685 * Some day this will be a full-fledged user tracking system..
686 */
687struct user_struct {
688 atomic_t __count; /* reference count */
689 atomic_t processes; /* How many processes does this user have? */
690 atomic_t files; /* How many open files does this user have? */
691 atomic_t sigpending; /* How many pending signals does this user have? */
692#ifdef CONFIG_INOTIFY_USER
693 atomic_t inotify_watches; /* How many inotify watches does this user have? */
694 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
695#endif
696#ifdef CONFIG_FANOTIFY
697 atomic_t fanotify_listeners;
698#endif
699#ifdef CONFIG_EPOLL
700 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
701#endif
702#ifdef CONFIG_POSIX_MQUEUE
703 /* protected by mq_lock */
704 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
705#endif
706 unsigned long locked_shm; /* How many pages of mlocked shm ? */
707
708#ifdef CONFIG_KEYS
709 struct key *uid_keyring; /* UID specific keyring */
710 struct key *session_keyring; /* UID's default session keyring */
711#endif
712
713 /* Hash table maintenance information */
714 struct hlist_node uidhash_node;
715 uid_t uid;
716 struct user_namespace *user_ns;
717
718#ifdef CONFIG_PERF_EVENTS
719 atomic_long_t locked_vm;
720#endif
721};
722
723extern int uids_sysfs_init(void);
724
725extern struct user_struct *find_user(uid_t);
726
727extern struct user_struct root_user;
728#define INIT_USER (&root_user)
729
730
731struct backing_dev_info;
732struct reclaim_state;
733
734#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
735struct sched_info {
736 /* cumulative counters */
737 unsigned long pcount; /* # of times run on this cpu */
738 unsigned long long run_delay; /* time spent waiting on a runqueue */
739
740 /* timestamps */
741 unsigned long long last_arrival,/* when we last ran on a cpu */
742 last_queued; /* when we were last queued to run */
743};
744#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
745
746#ifdef CONFIG_TASK_DELAY_ACCT
747struct task_delay_info {
748 spinlock_t lock;
749 unsigned int flags; /* Private per-task flags */
750
751 /* For each stat XXX, add following, aligned appropriately
752 *
753 * struct timespec XXX_start, XXX_end;
754 * u64 XXX_delay;
755 * u32 XXX_count;
756 *
757 * Atomicity of updates to XXX_delay, XXX_count protected by
758 * single lock above (split into XXX_lock if contention is an issue).
759 */
760
761 /*
762 * XXX_count is incremented on every XXX operation, the delay
763 * associated with the operation is added to XXX_delay.
764 * XXX_delay contains the accumulated delay time in nanoseconds.
765 */
766 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
767 u64 blkio_delay; /* wait for sync block io completion */
768 u64 swapin_delay; /* wait for swapin block io completion */
769 u32 blkio_count; /* total count of the number of sync block */
770 /* io operations performed */
771 u32 swapin_count; /* total count of the number of swapin block */
772 /* io operations performed */
773
774 struct timespec freepages_start, freepages_end;
775 u64 freepages_delay; /* wait for memory reclaim */
776 u32 freepages_count; /* total count of memory reclaim */
777};
778#endif /* CONFIG_TASK_DELAY_ACCT */
779
780static inline int sched_info_on(void)
781{
782#ifdef CONFIG_SCHEDSTATS
783 return 1;
784#elif defined(CONFIG_TASK_DELAY_ACCT)
785 extern int delayacct_on;
786 return delayacct_on;
787#else
788 return 0;
789#endif
790}
791
792enum cpu_idle_type {
793 CPU_IDLE,
794 CPU_NOT_IDLE,
795 CPU_NEWLY_IDLE,
796 CPU_MAX_IDLE_TYPES
797};
798
799/*
800 * Increase resolution of nice-level calculations for 64-bit architectures.
801 * The extra resolution improves shares distribution and load balancing of
802 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
803 * hierarchies, especially on larger systems. This is not a user-visible change
804 * and does not change the user-interface for setting shares/weights.
805 *
806 * We increase resolution only if we have enough bits to allow this increased
807 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
808 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
809 * increased costs.
810 */
811#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
812# define SCHED_LOAD_RESOLUTION 10
813# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
814# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
815#else
816# define SCHED_LOAD_RESOLUTION 0
817# define scale_load(w) (w)
818# define scale_load_down(w) (w)
819#endif
820
821#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
822#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
823
824/*
825 * Increase resolution of cpu_power calculations
826 */
827#define SCHED_POWER_SHIFT 10
828#define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
829
830/*
831 * sched-domains (multiprocessor balancing) declarations:
832 */
833#ifdef CONFIG_SMP
834#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
835#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
836#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
837#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
838#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
839#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
840#define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
841#define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
842#define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
843#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
844#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
845#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
846#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
847#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
848
849enum powersavings_balance_level {
850 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
851 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
852 * first for long running threads
853 */
854 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
855 * cpu package for power savings
856 */
857 MAX_POWERSAVINGS_BALANCE_LEVELS
858};
859
860extern int sched_mc_power_savings, sched_smt_power_savings;
861
862static inline int sd_balance_for_mc_power(void)
863{
864 if (sched_smt_power_savings)
865 return SD_POWERSAVINGS_BALANCE;
866
867 if (!sched_mc_power_savings)
868 return SD_PREFER_SIBLING;
869
870 return 0;
871}
872
873static inline int sd_balance_for_package_power(void)
874{
875 if (sched_mc_power_savings | sched_smt_power_savings)
876 return SD_POWERSAVINGS_BALANCE;
877
878 return SD_PREFER_SIBLING;
879}
880
881extern int __weak arch_sd_sibiling_asym_packing(void);
882
883/*
884 * Optimise SD flags for power savings:
885 * SD_BALANCE_NEWIDLE helps aggressive task consolidation and power savings.
886 * Keep default SD flags if sched_{smt,mc}_power_saving=0
887 */
888
889static inline int sd_power_saving_flags(void)
890{
891 if (sched_mc_power_savings | sched_smt_power_savings)
892 return SD_BALANCE_NEWIDLE;
893
894 return 0;
895}
896
897struct sched_group_power {
898 atomic_t ref;
899 /*
900 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
901 * single CPU.
902 */
903 unsigned int power, power_orig;
904};
905
906struct sched_group {
907 struct sched_group *next; /* Must be a circular list */
908 atomic_t ref;
909
910 unsigned int group_weight;
911 struct sched_group_power *sgp;
912
913 /*
914 * The CPUs this group covers.
915 *
916 * NOTE: this field is variable length. (Allocated dynamically
917 * by attaching extra space to the end of the structure,
918 * depending on how many CPUs the kernel has booted up with)
919 */
920 unsigned long cpumask[0];
921};
922
923static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
924{
925 return to_cpumask(sg->cpumask);
926}
927
928struct sched_domain_attr {
929 int relax_domain_level;
930};
931
932#define SD_ATTR_INIT (struct sched_domain_attr) { \
933 .relax_domain_level = -1, \
934}
935
936extern int sched_domain_level_max;
937
938struct sched_domain {
939 /* These fields must be setup */
940 struct sched_domain *parent; /* top domain must be null terminated */
941 struct sched_domain *child; /* bottom domain must be null terminated */
942 struct sched_group *groups; /* the balancing groups of the domain */
943 unsigned long min_interval; /* Minimum balance interval ms */
944 unsigned long max_interval; /* Maximum balance interval ms */
945 unsigned int busy_factor; /* less balancing by factor if busy */
946 unsigned int imbalance_pct; /* No balance until over watermark */
947 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
948 unsigned int busy_idx;
949 unsigned int idle_idx;
950 unsigned int newidle_idx;
951 unsigned int wake_idx;
952 unsigned int forkexec_idx;
953 unsigned int smt_gain;
954 int flags; /* See SD_* */
955 int level;
956
957 /* Runtime fields. */
958 unsigned long last_balance; /* init to jiffies. units in jiffies */
959 unsigned int balance_interval; /* initialise to 1. units in ms. */
960 unsigned int nr_balance_failed; /* initialise to 0 */
961
962 u64 last_update;
963
964#ifdef CONFIG_SCHEDSTATS
965 /* load_balance() stats */
966 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
967 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
968 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
969 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
970 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
971 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
972 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
973 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
974
975 /* Active load balancing */
976 unsigned int alb_count;
977 unsigned int alb_failed;
978 unsigned int alb_pushed;
979
980 /* SD_BALANCE_EXEC stats */
981 unsigned int sbe_count;
982 unsigned int sbe_balanced;
983 unsigned int sbe_pushed;
984
985 /* SD_BALANCE_FORK stats */
986 unsigned int sbf_count;
987 unsigned int sbf_balanced;
988 unsigned int sbf_pushed;
989
990 /* try_to_wake_up() stats */
991 unsigned int ttwu_wake_remote;
992 unsigned int ttwu_move_affine;
993 unsigned int ttwu_move_balance;
994#endif
995#ifdef CONFIG_SCHED_DEBUG
996 char *name;
997#endif
998 union {
999 void *private; /* used during construction */
1000 struct rcu_head rcu; /* used during destruction */
1001 };
1002
1003 unsigned int span_weight;
1004 /*
1005 * Span of all CPUs in this domain.
1006 *
1007 * NOTE: this field is variable length. (Allocated dynamically
1008 * by attaching extra space to the end of the structure,
1009 * depending on how many CPUs the kernel has booted up with)
1010 */
1011 unsigned long span[0];
1012};
1013
1014static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1015{
1016 return to_cpumask(sd->span);
1017}
1018
1019extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1020 struct sched_domain_attr *dattr_new);
1021
1022/* Allocate an array of sched domains, for partition_sched_domains(). */
1023cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1024void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1025
1026/* Test a flag in parent sched domain */
1027static inline int test_sd_parent(struct sched_domain *sd, int flag)
1028{
1029 if (sd->parent && (sd->parent->flags & flag))
1030 return 1;
1031
1032 return 0;
1033}
1034
1035unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1036unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1037
1038#else /* CONFIG_SMP */
1039
1040struct sched_domain_attr;
1041
1042static inline void
1043partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1044 struct sched_domain_attr *dattr_new)
1045{
1046}
1047#endif /* !CONFIG_SMP */
1048
1049
1050struct io_context; /* See blkdev.h */
1051
1052
1053#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1054extern void prefetch_stack(struct task_struct *t);
1055#else
1056static inline void prefetch_stack(struct task_struct *t) { }
1057#endif
1058
1059struct audit_context; /* See audit.c */
1060struct mempolicy;
1061struct pipe_inode_info;
1062struct uts_namespace;
1063
1064struct rq;
1065struct sched_domain;
1066
1067/*
1068 * wake flags
1069 */
1070#define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1071#define WF_FORK 0x02 /* child wakeup after fork */
1072#define WF_MIGRATED 0x04 /* internal use, task got migrated */
1073
1074#define ENQUEUE_WAKEUP 1
1075#define ENQUEUE_HEAD 2
1076#ifdef CONFIG_SMP
1077#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1078#else
1079#define ENQUEUE_WAKING 0
1080#endif
1081
1082#define DEQUEUE_SLEEP 1
1083
1084struct sched_class {
1085 const struct sched_class *next;
1086
1087 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1088 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1089 void (*yield_task) (struct rq *rq);
1090 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1091
1092 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1093
1094 struct task_struct * (*pick_next_task) (struct rq *rq);
1095 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1096
1097#ifdef CONFIG_SMP
1098 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1099
1100 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1101 void (*post_schedule) (struct rq *this_rq);
1102 void (*task_waking) (struct task_struct *task);
1103 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1104
1105 void (*set_cpus_allowed)(struct task_struct *p,
1106 const struct cpumask *newmask);
1107
1108 void (*rq_online)(struct rq *rq);
1109 void (*rq_offline)(struct rq *rq);
1110#endif
1111
1112 void (*set_curr_task) (struct rq *rq);
1113 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1114 void (*task_fork) (struct task_struct *p);
1115
1116 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1117 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1118 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1119 int oldprio);
1120
1121 unsigned int (*get_rr_interval) (struct rq *rq,
1122 struct task_struct *task);
1123
1124#ifdef CONFIG_FAIR_GROUP_SCHED
1125 void (*task_move_group) (struct task_struct *p, int on_rq);
1126#endif
1127};
1128
1129struct load_weight {
1130 unsigned long weight, inv_weight;
1131};
1132
1133#ifdef CONFIG_SCHEDSTATS
1134struct sched_statistics {
1135 u64 wait_start;
1136 u64 wait_max;
1137 u64 wait_count;
1138 u64 wait_sum;
1139 u64 iowait_count;
1140 u64 iowait_sum;
1141
1142 u64 sleep_start;
1143 u64 sleep_max;
1144 s64 sum_sleep_runtime;
1145
1146 u64 block_start;
1147 u64 block_max;
1148 u64 exec_max;
1149 u64 slice_max;
1150
1151 u64 nr_migrations_cold;
1152 u64 nr_failed_migrations_affine;
1153 u64 nr_failed_migrations_running;
1154 u64 nr_failed_migrations_hot;
1155 u64 nr_forced_migrations;
1156
1157 u64 nr_wakeups;
1158 u64 nr_wakeups_sync;
1159 u64 nr_wakeups_migrate;
1160 u64 nr_wakeups_local;
1161 u64 nr_wakeups_remote;
1162 u64 nr_wakeups_affine;
1163 u64 nr_wakeups_affine_attempts;
1164 u64 nr_wakeups_passive;
1165 u64 nr_wakeups_idle;
1166};
1167#endif
1168
1169struct sched_entity {
1170 struct load_weight load; /* for load-balancing */
1171 struct rb_node run_node;
1172 struct list_head group_node;
1173 unsigned int on_rq;
1174
1175 u64 exec_start;
1176 u64 sum_exec_runtime;
1177 u64 vruntime;
1178 u64 prev_sum_exec_runtime;
1179
1180 u64 nr_migrations;
1181
1182#ifdef CONFIG_SCHEDSTATS
1183 struct sched_statistics statistics;
1184#endif
1185
1186#ifdef CONFIG_FAIR_GROUP_SCHED
1187 struct sched_entity *parent;
1188 /* rq on which this entity is (to be) queued: */
1189 struct cfs_rq *cfs_rq;
1190 /* rq "owned" by this entity/group: */
1191 struct cfs_rq *my_q;
1192#endif
1193};
1194
1195struct sched_rt_entity {
1196 struct list_head run_list;
1197 unsigned long timeout;
1198 unsigned int time_slice;
1199 int nr_cpus_allowed;
1200
1201 struct sched_rt_entity *back;
1202#ifdef CONFIG_RT_GROUP_SCHED
1203 struct sched_rt_entity *parent;
1204 /* rq on which this entity is (to be) queued: */
1205 struct rt_rq *rt_rq;
1206 /* rq "owned" by this entity/group: */
1207 struct rt_rq *my_q;
1208#endif
1209};
1210
1211struct rcu_node;
1212
1213enum perf_event_task_context {
1214 perf_invalid_context = -1,
1215 perf_hw_context = 0,
1216 perf_sw_context,
1217 perf_nr_task_contexts,
1218};
1219
1220struct task_struct {
1221 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1222 void *stack;
1223 atomic_t usage;
1224 unsigned int flags; /* per process flags, defined below */
1225 unsigned int ptrace;
1226
1227#ifdef CONFIG_SMP
1228 struct task_struct *wake_entry;
1229 int on_cpu;
1230#endif
1231 int on_rq;
1232
1233 int prio, static_prio, normal_prio;
1234 unsigned int rt_priority;
1235 const struct sched_class *sched_class;
1236 struct sched_entity se;
1237 struct sched_rt_entity rt;
1238
1239#ifdef CONFIG_PREEMPT_NOTIFIERS
1240 /* list of struct preempt_notifier: */
1241 struct hlist_head preempt_notifiers;
1242#endif
1243
1244 /*
1245 * fpu_counter contains the number of consecutive context switches
1246 * that the FPU is used. If this is over a threshold, the lazy fpu
1247 * saving becomes unlazy to save the trap. This is an unsigned char
1248 * so that after 256 times the counter wraps and the behavior turns
1249 * lazy again; this to deal with bursty apps that only use FPU for
1250 * a short time
1251 */
1252 unsigned char fpu_counter;
1253#ifdef CONFIG_BLK_DEV_IO_TRACE
1254 unsigned int btrace_seq;
1255#endif
1256
1257 unsigned int policy;
1258 cpumask_t cpus_allowed;
1259
1260#ifdef CONFIG_PREEMPT_RCU
1261 int rcu_read_lock_nesting;
1262 char rcu_read_unlock_special;
1263#if defined(CONFIG_RCU_BOOST) && defined(CONFIG_TREE_PREEMPT_RCU)
1264 int rcu_boosted;
1265#endif /* #if defined(CONFIG_RCU_BOOST) && defined(CONFIG_TREE_PREEMPT_RCU) */
1266 struct list_head rcu_node_entry;
1267#endif /* #ifdef CONFIG_PREEMPT_RCU */
1268#ifdef CONFIG_TREE_PREEMPT_RCU
1269 struct rcu_node *rcu_blocked_node;
1270#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1271#ifdef CONFIG_RCU_BOOST
1272 struct rt_mutex *rcu_boost_mutex;
1273#endif /* #ifdef CONFIG_RCU_BOOST */
1274
1275#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1276 struct sched_info sched_info;
1277#endif
1278
1279 struct list_head tasks;
1280#ifdef CONFIG_SMP
1281 struct plist_node pushable_tasks;
1282#endif
1283
1284 struct mm_struct *mm, *active_mm;
1285#ifdef CONFIG_COMPAT_BRK
1286 unsigned brk_randomized:1;
1287#endif
1288#if defined(SPLIT_RSS_COUNTING)
1289 struct task_rss_stat rss_stat;
1290#endif
1291/* task state */
1292 int exit_state;
1293 int exit_code, exit_signal;
1294 int pdeath_signal; /* The signal sent when the parent dies */
1295 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1296 /* ??? */
1297 unsigned int personality;
1298 unsigned did_exec:1;
1299 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1300 * execve */
1301 unsigned in_iowait:1;
1302
1303
1304 /* Revert to default priority/policy when forking */
1305 unsigned sched_reset_on_fork:1;
1306 unsigned sched_contributes_to_load:1;
1307
1308 pid_t pid;
1309 pid_t tgid;
1310
1311#ifdef CONFIG_CC_STACKPROTECTOR
1312 /* Canary value for the -fstack-protector gcc feature */
1313 unsigned long stack_canary;
1314#endif
1315
1316 /*
1317 * pointers to (original) parent process, youngest child, younger sibling,
1318 * older sibling, respectively. (p->father can be replaced with
1319 * p->real_parent->pid)
1320 */
1321 struct task_struct *real_parent; /* real parent process */
1322 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1323 /*
1324 * children/sibling forms the list of my natural children
1325 */
1326 struct list_head children; /* list of my children */
1327 struct list_head sibling; /* linkage in my parent's children list */
1328 struct task_struct *group_leader; /* threadgroup leader */
1329
1330 /*
1331 * ptraced is the list of tasks this task is using ptrace on.
1332 * This includes both natural children and PTRACE_ATTACH targets.
1333 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1334 */
1335 struct list_head ptraced;
1336 struct list_head ptrace_entry;
1337
1338 /* PID/PID hash table linkage. */
1339 struct pid_link pids[PIDTYPE_MAX];
1340 struct list_head thread_group;
1341
1342 struct completion *vfork_done; /* for vfork() */
1343 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1344 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1345
1346 cputime_t utime, stime, utimescaled, stimescaled;
1347 cputime_t gtime;
1348#ifndef CONFIG_VIRT_CPU_ACCOUNTING
1349 cputime_t prev_utime, prev_stime;
1350#endif
1351 unsigned long nvcsw, nivcsw; /* context switch counts */
1352 struct timespec start_time; /* monotonic time */
1353 struct timespec real_start_time; /* boot based time */
1354/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1355 unsigned long min_flt, maj_flt;
1356
1357 struct task_cputime cputime_expires;
1358 struct list_head cpu_timers[3];
1359
1360/* process credentials */
1361 const struct cred __rcu *real_cred; /* objective and real subjective task
1362 * credentials (COW) */
1363 const struct cred __rcu *cred; /* effective (overridable) subjective task
1364 * credentials (COW) */
1365 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1366
1367 char comm[TASK_COMM_LEN]; /* executable name excluding path
1368 - access with [gs]et_task_comm (which lock
1369 it with task_lock())
1370 - initialized normally by setup_new_exec */
1371/* file system info */
1372 int link_count, total_link_count;
1373#ifdef CONFIG_SYSVIPC
1374/* ipc stuff */
1375 struct sysv_sem sysvsem;
1376#endif
1377#ifdef CONFIG_DETECT_HUNG_TASK
1378/* hung task detection */
1379 unsigned long last_switch_count;
1380#endif
1381/* CPU-specific state of this task */
1382 struct thread_struct thread;
1383/* filesystem information */
1384 struct fs_struct *fs;
1385/* open file information */
1386 struct files_struct *files;
1387/* namespaces */
1388 struct nsproxy *nsproxy;
1389/* signal handlers */
1390 struct signal_struct *signal;
1391 struct sighand_struct *sighand;
1392
1393 sigset_t blocked, real_blocked;
1394 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1395 struct sigpending pending;
1396
1397 unsigned long sas_ss_sp;
1398 size_t sas_ss_size;
1399 int (*notifier)(void *priv);
1400 void *notifier_data;
1401 sigset_t *notifier_mask;
1402 struct audit_context *audit_context;
1403#ifdef CONFIG_AUDITSYSCALL
1404 uid_t loginuid;
1405 unsigned int sessionid;
1406#endif
1407 seccomp_t seccomp;
1408
1409/* Thread group tracking */
1410 u32 parent_exec_id;
1411 u32 self_exec_id;
1412/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1413 * mempolicy */
1414 spinlock_t alloc_lock;
1415
1416#ifdef CONFIG_GENERIC_HARDIRQS
1417 /* IRQ handler threads */
1418 struct irqaction *irqaction;
1419#endif
1420
1421 /* Protection of the PI data structures: */
1422 raw_spinlock_t pi_lock;
1423
1424#ifdef CONFIG_RT_MUTEXES
1425 /* PI waiters blocked on a rt_mutex held by this task */
1426 struct plist_head pi_waiters;
1427 /* Deadlock detection and priority inheritance handling */
1428 struct rt_mutex_waiter *pi_blocked_on;
1429#endif
1430
1431#ifdef CONFIG_DEBUG_MUTEXES
1432 /* mutex deadlock detection */
1433 struct mutex_waiter *blocked_on;
1434#endif
1435#ifdef CONFIG_TRACE_IRQFLAGS
1436 unsigned int irq_events;
1437 unsigned long hardirq_enable_ip;
1438 unsigned long hardirq_disable_ip;
1439 unsigned int hardirq_enable_event;
1440 unsigned int hardirq_disable_event;
1441 int hardirqs_enabled;
1442 int hardirq_context;
1443 unsigned long softirq_disable_ip;
1444 unsigned long softirq_enable_ip;
1445 unsigned int softirq_disable_event;
1446 unsigned int softirq_enable_event;
1447 int softirqs_enabled;
1448 int softirq_context;
1449#endif
1450#ifdef CONFIG_LOCKDEP
1451# define MAX_LOCK_DEPTH 48UL
1452 u64 curr_chain_key;
1453 int lockdep_depth;
1454 unsigned int lockdep_recursion;
1455 struct held_lock held_locks[MAX_LOCK_DEPTH];
1456 gfp_t lockdep_reclaim_gfp;
1457#endif
1458
1459/* journalling filesystem info */
1460 void *journal_info;
1461
1462/* stacked block device info */
1463 struct bio_list *bio_list;
1464
1465#ifdef CONFIG_BLOCK
1466/* stack plugging */
1467 struct blk_plug *plug;
1468#endif
1469
1470/* VM state */
1471 struct reclaim_state *reclaim_state;
1472
1473 struct backing_dev_info *backing_dev_info;
1474
1475 struct io_context *io_context;
1476
1477 unsigned long ptrace_message;
1478 siginfo_t *last_siginfo; /* For ptrace use. */
1479 struct task_io_accounting ioac;
1480#if defined(CONFIG_TASK_XACCT)
1481 u64 acct_rss_mem1; /* accumulated rss usage */
1482 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1483 cputime_t acct_timexpd; /* stime + utime since last update */
1484#endif
1485#ifdef CONFIG_CPUSETS
1486 nodemask_t mems_allowed; /* Protected by alloc_lock */
1487 int mems_allowed_change_disable;
1488 int cpuset_mem_spread_rotor;
1489 int cpuset_slab_spread_rotor;
1490#endif
1491#ifdef CONFIG_CGROUPS
1492 /* Control Group info protected by css_set_lock */
1493 struct css_set __rcu *cgroups;
1494 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1495 struct list_head cg_list;
1496#endif
1497#ifdef CONFIG_FUTEX
1498 struct robust_list_head __user *robust_list;
1499#ifdef CONFIG_COMPAT
1500 struct compat_robust_list_head __user *compat_robust_list;
1501#endif
1502 struct list_head pi_state_list;
1503 struct futex_pi_state *pi_state_cache;
1504#endif
1505#ifdef CONFIG_PERF_EVENTS
1506 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1507 struct mutex perf_event_mutex;
1508 struct list_head perf_event_list;
1509#endif
1510#ifdef CONFIG_NUMA
1511 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1512 short il_next;
1513 short pref_node_fork;
1514#endif
1515 struct rcu_head rcu;
1516
1517 /*
1518 * cache last used pipe for splice
1519 */
1520 struct pipe_inode_info *splice_pipe;
1521#ifdef CONFIG_TASK_DELAY_ACCT
1522 struct task_delay_info *delays;
1523#endif
1524#ifdef CONFIG_FAULT_INJECTION
1525 int make_it_fail;
1526#endif
1527 struct prop_local_single dirties;
1528#ifdef CONFIG_LATENCYTOP
1529 int latency_record_count;
1530 struct latency_record latency_record[LT_SAVECOUNT];
1531#endif
1532 /*
1533 * time slack values; these are used to round up poll() and
1534 * select() etc timeout values. These are in nanoseconds.
1535 */
1536 unsigned long timer_slack_ns;
1537 unsigned long default_timer_slack_ns;
1538
1539 struct list_head *scm_work_list;
1540#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1541 /* Index of current stored address in ret_stack */
1542 int curr_ret_stack;
1543 /* Stack of return addresses for return function tracing */
1544 struct ftrace_ret_stack *ret_stack;
1545 /* time stamp for last schedule */
1546 unsigned long long ftrace_timestamp;
1547 /*
1548 * Number of functions that haven't been traced
1549 * because of depth overrun.
1550 */
1551 atomic_t trace_overrun;
1552 /* Pause for the tracing */
1553 atomic_t tracing_graph_pause;
1554#endif
1555#ifdef CONFIG_TRACING
1556 /* state flags for use by tracers */
1557 unsigned long trace;
1558 /* bitmask and counter of trace recursion */
1559 unsigned long trace_recursion;
1560#endif /* CONFIG_TRACING */
1561#ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1562 struct memcg_batch_info {
1563 int do_batch; /* incremented when batch uncharge started */
1564 struct mem_cgroup *memcg; /* target memcg of uncharge */
1565 unsigned long nr_pages; /* uncharged usage */
1566 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1567 } memcg_batch;
1568#endif
1569#ifdef CONFIG_HAVE_HW_BREAKPOINT
1570 atomic_t ptrace_bp_refcnt;
1571#endif
1572};
1573
1574/* Future-safe accessor for struct task_struct's cpus_allowed. */
1575#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1576
1577/*
1578 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1579 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1580 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1581 * values are inverted: lower p->prio value means higher priority.
1582 *
1583 * The MAX_USER_RT_PRIO value allows the actual maximum
1584 * RT priority to be separate from the value exported to
1585 * user-space. This allows kernel threads to set their
1586 * priority to a value higher than any user task. Note:
1587 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1588 */
1589
1590#define MAX_USER_RT_PRIO 100
1591#define MAX_RT_PRIO MAX_USER_RT_PRIO
1592
1593#define MAX_PRIO (MAX_RT_PRIO + 40)
1594#define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1595
1596static inline int rt_prio(int prio)
1597{
1598 if (unlikely(prio < MAX_RT_PRIO))
1599 return 1;
1600 return 0;
1601}
1602
1603static inline int rt_task(struct task_struct *p)
1604{
1605 return rt_prio(p->prio);
1606}
1607
1608static inline struct pid *task_pid(struct task_struct *task)
1609{
1610 return task->pids[PIDTYPE_PID].pid;
1611}
1612
1613static inline struct pid *task_tgid(struct task_struct *task)
1614{
1615 return task->group_leader->pids[PIDTYPE_PID].pid;
1616}
1617
1618/*
1619 * Without tasklist or rcu lock it is not safe to dereference
1620 * the result of task_pgrp/task_session even if task == current,
1621 * we can race with another thread doing sys_setsid/sys_setpgid.
1622 */
1623static inline struct pid *task_pgrp(struct task_struct *task)
1624{
1625 return task->group_leader->pids[PIDTYPE_PGID].pid;
1626}
1627
1628static inline struct pid *task_session(struct task_struct *task)
1629{
1630 return task->group_leader->pids[PIDTYPE_SID].pid;
1631}
1632
1633struct pid_namespace;
1634
1635/*
1636 * the helpers to get the task's different pids as they are seen
1637 * from various namespaces
1638 *
1639 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1640 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1641 * current.
1642 * task_xid_nr_ns() : id seen from the ns specified;
1643 *
1644 * set_task_vxid() : assigns a virtual id to a task;
1645 *
1646 * see also pid_nr() etc in include/linux/pid.h
1647 */
1648pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1649 struct pid_namespace *ns);
1650
1651static inline pid_t task_pid_nr(struct task_struct *tsk)
1652{
1653 return tsk->pid;
1654}
1655
1656static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1657 struct pid_namespace *ns)
1658{
1659 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1660}
1661
1662static inline pid_t task_pid_vnr(struct task_struct *tsk)
1663{
1664 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1665}
1666
1667
1668static inline pid_t task_tgid_nr(struct task_struct *tsk)
1669{
1670 return tsk->tgid;
1671}
1672
1673pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1674
1675static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1676{
1677 return pid_vnr(task_tgid(tsk));
1678}
1679
1680
1681static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1682 struct pid_namespace *ns)
1683{
1684 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1685}
1686
1687static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1688{
1689 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1690}
1691
1692
1693static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1694 struct pid_namespace *ns)
1695{
1696 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1697}
1698
1699static inline pid_t task_session_vnr(struct task_struct *tsk)
1700{
1701 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1702}
1703
1704/* obsolete, do not use */
1705static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1706{
1707 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1708}
1709
1710/**
1711 * pid_alive - check that a task structure is not stale
1712 * @p: Task structure to be checked.
1713 *
1714 * Test if a process is not yet dead (at most zombie state)
1715 * If pid_alive fails, then pointers within the task structure
1716 * can be stale and must not be dereferenced.
1717 */
1718static inline int pid_alive(struct task_struct *p)
1719{
1720 return p->pids[PIDTYPE_PID].pid != NULL;
1721}
1722
1723/**
1724 * is_global_init - check if a task structure is init
1725 * @tsk: Task structure to be checked.
1726 *
1727 * Check if a task structure is the first user space task the kernel created.
1728 */
1729static inline int is_global_init(struct task_struct *tsk)
1730{
1731 return tsk->pid == 1;
1732}
1733
1734/*
1735 * is_container_init:
1736 * check whether in the task is init in its own pid namespace.
1737 */
1738extern int is_container_init(struct task_struct *tsk);
1739
1740extern struct pid *cad_pid;
1741
1742extern void free_task(struct task_struct *tsk);
1743#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1744
1745extern void __put_task_struct(struct task_struct *t);
1746
1747static inline void put_task_struct(struct task_struct *t)
1748{
1749 if (atomic_dec_and_test(&t->usage))
1750 __put_task_struct(t);
1751}
1752
1753extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1754extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1755
1756/*
1757 * Per process flags
1758 */
1759#define PF_STARTING 0x00000002 /* being created */
1760#define PF_EXITING 0x00000004 /* getting shut down */
1761#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1762#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1763#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1764#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1765#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1766#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1767#define PF_DUMPCORE 0x00000200 /* dumped core */
1768#define PF_SIGNALED 0x00000400 /* killed by a signal */
1769#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1770#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1771#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1772#define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1773#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1774#define PF_FROZEN 0x00010000 /* frozen for system suspend */
1775#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1776#define PF_KSWAPD 0x00040000 /* I am kswapd */
1777#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1778#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1779#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1780#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1781#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1782#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1783#define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1784#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1785#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1786#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1787#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1788#define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1789
1790/*
1791 * Only the _current_ task can read/write to tsk->flags, but other
1792 * tasks can access tsk->flags in readonly mode for example
1793 * with tsk_used_math (like during threaded core dumping).
1794 * There is however an exception to this rule during ptrace
1795 * or during fork: the ptracer task is allowed to write to the
1796 * child->flags of its traced child (same goes for fork, the parent
1797 * can write to the child->flags), because we're guaranteed the
1798 * child is not running and in turn not changing child->flags
1799 * at the same time the parent does it.
1800 */
1801#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1802#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1803#define clear_used_math() clear_stopped_child_used_math(current)
1804#define set_used_math() set_stopped_child_used_math(current)
1805#define conditional_stopped_child_used_math(condition, child) \
1806 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1807#define conditional_used_math(condition) \
1808 conditional_stopped_child_used_math(condition, current)
1809#define copy_to_stopped_child_used_math(child) \
1810 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1811/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1812#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1813#define used_math() tsk_used_math(current)
1814
1815/*
1816 * task->jobctl flags
1817 */
1818#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1819
1820#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1821#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1822#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1823#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1824#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1825#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1826#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1827
1828#define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1829#define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1830#define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1831#define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1832#define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1833#define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1834#define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1835
1836#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1837#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1838
1839extern bool task_set_jobctl_pending(struct task_struct *task,
1840 unsigned int mask);
1841extern void task_clear_jobctl_trapping(struct task_struct *task);
1842extern void task_clear_jobctl_pending(struct task_struct *task,
1843 unsigned int mask);
1844
1845#ifdef CONFIG_PREEMPT_RCU
1846
1847#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1848#define RCU_READ_UNLOCK_BOOSTED (1 << 1) /* boosted while in RCU read-side. */
1849#define RCU_READ_UNLOCK_NEED_QS (1 << 2) /* RCU core needs CPU response. */
1850
1851static inline void rcu_copy_process(struct task_struct *p)
1852{
1853 p->rcu_read_lock_nesting = 0;
1854 p->rcu_read_unlock_special = 0;
1855#ifdef CONFIG_TREE_PREEMPT_RCU
1856 p->rcu_blocked_node = NULL;
1857#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1858#ifdef CONFIG_RCU_BOOST
1859 p->rcu_boost_mutex = NULL;
1860#endif /* #ifdef CONFIG_RCU_BOOST */
1861 INIT_LIST_HEAD(&p->rcu_node_entry);
1862}
1863
1864#else
1865
1866static inline void rcu_copy_process(struct task_struct *p)
1867{
1868}
1869
1870#endif
1871
1872#ifdef CONFIG_SMP
1873extern void do_set_cpus_allowed(struct task_struct *p,
1874 const struct cpumask *new_mask);
1875
1876extern int set_cpus_allowed_ptr(struct task_struct *p,
1877 const struct cpumask *new_mask);
1878#else
1879static inline void do_set_cpus_allowed(struct task_struct *p,
1880 const struct cpumask *new_mask)
1881{
1882}
1883static inline int set_cpus_allowed_ptr(struct task_struct *p,
1884 const struct cpumask *new_mask)
1885{
1886 if (!cpumask_test_cpu(0, new_mask))
1887 return -EINVAL;
1888 return 0;
1889}
1890#endif
1891
1892#ifndef CONFIG_CPUMASK_OFFSTACK
1893static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1894{
1895 return set_cpus_allowed_ptr(p, &new_mask);
1896}
1897#endif
1898
1899/*
1900 * Do not use outside of architecture code which knows its limitations.
1901 *
1902 * sched_clock() has no promise of monotonicity or bounded drift between
1903 * CPUs, use (which you should not) requires disabling IRQs.
1904 *
1905 * Please use one of the three interfaces below.
1906 */
1907extern unsigned long long notrace sched_clock(void);
1908/*
1909 * See the comment in kernel/sched_clock.c
1910 */
1911extern u64 cpu_clock(int cpu);
1912extern u64 local_clock(void);
1913extern u64 sched_clock_cpu(int cpu);
1914
1915
1916extern void sched_clock_init(void);
1917
1918#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1919static inline void sched_clock_tick(void)
1920{
1921}
1922
1923static inline void sched_clock_idle_sleep_event(void)
1924{
1925}
1926
1927static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1928{
1929}
1930#else
1931/*
1932 * Architectures can set this to 1 if they have specified
1933 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1934 * but then during bootup it turns out that sched_clock()
1935 * is reliable after all:
1936 */
1937extern int sched_clock_stable;
1938
1939extern void sched_clock_tick(void);
1940extern void sched_clock_idle_sleep_event(void);
1941extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1942#endif
1943
1944#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1945/*
1946 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1947 * The reason for this explicit opt-in is not to have perf penalty with
1948 * slow sched_clocks.
1949 */
1950extern void enable_sched_clock_irqtime(void);
1951extern void disable_sched_clock_irqtime(void);
1952#else
1953static inline void enable_sched_clock_irqtime(void) {}
1954static inline void disable_sched_clock_irqtime(void) {}
1955#endif
1956
1957extern unsigned long long
1958task_sched_runtime(struct task_struct *task);
1959
1960/* sched_exec is called by processes performing an exec */
1961#ifdef CONFIG_SMP
1962extern void sched_exec(void);
1963#else
1964#define sched_exec() {}
1965#endif
1966
1967extern void sched_clock_idle_sleep_event(void);
1968extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1969
1970#ifdef CONFIG_HOTPLUG_CPU
1971extern void idle_task_exit(void);
1972#else
1973static inline void idle_task_exit(void) {}
1974#endif
1975
1976#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1977extern void wake_up_idle_cpu(int cpu);
1978#else
1979static inline void wake_up_idle_cpu(int cpu) { }
1980#endif
1981
1982extern unsigned int sysctl_sched_latency;
1983extern unsigned int sysctl_sched_min_granularity;
1984extern unsigned int sysctl_sched_wakeup_granularity;
1985extern unsigned int sysctl_sched_child_runs_first;
1986
1987enum sched_tunable_scaling {
1988 SCHED_TUNABLESCALING_NONE,
1989 SCHED_TUNABLESCALING_LOG,
1990 SCHED_TUNABLESCALING_LINEAR,
1991 SCHED_TUNABLESCALING_END,
1992};
1993extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1994
1995#ifdef CONFIG_SCHED_DEBUG
1996extern unsigned int sysctl_sched_migration_cost;
1997extern unsigned int sysctl_sched_nr_migrate;
1998extern unsigned int sysctl_sched_time_avg;
1999extern unsigned int sysctl_timer_migration;
2000extern unsigned int sysctl_sched_shares_window;
2001
2002int sched_proc_update_handler(struct ctl_table *table, int write,
2003 void __user *buffer, size_t *length,
2004 loff_t *ppos);
2005#endif
2006#ifdef CONFIG_SCHED_DEBUG
2007static inline unsigned int get_sysctl_timer_migration(void)
2008{
2009 return sysctl_timer_migration;
2010}
2011#else
2012static inline unsigned int get_sysctl_timer_migration(void)
2013{
2014 return 1;
2015}
2016#endif
2017extern unsigned int sysctl_sched_rt_period;
2018extern int sysctl_sched_rt_runtime;
2019
2020int sched_rt_handler(struct ctl_table *table, int write,
2021 void __user *buffer, size_t *lenp,
2022 loff_t *ppos);
2023
2024#ifdef CONFIG_SCHED_AUTOGROUP
2025extern unsigned int sysctl_sched_autogroup_enabled;
2026
2027extern void sched_autogroup_create_attach(struct task_struct *p);
2028extern void sched_autogroup_detach(struct task_struct *p);
2029extern void sched_autogroup_fork(struct signal_struct *sig);
2030extern void sched_autogroup_exit(struct signal_struct *sig);
2031#ifdef CONFIG_PROC_FS
2032extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2033extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice);
2034#endif
2035#else
2036static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2037static inline void sched_autogroup_detach(struct task_struct *p) { }
2038static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2039static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2040#endif
2041
2042#ifdef CONFIG_RT_MUTEXES
2043extern int rt_mutex_getprio(struct task_struct *p);
2044extern void rt_mutex_setprio(struct task_struct *p, int prio);
2045extern void rt_mutex_adjust_pi(struct task_struct *p);
2046#else
2047static inline int rt_mutex_getprio(struct task_struct *p)
2048{
2049 return p->normal_prio;
2050}
2051# define rt_mutex_adjust_pi(p) do { } while (0)
2052#endif
2053
2054extern bool yield_to(struct task_struct *p, bool preempt);
2055extern void set_user_nice(struct task_struct *p, long nice);
2056extern int task_prio(const struct task_struct *p);
2057extern int task_nice(const struct task_struct *p);
2058extern int can_nice(const struct task_struct *p, const int nice);
2059extern int task_curr(const struct task_struct *p);
2060extern int idle_cpu(int cpu);
2061extern int sched_setscheduler(struct task_struct *, int,
2062 const struct sched_param *);
2063extern int sched_setscheduler_nocheck(struct task_struct *, int,
2064 const struct sched_param *);
2065extern struct task_struct *idle_task(int cpu);
2066extern struct task_struct *curr_task(int cpu);
2067extern void set_curr_task(int cpu, struct task_struct *p);
2068
2069void yield(void);
2070
2071/*
2072 * The default (Linux) execution domain.
2073 */
2074extern struct exec_domain default_exec_domain;
2075
2076union thread_union {
2077 struct thread_info thread_info;
2078 unsigned long stack[THREAD_SIZE/sizeof(long)];
2079};
2080
2081#ifndef __HAVE_ARCH_KSTACK_END
2082static inline int kstack_end(void *addr)
2083{
2084 /* Reliable end of stack detection:
2085 * Some APM bios versions misalign the stack
2086 */
2087 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2088}
2089#endif
2090
2091extern union thread_union init_thread_union;
2092extern struct task_struct init_task;
2093
2094extern struct mm_struct init_mm;
2095
2096extern struct pid_namespace init_pid_ns;
2097
2098/*
2099 * find a task by one of its numerical ids
2100 *
2101 * find_task_by_pid_ns():
2102 * finds a task by its pid in the specified namespace
2103 * find_task_by_vpid():
2104 * finds a task by its virtual pid
2105 *
2106 * see also find_vpid() etc in include/linux/pid.h
2107 */
2108
2109extern struct task_struct *find_task_by_vpid(pid_t nr);
2110extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2111 struct pid_namespace *ns);
2112
2113extern void __set_special_pids(struct pid *pid);
2114
2115/* per-UID process charging. */
2116extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2117static inline struct user_struct *get_uid(struct user_struct *u)
2118{
2119 atomic_inc(&u->__count);
2120 return u;
2121}
2122extern void free_uid(struct user_struct *);
2123extern void release_uids(struct user_namespace *ns);
2124
2125#include <asm/current.h>
2126
2127extern void xtime_update(unsigned long ticks);
2128
2129extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2130extern int wake_up_process(struct task_struct *tsk);
2131extern void wake_up_new_task(struct task_struct *tsk);
2132#ifdef CONFIG_SMP
2133 extern void kick_process(struct task_struct *tsk);
2134#else
2135 static inline void kick_process(struct task_struct *tsk) { }
2136#endif
2137extern void sched_fork(struct task_struct *p);
2138extern void sched_dead(struct task_struct *p);
2139
2140extern void proc_caches_init(void);
2141extern void flush_signals(struct task_struct *);
2142extern void __flush_signals(struct task_struct *);
2143extern void ignore_signals(struct task_struct *);
2144extern void flush_signal_handlers(struct task_struct *, int force_default);
2145extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2146
2147static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2148{
2149 unsigned long flags;
2150 int ret;
2151
2152 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2153 ret = dequeue_signal(tsk, mask, info);
2154 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2155
2156 return ret;
2157}
2158
2159extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2160 sigset_t *mask);
2161extern void unblock_all_signals(void);
2162extern void release_task(struct task_struct * p);
2163extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2164extern int force_sigsegv(int, struct task_struct *);
2165extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2166extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2167extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2168extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2169extern int kill_pgrp(struct pid *pid, int sig, int priv);
2170extern int kill_pid(struct pid *pid, int sig, int priv);
2171extern int kill_proc_info(int, struct siginfo *, pid_t);
2172extern __must_check bool do_notify_parent(struct task_struct *, int);
2173extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2174extern void force_sig(int, struct task_struct *);
2175extern int send_sig(int, struct task_struct *, int);
2176extern int zap_other_threads(struct task_struct *p);
2177extern struct sigqueue *sigqueue_alloc(void);
2178extern void sigqueue_free(struct sigqueue *);
2179extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2180extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2181extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2182
2183static inline int kill_cad_pid(int sig, int priv)
2184{
2185 return kill_pid(cad_pid, sig, priv);
2186}
2187
2188/* These can be the second arg to send_sig_info/send_group_sig_info. */
2189#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2190#define SEND_SIG_PRIV ((struct siginfo *) 1)
2191#define SEND_SIG_FORCED ((struct siginfo *) 2)
2192
2193/*
2194 * True if we are on the alternate signal stack.
2195 */
2196static inline int on_sig_stack(unsigned long sp)
2197{
2198#ifdef CONFIG_STACK_GROWSUP
2199 return sp >= current->sas_ss_sp &&
2200 sp - current->sas_ss_sp < current->sas_ss_size;
2201#else
2202 return sp > current->sas_ss_sp &&
2203 sp - current->sas_ss_sp <= current->sas_ss_size;
2204#endif
2205}
2206
2207static inline int sas_ss_flags(unsigned long sp)
2208{
2209 return (current->sas_ss_size == 0 ? SS_DISABLE
2210 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2211}
2212
2213/*
2214 * Routines for handling mm_structs
2215 */
2216extern struct mm_struct * mm_alloc(void);
2217
2218/* mmdrop drops the mm and the page tables */
2219extern void __mmdrop(struct mm_struct *);
2220static inline void mmdrop(struct mm_struct * mm)
2221{
2222 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2223 __mmdrop(mm);
2224}
2225
2226/* mmput gets rid of the mappings and all user-space */
2227extern void mmput(struct mm_struct *);
2228/* Grab a reference to a task's mm, if it is not already going away */
2229extern struct mm_struct *get_task_mm(struct task_struct *task);
2230/* Remove the current tasks stale references to the old mm_struct */
2231extern void mm_release(struct task_struct *, struct mm_struct *);
2232/* Allocate a new mm structure and copy contents from tsk->mm */
2233extern struct mm_struct *dup_mm(struct task_struct *tsk);
2234
2235extern int copy_thread(unsigned long, unsigned long, unsigned long,
2236 struct task_struct *, struct pt_regs *);
2237extern void flush_thread(void);
2238extern void exit_thread(void);
2239
2240extern void exit_files(struct task_struct *);
2241extern void __cleanup_sighand(struct sighand_struct *);
2242
2243extern void exit_itimers(struct signal_struct *);
2244extern void flush_itimer_signals(void);
2245
2246extern NORET_TYPE void do_group_exit(int);
2247
2248extern void daemonize(const char *, ...);
2249extern int allow_signal(int);
2250extern int disallow_signal(int);
2251
2252extern int do_execve(const char *,
2253 const char __user * const __user *,
2254 const char __user * const __user *, struct pt_regs *);
2255extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2256struct task_struct *fork_idle(int);
2257
2258extern void set_task_comm(struct task_struct *tsk, char *from);
2259extern char *get_task_comm(char *to, struct task_struct *tsk);
2260
2261#ifdef CONFIG_SMP
2262void scheduler_ipi(void);
2263extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2264#else
2265static inline void scheduler_ipi(void) { }
2266static inline unsigned long wait_task_inactive(struct task_struct *p,
2267 long match_state)
2268{
2269 return 1;
2270}
2271#endif
2272
2273#define next_task(p) \
2274 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2275
2276#define for_each_process(p) \
2277 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2278
2279extern bool current_is_single_threaded(void);
2280
2281/*
2282 * Careful: do_each_thread/while_each_thread is a double loop so
2283 * 'break' will not work as expected - use goto instead.
2284 */
2285#define do_each_thread(g, t) \
2286 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2287
2288#define while_each_thread(g, t) \
2289 while ((t = next_thread(t)) != g)
2290
2291static inline int get_nr_threads(struct task_struct *tsk)
2292{
2293 return tsk->signal->nr_threads;
2294}
2295
2296static inline bool thread_group_leader(struct task_struct *p)
2297{
2298 return p->exit_signal >= 0;
2299}
2300
2301/* Do to the insanities of de_thread it is possible for a process
2302 * to have the pid of the thread group leader without actually being
2303 * the thread group leader. For iteration through the pids in proc
2304 * all we care about is that we have a task with the appropriate
2305 * pid, we don't actually care if we have the right task.
2306 */
2307static inline int has_group_leader_pid(struct task_struct *p)
2308{
2309 return p->pid == p->tgid;
2310}
2311
2312static inline
2313int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2314{
2315 return p1->tgid == p2->tgid;
2316}
2317
2318static inline struct task_struct *next_thread(const struct task_struct *p)
2319{
2320 return list_entry_rcu(p->thread_group.next,
2321 struct task_struct, thread_group);
2322}
2323
2324static inline int thread_group_empty(struct task_struct *p)
2325{
2326 return list_empty(&p->thread_group);
2327}
2328
2329#define delay_group_leader(p) \
2330 (thread_group_leader(p) && !thread_group_empty(p))
2331
2332/*
2333 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2334 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2335 * pins the final release of task.io_context. Also protects ->cpuset and
2336 * ->cgroup.subsys[].
2337 *
2338 * Nests both inside and outside of read_lock(&tasklist_lock).
2339 * It must not be nested with write_lock_irq(&tasklist_lock),
2340 * neither inside nor outside.
2341 */
2342static inline void task_lock(struct task_struct *p)
2343{
2344 spin_lock(&p->alloc_lock);
2345}
2346
2347static inline void task_unlock(struct task_struct *p)
2348{
2349 spin_unlock(&p->alloc_lock);
2350}
2351
2352extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2353 unsigned long *flags);
2354
2355#define lock_task_sighand(tsk, flags) \
2356({ struct sighand_struct *__ss; \
2357 __cond_lock(&(tsk)->sighand->siglock, \
2358 (__ss = __lock_task_sighand(tsk, flags))); \
2359 __ss; \
2360}) \
2361
2362static inline void unlock_task_sighand(struct task_struct *tsk,
2363 unsigned long *flags)
2364{
2365 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2366}
2367
2368/* See the declaration of threadgroup_fork_lock in signal_struct. */
2369#ifdef CONFIG_CGROUPS
2370static inline void threadgroup_fork_read_lock(struct task_struct *tsk)
2371{
2372 down_read(&tsk->signal->threadgroup_fork_lock);
2373}
2374static inline void threadgroup_fork_read_unlock(struct task_struct *tsk)
2375{
2376 up_read(&tsk->signal->threadgroup_fork_lock);
2377}
2378static inline void threadgroup_fork_write_lock(struct task_struct *tsk)
2379{
2380 down_write(&tsk->signal->threadgroup_fork_lock);
2381}
2382static inline void threadgroup_fork_write_unlock(struct task_struct *tsk)
2383{
2384 up_write(&tsk->signal->threadgroup_fork_lock);
2385}
2386#else
2387static inline void threadgroup_fork_read_lock(struct task_struct *tsk) {}
2388static inline void threadgroup_fork_read_unlock(struct task_struct *tsk) {}
2389static inline void threadgroup_fork_write_lock(struct task_struct *tsk) {}
2390static inline void threadgroup_fork_write_unlock(struct task_struct *tsk) {}
2391#endif
2392
2393#ifndef __HAVE_THREAD_FUNCTIONS
2394
2395#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2396#define task_stack_page(task) ((task)->stack)
2397
2398static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2399{
2400 *task_thread_info(p) = *task_thread_info(org);
2401 task_thread_info(p)->task = p;
2402}
2403
2404static inline unsigned long *end_of_stack(struct task_struct *p)
2405{
2406 return (unsigned long *)(task_thread_info(p) + 1);
2407}
2408
2409#endif
2410
2411static inline int object_is_on_stack(void *obj)
2412{
2413 void *stack = task_stack_page(current);
2414
2415 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2416}
2417
2418extern void thread_info_cache_init(void);
2419
2420#ifdef CONFIG_DEBUG_STACK_USAGE
2421static inline unsigned long stack_not_used(struct task_struct *p)
2422{
2423 unsigned long *n = end_of_stack(p);
2424
2425 do { /* Skip over canary */
2426 n++;
2427 } while (!*n);
2428
2429 return (unsigned long)n - (unsigned long)end_of_stack(p);
2430}
2431#endif
2432
2433/* set thread flags in other task's structures
2434 * - see asm/thread_info.h for TIF_xxxx flags available
2435 */
2436static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2437{
2438 set_ti_thread_flag(task_thread_info(tsk), flag);
2439}
2440
2441static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2442{
2443 clear_ti_thread_flag(task_thread_info(tsk), flag);
2444}
2445
2446static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2447{
2448 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2449}
2450
2451static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2452{
2453 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2454}
2455
2456static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2457{
2458 return test_ti_thread_flag(task_thread_info(tsk), flag);
2459}
2460
2461static inline void set_tsk_need_resched(struct task_struct *tsk)
2462{
2463 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2464}
2465
2466static inline void clear_tsk_need_resched(struct task_struct *tsk)
2467{
2468 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2469}
2470
2471static inline int test_tsk_need_resched(struct task_struct *tsk)
2472{
2473 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2474}
2475
2476static inline int restart_syscall(void)
2477{
2478 set_tsk_thread_flag(current, TIF_SIGPENDING);
2479 return -ERESTARTNOINTR;
2480}
2481
2482static inline int signal_pending(struct task_struct *p)
2483{
2484 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2485}
2486
2487static inline int __fatal_signal_pending(struct task_struct *p)
2488{
2489 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2490}
2491
2492static inline int fatal_signal_pending(struct task_struct *p)
2493{
2494 return signal_pending(p) && __fatal_signal_pending(p);
2495}
2496
2497static inline int signal_pending_state(long state, struct task_struct *p)
2498{
2499 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2500 return 0;
2501 if (!signal_pending(p))
2502 return 0;
2503
2504 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2505}
2506
2507static inline int need_resched(void)
2508{
2509 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2510}
2511
2512/*
2513 * cond_resched() and cond_resched_lock(): latency reduction via
2514 * explicit rescheduling in places that are safe. The return
2515 * value indicates whether a reschedule was done in fact.
2516 * cond_resched_lock() will drop the spinlock before scheduling,
2517 * cond_resched_softirq() will enable bhs before scheduling.
2518 */
2519extern int _cond_resched(void);
2520
2521#define cond_resched() ({ \
2522 __might_sleep(__FILE__, __LINE__, 0); \
2523 _cond_resched(); \
2524})
2525
2526extern int __cond_resched_lock(spinlock_t *lock);
2527
2528#ifdef CONFIG_PREEMPT_COUNT
2529#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2530#else
2531#define PREEMPT_LOCK_OFFSET 0
2532#endif
2533
2534#define cond_resched_lock(lock) ({ \
2535 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2536 __cond_resched_lock(lock); \
2537})
2538
2539extern int __cond_resched_softirq(void);
2540
2541#define cond_resched_softirq() ({ \
2542 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2543 __cond_resched_softirq(); \
2544})
2545
2546/*
2547 * Does a critical section need to be broken due to another
2548 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2549 * but a general need for low latency)
2550 */
2551static inline int spin_needbreak(spinlock_t *lock)
2552{
2553#ifdef CONFIG_PREEMPT
2554 return spin_is_contended(lock);
2555#else
2556 return 0;
2557#endif
2558}
2559
2560/*
2561 * Thread group CPU time accounting.
2562 */
2563void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2564void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2565
2566static inline void thread_group_cputime_init(struct signal_struct *sig)
2567{
2568 spin_lock_init(&sig->cputimer.lock);
2569}
2570
2571/*
2572 * Reevaluate whether the task has signals pending delivery.
2573 * Wake the task if so.
2574 * This is required every time the blocked sigset_t changes.
2575 * callers must hold sighand->siglock.
2576 */
2577extern void recalc_sigpending_and_wake(struct task_struct *t);
2578extern void recalc_sigpending(void);
2579
2580extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2581
2582/*
2583 * Wrappers for p->thread_info->cpu access. No-op on UP.
2584 */
2585#ifdef CONFIG_SMP
2586
2587static inline unsigned int task_cpu(const struct task_struct *p)
2588{
2589 return task_thread_info(p)->cpu;
2590}
2591
2592extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2593
2594#else
2595
2596static inline unsigned int task_cpu(const struct task_struct *p)
2597{
2598 return 0;
2599}
2600
2601static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2602{
2603}
2604
2605#endif /* CONFIG_SMP */
2606
2607extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2608extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2609
2610extern void normalize_rt_tasks(void);
2611
2612#ifdef CONFIG_CGROUP_SCHED
2613
2614extern struct task_group root_task_group;
2615
2616extern struct task_group *sched_create_group(struct task_group *parent);
2617extern void sched_destroy_group(struct task_group *tg);
2618extern void sched_move_task(struct task_struct *tsk);
2619#ifdef CONFIG_FAIR_GROUP_SCHED
2620extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2621extern unsigned long sched_group_shares(struct task_group *tg);
2622#endif
2623#ifdef CONFIG_RT_GROUP_SCHED
2624extern int sched_group_set_rt_runtime(struct task_group *tg,
2625 long rt_runtime_us);
2626extern long sched_group_rt_runtime(struct task_group *tg);
2627extern int sched_group_set_rt_period(struct task_group *tg,
2628 long rt_period_us);
2629extern long sched_group_rt_period(struct task_group *tg);
2630extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2631#endif
2632#endif
2633
2634extern int task_can_switch_user(struct user_struct *up,
2635 struct task_struct *tsk);
2636
2637#ifdef CONFIG_TASK_XACCT
2638static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2639{
2640 tsk->ioac.rchar += amt;
2641}
2642
2643static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2644{
2645 tsk->ioac.wchar += amt;
2646}
2647
2648static inline void inc_syscr(struct task_struct *tsk)
2649{
2650 tsk->ioac.syscr++;
2651}
2652
2653static inline void inc_syscw(struct task_struct *tsk)
2654{
2655 tsk->ioac.syscw++;
2656}
2657#else
2658static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2659{
2660}
2661
2662static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2663{
2664}
2665
2666static inline void inc_syscr(struct task_struct *tsk)
2667{
2668}
2669
2670static inline void inc_syscw(struct task_struct *tsk)
2671{
2672}
2673#endif
2674
2675#ifndef TASK_SIZE_OF
2676#define TASK_SIZE_OF(tsk) TASK_SIZE
2677#endif
2678
2679#ifdef CONFIG_MM_OWNER
2680extern void mm_update_next_owner(struct mm_struct *mm);
2681extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2682#else
2683static inline void mm_update_next_owner(struct mm_struct *mm)
2684{
2685}
2686
2687static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2688{
2689}
2690#endif /* CONFIG_MM_OWNER */
2691
2692static inline unsigned long task_rlimit(const struct task_struct *tsk,
2693 unsigned int limit)
2694{
2695 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2696}
2697
2698static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2699 unsigned int limit)
2700{
2701 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2702}
2703
2704static inline unsigned long rlimit(unsigned int limit)
2705{
2706 return task_rlimit(current, limit);
2707}
2708
2709static inline unsigned long rlimit_max(unsigned int limit)
2710{
2711 return task_rlimit_max(current, limit);
2712}
2713
2714#endif /* __KERNEL__ */
2715
2716#endif