Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 *  linux/drivers/block/loop.c
   3 *
   4 *  Written by Theodore Ts'o, 3/29/93
   5 *
   6 * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
   7 * permitted under the GNU General Public License.
   8 *
   9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
  10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
  11 *
  12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
  13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
  14 *
  15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
  16 *
  17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
  18 *
  19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
  20 *
  21 * Loadable modules and other fixes by AK, 1998
  22 *
  23 * Make real block number available to downstream transfer functions, enables
  24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
  25 * Reed H. Petty, rhp@draper.net
  26 *
  27 * Maximum number of loop devices now dynamic via max_loop module parameter.
  28 * Russell Kroll <rkroll@exploits.org> 19990701
  29 *
  30 * Maximum number of loop devices when compiled-in now selectable by passing
  31 * max_loop=<1-255> to the kernel on boot.
  32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
  33 *
  34 * Completely rewrite request handling to be make_request_fn style and
  35 * non blocking, pushing work to a helper thread. Lots of fixes from
  36 * Al Viro too.
  37 * Jens Axboe <axboe@suse.de>, Nov 2000
  38 *
  39 * Support up to 256 loop devices
  40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
  41 *
  42 * Support for falling back on the write file operation when the address space
  43 * operations write_begin is not available on the backing filesystem.
  44 * Anton Altaparmakov, 16 Feb 2005
  45 *
  46 * Still To Fix:
  47 * - Advisory locking is ignored here.
  48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
  49 *
  50 */
  51
  52#include <linux/module.h>
  53#include <linux/moduleparam.h>
  54#include <linux/sched.h>
  55#include <linux/fs.h>
  56#include <linux/file.h>
  57#include <linux/stat.h>
  58#include <linux/errno.h>
  59#include <linux/major.h>
  60#include <linux/wait.h>
  61#include <linux/blkdev.h>
  62#include <linux/blkpg.h>
  63#include <linux/init.h>
  64#include <linux/swap.h>
  65#include <linux/slab.h>
  66#include <linux/compat.h>
  67#include <linux/suspend.h>
  68#include <linux/freezer.h>
  69#include <linux/mutex.h>
  70#include <linux/writeback.h>
  71#include <linux/completion.h>
  72#include <linux/highmem.h>
  73#include <linux/kthread.h>
  74#include <linux/splice.h>
  75#include <linux/sysfs.h>
  76#include <linux/miscdevice.h>
  77#include <linux/falloc.h>
 
  78#include "loop.h"
  79
  80#include <asm/uaccess.h>
  81
  82static DEFINE_IDR(loop_index_idr);
  83static DEFINE_MUTEX(loop_index_mutex);
  84
  85static int max_part;
  86static int part_shift;
  87
  88/*
  89 * Transfer functions
  90 */
  91static int transfer_none(struct loop_device *lo, int cmd,
  92			 struct page *raw_page, unsigned raw_off,
  93			 struct page *loop_page, unsigned loop_off,
  94			 int size, sector_t real_block)
  95{
  96	char *raw_buf = kmap_atomic(raw_page) + raw_off;
  97	char *loop_buf = kmap_atomic(loop_page) + loop_off;
  98
  99	if (cmd == READ)
 100		memcpy(loop_buf, raw_buf, size);
 101	else
 102		memcpy(raw_buf, loop_buf, size);
 103
 104	kunmap_atomic(loop_buf);
 105	kunmap_atomic(raw_buf);
 106	cond_resched();
 107	return 0;
 108}
 109
 110static int transfer_xor(struct loop_device *lo, int cmd,
 111			struct page *raw_page, unsigned raw_off,
 112			struct page *loop_page, unsigned loop_off,
 113			int size, sector_t real_block)
 114{
 115	char *raw_buf = kmap_atomic(raw_page) + raw_off;
 116	char *loop_buf = kmap_atomic(loop_page) + loop_off;
 117	char *in, *out, *key;
 118	int i, keysize;
 119
 120	if (cmd == READ) {
 121		in = raw_buf;
 122		out = loop_buf;
 123	} else {
 124		in = loop_buf;
 125		out = raw_buf;
 126	}
 127
 128	key = lo->lo_encrypt_key;
 129	keysize = lo->lo_encrypt_key_size;
 130	for (i = 0; i < size; i++)
 131		*out++ = *in++ ^ key[(i & 511) % keysize];
 132
 133	kunmap_atomic(loop_buf);
 134	kunmap_atomic(raw_buf);
 135	cond_resched();
 136	return 0;
 137}
 138
 139static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
 140{
 141	if (unlikely(info->lo_encrypt_key_size <= 0))
 142		return -EINVAL;
 143	return 0;
 144}
 145
 146static struct loop_func_table none_funcs = {
 147	.number = LO_CRYPT_NONE,
 148	.transfer = transfer_none,
 149}; 	
 150
 151static struct loop_func_table xor_funcs = {
 152	.number = LO_CRYPT_XOR,
 153	.transfer = transfer_xor,
 154	.init = xor_init
 155}; 	
 156
 157/* xfer_funcs[0] is special - its release function is never called */
 158static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
 159	&none_funcs,
 160	&xor_funcs
 161};
 162
 163static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
 164{
 165	loff_t loopsize;
 166
 167	/* Compute loopsize in bytes */
 168	loopsize = i_size_read(file->f_mapping->host);
 169	if (offset > 0)
 170		loopsize -= offset;
 171	/* offset is beyond i_size, weird but possible */
 172	if (loopsize < 0)
 173		return 0;
 174
 175	if (sizelimit > 0 && sizelimit < loopsize)
 176		loopsize = sizelimit;
 177	/*
 178	 * Unfortunately, if we want to do I/O on the device,
 179	 * the number of 512-byte sectors has to fit into a sector_t.
 180	 */
 181	return loopsize >> 9;
 182}
 183
 184static loff_t get_loop_size(struct loop_device *lo, struct file *file)
 185{
 186	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
 187}
 188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 189static int
 190figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
 191{
 192	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
 193	sector_t x = (sector_t)size;
 194	struct block_device *bdev = lo->lo_device;
 195
 196	if (unlikely((loff_t)x != size))
 197		return -EFBIG;
 198	if (lo->lo_offset != offset)
 199		lo->lo_offset = offset;
 200	if (lo->lo_sizelimit != sizelimit)
 201		lo->lo_sizelimit = sizelimit;
 202	set_capacity(lo->lo_disk, x);
 203	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
 204	/* let user-space know about the new size */
 205	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
 206	return 0;
 207}
 208
 209static inline int
 210lo_do_transfer(struct loop_device *lo, int cmd,
 211	       struct page *rpage, unsigned roffs,
 212	       struct page *lpage, unsigned loffs,
 213	       int size, sector_t rblock)
 214{
 215	if (unlikely(!lo->transfer))
 
 
 
 216		return 0;
 217
 218	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
 
 
 
 219}
 220
 221/**
 222 * __do_lo_send_write - helper for writing data to a loop device
 223 *
 224 * This helper just factors out common code between do_lo_send_direct_write()
 225 * and do_lo_send_write().
 226 */
 227static int __do_lo_send_write(struct file *file,
 228		u8 *buf, const int len, loff_t pos)
 229{
 
 230	ssize_t bw;
 231	mm_segment_t old_fs = get_fs();
 
 232
 233	file_start_write(file);
 234	set_fs(get_ds());
 235	bw = file->f_op->write(file, buf, len, &pos);
 236	set_fs(old_fs);
 237	file_end_write(file);
 238	if (likely(bw == len))
 
 239		return 0;
 240	printk_ratelimited(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
 241			(unsigned long long)pos, len);
 
 
 242	if (bw >= 0)
 243		bw = -EIO;
 244	return bw;
 245}
 246
 247/**
 248 * do_lo_send_direct_write - helper for writing data to a loop device
 249 *
 250 * This is the fast, non-transforming version that does not need double
 251 * buffering.
 252 */
 253static int do_lo_send_direct_write(struct loop_device *lo,
 254		struct bio_vec *bvec, loff_t pos, struct page *page)
 255{
 256	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
 257			kmap(bvec->bv_page) + bvec->bv_offset,
 258			bvec->bv_len, pos);
 259	kunmap(bvec->bv_page);
 260	cond_resched();
 261	return bw;
 
 
 
 
 
 
 262}
 263
 264/**
 265 * do_lo_send_write - helper for writing data to a loop device
 266 *
 267 * This is the slow, transforming version that needs to double buffer the
 268 * data as it cannot do the transformations in place without having direct
 269 * access to the destination pages of the backing file.
 270 */
 271static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
 272		loff_t pos, struct page *page)
 273{
 274	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
 275			bvec->bv_offset, bvec->bv_len, pos >> 9);
 276	if (likely(!ret))
 277		return __do_lo_send_write(lo->lo_backing_file,
 278				page_address(page), bvec->bv_len,
 279				pos);
 280	printk_ratelimited(KERN_ERR "loop: Transfer error at byte offset %llu, "
 281			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
 282	if (ret > 0)
 283		ret = -EIO;
 284	return ret;
 285}
 286
 287static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
 288{
 289	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
 290			struct page *page);
 291	struct bio_vec bvec;
 292	struct bvec_iter iter;
 293	struct page *page = NULL;
 294	int ret = 0;
 295
 296	if (lo->transfer != transfer_none) {
 297		page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
 298		if (unlikely(!page))
 299			goto fail;
 300		kmap(page);
 301		do_lo_send = do_lo_send_write;
 302	} else {
 303		do_lo_send = do_lo_send_direct_write;
 304	}
 305
 306	bio_for_each_segment(bvec, bio, iter) {
 307		ret = do_lo_send(lo, &bvec, pos, page);
 
 
 308		if (ret < 0)
 309			break;
 310		pos += bvec.bv_len;
 311	}
 312	if (page) {
 313		kunmap(page);
 314		__free_page(page);
 315	}
 316out:
 317	return ret;
 318fail:
 319	printk_ratelimited(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
 320	ret = -ENOMEM;
 321	goto out;
 322}
 323
 324struct lo_read_data {
 325	struct loop_device *lo;
 326	struct page *page;
 327	unsigned offset;
 328	int bsize;
 329};
 330
 331static int
 332lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
 333		struct splice_desc *sd)
 334{
 335	struct lo_read_data *p = sd->u.data;
 336	struct loop_device *lo = p->lo;
 337	struct page *page = buf->page;
 338	sector_t IV;
 339	int size;
 340
 341	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
 342							(buf->offset >> 9);
 343	size = sd->len;
 344	if (size > p->bsize)
 345		size = p->bsize;
 346
 347	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
 348		printk_ratelimited(KERN_ERR "loop: transfer error block %ld\n",
 349		       page->index);
 350		size = -EINVAL;
 351	}
 352
 353	flush_dcache_page(p->page);
 
 354
 355	if (size > 0)
 356		p->offset += size;
 
 
 
 
 357
 358	return size;
 359}
 360
 361static int
 362lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
 363{
 364	return __splice_from_pipe(pipe, sd, lo_splice_actor);
 365}
 
 
 
 
 366
 367static ssize_t
 368do_lo_receive(struct loop_device *lo,
 369	      struct bio_vec *bvec, int bsize, loff_t pos)
 370{
 371	struct lo_read_data cookie;
 372	struct splice_desc sd;
 373	struct file *file;
 374	ssize_t retval;
 375
 376	cookie.lo = lo;
 377	cookie.page = bvec->bv_page;
 378	cookie.offset = bvec->bv_offset;
 379	cookie.bsize = bsize;
 380
 381	sd.len = 0;
 382	sd.total_len = bvec->bv_len;
 383	sd.flags = 0;
 384	sd.pos = pos;
 385	sd.u.data = &cookie;
 386
 387	file = lo->lo_backing_file;
 388	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
 
 
 
 
 
 
 
 
 389
 390	return retval;
 391}
 
 
 392
 393static int
 394lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
 395{
 396	struct bio_vec bvec;
 397	struct bvec_iter iter;
 398	ssize_t s;
 399
 400	bio_for_each_segment(bvec, bio, iter) {
 401		s = do_lo_receive(lo, &bvec, bsize, pos);
 402		if (s < 0)
 403			return s;
 404
 405		if (s != bvec.bv_len) {
 406			zero_fill_bio(bio);
 407			break;
 408		}
 409		pos += bvec.bv_len;
 410	}
 411	return 0;
 
 
 
 
 412}
 413
 414static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
 415{
 416	loff_t pos;
 
 
 
 
 
 
 
 417	int ret;
 418
 419	pos = ((loff_t) bio->bi_iter.bi_sector << 9) + lo->lo_offset;
 420
 421	if (bio_rw(bio) == WRITE) {
 422		struct file *file = lo->lo_backing_file;
 423
 424		if (bio->bi_rw & REQ_FLUSH) {
 425			ret = vfs_fsync(file, 0);
 426			if (unlikely(ret && ret != -EINVAL)) {
 427				ret = -EIO;
 428				goto out;
 429			}
 430		}
 431
 432		/*
 433		 * We use punch hole to reclaim the free space used by the
 434		 * image a.k.a. discard. However we do not support discard if
 435		 * encryption is enabled, because it may give an attacker
 436		 * useful information.
 437		 */
 438		if (bio->bi_rw & REQ_DISCARD) {
 439			struct file *file = lo->lo_backing_file;
 440			int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
 441
 442			if ((!file->f_op->fallocate) ||
 443			    lo->lo_encrypt_key_size) {
 444				ret = -EOPNOTSUPP;
 445				goto out;
 446			}
 447			ret = file->f_op->fallocate(file, mode, pos,
 448						    bio->bi_iter.bi_size);
 449			if (unlikely(ret && ret != -EINVAL &&
 450				     ret != -EOPNOTSUPP))
 451				ret = -EIO;
 452			goto out;
 453		}
 454
 455		ret = lo_send(lo, bio, pos);
 
 
 
 
 
 456
 457		if ((bio->bi_rw & REQ_FUA) && !ret) {
 458			ret = vfs_fsync(file, 0);
 459			if (unlikely(ret && ret != -EINVAL))
 460				ret = -EIO;
 461		}
 462	} else
 463		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
 464
 465out:
 466	return ret;
 467}
 468
 469/*
 470 * Add bio to back of pending list
 471 */
 472static void loop_add_bio(struct loop_device *lo, struct bio *bio)
 473{
 474	lo->lo_bio_count++;
 475	bio_list_add(&lo->lo_bio_list, bio);
 
 
 
 
 
 
 
 476}
 477
 478/*
 479 * Grab first pending buffer
 480 */
 481static struct bio *loop_get_bio(struct loop_device *lo)
 482{
 483	lo->lo_bio_count--;
 484	return bio_list_pop(&lo->lo_bio_list);
 
 
 
 
 
 
 
 
 
 485}
 486
 487static void loop_make_request(struct request_queue *q, struct bio *old_bio)
 
 488{
 489	struct loop_device *lo = q->queuedata;
 490	int rw = bio_rw(old_bio);
 
 
 
 491
 492	if (rw == READA)
 493		rw = READ;
 494
 495	BUG_ON(!lo || (rw != READ && rw != WRITE));
 
 
 
 
 
 
 
 
 496
 497	spin_lock_irq(&lo->lo_lock);
 498	if (lo->lo_state != Lo_bound)
 499		goto out;
 500	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
 501		goto out;
 502	if (lo->lo_bio_count >= q->nr_congestion_on)
 503		wait_event_lock_irq(lo->lo_req_wait,
 504				    lo->lo_bio_count < q->nr_congestion_off,
 505				    lo->lo_lock);
 506	loop_add_bio(lo, old_bio);
 507	wake_up(&lo->lo_event);
 508	spin_unlock_irq(&lo->lo_lock);
 509	return;
 510
 511out:
 512	spin_unlock_irq(&lo->lo_lock);
 513	bio_io_error(old_bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 514}
 515
 516struct switch_request {
 517	struct file *file;
 518	struct completion wait;
 519};
 520
 521static void do_loop_switch(struct loop_device *, struct switch_request *);
 522
 523static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
 524{
 525	if (unlikely(!bio->bi_bdev)) {
 526		do_loop_switch(lo, bio->bi_private);
 527		bio_put(bio);
 528	} else {
 529		int ret = do_bio_filebacked(lo, bio);
 530		bio_endio(bio, ret);
 531	}
 532}
 533
 534/*
 535 * worker thread that handles reads/writes to file backed loop devices,
 536 * to avoid blocking in our make_request_fn. it also does loop decrypting
 537 * on reads for block backed loop, as that is too heavy to do from
 538 * b_end_io context where irqs may be disabled.
 539 *
 540 * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
 541 * calling kthread_stop().  Therefore once kthread_should_stop() is
 542 * true, make_request will not place any more requests.  Therefore
 543 * once kthread_should_stop() is true and lo_bio is NULL, we are
 544 * done with the loop.
 545 */
 546static int loop_thread(void *data)
 547{
 548	struct loop_device *lo = data;
 549	struct bio *bio;
 550
 551	set_user_nice(current, -20);
 552
 553	while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
 554
 555		wait_event_interruptible(lo->lo_event,
 556				!bio_list_empty(&lo->lo_bio_list) ||
 557				kthread_should_stop());
 558
 559		if (bio_list_empty(&lo->lo_bio_list))
 560			continue;
 561		spin_lock_irq(&lo->lo_lock);
 562		bio = loop_get_bio(lo);
 563		if (lo->lo_bio_count < lo->lo_queue->nr_congestion_off)
 564			wake_up(&lo->lo_req_wait);
 565		spin_unlock_irq(&lo->lo_lock);
 566
 567		BUG_ON(!bio);
 568		loop_handle_bio(lo, bio);
 569	}
 570
 571	return 0;
 
 
 
 
 
 
 
 572}
 573
 574/*
 575 * loop_switch performs the hard work of switching a backing store.
 576 * First it needs to flush existing IO, it does this by sending a magic
 577 * BIO down the pipe. The completion of this BIO does the actual switch.
 578 */
 579static int loop_switch(struct loop_device *lo, struct file *file)
 580{
 581	struct switch_request w;
 582	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
 583	if (!bio)
 584		return -ENOMEM;
 585	init_completion(&w.wait);
 586	w.file = file;
 587	bio->bi_private = &w;
 588	bio->bi_bdev = NULL;
 589	loop_make_request(lo->lo_queue, bio);
 590	wait_for_completion(&w.wait);
 
 
 
 
 
 
 591	return 0;
 592}
 593
 594/*
 595 * Helper to flush the IOs in loop, but keeping loop thread running
 596 */
 597static int loop_flush(struct loop_device *lo)
 598{
 599	/* loop not yet configured, no running thread, nothing to flush */
 600	if (!lo->lo_thread)
 601		return 0;
 602
 603	return loop_switch(lo, NULL);
 604}
 605
 606/*
 607 * Do the actual switch; called from the BIO completion routine
 608 */
 609static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
 610{
 611	struct file *file = p->file;
 612	struct file *old_file = lo->lo_backing_file;
 613	struct address_space *mapping;
 614
 615	/* if no new file, only flush of queued bios requested */
 616	if (!file)
 617		goto out;
 618
 619	mapping = file->f_mapping;
 620	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
 621	lo->lo_backing_file = file;
 622	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
 623		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
 624	lo->old_gfp_mask = mapping_gfp_mask(mapping);
 625	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
 626out:
 627	complete(&p->wait);
 
 
 628}
 629
 630
 631/*
 632 * loop_change_fd switched the backing store of a loopback device to
 633 * a new file. This is useful for operating system installers to free up
 634 * the original file and in High Availability environments to switch to
 635 * an alternative location for the content in case of server meltdown.
 636 * This can only work if the loop device is used read-only, and if the
 637 * new backing store is the same size and type as the old backing store.
 638 */
 639static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
 640			  unsigned int arg)
 641{
 642	struct file	*file, *old_file;
 643	struct inode	*inode;
 644	int		error;
 645
 646	error = -ENXIO;
 647	if (lo->lo_state != Lo_bound)
 648		goto out;
 649
 650	/* the loop device has to be read-only */
 651	error = -EINVAL;
 652	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
 653		goto out;
 654
 655	error = -EBADF;
 656	file = fget(arg);
 657	if (!file)
 658		goto out;
 659
 660	inode = file->f_mapping->host;
 661	old_file = lo->lo_backing_file;
 662
 663	error = -EINVAL;
 664
 665	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
 666		goto out_putf;
 667
 668	/* size of the new backing store needs to be the same */
 669	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
 670		goto out_putf;
 671
 672	/* and ... switch */
 673	error = loop_switch(lo, file);
 674	if (error)
 675		goto out_putf;
 676
 677	fput(old_file);
 678	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
 679		ioctl_by_bdev(bdev, BLKRRPART, 0);
 680	return 0;
 681
 682 out_putf:
 683	fput(file);
 684 out:
 685	return error;
 686}
 687
 688static inline int is_loop_device(struct file *file)
 689{
 690	struct inode *i = file->f_mapping->host;
 691
 692	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
 693}
 694
 695/* loop sysfs attributes */
 696
 697static ssize_t loop_attr_show(struct device *dev, char *page,
 698			      ssize_t (*callback)(struct loop_device *, char *))
 699{
 700	struct gendisk *disk = dev_to_disk(dev);
 701	struct loop_device *lo = disk->private_data;
 702
 703	return callback(lo, page);
 704}
 705
 706#define LOOP_ATTR_RO(_name)						\
 707static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
 708static ssize_t loop_attr_do_show_##_name(struct device *d,		\
 709				struct device_attribute *attr, char *b)	\
 710{									\
 711	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
 712}									\
 713static struct device_attribute loop_attr_##_name =			\
 714	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
 715
 716static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
 717{
 718	ssize_t ret;
 719	char *p = NULL;
 720
 721	spin_lock_irq(&lo->lo_lock);
 722	if (lo->lo_backing_file)
 723		p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
 724	spin_unlock_irq(&lo->lo_lock);
 725
 726	if (IS_ERR_OR_NULL(p))
 727		ret = PTR_ERR(p);
 728	else {
 729		ret = strlen(p);
 730		memmove(buf, p, ret);
 731		buf[ret++] = '\n';
 732		buf[ret] = 0;
 733	}
 734
 735	return ret;
 736}
 737
 738static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
 739{
 740	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
 741}
 742
 743static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
 744{
 745	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
 746}
 747
 748static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
 749{
 750	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
 751
 752	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
 753}
 754
 755static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
 756{
 757	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
 758
 759	return sprintf(buf, "%s\n", partscan ? "1" : "0");
 760}
 761
 
 
 
 
 
 
 
 762LOOP_ATTR_RO(backing_file);
 763LOOP_ATTR_RO(offset);
 764LOOP_ATTR_RO(sizelimit);
 765LOOP_ATTR_RO(autoclear);
 766LOOP_ATTR_RO(partscan);
 
 767
 768static struct attribute *loop_attrs[] = {
 769	&loop_attr_backing_file.attr,
 770	&loop_attr_offset.attr,
 771	&loop_attr_sizelimit.attr,
 772	&loop_attr_autoclear.attr,
 773	&loop_attr_partscan.attr,
 
 774	NULL,
 775};
 776
 777static struct attribute_group loop_attribute_group = {
 778	.name = "loop",
 779	.attrs= loop_attrs,
 780};
 781
 782static int loop_sysfs_init(struct loop_device *lo)
 783{
 784	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
 785				  &loop_attribute_group);
 786}
 787
 788static void loop_sysfs_exit(struct loop_device *lo)
 789{
 790	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
 791			   &loop_attribute_group);
 792}
 793
 794static void loop_config_discard(struct loop_device *lo)
 795{
 796	struct file *file = lo->lo_backing_file;
 797	struct inode *inode = file->f_mapping->host;
 798	struct request_queue *q = lo->lo_queue;
 799
 800	/*
 801	 * We use punch hole to reclaim the free space used by the
 802	 * image a.k.a. discard. However we do not support discard if
 803	 * encryption is enabled, because it may give an attacker
 804	 * useful information.
 805	 */
 806	if ((!file->f_op->fallocate) ||
 807	    lo->lo_encrypt_key_size) {
 808		q->limits.discard_granularity = 0;
 809		q->limits.discard_alignment = 0;
 810		q->limits.max_discard_sectors = 0;
 811		q->limits.discard_zeroes_data = 0;
 812		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
 813		return;
 814	}
 815
 816	q->limits.discard_granularity = inode->i_sb->s_blocksize;
 817	q->limits.discard_alignment = 0;
 818	q->limits.max_discard_sectors = UINT_MAX >> 9;
 819	q->limits.discard_zeroes_data = 1;
 820	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
 821}
 822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823static int loop_set_fd(struct loop_device *lo, fmode_t mode,
 824		       struct block_device *bdev, unsigned int arg)
 825{
 826	struct file	*file, *f;
 827	struct inode	*inode;
 828	struct address_space *mapping;
 829	unsigned lo_blocksize;
 830	int		lo_flags = 0;
 831	int		error;
 832	loff_t		size;
 833
 834	/* This is safe, since we have a reference from open(). */
 835	__module_get(THIS_MODULE);
 836
 837	error = -EBADF;
 838	file = fget(arg);
 839	if (!file)
 840		goto out;
 841
 842	error = -EBUSY;
 843	if (lo->lo_state != Lo_unbound)
 844		goto out_putf;
 845
 846	/* Avoid recursion */
 847	f = file;
 848	while (is_loop_device(f)) {
 849		struct loop_device *l;
 850
 851		if (f->f_mapping->host->i_bdev == bdev)
 852			goto out_putf;
 853
 854		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
 855		if (l->lo_state == Lo_unbound) {
 856			error = -EINVAL;
 857			goto out_putf;
 858		}
 859		f = l->lo_backing_file;
 860	}
 861
 862	mapping = file->f_mapping;
 863	inode = mapping->host;
 864
 865	error = -EINVAL;
 866	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
 867		goto out_putf;
 868
 869	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
 870	    !file->f_op->write)
 871		lo_flags |= LO_FLAGS_READ_ONLY;
 872
 873	lo_blocksize = S_ISBLK(inode->i_mode) ?
 874		inode->i_bdev->bd_block_size : PAGE_SIZE;
 875
 876	error = -EFBIG;
 877	size = get_loop_size(lo, file);
 878	if ((loff_t)(sector_t)size != size)
 879		goto out_putf;
 
 
 
 880
 881	error = 0;
 882
 883	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
 884
 
 885	lo->lo_blocksize = lo_blocksize;
 886	lo->lo_device = bdev;
 887	lo->lo_flags = lo_flags;
 888	lo->lo_backing_file = file;
 889	lo->transfer = transfer_none;
 890	lo->ioctl = NULL;
 891	lo->lo_sizelimit = 0;
 892	lo->lo_bio_count = 0;
 893	lo->old_gfp_mask = mapping_gfp_mask(mapping);
 894	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
 895
 896	bio_list_init(&lo->lo_bio_list);
 897
 898	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
 899		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
 900
 
 901	set_capacity(lo->lo_disk, size);
 902	bd_set_size(bdev, size << 9);
 903	loop_sysfs_init(lo);
 904	/* let user-space know about the new size */
 905	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
 906
 907	set_blocksize(bdev, lo_blocksize);
 908
 909	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
 910						lo->lo_number);
 911	if (IS_ERR(lo->lo_thread)) {
 912		error = PTR_ERR(lo->lo_thread);
 913		goto out_clr;
 914	}
 915	lo->lo_state = Lo_bound;
 916	wake_up_process(lo->lo_thread);
 917	if (part_shift)
 918		lo->lo_flags |= LO_FLAGS_PARTSCAN;
 919	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
 920		ioctl_by_bdev(bdev, BLKRRPART, 0);
 921
 922	/* Grab the block_device to prevent its destruction after we
 923	 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
 924	 */
 925	bdgrab(bdev);
 926	return 0;
 927
 928out_clr:
 929	loop_sysfs_exit(lo);
 930	lo->lo_thread = NULL;
 931	lo->lo_device = NULL;
 932	lo->lo_backing_file = NULL;
 933	lo->lo_flags = 0;
 934	set_capacity(lo->lo_disk, 0);
 935	invalidate_bdev(bdev);
 936	bd_set_size(bdev, 0);
 937	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
 938	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
 939	lo->lo_state = Lo_unbound;
 940 out_putf:
 941	fput(file);
 942 out:
 943	/* This is safe: open() is still holding a reference. */
 944	module_put(THIS_MODULE);
 945	return error;
 946}
 947
 948static int
 949loop_release_xfer(struct loop_device *lo)
 950{
 951	int err = 0;
 952	struct loop_func_table *xfer = lo->lo_encryption;
 953
 954	if (xfer) {
 955		if (xfer->release)
 956			err = xfer->release(lo);
 957		lo->transfer = NULL;
 958		lo->lo_encryption = NULL;
 959		module_put(xfer->owner);
 960	}
 961	return err;
 962}
 963
 964static int
 965loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
 966	       const struct loop_info64 *i)
 967{
 968	int err = 0;
 969
 970	if (xfer) {
 971		struct module *owner = xfer->owner;
 972
 973		if (!try_module_get(owner))
 974			return -EINVAL;
 975		if (xfer->init)
 976			err = xfer->init(lo, i);
 977		if (err)
 978			module_put(owner);
 979		else
 980			lo->lo_encryption = xfer;
 981	}
 982	return err;
 983}
 984
 985static int loop_clr_fd(struct loop_device *lo)
 986{
 987	struct file *filp = lo->lo_backing_file;
 988	gfp_t gfp = lo->old_gfp_mask;
 989	struct block_device *bdev = lo->lo_device;
 990
 991	if (lo->lo_state != Lo_bound)
 992		return -ENXIO;
 993
 994	/*
 995	 * If we've explicitly asked to tear down the loop device,
 996	 * and it has an elevated reference count, set it for auto-teardown when
 997	 * the last reference goes away. This stops $!~#$@ udev from
 998	 * preventing teardown because it decided that it needs to run blkid on
 999	 * the loopback device whenever they appear. xfstests is notorious for
1000	 * failing tests because blkid via udev races with a losetup
1001	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1002	 * command to fail with EBUSY.
1003	 */
1004	if (lo->lo_refcnt > 1) {
1005		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1006		mutex_unlock(&lo->lo_ctl_mutex);
1007		return 0;
1008	}
1009
1010	if (filp == NULL)
1011		return -EINVAL;
1012
1013	spin_lock_irq(&lo->lo_lock);
1014	lo->lo_state = Lo_rundown;
1015	spin_unlock_irq(&lo->lo_lock);
1016
1017	kthread_stop(lo->lo_thread);
1018
1019	spin_lock_irq(&lo->lo_lock);
 
1020	lo->lo_backing_file = NULL;
1021	spin_unlock_irq(&lo->lo_lock);
1022
1023	loop_release_xfer(lo);
1024	lo->transfer = NULL;
1025	lo->ioctl = NULL;
1026	lo->lo_device = NULL;
1027	lo->lo_encryption = NULL;
1028	lo->lo_offset = 0;
1029	lo->lo_sizelimit = 0;
1030	lo->lo_encrypt_key_size = 0;
1031	lo->lo_thread = NULL;
1032	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1033	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1034	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1035	if (bdev) {
1036		bdput(bdev);
1037		invalidate_bdev(bdev);
1038	}
1039	set_capacity(lo->lo_disk, 0);
1040	loop_sysfs_exit(lo);
1041	if (bdev) {
1042		bd_set_size(bdev, 0);
1043		/* let user-space know about this change */
1044		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1045	}
1046	mapping_set_gfp_mask(filp->f_mapping, gfp);
1047	lo->lo_state = Lo_unbound;
1048	/* This is safe: open() is still holding a reference. */
1049	module_put(THIS_MODULE);
 
 
1050	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1051		ioctl_by_bdev(bdev, BLKRRPART, 0);
1052	lo->lo_flags = 0;
1053	if (!part_shift)
1054		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
 
1055	mutex_unlock(&lo->lo_ctl_mutex);
1056	/*
1057	 * Need not hold lo_ctl_mutex to fput backing file.
1058	 * Calling fput holding lo_ctl_mutex triggers a circular
1059	 * lock dependency possibility warning as fput can take
1060	 * bd_mutex which is usually taken before lo_ctl_mutex.
1061	 */
1062	fput(filp);
1063	return 0;
1064}
1065
1066static int
1067loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1068{
1069	int err;
1070	struct loop_func_table *xfer;
1071	kuid_t uid = current_uid();
1072
1073	if (lo->lo_encrypt_key_size &&
1074	    !uid_eq(lo->lo_key_owner, uid) &&
1075	    !capable(CAP_SYS_ADMIN))
1076		return -EPERM;
1077	if (lo->lo_state != Lo_bound)
1078		return -ENXIO;
1079	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1080		return -EINVAL;
1081
 
 
 
1082	err = loop_release_xfer(lo);
1083	if (err)
1084		return err;
1085
1086	if (info->lo_encrypt_type) {
1087		unsigned int type = info->lo_encrypt_type;
1088
1089		if (type >= MAX_LO_CRYPT)
1090			return -EINVAL;
1091		xfer = xfer_funcs[type];
1092		if (xfer == NULL)
1093			return -EINVAL;
1094	} else
1095		xfer = NULL;
1096
1097	err = loop_init_xfer(lo, xfer, info);
1098	if (err)
1099		return err;
1100
1101	if (lo->lo_offset != info->lo_offset ||
1102	    lo->lo_sizelimit != info->lo_sizelimit)
1103		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
1104			return -EFBIG;
 
 
1105
1106	loop_config_discard(lo);
1107
1108	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1109	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1110	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1111	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1112
1113	if (!xfer)
1114		xfer = &none_funcs;
1115	lo->transfer = xfer->transfer;
1116	lo->ioctl = xfer->ioctl;
1117
1118	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1119	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1120		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1121
1122	if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1123	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1124		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1125		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1126		ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
1127	}
1128
1129	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1130	lo->lo_init[0] = info->lo_init[0];
1131	lo->lo_init[1] = info->lo_init[1];
1132	if (info->lo_encrypt_key_size) {
1133		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1134		       info->lo_encrypt_key_size);
1135		lo->lo_key_owner = uid;
1136	}	
1137
1138	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1139}
1140
1141static int
1142loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1143{
1144	struct file *file = lo->lo_backing_file;
1145	struct kstat stat;
1146	int error;
1147
1148	if (lo->lo_state != Lo_bound)
1149		return -ENXIO;
1150	error = vfs_getattr(&file->f_path, &stat);
1151	if (error)
1152		return error;
1153	memset(info, 0, sizeof(*info));
1154	info->lo_number = lo->lo_number;
1155	info->lo_device = huge_encode_dev(stat.dev);
1156	info->lo_inode = stat.ino;
1157	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1158	info->lo_offset = lo->lo_offset;
1159	info->lo_sizelimit = lo->lo_sizelimit;
1160	info->lo_flags = lo->lo_flags;
1161	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1162	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1163	info->lo_encrypt_type =
1164		lo->lo_encryption ? lo->lo_encryption->number : 0;
1165	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1166		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1167		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1168		       lo->lo_encrypt_key_size);
1169	}
1170	return 0;
1171}
1172
1173static void
1174loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1175{
1176	memset(info64, 0, sizeof(*info64));
1177	info64->lo_number = info->lo_number;
1178	info64->lo_device = info->lo_device;
1179	info64->lo_inode = info->lo_inode;
1180	info64->lo_rdevice = info->lo_rdevice;
1181	info64->lo_offset = info->lo_offset;
1182	info64->lo_sizelimit = 0;
1183	info64->lo_encrypt_type = info->lo_encrypt_type;
1184	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1185	info64->lo_flags = info->lo_flags;
1186	info64->lo_init[0] = info->lo_init[0];
1187	info64->lo_init[1] = info->lo_init[1];
1188	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1189		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1190	else
1191		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1192	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1193}
1194
1195static int
1196loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1197{
1198	memset(info, 0, sizeof(*info));
1199	info->lo_number = info64->lo_number;
1200	info->lo_device = info64->lo_device;
1201	info->lo_inode = info64->lo_inode;
1202	info->lo_rdevice = info64->lo_rdevice;
1203	info->lo_offset = info64->lo_offset;
1204	info->lo_encrypt_type = info64->lo_encrypt_type;
1205	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1206	info->lo_flags = info64->lo_flags;
1207	info->lo_init[0] = info64->lo_init[0];
1208	info->lo_init[1] = info64->lo_init[1];
1209	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1210		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1211	else
1212		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1213	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1214
1215	/* error in case values were truncated */
1216	if (info->lo_device != info64->lo_device ||
1217	    info->lo_rdevice != info64->lo_rdevice ||
1218	    info->lo_inode != info64->lo_inode ||
1219	    info->lo_offset != info64->lo_offset)
1220		return -EOVERFLOW;
1221
1222	return 0;
1223}
1224
1225static int
1226loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1227{
1228	struct loop_info info;
1229	struct loop_info64 info64;
1230
1231	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1232		return -EFAULT;
1233	loop_info64_from_old(&info, &info64);
1234	return loop_set_status(lo, &info64);
1235}
1236
1237static int
1238loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1239{
1240	struct loop_info64 info64;
1241
1242	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1243		return -EFAULT;
1244	return loop_set_status(lo, &info64);
1245}
1246
1247static int
1248loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1249	struct loop_info info;
1250	struct loop_info64 info64;
1251	int err = 0;
1252
1253	if (!arg)
1254		err = -EINVAL;
1255	if (!err)
1256		err = loop_get_status(lo, &info64);
1257	if (!err)
1258		err = loop_info64_to_old(&info64, &info);
1259	if (!err && copy_to_user(arg, &info, sizeof(info)))
1260		err = -EFAULT;
1261
1262	return err;
1263}
1264
1265static int
1266loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1267	struct loop_info64 info64;
1268	int err = 0;
1269
1270	if (!arg)
1271		err = -EINVAL;
1272	if (!err)
1273		err = loop_get_status(lo, &info64);
1274	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1275		err = -EFAULT;
1276
1277	return err;
1278}
1279
1280static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1281{
1282	if (unlikely(lo->lo_state != Lo_bound))
1283		return -ENXIO;
1284
1285	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1286}
1287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1288static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1289	unsigned int cmd, unsigned long arg)
1290{
1291	struct loop_device *lo = bdev->bd_disk->private_data;
1292	int err;
1293
1294	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1295	switch (cmd) {
1296	case LOOP_SET_FD:
1297		err = loop_set_fd(lo, mode, bdev, arg);
1298		break;
1299	case LOOP_CHANGE_FD:
1300		err = loop_change_fd(lo, bdev, arg);
1301		break;
1302	case LOOP_CLR_FD:
1303		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1304		err = loop_clr_fd(lo);
1305		if (!err)
1306			goto out_unlocked;
1307		break;
1308	case LOOP_SET_STATUS:
1309		err = -EPERM;
1310		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1311			err = loop_set_status_old(lo,
1312					(struct loop_info __user *)arg);
1313		break;
1314	case LOOP_GET_STATUS:
1315		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1316		break;
1317	case LOOP_SET_STATUS64:
1318		err = -EPERM;
1319		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1320			err = loop_set_status64(lo,
1321					(struct loop_info64 __user *) arg);
1322		break;
1323	case LOOP_GET_STATUS64:
1324		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1325		break;
1326	case LOOP_SET_CAPACITY:
1327		err = -EPERM;
1328		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1329			err = loop_set_capacity(lo, bdev);
1330		break;
 
 
 
 
 
1331	default:
1332		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1333	}
1334	mutex_unlock(&lo->lo_ctl_mutex);
1335
1336out_unlocked:
1337	return err;
1338}
1339
1340#ifdef CONFIG_COMPAT
1341struct compat_loop_info {
1342	compat_int_t	lo_number;      /* ioctl r/o */
1343	compat_dev_t	lo_device;      /* ioctl r/o */
1344	compat_ulong_t	lo_inode;       /* ioctl r/o */
1345	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1346	compat_int_t	lo_offset;
1347	compat_int_t	lo_encrypt_type;
1348	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1349	compat_int_t	lo_flags;       /* ioctl r/o */
1350	char		lo_name[LO_NAME_SIZE];
1351	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1352	compat_ulong_t	lo_init[2];
1353	char		reserved[4];
1354};
1355
1356/*
1357 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1358 * - noinlined to reduce stack space usage in main part of driver
1359 */
1360static noinline int
1361loop_info64_from_compat(const struct compat_loop_info __user *arg,
1362			struct loop_info64 *info64)
1363{
1364	struct compat_loop_info info;
1365
1366	if (copy_from_user(&info, arg, sizeof(info)))
1367		return -EFAULT;
1368
1369	memset(info64, 0, sizeof(*info64));
1370	info64->lo_number = info.lo_number;
1371	info64->lo_device = info.lo_device;
1372	info64->lo_inode = info.lo_inode;
1373	info64->lo_rdevice = info.lo_rdevice;
1374	info64->lo_offset = info.lo_offset;
1375	info64->lo_sizelimit = 0;
1376	info64->lo_encrypt_type = info.lo_encrypt_type;
1377	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1378	info64->lo_flags = info.lo_flags;
1379	info64->lo_init[0] = info.lo_init[0];
1380	info64->lo_init[1] = info.lo_init[1];
1381	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1382		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1383	else
1384		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1385	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1386	return 0;
1387}
1388
1389/*
1390 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1391 * - noinlined to reduce stack space usage in main part of driver
1392 */
1393static noinline int
1394loop_info64_to_compat(const struct loop_info64 *info64,
1395		      struct compat_loop_info __user *arg)
1396{
1397	struct compat_loop_info info;
1398
1399	memset(&info, 0, sizeof(info));
1400	info.lo_number = info64->lo_number;
1401	info.lo_device = info64->lo_device;
1402	info.lo_inode = info64->lo_inode;
1403	info.lo_rdevice = info64->lo_rdevice;
1404	info.lo_offset = info64->lo_offset;
1405	info.lo_encrypt_type = info64->lo_encrypt_type;
1406	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1407	info.lo_flags = info64->lo_flags;
1408	info.lo_init[0] = info64->lo_init[0];
1409	info.lo_init[1] = info64->lo_init[1];
1410	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1411		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1412	else
1413		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1414	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1415
1416	/* error in case values were truncated */
1417	if (info.lo_device != info64->lo_device ||
1418	    info.lo_rdevice != info64->lo_rdevice ||
1419	    info.lo_inode != info64->lo_inode ||
1420	    info.lo_offset != info64->lo_offset ||
1421	    info.lo_init[0] != info64->lo_init[0] ||
1422	    info.lo_init[1] != info64->lo_init[1])
1423		return -EOVERFLOW;
1424
1425	if (copy_to_user(arg, &info, sizeof(info)))
1426		return -EFAULT;
1427	return 0;
1428}
1429
1430static int
1431loop_set_status_compat(struct loop_device *lo,
1432		       const struct compat_loop_info __user *arg)
1433{
1434	struct loop_info64 info64;
1435	int ret;
1436
1437	ret = loop_info64_from_compat(arg, &info64);
1438	if (ret < 0)
1439		return ret;
1440	return loop_set_status(lo, &info64);
1441}
1442
1443static int
1444loop_get_status_compat(struct loop_device *lo,
1445		       struct compat_loop_info __user *arg)
1446{
1447	struct loop_info64 info64;
1448	int err = 0;
1449
1450	if (!arg)
1451		err = -EINVAL;
1452	if (!err)
1453		err = loop_get_status(lo, &info64);
1454	if (!err)
1455		err = loop_info64_to_compat(&info64, arg);
1456	return err;
1457}
1458
1459static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1460			   unsigned int cmd, unsigned long arg)
1461{
1462	struct loop_device *lo = bdev->bd_disk->private_data;
1463	int err;
1464
1465	switch(cmd) {
1466	case LOOP_SET_STATUS:
1467		mutex_lock(&lo->lo_ctl_mutex);
1468		err = loop_set_status_compat(
1469			lo, (const struct compat_loop_info __user *) arg);
1470		mutex_unlock(&lo->lo_ctl_mutex);
1471		break;
1472	case LOOP_GET_STATUS:
1473		mutex_lock(&lo->lo_ctl_mutex);
1474		err = loop_get_status_compat(
1475			lo, (struct compat_loop_info __user *) arg);
1476		mutex_unlock(&lo->lo_ctl_mutex);
1477		break;
1478	case LOOP_SET_CAPACITY:
1479	case LOOP_CLR_FD:
1480	case LOOP_GET_STATUS64:
1481	case LOOP_SET_STATUS64:
1482		arg = (unsigned long) compat_ptr(arg);
1483	case LOOP_SET_FD:
1484	case LOOP_CHANGE_FD:
1485		err = lo_ioctl(bdev, mode, cmd, arg);
1486		break;
1487	default:
1488		err = -ENOIOCTLCMD;
1489		break;
1490	}
1491	return err;
1492}
1493#endif
1494
1495static int lo_open(struct block_device *bdev, fmode_t mode)
1496{
1497	struct loop_device *lo;
1498	int err = 0;
1499
1500	mutex_lock(&loop_index_mutex);
1501	lo = bdev->bd_disk->private_data;
1502	if (!lo) {
1503		err = -ENXIO;
1504		goto out;
1505	}
1506
1507	mutex_lock(&lo->lo_ctl_mutex);
1508	lo->lo_refcnt++;
1509	mutex_unlock(&lo->lo_ctl_mutex);
1510out:
1511	mutex_unlock(&loop_index_mutex);
1512	return err;
1513}
1514
1515static void lo_release(struct gendisk *disk, fmode_t mode)
1516{
1517	struct loop_device *lo = disk->private_data;
1518	int err;
1519
1520	mutex_lock(&lo->lo_ctl_mutex);
1521
1522	if (--lo->lo_refcnt)
1523		goto out;
1524
 
1525	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1526		/*
1527		 * In autoclear mode, stop the loop thread
1528		 * and remove configuration after last close.
1529		 */
1530		err = loop_clr_fd(lo);
1531		if (!err)
1532			return;
1533	} else {
1534		/*
1535		 * Otherwise keep thread (if running) and config,
1536		 * but flush possible ongoing bios in thread.
1537		 */
1538		loop_flush(lo);
1539	}
1540
1541out:
1542	mutex_unlock(&lo->lo_ctl_mutex);
1543}
1544
1545static const struct block_device_operations lo_fops = {
1546	.owner =	THIS_MODULE,
1547	.open =		lo_open,
1548	.release =	lo_release,
1549	.ioctl =	lo_ioctl,
1550#ifdef CONFIG_COMPAT
1551	.compat_ioctl =	lo_compat_ioctl,
1552#endif
1553};
1554
1555/*
1556 * And now the modules code and kernel interface.
1557 */
1558static int max_loop;
1559module_param(max_loop, int, S_IRUGO);
1560MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1561module_param(max_part, int, S_IRUGO);
1562MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1563MODULE_LICENSE("GPL");
1564MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1565
1566int loop_register_transfer(struct loop_func_table *funcs)
1567{
1568	unsigned int n = funcs->number;
1569
1570	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1571		return -EINVAL;
1572	xfer_funcs[n] = funcs;
1573	return 0;
1574}
1575
1576static int unregister_transfer_cb(int id, void *ptr, void *data)
1577{
1578	struct loop_device *lo = ptr;
1579	struct loop_func_table *xfer = data;
1580
1581	mutex_lock(&lo->lo_ctl_mutex);
1582	if (lo->lo_encryption == xfer)
1583		loop_release_xfer(lo);
1584	mutex_unlock(&lo->lo_ctl_mutex);
1585	return 0;
1586}
1587
1588int loop_unregister_transfer(int number)
1589{
1590	unsigned int n = number;
1591	struct loop_func_table *xfer;
1592
1593	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1594		return -EINVAL;
1595
1596	xfer_funcs[n] = NULL;
1597	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1598	return 0;
1599}
1600
1601EXPORT_SYMBOL(loop_register_transfer);
1602EXPORT_SYMBOL(loop_unregister_transfer);
1603
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1604static int loop_add(struct loop_device **l, int i)
1605{
1606	struct loop_device *lo;
1607	struct gendisk *disk;
1608	int err;
1609
1610	err = -ENOMEM;
1611	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1612	if (!lo)
1613		goto out;
1614
1615	lo->lo_state = Lo_unbound;
1616
1617	/* allocate id, if @id >= 0, we're requesting that specific id */
1618	if (i >= 0) {
1619		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1620		if (err == -ENOSPC)
1621			err = -EEXIST;
1622	} else {
1623		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1624	}
1625	if (err < 0)
1626		goto out_free_dev;
1627	i = err;
1628
1629	err = -ENOMEM;
1630	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1631	if (!lo->lo_queue)
 
 
 
 
 
 
 
 
1632		goto out_free_idr;
1633
 
 
 
 
 
 
 
1634	/*
1635	 * set queue make_request_fn
 
1636	 */
1637	blk_queue_make_request(lo->lo_queue, loop_make_request);
1638	lo->lo_queue->queuedata = lo;
1639
 
1640	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1641	if (!disk)
1642		goto out_free_queue;
1643
1644	/*
1645	 * Disable partition scanning by default. The in-kernel partition
1646	 * scanning can be requested individually per-device during its
1647	 * setup. Userspace can always add and remove partitions from all
1648	 * devices. The needed partition minors are allocated from the
1649	 * extended minor space, the main loop device numbers will continue
1650	 * to match the loop minors, regardless of the number of partitions
1651	 * used.
1652	 *
1653	 * If max_part is given, partition scanning is globally enabled for
1654	 * all loop devices. The minors for the main loop devices will be
1655	 * multiples of max_part.
1656	 *
1657	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1658	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1659	 * complicated, are too static, inflexible and may surprise
1660	 * userspace tools. Parameters like this in general should be avoided.
1661	 */
1662	if (!part_shift)
1663		disk->flags |= GENHD_FL_NO_PART_SCAN;
1664	disk->flags |= GENHD_FL_EXT_DEVT;
1665	mutex_init(&lo->lo_ctl_mutex);
 
1666	lo->lo_number		= i;
1667	lo->lo_thread		= NULL;
1668	init_waitqueue_head(&lo->lo_event);
1669	init_waitqueue_head(&lo->lo_req_wait);
1670	spin_lock_init(&lo->lo_lock);
1671	disk->major		= LOOP_MAJOR;
1672	disk->first_minor	= i << part_shift;
1673	disk->fops		= &lo_fops;
1674	disk->private_data	= lo;
1675	disk->queue		= lo->lo_queue;
1676	sprintf(disk->disk_name, "loop%d", i);
1677	add_disk(disk);
1678	*l = lo;
1679	return lo->lo_number;
1680
1681out_free_queue:
1682	blk_cleanup_queue(lo->lo_queue);
 
 
1683out_free_idr:
1684	idr_remove(&loop_index_idr, i);
1685out_free_dev:
1686	kfree(lo);
1687out:
1688	return err;
1689}
1690
1691static void loop_remove(struct loop_device *lo)
1692{
1693	del_gendisk(lo->lo_disk);
1694	blk_cleanup_queue(lo->lo_queue);
 
 
1695	put_disk(lo->lo_disk);
1696	kfree(lo);
1697}
1698
1699static int find_free_cb(int id, void *ptr, void *data)
1700{
1701	struct loop_device *lo = ptr;
1702	struct loop_device **l = data;
1703
1704	if (lo->lo_state == Lo_unbound) {
1705		*l = lo;
1706		return 1;
1707	}
1708	return 0;
1709}
1710
1711static int loop_lookup(struct loop_device **l, int i)
1712{
1713	struct loop_device *lo;
1714	int ret = -ENODEV;
1715
1716	if (i < 0) {
1717		int err;
1718
1719		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1720		if (err == 1) {
1721			*l = lo;
1722			ret = lo->lo_number;
1723		}
1724		goto out;
1725	}
1726
1727	/* lookup and return a specific i */
1728	lo = idr_find(&loop_index_idr, i);
1729	if (lo) {
1730		*l = lo;
1731		ret = lo->lo_number;
1732	}
1733out:
1734	return ret;
1735}
1736
1737static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1738{
1739	struct loop_device *lo;
1740	struct kobject *kobj;
1741	int err;
1742
1743	mutex_lock(&loop_index_mutex);
1744	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1745	if (err < 0)
1746		err = loop_add(&lo, MINOR(dev) >> part_shift);
1747	if (err < 0)
1748		kobj = NULL;
1749	else
1750		kobj = get_disk(lo->lo_disk);
1751	mutex_unlock(&loop_index_mutex);
1752
1753	*part = 0;
1754	return kobj;
1755}
1756
1757static long loop_control_ioctl(struct file *file, unsigned int cmd,
1758			       unsigned long parm)
1759{
1760	struct loop_device *lo;
1761	int ret = -ENOSYS;
1762
1763	mutex_lock(&loop_index_mutex);
1764	switch (cmd) {
1765	case LOOP_CTL_ADD:
1766		ret = loop_lookup(&lo, parm);
1767		if (ret >= 0) {
1768			ret = -EEXIST;
1769			break;
1770		}
1771		ret = loop_add(&lo, parm);
1772		break;
1773	case LOOP_CTL_REMOVE:
1774		ret = loop_lookup(&lo, parm);
1775		if (ret < 0)
1776			break;
1777		mutex_lock(&lo->lo_ctl_mutex);
1778		if (lo->lo_state != Lo_unbound) {
1779			ret = -EBUSY;
1780			mutex_unlock(&lo->lo_ctl_mutex);
1781			break;
1782		}
1783		if (lo->lo_refcnt > 0) {
1784			ret = -EBUSY;
1785			mutex_unlock(&lo->lo_ctl_mutex);
1786			break;
1787		}
1788		lo->lo_disk->private_data = NULL;
1789		mutex_unlock(&lo->lo_ctl_mutex);
1790		idr_remove(&loop_index_idr, lo->lo_number);
1791		loop_remove(lo);
1792		break;
1793	case LOOP_CTL_GET_FREE:
1794		ret = loop_lookup(&lo, -1);
1795		if (ret >= 0)
1796			break;
1797		ret = loop_add(&lo, -1);
1798	}
1799	mutex_unlock(&loop_index_mutex);
1800
1801	return ret;
1802}
1803
1804static const struct file_operations loop_ctl_fops = {
1805	.open		= nonseekable_open,
1806	.unlocked_ioctl	= loop_control_ioctl,
1807	.compat_ioctl	= loop_control_ioctl,
1808	.owner		= THIS_MODULE,
1809	.llseek		= noop_llseek,
1810};
1811
1812static struct miscdevice loop_misc = {
1813	.minor		= LOOP_CTRL_MINOR,
1814	.name		= "loop-control",
1815	.fops		= &loop_ctl_fops,
1816};
1817
1818MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1819MODULE_ALIAS("devname:loop-control");
1820
1821static int __init loop_init(void)
1822{
1823	int i, nr;
1824	unsigned long range;
1825	struct loop_device *lo;
1826	int err;
1827
1828	err = misc_register(&loop_misc);
1829	if (err < 0)
1830		return err;
1831
1832	part_shift = 0;
1833	if (max_part > 0) {
1834		part_shift = fls(max_part);
1835
1836		/*
1837		 * Adjust max_part according to part_shift as it is exported
1838		 * to user space so that user can decide correct minor number
1839		 * if [s]he want to create more devices.
1840		 *
1841		 * Note that -1 is required because partition 0 is reserved
1842		 * for the whole disk.
1843		 */
1844		max_part = (1UL << part_shift) - 1;
1845	}
1846
1847	if ((1UL << part_shift) > DISK_MAX_PARTS) {
1848		err = -EINVAL;
1849		goto misc_out;
1850	}
1851
1852	if (max_loop > 1UL << (MINORBITS - part_shift)) {
1853		err = -EINVAL;
1854		goto misc_out;
1855	}
1856
1857	/*
1858	 * If max_loop is specified, create that many devices upfront.
1859	 * This also becomes a hard limit. If max_loop is not specified,
1860	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1861	 * init time. Loop devices can be requested on-demand with the
1862	 * /dev/loop-control interface, or be instantiated by accessing
1863	 * a 'dead' device node.
1864	 */
1865	if (max_loop) {
1866		nr = max_loop;
1867		range = max_loop << part_shift;
1868	} else {
1869		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1870		range = 1UL << MINORBITS;
1871	}
1872
1873	if (register_blkdev(LOOP_MAJOR, "loop")) {
1874		err = -EIO;
1875		goto misc_out;
1876	}
1877
1878	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1879				  THIS_MODULE, loop_probe, NULL, NULL);
1880
1881	/* pre-create number of devices given by config or max_loop */
1882	mutex_lock(&loop_index_mutex);
1883	for (i = 0; i < nr; i++)
1884		loop_add(&lo, i);
1885	mutex_unlock(&loop_index_mutex);
1886
1887	printk(KERN_INFO "loop: module loaded\n");
1888	return 0;
1889
1890misc_out:
1891	misc_deregister(&loop_misc);
1892	return err;
1893}
1894
1895static int loop_exit_cb(int id, void *ptr, void *data)
1896{
1897	struct loop_device *lo = ptr;
1898
1899	loop_remove(lo);
1900	return 0;
1901}
1902
1903static void __exit loop_exit(void)
1904{
1905	unsigned long range;
1906
1907	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1908
1909	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1910	idr_destroy(&loop_index_idr);
1911
1912	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1913	unregister_blkdev(LOOP_MAJOR, "loop");
1914
1915	misc_deregister(&loop_misc);
1916}
1917
1918module_init(loop_init);
1919module_exit(loop_exit);
1920
1921#ifndef MODULE
1922static int __init max_loop_setup(char *str)
1923{
1924	max_loop = simple_strtol(str, NULL, 0);
1925	return 1;
1926}
1927
1928__setup("max_loop=", max_loop_setup);
1929#endif
v4.10.11
   1/*
   2 *  linux/drivers/block/loop.c
   3 *
   4 *  Written by Theodore Ts'o, 3/29/93
   5 *
   6 * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
   7 * permitted under the GNU General Public License.
   8 *
   9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
  10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
  11 *
  12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
  13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
  14 *
  15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
  16 *
  17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
  18 *
  19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
  20 *
  21 * Loadable modules and other fixes by AK, 1998
  22 *
  23 * Make real block number available to downstream transfer functions, enables
  24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
  25 * Reed H. Petty, rhp@draper.net
  26 *
  27 * Maximum number of loop devices now dynamic via max_loop module parameter.
  28 * Russell Kroll <rkroll@exploits.org> 19990701
  29 *
  30 * Maximum number of loop devices when compiled-in now selectable by passing
  31 * max_loop=<1-255> to the kernel on boot.
  32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
  33 *
  34 * Completely rewrite request handling to be make_request_fn style and
  35 * non blocking, pushing work to a helper thread. Lots of fixes from
  36 * Al Viro too.
  37 * Jens Axboe <axboe@suse.de>, Nov 2000
  38 *
  39 * Support up to 256 loop devices
  40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
  41 *
  42 * Support for falling back on the write file operation when the address space
  43 * operations write_begin is not available on the backing filesystem.
  44 * Anton Altaparmakov, 16 Feb 2005
  45 *
  46 * Still To Fix:
  47 * - Advisory locking is ignored here.
  48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
  49 *
  50 */
  51
  52#include <linux/module.h>
  53#include <linux/moduleparam.h>
  54#include <linux/sched.h>
  55#include <linux/fs.h>
  56#include <linux/file.h>
  57#include <linux/stat.h>
  58#include <linux/errno.h>
  59#include <linux/major.h>
  60#include <linux/wait.h>
  61#include <linux/blkdev.h>
  62#include <linux/blkpg.h>
  63#include <linux/init.h>
  64#include <linux/swap.h>
  65#include <linux/slab.h>
  66#include <linux/compat.h>
  67#include <linux/suspend.h>
  68#include <linux/freezer.h>
  69#include <linux/mutex.h>
  70#include <linux/writeback.h>
  71#include <linux/completion.h>
  72#include <linux/highmem.h>
  73#include <linux/kthread.h>
  74#include <linux/splice.h>
  75#include <linux/sysfs.h>
  76#include <linux/miscdevice.h>
  77#include <linux/falloc.h>
  78#include <linux/uio.h>
  79#include "loop.h"
  80
  81#include <linux/uaccess.h>
  82
  83static DEFINE_IDR(loop_index_idr);
  84static DEFINE_MUTEX(loop_index_mutex);
  85
  86static int max_part;
  87static int part_shift;
  88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  89static int transfer_xor(struct loop_device *lo, int cmd,
  90			struct page *raw_page, unsigned raw_off,
  91			struct page *loop_page, unsigned loop_off,
  92			int size, sector_t real_block)
  93{
  94	char *raw_buf = kmap_atomic(raw_page) + raw_off;
  95	char *loop_buf = kmap_atomic(loop_page) + loop_off;
  96	char *in, *out, *key;
  97	int i, keysize;
  98
  99	if (cmd == READ) {
 100		in = raw_buf;
 101		out = loop_buf;
 102	} else {
 103		in = loop_buf;
 104		out = raw_buf;
 105	}
 106
 107	key = lo->lo_encrypt_key;
 108	keysize = lo->lo_encrypt_key_size;
 109	for (i = 0; i < size; i++)
 110		*out++ = *in++ ^ key[(i & 511) % keysize];
 111
 112	kunmap_atomic(loop_buf);
 113	kunmap_atomic(raw_buf);
 114	cond_resched();
 115	return 0;
 116}
 117
 118static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
 119{
 120	if (unlikely(info->lo_encrypt_key_size <= 0))
 121		return -EINVAL;
 122	return 0;
 123}
 124
 125static struct loop_func_table none_funcs = {
 126	.number = LO_CRYPT_NONE,
 127}; 
 
 128
 129static struct loop_func_table xor_funcs = {
 130	.number = LO_CRYPT_XOR,
 131	.transfer = transfer_xor,
 132	.init = xor_init
 133}; 
 134
 135/* xfer_funcs[0] is special - its release function is never called */
 136static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
 137	&none_funcs,
 138	&xor_funcs
 139};
 140
 141static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
 142{
 143	loff_t loopsize;
 144
 145	/* Compute loopsize in bytes */
 146	loopsize = i_size_read(file->f_mapping->host);
 147	if (offset > 0)
 148		loopsize -= offset;
 149	/* offset is beyond i_size, weird but possible */
 150	if (loopsize < 0)
 151		return 0;
 152
 153	if (sizelimit > 0 && sizelimit < loopsize)
 154		loopsize = sizelimit;
 155	/*
 156	 * Unfortunately, if we want to do I/O on the device,
 157	 * the number of 512-byte sectors has to fit into a sector_t.
 158	 */
 159	return loopsize >> 9;
 160}
 161
 162static loff_t get_loop_size(struct loop_device *lo, struct file *file)
 163{
 164	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
 165}
 166
 167static void __loop_update_dio(struct loop_device *lo, bool dio)
 168{
 169	struct file *file = lo->lo_backing_file;
 170	struct address_space *mapping = file->f_mapping;
 171	struct inode *inode = mapping->host;
 172	unsigned short sb_bsize = 0;
 173	unsigned dio_align = 0;
 174	bool use_dio;
 175
 176	if (inode->i_sb->s_bdev) {
 177		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
 178		dio_align = sb_bsize - 1;
 179	}
 180
 181	/*
 182	 * We support direct I/O only if lo_offset is aligned with the
 183	 * logical I/O size of backing device, and the logical block
 184	 * size of loop is bigger than the backing device's and the loop
 185	 * needn't transform transfer.
 186	 *
 187	 * TODO: the above condition may be loosed in the future, and
 188	 * direct I/O may be switched runtime at that time because most
 189	 * of requests in sane appplications should be PAGE_SIZE algined
 190	 */
 191	if (dio) {
 192		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
 193				!(lo->lo_offset & dio_align) &&
 194				mapping->a_ops->direct_IO &&
 195				!lo->transfer)
 196			use_dio = true;
 197		else
 198			use_dio = false;
 199	} else {
 200		use_dio = false;
 201	}
 202
 203	if (lo->use_dio == use_dio)
 204		return;
 205
 206	/* flush dirty pages before changing direct IO */
 207	vfs_fsync(file, 0);
 208
 209	/*
 210	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
 211	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
 212	 * will get updated by ioctl(LOOP_GET_STATUS)
 213	 */
 214	blk_mq_freeze_queue(lo->lo_queue);
 215	lo->use_dio = use_dio;
 216	if (use_dio)
 217		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
 218	else
 219		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
 220	blk_mq_unfreeze_queue(lo->lo_queue);
 221}
 222
 223static int
 224figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
 225{
 226	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
 227	sector_t x = (sector_t)size;
 228	struct block_device *bdev = lo->lo_device;
 229
 230	if (unlikely((loff_t)x != size))
 231		return -EFBIG;
 232	if (lo->lo_offset != offset)
 233		lo->lo_offset = offset;
 234	if (lo->lo_sizelimit != sizelimit)
 235		lo->lo_sizelimit = sizelimit;
 236	set_capacity(lo->lo_disk, x);
 237	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
 238	/* let user-space know about the new size */
 239	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
 240	return 0;
 241}
 242
 243static inline int
 244lo_do_transfer(struct loop_device *lo, int cmd,
 245	       struct page *rpage, unsigned roffs,
 246	       struct page *lpage, unsigned loffs,
 247	       int size, sector_t rblock)
 248{
 249	int ret;
 250
 251	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
 252	if (likely(!ret))
 253		return 0;
 254
 255	printk_ratelimited(KERN_ERR
 256		"loop: Transfer error at byte offset %llu, length %i.\n",
 257		(unsigned long long)rblock << 9, size);
 258	return ret;
 259}
 260
 261static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
 
 
 
 
 
 
 
 262{
 263	struct iov_iter i;
 264	ssize_t bw;
 265
 266	iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len);
 267
 268	file_start_write(file);
 269	bw = vfs_iter_write(file, &i, ppos);
 
 
 270	file_end_write(file);
 271
 272	if (likely(bw ==  bvec->bv_len))
 273		return 0;
 274
 275	printk_ratelimited(KERN_ERR
 276		"loop: Write error at byte offset %llu, length %i.\n",
 277		(unsigned long long)*ppos, bvec->bv_len);
 278	if (bw >= 0)
 279		bw = -EIO;
 280	return bw;
 281}
 282
 283static int lo_write_simple(struct loop_device *lo, struct request *rq,
 284		loff_t pos)
 
 
 
 
 
 
 285{
 286	struct bio_vec bvec;
 287	struct req_iterator iter;
 288	int ret = 0;
 289
 290	rq_for_each_segment(bvec, rq, iter) {
 291		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
 292		if (ret < 0)
 293			break;
 294		cond_resched();
 295	}
 296
 297	return ret;
 298}
 299
 300/*
 
 
 301 * This is the slow, transforming version that needs to double buffer the
 302 * data as it cannot do the transformations in place without having direct
 303 * access to the destination pages of the backing file.
 304 */
 305static int lo_write_transfer(struct loop_device *lo, struct request *rq,
 306		loff_t pos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 307{
 308	struct bio_vec bvec, b;
 309	struct req_iterator iter;
 310	struct page *page;
 
 
 311	int ret = 0;
 312
 313	page = alloc_page(GFP_NOIO);
 314	if (unlikely(!page))
 315		return -ENOMEM;
 316
 317	rq_for_each_segment(bvec, rq, iter) {
 318		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
 319			bvec.bv_offset, bvec.bv_len, pos >> 9);
 320		if (unlikely(ret))
 321			break;
 322
 323		b.bv_page = page;
 324		b.bv_offset = 0;
 325		b.bv_len = bvec.bv_len;
 326		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
 327		if (ret < 0)
 328			break;
 
 329	}
 330
 331	__free_page(page);
 
 
 
 332	return ret;
 
 
 
 
 333}
 334
 335static int lo_read_simple(struct loop_device *lo, struct request *rq,
 336		loff_t pos)
 
 
 
 
 
 
 
 
 337{
 338	struct bio_vec bvec;
 339	struct req_iterator iter;
 340	struct iov_iter i;
 341	ssize_t len;
 342
 343	rq_for_each_segment(bvec, rq, iter) {
 344		iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
 345		len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
 346		if (len < 0)
 347			return len;
 
 348
 349		flush_dcache_page(bvec.bv_page);
 
 
 
 
 350
 351		if (len != bvec.bv_len) {
 352			struct bio *bio;
 353
 354			__rq_for_each_bio(bio, rq)
 355				zero_fill_bio(bio);
 356			break;
 357		}
 358		cond_resched();
 359	}
 360
 361	return 0;
 362}
 363
 364static int lo_read_transfer(struct loop_device *lo, struct request *rq,
 365		loff_t pos)
 366{
 367	struct bio_vec bvec, b;
 368	struct req_iterator iter;
 369	struct iov_iter i;
 370	struct page *page;
 371	ssize_t len;
 372	int ret = 0;
 373
 374	page = alloc_page(GFP_NOIO);
 375	if (unlikely(!page))
 376		return -ENOMEM;
 
 
 
 
 
 377
 378	rq_for_each_segment(bvec, rq, iter) {
 379		loff_t offset = pos;
 
 
 
 
 
 
 
 
 380
 381		b.bv_page = page;
 382		b.bv_offset = 0;
 383		b.bv_len = bvec.bv_len;
 384
 385		iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
 386		len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
 387		if (len < 0) {
 388			ret = len;
 389			goto out_free_page;
 390		}
 391
 392		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
 393			bvec.bv_offset, len, offset >> 9);
 394		if (ret)
 395			goto out_free_page;
 396
 397		flush_dcache_page(bvec.bv_page);
 
 
 
 
 
 398
 399		if (len != bvec.bv_len) {
 400			struct bio *bio;
 
 
 401
 402			__rq_for_each_bio(bio, rq)
 403				zero_fill_bio(bio);
 404			break;
 405		}
 
 406	}
 407
 408	ret = 0;
 409out_free_page:
 410	__free_page(page);
 411	return ret;
 412}
 413
 414static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
 415{
 416	/*
 417	 * We use punch hole to reclaim the free space used by the
 418	 * image a.k.a. discard. However we do not support discard if
 419	 * encryption is enabled, because it may give an attacker
 420	 * useful information.
 421	 */
 422	struct file *file = lo->lo_backing_file;
 423	int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
 424	int ret;
 425
 426	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
 427		ret = -EOPNOTSUPP;
 428		goto out;
 429	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 430
 431	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
 432	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
 433		ret = -EIO;
 434 out:
 435	return ret;
 436}
 437
 438static int lo_req_flush(struct loop_device *lo, struct request *rq)
 439{
 440	struct file *file = lo->lo_backing_file;
 441	int ret = vfs_fsync(file, 0);
 442	if (unlikely(ret && ret != -EINVAL))
 443		ret = -EIO;
 
 444
 
 445	return ret;
 446}
 447
 448static inline void handle_partial_read(struct loop_cmd *cmd, long bytes)
 
 
 
 449{
 450	if (bytes < 0 || op_is_write(req_op(cmd->rq)))
 451		return;
 452
 453	if (unlikely(bytes < blk_rq_bytes(cmd->rq))) {
 454		struct bio *bio = cmd->rq->bio;
 455
 456		bio_advance(bio, bytes);
 457		zero_fill_bio(bio);
 458	}
 459}
 460
 461static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
 
 
 
 462{
 463	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
 464	struct request *rq = cmd->rq;
 465
 466	handle_partial_read(cmd, ret);
 467
 468	if (ret > 0)
 469		ret = 0;
 470	else if (ret < 0)
 471		ret = -EIO;
 472
 473	blk_mq_complete_request(rq, ret);
 474}
 475
 476static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
 477		     loff_t pos, bool rw)
 478{
 479	struct iov_iter iter;
 480	struct bio_vec *bvec;
 481	struct bio *bio = cmd->rq->bio;
 482	struct file *file = lo->lo_backing_file;
 483	int ret;
 484
 485	/* nomerge for loop request queue */
 486	WARN_ON(cmd->rq->bio != cmd->rq->biotail);
 487
 488	bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
 489	iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
 490		      bio_segments(bio), blk_rq_bytes(cmd->rq));
 491	/*
 492	 * This bio may be started from the middle of the 'bvec'
 493	 * because of bio splitting, so offset from the bvec must
 494	 * be passed to iov iterator
 495	 */
 496	iter.iov_offset = bio->bi_iter.bi_bvec_done;
 497
 498	cmd->iocb.ki_pos = pos;
 499	cmd->iocb.ki_filp = file;
 500	cmd->iocb.ki_complete = lo_rw_aio_complete;
 501	cmd->iocb.ki_flags = IOCB_DIRECT;
 
 
 
 
 
 
 
 
 
 502
 503	if (rw == WRITE)
 504		ret = file->f_op->write_iter(&cmd->iocb, &iter);
 505	else
 506		ret = file->f_op->read_iter(&cmd->iocb, &iter);
 507
 508	if (ret != -EIOCBQUEUED)
 509		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
 510	return 0;
 511}
 512
 513static int do_req_filebacked(struct loop_device *lo, struct request *rq)
 514{
 515	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
 516	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
 517
 518	/*
 519	 * lo_write_simple and lo_read_simple should have been covered
 520	 * by io submit style function like lo_rw_aio(), one blocker
 521	 * is that lo_read_simple() need to call flush_dcache_page after
 522	 * the page is written from kernel, and it isn't easy to handle
 523	 * this in io submit style function which submits all segments
 524	 * of the req at one time. And direct read IO doesn't need to
 525	 * run flush_dcache_page().
 526	 */
 527	switch (req_op(rq)) {
 528	case REQ_OP_FLUSH:
 529		return lo_req_flush(lo, rq);
 530	case REQ_OP_DISCARD:
 531		return lo_discard(lo, rq, pos);
 532	case REQ_OP_WRITE:
 533		if (lo->transfer)
 534			return lo_write_transfer(lo, rq, pos);
 535		else if (cmd->use_aio)
 536			return lo_rw_aio(lo, cmd, pos, WRITE);
 537		else
 538			return lo_write_simple(lo, rq, pos);
 539	case REQ_OP_READ:
 540		if (lo->transfer)
 541			return lo_read_transfer(lo, rq, pos);
 542		else if (cmd->use_aio)
 543			return lo_rw_aio(lo, cmd, pos, READ);
 544		else
 545			return lo_read_simple(lo, rq, pos);
 546	default:
 547		WARN_ON_ONCE(1);
 548		return -EIO;
 549		break;
 550	}
 551}
 552
 553struct switch_request {
 554	struct file *file;
 555	struct completion wait;
 556};
 557
 558static inline void loop_update_dio(struct loop_device *lo)
 
 
 559{
 560	__loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
 561			lo->use_dio);
 
 
 
 
 
 562}
 563
 564/*
 565 * Do the actual switch; called from the BIO completion routine
 
 
 
 
 
 
 
 
 
 566 */
 567static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
 568{
 569	struct file *file = p->file;
 570	struct file *old_file = lo->lo_backing_file;
 571	struct address_space *mapping;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 572
 573	/* if no new file, only flush of queued bios requested */
 574	if (!file)
 575		return;
 576
 577	mapping = file->f_mapping;
 578	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
 579	lo->lo_backing_file = file;
 580	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
 581		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
 582	lo->old_gfp_mask = mapping_gfp_mask(mapping);
 583	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
 584	loop_update_dio(lo);
 585}
 586
 587/*
 588 * loop_switch performs the hard work of switching a backing store.
 589 * First it needs to flush existing IO, it does this by sending a magic
 590 * BIO down the pipe. The completion of this BIO does the actual switch.
 591 */
 592static int loop_switch(struct loop_device *lo, struct file *file)
 593{
 594	struct switch_request w;
 595
 
 
 
 596	w.file = file;
 597
 598	/* freeze queue and wait for completion of scheduled requests */
 599	blk_mq_freeze_queue(lo->lo_queue);
 600
 601	/* do the switch action */
 602	do_loop_switch(lo, &w);
 603
 604	/* unfreeze */
 605	blk_mq_unfreeze_queue(lo->lo_queue);
 606
 607	return 0;
 608}
 609
 610/*
 611 * Helper to flush the IOs in loop, but keeping loop thread running
 612 */
 613static int loop_flush(struct loop_device *lo)
 614{
 
 
 
 
 615	return loop_switch(lo, NULL);
 616}
 617
 618static void loop_reread_partitions(struct loop_device *lo,
 619				   struct block_device *bdev)
 
 
 620{
 621	int rc;
 
 
 622
 623	/*
 624	 * bd_mutex has been held already in release path, so don't
 625	 * acquire it if this function is called in such case.
 626	 *
 627	 * If the reread partition isn't from release path, lo_refcnt
 628	 * must be at least one and it can only become zero when the
 629	 * current holder is released.
 630	 */
 631	if (!atomic_read(&lo->lo_refcnt))
 632		rc = __blkdev_reread_part(bdev);
 633	else
 634		rc = blkdev_reread_part(bdev);
 635	if (rc)
 636		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
 637			__func__, lo->lo_number, lo->lo_file_name, rc);
 638}
 639
 
 640/*
 641 * loop_change_fd switched the backing store of a loopback device to
 642 * a new file. This is useful for operating system installers to free up
 643 * the original file and in High Availability environments to switch to
 644 * an alternative location for the content in case of server meltdown.
 645 * This can only work if the loop device is used read-only, and if the
 646 * new backing store is the same size and type as the old backing store.
 647 */
 648static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
 649			  unsigned int arg)
 650{
 651	struct file	*file, *old_file;
 652	struct inode	*inode;
 653	int		error;
 654
 655	error = -ENXIO;
 656	if (lo->lo_state != Lo_bound)
 657		goto out;
 658
 659	/* the loop device has to be read-only */
 660	error = -EINVAL;
 661	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
 662		goto out;
 663
 664	error = -EBADF;
 665	file = fget(arg);
 666	if (!file)
 667		goto out;
 668
 669	inode = file->f_mapping->host;
 670	old_file = lo->lo_backing_file;
 671
 672	error = -EINVAL;
 673
 674	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
 675		goto out_putf;
 676
 677	/* size of the new backing store needs to be the same */
 678	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
 679		goto out_putf;
 680
 681	/* and ... switch */
 682	error = loop_switch(lo, file);
 683	if (error)
 684		goto out_putf;
 685
 686	fput(old_file);
 687	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
 688		loop_reread_partitions(lo, bdev);
 689	return 0;
 690
 691 out_putf:
 692	fput(file);
 693 out:
 694	return error;
 695}
 696
 697static inline int is_loop_device(struct file *file)
 698{
 699	struct inode *i = file->f_mapping->host;
 700
 701	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
 702}
 703
 704/* loop sysfs attributes */
 705
 706static ssize_t loop_attr_show(struct device *dev, char *page,
 707			      ssize_t (*callback)(struct loop_device *, char *))
 708{
 709	struct gendisk *disk = dev_to_disk(dev);
 710	struct loop_device *lo = disk->private_data;
 711
 712	return callback(lo, page);
 713}
 714
 715#define LOOP_ATTR_RO(_name)						\
 716static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
 717static ssize_t loop_attr_do_show_##_name(struct device *d,		\
 718				struct device_attribute *attr, char *b)	\
 719{									\
 720	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
 721}									\
 722static struct device_attribute loop_attr_##_name =			\
 723	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
 724
 725static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
 726{
 727	ssize_t ret;
 728	char *p = NULL;
 729
 730	spin_lock_irq(&lo->lo_lock);
 731	if (lo->lo_backing_file)
 732		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
 733	spin_unlock_irq(&lo->lo_lock);
 734
 735	if (IS_ERR_OR_NULL(p))
 736		ret = PTR_ERR(p);
 737	else {
 738		ret = strlen(p);
 739		memmove(buf, p, ret);
 740		buf[ret++] = '\n';
 741		buf[ret] = 0;
 742	}
 743
 744	return ret;
 745}
 746
 747static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
 748{
 749	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
 750}
 751
 752static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
 753{
 754	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
 755}
 756
 757static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
 758{
 759	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
 760
 761	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
 762}
 763
 764static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
 765{
 766	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
 767
 768	return sprintf(buf, "%s\n", partscan ? "1" : "0");
 769}
 770
 771static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
 772{
 773	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
 774
 775	return sprintf(buf, "%s\n", dio ? "1" : "0");
 776}
 777
 778LOOP_ATTR_RO(backing_file);
 779LOOP_ATTR_RO(offset);
 780LOOP_ATTR_RO(sizelimit);
 781LOOP_ATTR_RO(autoclear);
 782LOOP_ATTR_RO(partscan);
 783LOOP_ATTR_RO(dio);
 784
 785static struct attribute *loop_attrs[] = {
 786	&loop_attr_backing_file.attr,
 787	&loop_attr_offset.attr,
 788	&loop_attr_sizelimit.attr,
 789	&loop_attr_autoclear.attr,
 790	&loop_attr_partscan.attr,
 791	&loop_attr_dio.attr,
 792	NULL,
 793};
 794
 795static struct attribute_group loop_attribute_group = {
 796	.name = "loop",
 797	.attrs= loop_attrs,
 798};
 799
 800static int loop_sysfs_init(struct loop_device *lo)
 801{
 802	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
 803				  &loop_attribute_group);
 804}
 805
 806static void loop_sysfs_exit(struct loop_device *lo)
 807{
 808	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
 809			   &loop_attribute_group);
 810}
 811
 812static void loop_config_discard(struct loop_device *lo)
 813{
 814	struct file *file = lo->lo_backing_file;
 815	struct inode *inode = file->f_mapping->host;
 816	struct request_queue *q = lo->lo_queue;
 817
 818	/*
 819	 * We use punch hole to reclaim the free space used by the
 820	 * image a.k.a. discard. However we do not support discard if
 821	 * encryption is enabled, because it may give an attacker
 822	 * useful information.
 823	 */
 824	if ((!file->f_op->fallocate) ||
 825	    lo->lo_encrypt_key_size) {
 826		q->limits.discard_granularity = 0;
 827		q->limits.discard_alignment = 0;
 828		blk_queue_max_discard_sectors(q, 0);
 829		q->limits.discard_zeroes_data = 0;
 830		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
 831		return;
 832	}
 833
 834	q->limits.discard_granularity = inode->i_sb->s_blocksize;
 835	q->limits.discard_alignment = 0;
 836	blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
 837	q->limits.discard_zeroes_data = 1;
 838	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
 839}
 840
 841static void loop_unprepare_queue(struct loop_device *lo)
 842{
 843	kthread_flush_worker(&lo->worker);
 844	kthread_stop(lo->worker_task);
 845}
 846
 847static int loop_prepare_queue(struct loop_device *lo)
 848{
 849	kthread_init_worker(&lo->worker);
 850	lo->worker_task = kthread_run(kthread_worker_fn,
 851			&lo->worker, "loop%d", lo->lo_number);
 852	if (IS_ERR(lo->worker_task))
 853		return -ENOMEM;
 854	set_user_nice(lo->worker_task, MIN_NICE);
 855	return 0;
 856}
 857
 858static int loop_set_fd(struct loop_device *lo, fmode_t mode,
 859		       struct block_device *bdev, unsigned int arg)
 860{
 861	struct file	*file, *f;
 862	struct inode	*inode;
 863	struct address_space *mapping;
 864	unsigned lo_blocksize;
 865	int		lo_flags = 0;
 866	int		error;
 867	loff_t		size;
 868
 869	/* This is safe, since we have a reference from open(). */
 870	__module_get(THIS_MODULE);
 871
 872	error = -EBADF;
 873	file = fget(arg);
 874	if (!file)
 875		goto out;
 876
 877	error = -EBUSY;
 878	if (lo->lo_state != Lo_unbound)
 879		goto out_putf;
 880
 881	/* Avoid recursion */
 882	f = file;
 883	while (is_loop_device(f)) {
 884		struct loop_device *l;
 885
 886		if (f->f_mapping->host->i_bdev == bdev)
 887			goto out_putf;
 888
 889		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
 890		if (l->lo_state == Lo_unbound) {
 891			error = -EINVAL;
 892			goto out_putf;
 893		}
 894		f = l->lo_backing_file;
 895	}
 896
 897	mapping = file->f_mapping;
 898	inode = mapping->host;
 899
 900	error = -EINVAL;
 901	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
 902		goto out_putf;
 903
 904	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
 905	    !file->f_op->write_iter)
 906		lo_flags |= LO_FLAGS_READ_ONLY;
 907
 908	lo_blocksize = S_ISBLK(inode->i_mode) ?
 909		inode->i_bdev->bd_block_size : PAGE_SIZE;
 910
 911	error = -EFBIG;
 912	size = get_loop_size(lo, file);
 913	if ((loff_t)(sector_t)size != size)
 914		goto out_putf;
 915	error = loop_prepare_queue(lo);
 916	if (error)
 917		goto out_putf;
 918
 919	error = 0;
 920
 921	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
 922
 923	lo->use_dio = false;
 924	lo->lo_blocksize = lo_blocksize;
 925	lo->lo_device = bdev;
 926	lo->lo_flags = lo_flags;
 927	lo->lo_backing_file = file;
 928	lo->transfer = NULL;
 929	lo->ioctl = NULL;
 930	lo->lo_sizelimit = 0;
 
 931	lo->old_gfp_mask = mapping_gfp_mask(mapping);
 932	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
 933
 
 
 934	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
 935		blk_queue_write_cache(lo->lo_queue, true, false);
 936
 937	loop_update_dio(lo);
 938	set_capacity(lo->lo_disk, size);
 939	bd_set_size(bdev, size << 9);
 940	loop_sysfs_init(lo);
 941	/* let user-space know about the new size */
 942	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
 943
 944	set_blocksize(bdev, lo_blocksize);
 945
 
 
 
 
 
 
 946	lo->lo_state = Lo_bound;
 
 947	if (part_shift)
 948		lo->lo_flags |= LO_FLAGS_PARTSCAN;
 949	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
 950		loop_reread_partitions(lo, bdev);
 951
 952	/* Grab the block_device to prevent its destruction after we
 953	 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
 954	 */
 955	bdgrab(bdev);
 956	return 0;
 957
 
 
 
 
 
 
 
 
 
 
 
 
 958 out_putf:
 959	fput(file);
 960 out:
 961	/* This is safe: open() is still holding a reference. */
 962	module_put(THIS_MODULE);
 963	return error;
 964}
 965
 966static int
 967loop_release_xfer(struct loop_device *lo)
 968{
 969	int err = 0;
 970	struct loop_func_table *xfer = lo->lo_encryption;
 971
 972	if (xfer) {
 973		if (xfer->release)
 974			err = xfer->release(lo);
 975		lo->transfer = NULL;
 976		lo->lo_encryption = NULL;
 977		module_put(xfer->owner);
 978	}
 979	return err;
 980}
 981
 982static int
 983loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
 984	       const struct loop_info64 *i)
 985{
 986	int err = 0;
 987
 988	if (xfer) {
 989		struct module *owner = xfer->owner;
 990
 991		if (!try_module_get(owner))
 992			return -EINVAL;
 993		if (xfer->init)
 994			err = xfer->init(lo, i);
 995		if (err)
 996			module_put(owner);
 997		else
 998			lo->lo_encryption = xfer;
 999	}
1000	return err;
1001}
1002
1003static int loop_clr_fd(struct loop_device *lo)
1004{
1005	struct file *filp = lo->lo_backing_file;
1006	gfp_t gfp = lo->old_gfp_mask;
1007	struct block_device *bdev = lo->lo_device;
1008
1009	if (lo->lo_state != Lo_bound)
1010		return -ENXIO;
1011
1012	/*
1013	 * If we've explicitly asked to tear down the loop device,
1014	 * and it has an elevated reference count, set it for auto-teardown when
1015	 * the last reference goes away. This stops $!~#$@ udev from
1016	 * preventing teardown because it decided that it needs to run blkid on
1017	 * the loopback device whenever they appear. xfstests is notorious for
1018	 * failing tests because blkid via udev races with a losetup
1019	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1020	 * command to fail with EBUSY.
1021	 */
1022	if (atomic_read(&lo->lo_refcnt) > 1) {
1023		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1024		mutex_unlock(&lo->lo_ctl_mutex);
1025		return 0;
1026	}
1027
1028	if (filp == NULL)
1029		return -EINVAL;
1030
1031	/* freeze request queue during the transition */
1032	blk_mq_freeze_queue(lo->lo_queue);
 
 
 
1033
1034	spin_lock_irq(&lo->lo_lock);
1035	lo->lo_state = Lo_rundown;
1036	lo->lo_backing_file = NULL;
1037	spin_unlock_irq(&lo->lo_lock);
1038
1039	loop_release_xfer(lo);
1040	lo->transfer = NULL;
1041	lo->ioctl = NULL;
1042	lo->lo_device = NULL;
1043	lo->lo_encryption = NULL;
1044	lo->lo_offset = 0;
1045	lo->lo_sizelimit = 0;
1046	lo->lo_encrypt_key_size = 0;
 
1047	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1048	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1049	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1050	if (bdev) {
1051		bdput(bdev);
1052		invalidate_bdev(bdev);
1053	}
1054	set_capacity(lo->lo_disk, 0);
1055	loop_sysfs_exit(lo);
1056	if (bdev) {
1057		bd_set_size(bdev, 0);
1058		/* let user-space know about this change */
1059		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1060	}
1061	mapping_set_gfp_mask(filp->f_mapping, gfp);
1062	lo->lo_state = Lo_unbound;
1063	/* This is safe: open() is still holding a reference. */
1064	module_put(THIS_MODULE);
1065	blk_mq_unfreeze_queue(lo->lo_queue);
1066
1067	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1068		loop_reread_partitions(lo, bdev);
1069	lo->lo_flags = 0;
1070	if (!part_shift)
1071		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1072	loop_unprepare_queue(lo);
1073	mutex_unlock(&lo->lo_ctl_mutex);
1074	/*
1075	 * Need not hold lo_ctl_mutex to fput backing file.
1076	 * Calling fput holding lo_ctl_mutex triggers a circular
1077	 * lock dependency possibility warning as fput can take
1078	 * bd_mutex which is usually taken before lo_ctl_mutex.
1079	 */
1080	fput(filp);
1081	return 0;
1082}
1083
1084static int
1085loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1086{
1087	int err;
1088	struct loop_func_table *xfer;
1089	kuid_t uid = current_uid();
1090
1091	if (lo->lo_encrypt_key_size &&
1092	    !uid_eq(lo->lo_key_owner, uid) &&
1093	    !capable(CAP_SYS_ADMIN))
1094		return -EPERM;
1095	if (lo->lo_state != Lo_bound)
1096		return -ENXIO;
1097	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1098		return -EINVAL;
1099
1100	/* I/O need to be drained during transfer transition */
1101	blk_mq_freeze_queue(lo->lo_queue);
1102
1103	err = loop_release_xfer(lo);
1104	if (err)
1105		goto exit;
1106
1107	if (info->lo_encrypt_type) {
1108		unsigned int type = info->lo_encrypt_type;
1109
1110		if (type >= MAX_LO_CRYPT)
1111			return -EINVAL;
1112		xfer = xfer_funcs[type];
1113		if (xfer == NULL)
1114			return -EINVAL;
1115	} else
1116		xfer = NULL;
1117
1118	err = loop_init_xfer(lo, xfer, info);
1119	if (err)
1120		goto exit;
1121
1122	if (lo->lo_offset != info->lo_offset ||
1123	    lo->lo_sizelimit != info->lo_sizelimit)
1124		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1125			err = -EFBIG;
1126			goto exit;
1127		}
1128
1129	loop_config_discard(lo);
1130
1131	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1132	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1133	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1134	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1135
1136	if (!xfer)
1137		xfer = &none_funcs;
1138	lo->transfer = xfer->transfer;
1139	lo->ioctl = xfer->ioctl;
1140
1141	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1142	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1143		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1144
 
 
 
 
 
 
 
1145	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1146	lo->lo_init[0] = info->lo_init[0];
1147	lo->lo_init[1] = info->lo_init[1];
1148	if (info->lo_encrypt_key_size) {
1149		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1150		       info->lo_encrypt_key_size);
1151		lo->lo_key_owner = uid;
1152	}
1153
1154	/* update dio if lo_offset or transfer is changed */
1155	__loop_update_dio(lo, lo->use_dio);
1156
1157 exit:
1158	blk_mq_unfreeze_queue(lo->lo_queue);
1159
1160	if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1161	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1162		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1163		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1164		loop_reread_partitions(lo, lo->lo_device);
1165	}
1166
1167	return err;
1168}
1169
1170static int
1171loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1172{
1173	struct file *file = lo->lo_backing_file;
1174	struct kstat stat;
1175	int error;
1176
1177	if (lo->lo_state != Lo_bound)
1178		return -ENXIO;
1179	error = vfs_getattr(&file->f_path, &stat);
1180	if (error)
1181		return error;
1182	memset(info, 0, sizeof(*info));
1183	info->lo_number = lo->lo_number;
1184	info->lo_device = huge_encode_dev(stat.dev);
1185	info->lo_inode = stat.ino;
1186	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1187	info->lo_offset = lo->lo_offset;
1188	info->lo_sizelimit = lo->lo_sizelimit;
1189	info->lo_flags = lo->lo_flags;
1190	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1191	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1192	info->lo_encrypt_type =
1193		lo->lo_encryption ? lo->lo_encryption->number : 0;
1194	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1195		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1196		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1197		       lo->lo_encrypt_key_size);
1198	}
1199	return 0;
1200}
1201
1202static void
1203loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1204{
1205	memset(info64, 0, sizeof(*info64));
1206	info64->lo_number = info->lo_number;
1207	info64->lo_device = info->lo_device;
1208	info64->lo_inode = info->lo_inode;
1209	info64->lo_rdevice = info->lo_rdevice;
1210	info64->lo_offset = info->lo_offset;
1211	info64->lo_sizelimit = 0;
1212	info64->lo_encrypt_type = info->lo_encrypt_type;
1213	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1214	info64->lo_flags = info->lo_flags;
1215	info64->lo_init[0] = info->lo_init[0];
1216	info64->lo_init[1] = info->lo_init[1];
1217	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1218		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1219	else
1220		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1221	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1222}
1223
1224static int
1225loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1226{
1227	memset(info, 0, sizeof(*info));
1228	info->lo_number = info64->lo_number;
1229	info->lo_device = info64->lo_device;
1230	info->lo_inode = info64->lo_inode;
1231	info->lo_rdevice = info64->lo_rdevice;
1232	info->lo_offset = info64->lo_offset;
1233	info->lo_encrypt_type = info64->lo_encrypt_type;
1234	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1235	info->lo_flags = info64->lo_flags;
1236	info->lo_init[0] = info64->lo_init[0];
1237	info->lo_init[1] = info64->lo_init[1];
1238	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1239		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1240	else
1241		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1242	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1243
1244	/* error in case values were truncated */
1245	if (info->lo_device != info64->lo_device ||
1246	    info->lo_rdevice != info64->lo_rdevice ||
1247	    info->lo_inode != info64->lo_inode ||
1248	    info->lo_offset != info64->lo_offset)
1249		return -EOVERFLOW;
1250
1251	return 0;
1252}
1253
1254static int
1255loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1256{
1257	struct loop_info info;
1258	struct loop_info64 info64;
1259
1260	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1261		return -EFAULT;
1262	loop_info64_from_old(&info, &info64);
1263	return loop_set_status(lo, &info64);
1264}
1265
1266static int
1267loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1268{
1269	struct loop_info64 info64;
1270
1271	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1272		return -EFAULT;
1273	return loop_set_status(lo, &info64);
1274}
1275
1276static int
1277loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1278	struct loop_info info;
1279	struct loop_info64 info64;
1280	int err = 0;
1281
1282	if (!arg)
1283		err = -EINVAL;
1284	if (!err)
1285		err = loop_get_status(lo, &info64);
1286	if (!err)
1287		err = loop_info64_to_old(&info64, &info);
1288	if (!err && copy_to_user(arg, &info, sizeof(info)))
1289		err = -EFAULT;
1290
1291	return err;
1292}
1293
1294static int
1295loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1296	struct loop_info64 info64;
1297	int err = 0;
1298
1299	if (!arg)
1300		err = -EINVAL;
1301	if (!err)
1302		err = loop_get_status(lo, &info64);
1303	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1304		err = -EFAULT;
1305
1306	return err;
1307}
1308
1309static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1310{
1311	if (unlikely(lo->lo_state != Lo_bound))
1312		return -ENXIO;
1313
1314	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1315}
1316
1317static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1318{
1319	int error = -ENXIO;
1320	if (lo->lo_state != Lo_bound)
1321		goto out;
1322
1323	__loop_update_dio(lo, !!arg);
1324	if (lo->use_dio == !!arg)
1325		return 0;
1326	error = -EINVAL;
1327 out:
1328	return error;
1329}
1330
1331static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1332	unsigned int cmd, unsigned long arg)
1333{
1334	struct loop_device *lo = bdev->bd_disk->private_data;
1335	int err;
1336
1337	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1338	switch (cmd) {
1339	case LOOP_SET_FD:
1340		err = loop_set_fd(lo, mode, bdev, arg);
1341		break;
1342	case LOOP_CHANGE_FD:
1343		err = loop_change_fd(lo, bdev, arg);
1344		break;
1345	case LOOP_CLR_FD:
1346		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1347		err = loop_clr_fd(lo);
1348		if (!err)
1349			goto out_unlocked;
1350		break;
1351	case LOOP_SET_STATUS:
1352		err = -EPERM;
1353		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1354			err = loop_set_status_old(lo,
1355					(struct loop_info __user *)arg);
1356		break;
1357	case LOOP_GET_STATUS:
1358		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1359		break;
1360	case LOOP_SET_STATUS64:
1361		err = -EPERM;
1362		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1363			err = loop_set_status64(lo,
1364					(struct loop_info64 __user *) arg);
1365		break;
1366	case LOOP_GET_STATUS64:
1367		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1368		break;
1369	case LOOP_SET_CAPACITY:
1370		err = -EPERM;
1371		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1372			err = loop_set_capacity(lo, bdev);
1373		break;
1374	case LOOP_SET_DIRECT_IO:
1375		err = -EPERM;
1376		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1377			err = loop_set_dio(lo, arg);
1378		break;
1379	default:
1380		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1381	}
1382	mutex_unlock(&lo->lo_ctl_mutex);
1383
1384out_unlocked:
1385	return err;
1386}
1387
1388#ifdef CONFIG_COMPAT
1389struct compat_loop_info {
1390	compat_int_t	lo_number;      /* ioctl r/o */
1391	compat_dev_t	lo_device;      /* ioctl r/o */
1392	compat_ulong_t	lo_inode;       /* ioctl r/o */
1393	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1394	compat_int_t	lo_offset;
1395	compat_int_t	lo_encrypt_type;
1396	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1397	compat_int_t	lo_flags;       /* ioctl r/o */
1398	char		lo_name[LO_NAME_SIZE];
1399	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1400	compat_ulong_t	lo_init[2];
1401	char		reserved[4];
1402};
1403
1404/*
1405 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1406 * - noinlined to reduce stack space usage in main part of driver
1407 */
1408static noinline int
1409loop_info64_from_compat(const struct compat_loop_info __user *arg,
1410			struct loop_info64 *info64)
1411{
1412	struct compat_loop_info info;
1413
1414	if (copy_from_user(&info, arg, sizeof(info)))
1415		return -EFAULT;
1416
1417	memset(info64, 0, sizeof(*info64));
1418	info64->lo_number = info.lo_number;
1419	info64->lo_device = info.lo_device;
1420	info64->lo_inode = info.lo_inode;
1421	info64->lo_rdevice = info.lo_rdevice;
1422	info64->lo_offset = info.lo_offset;
1423	info64->lo_sizelimit = 0;
1424	info64->lo_encrypt_type = info.lo_encrypt_type;
1425	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1426	info64->lo_flags = info.lo_flags;
1427	info64->lo_init[0] = info.lo_init[0];
1428	info64->lo_init[1] = info.lo_init[1];
1429	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1430		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1431	else
1432		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1433	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1434	return 0;
1435}
1436
1437/*
1438 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1439 * - noinlined to reduce stack space usage in main part of driver
1440 */
1441static noinline int
1442loop_info64_to_compat(const struct loop_info64 *info64,
1443		      struct compat_loop_info __user *arg)
1444{
1445	struct compat_loop_info info;
1446
1447	memset(&info, 0, sizeof(info));
1448	info.lo_number = info64->lo_number;
1449	info.lo_device = info64->lo_device;
1450	info.lo_inode = info64->lo_inode;
1451	info.lo_rdevice = info64->lo_rdevice;
1452	info.lo_offset = info64->lo_offset;
1453	info.lo_encrypt_type = info64->lo_encrypt_type;
1454	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1455	info.lo_flags = info64->lo_flags;
1456	info.lo_init[0] = info64->lo_init[0];
1457	info.lo_init[1] = info64->lo_init[1];
1458	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1459		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1460	else
1461		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1462	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1463
1464	/* error in case values were truncated */
1465	if (info.lo_device != info64->lo_device ||
1466	    info.lo_rdevice != info64->lo_rdevice ||
1467	    info.lo_inode != info64->lo_inode ||
1468	    info.lo_offset != info64->lo_offset ||
1469	    info.lo_init[0] != info64->lo_init[0] ||
1470	    info.lo_init[1] != info64->lo_init[1])
1471		return -EOVERFLOW;
1472
1473	if (copy_to_user(arg, &info, sizeof(info)))
1474		return -EFAULT;
1475	return 0;
1476}
1477
1478static int
1479loop_set_status_compat(struct loop_device *lo,
1480		       const struct compat_loop_info __user *arg)
1481{
1482	struct loop_info64 info64;
1483	int ret;
1484
1485	ret = loop_info64_from_compat(arg, &info64);
1486	if (ret < 0)
1487		return ret;
1488	return loop_set_status(lo, &info64);
1489}
1490
1491static int
1492loop_get_status_compat(struct loop_device *lo,
1493		       struct compat_loop_info __user *arg)
1494{
1495	struct loop_info64 info64;
1496	int err = 0;
1497
1498	if (!arg)
1499		err = -EINVAL;
1500	if (!err)
1501		err = loop_get_status(lo, &info64);
1502	if (!err)
1503		err = loop_info64_to_compat(&info64, arg);
1504	return err;
1505}
1506
1507static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1508			   unsigned int cmd, unsigned long arg)
1509{
1510	struct loop_device *lo = bdev->bd_disk->private_data;
1511	int err;
1512
1513	switch(cmd) {
1514	case LOOP_SET_STATUS:
1515		mutex_lock(&lo->lo_ctl_mutex);
1516		err = loop_set_status_compat(
1517			lo, (const struct compat_loop_info __user *) arg);
1518		mutex_unlock(&lo->lo_ctl_mutex);
1519		break;
1520	case LOOP_GET_STATUS:
1521		mutex_lock(&lo->lo_ctl_mutex);
1522		err = loop_get_status_compat(
1523			lo, (struct compat_loop_info __user *) arg);
1524		mutex_unlock(&lo->lo_ctl_mutex);
1525		break;
1526	case LOOP_SET_CAPACITY:
1527	case LOOP_CLR_FD:
1528	case LOOP_GET_STATUS64:
1529	case LOOP_SET_STATUS64:
1530		arg = (unsigned long) compat_ptr(arg);
1531	case LOOP_SET_FD:
1532	case LOOP_CHANGE_FD:
1533		err = lo_ioctl(bdev, mode, cmd, arg);
1534		break;
1535	default:
1536		err = -ENOIOCTLCMD;
1537		break;
1538	}
1539	return err;
1540}
1541#endif
1542
1543static int lo_open(struct block_device *bdev, fmode_t mode)
1544{
1545	struct loop_device *lo;
1546	int err = 0;
1547
1548	mutex_lock(&loop_index_mutex);
1549	lo = bdev->bd_disk->private_data;
1550	if (!lo) {
1551		err = -ENXIO;
1552		goto out;
1553	}
1554
1555	atomic_inc(&lo->lo_refcnt);
 
 
1556out:
1557	mutex_unlock(&loop_index_mutex);
1558	return err;
1559}
1560
1561static void lo_release(struct gendisk *disk, fmode_t mode)
1562{
1563	struct loop_device *lo = disk->private_data;
1564	int err;
1565
1566	if (atomic_dec_return(&lo->lo_refcnt))
1567		return;
 
 
1568
1569	mutex_lock(&lo->lo_ctl_mutex);
1570	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1571		/*
1572		 * In autoclear mode, stop the loop thread
1573		 * and remove configuration after last close.
1574		 */
1575		err = loop_clr_fd(lo);
1576		if (!err)
1577			return;
1578	} else {
1579		/*
1580		 * Otherwise keep thread (if running) and config,
1581		 * but flush possible ongoing bios in thread.
1582		 */
1583		loop_flush(lo);
1584	}
1585
 
1586	mutex_unlock(&lo->lo_ctl_mutex);
1587}
1588
1589static const struct block_device_operations lo_fops = {
1590	.owner =	THIS_MODULE,
1591	.open =		lo_open,
1592	.release =	lo_release,
1593	.ioctl =	lo_ioctl,
1594#ifdef CONFIG_COMPAT
1595	.compat_ioctl =	lo_compat_ioctl,
1596#endif
1597};
1598
1599/*
1600 * And now the modules code and kernel interface.
1601 */
1602static int max_loop;
1603module_param(max_loop, int, S_IRUGO);
1604MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1605module_param(max_part, int, S_IRUGO);
1606MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1607MODULE_LICENSE("GPL");
1608MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1609
1610int loop_register_transfer(struct loop_func_table *funcs)
1611{
1612	unsigned int n = funcs->number;
1613
1614	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1615		return -EINVAL;
1616	xfer_funcs[n] = funcs;
1617	return 0;
1618}
1619
1620static int unregister_transfer_cb(int id, void *ptr, void *data)
1621{
1622	struct loop_device *lo = ptr;
1623	struct loop_func_table *xfer = data;
1624
1625	mutex_lock(&lo->lo_ctl_mutex);
1626	if (lo->lo_encryption == xfer)
1627		loop_release_xfer(lo);
1628	mutex_unlock(&lo->lo_ctl_mutex);
1629	return 0;
1630}
1631
1632int loop_unregister_transfer(int number)
1633{
1634	unsigned int n = number;
1635	struct loop_func_table *xfer;
1636
1637	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1638		return -EINVAL;
1639
1640	xfer_funcs[n] = NULL;
1641	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1642	return 0;
1643}
1644
1645EXPORT_SYMBOL(loop_register_transfer);
1646EXPORT_SYMBOL(loop_unregister_transfer);
1647
1648static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1649		const struct blk_mq_queue_data *bd)
1650{
1651	struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1652	struct loop_device *lo = cmd->rq->q->queuedata;
1653
1654	blk_mq_start_request(bd->rq);
1655
1656	if (lo->lo_state != Lo_bound)
1657		return BLK_MQ_RQ_QUEUE_ERROR;
1658
1659	switch (req_op(cmd->rq)) {
1660	case REQ_OP_FLUSH:
1661	case REQ_OP_DISCARD:
1662		cmd->use_aio = false;
1663		break;
1664	default:
1665		cmd->use_aio = lo->use_dio;
1666		break;
1667	}
1668
1669	kthread_queue_work(&lo->worker, &cmd->work);
1670
1671	return BLK_MQ_RQ_QUEUE_OK;
1672}
1673
1674static void loop_handle_cmd(struct loop_cmd *cmd)
1675{
1676	const bool write = op_is_write(req_op(cmd->rq));
1677	struct loop_device *lo = cmd->rq->q->queuedata;
1678	int ret = 0;
1679
1680	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1681		ret = -EIO;
1682		goto failed;
1683	}
1684
1685	ret = do_req_filebacked(lo, cmd->rq);
1686 failed:
1687	/* complete non-aio request */
1688	if (!cmd->use_aio || ret)
1689		blk_mq_complete_request(cmd->rq, ret ? -EIO : 0);
1690}
1691
1692static void loop_queue_work(struct kthread_work *work)
1693{
1694	struct loop_cmd *cmd =
1695		container_of(work, struct loop_cmd, work);
1696
1697	loop_handle_cmd(cmd);
1698}
1699
1700static int loop_init_request(void *data, struct request *rq,
1701		unsigned int hctx_idx, unsigned int request_idx,
1702		unsigned int numa_node)
1703{
1704	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1705
1706	cmd->rq = rq;
1707	kthread_init_work(&cmd->work, loop_queue_work);
1708
1709	return 0;
1710}
1711
1712static struct blk_mq_ops loop_mq_ops = {
1713	.queue_rq       = loop_queue_rq,
1714	.init_request	= loop_init_request,
1715};
1716
1717static int loop_add(struct loop_device **l, int i)
1718{
1719	struct loop_device *lo;
1720	struct gendisk *disk;
1721	int err;
1722
1723	err = -ENOMEM;
1724	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1725	if (!lo)
1726		goto out;
1727
1728	lo->lo_state = Lo_unbound;
1729
1730	/* allocate id, if @id >= 0, we're requesting that specific id */
1731	if (i >= 0) {
1732		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1733		if (err == -ENOSPC)
1734			err = -EEXIST;
1735	} else {
1736		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1737	}
1738	if (err < 0)
1739		goto out_free_dev;
1740	i = err;
1741
1742	err = -ENOMEM;
1743	lo->tag_set.ops = &loop_mq_ops;
1744	lo->tag_set.nr_hw_queues = 1;
1745	lo->tag_set.queue_depth = 128;
1746	lo->tag_set.numa_node = NUMA_NO_NODE;
1747	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1748	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1749	lo->tag_set.driver_data = lo;
1750
1751	err = blk_mq_alloc_tag_set(&lo->tag_set);
1752	if (err)
1753		goto out_free_idr;
1754
1755	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1756	if (IS_ERR_OR_NULL(lo->lo_queue)) {
1757		err = PTR_ERR(lo->lo_queue);
1758		goto out_cleanup_tags;
1759	}
1760	lo->lo_queue->queuedata = lo;
1761
1762	/*
1763	 * It doesn't make sense to enable merge because the I/O
1764	 * submitted to backing file is handled page by page.
1765	 */
1766	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
 
1767
1768	err = -ENOMEM;
1769	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1770	if (!disk)
1771		goto out_free_queue;
1772
1773	/*
1774	 * Disable partition scanning by default. The in-kernel partition
1775	 * scanning can be requested individually per-device during its
1776	 * setup. Userspace can always add and remove partitions from all
1777	 * devices. The needed partition minors are allocated from the
1778	 * extended minor space, the main loop device numbers will continue
1779	 * to match the loop minors, regardless of the number of partitions
1780	 * used.
1781	 *
1782	 * If max_part is given, partition scanning is globally enabled for
1783	 * all loop devices. The minors for the main loop devices will be
1784	 * multiples of max_part.
1785	 *
1786	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1787	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1788	 * complicated, are too static, inflexible and may surprise
1789	 * userspace tools. Parameters like this in general should be avoided.
1790	 */
1791	if (!part_shift)
1792		disk->flags |= GENHD_FL_NO_PART_SCAN;
1793	disk->flags |= GENHD_FL_EXT_DEVT;
1794	mutex_init(&lo->lo_ctl_mutex);
1795	atomic_set(&lo->lo_refcnt, 0);
1796	lo->lo_number		= i;
 
 
 
1797	spin_lock_init(&lo->lo_lock);
1798	disk->major		= LOOP_MAJOR;
1799	disk->first_minor	= i << part_shift;
1800	disk->fops		= &lo_fops;
1801	disk->private_data	= lo;
1802	disk->queue		= lo->lo_queue;
1803	sprintf(disk->disk_name, "loop%d", i);
1804	add_disk(disk);
1805	*l = lo;
1806	return lo->lo_number;
1807
1808out_free_queue:
1809	blk_cleanup_queue(lo->lo_queue);
1810out_cleanup_tags:
1811	blk_mq_free_tag_set(&lo->tag_set);
1812out_free_idr:
1813	idr_remove(&loop_index_idr, i);
1814out_free_dev:
1815	kfree(lo);
1816out:
1817	return err;
1818}
1819
1820static void loop_remove(struct loop_device *lo)
1821{
 
1822	blk_cleanup_queue(lo->lo_queue);
1823	del_gendisk(lo->lo_disk);
1824	blk_mq_free_tag_set(&lo->tag_set);
1825	put_disk(lo->lo_disk);
1826	kfree(lo);
1827}
1828
1829static int find_free_cb(int id, void *ptr, void *data)
1830{
1831	struct loop_device *lo = ptr;
1832	struct loop_device **l = data;
1833
1834	if (lo->lo_state == Lo_unbound) {
1835		*l = lo;
1836		return 1;
1837	}
1838	return 0;
1839}
1840
1841static int loop_lookup(struct loop_device **l, int i)
1842{
1843	struct loop_device *lo;
1844	int ret = -ENODEV;
1845
1846	if (i < 0) {
1847		int err;
1848
1849		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1850		if (err == 1) {
1851			*l = lo;
1852			ret = lo->lo_number;
1853		}
1854		goto out;
1855	}
1856
1857	/* lookup and return a specific i */
1858	lo = idr_find(&loop_index_idr, i);
1859	if (lo) {
1860		*l = lo;
1861		ret = lo->lo_number;
1862	}
1863out:
1864	return ret;
1865}
1866
1867static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1868{
1869	struct loop_device *lo;
1870	struct kobject *kobj;
1871	int err;
1872
1873	mutex_lock(&loop_index_mutex);
1874	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1875	if (err < 0)
1876		err = loop_add(&lo, MINOR(dev) >> part_shift);
1877	if (err < 0)
1878		kobj = NULL;
1879	else
1880		kobj = get_disk(lo->lo_disk);
1881	mutex_unlock(&loop_index_mutex);
1882
1883	*part = 0;
1884	return kobj;
1885}
1886
1887static long loop_control_ioctl(struct file *file, unsigned int cmd,
1888			       unsigned long parm)
1889{
1890	struct loop_device *lo;
1891	int ret = -ENOSYS;
1892
1893	mutex_lock(&loop_index_mutex);
1894	switch (cmd) {
1895	case LOOP_CTL_ADD:
1896		ret = loop_lookup(&lo, parm);
1897		if (ret >= 0) {
1898			ret = -EEXIST;
1899			break;
1900		}
1901		ret = loop_add(&lo, parm);
1902		break;
1903	case LOOP_CTL_REMOVE:
1904		ret = loop_lookup(&lo, parm);
1905		if (ret < 0)
1906			break;
1907		mutex_lock(&lo->lo_ctl_mutex);
1908		if (lo->lo_state != Lo_unbound) {
1909			ret = -EBUSY;
1910			mutex_unlock(&lo->lo_ctl_mutex);
1911			break;
1912		}
1913		if (atomic_read(&lo->lo_refcnt) > 0) {
1914			ret = -EBUSY;
1915			mutex_unlock(&lo->lo_ctl_mutex);
1916			break;
1917		}
1918		lo->lo_disk->private_data = NULL;
1919		mutex_unlock(&lo->lo_ctl_mutex);
1920		idr_remove(&loop_index_idr, lo->lo_number);
1921		loop_remove(lo);
1922		break;
1923	case LOOP_CTL_GET_FREE:
1924		ret = loop_lookup(&lo, -1);
1925		if (ret >= 0)
1926			break;
1927		ret = loop_add(&lo, -1);
1928	}
1929	mutex_unlock(&loop_index_mutex);
1930
1931	return ret;
1932}
1933
1934static const struct file_operations loop_ctl_fops = {
1935	.open		= nonseekable_open,
1936	.unlocked_ioctl	= loop_control_ioctl,
1937	.compat_ioctl	= loop_control_ioctl,
1938	.owner		= THIS_MODULE,
1939	.llseek		= noop_llseek,
1940};
1941
1942static struct miscdevice loop_misc = {
1943	.minor		= LOOP_CTRL_MINOR,
1944	.name		= "loop-control",
1945	.fops		= &loop_ctl_fops,
1946};
1947
1948MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1949MODULE_ALIAS("devname:loop-control");
1950
1951static int __init loop_init(void)
1952{
1953	int i, nr;
1954	unsigned long range;
1955	struct loop_device *lo;
1956	int err;
1957
1958	err = misc_register(&loop_misc);
1959	if (err < 0)
1960		return err;
1961
1962	part_shift = 0;
1963	if (max_part > 0) {
1964		part_shift = fls(max_part);
1965
1966		/*
1967		 * Adjust max_part according to part_shift as it is exported
1968		 * to user space so that user can decide correct minor number
1969		 * if [s]he want to create more devices.
1970		 *
1971		 * Note that -1 is required because partition 0 is reserved
1972		 * for the whole disk.
1973		 */
1974		max_part = (1UL << part_shift) - 1;
1975	}
1976
1977	if ((1UL << part_shift) > DISK_MAX_PARTS) {
1978		err = -EINVAL;
1979		goto misc_out;
1980	}
1981
1982	if (max_loop > 1UL << (MINORBITS - part_shift)) {
1983		err = -EINVAL;
1984		goto misc_out;
1985	}
1986
1987	/*
1988	 * If max_loop is specified, create that many devices upfront.
1989	 * This also becomes a hard limit. If max_loop is not specified,
1990	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1991	 * init time. Loop devices can be requested on-demand with the
1992	 * /dev/loop-control interface, or be instantiated by accessing
1993	 * a 'dead' device node.
1994	 */
1995	if (max_loop) {
1996		nr = max_loop;
1997		range = max_loop << part_shift;
1998	} else {
1999		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2000		range = 1UL << MINORBITS;
2001	}
2002
2003	if (register_blkdev(LOOP_MAJOR, "loop")) {
2004		err = -EIO;
2005		goto misc_out;
2006	}
2007
2008	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2009				  THIS_MODULE, loop_probe, NULL, NULL);
2010
2011	/* pre-create number of devices given by config or max_loop */
2012	mutex_lock(&loop_index_mutex);
2013	for (i = 0; i < nr; i++)
2014		loop_add(&lo, i);
2015	mutex_unlock(&loop_index_mutex);
2016
2017	printk(KERN_INFO "loop: module loaded\n");
2018	return 0;
2019
2020misc_out:
2021	misc_deregister(&loop_misc);
2022	return err;
2023}
2024
2025static int loop_exit_cb(int id, void *ptr, void *data)
2026{
2027	struct loop_device *lo = ptr;
2028
2029	loop_remove(lo);
2030	return 0;
2031}
2032
2033static void __exit loop_exit(void)
2034{
2035	unsigned long range;
2036
2037	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2038
2039	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2040	idr_destroy(&loop_index_idr);
2041
2042	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2043	unregister_blkdev(LOOP_MAJOR, "loop");
2044
2045	misc_deregister(&loop_misc);
2046}
2047
2048module_init(loop_init);
2049module_exit(loop_exit);
2050
2051#ifndef MODULE
2052static int __init max_loop_setup(char *str)
2053{
2054	max_loop = simple_strtol(str, NULL, 0);
2055	return 1;
2056}
2057
2058__setup("max_loop=", max_loop_setup);
2059#endif