Linux Audio

Check our new training course

Loading...
   1/*
   2 *  linux/drivers/block/loop.c
   3 *
   4 *  Written by Theodore Ts'o, 3/29/93
   5 *
   6 * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
   7 * permitted under the GNU General Public License.
   8 *
   9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
  10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
  11 *
  12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
  13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
  14 *
  15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
  16 *
  17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
  18 *
  19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
  20 *
  21 * Loadable modules and other fixes by AK, 1998
  22 *
  23 * Make real block number available to downstream transfer functions, enables
  24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
  25 * Reed H. Petty, rhp@draper.net
  26 *
  27 * Maximum number of loop devices now dynamic via max_loop module parameter.
  28 * Russell Kroll <rkroll@exploits.org> 19990701
  29 *
  30 * Maximum number of loop devices when compiled-in now selectable by passing
  31 * max_loop=<1-255> to the kernel on boot.
  32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
  33 *
  34 * Completely rewrite request handling to be make_request_fn style and
  35 * non blocking, pushing work to a helper thread. Lots of fixes from
  36 * Al Viro too.
  37 * Jens Axboe <axboe@suse.de>, Nov 2000
  38 *
  39 * Support up to 256 loop devices
  40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
  41 *
  42 * Support for falling back on the write file operation when the address space
  43 * operations write_begin is not available on the backing filesystem.
  44 * Anton Altaparmakov, 16 Feb 2005
  45 *
  46 * Still To Fix:
  47 * - Advisory locking is ignored here.
  48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
  49 *
  50 */
  51
  52#include <linux/module.h>
  53#include <linux/moduleparam.h>
  54#include <linux/sched.h>
  55#include <linux/fs.h>
  56#include <linux/file.h>
  57#include <linux/stat.h>
  58#include <linux/errno.h>
  59#include <linux/major.h>
  60#include <linux/wait.h>
  61#include <linux/blkdev.h>
  62#include <linux/blkpg.h>
  63#include <linux/init.h>
  64#include <linux/swap.h>
  65#include <linux/slab.h>
  66#include <linux/loop.h>
  67#include <linux/compat.h>
  68#include <linux/suspend.h>
  69#include <linux/freezer.h>
  70#include <linux/mutex.h>
  71#include <linux/writeback.h>
  72#include <linux/completion.h>
  73#include <linux/highmem.h>
  74#include <linux/kthread.h>
  75#include <linux/splice.h>
  76#include <linux/sysfs.h>
  77#include <linux/miscdevice.h>
  78#include <linux/falloc.h>
  79
  80#include <asm/uaccess.h>
  81
  82static DEFINE_IDR(loop_index_idr);
  83static DEFINE_MUTEX(loop_index_mutex);
  84
  85static int max_part;
  86static int part_shift;
  87
  88/*
  89 * Transfer functions
  90 */
  91static int transfer_none(struct loop_device *lo, int cmd,
  92			 struct page *raw_page, unsigned raw_off,
  93			 struct page *loop_page, unsigned loop_off,
  94			 int size, sector_t real_block)
  95{
  96	char *raw_buf = kmap_atomic(raw_page) + raw_off;
  97	char *loop_buf = kmap_atomic(loop_page) + loop_off;
  98
  99	if (cmd == READ)
 100		memcpy(loop_buf, raw_buf, size);
 101	else
 102		memcpy(raw_buf, loop_buf, size);
 103
 104	kunmap_atomic(loop_buf);
 105	kunmap_atomic(raw_buf);
 106	cond_resched();
 107	return 0;
 108}
 109
 110static int transfer_xor(struct loop_device *lo, int cmd,
 111			struct page *raw_page, unsigned raw_off,
 112			struct page *loop_page, unsigned loop_off,
 113			int size, sector_t real_block)
 114{
 115	char *raw_buf = kmap_atomic(raw_page) + raw_off;
 116	char *loop_buf = kmap_atomic(loop_page) + loop_off;
 117	char *in, *out, *key;
 118	int i, keysize;
 119
 120	if (cmd == READ) {
 121		in = raw_buf;
 122		out = loop_buf;
 123	} else {
 124		in = loop_buf;
 125		out = raw_buf;
 126	}
 127
 128	key = lo->lo_encrypt_key;
 129	keysize = lo->lo_encrypt_key_size;
 130	for (i = 0; i < size; i++)
 131		*out++ = *in++ ^ key[(i & 511) % keysize];
 132
 133	kunmap_atomic(loop_buf);
 134	kunmap_atomic(raw_buf);
 135	cond_resched();
 136	return 0;
 137}
 138
 139static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
 140{
 141	if (unlikely(info->lo_encrypt_key_size <= 0))
 142		return -EINVAL;
 143	return 0;
 144}
 145
 146static struct loop_func_table none_funcs = {
 147	.number = LO_CRYPT_NONE,
 148	.transfer = transfer_none,
 149}; 	
 150
 151static struct loop_func_table xor_funcs = {
 152	.number = LO_CRYPT_XOR,
 153	.transfer = transfer_xor,
 154	.init = xor_init
 155}; 	
 156
 157/* xfer_funcs[0] is special - its release function is never called */
 158static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
 159	&none_funcs,
 160	&xor_funcs
 161};
 162
 163static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
 164{
 165	loff_t size, loopsize;
 166
 167	/* Compute loopsize in bytes */
 168	size = i_size_read(file->f_mapping->host);
 169	loopsize = size - offset;
 170	/* offset is beyond i_size, wierd but possible */
 171	if (loopsize < 0)
 172		return 0;
 173
 174	if (sizelimit > 0 && sizelimit < loopsize)
 175		loopsize = sizelimit;
 176	/*
 177	 * Unfortunately, if we want to do I/O on the device,
 178	 * the number of 512-byte sectors has to fit into a sector_t.
 179	 */
 180	return loopsize >> 9;
 181}
 182
 183static loff_t get_loop_size(struct loop_device *lo, struct file *file)
 184{
 185	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
 186}
 187
 188static int
 189figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
 190{
 191	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
 192	sector_t x = (sector_t)size;
 193
 194	if (unlikely((loff_t)x != size))
 195		return -EFBIG;
 196	if (lo->lo_offset != offset)
 197		lo->lo_offset = offset;
 198	if (lo->lo_sizelimit != sizelimit)
 199		lo->lo_sizelimit = sizelimit;
 200	set_capacity(lo->lo_disk, x);
 201	return 0;
 202}
 203
 204static inline int
 205lo_do_transfer(struct loop_device *lo, int cmd,
 206	       struct page *rpage, unsigned roffs,
 207	       struct page *lpage, unsigned loffs,
 208	       int size, sector_t rblock)
 209{
 210	if (unlikely(!lo->transfer))
 211		return 0;
 212
 213	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
 214}
 215
 216/**
 217 * __do_lo_send_write - helper for writing data to a loop device
 218 *
 219 * This helper just factors out common code between do_lo_send_direct_write()
 220 * and do_lo_send_write().
 221 */
 222static int __do_lo_send_write(struct file *file,
 223		u8 *buf, const int len, loff_t pos)
 224{
 225	ssize_t bw;
 226	mm_segment_t old_fs = get_fs();
 227
 228	set_fs(get_ds());
 229	bw = file->f_op->write(file, buf, len, &pos);
 230	set_fs(old_fs);
 231	if (likely(bw == len))
 232		return 0;
 233	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
 234			(unsigned long long)pos, len);
 235	if (bw >= 0)
 236		bw = -EIO;
 237	return bw;
 238}
 239
 240/**
 241 * do_lo_send_direct_write - helper for writing data to a loop device
 242 *
 243 * This is the fast, non-transforming version that does not need double
 244 * buffering.
 245 */
 246static int do_lo_send_direct_write(struct loop_device *lo,
 247		struct bio_vec *bvec, loff_t pos, struct page *page)
 248{
 249	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
 250			kmap(bvec->bv_page) + bvec->bv_offset,
 251			bvec->bv_len, pos);
 252	kunmap(bvec->bv_page);
 253	cond_resched();
 254	return bw;
 255}
 256
 257/**
 258 * do_lo_send_write - helper for writing data to a loop device
 259 *
 260 * This is the slow, transforming version that needs to double buffer the
 261 * data as it cannot do the transformations in place without having direct
 262 * access to the destination pages of the backing file.
 263 */
 264static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
 265		loff_t pos, struct page *page)
 266{
 267	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
 268			bvec->bv_offset, bvec->bv_len, pos >> 9);
 269	if (likely(!ret))
 270		return __do_lo_send_write(lo->lo_backing_file,
 271				page_address(page), bvec->bv_len,
 272				pos);
 273	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
 274			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
 275	if (ret > 0)
 276		ret = -EIO;
 277	return ret;
 278}
 279
 280static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
 281{
 282	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
 283			struct page *page);
 284	struct bio_vec *bvec;
 285	struct page *page = NULL;
 286	int i, ret = 0;
 287
 288	if (lo->transfer != transfer_none) {
 289		page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
 290		if (unlikely(!page))
 291			goto fail;
 292		kmap(page);
 293		do_lo_send = do_lo_send_write;
 294	} else {
 295		do_lo_send = do_lo_send_direct_write;
 296	}
 297
 298	bio_for_each_segment(bvec, bio, i) {
 299		ret = do_lo_send(lo, bvec, pos, page);
 300		if (ret < 0)
 301			break;
 302		pos += bvec->bv_len;
 303	}
 304	if (page) {
 305		kunmap(page);
 306		__free_page(page);
 307	}
 308out:
 309	return ret;
 310fail:
 311	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
 312	ret = -ENOMEM;
 313	goto out;
 314}
 315
 316struct lo_read_data {
 317	struct loop_device *lo;
 318	struct page *page;
 319	unsigned offset;
 320	int bsize;
 321};
 322
 323static int
 324lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
 325		struct splice_desc *sd)
 326{
 327	struct lo_read_data *p = sd->u.data;
 328	struct loop_device *lo = p->lo;
 329	struct page *page = buf->page;
 330	sector_t IV;
 331	int size;
 332
 333	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
 334							(buf->offset >> 9);
 335	size = sd->len;
 336	if (size > p->bsize)
 337		size = p->bsize;
 338
 339	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
 340		printk(KERN_ERR "loop: transfer error block %ld\n",
 341		       page->index);
 342		size = -EINVAL;
 343	}
 344
 345	flush_dcache_page(p->page);
 346
 347	if (size > 0)
 348		p->offset += size;
 349
 350	return size;
 351}
 352
 353static int
 354lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
 355{
 356	return __splice_from_pipe(pipe, sd, lo_splice_actor);
 357}
 358
 359static ssize_t
 360do_lo_receive(struct loop_device *lo,
 361	      struct bio_vec *bvec, int bsize, loff_t pos)
 362{
 363	struct lo_read_data cookie;
 364	struct splice_desc sd;
 365	struct file *file;
 366	ssize_t retval;
 367
 368	cookie.lo = lo;
 369	cookie.page = bvec->bv_page;
 370	cookie.offset = bvec->bv_offset;
 371	cookie.bsize = bsize;
 372
 373	sd.len = 0;
 374	sd.total_len = bvec->bv_len;
 375	sd.flags = 0;
 376	sd.pos = pos;
 377	sd.u.data = &cookie;
 378
 379	file = lo->lo_backing_file;
 380	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
 381
 382	return retval;
 383}
 384
 385static int
 386lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
 387{
 388	struct bio_vec *bvec;
 389	ssize_t s;
 390	int i;
 391
 392	bio_for_each_segment(bvec, bio, i) {
 393		s = do_lo_receive(lo, bvec, bsize, pos);
 394		if (s < 0)
 395			return s;
 396
 397		if (s != bvec->bv_len) {
 398			zero_fill_bio(bio);
 399			break;
 400		}
 401		pos += bvec->bv_len;
 402	}
 403	return 0;
 404}
 405
 406static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
 407{
 408	loff_t pos;
 409	int ret;
 410
 411	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
 412
 413	if (bio_rw(bio) == WRITE) {
 414		struct file *file = lo->lo_backing_file;
 415
 416		if (bio->bi_rw & REQ_FLUSH) {
 417			ret = vfs_fsync(file, 0);
 418			if (unlikely(ret && ret != -EINVAL)) {
 419				ret = -EIO;
 420				goto out;
 421			}
 422		}
 423
 424		/*
 425		 * We use punch hole to reclaim the free space used by the
 426		 * image a.k.a. discard. However we do not support discard if
 427		 * encryption is enabled, because it may give an attacker
 428		 * useful information.
 429		 */
 430		if (bio->bi_rw & REQ_DISCARD) {
 431			struct file *file = lo->lo_backing_file;
 432			int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
 433
 434			if ((!file->f_op->fallocate) ||
 435			    lo->lo_encrypt_key_size) {
 436				ret = -EOPNOTSUPP;
 437				goto out;
 438			}
 439			ret = file->f_op->fallocate(file, mode, pos,
 440						    bio->bi_size);
 441			if (unlikely(ret && ret != -EINVAL &&
 442				     ret != -EOPNOTSUPP))
 443				ret = -EIO;
 444			goto out;
 445		}
 446
 447		ret = lo_send(lo, bio, pos);
 448
 449		if ((bio->bi_rw & REQ_FUA) && !ret) {
 450			ret = vfs_fsync(file, 0);
 451			if (unlikely(ret && ret != -EINVAL))
 452				ret = -EIO;
 453		}
 454	} else
 455		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
 456
 457out:
 458	return ret;
 459}
 460
 461/*
 462 * Add bio to back of pending list
 463 */
 464static void loop_add_bio(struct loop_device *lo, struct bio *bio)
 465{
 466	bio_list_add(&lo->lo_bio_list, bio);
 467}
 468
 469/*
 470 * Grab first pending buffer
 471 */
 472static struct bio *loop_get_bio(struct loop_device *lo)
 473{
 474	return bio_list_pop(&lo->lo_bio_list);
 475}
 476
 477static void loop_make_request(struct request_queue *q, struct bio *old_bio)
 478{
 479	struct loop_device *lo = q->queuedata;
 480	int rw = bio_rw(old_bio);
 481
 482	if (rw == READA)
 483		rw = READ;
 484
 485	BUG_ON(!lo || (rw != READ && rw != WRITE));
 486
 487	spin_lock_irq(&lo->lo_lock);
 488	if (lo->lo_state != Lo_bound)
 489		goto out;
 490	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
 491		goto out;
 492	loop_add_bio(lo, old_bio);
 493	wake_up(&lo->lo_event);
 494	spin_unlock_irq(&lo->lo_lock);
 495	return;
 496
 497out:
 498	spin_unlock_irq(&lo->lo_lock);
 499	bio_io_error(old_bio);
 500}
 501
 502struct switch_request {
 503	struct file *file;
 504	struct completion wait;
 505};
 506
 507static void do_loop_switch(struct loop_device *, struct switch_request *);
 508
 509static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
 510{
 511	if (unlikely(!bio->bi_bdev)) {
 512		do_loop_switch(lo, bio->bi_private);
 513		bio_put(bio);
 514	} else {
 515		int ret = do_bio_filebacked(lo, bio);
 516		bio_endio(bio, ret);
 517	}
 518}
 519
 520/*
 521 * worker thread that handles reads/writes to file backed loop devices,
 522 * to avoid blocking in our make_request_fn. it also does loop decrypting
 523 * on reads for block backed loop, as that is too heavy to do from
 524 * b_end_io context where irqs may be disabled.
 525 *
 526 * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
 527 * calling kthread_stop().  Therefore once kthread_should_stop() is
 528 * true, make_request will not place any more requests.  Therefore
 529 * once kthread_should_stop() is true and lo_bio is NULL, we are
 530 * done with the loop.
 531 */
 532static int loop_thread(void *data)
 533{
 534	struct loop_device *lo = data;
 535	struct bio *bio;
 536
 537	set_user_nice(current, -20);
 538
 539	while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
 540
 541		wait_event_interruptible(lo->lo_event,
 542				!bio_list_empty(&lo->lo_bio_list) ||
 543				kthread_should_stop());
 544
 545		if (bio_list_empty(&lo->lo_bio_list))
 546			continue;
 547		spin_lock_irq(&lo->lo_lock);
 548		bio = loop_get_bio(lo);
 549		spin_unlock_irq(&lo->lo_lock);
 550
 551		BUG_ON(!bio);
 552		loop_handle_bio(lo, bio);
 553	}
 554
 555	return 0;
 556}
 557
 558/*
 559 * loop_switch performs the hard work of switching a backing store.
 560 * First it needs to flush existing IO, it does this by sending a magic
 561 * BIO down the pipe. The completion of this BIO does the actual switch.
 562 */
 563static int loop_switch(struct loop_device *lo, struct file *file)
 564{
 565	struct switch_request w;
 566	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
 567	if (!bio)
 568		return -ENOMEM;
 569	init_completion(&w.wait);
 570	w.file = file;
 571	bio->bi_private = &w;
 572	bio->bi_bdev = NULL;
 573	loop_make_request(lo->lo_queue, bio);
 574	wait_for_completion(&w.wait);
 575	return 0;
 576}
 577
 578/*
 579 * Helper to flush the IOs in loop, but keeping loop thread running
 580 */
 581static int loop_flush(struct loop_device *lo)
 582{
 583	/* loop not yet configured, no running thread, nothing to flush */
 584	if (!lo->lo_thread)
 585		return 0;
 586
 587	return loop_switch(lo, NULL);
 588}
 589
 590/*
 591 * Do the actual switch; called from the BIO completion routine
 592 */
 593static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
 594{
 595	struct file *file = p->file;
 596	struct file *old_file = lo->lo_backing_file;
 597	struct address_space *mapping;
 598
 599	/* if no new file, only flush of queued bios requested */
 600	if (!file)
 601		goto out;
 602
 603	mapping = file->f_mapping;
 604	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
 605	lo->lo_backing_file = file;
 606	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
 607		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
 608	lo->old_gfp_mask = mapping_gfp_mask(mapping);
 609	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
 610out:
 611	complete(&p->wait);
 612}
 613
 614
 615/*
 616 * loop_change_fd switched the backing store of a loopback device to
 617 * a new file. This is useful for operating system installers to free up
 618 * the original file and in High Availability environments to switch to
 619 * an alternative location for the content in case of server meltdown.
 620 * This can only work if the loop device is used read-only, and if the
 621 * new backing store is the same size and type as the old backing store.
 622 */
 623static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
 624			  unsigned int arg)
 625{
 626	struct file	*file, *old_file;
 627	struct inode	*inode;
 628	int		error;
 629
 630	error = -ENXIO;
 631	if (lo->lo_state != Lo_bound)
 632		goto out;
 633
 634	/* the loop device has to be read-only */
 635	error = -EINVAL;
 636	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
 637		goto out;
 638
 639	error = -EBADF;
 640	file = fget(arg);
 641	if (!file)
 642		goto out;
 643
 644	inode = file->f_mapping->host;
 645	old_file = lo->lo_backing_file;
 646
 647	error = -EINVAL;
 648
 649	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
 650		goto out_putf;
 651
 652	/* size of the new backing store needs to be the same */
 653	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
 654		goto out_putf;
 655
 656	/* and ... switch */
 657	error = loop_switch(lo, file);
 658	if (error)
 659		goto out_putf;
 660
 661	fput(old_file);
 662	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
 663		ioctl_by_bdev(bdev, BLKRRPART, 0);
 664	return 0;
 665
 666 out_putf:
 667	fput(file);
 668 out:
 669	return error;
 670}
 671
 672static inline int is_loop_device(struct file *file)
 673{
 674	struct inode *i = file->f_mapping->host;
 675
 676	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
 677}
 678
 679/* loop sysfs attributes */
 680
 681static ssize_t loop_attr_show(struct device *dev, char *page,
 682			      ssize_t (*callback)(struct loop_device *, char *))
 683{
 684	struct gendisk *disk = dev_to_disk(dev);
 685	struct loop_device *lo = disk->private_data;
 686
 687	return callback(lo, page);
 688}
 689
 690#define LOOP_ATTR_RO(_name)						\
 691static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
 692static ssize_t loop_attr_do_show_##_name(struct device *d,		\
 693				struct device_attribute *attr, char *b)	\
 694{									\
 695	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
 696}									\
 697static struct device_attribute loop_attr_##_name =			\
 698	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
 699
 700static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
 701{
 702	ssize_t ret;
 703	char *p = NULL;
 704
 705	spin_lock_irq(&lo->lo_lock);
 706	if (lo->lo_backing_file)
 707		p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
 708	spin_unlock_irq(&lo->lo_lock);
 709
 710	if (IS_ERR_OR_NULL(p))
 711		ret = PTR_ERR(p);
 712	else {
 713		ret = strlen(p);
 714		memmove(buf, p, ret);
 715		buf[ret++] = '\n';
 716		buf[ret] = 0;
 717	}
 718
 719	return ret;
 720}
 721
 722static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
 723{
 724	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
 725}
 726
 727static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
 728{
 729	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
 730}
 731
 732static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
 733{
 734	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
 735
 736	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
 737}
 738
 739static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
 740{
 741	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
 742
 743	return sprintf(buf, "%s\n", partscan ? "1" : "0");
 744}
 745
 746LOOP_ATTR_RO(backing_file);
 747LOOP_ATTR_RO(offset);
 748LOOP_ATTR_RO(sizelimit);
 749LOOP_ATTR_RO(autoclear);
 750LOOP_ATTR_RO(partscan);
 751
 752static struct attribute *loop_attrs[] = {
 753	&loop_attr_backing_file.attr,
 754	&loop_attr_offset.attr,
 755	&loop_attr_sizelimit.attr,
 756	&loop_attr_autoclear.attr,
 757	&loop_attr_partscan.attr,
 758	NULL,
 759};
 760
 761static struct attribute_group loop_attribute_group = {
 762	.name = "loop",
 763	.attrs= loop_attrs,
 764};
 765
 766static int loop_sysfs_init(struct loop_device *lo)
 767{
 768	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
 769				  &loop_attribute_group);
 770}
 771
 772static void loop_sysfs_exit(struct loop_device *lo)
 773{
 774	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
 775			   &loop_attribute_group);
 776}
 777
 778static void loop_config_discard(struct loop_device *lo)
 779{
 780	struct file *file = lo->lo_backing_file;
 781	struct inode *inode = file->f_mapping->host;
 782	struct request_queue *q = lo->lo_queue;
 783
 784	/*
 785	 * We use punch hole to reclaim the free space used by the
 786	 * image a.k.a. discard. However we do support discard if
 787	 * encryption is enabled, because it may give an attacker
 788	 * useful information.
 789	 */
 790	if ((!file->f_op->fallocate) ||
 791	    lo->lo_encrypt_key_size) {
 792		q->limits.discard_granularity = 0;
 793		q->limits.discard_alignment = 0;
 794		q->limits.max_discard_sectors = 0;
 795		q->limits.discard_zeroes_data = 0;
 796		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
 797		return;
 798	}
 799
 800	q->limits.discard_granularity = inode->i_sb->s_blocksize;
 801	q->limits.discard_alignment = 0;
 802	q->limits.max_discard_sectors = UINT_MAX >> 9;
 803	q->limits.discard_zeroes_data = 1;
 804	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
 805}
 806
 807static int loop_set_fd(struct loop_device *lo, fmode_t mode,
 808		       struct block_device *bdev, unsigned int arg)
 809{
 810	struct file	*file, *f;
 811	struct inode	*inode;
 812	struct address_space *mapping;
 813	unsigned lo_blocksize;
 814	int		lo_flags = 0;
 815	int		error;
 816	loff_t		size;
 817
 818	/* This is safe, since we have a reference from open(). */
 819	__module_get(THIS_MODULE);
 820
 821	error = -EBADF;
 822	file = fget(arg);
 823	if (!file)
 824		goto out;
 825
 826	error = -EBUSY;
 827	if (lo->lo_state != Lo_unbound)
 828		goto out_putf;
 829
 830	/* Avoid recursion */
 831	f = file;
 832	while (is_loop_device(f)) {
 833		struct loop_device *l;
 834
 835		if (f->f_mapping->host->i_bdev == bdev)
 836			goto out_putf;
 837
 838		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
 839		if (l->lo_state == Lo_unbound) {
 840			error = -EINVAL;
 841			goto out_putf;
 842		}
 843		f = l->lo_backing_file;
 844	}
 845
 846	mapping = file->f_mapping;
 847	inode = mapping->host;
 848
 849	error = -EINVAL;
 850	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
 851		goto out_putf;
 852
 853	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
 854	    !file->f_op->write)
 855		lo_flags |= LO_FLAGS_READ_ONLY;
 856
 857	lo_blocksize = S_ISBLK(inode->i_mode) ?
 858		inode->i_bdev->bd_block_size : PAGE_SIZE;
 859
 860	error = -EFBIG;
 861	size = get_loop_size(lo, file);
 862	if ((loff_t)(sector_t)size != size)
 863		goto out_putf;
 864
 865	error = 0;
 866
 867	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
 868
 869	lo->lo_blocksize = lo_blocksize;
 870	lo->lo_device = bdev;
 871	lo->lo_flags = lo_flags;
 872	lo->lo_backing_file = file;
 873	lo->transfer = transfer_none;
 874	lo->ioctl = NULL;
 875	lo->lo_sizelimit = 0;
 876	lo->old_gfp_mask = mapping_gfp_mask(mapping);
 877	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
 878
 879	bio_list_init(&lo->lo_bio_list);
 880
 881	/*
 882	 * set queue make_request_fn, and add limits based on lower level
 883	 * device
 884	 */
 885	blk_queue_make_request(lo->lo_queue, loop_make_request);
 886	lo->lo_queue->queuedata = lo;
 887
 888	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
 889		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
 890
 891	set_capacity(lo->lo_disk, size);
 892	bd_set_size(bdev, size << 9);
 893	loop_sysfs_init(lo);
 894	/* let user-space know about the new size */
 895	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
 896
 897	set_blocksize(bdev, lo_blocksize);
 898
 899	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
 900						lo->lo_number);
 901	if (IS_ERR(lo->lo_thread)) {
 902		error = PTR_ERR(lo->lo_thread);
 903		goto out_clr;
 904	}
 905	lo->lo_state = Lo_bound;
 906	wake_up_process(lo->lo_thread);
 907	if (part_shift)
 908		lo->lo_flags |= LO_FLAGS_PARTSCAN;
 909	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
 910		ioctl_by_bdev(bdev, BLKRRPART, 0);
 911	return 0;
 912
 913out_clr:
 914	loop_sysfs_exit(lo);
 915	lo->lo_thread = NULL;
 916	lo->lo_device = NULL;
 917	lo->lo_backing_file = NULL;
 918	lo->lo_flags = 0;
 919	set_capacity(lo->lo_disk, 0);
 920	invalidate_bdev(bdev);
 921	bd_set_size(bdev, 0);
 922	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
 923	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
 924	lo->lo_state = Lo_unbound;
 925 out_putf:
 926	fput(file);
 927 out:
 928	/* This is safe: open() is still holding a reference. */
 929	module_put(THIS_MODULE);
 930	return error;
 931}
 932
 933static int
 934loop_release_xfer(struct loop_device *lo)
 935{
 936	int err = 0;
 937	struct loop_func_table *xfer = lo->lo_encryption;
 938
 939	if (xfer) {
 940		if (xfer->release)
 941			err = xfer->release(lo);
 942		lo->transfer = NULL;
 943		lo->lo_encryption = NULL;
 944		module_put(xfer->owner);
 945	}
 946	return err;
 947}
 948
 949static int
 950loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
 951	       const struct loop_info64 *i)
 952{
 953	int err = 0;
 954
 955	if (xfer) {
 956		struct module *owner = xfer->owner;
 957
 958		if (!try_module_get(owner))
 959			return -EINVAL;
 960		if (xfer->init)
 961			err = xfer->init(lo, i);
 962		if (err)
 963			module_put(owner);
 964		else
 965			lo->lo_encryption = xfer;
 966	}
 967	return err;
 968}
 969
 970static int loop_clr_fd(struct loop_device *lo)
 971{
 972	struct file *filp = lo->lo_backing_file;
 973	gfp_t gfp = lo->old_gfp_mask;
 974	struct block_device *bdev = lo->lo_device;
 975
 976	if (lo->lo_state != Lo_bound)
 977		return -ENXIO;
 978
 979	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
 980		return -EBUSY;
 981
 982	if (filp == NULL)
 983		return -EINVAL;
 984
 985	spin_lock_irq(&lo->lo_lock);
 986	lo->lo_state = Lo_rundown;
 987	spin_unlock_irq(&lo->lo_lock);
 988
 989	kthread_stop(lo->lo_thread);
 990
 991	spin_lock_irq(&lo->lo_lock);
 992	lo->lo_backing_file = NULL;
 993	spin_unlock_irq(&lo->lo_lock);
 994
 995	loop_release_xfer(lo);
 996	lo->transfer = NULL;
 997	lo->ioctl = NULL;
 998	lo->lo_device = NULL;
 999	lo->lo_encryption = NULL;
1000	lo->lo_offset = 0;
1001	lo->lo_sizelimit = 0;
1002	lo->lo_encrypt_key_size = 0;
1003	lo->lo_thread = NULL;
1004	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1005	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1006	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1007	if (bdev)
1008		invalidate_bdev(bdev);
1009	set_capacity(lo->lo_disk, 0);
1010	loop_sysfs_exit(lo);
1011	if (bdev) {
1012		bd_set_size(bdev, 0);
1013		/* let user-space know about this change */
1014		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1015	}
1016	mapping_set_gfp_mask(filp->f_mapping, gfp);
1017	lo->lo_state = Lo_unbound;
1018	/* This is safe: open() is still holding a reference. */
1019	module_put(THIS_MODULE);
1020	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1021		ioctl_by_bdev(bdev, BLKRRPART, 0);
1022	lo->lo_flags = 0;
1023	if (!part_shift)
1024		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1025	mutex_unlock(&lo->lo_ctl_mutex);
1026	/*
1027	 * Need not hold lo_ctl_mutex to fput backing file.
1028	 * Calling fput holding lo_ctl_mutex triggers a circular
1029	 * lock dependency possibility warning as fput can take
1030	 * bd_mutex which is usually taken before lo_ctl_mutex.
1031	 */
1032	fput(filp);
1033	return 0;
1034}
1035
1036static int
1037loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1038{
1039	int err;
1040	struct loop_func_table *xfer;
1041	uid_t uid = current_uid();
1042
1043	if (lo->lo_encrypt_key_size &&
1044	    lo->lo_key_owner != uid &&
1045	    !capable(CAP_SYS_ADMIN))
1046		return -EPERM;
1047	if (lo->lo_state != Lo_bound)
1048		return -ENXIO;
1049	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1050		return -EINVAL;
1051
1052	err = loop_release_xfer(lo);
1053	if (err)
1054		return err;
1055
1056	if (info->lo_encrypt_type) {
1057		unsigned int type = info->lo_encrypt_type;
1058
1059		if (type >= MAX_LO_CRYPT)
1060			return -EINVAL;
1061		xfer = xfer_funcs[type];
1062		if (xfer == NULL)
1063			return -EINVAL;
1064	} else
1065		xfer = NULL;
1066
1067	err = loop_init_xfer(lo, xfer, info);
1068	if (err)
1069		return err;
1070
1071	if (lo->lo_offset != info->lo_offset ||
1072	    lo->lo_sizelimit != info->lo_sizelimit) {
1073		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
1074			return -EFBIG;
1075	}
1076	loop_config_discard(lo);
1077
1078	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1079	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1080	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1081	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1082
1083	if (!xfer)
1084		xfer = &none_funcs;
1085	lo->transfer = xfer->transfer;
1086	lo->ioctl = xfer->ioctl;
1087
1088	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1089	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1090		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1091
1092	if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1093	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1094		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1095		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1096		ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
1097	}
1098
1099	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1100	lo->lo_init[0] = info->lo_init[0];
1101	lo->lo_init[1] = info->lo_init[1];
1102	if (info->lo_encrypt_key_size) {
1103		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1104		       info->lo_encrypt_key_size);
1105		lo->lo_key_owner = uid;
1106	}	
1107
1108	return 0;
1109}
1110
1111static int
1112loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1113{
1114	struct file *file = lo->lo_backing_file;
1115	struct kstat stat;
1116	int error;
1117
1118	if (lo->lo_state != Lo_bound)
1119		return -ENXIO;
1120	error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1121	if (error)
1122		return error;
1123	memset(info, 0, sizeof(*info));
1124	info->lo_number = lo->lo_number;
1125	info->lo_device = huge_encode_dev(stat.dev);
1126	info->lo_inode = stat.ino;
1127	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1128	info->lo_offset = lo->lo_offset;
1129	info->lo_sizelimit = lo->lo_sizelimit;
1130	info->lo_flags = lo->lo_flags;
1131	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1132	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1133	info->lo_encrypt_type =
1134		lo->lo_encryption ? lo->lo_encryption->number : 0;
1135	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1136		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1137		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1138		       lo->lo_encrypt_key_size);
1139	}
1140	return 0;
1141}
1142
1143static void
1144loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1145{
1146	memset(info64, 0, sizeof(*info64));
1147	info64->lo_number = info->lo_number;
1148	info64->lo_device = info->lo_device;
1149	info64->lo_inode = info->lo_inode;
1150	info64->lo_rdevice = info->lo_rdevice;
1151	info64->lo_offset = info->lo_offset;
1152	info64->lo_sizelimit = 0;
1153	info64->lo_encrypt_type = info->lo_encrypt_type;
1154	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1155	info64->lo_flags = info->lo_flags;
1156	info64->lo_init[0] = info->lo_init[0];
1157	info64->lo_init[1] = info->lo_init[1];
1158	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1159		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1160	else
1161		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1162	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1163}
1164
1165static int
1166loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1167{
1168	memset(info, 0, sizeof(*info));
1169	info->lo_number = info64->lo_number;
1170	info->lo_device = info64->lo_device;
1171	info->lo_inode = info64->lo_inode;
1172	info->lo_rdevice = info64->lo_rdevice;
1173	info->lo_offset = info64->lo_offset;
1174	info->lo_encrypt_type = info64->lo_encrypt_type;
1175	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1176	info->lo_flags = info64->lo_flags;
1177	info->lo_init[0] = info64->lo_init[0];
1178	info->lo_init[1] = info64->lo_init[1];
1179	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1180		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1181	else
1182		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1183	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1184
1185	/* error in case values were truncated */
1186	if (info->lo_device != info64->lo_device ||
1187	    info->lo_rdevice != info64->lo_rdevice ||
1188	    info->lo_inode != info64->lo_inode ||
1189	    info->lo_offset != info64->lo_offset)
1190		return -EOVERFLOW;
1191
1192	return 0;
1193}
1194
1195static int
1196loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1197{
1198	struct loop_info info;
1199	struct loop_info64 info64;
1200
1201	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1202		return -EFAULT;
1203	loop_info64_from_old(&info, &info64);
1204	return loop_set_status(lo, &info64);
1205}
1206
1207static int
1208loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1209{
1210	struct loop_info64 info64;
1211
1212	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1213		return -EFAULT;
1214	return loop_set_status(lo, &info64);
1215}
1216
1217static int
1218loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1219	struct loop_info info;
1220	struct loop_info64 info64;
1221	int err = 0;
1222
1223	if (!arg)
1224		err = -EINVAL;
1225	if (!err)
1226		err = loop_get_status(lo, &info64);
1227	if (!err)
1228		err = loop_info64_to_old(&info64, &info);
1229	if (!err && copy_to_user(arg, &info, sizeof(info)))
1230		err = -EFAULT;
1231
1232	return err;
1233}
1234
1235static int
1236loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1237	struct loop_info64 info64;
1238	int err = 0;
1239
1240	if (!arg)
1241		err = -EINVAL;
1242	if (!err)
1243		err = loop_get_status(lo, &info64);
1244	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1245		err = -EFAULT;
1246
1247	return err;
1248}
1249
1250static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1251{
1252	int err;
1253	sector_t sec;
1254	loff_t sz;
1255
1256	err = -ENXIO;
1257	if (unlikely(lo->lo_state != Lo_bound))
1258		goto out;
1259	err = figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1260	if (unlikely(err))
1261		goto out;
1262	sec = get_capacity(lo->lo_disk);
1263	/* the width of sector_t may be narrow for bit-shift */
1264	sz = sec;
1265	sz <<= 9;
1266	mutex_lock(&bdev->bd_mutex);
1267	bd_set_size(bdev, sz);
1268	/* let user-space know about the new size */
1269	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1270	mutex_unlock(&bdev->bd_mutex);
1271
1272 out:
1273	return err;
1274}
1275
1276static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1277	unsigned int cmd, unsigned long arg)
1278{
1279	struct loop_device *lo = bdev->bd_disk->private_data;
1280	int err;
1281
1282	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1283	switch (cmd) {
1284	case LOOP_SET_FD:
1285		err = loop_set_fd(lo, mode, bdev, arg);
1286		break;
1287	case LOOP_CHANGE_FD:
1288		err = loop_change_fd(lo, bdev, arg);
1289		break;
1290	case LOOP_CLR_FD:
1291		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1292		err = loop_clr_fd(lo);
1293		if (!err)
1294			goto out_unlocked;
1295		break;
1296	case LOOP_SET_STATUS:
1297		err = -EPERM;
1298		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1299			err = loop_set_status_old(lo,
1300					(struct loop_info __user *)arg);
1301		break;
1302	case LOOP_GET_STATUS:
1303		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1304		break;
1305	case LOOP_SET_STATUS64:
1306		err = -EPERM;
1307		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1308			err = loop_set_status64(lo,
1309					(struct loop_info64 __user *) arg);
1310		break;
1311	case LOOP_GET_STATUS64:
1312		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1313		break;
1314	case LOOP_SET_CAPACITY:
1315		err = -EPERM;
1316		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1317			err = loop_set_capacity(lo, bdev);
1318		break;
1319	default:
1320		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1321	}
1322	mutex_unlock(&lo->lo_ctl_mutex);
1323
1324out_unlocked:
1325	return err;
1326}
1327
1328#ifdef CONFIG_COMPAT
1329struct compat_loop_info {
1330	compat_int_t	lo_number;      /* ioctl r/o */
1331	compat_dev_t	lo_device;      /* ioctl r/o */
1332	compat_ulong_t	lo_inode;       /* ioctl r/o */
1333	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1334	compat_int_t	lo_offset;
1335	compat_int_t	lo_encrypt_type;
1336	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1337	compat_int_t	lo_flags;       /* ioctl r/o */
1338	char		lo_name[LO_NAME_SIZE];
1339	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1340	compat_ulong_t	lo_init[2];
1341	char		reserved[4];
1342};
1343
1344/*
1345 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1346 * - noinlined to reduce stack space usage in main part of driver
1347 */
1348static noinline int
1349loop_info64_from_compat(const struct compat_loop_info __user *arg,
1350			struct loop_info64 *info64)
1351{
1352	struct compat_loop_info info;
1353
1354	if (copy_from_user(&info, arg, sizeof(info)))
1355		return -EFAULT;
1356
1357	memset(info64, 0, sizeof(*info64));
1358	info64->lo_number = info.lo_number;
1359	info64->lo_device = info.lo_device;
1360	info64->lo_inode = info.lo_inode;
1361	info64->lo_rdevice = info.lo_rdevice;
1362	info64->lo_offset = info.lo_offset;
1363	info64->lo_sizelimit = 0;
1364	info64->lo_encrypt_type = info.lo_encrypt_type;
1365	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1366	info64->lo_flags = info.lo_flags;
1367	info64->lo_init[0] = info.lo_init[0];
1368	info64->lo_init[1] = info.lo_init[1];
1369	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1370		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1371	else
1372		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1373	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1374	return 0;
1375}
1376
1377/*
1378 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1379 * - noinlined to reduce stack space usage in main part of driver
1380 */
1381static noinline int
1382loop_info64_to_compat(const struct loop_info64 *info64,
1383		      struct compat_loop_info __user *arg)
1384{
1385	struct compat_loop_info info;
1386
1387	memset(&info, 0, sizeof(info));
1388	info.lo_number = info64->lo_number;
1389	info.lo_device = info64->lo_device;
1390	info.lo_inode = info64->lo_inode;
1391	info.lo_rdevice = info64->lo_rdevice;
1392	info.lo_offset = info64->lo_offset;
1393	info.lo_encrypt_type = info64->lo_encrypt_type;
1394	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1395	info.lo_flags = info64->lo_flags;
1396	info.lo_init[0] = info64->lo_init[0];
1397	info.lo_init[1] = info64->lo_init[1];
1398	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1399		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1400	else
1401		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1402	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1403
1404	/* error in case values were truncated */
1405	if (info.lo_device != info64->lo_device ||
1406	    info.lo_rdevice != info64->lo_rdevice ||
1407	    info.lo_inode != info64->lo_inode ||
1408	    info.lo_offset != info64->lo_offset ||
1409	    info.lo_init[0] != info64->lo_init[0] ||
1410	    info.lo_init[1] != info64->lo_init[1])
1411		return -EOVERFLOW;
1412
1413	if (copy_to_user(arg, &info, sizeof(info)))
1414		return -EFAULT;
1415	return 0;
1416}
1417
1418static int
1419loop_set_status_compat(struct loop_device *lo,
1420		       const struct compat_loop_info __user *arg)
1421{
1422	struct loop_info64 info64;
1423	int ret;
1424
1425	ret = loop_info64_from_compat(arg, &info64);
1426	if (ret < 0)
1427		return ret;
1428	return loop_set_status(lo, &info64);
1429}
1430
1431static int
1432loop_get_status_compat(struct loop_device *lo,
1433		       struct compat_loop_info __user *arg)
1434{
1435	struct loop_info64 info64;
1436	int err = 0;
1437
1438	if (!arg)
1439		err = -EINVAL;
1440	if (!err)
1441		err = loop_get_status(lo, &info64);
1442	if (!err)
1443		err = loop_info64_to_compat(&info64, arg);
1444	return err;
1445}
1446
1447static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1448			   unsigned int cmd, unsigned long arg)
1449{
1450	struct loop_device *lo = bdev->bd_disk->private_data;
1451	int err;
1452
1453	switch(cmd) {
1454	case LOOP_SET_STATUS:
1455		mutex_lock(&lo->lo_ctl_mutex);
1456		err = loop_set_status_compat(
1457			lo, (const struct compat_loop_info __user *) arg);
1458		mutex_unlock(&lo->lo_ctl_mutex);
1459		break;
1460	case LOOP_GET_STATUS:
1461		mutex_lock(&lo->lo_ctl_mutex);
1462		err = loop_get_status_compat(
1463			lo, (struct compat_loop_info __user *) arg);
1464		mutex_unlock(&lo->lo_ctl_mutex);
1465		break;
1466	case LOOP_SET_CAPACITY:
1467	case LOOP_CLR_FD:
1468	case LOOP_GET_STATUS64:
1469	case LOOP_SET_STATUS64:
1470		arg = (unsigned long) compat_ptr(arg);
1471	case LOOP_SET_FD:
1472	case LOOP_CHANGE_FD:
1473		err = lo_ioctl(bdev, mode, cmd, arg);
1474		break;
1475	default:
1476		err = -ENOIOCTLCMD;
1477		break;
1478	}
1479	return err;
1480}
1481#endif
1482
1483static int lo_open(struct block_device *bdev, fmode_t mode)
1484{
1485	struct loop_device *lo;
1486	int err = 0;
1487
1488	mutex_lock(&loop_index_mutex);
1489	lo = bdev->bd_disk->private_data;
1490	if (!lo) {
1491		err = -ENXIO;
1492		goto out;
1493	}
1494
1495	mutex_lock(&lo->lo_ctl_mutex);
1496	lo->lo_refcnt++;
1497	mutex_unlock(&lo->lo_ctl_mutex);
1498out:
1499	mutex_unlock(&loop_index_mutex);
1500	return err;
1501}
1502
1503static int lo_release(struct gendisk *disk, fmode_t mode)
1504{
1505	struct loop_device *lo = disk->private_data;
1506	int err;
1507
1508	mutex_lock(&lo->lo_ctl_mutex);
1509
1510	if (--lo->lo_refcnt)
1511		goto out;
1512
1513	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1514		/*
1515		 * In autoclear mode, stop the loop thread
1516		 * and remove configuration after last close.
1517		 */
1518		err = loop_clr_fd(lo);
1519		if (!err)
1520			goto out_unlocked;
1521	} else {
1522		/*
1523		 * Otherwise keep thread (if running) and config,
1524		 * but flush possible ongoing bios in thread.
1525		 */
1526		loop_flush(lo);
1527	}
1528
1529out:
1530	mutex_unlock(&lo->lo_ctl_mutex);
1531out_unlocked:
1532	return 0;
1533}
1534
1535static const struct block_device_operations lo_fops = {
1536	.owner =	THIS_MODULE,
1537	.open =		lo_open,
1538	.release =	lo_release,
1539	.ioctl =	lo_ioctl,
1540#ifdef CONFIG_COMPAT
1541	.compat_ioctl =	lo_compat_ioctl,
1542#endif
1543};
1544
1545/*
1546 * And now the modules code and kernel interface.
1547 */
1548static int max_loop;
1549module_param(max_loop, int, S_IRUGO);
1550MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1551module_param(max_part, int, S_IRUGO);
1552MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1553MODULE_LICENSE("GPL");
1554MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1555
1556int loop_register_transfer(struct loop_func_table *funcs)
1557{
1558	unsigned int n = funcs->number;
1559
1560	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1561		return -EINVAL;
1562	xfer_funcs[n] = funcs;
1563	return 0;
1564}
1565
1566static int unregister_transfer_cb(int id, void *ptr, void *data)
1567{
1568	struct loop_device *lo = ptr;
1569	struct loop_func_table *xfer = data;
1570
1571	mutex_lock(&lo->lo_ctl_mutex);
1572	if (lo->lo_encryption == xfer)
1573		loop_release_xfer(lo);
1574	mutex_unlock(&lo->lo_ctl_mutex);
1575	return 0;
1576}
1577
1578int loop_unregister_transfer(int number)
1579{
1580	unsigned int n = number;
1581	struct loop_func_table *xfer;
1582
1583	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1584		return -EINVAL;
1585
1586	xfer_funcs[n] = NULL;
1587	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1588	return 0;
1589}
1590
1591EXPORT_SYMBOL(loop_register_transfer);
1592EXPORT_SYMBOL(loop_unregister_transfer);
1593
1594static int loop_add(struct loop_device **l, int i)
1595{
1596	struct loop_device *lo;
1597	struct gendisk *disk;
1598	int err;
1599
1600	err = -ENOMEM;
1601	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1602	if (!lo)
1603		goto out;
1604
1605	if (!idr_pre_get(&loop_index_idr, GFP_KERNEL))
1606		goto out_free_dev;
1607
1608	if (i >= 0) {
1609		int m;
1610
1611		/* create specific i in the index */
1612		err = idr_get_new_above(&loop_index_idr, lo, i, &m);
1613		if (err >= 0 && i != m) {
1614			idr_remove(&loop_index_idr, m);
1615			err = -EEXIST;
1616		}
1617	} else if (i == -1) {
1618		int m;
1619
1620		/* get next free nr */
1621		err = idr_get_new(&loop_index_idr, lo, &m);
1622		if (err >= 0)
1623			i = m;
1624	} else {
1625		err = -EINVAL;
1626	}
1627	if (err < 0)
1628		goto out_free_dev;
1629
1630	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1631	if (!lo->lo_queue)
1632		goto out_free_dev;
1633
1634	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1635	if (!disk)
1636		goto out_free_queue;
1637
1638	/*
1639	 * Disable partition scanning by default. The in-kernel partition
1640	 * scanning can be requested individually per-device during its
1641	 * setup. Userspace can always add and remove partitions from all
1642	 * devices. The needed partition minors are allocated from the
1643	 * extended minor space, the main loop device numbers will continue
1644	 * to match the loop minors, regardless of the number of partitions
1645	 * used.
1646	 *
1647	 * If max_part is given, partition scanning is globally enabled for
1648	 * all loop devices. The minors for the main loop devices will be
1649	 * multiples of max_part.
1650	 *
1651	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1652	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1653	 * complicated, are too static, inflexible and may surprise
1654	 * userspace tools. Parameters like this in general should be avoided.
1655	 */
1656	if (!part_shift)
1657		disk->flags |= GENHD_FL_NO_PART_SCAN;
1658	disk->flags |= GENHD_FL_EXT_DEVT;
1659	mutex_init(&lo->lo_ctl_mutex);
1660	lo->lo_number		= i;
1661	lo->lo_thread		= NULL;
1662	init_waitqueue_head(&lo->lo_event);
1663	spin_lock_init(&lo->lo_lock);
1664	disk->major		= LOOP_MAJOR;
1665	disk->first_minor	= i << part_shift;
1666	disk->fops		= &lo_fops;
1667	disk->private_data	= lo;
1668	disk->queue		= lo->lo_queue;
1669	sprintf(disk->disk_name, "loop%d", i);
1670	add_disk(disk);
1671	*l = lo;
1672	return lo->lo_number;
1673
1674out_free_queue:
1675	blk_cleanup_queue(lo->lo_queue);
1676out_free_dev:
1677	kfree(lo);
1678out:
1679	return err;
1680}
1681
1682static void loop_remove(struct loop_device *lo)
1683{
1684	del_gendisk(lo->lo_disk);
1685	blk_cleanup_queue(lo->lo_queue);
1686	put_disk(lo->lo_disk);
1687	kfree(lo);
1688}
1689
1690static int find_free_cb(int id, void *ptr, void *data)
1691{
1692	struct loop_device *lo = ptr;
1693	struct loop_device **l = data;
1694
1695	if (lo->lo_state == Lo_unbound) {
1696		*l = lo;
1697		return 1;
1698	}
1699	return 0;
1700}
1701
1702static int loop_lookup(struct loop_device **l, int i)
1703{
1704	struct loop_device *lo;
1705	int ret = -ENODEV;
1706
1707	if (i < 0) {
1708		int err;
1709
1710		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1711		if (err == 1) {
1712			*l = lo;
1713			ret = lo->lo_number;
1714		}
1715		goto out;
1716	}
1717
1718	/* lookup and return a specific i */
1719	lo = idr_find(&loop_index_idr, i);
1720	if (lo) {
1721		*l = lo;
1722		ret = lo->lo_number;
1723	}
1724out:
1725	return ret;
1726}
1727
1728static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1729{
1730	struct loop_device *lo;
1731	struct kobject *kobj;
1732	int err;
1733
1734	mutex_lock(&loop_index_mutex);
1735	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1736	if (err < 0)
1737		err = loop_add(&lo, MINOR(dev) >> part_shift);
1738	if (err < 0)
1739		kobj = ERR_PTR(err);
1740	else
1741		kobj = get_disk(lo->lo_disk);
1742	mutex_unlock(&loop_index_mutex);
1743
1744	*part = 0;
1745	return kobj;
1746}
1747
1748static long loop_control_ioctl(struct file *file, unsigned int cmd,
1749			       unsigned long parm)
1750{
1751	struct loop_device *lo;
1752	int ret = -ENOSYS;
1753
1754	mutex_lock(&loop_index_mutex);
1755	switch (cmd) {
1756	case LOOP_CTL_ADD:
1757		ret = loop_lookup(&lo, parm);
1758		if (ret >= 0) {
1759			ret = -EEXIST;
1760			break;
1761		}
1762		ret = loop_add(&lo, parm);
1763		break;
1764	case LOOP_CTL_REMOVE:
1765		ret = loop_lookup(&lo, parm);
1766		if (ret < 0)
1767			break;
1768		mutex_lock(&lo->lo_ctl_mutex);
1769		if (lo->lo_state != Lo_unbound) {
1770			ret = -EBUSY;
1771			mutex_unlock(&lo->lo_ctl_mutex);
1772			break;
1773		}
1774		if (lo->lo_refcnt > 0) {
1775			ret = -EBUSY;
1776			mutex_unlock(&lo->lo_ctl_mutex);
1777			break;
1778		}
1779		lo->lo_disk->private_data = NULL;
1780		mutex_unlock(&lo->lo_ctl_mutex);
1781		idr_remove(&loop_index_idr, lo->lo_number);
1782		loop_remove(lo);
1783		break;
1784	case LOOP_CTL_GET_FREE:
1785		ret = loop_lookup(&lo, -1);
1786		if (ret >= 0)
1787			break;
1788		ret = loop_add(&lo, -1);
1789	}
1790	mutex_unlock(&loop_index_mutex);
1791
1792	return ret;
1793}
1794
1795static const struct file_operations loop_ctl_fops = {
1796	.open		= nonseekable_open,
1797	.unlocked_ioctl	= loop_control_ioctl,
1798	.compat_ioctl	= loop_control_ioctl,
1799	.owner		= THIS_MODULE,
1800	.llseek		= noop_llseek,
1801};
1802
1803static struct miscdevice loop_misc = {
1804	.minor		= LOOP_CTRL_MINOR,
1805	.name		= "loop-control",
1806	.fops		= &loop_ctl_fops,
1807};
1808
1809MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1810MODULE_ALIAS("devname:loop-control");
1811
1812static int __init loop_init(void)
1813{
1814	int i, nr;
1815	unsigned long range;
1816	struct loop_device *lo;
1817	int err;
1818
1819	err = misc_register(&loop_misc);
1820	if (err < 0)
1821		return err;
1822
1823	part_shift = 0;
1824	if (max_part > 0) {
1825		part_shift = fls(max_part);
1826
1827		/*
1828		 * Adjust max_part according to part_shift as it is exported
1829		 * to user space so that user can decide correct minor number
1830		 * if [s]he want to create more devices.
1831		 *
1832		 * Note that -1 is required because partition 0 is reserved
1833		 * for the whole disk.
1834		 */
1835		max_part = (1UL << part_shift) - 1;
1836	}
1837
1838	if ((1UL << part_shift) > DISK_MAX_PARTS)
1839		return -EINVAL;
1840
1841	if (max_loop > 1UL << (MINORBITS - part_shift))
1842		return -EINVAL;
1843
1844	/*
1845	 * If max_loop is specified, create that many devices upfront.
1846	 * This also becomes a hard limit. If max_loop is not specified,
1847	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1848	 * init time. Loop devices can be requested on-demand with the
1849	 * /dev/loop-control interface, or be instantiated by accessing
1850	 * a 'dead' device node.
1851	 */
1852	if (max_loop) {
1853		nr = max_loop;
1854		range = max_loop << part_shift;
1855	} else {
1856		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1857		range = 1UL << MINORBITS;
1858	}
1859
1860	if (register_blkdev(LOOP_MAJOR, "loop"))
1861		return -EIO;
1862
1863	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1864				  THIS_MODULE, loop_probe, NULL, NULL);
1865
1866	/* pre-create number of devices given by config or max_loop */
1867	mutex_lock(&loop_index_mutex);
1868	for (i = 0; i < nr; i++)
1869		loop_add(&lo, i);
1870	mutex_unlock(&loop_index_mutex);
1871
1872	printk(KERN_INFO "loop: module loaded\n");
1873	return 0;
1874}
1875
1876static int loop_exit_cb(int id, void *ptr, void *data)
1877{
1878	struct loop_device *lo = ptr;
1879
1880	loop_remove(lo);
1881	return 0;
1882}
1883
1884static void __exit loop_exit(void)
1885{
1886	unsigned long range;
1887
1888	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1889
1890	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1891	idr_remove_all(&loop_index_idr);
1892	idr_destroy(&loop_index_idr);
1893
1894	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1895	unregister_blkdev(LOOP_MAJOR, "loop");
1896
1897	misc_deregister(&loop_misc);
1898}
1899
1900module_init(loop_init);
1901module_exit(loop_exit);
1902
1903#ifndef MODULE
1904static int __init max_loop_setup(char *str)
1905{
1906	max_loop = simple_strtol(str, NULL, 0);
1907	return 1;
1908}
1909
1910__setup("max_loop=", max_loop_setup);
1911#endif