Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v3.15
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 *		IPv4 specific functions
   9 *
  10 *
  11 *		code split from:
  12 *		linux/ipv4/tcp.c
  13 *		linux/ipv4/tcp_input.c
  14 *		linux/ipv4/tcp_output.c
  15 *
  16 *		See tcp.c for author information
  17 *
  18 *	This program is free software; you can redistribute it and/or
  19 *      modify it under the terms of the GNU General Public License
  20 *      as published by the Free Software Foundation; either version
  21 *      2 of the License, or (at your option) any later version.
  22 */
  23
  24/*
  25 * Changes:
  26 *		David S. Miller	:	New socket lookup architecture.
  27 *					This code is dedicated to John Dyson.
  28 *		David S. Miller :	Change semantics of established hash,
  29 *					half is devoted to TIME_WAIT sockets
  30 *					and the rest go in the other half.
  31 *		Andi Kleen :		Add support for syncookies and fixed
  32 *					some bugs: ip options weren't passed to
  33 *					the TCP layer, missed a check for an
  34 *					ACK bit.
  35 *		Andi Kleen :		Implemented fast path mtu discovery.
  36 *	     				Fixed many serious bugs in the
  37 *					request_sock handling and moved
  38 *					most of it into the af independent code.
  39 *					Added tail drop and some other bugfixes.
  40 *					Added new listen semantics.
  41 *		Mike McLagan	:	Routing by source
  42 *	Juan Jose Ciarlante:		ip_dynaddr bits
  43 *		Andi Kleen:		various fixes.
  44 *	Vitaly E. Lavrov	:	Transparent proxy revived after year
  45 *					coma.
  46 *	Andi Kleen		:	Fix new listen.
  47 *	Andi Kleen		:	Fix accept error reporting.
  48 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  49 *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
  50 *					a single port at the same time.
  51 */
  52
  53#define pr_fmt(fmt) "TCP: " fmt
  54
  55#include <linux/bottom_half.h>
  56#include <linux/types.h>
  57#include <linux/fcntl.h>
  58#include <linux/module.h>
  59#include <linux/random.h>
  60#include <linux/cache.h>
  61#include <linux/jhash.h>
  62#include <linux/init.h>
  63#include <linux/times.h>
  64#include <linux/slab.h>
  65
  66#include <net/net_namespace.h>
  67#include <net/icmp.h>
  68#include <net/inet_hashtables.h>
  69#include <net/tcp.h>
  70#include <net/transp_v6.h>
  71#include <net/ipv6.h>
  72#include <net/inet_common.h>
  73#include <net/timewait_sock.h>
  74#include <net/xfrm.h>
  75#include <net/netdma.h>
  76#include <net/secure_seq.h>
  77#include <net/tcp_memcontrol.h>
  78#include <net/busy_poll.h>
  79
  80#include <linux/inet.h>
  81#include <linux/ipv6.h>
  82#include <linux/stddef.h>
  83#include <linux/proc_fs.h>
  84#include <linux/seq_file.h>
  85
  86#include <linux/crypto.h>
  87#include <linux/scatterlist.h>
  88
  89int sysctl_tcp_tw_reuse __read_mostly;
  90int sysctl_tcp_low_latency __read_mostly;
  91EXPORT_SYMBOL(sysctl_tcp_low_latency);
  92
  93
  94#ifdef CONFIG_TCP_MD5SIG
  95static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
  96			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
  97#endif
  98
  99struct inet_hashinfo tcp_hashinfo;
 100EXPORT_SYMBOL(tcp_hashinfo);
 101
 102static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
 103{
 104	return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
 105					  ip_hdr(skb)->saddr,
 106					  tcp_hdr(skb)->dest,
 107					  tcp_hdr(skb)->source);
 108}
 109
 110int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
 111{
 112	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
 113	struct tcp_sock *tp = tcp_sk(sk);
 114
 115	/* With PAWS, it is safe from the viewpoint
 116	   of data integrity. Even without PAWS it is safe provided sequence
 117	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
 118
 119	   Actually, the idea is close to VJ's one, only timestamp cache is
 120	   held not per host, but per port pair and TW bucket is used as state
 121	   holder.
 122
 123	   If TW bucket has been already destroyed we fall back to VJ's scheme
 124	   and use initial timestamp retrieved from peer table.
 125	 */
 126	if (tcptw->tw_ts_recent_stamp &&
 127	    (twp == NULL || (sysctl_tcp_tw_reuse &&
 128			     get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
 129		tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
 130		if (tp->write_seq == 0)
 131			tp->write_seq = 1;
 132		tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
 133		tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
 134		sock_hold(sktw);
 135		return 1;
 136	}
 137
 138	return 0;
 139}
 140EXPORT_SYMBOL_GPL(tcp_twsk_unique);
 141
 
 
 
 
 
 
 
 
 142/* This will initiate an outgoing connection. */
 143int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
 144{
 145	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
 146	struct inet_sock *inet = inet_sk(sk);
 147	struct tcp_sock *tp = tcp_sk(sk);
 148	__be16 orig_sport, orig_dport;
 149	__be32 daddr, nexthop;
 150	struct flowi4 *fl4;
 151	struct rtable *rt;
 152	int err;
 153	struct ip_options_rcu *inet_opt;
 154
 155	if (addr_len < sizeof(struct sockaddr_in))
 156		return -EINVAL;
 157
 158	if (usin->sin_family != AF_INET)
 159		return -EAFNOSUPPORT;
 160
 161	nexthop = daddr = usin->sin_addr.s_addr;
 162	inet_opt = rcu_dereference_protected(inet->inet_opt,
 163					     sock_owned_by_user(sk));
 164	if (inet_opt && inet_opt->opt.srr) {
 165		if (!daddr)
 166			return -EINVAL;
 167		nexthop = inet_opt->opt.faddr;
 168	}
 169
 170	orig_sport = inet->inet_sport;
 171	orig_dport = usin->sin_port;
 172	fl4 = &inet->cork.fl.u.ip4;
 173	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
 174			      RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
 175			      IPPROTO_TCP,
 176			      orig_sport, orig_dport, sk);
 177	if (IS_ERR(rt)) {
 178		err = PTR_ERR(rt);
 179		if (err == -ENETUNREACH)
 180			IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
 181		return err;
 182	}
 183
 184	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
 185		ip_rt_put(rt);
 186		return -ENETUNREACH;
 187	}
 188
 189	if (!inet_opt || !inet_opt->opt.srr)
 190		daddr = fl4->daddr;
 191
 192	if (!inet->inet_saddr)
 193		inet->inet_saddr = fl4->saddr;
 194	inet->inet_rcv_saddr = inet->inet_saddr;
 195
 196	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
 197		/* Reset inherited state */
 198		tp->rx_opt.ts_recent	   = 0;
 199		tp->rx_opt.ts_recent_stamp = 0;
 200		if (likely(!tp->repair))
 201			tp->write_seq	   = 0;
 202	}
 203
 204	if (tcp_death_row.sysctl_tw_recycle &&
 205	    !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
 206		tcp_fetch_timewait_stamp(sk, &rt->dst);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207
 208	inet->inet_dport = usin->sin_port;
 209	inet->inet_daddr = daddr;
 210
 211	inet_csk(sk)->icsk_ext_hdr_len = 0;
 212	if (inet_opt)
 213		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
 214
 215	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
 216
 217	/* Socket identity is still unknown (sport may be zero).
 218	 * However we set state to SYN-SENT and not releasing socket
 219	 * lock select source port, enter ourselves into the hash tables and
 220	 * complete initialization after this.
 221	 */
 222	tcp_set_state(sk, TCP_SYN_SENT);
 223	err = inet_hash_connect(&tcp_death_row, sk);
 224	if (err)
 225		goto failure;
 226
 227	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
 228			       inet->inet_sport, inet->inet_dport, sk);
 229	if (IS_ERR(rt)) {
 230		err = PTR_ERR(rt);
 231		rt = NULL;
 232		goto failure;
 233	}
 234	/* OK, now commit destination to socket.  */
 235	sk->sk_gso_type = SKB_GSO_TCPV4;
 236	sk_setup_caps(sk, &rt->dst);
 237
 238	if (!tp->write_seq && likely(!tp->repair))
 239		tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
 240							   inet->inet_daddr,
 241							   inet->inet_sport,
 242							   usin->sin_port);
 243
 244	inet->inet_id = tp->write_seq ^ jiffies;
 245
 246	err = tcp_connect(sk);
 
 
 
 247
 248	rt = NULL;
 249	if (err)
 250		goto failure;
 251
 252	return 0;
 253
 254failure:
 255	/*
 256	 * This unhashes the socket and releases the local port,
 257	 * if necessary.
 258	 */
 259	tcp_set_state(sk, TCP_CLOSE);
 260	ip_rt_put(rt);
 261	sk->sk_route_caps = 0;
 262	inet->inet_dport = 0;
 263	return err;
 264}
 265EXPORT_SYMBOL(tcp_v4_connect);
 266
 267/*
 268 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
 269 * It can be called through tcp_release_cb() if socket was owned by user
 270 * at the time tcp_v4_err() was called to handle ICMP message.
 271 */
 272static void tcp_v4_mtu_reduced(struct sock *sk)
 273{
 274	struct dst_entry *dst;
 275	struct inet_sock *inet = inet_sk(sk);
 276	u32 mtu = tcp_sk(sk)->mtu_info;
 277
 278	dst = inet_csk_update_pmtu(sk, mtu);
 279	if (!dst)
 
 
 
 
 
 
 
 
 
 
 
 
 280		return;
 281
 
 
 282	/* Something is about to be wrong... Remember soft error
 283	 * for the case, if this connection will not able to recover.
 284	 */
 285	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
 286		sk->sk_err_soft = EMSGSIZE;
 287
 288	mtu = dst_mtu(dst);
 289
 290	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
 291	    ip_sk_accept_pmtu(sk) &&
 292	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
 293		tcp_sync_mss(sk, mtu);
 294
 295		/* Resend the TCP packet because it's
 296		 * clear that the old packet has been
 297		 * dropped. This is the new "fast" path mtu
 298		 * discovery.
 299		 */
 300		tcp_simple_retransmit(sk);
 301	} /* else let the usual retransmit timer handle it */
 302}
 303
 304static void do_redirect(struct sk_buff *skb, struct sock *sk)
 305{
 306	struct dst_entry *dst = __sk_dst_check(sk, 0);
 307
 308	if (dst)
 309		dst->ops->redirect(dst, sk, skb);
 310}
 311
 312/*
 313 * This routine is called by the ICMP module when it gets some
 314 * sort of error condition.  If err < 0 then the socket should
 315 * be closed and the error returned to the user.  If err > 0
 316 * it's just the icmp type << 8 | icmp code.  After adjustment
 317 * header points to the first 8 bytes of the tcp header.  We need
 318 * to find the appropriate port.
 319 *
 320 * The locking strategy used here is very "optimistic". When
 321 * someone else accesses the socket the ICMP is just dropped
 322 * and for some paths there is no check at all.
 323 * A more general error queue to queue errors for later handling
 324 * is probably better.
 325 *
 326 */
 327
 328void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
 329{
 330	const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
 331	struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
 332	struct inet_connection_sock *icsk;
 333	struct tcp_sock *tp;
 334	struct inet_sock *inet;
 335	const int type = icmp_hdr(icmp_skb)->type;
 336	const int code = icmp_hdr(icmp_skb)->code;
 337	struct sock *sk;
 338	struct sk_buff *skb;
 339	struct request_sock *req;
 340	__u32 seq;
 341	__u32 remaining;
 342	int err;
 343	struct net *net = dev_net(icmp_skb->dev);
 344
 345	if (icmp_skb->len < (iph->ihl << 2) + 8) {
 346		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
 347		return;
 348	}
 349
 350	sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
 351			iph->saddr, th->source, inet_iif(icmp_skb));
 352	if (!sk) {
 353		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
 354		return;
 355	}
 356	if (sk->sk_state == TCP_TIME_WAIT) {
 357		inet_twsk_put(inet_twsk(sk));
 358		return;
 359	}
 360
 361	bh_lock_sock(sk);
 362	/* If too many ICMPs get dropped on busy
 363	 * servers this needs to be solved differently.
 364	 * We do take care of PMTU discovery (RFC1191) special case :
 365	 * we can receive locally generated ICMP messages while socket is held.
 366	 */
 367	if (sock_owned_by_user(sk)) {
 368		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
 369			NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
 370	}
 371	if (sk->sk_state == TCP_CLOSE)
 372		goto out;
 373
 374	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
 375		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
 376		goto out;
 377	}
 378
 379	icsk = inet_csk(sk);
 380	tp = tcp_sk(sk);
 381	req = tp->fastopen_rsk;
 382	seq = ntohl(th->seq);
 383	if (sk->sk_state != TCP_LISTEN &&
 384	    !between(seq, tp->snd_una, tp->snd_nxt) &&
 385	    (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
 386		/* For a Fast Open socket, allow seq to be snt_isn. */
 387		NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
 388		goto out;
 389	}
 390
 391	switch (type) {
 392	case ICMP_REDIRECT:
 393		do_redirect(icmp_skb, sk);
 394		goto out;
 395	case ICMP_SOURCE_QUENCH:
 396		/* Just silently ignore these. */
 397		goto out;
 398	case ICMP_PARAMETERPROB:
 399		err = EPROTO;
 400		break;
 401	case ICMP_DEST_UNREACH:
 402		if (code > NR_ICMP_UNREACH)
 403			goto out;
 404
 405		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
 406			/* We are not interested in TCP_LISTEN and open_requests
 407			 * (SYN-ACKs send out by Linux are always <576bytes so
 408			 * they should go through unfragmented).
 409			 */
 410			if (sk->sk_state == TCP_LISTEN)
 411				goto out;
 412
 413			tp->mtu_info = info;
 414			if (!sock_owned_by_user(sk)) {
 415				tcp_v4_mtu_reduced(sk);
 416			} else {
 417				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
 418					sock_hold(sk);
 419			}
 420			goto out;
 421		}
 422
 423		err = icmp_err_convert[code].errno;
 424		/* check if icmp_skb allows revert of backoff
 425		 * (see draft-zimmermann-tcp-lcd) */
 426		if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
 427			break;
 428		if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
 429		    !icsk->icsk_backoff)
 430			break;
 431
 432		/* XXX (TFO) - revisit the following logic for TFO */
 433
 434		if (sock_owned_by_user(sk))
 435			break;
 436
 437		icsk->icsk_backoff--;
 438		inet_csk(sk)->icsk_rto = (tp->srtt_us ? __tcp_set_rto(tp) :
 439			TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
 440		tcp_bound_rto(sk);
 441
 442		skb = tcp_write_queue_head(sk);
 443		BUG_ON(!skb);
 444
 445		remaining = icsk->icsk_rto - min(icsk->icsk_rto,
 446				tcp_time_stamp - TCP_SKB_CB(skb)->when);
 447
 448		if (remaining) {
 449			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
 450						  remaining, TCP_RTO_MAX);
 451		} else {
 452			/* RTO revert clocked out retransmission.
 453			 * Will retransmit now */
 454			tcp_retransmit_timer(sk);
 455		}
 456
 457		break;
 458	case ICMP_TIME_EXCEEDED:
 459		err = EHOSTUNREACH;
 460		break;
 461	default:
 462		goto out;
 463	}
 464
 465	/* XXX (TFO) - if it's a TFO socket and has been accepted, rather
 466	 * than following the TCP_SYN_RECV case and closing the socket,
 467	 * we ignore the ICMP error and keep trying like a fully established
 468	 * socket. Is this the right thing to do?
 469	 */
 470	if (req && req->sk == NULL)
 471		goto out;
 472
 473	switch (sk->sk_state) {
 474		struct request_sock *req, **prev;
 475	case TCP_LISTEN:
 476		if (sock_owned_by_user(sk))
 477			goto out;
 478
 479		req = inet_csk_search_req(sk, &prev, th->dest,
 480					  iph->daddr, iph->saddr);
 481		if (!req)
 482			goto out;
 483
 484		/* ICMPs are not backlogged, hence we cannot get
 485		   an established socket here.
 486		 */
 487		WARN_ON(req->sk);
 488
 489		if (seq != tcp_rsk(req)->snt_isn) {
 490			NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
 491			goto out;
 492		}
 493
 494		/*
 495		 * Still in SYN_RECV, just remove it silently.
 496		 * There is no good way to pass the error to the newly
 497		 * created socket, and POSIX does not want network
 498		 * errors returned from accept().
 499		 */
 500		inet_csk_reqsk_queue_drop(sk, req, prev);
 501		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
 502		goto out;
 503
 504	case TCP_SYN_SENT:
 505	case TCP_SYN_RECV:  /* Cannot happen.
 506			       It can f.e. if SYNs crossed,
 507			       or Fast Open.
 508			     */
 509		if (!sock_owned_by_user(sk)) {
 510			sk->sk_err = err;
 511
 512			sk->sk_error_report(sk);
 513
 514			tcp_done(sk);
 515		} else {
 516			sk->sk_err_soft = err;
 517		}
 518		goto out;
 519	}
 520
 521	/* If we've already connected we will keep trying
 522	 * until we time out, or the user gives up.
 523	 *
 524	 * rfc1122 4.2.3.9 allows to consider as hard errors
 525	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
 526	 * but it is obsoleted by pmtu discovery).
 527	 *
 528	 * Note, that in modern internet, where routing is unreliable
 529	 * and in each dark corner broken firewalls sit, sending random
 530	 * errors ordered by their masters even this two messages finally lose
 531	 * their original sense (even Linux sends invalid PORT_UNREACHs)
 532	 *
 533	 * Now we are in compliance with RFCs.
 534	 *							--ANK (980905)
 535	 */
 536
 537	inet = inet_sk(sk);
 538	if (!sock_owned_by_user(sk) && inet->recverr) {
 539		sk->sk_err = err;
 540		sk->sk_error_report(sk);
 541	} else	{ /* Only an error on timeout */
 542		sk->sk_err_soft = err;
 543	}
 544
 545out:
 546	bh_unlock_sock(sk);
 547	sock_put(sk);
 548}
 549
 550void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
 
 551{
 552	struct tcphdr *th = tcp_hdr(skb);
 553
 554	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 555		th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
 556		skb->csum_start = skb_transport_header(skb) - skb->head;
 557		skb->csum_offset = offsetof(struct tcphdr, check);
 558	} else {
 559		th->check = tcp_v4_check(skb->len, saddr, daddr,
 560					 csum_partial(th,
 561						      th->doff << 2,
 562						      skb->csum));
 563	}
 564}
 565
 566/* This routine computes an IPv4 TCP checksum. */
 567void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
 568{
 569	const struct inet_sock *inet = inet_sk(sk);
 570
 571	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
 572}
 573EXPORT_SYMBOL(tcp_v4_send_check);
 574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 575/*
 576 *	This routine will send an RST to the other tcp.
 577 *
 578 *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
 579 *		      for reset.
 580 *	Answer: if a packet caused RST, it is not for a socket
 581 *		existing in our system, if it is matched to a socket,
 582 *		it is just duplicate segment or bug in other side's TCP.
 583 *		So that we build reply only basing on parameters
 584 *		arrived with segment.
 585 *	Exception: precedence violation. We do not implement it in any case.
 586 */
 587
 588static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
 589{
 590	const struct tcphdr *th = tcp_hdr(skb);
 591	struct {
 592		struct tcphdr th;
 593#ifdef CONFIG_TCP_MD5SIG
 594		__be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
 595#endif
 596	} rep;
 597	struct ip_reply_arg arg;
 598#ifdef CONFIG_TCP_MD5SIG
 599	struct tcp_md5sig_key *key;
 600	const __u8 *hash_location = NULL;
 601	unsigned char newhash[16];
 602	int genhash;
 603	struct sock *sk1 = NULL;
 604#endif
 605	struct net *net;
 606
 607	/* Never send a reset in response to a reset. */
 608	if (th->rst)
 609		return;
 610
 611	if (skb_rtable(skb)->rt_type != RTN_LOCAL)
 612		return;
 613
 614	/* Swap the send and the receive. */
 615	memset(&rep, 0, sizeof(rep));
 616	rep.th.dest   = th->source;
 617	rep.th.source = th->dest;
 618	rep.th.doff   = sizeof(struct tcphdr) / 4;
 619	rep.th.rst    = 1;
 620
 621	if (th->ack) {
 622		rep.th.seq = th->ack_seq;
 623	} else {
 624		rep.th.ack = 1;
 625		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
 626				       skb->len - (th->doff << 2));
 627	}
 628
 629	memset(&arg, 0, sizeof(arg));
 630	arg.iov[0].iov_base = (unsigned char *)&rep;
 631	arg.iov[0].iov_len  = sizeof(rep.th);
 632
 633#ifdef CONFIG_TCP_MD5SIG
 634	hash_location = tcp_parse_md5sig_option(th);
 635	if (!sk && hash_location) {
 636		/*
 637		 * active side is lost. Try to find listening socket through
 638		 * source port, and then find md5 key through listening socket.
 639		 * we are not loose security here:
 640		 * Incoming packet is checked with md5 hash with finding key,
 641		 * no RST generated if md5 hash doesn't match.
 642		 */
 643		sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
 644					     &tcp_hashinfo, ip_hdr(skb)->saddr,
 645					     th->source, ip_hdr(skb)->daddr,
 646					     ntohs(th->source), inet_iif(skb));
 647		/* don't send rst if it can't find key */
 648		if (!sk1)
 649			return;
 650		rcu_read_lock();
 651		key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
 652					&ip_hdr(skb)->saddr, AF_INET);
 653		if (!key)
 654			goto release_sk1;
 655
 656		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
 657		if (genhash || memcmp(hash_location, newhash, 16) != 0)
 658			goto release_sk1;
 659	} else {
 660		key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
 661					     &ip_hdr(skb)->saddr,
 662					     AF_INET) : NULL;
 663	}
 664
 665	if (key) {
 666		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
 667				   (TCPOPT_NOP << 16) |
 668				   (TCPOPT_MD5SIG << 8) |
 669				   TCPOLEN_MD5SIG);
 670		/* Update length and the length the header thinks exists */
 671		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 672		rep.th.doff = arg.iov[0].iov_len / 4;
 673
 674		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
 675				     key, ip_hdr(skb)->saddr,
 676				     ip_hdr(skb)->daddr, &rep.th);
 677	}
 678#endif
 679	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 680				      ip_hdr(skb)->saddr, /* XXX */
 681				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 682	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 683	arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
 684	/* When socket is gone, all binding information is lost.
 685	 * routing might fail in this case. No choice here, if we choose to force
 686	 * input interface, we will misroute in case of asymmetric route.
 687	 */
 688	if (sk)
 689		arg.bound_dev_if = sk->sk_bound_dev_if;
 690
 691	net = dev_net(skb_dst(skb)->dev);
 692	arg.tos = ip_hdr(skb)->tos;
 693	ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
 694			      ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
 695
 696	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
 697	TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
 698
 699#ifdef CONFIG_TCP_MD5SIG
 700release_sk1:
 701	if (sk1) {
 702		rcu_read_unlock();
 703		sock_put(sk1);
 704	}
 705#endif
 706}
 707
 708/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
 709   outside socket context is ugly, certainly. What can I do?
 710 */
 711
 712static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
 713			    u32 win, u32 tsval, u32 tsecr, int oif,
 714			    struct tcp_md5sig_key *key,
 715			    int reply_flags, u8 tos)
 716{
 717	const struct tcphdr *th = tcp_hdr(skb);
 718	struct {
 719		struct tcphdr th;
 720		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
 721#ifdef CONFIG_TCP_MD5SIG
 722			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
 723#endif
 724			];
 725	} rep;
 726	struct ip_reply_arg arg;
 727	struct net *net = dev_net(skb_dst(skb)->dev);
 728
 729	memset(&rep.th, 0, sizeof(struct tcphdr));
 730	memset(&arg, 0, sizeof(arg));
 731
 732	arg.iov[0].iov_base = (unsigned char *)&rep;
 733	arg.iov[0].iov_len  = sizeof(rep.th);
 734	if (tsecr) {
 735		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 736				   (TCPOPT_TIMESTAMP << 8) |
 737				   TCPOLEN_TIMESTAMP);
 738		rep.opt[1] = htonl(tsval);
 739		rep.opt[2] = htonl(tsecr);
 740		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
 741	}
 742
 743	/* Swap the send and the receive. */
 744	rep.th.dest    = th->source;
 745	rep.th.source  = th->dest;
 746	rep.th.doff    = arg.iov[0].iov_len / 4;
 747	rep.th.seq     = htonl(seq);
 748	rep.th.ack_seq = htonl(ack);
 749	rep.th.ack     = 1;
 750	rep.th.window  = htons(win);
 751
 752#ifdef CONFIG_TCP_MD5SIG
 753	if (key) {
 754		int offset = (tsecr) ? 3 : 0;
 755
 756		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
 757					  (TCPOPT_NOP << 16) |
 758					  (TCPOPT_MD5SIG << 8) |
 759					  TCPOLEN_MD5SIG);
 760		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 761		rep.th.doff = arg.iov[0].iov_len/4;
 762
 763		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
 764				    key, ip_hdr(skb)->saddr,
 765				    ip_hdr(skb)->daddr, &rep.th);
 766	}
 767#endif
 768	arg.flags = reply_flags;
 769	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 770				      ip_hdr(skb)->saddr, /* XXX */
 771				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 772	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 773	if (oif)
 774		arg.bound_dev_if = oif;
 775	arg.tos = tos;
 776	ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
 777			      ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
 778
 779	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
 780}
 781
 782static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
 783{
 784	struct inet_timewait_sock *tw = inet_twsk(sk);
 785	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
 786
 787	tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
 788			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
 789			tcp_time_stamp + tcptw->tw_ts_offset,
 790			tcptw->tw_ts_recent,
 791			tw->tw_bound_dev_if,
 792			tcp_twsk_md5_key(tcptw),
 793			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
 794			tw->tw_tos
 795			);
 796
 797	inet_twsk_put(tw);
 798}
 799
 800static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
 801				  struct request_sock *req)
 802{
 803	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
 804	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
 805	 */
 806	tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
 807			tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
 808			tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
 809			tcp_time_stamp,
 810			req->ts_recent,
 811			0,
 812			tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
 813					  AF_INET),
 814			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
 815			ip_hdr(skb)->tos);
 816}
 817
 818/*
 819 *	Send a SYN-ACK after having received a SYN.
 820 *	This still operates on a request_sock only, not on a big
 821 *	socket.
 822 */
 823static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
 824			      struct request_sock *req,
 
 825			      u16 queue_mapping)
 826{
 827	const struct inet_request_sock *ireq = inet_rsk(req);
 828	struct flowi4 fl4;
 829	int err = -1;
 830	struct sk_buff *skb;
 831
 832	/* First, grab a route. */
 833	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
 834		return -1;
 835
 836	skb = tcp_make_synack(sk, dst, req, NULL);
 837
 838	if (skb) {
 839		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
 840
 841		skb_set_queue_mapping(skb, queue_mapping);
 842		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
 843					    ireq->ir_rmt_addr,
 844					    ireq->opt);
 845		err = net_xmit_eval(err);
 846		if (!tcp_rsk(req)->snt_synack && !err)
 847			tcp_rsk(req)->snt_synack = tcp_time_stamp;
 848	}
 849
 
 850	return err;
 851}
 852
 853static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req)
 
 854{
 855	int res = tcp_v4_send_synack(sk, NULL, req, 0);
 856
 857	if (!res) {
 858		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
 859		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
 860	}
 861	return res;
 862}
 863
 864/*
 865 *	IPv4 request_sock destructor.
 866 */
 867static void tcp_v4_reqsk_destructor(struct request_sock *req)
 868{
 869	kfree(inet_rsk(req)->opt);
 870}
 871
 872/*
 873 * Return true if a syncookie should be sent
 874 */
 875bool tcp_syn_flood_action(struct sock *sk,
 876			 const struct sk_buff *skb,
 877			 const char *proto)
 878{
 879	const char *msg = "Dropping request";
 880	bool want_cookie = false;
 881	struct listen_sock *lopt;
 882
 
 
 883#ifdef CONFIG_SYN_COOKIES
 884	if (sysctl_tcp_syncookies) {
 885		msg = "Sending cookies";
 886		want_cookie = true;
 887		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
 888	} else
 889#endif
 890		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
 891
 892	lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
 893	if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
 894		lopt->synflood_warned = 1;
 895		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
 896			proto, ntohs(tcp_hdr(skb)->dest), msg);
 897	}
 898	return want_cookie;
 899}
 900EXPORT_SYMBOL(tcp_syn_flood_action);
 901
 902/*
 903 * Save and compile IPv4 options into the request_sock if needed.
 904 */
 905static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
 
 906{
 907	const struct ip_options *opt = &(IPCB(skb)->opt);
 908	struct ip_options_rcu *dopt = NULL;
 909
 910	if (opt && opt->optlen) {
 911		int opt_size = sizeof(*dopt) + opt->optlen;
 912
 913		dopt = kmalloc(opt_size, GFP_ATOMIC);
 914		if (dopt) {
 915			if (ip_options_echo(&dopt->opt, skb)) {
 916				kfree(dopt);
 917				dopt = NULL;
 918			}
 919		}
 920	}
 921	return dopt;
 922}
 923
 924#ifdef CONFIG_TCP_MD5SIG
 925/*
 926 * RFC2385 MD5 checksumming requires a mapping of
 927 * IP address->MD5 Key.
 928 * We need to maintain these in the sk structure.
 929 */
 930
 931/* Find the Key structure for an address.  */
 932struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
 933					 const union tcp_md5_addr *addr,
 934					 int family)
 935{
 936	struct tcp_sock *tp = tcp_sk(sk);
 937	struct tcp_md5sig_key *key;
 
 938	unsigned int size = sizeof(struct in_addr);
 939	struct tcp_md5sig_info *md5sig;
 940
 941	/* caller either holds rcu_read_lock() or socket lock */
 942	md5sig = rcu_dereference_check(tp->md5sig_info,
 943				       sock_owned_by_user(sk) ||
 944				       lockdep_is_held(&sk->sk_lock.slock));
 945	if (!md5sig)
 946		return NULL;
 947#if IS_ENABLED(CONFIG_IPV6)
 948	if (family == AF_INET6)
 949		size = sizeof(struct in6_addr);
 950#endif
 951	hlist_for_each_entry_rcu(key, &md5sig->head, node) {
 952		if (key->family != family)
 953			continue;
 954		if (!memcmp(&key->addr, addr, size))
 955			return key;
 956	}
 957	return NULL;
 958}
 959EXPORT_SYMBOL(tcp_md5_do_lookup);
 960
 961struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
 962					 struct sock *addr_sk)
 963{
 964	union tcp_md5_addr *addr;
 965
 966	addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
 967	return tcp_md5_do_lookup(sk, addr, AF_INET);
 968}
 969EXPORT_SYMBOL(tcp_v4_md5_lookup);
 970
 971static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
 972						      struct request_sock *req)
 973{
 974	union tcp_md5_addr *addr;
 975
 976	addr = (union tcp_md5_addr *)&inet_rsk(req)->ir_rmt_addr;
 977	return tcp_md5_do_lookup(sk, addr, AF_INET);
 978}
 979
 980/* This can be called on a newly created socket, from other files */
 981int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
 982		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
 983{
 984	/* Add Key to the list */
 985	struct tcp_md5sig_key *key;
 986	struct tcp_sock *tp = tcp_sk(sk);
 987	struct tcp_md5sig_info *md5sig;
 988
 989	key = tcp_md5_do_lookup(sk, addr, family);
 990	if (key) {
 991		/* Pre-existing entry - just update that one. */
 992		memcpy(key->key, newkey, newkeylen);
 993		key->keylen = newkeylen;
 994		return 0;
 995	}
 996
 997	md5sig = rcu_dereference_protected(tp->md5sig_info,
 998					   sock_owned_by_user(sk));
 999	if (!md5sig) {
1000		md5sig = kmalloc(sizeof(*md5sig), gfp);
1001		if (!md5sig)
1002			return -ENOMEM;
1003
1004		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1005		INIT_HLIST_HEAD(&md5sig->head);
1006		rcu_assign_pointer(tp->md5sig_info, md5sig);
1007	}
1008
1009	key = sock_kmalloc(sk, sizeof(*key), gfp);
1010	if (!key)
1011		return -ENOMEM;
1012	if (!tcp_alloc_md5sig_pool()) {
1013		sock_kfree_s(sk, key, sizeof(*key));
1014		return -ENOMEM;
1015	}
1016
1017	memcpy(key->key, newkey, newkeylen);
1018	key->keylen = newkeylen;
1019	key->family = family;
1020	memcpy(&key->addr, addr,
1021	       (family == AF_INET6) ? sizeof(struct in6_addr) :
1022				      sizeof(struct in_addr));
1023	hlist_add_head_rcu(&key->node, &md5sig->head);
1024	return 0;
1025}
1026EXPORT_SYMBOL(tcp_md5_do_add);
1027
1028int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1029{
 
1030	struct tcp_md5sig_key *key;
 
1031
1032	key = tcp_md5_do_lookup(sk, addr, family);
1033	if (!key)
1034		return -ENOENT;
1035	hlist_del_rcu(&key->node);
1036	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1037	kfree_rcu(key, rcu);
 
 
 
 
1038	return 0;
1039}
1040EXPORT_SYMBOL(tcp_md5_do_del);
1041
1042static void tcp_clear_md5_list(struct sock *sk)
1043{
1044	struct tcp_sock *tp = tcp_sk(sk);
1045	struct tcp_md5sig_key *key;
1046	struct hlist_node *n;
1047	struct tcp_md5sig_info *md5sig;
1048
1049	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1050
1051	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
 
 
1052		hlist_del_rcu(&key->node);
1053		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1054		kfree_rcu(key, rcu);
1055	}
1056}
1057
1058static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1059				 int optlen)
1060{
1061	struct tcp_md5sig cmd;
1062	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1063
1064	if (optlen < sizeof(cmd))
1065		return -EINVAL;
1066
1067	if (copy_from_user(&cmd, optval, sizeof(cmd)))
1068		return -EFAULT;
1069
1070	if (sin->sin_family != AF_INET)
1071		return -EINVAL;
1072
1073	if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1074		return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1075				      AF_INET);
1076
1077	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1078		return -EINVAL;
1079
1080	return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1081			      AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1082			      GFP_KERNEL);
1083}
1084
1085static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1086					__be32 daddr, __be32 saddr, int nbytes)
1087{
1088	struct tcp4_pseudohdr *bp;
1089	struct scatterlist sg;
1090
1091	bp = &hp->md5_blk.ip4;
1092
1093	/*
1094	 * 1. the TCP pseudo-header (in the order: source IP address,
1095	 * destination IP address, zero-padded protocol number, and
1096	 * segment length)
1097	 */
1098	bp->saddr = saddr;
1099	bp->daddr = daddr;
1100	bp->pad = 0;
1101	bp->protocol = IPPROTO_TCP;
1102	bp->len = cpu_to_be16(nbytes);
1103
1104	sg_init_one(&sg, bp, sizeof(*bp));
1105	return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1106}
1107
1108static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1109			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1110{
1111	struct tcp_md5sig_pool *hp;
1112	struct hash_desc *desc;
1113
1114	hp = tcp_get_md5sig_pool();
1115	if (!hp)
1116		goto clear_hash_noput;
1117	desc = &hp->md5_desc;
1118
1119	if (crypto_hash_init(desc))
1120		goto clear_hash;
1121	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1122		goto clear_hash;
1123	if (tcp_md5_hash_header(hp, th))
1124		goto clear_hash;
1125	if (tcp_md5_hash_key(hp, key))
1126		goto clear_hash;
1127	if (crypto_hash_final(desc, md5_hash))
1128		goto clear_hash;
1129
1130	tcp_put_md5sig_pool();
1131	return 0;
1132
1133clear_hash:
1134	tcp_put_md5sig_pool();
1135clear_hash_noput:
1136	memset(md5_hash, 0, 16);
1137	return 1;
1138}
1139
1140int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1141			const struct sock *sk, const struct request_sock *req,
1142			const struct sk_buff *skb)
1143{
1144	struct tcp_md5sig_pool *hp;
1145	struct hash_desc *desc;
1146	const struct tcphdr *th = tcp_hdr(skb);
1147	__be32 saddr, daddr;
1148
1149	if (sk) {
1150		saddr = inet_sk(sk)->inet_saddr;
1151		daddr = inet_sk(sk)->inet_daddr;
1152	} else if (req) {
1153		saddr = inet_rsk(req)->ir_loc_addr;
1154		daddr = inet_rsk(req)->ir_rmt_addr;
1155	} else {
1156		const struct iphdr *iph = ip_hdr(skb);
1157		saddr = iph->saddr;
1158		daddr = iph->daddr;
1159	}
1160
1161	hp = tcp_get_md5sig_pool();
1162	if (!hp)
1163		goto clear_hash_noput;
1164	desc = &hp->md5_desc;
1165
1166	if (crypto_hash_init(desc))
1167		goto clear_hash;
1168
1169	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1170		goto clear_hash;
1171	if (tcp_md5_hash_header(hp, th))
1172		goto clear_hash;
1173	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1174		goto clear_hash;
1175	if (tcp_md5_hash_key(hp, key))
1176		goto clear_hash;
1177	if (crypto_hash_final(desc, md5_hash))
1178		goto clear_hash;
1179
1180	tcp_put_md5sig_pool();
1181	return 0;
1182
1183clear_hash:
1184	tcp_put_md5sig_pool();
1185clear_hash_noput:
1186	memset(md5_hash, 0, 16);
1187	return 1;
1188}
1189EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1190
1191static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1192{
1193	/*
1194	 * This gets called for each TCP segment that arrives
1195	 * so we want to be efficient.
1196	 * We have 3 drop cases:
1197	 * o No MD5 hash and one expected.
1198	 * o MD5 hash and we're not expecting one.
1199	 * o MD5 hash and its wrong.
1200	 */
1201	const __u8 *hash_location = NULL;
1202	struct tcp_md5sig_key *hash_expected;
1203	const struct iphdr *iph = ip_hdr(skb);
1204	const struct tcphdr *th = tcp_hdr(skb);
1205	int genhash;
1206	unsigned char newhash[16];
1207
1208	hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1209					  AF_INET);
1210	hash_location = tcp_parse_md5sig_option(th);
1211
1212	/* We've parsed the options - do we have a hash? */
1213	if (!hash_expected && !hash_location)
1214		return false;
1215
1216	if (hash_expected && !hash_location) {
1217		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1218		return true;
1219	}
1220
1221	if (!hash_expected && hash_location) {
1222		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1223		return true;
1224	}
1225
1226	/* Okay, so this is hash_expected and hash_location -
1227	 * so we need to calculate the checksum.
1228	 */
1229	genhash = tcp_v4_md5_hash_skb(newhash,
1230				      hash_expected,
1231				      NULL, NULL, skb);
1232
1233	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1234		net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1235				     &iph->saddr, ntohs(th->source),
1236				     &iph->daddr, ntohs(th->dest),
1237				     genhash ? " tcp_v4_calc_md5_hash failed"
1238				     : "");
1239		return true;
1240	}
1241	return false;
1242}
1243
1244#endif
1245
1246struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1247	.family		=	PF_INET,
1248	.obj_size	=	sizeof(struct tcp_request_sock),
1249	.rtx_syn_ack	=	tcp_v4_rtx_synack,
1250	.send_ack	=	tcp_v4_reqsk_send_ack,
1251	.destructor	=	tcp_v4_reqsk_destructor,
1252	.send_reset	=	tcp_v4_send_reset,
1253	.syn_ack_timeout = 	tcp_syn_ack_timeout,
1254};
1255
1256#ifdef CONFIG_TCP_MD5SIG
1257static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1258	.md5_lookup	=	tcp_v4_reqsk_md5_lookup,
1259	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1260};
1261#endif
1262
1263static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1264			       struct request_sock *req,
1265			       struct tcp_fastopen_cookie *foc,
1266			       struct tcp_fastopen_cookie *valid_foc)
1267{
1268	bool skip_cookie = false;
1269	struct fastopen_queue *fastopenq;
1270
1271	if (likely(!fastopen_cookie_present(foc))) {
1272		/* See include/net/tcp.h for the meaning of these knobs */
1273		if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1274		    ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1275		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1276			skip_cookie = true; /* no cookie to validate */
1277		else
1278			return false;
1279	}
1280	fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1281	/* A FO option is present; bump the counter. */
1282	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1283
1284	/* Make sure the listener has enabled fastopen, and we don't
1285	 * exceed the max # of pending TFO requests allowed before trying
1286	 * to validating the cookie in order to avoid burning CPU cycles
1287	 * unnecessarily.
1288	 *
1289	 * XXX (TFO) - The implication of checking the max_qlen before
1290	 * processing a cookie request is that clients can't differentiate
1291	 * between qlen overflow causing Fast Open to be disabled
1292	 * temporarily vs a server not supporting Fast Open at all.
1293	 */
1294	if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1295	    fastopenq == NULL || fastopenq->max_qlen == 0)
1296		return false;
1297
1298	if (fastopenq->qlen >= fastopenq->max_qlen) {
1299		struct request_sock *req1;
1300		spin_lock(&fastopenq->lock);
1301		req1 = fastopenq->rskq_rst_head;
1302		if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1303			spin_unlock(&fastopenq->lock);
1304			NET_INC_STATS_BH(sock_net(sk),
1305			    LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1306			/* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1307			foc->len = -1;
1308			return false;
1309		}
1310		fastopenq->rskq_rst_head = req1->dl_next;
1311		fastopenq->qlen--;
1312		spin_unlock(&fastopenq->lock);
1313		reqsk_free(req1);
1314	}
1315	if (skip_cookie) {
1316		tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1317		return true;
1318	}
1319
1320	if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1321		if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1322			tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr,
1323						ip_hdr(skb)->daddr, valid_foc);
1324			if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1325			    memcmp(&foc->val[0], &valid_foc->val[0],
1326			    TCP_FASTOPEN_COOKIE_SIZE) != 0)
1327				return false;
1328			valid_foc->len = -1;
1329		}
1330		/* Acknowledge the data received from the peer. */
1331		tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1332		return true;
1333	} else if (foc->len == 0) { /* Client requesting a cookie */
1334		tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr,
1335					ip_hdr(skb)->daddr, valid_foc);
1336		NET_INC_STATS_BH(sock_net(sk),
1337		    LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1338	} else {
1339		/* Client sent a cookie with wrong size. Treat it
1340		 * the same as invalid and return a valid one.
1341		 */
1342		tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr,
1343					ip_hdr(skb)->daddr, valid_foc);
1344	}
1345	return false;
1346}
1347
1348static int tcp_v4_conn_req_fastopen(struct sock *sk,
1349				    struct sk_buff *skb,
1350				    struct sk_buff *skb_synack,
1351				    struct request_sock *req)
1352{
1353	struct tcp_sock *tp = tcp_sk(sk);
1354	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1355	const struct inet_request_sock *ireq = inet_rsk(req);
1356	struct sock *child;
1357	int err;
1358
1359	req->num_retrans = 0;
1360	req->num_timeout = 0;
1361	req->sk = NULL;
1362
1363	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1364	if (child == NULL) {
1365		NET_INC_STATS_BH(sock_net(sk),
1366				 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1367		kfree_skb(skb_synack);
1368		return -1;
1369	}
1370	err = ip_build_and_send_pkt(skb_synack, sk, ireq->ir_loc_addr,
1371				    ireq->ir_rmt_addr, ireq->opt);
1372	err = net_xmit_eval(err);
1373	if (!err)
1374		tcp_rsk(req)->snt_synack = tcp_time_stamp;
1375	/* XXX (TFO) - is it ok to ignore error and continue? */
1376
1377	spin_lock(&queue->fastopenq->lock);
1378	queue->fastopenq->qlen++;
1379	spin_unlock(&queue->fastopenq->lock);
1380
1381	/* Initialize the child socket. Have to fix some values to take
1382	 * into account the child is a Fast Open socket and is created
1383	 * only out of the bits carried in the SYN packet.
1384	 */
1385	tp = tcp_sk(child);
1386
1387	tp->fastopen_rsk = req;
1388	/* Do a hold on the listner sk so that if the listener is being
1389	 * closed, the child that has been accepted can live on and still
1390	 * access listen_lock.
1391	 */
1392	sock_hold(sk);
1393	tcp_rsk(req)->listener = sk;
1394
1395	/* RFC1323: The window in SYN & SYN/ACK segments is never
1396	 * scaled. So correct it appropriately.
1397	 */
1398	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1399
1400	/* Activate the retrans timer so that SYNACK can be retransmitted.
1401	 * The request socket is not added to the SYN table of the parent
1402	 * because it's been added to the accept queue directly.
1403	 */
1404	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1405	    TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1406
1407	/* Add the child socket directly into the accept queue */
1408	inet_csk_reqsk_queue_add(sk, req, child);
1409
1410	/* Now finish processing the fastopen child socket. */
1411	inet_csk(child)->icsk_af_ops->rebuild_header(child);
1412	tcp_init_congestion_control(child);
1413	tcp_mtup_init(child);
1414	tcp_init_metrics(child);
1415	tcp_init_buffer_space(child);
1416
1417	/* Queue the data carried in the SYN packet. We need to first
1418	 * bump skb's refcnt because the caller will attempt to free it.
1419	 *
1420	 * XXX (TFO) - we honor a zero-payload TFO request for now.
1421	 * (Any reason not to?)
1422	 */
1423	if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1424		/* Don't queue the skb if there is no payload in SYN.
1425		 * XXX (TFO) - How about SYN+FIN?
1426		 */
1427		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1428	} else {
1429		skb = skb_get(skb);
1430		skb_dst_drop(skb);
1431		__skb_pull(skb, tcp_hdr(skb)->doff * 4);
1432		skb_set_owner_r(skb, child);
1433		__skb_queue_tail(&child->sk_receive_queue, skb);
1434		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1435		tp->syn_data_acked = 1;
1436	}
1437	sk->sk_data_ready(sk);
1438	bh_unlock_sock(child);
1439	sock_put(child);
1440	WARN_ON(req->sk == NULL);
1441	return 0;
1442}
1443
1444int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1445{
 
1446	struct tcp_options_received tmp_opt;
 
1447	struct request_sock *req;
1448	struct inet_request_sock *ireq;
1449	struct tcp_sock *tp = tcp_sk(sk);
1450	struct dst_entry *dst = NULL;
1451	__be32 saddr = ip_hdr(skb)->saddr;
1452	__be32 daddr = ip_hdr(skb)->daddr;
1453	__u32 isn = TCP_SKB_CB(skb)->when;
1454	bool want_cookie = false;
1455	struct flowi4 fl4;
1456	struct tcp_fastopen_cookie foc = { .len = -1 };
1457	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1458	struct sk_buff *skb_synack;
1459	int do_fastopen;
1460
1461	/* Never answer to SYNs send to broadcast or multicast */
1462	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1463		goto drop;
1464
1465	/* TW buckets are converted to open requests without
1466	 * limitations, they conserve resources and peer is
1467	 * evidently real one.
1468	 */
1469	if ((sysctl_tcp_syncookies == 2 ||
1470	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
1471		want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1472		if (!want_cookie)
1473			goto drop;
1474	}
1475
1476	/* Accept backlog is full. If we have already queued enough
1477	 * of warm entries in syn queue, drop request. It is better than
1478	 * clogging syn queue with openreqs with exponentially increasing
1479	 * timeout.
1480	 */
1481	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
1482		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1483		goto drop;
1484	}
1485
1486	req = inet_reqsk_alloc(&tcp_request_sock_ops);
1487	if (!req)
1488		goto drop;
1489
1490#ifdef CONFIG_TCP_MD5SIG
1491	tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1492#endif
1493
1494	tcp_clear_options(&tmp_opt);
1495	tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1496	tmp_opt.user_mss  = tp->rx_opt.user_mss;
1497	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1498
1499	if (want_cookie && !tmp_opt.saw_tstamp)
1500		tcp_clear_options(&tmp_opt);
1501
1502	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1503	tcp_openreq_init(req, &tmp_opt, skb);
1504
1505	ireq = inet_rsk(req);
1506	ireq->ir_loc_addr = daddr;
1507	ireq->ir_rmt_addr = saddr;
1508	ireq->no_srccheck = inet_sk(sk)->transparent;
1509	ireq->opt = tcp_v4_save_options(skb);
1510
1511	if (security_inet_conn_request(sk, skb, req))
1512		goto drop_and_free;
1513
1514	if (!want_cookie || tmp_opt.tstamp_ok)
1515		TCP_ECN_create_request(req, skb, sock_net(sk));
1516
1517	if (want_cookie) {
1518		isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1519		req->cookie_ts = tmp_opt.tstamp_ok;
1520	} else if (!isn) {
 
 
 
1521		/* VJ's idea. We save last timestamp seen
1522		 * from the destination in peer table, when entering
1523		 * state TIME-WAIT, and check against it before
1524		 * accepting new connection request.
1525		 *
1526		 * If "isn" is not zero, this request hit alive
1527		 * timewait bucket, so that all the necessary checks
1528		 * are made in the function processing timewait state.
1529		 */
1530		if (tmp_opt.saw_tstamp &&
1531		    tcp_death_row.sysctl_tw_recycle &&
1532		    (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1533		    fl4.daddr == saddr) {
1534			if (!tcp_peer_is_proven(req, dst, true)) {
 
 
 
 
1535				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1536				goto drop_and_release;
1537			}
1538		}
1539		/* Kill the following clause, if you dislike this way. */
1540		else if (!sysctl_tcp_syncookies &&
1541			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1542			  (sysctl_max_syn_backlog >> 2)) &&
1543			 !tcp_peer_is_proven(req, dst, false)) {
 
1544			/* Without syncookies last quarter of
1545			 * backlog is filled with destinations,
1546			 * proven to be alive.
1547			 * It means that we continue to communicate
1548			 * to destinations, already remembered
1549			 * to the moment of synflood.
1550			 */
1551			LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1552				       &saddr, ntohs(tcp_hdr(skb)->source));
1553			goto drop_and_release;
1554		}
1555
1556		isn = tcp_v4_init_sequence(skb);
1557	}
1558	tcp_rsk(req)->snt_isn = isn;
 
1559
1560	if (dst == NULL) {
1561		dst = inet_csk_route_req(sk, &fl4, req);
1562		if (dst == NULL)
1563			goto drop_and_free;
1564	}
1565	do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1566
1567	/* We don't call tcp_v4_send_synack() directly because we need
1568	 * to make sure a child socket can be created successfully before
1569	 * sending back synack!
1570	 *
1571	 * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1572	 * (or better yet, call tcp_send_synack() in the child context
1573	 * directly, but will have to fix bunch of other code first)
1574	 * after syn_recv_sock() except one will need to first fix the
1575	 * latter to remove its dependency on the current implementation
1576	 * of tcp_v4_send_synack()->tcp_select_initial_window().
1577	 */
1578	skb_synack = tcp_make_synack(sk, dst, req,
1579	    fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1580
1581	if (skb_synack) {
1582		__tcp_v4_send_check(skb_synack, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1583		skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1584	} else
1585		goto drop_and_free;
1586
1587	if (likely(!do_fastopen)) {
1588		int err;
1589		err = ip_build_and_send_pkt(skb_synack, sk, ireq->ir_loc_addr,
1590		     ireq->ir_rmt_addr, ireq->opt);
1591		err = net_xmit_eval(err);
1592		if (err || want_cookie)
1593			goto drop_and_free;
1594
1595		tcp_rsk(req)->snt_synack = tcp_time_stamp;
1596		tcp_rsk(req)->listener = NULL;
1597		/* Add the request_sock to the SYN table */
1598		inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1599		if (fastopen_cookie_present(&foc) && foc.len != 0)
1600			NET_INC_STATS_BH(sock_net(sk),
1601			    LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1602	} else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req))
1603		goto drop_and_free;
1604
 
1605	return 0;
1606
1607drop_and_release:
1608	dst_release(dst);
1609drop_and_free:
1610	reqsk_free(req);
1611drop:
1612	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1613	return 0;
1614}
1615EXPORT_SYMBOL(tcp_v4_conn_request);
1616
1617
1618/*
1619 * The three way handshake has completed - we got a valid synack -
1620 * now create the new socket.
1621 */
1622struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1623				  struct request_sock *req,
1624				  struct dst_entry *dst)
1625{
1626	struct inet_request_sock *ireq;
1627	struct inet_sock *newinet;
1628	struct tcp_sock *newtp;
1629	struct sock *newsk;
1630#ifdef CONFIG_TCP_MD5SIG
1631	struct tcp_md5sig_key *key;
1632#endif
1633	struct ip_options_rcu *inet_opt;
1634
1635	if (sk_acceptq_is_full(sk))
1636		goto exit_overflow;
1637
1638	newsk = tcp_create_openreq_child(sk, req, skb);
1639	if (!newsk)
1640		goto exit_nonewsk;
1641
1642	newsk->sk_gso_type = SKB_GSO_TCPV4;
1643	inet_sk_rx_dst_set(newsk, skb);
1644
1645	newtp		      = tcp_sk(newsk);
1646	newinet		      = inet_sk(newsk);
1647	ireq		      = inet_rsk(req);
1648	newinet->inet_daddr   = ireq->ir_rmt_addr;
1649	newinet->inet_rcv_saddr = ireq->ir_loc_addr;
1650	newinet->inet_saddr	      = ireq->ir_loc_addr;
1651	inet_opt	      = ireq->opt;
1652	rcu_assign_pointer(newinet->inet_opt, inet_opt);
1653	ireq->opt	      = NULL;
1654	newinet->mc_index     = inet_iif(skb);
1655	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1656	newinet->rcv_tos      = ip_hdr(skb)->tos;
1657	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1658	if (inet_opt)
1659		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1660	newinet->inet_id = newtp->write_seq ^ jiffies;
1661
1662	if (!dst) {
1663		dst = inet_csk_route_child_sock(sk, newsk, req);
1664		if (!dst)
1665			goto put_and_exit;
1666	} else {
1667		/* syncookie case : see end of cookie_v4_check() */
1668	}
1669	sk_setup_caps(newsk, dst);
1670
 
1671	tcp_sync_mss(newsk, dst_mtu(dst));
1672	newtp->advmss = dst_metric_advmss(dst);
1673	if (tcp_sk(sk)->rx_opt.user_mss &&
1674	    tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1675		newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1676
1677	tcp_initialize_rcv_mss(newsk);
 
 
 
 
1678
1679#ifdef CONFIG_TCP_MD5SIG
1680	/* Copy over the MD5 key from the original socket */
1681	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1682				AF_INET);
1683	if (key != NULL) {
1684		/*
1685		 * We're using one, so create a matching key
1686		 * on the newsk structure. If we fail to get
1687		 * memory, then we end up not copying the key
1688		 * across. Shucks.
1689		 */
1690		tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1691			       AF_INET, key->key, key->keylen, GFP_ATOMIC);
1692		sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1693	}
1694#endif
1695
1696	if (__inet_inherit_port(sk, newsk) < 0)
1697		goto put_and_exit;
1698	__inet_hash_nolisten(newsk, NULL);
1699
1700	return newsk;
1701
1702exit_overflow:
1703	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1704exit_nonewsk:
1705	dst_release(dst);
1706exit:
1707	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1708	return NULL;
1709put_and_exit:
1710	inet_csk_prepare_forced_close(newsk);
1711	tcp_done(newsk);
 
 
1712	goto exit;
1713}
1714EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1715
1716static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1717{
1718	struct tcphdr *th = tcp_hdr(skb);
1719	const struct iphdr *iph = ip_hdr(skb);
1720	struct sock *nsk;
1721	struct request_sock **prev;
1722	/* Find possible connection requests. */
1723	struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1724						       iph->saddr, iph->daddr);
1725	if (req)
1726		return tcp_check_req(sk, skb, req, prev, false);
1727
1728	nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1729			th->source, iph->daddr, th->dest, inet_iif(skb));
1730
1731	if (nsk) {
1732		if (nsk->sk_state != TCP_TIME_WAIT) {
1733			bh_lock_sock(nsk);
1734			return nsk;
1735		}
1736		inet_twsk_put(inet_twsk(nsk));
1737		return NULL;
1738	}
1739
1740#ifdef CONFIG_SYN_COOKIES
1741	if (!th->syn)
1742		sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1743#endif
1744	return sk;
1745}
1746
1747static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1748{
1749	const struct iphdr *iph = ip_hdr(skb);
1750
1751	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1752		if (!tcp_v4_check(skb->len, iph->saddr,
1753				  iph->daddr, skb->csum)) {
1754			skb->ip_summed = CHECKSUM_UNNECESSARY;
1755			return 0;
1756		}
1757	}
1758
1759	skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1760				       skb->len, IPPROTO_TCP, 0);
1761
1762	if (skb->len <= 76) {
1763		return __skb_checksum_complete(skb);
1764	}
1765	return 0;
1766}
1767
1768
1769/* The socket must have it's spinlock held when we get
1770 * here.
1771 *
1772 * We have a potential double-lock case here, so even when
1773 * doing backlog processing we use the BH locking scheme.
1774 * This is because we cannot sleep with the original spinlock
1775 * held.
1776 */
1777int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1778{
1779	struct sock *rsk;
1780#ifdef CONFIG_TCP_MD5SIG
1781	/*
1782	 * We really want to reject the packet as early as possible
1783	 * if:
1784	 *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1785	 *  o There is an MD5 option and we're not expecting one
1786	 */
1787	if (tcp_v4_inbound_md5_hash(sk, skb))
1788		goto discard;
1789#endif
1790
1791	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1792		struct dst_entry *dst = sk->sk_rx_dst;
1793
1794		sock_rps_save_rxhash(sk, skb);
1795		if (dst) {
1796			if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1797			    dst->ops->check(dst, 0) == NULL) {
1798				dst_release(dst);
1799				sk->sk_rx_dst = NULL;
1800			}
1801		}
1802		tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1803		return 0;
1804	}
1805
1806	if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1807		goto csum_err;
1808
1809	if (sk->sk_state == TCP_LISTEN) {
1810		struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1811		if (!nsk)
1812			goto discard;
1813
1814		if (nsk != sk) {
1815			sock_rps_save_rxhash(nsk, skb);
1816			if (tcp_child_process(sk, nsk, skb)) {
1817				rsk = nsk;
1818				goto reset;
1819			}
1820			return 0;
1821		}
1822	} else
1823		sock_rps_save_rxhash(sk, skb);
1824
1825	if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1826		rsk = sk;
1827		goto reset;
1828	}
1829	return 0;
1830
1831reset:
1832	tcp_v4_send_reset(rsk, skb);
1833discard:
1834	kfree_skb(skb);
1835	/* Be careful here. If this function gets more complicated and
1836	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1837	 * might be destroyed here. This current version compiles correctly,
1838	 * but you have been warned.
1839	 */
1840	return 0;
1841
1842csum_err:
1843	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1844	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1845	goto discard;
1846}
1847EXPORT_SYMBOL(tcp_v4_do_rcv);
1848
1849void tcp_v4_early_demux(struct sk_buff *skb)
1850{
1851	const struct iphdr *iph;
1852	const struct tcphdr *th;
1853	struct sock *sk;
1854
1855	if (skb->pkt_type != PACKET_HOST)
1856		return;
1857
1858	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1859		return;
1860
1861	iph = ip_hdr(skb);
1862	th = tcp_hdr(skb);
1863
1864	if (th->doff < sizeof(struct tcphdr) / 4)
1865		return;
1866
1867	sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1868				       iph->saddr, th->source,
1869				       iph->daddr, ntohs(th->dest),
1870				       skb->skb_iif);
1871	if (sk) {
1872		skb->sk = sk;
1873		skb->destructor = sock_edemux;
1874		if (sk->sk_state != TCP_TIME_WAIT) {
1875			struct dst_entry *dst = sk->sk_rx_dst;
1876
1877			if (dst)
1878				dst = dst_check(dst, 0);
1879			if (dst &&
1880			    inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1881				skb_dst_set_noref(skb, dst);
1882		}
1883	}
1884}
1885
1886/* Packet is added to VJ-style prequeue for processing in process
1887 * context, if a reader task is waiting. Apparently, this exciting
1888 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1889 * failed somewhere. Latency? Burstiness? Well, at least now we will
1890 * see, why it failed. 8)8)				  --ANK
1891 *
1892 */
1893bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1894{
1895	struct tcp_sock *tp = tcp_sk(sk);
1896
1897	if (sysctl_tcp_low_latency || !tp->ucopy.task)
1898		return false;
1899
1900	if (skb->len <= tcp_hdrlen(skb) &&
1901	    skb_queue_len(&tp->ucopy.prequeue) == 0)
1902		return false;
1903
1904	skb_dst_force(skb);
1905	__skb_queue_tail(&tp->ucopy.prequeue, skb);
1906	tp->ucopy.memory += skb->truesize;
1907	if (tp->ucopy.memory > sk->sk_rcvbuf) {
1908		struct sk_buff *skb1;
1909
1910		BUG_ON(sock_owned_by_user(sk));
1911
1912		while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1913			sk_backlog_rcv(sk, skb1);
1914			NET_INC_STATS_BH(sock_net(sk),
1915					 LINUX_MIB_TCPPREQUEUEDROPPED);
1916		}
1917
1918		tp->ucopy.memory = 0;
1919	} else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1920		wake_up_interruptible_sync_poll(sk_sleep(sk),
1921					   POLLIN | POLLRDNORM | POLLRDBAND);
1922		if (!inet_csk_ack_scheduled(sk))
1923			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1924						  (3 * tcp_rto_min(sk)) / 4,
1925						  TCP_RTO_MAX);
1926	}
1927	return true;
1928}
1929EXPORT_SYMBOL(tcp_prequeue);
1930
1931/*
1932 *	From tcp_input.c
1933 */
1934
1935int tcp_v4_rcv(struct sk_buff *skb)
1936{
1937	const struct iphdr *iph;
1938	const struct tcphdr *th;
1939	struct sock *sk;
1940	int ret;
1941	struct net *net = dev_net(skb->dev);
1942
1943	if (skb->pkt_type != PACKET_HOST)
1944		goto discard_it;
1945
1946	/* Count it even if it's bad */
1947	TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1948
1949	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1950		goto discard_it;
1951
1952	th = tcp_hdr(skb);
1953
1954	if (th->doff < sizeof(struct tcphdr) / 4)
1955		goto bad_packet;
1956	if (!pskb_may_pull(skb, th->doff * 4))
1957		goto discard_it;
1958
1959	/* An explanation is required here, I think.
1960	 * Packet length and doff are validated by header prediction,
1961	 * provided case of th->doff==0 is eliminated.
1962	 * So, we defer the checks. */
1963	if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1964		goto csum_error;
1965
1966	th = tcp_hdr(skb);
1967	iph = ip_hdr(skb);
1968	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1969	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1970				    skb->len - th->doff * 4);
1971	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1972	TCP_SKB_CB(skb)->when	 = 0;
1973	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1974	TCP_SKB_CB(skb)->sacked	 = 0;
1975
1976	sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1977	if (!sk)
1978		goto no_tcp_socket;
1979
1980process:
1981	if (sk->sk_state == TCP_TIME_WAIT)
1982		goto do_time_wait;
1983
1984	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1985		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1986		goto discard_and_relse;
1987	}
1988
1989	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1990		goto discard_and_relse;
1991	nf_reset(skb);
1992
1993	if (sk_filter(sk, skb))
1994		goto discard_and_relse;
1995
1996	sk_mark_napi_id(sk, skb);
1997	skb->dev = NULL;
1998
1999	bh_lock_sock_nested(sk);
2000	ret = 0;
2001	if (!sock_owned_by_user(sk)) {
2002#ifdef CONFIG_NET_DMA
2003		struct tcp_sock *tp = tcp_sk(sk);
2004		if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2005			tp->ucopy.dma_chan = net_dma_find_channel();
2006		if (tp->ucopy.dma_chan)
2007			ret = tcp_v4_do_rcv(sk, skb);
2008		else
2009#endif
2010		{
2011			if (!tcp_prequeue(sk, skb))
2012				ret = tcp_v4_do_rcv(sk, skb);
2013		}
2014	} else if (unlikely(sk_add_backlog(sk, skb,
2015					   sk->sk_rcvbuf + sk->sk_sndbuf))) {
2016		bh_unlock_sock(sk);
2017		NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2018		goto discard_and_relse;
2019	}
2020	bh_unlock_sock(sk);
2021
2022	sock_put(sk);
2023
2024	return ret;
2025
2026no_tcp_socket:
2027	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2028		goto discard_it;
2029
2030	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2031csum_error:
2032		TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
2033bad_packet:
2034		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2035	} else {
2036		tcp_v4_send_reset(NULL, skb);
2037	}
2038
2039discard_it:
2040	/* Discard frame. */
2041	kfree_skb(skb);
2042	return 0;
2043
2044discard_and_relse:
2045	sock_put(sk);
2046	goto discard_it;
2047
2048do_time_wait:
2049	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2050		inet_twsk_put(inet_twsk(sk));
2051		goto discard_it;
2052	}
2053
2054	if (skb->len < (th->doff << 2)) {
2055		inet_twsk_put(inet_twsk(sk));
2056		goto bad_packet;
2057	}
2058	if (tcp_checksum_complete(skb)) {
2059		inet_twsk_put(inet_twsk(sk));
2060		goto csum_error;
2061	}
2062	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2063	case TCP_TW_SYN: {
2064		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2065							&tcp_hashinfo,
2066							iph->saddr, th->source,
2067							iph->daddr, th->dest,
2068							inet_iif(skb));
2069		if (sk2) {
2070			inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2071			inet_twsk_put(inet_twsk(sk));
2072			sk = sk2;
2073			goto process;
2074		}
2075		/* Fall through to ACK */
2076	}
2077	case TCP_TW_ACK:
2078		tcp_v4_timewait_ack(sk, skb);
2079		break;
2080	case TCP_TW_RST:
2081		goto no_tcp_socket;
2082	case TCP_TW_SUCCESS:;
2083	}
2084	goto discard_it;
2085}
2086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2087static struct timewait_sock_ops tcp_timewait_sock_ops = {
2088	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2089	.twsk_unique	= tcp_twsk_unique,
2090	.twsk_destructor= tcp_twsk_destructor,
 
2091};
2092
2093void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2094{
2095	struct dst_entry *dst = skb_dst(skb);
2096
2097	dst_hold(dst);
2098	sk->sk_rx_dst = dst;
2099	inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2100}
2101EXPORT_SYMBOL(inet_sk_rx_dst_set);
2102
2103const struct inet_connection_sock_af_ops ipv4_specific = {
2104	.queue_xmit	   = ip_queue_xmit,
2105	.send_check	   = tcp_v4_send_check,
2106	.rebuild_header	   = inet_sk_rebuild_header,
2107	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2108	.conn_request	   = tcp_v4_conn_request,
2109	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
 
2110	.net_header_len	   = sizeof(struct iphdr),
2111	.setsockopt	   = ip_setsockopt,
2112	.getsockopt	   = ip_getsockopt,
2113	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2114	.sockaddr_len	   = sizeof(struct sockaddr_in),
2115	.bind_conflict	   = inet_csk_bind_conflict,
2116#ifdef CONFIG_COMPAT
2117	.compat_setsockopt = compat_ip_setsockopt,
2118	.compat_getsockopt = compat_ip_getsockopt,
2119#endif
2120};
2121EXPORT_SYMBOL(ipv4_specific);
2122
2123#ifdef CONFIG_TCP_MD5SIG
2124static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2125	.md5_lookup		= tcp_v4_md5_lookup,
2126	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2127	.md5_parse		= tcp_v4_parse_md5_keys,
2128};
2129#endif
2130
2131/* NOTE: A lot of things set to zero explicitly by call to
2132 *       sk_alloc() so need not be done here.
2133 */
2134static int tcp_v4_init_sock(struct sock *sk)
2135{
2136	struct inet_connection_sock *icsk = inet_csk(sk);
2137
2138	tcp_init_sock(sk);
2139
2140	icsk->icsk_af_ops = &ipv4_specific;
2141
2142#ifdef CONFIG_TCP_MD5SIG
2143	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2144#endif
2145
2146	return 0;
2147}
2148
2149void tcp_v4_destroy_sock(struct sock *sk)
2150{
2151	struct tcp_sock *tp = tcp_sk(sk);
2152
2153	tcp_clear_xmit_timers(sk);
2154
2155	tcp_cleanup_congestion_control(sk);
2156
2157	/* Cleanup up the write buffer. */
2158	tcp_write_queue_purge(sk);
2159
2160	/* Cleans up our, hopefully empty, out_of_order_queue. */
2161	__skb_queue_purge(&tp->out_of_order_queue);
2162
2163#ifdef CONFIG_TCP_MD5SIG
2164	/* Clean up the MD5 key list, if any */
2165	if (tp->md5sig_info) {
2166		tcp_clear_md5_list(sk);
2167		kfree_rcu(tp->md5sig_info, rcu);
2168		tp->md5sig_info = NULL;
2169	}
2170#endif
2171
2172#ifdef CONFIG_NET_DMA
2173	/* Cleans up our sk_async_wait_queue */
2174	__skb_queue_purge(&sk->sk_async_wait_queue);
2175#endif
2176
2177	/* Clean prequeue, it must be empty really */
2178	__skb_queue_purge(&tp->ucopy.prequeue);
2179
2180	/* Clean up a referenced TCP bind bucket. */
2181	if (inet_csk(sk)->icsk_bind_hash)
2182		inet_put_port(sk);
2183
2184	BUG_ON(tp->fastopen_rsk != NULL);
 
 
 
 
 
 
2185
2186	/* If socket is aborted during connect operation */
2187	tcp_free_fastopen_req(tp);
 
 
 
 
2188
2189	sk_sockets_allocated_dec(sk);
2190	sock_release_memcg(sk);
2191}
2192EXPORT_SYMBOL(tcp_v4_destroy_sock);
2193
2194#ifdef CONFIG_PROC_FS
2195/* Proc filesystem TCP sock list dumping. */
2196
 
 
 
 
 
 
 
 
 
 
 
 
2197/*
2198 * Get next listener socket follow cur.  If cur is NULL, get first socket
2199 * starting from bucket given in st->bucket; when st->bucket is zero the
2200 * very first socket in the hash table is returned.
2201 */
2202static void *listening_get_next(struct seq_file *seq, void *cur)
2203{
2204	struct inet_connection_sock *icsk;
2205	struct hlist_nulls_node *node;
2206	struct sock *sk = cur;
2207	struct inet_listen_hashbucket *ilb;
2208	struct tcp_iter_state *st = seq->private;
2209	struct net *net = seq_file_net(seq);
2210
2211	if (!sk) {
2212		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2213		spin_lock_bh(&ilb->lock);
2214		sk = sk_nulls_head(&ilb->head);
2215		st->offset = 0;
2216		goto get_sk;
2217	}
2218	ilb = &tcp_hashinfo.listening_hash[st->bucket];
2219	++st->num;
2220	++st->offset;
2221
2222	if (st->state == TCP_SEQ_STATE_OPENREQ) {
2223		struct request_sock *req = cur;
2224
2225		icsk = inet_csk(st->syn_wait_sk);
2226		req = req->dl_next;
2227		while (1) {
2228			while (req) {
2229				if (req->rsk_ops->family == st->family) {
2230					cur = req;
2231					goto out;
2232				}
2233				req = req->dl_next;
2234			}
2235			if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2236				break;
2237get_req:
2238			req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2239		}
2240		sk	  = sk_nulls_next(st->syn_wait_sk);
2241		st->state = TCP_SEQ_STATE_LISTENING;
2242		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2243	} else {
2244		icsk = inet_csk(sk);
2245		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2246		if (reqsk_queue_len(&icsk->icsk_accept_queue))
2247			goto start_req;
2248		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2249		sk = sk_nulls_next(sk);
2250	}
2251get_sk:
2252	sk_nulls_for_each_from(sk, node) {
2253		if (!net_eq(sock_net(sk), net))
2254			continue;
2255		if (sk->sk_family == st->family) {
2256			cur = sk;
2257			goto out;
2258		}
2259		icsk = inet_csk(sk);
2260		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2261		if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2262start_req:
2263			st->uid		= sock_i_uid(sk);
2264			st->syn_wait_sk = sk;
2265			st->state	= TCP_SEQ_STATE_OPENREQ;
2266			st->sbucket	= 0;
2267			goto get_req;
2268		}
2269		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2270	}
2271	spin_unlock_bh(&ilb->lock);
2272	st->offset = 0;
2273	if (++st->bucket < INET_LHTABLE_SIZE) {
2274		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2275		spin_lock_bh(&ilb->lock);
2276		sk = sk_nulls_head(&ilb->head);
2277		goto get_sk;
2278	}
2279	cur = NULL;
2280out:
2281	return cur;
2282}
2283
2284static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2285{
2286	struct tcp_iter_state *st = seq->private;
2287	void *rc;
2288
2289	st->bucket = 0;
2290	st->offset = 0;
2291	rc = listening_get_next(seq, NULL);
2292
2293	while (rc && *pos) {
2294		rc = listening_get_next(seq, rc);
2295		--*pos;
2296	}
2297	return rc;
2298}
2299
2300static inline bool empty_bucket(const struct tcp_iter_state *st)
2301{
2302	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
 
2303}
2304
2305/*
2306 * Get first established socket starting from bucket given in st->bucket.
2307 * If st->bucket is zero, the very first socket in the hash is returned.
2308 */
2309static void *established_get_first(struct seq_file *seq)
2310{
2311	struct tcp_iter_state *st = seq->private;
2312	struct net *net = seq_file_net(seq);
2313	void *rc = NULL;
2314
2315	st->offset = 0;
2316	for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2317		struct sock *sk;
2318		struct hlist_nulls_node *node;
 
2319		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2320
2321		/* Lockless fast path for the common case of empty buckets */
2322		if (empty_bucket(st))
2323			continue;
2324
2325		spin_lock_bh(lock);
2326		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2327			if (sk->sk_family != st->family ||
2328			    !net_eq(sock_net(sk), net)) {
2329				continue;
2330			}
2331			rc = sk;
2332			goto out;
2333		}
 
 
 
 
 
 
 
 
 
 
2334		spin_unlock_bh(lock);
 
2335	}
2336out:
2337	return rc;
2338}
2339
2340static void *established_get_next(struct seq_file *seq, void *cur)
2341{
2342	struct sock *sk = cur;
 
2343	struct hlist_nulls_node *node;
2344	struct tcp_iter_state *st = seq->private;
2345	struct net *net = seq_file_net(seq);
2346
2347	++st->num;
2348	++st->offset;
2349
2350	sk = sk_nulls_next(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2351
2352	sk_nulls_for_each_from(sk, node) {
2353		if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2354			return sk;
2355	}
2356
2357	spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2358	++st->bucket;
2359	return established_get_first(seq);
 
 
 
 
2360}
2361
2362static void *established_get_idx(struct seq_file *seq, loff_t pos)
2363{
2364	struct tcp_iter_state *st = seq->private;
2365	void *rc;
2366
2367	st->bucket = 0;
2368	rc = established_get_first(seq);
2369
2370	while (rc && pos) {
2371		rc = established_get_next(seq, rc);
2372		--pos;
2373	}
2374	return rc;
2375}
2376
2377static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2378{
2379	void *rc;
2380	struct tcp_iter_state *st = seq->private;
2381
2382	st->state = TCP_SEQ_STATE_LISTENING;
2383	rc	  = listening_get_idx(seq, &pos);
2384
2385	if (!rc) {
2386		st->state = TCP_SEQ_STATE_ESTABLISHED;
2387		rc	  = established_get_idx(seq, pos);
2388	}
2389
2390	return rc;
2391}
2392
2393static void *tcp_seek_last_pos(struct seq_file *seq)
2394{
2395	struct tcp_iter_state *st = seq->private;
2396	int offset = st->offset;
2397	int orig_num = st->num;
2398	void *rc = NULL;
2399
2400	switch (st->state) {
2401	case TCP_SEQ_STATE_OPENREQ:
2402	case TCP_SEQ_STATE_LISTENING:
2403		if (st->bucket >= INET_LHTABLE_SIZE)
2404			break;
2405		st->state = TCP_SEQ_STATE_LISTENING;
2406		rc = listening_get_next(seq, NULL);
2407		while (offset-- && rc)
2408			rc = listening_get_next(seq, rc);
2409		if (rc)
2410			break;
2411		st->bucket = 0;
2412		st->state = TCP_SEQ_STATE_ESTABLISHED;
2413		/* Fallthrough */
2414	case TCP_SEQ_STATE_ESTABLISHED:
 
 
2415		if (st->bucket > tcp_hashinfo.ehash_mask)
2416			break;
2417		rc = established_get_first(seq);
2418		while (offset-- && rc)
2419			rc = established_get_next(seq, rc);
2420	}
2421
2422	st->num = orig_num;
2423
2424	return rc;
2425}
2426
2427static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2428{
2429	struct tcp_iter_state *st = seq->private;
2430	void *rc;
2431
2432	if (*pos && *pos == st->last_pos) {
2433		rc = tcp_seek_last_pos(seq);
2434		if (rc)
2435			goto out;
2436	}
2437
2438	st->state = TCP_SEQ_STATE_LISTENING;
2439	st->num = 0;
2440	st->bucket = 0;
2441	st->offset = 0;
2442	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2443
2444out:
2445	st->last_pos = *pos;
2446	return rc;
2447}
2448
2449static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2450{
2451	struct tcp_iter_state *st = seq->private;
2452	void *rc = NULL;
2453
2454	if (v == SEQ_START_TOKEN) {
2455		rc = tcp_get_idx(seq, 0);
2456		goto out;
2457	}
2458
2459	switch (st->state) {
2460	case TCP_SEQ_STATE_OPENREQ:
2461	case TCP_SEQ_STATE_LISTENING:
2462		rc = listening_get_next(seq, v);
2463		if (!rc) {
2464			st->state = TCP_SEQ_STATE_ESTABLISHED;
2465			st->bucket = 0;
2466			st->offset = 0;
2467			rc	  = established_get_first(seq);
2468		}
2469		break;
2470	case TCP_SEQ_STATE_ESTABLISHED:
 
2471		rc = established_get_next(seq, v);
2472		break;
2473	}
2474out:
2475	++*pos;
2476	st->last_pos = *pos;
2477	return rc;
2478}
2479
2480static void tcp_seq_stop(struct seq_file *seq, void *v)
2481{
2482	struct tcp_iter_state *st = seq->private;
2483
2484	switch (st->state) {
2485	case TCP_SEQ_STATE_OPENREQ:
2486		if (v) {
2487			struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2488			read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2489		}
2490	case TCP_SEQ_STATE_LISTENING:
2491		if (v != SEQ_START_TOKEN)
2492			spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2493		break;
 
2494	case TCP_SEQ_STATE_ESTABLISHED:
2495		if (v)
2496			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2497		break;
2498	}
2499}
2500
2501int tcp_seq_open(struct inode *inode, struct file *file)
2502{
2503	struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2504	struct tcp_iter_state *s;
2505	int err;
2506
2507	err = seq_open_net(inode, file, &afinfo->seq_ops,
2508			  sizeof(struct tcp_iter_state));
2509	if (err < 0)
2510		return err;
2511
2512	s = ((struct seq_file *)file->private_data)->private;
2513	s->family		= afinfo->family;
2514	s->last_pos 		= 0;
2515	return 0;
2516}
2517EXPORT_SYMBOL(tcp_seq_open);
2518
2519int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2520{
2521	int rc = 0;
2522	struct proc_dir_entry *p;
2523
2524	afinfo->seq_ops.start		= tcp_seq_start;
2525	afinfo->seq_ops.next		= tcp_seq_next;
2526	afinfo->seq_ops.stop		= tcp_seq_stop;
2527
2528	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2529			     afinfo->seq_fops, afinfo);
2530	if (!p)
2531		rc = -ENOMEM;
2532	return rc;
2533}
2534EXPORT_SYMBOL(tcp_proc_register);
2535
2536void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2537{
2538	remove_proc_entry(afinfo->name, net->proc_net);
2539}
2540EXPORT_SYMBOL(tcp_proc_unregister);
2541
2542static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2543			 struct seq_file *f, int i, kuid_t uid)
2544{
2545	const struct inet_request_sock *ireq = inet_rsk(req);
2546	long delta = req->expires - jiffies;
2547
2548	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2549		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2550		i,
2551		ireq->ir_loc_addr,
2552		ntohs(inet_sk(sk)->inet_sport),
2553		ireq->ir_rmt_addr,
2554		ntohs(ireq->ir_rmt_port),
2555		TCP_SYN_RECV,
2556		0, 0, /* could print option size, but that is af dependent. */
2557		1,    /* timers active (only the expire timer) */
2558		jiffies_delta_to_clock_t(delta),
2559		req->num_timeout,
2560		from_kuid_munged(seq_user_ns(f), uid),
2561		0,  /* non standard timer */
2562		0, /* open_requests have no inode */
2563		atomic_read(&sk->sk_refcnt),
2564		req);
 
2565}
2566
2567static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2568{
2569	int timer_active;
2570	unsigned long timer_expires;
2571	const struct tcp_sock *tp = tcp_sk(sk);
2572	const struct inet_connection_sock *icsk = inet_csk(sk);
2573	const struct inet_sock *inet = inet_sk(sk);
2574	struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2575	__be32 dest = inet->inet_daddr;
2576	__be32 src = inet->inet_rcv_saddr;
2577	__u16 destp = ntohs(inet->inet_dport);
2578	__u16 srcp = ntohs(inet->inet_sport);
2579	int rx_queue;
2580
2581	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2582	    icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2583	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2584		timer_active	= 1;
2585		timer_expires	= icsk->icsk_timeout;
2586	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2587		timer_active	= 4;
2588		timer_expires	= icsk->icsk_timeout;
2589	} else if (timer_pending(&sk->sk_timer)) {
2590		timer_active	= 2;
2591		timer_expires	= sk->sk_timer.expires;
2592	} else {
2593		timer_active	= 0;
2594		timer_expires = jiffies;
2595	}
2596
2597	if (sk->sk_state == TCP_LISTEN)
2598		rx_queue = sk->sk_ack_backlog;
2599	else
2600		/*
2601		 * because we dont lock socket, we might find a transient negative value
2602		 */
2603		rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2604
2605	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2606			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2607		i, src, srcp, dest, destp, sk->sk_state,
2608		tp->write_seq - tp->snd_una,
2609		rx_queue,
2610		timer_active,
2611		jiffies_delta_to_clock_t(timer_expires - jiffies),
2612		icsk->icsk_retransmits,
2613		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2614		icsk->icsk_probes_out,
2615		sock_i_ino(sk),
2616		atomic_read(&sk->sk_refcnt), sk,
2617		jiffies_to_clock_t(icsk->icsk_rto),
2618		jiffies_to_clock_t(icsk->icsk_ack.ato),
2619		(icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2620		tp->snd_cwnd,
2621		sk->sk_state == TCP_LISTEN ?
2622		    (fastopenq ? fastopenq->max_qlen : 0) :
2623		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2624}
2625
2626static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2627			       struct seq_file *f, int i)
2628{
2629	__be32 dest, src;
2630	__u16 destp, srcp;
2631	s32 delta = tw->tw_ttd - inet_tw_time_stamp();
 
 
 
2632
2633	dest  = tw->tw_daddr;
2634	src   = tw->tw_rcv_saddr;
2635	destp = ntohs(tw->tw_dport);
2636	srcp  = ntohs(tw->tw_sport);
2637
2638	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2639		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2640		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2641		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2642		atomic_read(&tw->tw_refcnt), tw);
2643}
2644
2645#define TMPSZ 150
2646
2647static int tcp4_seq_show(struct seq_file *seq, void *v)
2648{
2649	struct tcp_iter_state *st;
2650	struct sock *sk = v;
2651
2652	seq_setwidth(seq, TMPSZ - 1);
2653	if (v == SEQ_START_TOKEN) {
2654		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
 
2655			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2656			   "inode");
2657		goto out;
2658	}
2659	st = seq->private;
2660
2661	switch (st->state) {
2662	case TCP_SEQ_STATE_LISTENING:
2663	case TCP_SEQ_STATE_ESTABLISHED:
2664		if (sk->sk_state == TCP_TIME_WAIT)
2665			get_timewait4_sock(v, seq, st->num);
2666		else
2667			get_tcp4_sock(v, seq, st->num);
2668		break;
2669	case TCP_SEQ_STATE_OPENREQ:
2670		get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid);
 
 
 
2671		break;
2672	}
 
2673out:
2674	seq_pad(seq, '\n');
2675	return 0;
2676}
2677
2678static const struct file_operations tcp_afinfo_seq_fops = {
2679	.owner   = THIS_MODULE,
2680	.open    = tcp_seq_open,
2681	.read    = seq_read,
2682	.llseek  = seq_lseek,
2683	.release = seq_release_net
2684};
2685
2686static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2687	.name		= "tcp",
2688	.family		= AF_INET,
2689	.seq_fops	= &tcp_afinfo_seq_fops,
2690	.seq_ops	= {
2691		.show		= tcp4_seq_show,
2692	},
2693};
2694
2695static int __net_init tcp4_proc_init_net(struct net *net)
2696{
2697	return tcp_proc_register(net, &tcp4_seq_afinfo);
2698}
2699
2700static void __net_exit tcp4_proc_exit_net(struct net *net)
2701{
2702	tcp_proc_unregister(net, &tcp4_seq_afinfo);
2703}
2704
2705static struct pernet_operations tcp4_net_ops = {
2706	.init = tcp4_proc_init_net,
2707	.exit = tcp4_proc_exit_net,
2708};
2709
2710int __init tcp4_proc_init(void)
2711{
2712	return register_pernet_subsys(&tcp4_net_ops);
2713}
2714
2715void tcp4_proc_exit(void)
2716{
2717	unregister_pernet_subsys(&tcp4_net_ops);
2718}
2719#endif /* CONFIG_PROC_FS */
2720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2721struct proto tcp_prot = {
2722	.name			= "TCP",
2723	.owner			= THIS_MODULE,
2724	.close			= tcp_close,
2725	.connect		= tcp_v4_connect,
2726	.disconnect		= tcp_disconnect,
2727	.accept			= inet_csk_accept,
2728	.ioctl			= tcp_ioctl,
2729	.init			= tcp_v4_init_sock,
2730	.destroy		= tcp_v4_destroy_sock,
2731	.shutdown		= tcp_shutdown,
2732	.setsockopt		= tcp_setsockopt,
2733	.getsockopt		= tcp_getsockopt,
2734	.recvmsg		= tcp_recvmsg,
2735	.sendmsg		= tcp_sendmsg,
2736	.sendpage		= tcp_sendpage,
2737	.backlog_rcv		= tcp_v4_do_rcv,
2738	.release_cb		= tcp_release_cb,
2739	.mtu_reduced		= tcp_v4_mtu_reduced,
2740	.hash			= inet_hash,
2741	.unhash			= inet_unhash,
2742	.get_port		= inet_csk_get_port,
2743	.enter_memory_pressure	= tcp_enter_memory_pressure,
2744	.stream_memory_free	= tcp_stream_memory_free,
2745	.sockets_allocated	= &tcp_sockets_allocated,
2746	.orphan_count		= &tcp_orphan_count,
2747	.memory_allocated	= &tcp_memory_allocated,
2748	.memory_pressure	= &tcp_memory_pressure,
2749	.sysctl_mem		= sysctl_tcp_mem,
2750	.sysctl_wmem		= sysctl_tcp_wmem,
2751	.sysctl_rmem		= sysctl_tcp_rmem,
2752	.max_header		= MAX_TCP_HEADER,
2753	.obj_size		= sizeof(struct tcp_sock),
2754	.slab_flags		= SLAB_DESTROY_BY_RCU,
2755	.twsk_prot		= &tcp_timewait_sock_ops,
2756	.rsk_prot		= &tcp_request_sock_ops,
2757	.h.hashinfo		= &tcp_hashinfo,
2758	.no_autobind		= true,
2759#ifdef CONFIG_COMPAT
2760	.compat_setsockopt	= compat_tcp_setsockopt,
2761	.compat_getsockopt	= compat_tcp_getsockopt,
2762#endif
2763#ifdef CONFIG_MEMCG_KMEM
2764	.init_cgroup		= tcp_init_cgroup,
2765	.destroy_cgroup		= tcp_destroy_cgroup,
2766	.proto_cgroup		= tcp_proto_cgroup,
2767#endif
2768};
2769EXPORT_SYMBOL(tcp_prot);
2770
2771static int __net_init tcp_sk_init(struct net *net)
2772{
2773	net->ipv4.sysctl_tcp_ecn = 2;
2774	return 0;
2775}
2776
2777static void __net_exit tcp_sk_exit(struct net *net)
2778{
 
2779}
2780
2781static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2782{
2783	inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2784}
2785
2786static struct pernet_operations __net_initdata tcp_sk_ops = {
2787       .init	   = tcp_sk_init,
2788       .exit	   = tcp_sk_exit,
2789       .exit_batch = tcp_sk_exit_batch,
2790};
2791
2792void __init tcp_v4_init(void)
2793{
2794	inet_hashinfo_init(&tcp_hashinfo);
2795	if (register_pernet_subsys(&tcp_sk_ops))
2796		panic("Failed to create the TCP control socket.\n");
2797}
v3.5.6
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 *		IPv4 specific functions
   9 *
  10 *
  11 *		code split from:
  12 *		linux/ipv4/tcp.c
  13 *		linux/ipv4/tcp_input.c
  14 *		linux/ipv4/tcp_output.c
  15 *
  16 *		See tcp.c for author information
  17 *
  18 *	This program is free software; you can redistribute it and/or
  19 *      modify it under the terms of the GNU General Public License
  20 *      as published by the Free Software Foundation; either version
  21 *      2 of the License, or (at your option) any later version.
  22 */
  23
  24/*
  25 * Changes:
  26 *		David S. Miller	:	New socket lookup architecture.
  27 *					This code is dedicated to John Dyson.
  28 *		David S. Miller :	Change semantics of established hash,
  29 *					half is devoted to TIME_WAIT sockets
  30 *					and the rest go in the other half.
  31 *		Andi Kleen :		Add support for syncookies and fixed
  32 *					some bugs: ip options weren't passed to
  33 *					the TCP layer, missed a check for an
  34 *					ACK bit.
  35 *		Andi Kleen :		Implemented fast path mtu discovery.
  36 *	     				Fixed many serious bugs in the
  37 *					request_sock handling and moved
  38 *					most of it into the af independent code.
  39 *					Added tail drop and some other bugfixes.
  40 *					Added new listen semantics.
  41 *		Mike McLagan	:	Routing by source
  42 *	Juan Jose Ciarlante:		ip_dynaddr bits
  43 *		Andi Kleen:		various fixes.
  44 *	Vitaly E. Lavrov	:	Transparent proxy revived after year
  45 *					coma.
  46 *	Andi Kleen		:	Fix new listen.
  47 *	Andi Kleen		:	Fix accept error reporting.
  48 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  49 *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
  50 *					a single port at the same time.
  51 */
  52
  53#define pr_fmt(fmt) "TCP: " fmt
  54
  55#include <linux/bottom_half.h>
  56#include <linux/types.h>
  57#include <linux/fcntl.h>
  58#include <linux/module.h>
  59#include <linux/random.h>
  60#include <linux/cache.h>
  61#include <linux/jhash.h>
  62#include <linux/init.h>
  63#include <linux/times.h>
  64#include <linux/slab.h>
  65
  66#include <net/net_namespace.h>
  67#include <net/icmp.h>
  68#include <net/inet_hashtables.h>
  69#include <net/tcp.h>
  70#include <net/transp_v6.h>
  71#include <net/ipv6.h>
  72#include <net/inet_common.h>
  73#include <net/timewait_sock.h>
  74#include <net/xfrm.h>
  75#include <net/netdma.h>
  76#include <net/secure_seq.h>
  77#include <net/tcp_memcontrol.h>
 
  78
  79#include <linux/inet.h>
  80#include <linux/ipv6.h>
  81#include <linux/stddef.h>
  82#include <linux/proc_fs.h>
  83#include <linux/seq_file.h>
  84
  85#include <linux/crypto.h>
  86#include <linux/scatterlist.h>
  87
  88int sysctl_tcp_tw_reuse __read_mostly;
  89int sysctl_tcp_low_latency __read_mostly;
  90EXPORT_SYMBOL(sysctl_tcp_low_latency);
  91
  92
  93#ifdef CONFIG_TCP_MD5SIG
  94static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
  95			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
  96#endif
  97
  98struct inet_hashinfo tcp_hashinfo;
  99EXPORT_SYMBOL(tcp_hashinfo);
 100
 101static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
 102{
 103	return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
 104					  ip_hdr(skb)->saddr,
 105					  tcp_hdr(skb)->dest,
 106					  tcp_hdr(skb)->source);
 107}
 108
 109int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
 110{
 111	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
 112	struct tcp_sock *tp = tcp_sk(sk);
 113
 114	/* With PAWS, it is safe from the viewpoint
 115	   of data integrity. Even without PAWS it is safe provided sequence
 116	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
 117
 118	   Actually, the idea is close to VJ's one, only timestamp cache is
 119	   held not per host, but per port pair and TW bucket is used as state
 120	   holder.
 121
 122	   If TW bucket has been already destroyed we fall back to VJ's scheme
 123	   and use initial timestamp retrieved from peer table.
 124	 */
 125	if (tcptw->tw_ts_recent_stamp &&
 126	    (twp == NULL || (sysctl_tcp_tw_reuse &&
 127			     get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
 128		tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
 129		if (tp->write_seq == 0)
 130			tp->write_seq = 1;
 131		tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
 132		tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
 133		sock_hold(sktw);
 134		return 1;
 135	}
 136
 137	return 0;
 138}
 139EXPORT_SYMBOL_GPL(tcp_twsk_unique);
 140
 141static int tcp_repair_connect(struct sock *sk)
 142{
 143	tcp_connect_init(sk);
 144	tcp_finish_connect(sk, NULL);
 145
 146	return 0;
 147}
 148
 149/* This will initiate an outgoing connection. */
 150int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
 151{
 152	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
 153	struct inet_sock *inet = inet_sk(sk);
 154	struct tcp_sock *tp = tcp_sk(sk);
 155	__be16 orig_sport, orig_dport;
 156	__be32 daddr, nexthop;
 157	struct flowi4 *fl4;
 158	struct rtable *rt;
 159	int err;
 160	struct ip_options_rcu *inet_opt;
 161
 162	if (addr_len < sizeof(struct sockaddr_in))
 163		return -EINVAL;
 164
 165	if (usin->sin_family != AF_INET)
 166		return -EAFNOSUPPORT;
 167
 168	nexthop = daddr = usin->sin_addr.s_addr;
 169	inet_opt = rcu_dereference_protected(inet->inet_opt,
 170					     sock_owned_by_user(sk));
 171	if (inet_opt && inet_opt->opt.srr) {
 172		if (!daddr)
 173			return -EINVAL;
 174		nexthop = inet_opt->opt.faddr;
 175	}
 176
 177	orig_sport = inet->inet_sport;
 178	orig_dport = usin->sin_port;
 179	fl4 = &inet->cork.fl.u.ip4;
 180	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
 181			      RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
 182			      IPPROTO_TCP,
 183			      orig_sport, orig_dport, sk, true);
 184	if (IS_ERR(rt)) {
 185		err = PTR_ERR(rt);
 186		if (err == -ENETUNREACH)
 187			IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
 188		return err;
 189	}
 190
 191	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
 192		ip_rt_put(rt);
 193		return -ENETUNREACH;
 194	}
 195
 196	if (!inet_opt || !inet_opt->opt.srr)
 197		daddr = fl4->daddr;
 198
 199	if (!inet->inet_saddr)
 200		inet->inet_saddr = fl4->saddr;
 201	inet->inet_rcv_saddr = inet->inet_saddr;
 202
 203	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
 204		/* Reset inherited state */
 205		tp->rx_opt.ts_recent	   = 0;
 206		tp->rx_opt.ts_recent_stamp = 0;
 207		if (likely(!tp->repair))
 208			tp->write_seq	   = 0;
 209	}
 210
 211	if (tcp_death_row.sysctl_tw_recycle &&
 212	    !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
 213		struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
 214		/*
 215		 * VJ's idea. We save last timestamp seen from
 216		 * the destination in peer table, when entering state
 217		 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
 218		 * when trying new connection.
 219		 */
 220		if (peer) {
 221			inet_peer_refcheck(peer);
 222			if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
 223				tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
 224				tp->rx_opt.ts_recent = peer->tcp_ts;
 225			}
 226		}
 227	}
 228
 229	inet->inet_dport = usin->sin_port;
 230	inet->inet_daddr = daddr;
 231
 232	inet_csk(sk)->icsk_ext_hdr_len = 0;
 233	if (inet_opt)
 234		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
 235
 236	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
 237
 238	/* Socket identity is still unknown (sport may be zero).
 239	 * However we set state to SYN-SENT and not releasing socket
 240	 * lock select source port, enter ourselves into the hash tables and
 241	 * complete initialization after this.
 242	 */
 243	tcp_set_state(sk, TCP_SYN_SENT);
 244	err = inet_hash_connect(&tcp_death_row, sk);
 245	if (err)
 246		goto failure;
 247
 248	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
 249			       inet->inet_sport, inet->inet_dport, sk);
 250	if (IS_ERR(rt)) {
 251		err = PTR_ERR(rt);
 252		rt = NULL;
 253		goto failure;
 254	}
 255	/* OK, now commit destination to socket.  */
 256	sk->sk_gso_type = SKB_GSO_TCPV4;
 257	sk_setup_caps(sk, &rt->dst);
 258
 259	if (!tp->write_seq && likely(!tp->repair))
 260		tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
 261							   inet->inet_daddr,
 262							   inet->inet_sport,
 263							   usin->sin_port);
 264
 265	inet->inet_id = tp->write_seq ^ jiffies;
 266
 267	if (likely(!tp->repair))
 268		err = tcp_connect(sk);
 269	else
 270		err = tcp_repair_connect(sk);
 271
 272	rt = NULL;
 273	if (err)
 274		goto failure;
 275
 276	return 0;
 277
 278failure:
 279	/*
 280	 * This unhashes the socket and releases the local port,
 281	 * if necessary.
 282	 */
 283	tcp_set_state(sk, TCP_CLOSE);
 284	ip_rt_put(rt);
 285	sk->sk_route_caps = 0;
 286	inet->inet_dport = 0;
 287	return err;
 288}
 289EXPORT_SYMBOL(tcp_v4_connect);
 290
 291/*
 292 * This routine does path mtu discovery as defined in RFC1191.
 
 
 293 */
 294static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
 295{
 296	struct dst_entry *dst;
 297	struct inet_sock *inet = inet_sk(sk);
 
 298
 299	/* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
 300	 * send out by Linux are always <576bytes so they should go through
 301	 * unfragmented).
 302	 */
 303	if (sk->sk_state == TCP_LISTEN)
 304		return;
 305
 306	/* We don't check in the destentry if pmtu discovery is forbidden
 307	 * on this route. We just assume that no packet_to_big packets
 308	 * are send back when pmtu discovery is not active.
 309	 * There is a small race when the user changes this flag in the
 310	 * route, but I think that's acceptable.
 311	 */
 312	if ((dst = __sk_dst_check(sk, 0)) == NULL)
 313		return;
 314
 315	dst->ops->update_pmtu(dst, mtu);
 316
 317	/* Something is about to be wrong... Remember soft error
 318	 * for the case, if this connection will not able to recover.
 319	 */
 320	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
 321		sk->sk_err_soft = EMSGSIZE;
 322
 323	mtu = dst_mtu(dst);
 324
 325	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
 
 326	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
 327		tcp_sync_mss(sk, mtu);
 328
 329		/* Resend the TCP packet because it's
 330		 * clear that the old packet has been
 331		 * dropped. This is the new "fast" path mtu
 332		 * discovery.
 333		 */
 334		tcp_simple_retransmit(sk);
 335	} /* else let the usual retransmit timer handle it */
 336}
 337
 
 
 
 
 
 
 
 
 338/*
 339 * This routine is called by the ICMP module when it gets some
 340 * sort of error condition.  If err < 0 then the socket should
 341 * be closed and the error returned to the user.  If err > 0
 342 * it's just the icmp type << 8 | icmp code.  After adjustment
 343 * header points to the first 8 bytes of the tcp header.  We need
 344 * to find the appropriate port.
 345 *
 346 * The locking strategy used here is very "optimistic". When
 347 * someone else accesses the socket the ICMP is just dropped
 348 * and for some paths there is no check at all.
 349 * A more general error queue to queue errors for later handling
 350 * is probably better.
 351 *
 352 */
 353
 354void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
 355{
 356	const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
 357	struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
 358	struct inet_connection_sock *icsk;
 359	struct tcp_sock *tp;
 360	struct inet_sock *inet;
 361	const int type = icmp_hdr(icmp_skb)->type;
 362	const int code = icmp_hdr(icmp_skb)->code;
 363	struct sock *sk;
 364	struct sk_buff *skb;
 
 365	__u32 seq;
 366	__u32 remaining;
 367	int err;
 368	struct net *net = dev_net(icmp_skb->dev);
 369
 370	if (icmp_skb->len < (iph->ihl << 2) + 8) {
 371		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
 372		return;
 373	}
 374
 375	sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
 376			iph->saddr, th->source, inet_iif(icmp_skb));
 377	if (!sk) {
 378		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
 379		return;
 380	}
 381	if (sk->sk_state == TCP_TIME_WAIT) {
 382		inet_twsk_put(inet_twsk(sk));
 383		return;
 384	}
 385
 386	bh_lock_sock(sk);
 387	/* If too many ICMPs get dropped on busy
 388	 * servers this needs to be solved differently.
 
 
 389	 */
 390	if (sock_owned_by_user(sk))
 391		NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
 392
 
 393	if (sk->sk_state == TCP_CLOSE)
 394		goto out;
 395
 396	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
 397		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
 398		goto out;
 399	}
 400
 401	icsk = inet_csk(sk);
 402	tp = tcp_sk(sk);
 
 403	seq = ntohl(th->seq);
 404	if (sk->sk_state != TCP_LISTEN &&
 405	    !between(seq, tp->snd_una, tp->snd_nxt)) {
 
 
 406		NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
 407		goto out;
 408	}
 409
 410	switch (type) {
 
 
 
 411	case ICMP_SOURCE_QUENCH:
 412		/* Just silently ignore these. */
 413		goto out;
 414	case ICMP_PARAMETERPROB:
 415		err = EPROTO;
 416		break;
 417	case ICMP_DEST_UNREACH:
 418		if (code > NR_ICMP_UNREACH)
 419			goto out;
 420
 421		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
 422			if (!sock_owned_by_user(sk))
 423				do_pmtu_discovery(sk, iph, info);
 
 
 
 
 
 
 
 
 
 
 
 
 424			goto out;
 425		}
 426
 427		err = icmp_err_convert[code].errno;
 428		/* check if icmp_skb allows revert of backoff
 429		 * (see draft-zimmermann-tcp-lcd) */
 430		if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
 431			break;
 432		if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
 433		    !icsk->icsk_backoff)
 434			break;
 435
 
 
 436		if (sock_owned_by_user(sk))
 437			break;
 438
 439		icsk->icsk_backoff--;
 440		inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
 441			TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
 442		tcp_bound_rto(sk);
 443
 444		skb = tcp_write_queue_head(sk);
 445		BUG_ON(!skb);
 446
 447		remaining = icsk->icsk_rto - min(icsk->icsk_rto,
 448				tcp_time_stamp - TCP_SKB_CB(skb)->when);
 449
 450		if (remaining) {
 451			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
 452						  remaining, TCP_RTO_MAX);
 453		} else {
 454			/* RTO revert clocked out retransmission.
 455			 * Will retransmit now */
 456			tcp_retransmit_timer(sk);
 457		}
 458
 459		break;
 460	case ICMP_TIME_EXCEEDED:
 461		err = EHOSTUNREACH;
 462		break;
 463	default:
 464		goto out;
 465	}
 466
 
 
 
 
 
 
 
 
 467	switch (sk->sk_state) {
 468		struct request_sock *req, **prev;
 469	case TCP_LISTEN:
 470		if (sock_owned_by_user(sk))
 471			goto out;
 472
 473		req = inet_csk_search_req(sk, &prev, th->dest,
 474					  iph->daddr, iph->saddr);
 475		if (!req)
 476			goto out;
 477
 478		/* ICMPs are not backlogged, hence we cannot get
 479		   an established socket here.
 480		 */
 481		WARN_ON(req->sk);
 482
 483		if (seq != tcp_rsk(req)->snt_isn) {
 484			NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
 485			goto out;
 486		}
 487
 488		/*
 489		 * Still in SYN_RECV, just remove it silently.
 490		 * There is no good way to pass the error to the newly
 491		 * created socket, and POSIX does not want network
 492		 * errors returned from accept().
 493		 */
 494		inet_csk_reqsk_queue_drop(sk, req, prev);
 
 495		goto out;
 496
 497	case TCP_SYN_SENT:
 498	case TCP_SYN_RECV:  /* Cannot happen.
 499			       It can f.e. if SYNs crossed.
 
 500			     */
 501		if (!sock_owned_by_user(sk)) {
 502			sk->sk_err = err;
 503
 504			sk->sk_error_report(sk);
 505
 506			tcp_done(sk);
 507		} else {
 508			sk->sk_err_soft = err;
 509		}
 510		goto out;
 511	}
 512
 513	/* If we've already connected we will keep trying
 514	 * until we time out, or the user gives up.
 515	 *
 516	 * rfc1122 4.2.3.9 allows to consider as hard errors
 517	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
 518	 * but it is obsoleted by pmtu discovery).
 519	 *
 520	 * Note, that in modern internet, where routing is unreliable
 521	 * and in each dark corner broken firewalls sit, sending random
 522	 * errors ordered by their masters even this two messages finally lose
 523	 * their original sense (even Linux sends invalid PORT_UNREACHs)
 524	 *
 525	 * Now we are in compliance with RFCs.
 526	 *							--ANK (980905)
 527	 */
 528
 529	inet = inet_sk(sk);
 530	if (!sock_owned_by_user(sk) && inet->recverr) {
 531		sk->sk_err = err;
 532		sk->sk_error_report(sk);
 533	} else	{ /* Only an error on timeout */
 534		sk->sk_err_soft = err;
 535	}
 536
 537out:
 538	bh_unlock_sock(sk);
 539	sock_put(sk);
 540}
 541
 542static void __tcp_v4_send_check(struct sk_buff *skb,
 543				__be32 saddr, __be32 daddr)
 544{
 545	struct tcphdr *th = tcp_hdr(skb);
 546
 547	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 548		th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
 549		skb->csum_start = skb_transport_header(skb) - skb->head;
 550		skb->csum_offset = offsetof(struct tcphdr, check);
 551	} else {
 552		th->check = tcp_v4_check(skb->len, saddr, daddr,
 553					 csum_partial(th,
 554						      th->doff << 2,
 555						      skb->csum));
 556	}
 557}
 558
 559/* This routine computes an IPv4 TCP checksum. */
 560void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
 561{
 562	const struct inet_sock *inet = inet_sk(sk);
 563
 564	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
 565}
 566EXPORT_SYMBOL(tcp_v4_send_check);
 567
 568int tcp_v4_gso_send_check(struct sk_buff *skb)
 569{
 570	const struct iphdr *iph;
 571	struct tcphdr *th;
 572
 573	if (!pskb_may_pull(skb, sizeof(*th)))
 574		return -EINVAL;
 575
 576	iph = ip_hdr(skb);
 577	th = tcp_hdr(skb);
 578
 579	th->check = 0;
 580	skb->ip_summed = CHECKSUM_PARTIAL;
 581	__tcp_v4_send_check(skb, iph->saddr, iph->daddr);
 582	return 0;
 583}
 584
 585/*
 586 *	This routine will send an RST to the other tcp.
 587 *
 588 *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
 589 *		      for reset.
 590 *	Answer: if a packet caused RST, it is not for a socket
 591 *		existing in our system, if it is matched to a socket,
 592 *		it is just duplicate segment or bug in other side's TCP.
 593 *		So that we build reply only basing on parameters
 594 *		arrived with segment.
 595 *	Exception: precedence violation. We do not implement it in any case.
 596 */
 597
 598static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
 599{
 600	const struct tcphdr *th = tcp_hdr(skb);
 601	struct {
 602		struct tcphdr th;
 603#ifdef CONFIG_TCP_MD5SIG
 604		__be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
 605#endif
 606	} rep;
 607	struct ip_reply_arg arg;
 608#ifdef CONFIG_TCP_MD5SIG
 609	struct tcp_md5sig_key *key;
 610	const __u8 *hash_location = NULL;
 611	unsigned char newhash[16];
 612	int genhash;
 613	struct sock *sk1 = NULL;
 614#endif
 615	struct net *net;
 616
 617	/* Never send a reset in response to a reset. */
 618	if (th->rst)
 619		return;
 620
 621	if (skb_rtable(skb)->rt_type != RTN_LOCAL)
 622		return;
 623
 624	/* Swap the send and the receive. */
 625	memset(&rep, 0, sizeof(rep));
 626	rep.th.dest   = th->source;
 627	rep.th.source = th->dest;
 628	rep.th.doff   = sizeof(struct tcphdr) / 4;
 629	rep.th.rst    = 1;
 630
 631	if (th->ack) {
 632		rep.th.seq = th->ack_seq;
 633	} else {
 634		rep.th.ack = 1;
 635		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
 636				       skb->len - (th->doff << 2));
 637	}
 638
 639	memset(&arg, 0, sizeof(arg));
 640	arg.iov[0].iov_base = (unsigned char *)&rep;
 641	arg.iov[0].iov_len  = sizeof(rep.th);
 642
 643#ifdef CONFIG_TCP_MD5SIG
 644	hash_location = tcp_parse_md5sig_option(th);
 645	if (!sk && hash_location) {
 646		/*
 647		 * active side is lost. Try to find listening socket through
 648		 * source port, and then find md5 key through listening socket.
 649		 * we are not loose security here:
 650		 * Incoming packet is checked with md5 hash with finding key,
 651		 * no RST generated if md5 hash doesn't match.
 652		 */
 653		sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
 654					     &tcp_hashinfo, ip_hdr(skb)->daddr,
 
 655					     ntohs(th->source), inet_iif(skb));
 656		/* don't send rst if it can't find key */
 657		if (!sk1)
 658			return;
 659		rcu_read_lock();
 660		key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
 661					&ip_hdr(skb)->saddr, AF_INET);
 662		if (!key)
 663			goto release_sk1;
 664
 665		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
 666		if (genhash || memcmp(hash_location, newhash, 16) != 0)
 667			goto release_sk1;
 668	} else {
 669		key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
 670					     &ip_hdr(skb)->saddr,
 671					     AF_INET) : NULL;
 672	}
 673
 674	if (key) {
 675		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
 676				   (TCPOPT_NOP << 16) |
 677				   (TCPOPT_MD5SIG << 8) |
 678				   TCPOLEN_MD5SIG);
 679		/* Update length and the length the header thinks exists */
 680		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 681		rep.th.doff = arg.iov[0].iov_len / 4;
 682
 683		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
 684				     key, ip_hdr(skb)->saddr,
 685				     ip_hdr(skb)->daddr, &rep.th);
 686	}
 687#endif
 688	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 689				      ip_hdr(skb)->saddr, /* XXX */
 690				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 691	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 692	arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
 693	/* When socket is gone, all binding information is lost.
 694	 * routing might fail in this case. using iif for oif to
 695	 * make sure we can deliver it
 696	 */
 697	arg.bound_dev_if = sk ? sk->sk_bound_dev_if : inet_iif(skb);
 
 698
 699	net = dev_net(skb_dst(skb)->dev);
 700	arg.tos = ip_hdr(skb)->tos;
 701	ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
 702		      &arg, arg.iov[0].iov_len);
 703
 704	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
 705	TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
 706
 707#ifdef CONFIG_TCP_MD5SIG
 708release_sk1:
 709	if (sk1) {
 710		rcu_read_unlock();
 711		sock_put(sk1);
 712	}
 713#endif
 714}
 715
 716/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
 717   outside socket context is ugly, certainly. What can I do?
 718 */
 719
 720static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
 721			    u32 win, u32 ts, int oif,
 722			    struct tcp_md5sig_key *key,
 723			    int reply_flags, u8 tos)
 724{
 725	const struct tcphdr *th = tcp_hdr(skb);
 726	struct {
 727		struct tcphdr th;
 728		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
 729#ifdef CONFIG_TCP_MD5SIG
 730			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
 731#endif
 732			];
 733	} rep;
 734	struct ip_reply_arg arg;
 735	struct net *net = dev_net(skb_dst(skb)->dev);
 736
 737	memset(&rep.th, 0, sizeof(struct tcphdr));
 738	memset(&arg, 0, sizeof(arg));
 739
 740	arg.iov[0].iov_base = (unsigned char *)&rep;
 741	arg.iov[0].iov_len  = sizeof(rep.th);
 742	if (ts) {
 743		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 744				   (TCPOPT_TIMESTAMP << 8) |
 745				   TCPOLEN_TIMESTAMP);
 746		rep.opt[1] = htonl(tcp_time_stamp);
 747		rep.opt[2] = htonl(ts);
 748		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
 749	}
 750
 751	/* Swap the send and the receive. */
 752	rep.th.dest    = th->source;
 753	rep.th.source  = th->dest;
 754	rep.th.doff    = arg.iov[0].iov_len / 4;
 755	rep.th.seq     = htonl(seq);
 756	rep.th.ack_seq = htonl(ack);
 757	rep.th.ack     = 1;
 758	rep.th.window  = htons(win);
 759
 760#ifdef CONFIG_TCP_MD5SIG
 761	if (key) {
 762		int offset = (ts) ? 3 : 0;
 763
 764		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
 765					  (TCPOPT_NOP << 16) |
 766					  (TCPOPT_MD5SIG << 8) |
 767					  TCPOLEN_MD5SIG);
 768		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 769		rep.th.doff = arg.iov[0].iov_len/4;
 770
 771		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
 772				    key, ip_hdr(skb)->saddr,
 773				    ip_hdr(skb)->daddr, &rep.th);
 774	}
 775#endif
 776	arg.flags = reply_flags;
 777	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 778				      ip_hdr(skb)->saddr, /* XXX */
 779				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 780	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 781	if (oif)
 782		arg.bound_dev_if = oif;
 783	arg.tos = tos;
 784	ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
 785		      &arg, arg.iov[0].iov_len);
 786
 787	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
 788}
 789
 790static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
 791{
 792	struct inet_timewait_sock *tw = inet_twsk(sk);
 793	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
 794
 795	tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
 796			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
 
 797			tcptw->tw_ts_recent,
 798			tw->tw_bound_dev_if,
 799			tcp_twsk_md5_key(tcptw),
 800			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
 801			tw->tw_tos
 802			);
 803
 804	inet_twsk_put(tw);
 805}
 806
 807static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
 808				  struct request_sock *req)
 809{
 810	tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
 811			tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
 
 
 
 
 
 812			req->ts_recent,
 813			0,
 814			tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
 815					  AF_INET),
 816			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
 817			ip_hdr(skb)->tos);
 818}
 819
 820/*
 821 *	Send a SYN-ACK after having received a SYN.
 822 *	This still operates on a request_sock only, not on a big
 823 *	socket.
 824 */
 825static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
 826			      struct request_sock *req,
 827			      struct request_values *rvp,
 828			      u16 queue_mapping)
 829{
 830	const struct inet_request_sock *ireq = inet_rsk(req);
 831	struct flowi4 fl4;
 832	int err = -1;
 833	struct sk_buff * skb;
 834
 835	/* First, grab a route. */
 836	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
 837		return -1;
 838
 839	skb = tcp_make_synack(sk, dst, req, rvp);
 840
 841	if (skb) {
 842		__tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
 843
 844		skb_set_queue_mapping(skb, queue_mapping);
 845		err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
 846					    ireq->rmt_addr,
 847					    ireq->opt);
 848		err = net_xmit_eval(err);
 
 
 849	}
 850
 851	dst_release(dst);
 852	return err;
 853}
 854
 855static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
 856			      struct request_values *rvp)
 857{
 858	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
 859	return tcp_v4_send_synack(sk, NULL, req, rvp, 0);
 
 
 
 
 
 860}
 861
 862/*
 863 *	IPv4 request_sock destructor.
 864 */
 865static void tcp_v4_reqsk_destructor(struct request_sock *req)
 866{
 867	kfree(inet_rsk(req)->opt);
 868}
 869
 870/*
 871 * Return true if a syncookie should be sent
 872 */
 873bool tcp_syn_flood_action(struct sock *sk,
 874			 const struct sk_buff *skb,
 875			 const char *proto)
 876{
 877	const char *msg = "Dropping request";
 878	bool want_cookie = false;
 879	struct listen_sock *lopt;
 880
 881
 882
 883#ifdef CONFIG_SYN_COOKIES
 884	if (sysctl_tcp_syncookies) {
 885		msg = "Sending cookies";
 886		want_cookie = true;
 887		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
 888	} else
 889#endif
 890		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
 891
 892	lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
 893	if (!lopt->synflood_warned) {
 894		lopt->synflood_warned = 1;
 895		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
 896			proto, ntohs(tcp_hdr(skb)->dest), msg);
 897	}
 898	return want_cookie;
 899}
 900EXPORT_SYMBOL(tcp_syn_flood_action);
 901
 902/*
 903 * Save and compile IPv4 options into the request_sock if needed.
 904 */
 905static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
 906						  struct sk_buff *skb)
 907{
 908	const struct ip_options *opt = &(IPCB(skb)->opt);
 909	struct ip_options_rcu *dopt = NULL;
 910
 911	if (opt && opt->optlen) {
 912		int opt_size = sizeof(*dopt) + opt->optlen;
 913
 914		dopt = kmalloc(opt_size, GFP_ATOMIC);
 915		if (dopt) {
 916			if (ip_options_echo(&dopt->opt, skb)) {
 917				kfree(dopt);
 918				dopt = NULL;
 919			}
 920		}
 921	}
 922	return dopt;
 923}
 924
 925#ifdef CONFIG_TCP_MD5SIG
 926/*
 927 * RFC2385 MD5 checksumming requires a mapping of
 928 * IP address->MD5 Key.
 929 * We need to maintain these in the sk structure.
 930 */
 931
 932/* Find the Key structure for an address.  */
 933struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
 934					 const union tcp_md5_addr *addr,
 935					 int family)
 936{
 937	struct tcp_sock *tp = tcp_sk(sk);
 938	struct tcp_md5sig_key *key;
 939	struct hlist_node *pos;
 940	unsigned int size = sizeof(struct in_addr);
 941	struct tcp_md5sig_info *md5sig;
 942
 943	/* caller either holds rcu_read_lock() or socket lock */
 944	md5sig = rcu_dereference_check(tp->md5sig_info,
 945				       sock_owned_by_user(sk) ||
 946				       lockdep_is_held(&sk->sk_lock.slock));
 947	if (!md5sig)
 948		return NULL;
 949#if IS_ENABLED(CONFIG_IPV6)
 950	if (family == AF_INET6)
 951		size = sizeof(struct in6_addr);
 952#endif
 953	hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
 954		if (key->family != family)
 955			continue;
 956		if (!memcmp(&key->addr, addr, size))
 957			return key;
 958	}
 959	return NULL;
 960}
 961EXPORT_SYMBOL(tcp_md5_do_lookup);
 962
 963struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
 964					 struct sock *addr_sk)
 965{
 966	union tcp_md5_addr *addr;
 967
 968	addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
 969	return tcp_md5_do_lookup(sk, addr, AF_INET);
 970}
 971EXPORT_SYMBOL(tcp_v4_md5_lookup);
 972
 973static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
 974						      struct request_sock *req)
 975{
 976	union tcp_md5_addr *addr;
 977
 978	addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
 979	return tcp_md5_do_lookup(sk, addr, AF_INET);
 980}
 981
 982/* This can be called on a newly created socket, from other files */
 983int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
 984		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
 985{
 986	/* Add Key to the list */
 987	struct tcp_md5sig_key *key;
 988	struct tcp_sock *tp = tcp_sk(sk);
 989	struct tcp_md5sig_info *md5sig;
 990
 991	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
 992	if (key) {
 993		/* Pre-existing entry - just update that one. */
 994		memcpy(key->key, newkey, newkeylen);
 995		key->keylen = newkeylen;
 996		return 0;
 997	}
 998
 999	md5sig = rcu_dereference_protected(tp->md5sig_info,
1000					   sock_owned_by_user(sk));
1001	if (!md5sig) {
1002		md5sig = kmalloc(sizeof(*md5sig), gfp);
1003		if (!md5sig)
1004			return -ENOMEM;
1005
1006		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1007		INIT_HLIST_HEAD(&md5sig->head);
1008		rcu_assign_pointer(tp->md5sig_info, md5sig);
1009	}
1010
1011	key = sock_kmalloc(sk, sizeof(*key), gfp);
1012	if (!key)
1013		return -ENOMEM;
1014	if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1015		sock_kfree_s(sk, key, sizeof(*key));
1016		return -ENOMEM;
1017	}
1018
1019	memcpy(key->key, newkey, newkeylen);
1020	key->keylen = newkeylen;
1021	key->family = family;
1022	memcpy(&key->addr, addr,
1023	       (family == AF_INET6) ? sizeof(struct in6_addr) :
1024				      sizeof(struct in_addr));
1025	hlist_add_head_rcu(&key->node, &md5sig->head);
1026	return 0;
1027}
1028EXPORT_SYMBOL(tcp_md5_do_add);
1029
1030int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1031{
1032	struct tcp_sock *tp = tcp_sk(sk);
1033	struct tcp_md5sig_key *key;
1034	struct tcp_md5sig_info *md5sig;
1035
1036	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1037	if (!key)
1038		return -ENOENT;
1039	hlist_del_rcu(&key->node);
1040	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1041	kfree_rcu(key, rcu);
1042	md5sig = rcu_dereference_protected(tp->md5sig_info,
1043					   sock_owned_by_user(sk));
1044	if (hlist_empty(&md5sig->head))
1045		tcp_free_md5sig_pool();
1046	return 0;
1047}
1048EXPORT_SYMBOL(tcp_md5_do_del);
1049
1050void tcp_clear_md5_list(struct sock *sk)
1051{
1052	struct tcp_sock *tp = tcp_sk(sk);
1053	struct tcp_md5sig_key *key;
1054	struct hlist_node *pos, *n;
1055	struct tcp_md5sig_info *md5sig;
1056
1057	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1058
1059	if (!hlist_empty(&md5sig->head))
1060		tcp_free_md5sig_pool();
1061	hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1062		hlist_del_rcu(&key->node);
1063		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1064		kfree_rcu(key, rcu);
1065	}
1066}
1067
1068static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1069				 int optlen)
1070{
1071	struct tcp_md5sig cmd;
1072	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1073
1074	if (optlen < sizeof(cmd))
1075		return -EINVAL;
1076
1077	if (copy_from_user(&cmd, optval, sizeof(cmd)))
1078		return -EFAULT;
1079
1080	if (sin->sin_family != AF_INET)
1081		return -EINVAL;
1082
1083	if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1084		return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1085				      AF_INET);
1086
1087	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1088		return -EINVAL;
1089
1090	return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1091			      AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1092			      GFP_KERNEL);
1093}
1094
1095static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1096					__be32 daddr, __be32 saddr, int nbytes)
1097{
1098	struct tcp4_pseudohdr *bp;
1099	struct scatterlist sg;
1100
1101	bp = &hp->md5_blk.ip4;
1102
1103	/*
1104	 * 1. the TCP pseudo-header (in the order: source IP address,
1105	 * destination IP address, zero-padded protocol number, and
1106	 * segment length)
1107	 */
1108	bp->saddr = saddr;
1109	bp->daddr = daddr;
1110	bp->pad = 0;
1111	bp->protocol = IPPROTO_TCP;
1112	bp->len = cpu_to_be16(nbytes);
1113
1114	sg_init_one(&sg, bp, sizeof(*bp));
1115	return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1116}
1117
1118static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1119			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1120{
1121	struct tcp_md5sig_pool *hp;
1122	struct hash_desc *desc;
1123
1124	hp = tcp_get_md5sig_pool();
1125	if (!hp)
1126		goto clear_hash_noput;
1127	desc = &hp->md5_desc;
1128
1129	if (crypto_hash_init(desc))
1130		goto clear_hash;
1131	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1132		goto clear_hash;
1133	if (tcp_md5_hash_header(hp, th))
1134		goto clear_hash;
1135	if (tcp_md5_hash_key(hp, key))
1136		goto clear_hash;
1137	if (crypto_hash_final(desc, md5_hash))
1138		goto clear_hash;
1139
1140	tcp_put_md5sig_pool();
1141	return 0;
1142
1143clear_hash:
1144	tcp_put_md5sig_pool();
1145clear_hash_noput:
1146	memset(md5_hash, 0, 16);
1147	return 1;
1148}
1149
1150int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1151			const struct sock *sk, const struct request_sock *req,
1152			const struct sk_buff *skb)
1153{
1154	struct tcp_md5sig_pool *hp;
1155	struct hash_desc *desc;
1156	const struct tcphdr *th = tcp_hdr(skb);
1157	__be32 saddr, daddr;
1158
1159	if (sk) {
1160		saddr = inet_sk(sk)->inet_saddr;
1161		daddr = inet_sk(sk)->inet_daddr;
1162	} else if (req) {
1163		saddr = inet_rsk(req)->loc_addr;
1164		daddr = inet_rsk(req)->rmt_addr;
1165	} else {
1166		const struct iphdr *iph = ip_hdr(skb);
1167		saddr = iph->saddr;
1168		daddr = iph->daddr;
1169	}
1170
1171	hp = tcp_get_md5sig_pool();
1172	if (!hp)
1173		goto clear_hash_noput;
1174	desc = &hp->md5_desc;
1175
1176	if (crypto_hash_init(desc))
1177		goto clear_hash;
1178
1179	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1180		goto clear_hash;
1181	if (tcp_md5_hash_header(hp, th))
1182		goto clear_hash;
1183	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1184		goto clear_hash;
1185	if (tcp_md5_hash_key(hp, key))
1186		goto clear_hash;
1187	if (crypto_hash_final(desc, md5_hash))
1188		goto clear_hash;
1189
1190	tcp_put_md5sig_pool();
1191	return 0;
1192
1193clear_hash:
1194	tcp_put_md5sig_pool();
1195clear_hash_noput:
1196	memset(md5_hash, 0, 16);
1197	return 1;
1198}
1199EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1200
1201static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1202{
1203	/*
1204	 * This gets called for each TCP segment that arrives
1205	 * so we want to be efficient.
1206	 * We have 3 drop cases:
1207	 * o No MD5 hash and one expected.
1208	 * o MD5 hash and we're not expecting one.
1209	 * o MD5 hash and its wrong.
1210	 */
1211	const __u8 *hash_location = NULL;
1212	struct tcp_md5sig_key *hash_expected;
1213	const struct iphdr *iph = ip_hdr(skb);
1214	const struct tcphdr *th = tcp_hdr(skb);
1215	int genhash;
1216	unsigned char newhash[16];
1217
1218	hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1219					  AF_INET);
1220	hash_location = tcp_parse_md5sig_option(th);
1221
1222	/* We've parsed the options - do we have a hash? */
1223	if (!hash_expected && !hash_location)
1224		return false;
1225
1226	if (hash_expected && !hash_location) {
1227		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1228		return true;
1229	}
1230
1231	if (!hash_expected && hash_location) {
1232		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1233		return true;
1234	}
1235
1236	/* Okay, so this is hash_expected and hash_location -
1237	 * so we need to calculate the checksum.
1238	 */
1239	genhash = tcp_v4_md5_hash_skb(newhash,
1240				      hash_expected,
1241				      NULL, NULL, skb);
1242
1243	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1244		net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1245				     &iph->saddr, ntohs(th->source),
1246				     &iph->daddr, ntohs(th->dest),
1247				     genhash ? " tcp_v4_calc_md5_hash failed"
1248				     : "");
1249		return true;
1250	}
1251	return false;
1252}
1253
1254#endif
1255
1256struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1257	.family		=	PF_INET,
1258	.obj_size	=	sizeof(struct tcp_request_sock),
1259	.rtx_syn_ack	=	tcp_v4_rtx_synack,
1260	.send_ack	=	tcp_v4_reqsk_send_ack,
1261	.destructor	=	tcp_v4_reqsk_destructor,
1262	.send_reset	=	tcp_v4_send_reset,
1263	.syn_ack_timeout = 	tcp_syn_ack_timeout,
1264};
1265
1266#ifdef CONFIG_TCP_MD5SIG
1267static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1268	.md5_lookup	=	tcp_v4_reqsk_md5_lookup,
1269	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1270};
1271#endif
1272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1273int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1274{
1275	struct tcp_extend_values tmp_ext;
1276	struct tcp_options_received tmp_opt;
1277	const u8 *hash_location;
1278	struct request_sock *req;
1279	struct inet_request_sock *ireq;
1280	struct tcp_sock *tp = tcp_sk(sk);
1281	struct dst_entry *dst = NULL;
1282	__be32 saddr = ip_hdr(skb)->saddr;
1283	__be32 daddr = ip_hdr(skb)->daddr;
1284	__u32 isn = TCP_SKB_CB(skb)->when;
1285	bool want_cookie = false;
 
 
 
 
 
1286
1287	/* Never answer to SYNs send to broadcast or multicast */
1288	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1289		goto drop;
1290
1291	/* TW buckets are converted to open requests without
1292	 * limitations, they conserve resources and peer is
1293	 * evidently real one.
1294	 */
1295	if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
 
1296		want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1297		if (!want_cookie)
1298			goto drop;
1299	}
1300
1301	/* Accept backlog is full. If we have already queued enough
1302	 * of warm entries in syn queue, drop request. It is better than
1303	 * clogging syn queue with openreqs with exponentially increasing
1304	 * timeout.
1305	 */
1306	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
 
1307		goto drop;
 
1308
1309	req = inet_reqsk_alloc(&tcp_request_sock_ops);
1310	if (!req)
1311		goto drop;
1312
1313#ifdef CONFIG_TCP_MD5SIG
1314	tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1315#endif
1316
1317	tcp_clear_options(&tmp_opt);
1318	tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1319	tmp_opt.user_mss  = tp->rx_opt.user_mss;
1320	tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1321
1322	if (tmp_opt.cookie_plus > 0 &&
1323	    tmp_opt.saw_tstamp &&
1324	    !tp->rx_opt.cookie_out_never &&
1325	    (sysctl_tcp_cookie_size > 0 ||
1326	     (tp->cookie_values != NULL &&
1327	      tp->cookie_values->cookie_desired > 0))) {
1328		u8 *c;
1329		u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1330		int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1331
1332		if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1333			goto drop_and_release;
1334
1335		/* Secret recipe starts with IP addresses */
1336		*mess++ ^= (__force u32)daddr;
1337		*mess++ ^= (__force u32)saddr;
1338
1339		/* plus variable length Initiator Cookie */
1340		c = (u8 *)mess;
1341		while (l-- > 0)
1342			*c++ ^= *hash_location++;
1343
1344		want_cookie = false;	/* not our kind of cookie */
1345		tmp_ext.cookie_out_never = 0; /* false */
1346		tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1347	} else if (!tp->rx_opt.cookie_in_always) {
1348		/* redundant indications, but ensure initialization. */
1349		tmp_ext.cookie_out_never = 1; /* true */
1350		tmp_ext.cookie_plus = 0;
1351	} else {
1352		goto drop_and_release;
1353	}
1354	tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1355
1356	if (want_cookie && !tmp_opt.saw_tstamp)
1357		tcp_clear_options(&tmp_opt);
1358
1359	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1360	tcp_openreq_init(req, &tmp_opt, skb);
1361
1362	ireq = inet_rsk(req);
1363	ireq->loc_addr = daddr;
1364	ireq->rmt_addr = saddr;
1365	ireq->no_srccheck = inet_sk(sk)->transparent;
1366	ireq->opt = tcp_v4_save_options(sk, skb);
1367
1368	if (security_inet_conn_request(sk, skb, req))
1369		goto drop_and_free;
1370
1371	if (!want_cookie || tmp_opt.tstamp_ok)
1372		TCP_ECN_create_request(req, skb);
1373
1374	if (want_cookie) {
1375		isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1376		req->cookie_ts = tmp_opt.tstamp_ok;
1377	} else if (!isn) {
1378		struct inet_peer *peer = NULL;
1379		struct flowi4 fl4;
1380
1381		/* VJ's idea. We save last timestamp seen
1382		 * from the destination in peer table, when entering
1383		 * state TIME-WAIT, and check against it before
1384		 * accepting new connection request.
1385		 *
1386		 * If "isn" is not zero, this request hit alive
1387		 * timewait bucket, so that all the necessary checks
1388		 * are made in the function processing timewait state.
1389		 */
1390		if (tmp_opt.saw_tstamp &&
1391		    tcp_death_row.sysctl_tw_recycle &&
1392		    (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1393		    fl4.daddr == saddr &&
1394		    (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1395			inet_peer_refcheck(peer);
1396			if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1397			    (s32)(peer->tcp_ts - req->ts_recent) >
1398							TCP_PAWS_WINDOW) {
1399				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1400				goto drop_and_release;
1401			}
1402		}
1403		/* Kill the following clause, if you dislike this way. */
1404		else if (!sysctl_tcp_syncookies &&
1405			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1406			  (sysctl_max_syn_backlog >> 2)) &&
1407			 (!peer || !peer->tcp_ts_stamp) &&
1408			 (!dst || !dst_metric(dst, RTAX_RTT))) {
1409			/* Without syncookies last quarter of
1410			 * backlog is filled with destinations,
1411			 * proven to be alive.
1412			 * It means that we continue to communicate
1413			 * to destinations, already remembered
1414			 * to the moment of synflood.
1415			 */
1416			LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1417				       &saddr, ntohs(tcp_hdr(skb)->source));
1418			goto drop_and_release;
1419		}
1420
1421		isn = tcp_v4_init_sequence(skb);
1422	}
1423	tcp_rsk(req)->snt_isn = isn;
1424	tcp_rsk(req)->snt_synack = tcp_time_stamp;
1425
1426	if (tcp_v4_send_synack(sk, dst, req,
1427			       (struct request_values *)&tmp_ext,
1428			       skb_get_queue_mapping(skb)) ||
1429	    want_cookie)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1430		goto drop_and_free;
1431
1432	inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1433	return 0;
1434
1435drop_and_release:
1436	dst_release(dst);
1437drop_and_free:
1438	reqsk_free(req);
1439drop:
 
1440	return 0;
1441}
1442EXPORT_SYMBOL(tcp_v4_conn_request);
1443
1444
1445/*
1446 * The three way handshake has completed - we got a valid synack -
1447 * now create the new socket.
1448 */
1449struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1450				  struct request_sock *req,
1451				  struct dst_entry *dst)
1452{
1453	struct inet_request_sock *ireq;
1454	struct inet_sock *newinet;
1455	struct tcp_sock *newtp;
1456	struct sock *newsk;
1457#ifdef CONFIG_TCP_MD5SIG
1458	struct tcp_md5sig_key *key;
1459#endif
1460	struct ip_options_rcu *inet_opt;
1461
1462	if (sk_acceptq_is_full(sk))
1463		goto exit_overflow;
1464
1465	newsk = tcp_create_openreq_child(sk, req, skb);
1466	if (!newsk)
1467		goto exit_nonewsk;
1468
1469	newsk->sk_gso_type = SKB_GSO_TCPV4;
 
1470
1471	newtp		      = tcp_sk(newsk);
1472	newinet		      = inet_sk(newsk);
1473	ireq		      = inet_rsk(req);
1474	newinet->inet_daddr   = ireq->rmt_addr;
1475	newinet->inet_rcv_saddr = ireq->loc_addr;
1476	newinet->inet_saddr	      = ireq->loc_addr;
1477	inet_opt	      = ireq->opt;
1478	rcu_assign_pointer(newinet->inet_opt, inet_opt);
1479	ireq->opt	      = NULL;
1480	newinet->mc_index     = inet_iif(skb);
1481	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1482	newinet->rcv_tos      = ip_hdr(skb)->tos;
1483	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1484	if (inet_opt)
1485		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1486	newinet->inet_id = newtp->write_seq ^ jiffies;
1487
1488	if (!dst) {
1489		dst = inet_csk_route_child_sock(sk, newsk, req);
1490		if (!dst)
1491			goto put_and_exit;
1492	} else {
1493		/* syncookie case : see end of cookie_v4_check() */
1494	}
1495	sk_setup_caps(newsk, dst);
1496
1497	tcp_mtup_init(newsk);
1498	tcp_sync_mss(newsk, dst_mtu(dst));
1499	newtp->advmss = dst_metric_advmss(dst);
1500	if (tcp_sk(sk)->rx_opt.user_mss &&
1501	    tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1502		newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1503
1504	tcp_initialize_rcv_mss(newsk);
1505	if (tcp_rsk(req)->snt_synack)
1506		tcp_valid_rtt_meas(newsk,
1507		    tcp_time_stamp - tcp_rsk(req)->snt_synack);
1508	newtp->total_retrans = req->retrans;
1509
1510#ifdef CONFIG_TCP_MD5SIG
1511	/* Copy over the MD5 key from the original socket */
1512	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1513				AF_INET);
1514	if (key != NULL) {
1515		/*
1516		 * We're using one, so create a matching key
1517		 * on the newsk structure. If we fail to get
1518		 * memory, then we end up not copying the key
1519		 * across. Shucks.
1520		 */
1521		tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1522			       AF_INET, key->key, key->keylen, GFP_ATOMIC);
1523		sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1524	}
1525#endif
1526
1527	if (__inet_inherit_port(sk, newsk) < 0)
1528		goto put_and_exit;
1529	__inet_hash_nolisten(newsk, NULL);
1530
1531	return newsk;
1532
1533exit_overflow:
1534	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1535exit_nonewsk:
1536	dst_release(dst);
1537exit:
1538	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1539	return NULL;
1540put_and_exit:
1541	tcp_clear_xmit_timers(newsk);
1542	tcp_cleanup_congestion_control(newsk);
1543	bh_unlock_sock(newsk);
1544	sock_put(newsk);
1545	goto exit;
1546}
1547EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1548
1549static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1550{
1551	struct tcphdr *th = tcp_hdr(skb);
1552	const struct iphdr *iph = ip_hdr(skb);
1553	struct sock *nsk;
1554	struct request_sock **prev;
1555	/* Find possible connection requests. */
1556	struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1557						       iph->saddr, iph->daddr);
1558	if (req)
1559		return tcp_check_req(sk, skb, req, prev);
1560
1561	nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1562			th->source, iph->daddr, th->dest, inet_iif(skb));
1563
1564	if (nsk) {
1565		if (nsk->sk_state != TCP_TIME_WAIT) {
1566			bh_lock_sock(nsk);
1567			return nsk;
1568		}
1569		inet_twsk_put(inet_twsk(nsk));
1570		return NULL;
1571	}
1572
1573#ifdef CONFIG_SYN_COOKIES
1574	if (!th->syn)
1575		sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1576#endif
1577	return sk;
1578}
1579
1580static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1581{
1582	const struct iphdr *iph = ip_hdr(skb);
1583
1584	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1585		if (!tcp_v4_check(skb->len, iph->saddr,
1586				  iph->daddr, skb->csum)) {
1587			skb->ip_summed = CHECKSUM_UNNECESSARY;
1588			return 0;
1589		}
1590	}
1591
1592	skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1593				       skb->len, IPPROTO_TCP, 0);
1594
1595	if (skb->len <= 76) {
1596		return __skb_checksum_complete(skb);
1597	}
1598	return 0;
1599}
1600
1601
1602/* The socket must have it's spinlock held when we get
1603 * here.
1604 *
1605 * We have a potential double-lock case here, so even when
1606 * doing backlog processing we use the BH locking scheme.
1607 * This is because we cannot sleep with the original spinlock
1608 * held.
1609 */
1610int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1611{
1612	struct sock *rsk;
1613#ifdef CONFIG_TCP_MD5SIG
1614	/*
1615	 * We really want to reject the packet as early as possible
1616	 * if:
1617	 *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1618	 *  o There is an MD5 option and we're not expecting one
1619	 */
1620	if (tcp_v4_inbound_md5_hash(sk, skb))
1621		goto discard;
1622#endif
1623
1624	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
 
 
1625		sock_rps_save_rxhash(sk, skb);
1626		if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1627			rsk = sk;
1628			goto reset;
 
 
 
1629		}
 
1630		return 0;
1631	}
1632
1633	if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1634		goto csum_err;
1635
1636	if (sk->sk_state == TCP_LISTEN) {
1637		struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1638		if (!nsk)
1639			goto discard;
1640
1641		if (nsk != sk) {
1642			sock_rps_save_rxhash(nsk, skb);
1643			if (tcp_child_process(sk, nsk, skb)) {
1644				rsk = nsk;
1645				goto reset;
1646			}
1647			return 0;
1648		}
1649	} else
1650		sock_rps_save_rxhash(sk, skb);
1651
1652	if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1653		rsk = sk;
1654		goto reset;
1655	}
1656	return 0;
1657
1658reset:
1659	tcp_v4_send_reset(rsk, skb);
1660discard:
1661	kfree_skb(skb);
1662	/* Be careful here. If this function gets more complicated and
1663	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1664	 * might be destroyed here. This current version compiles correctly,
1665	 * but you have been warned.
1666	 */
1667	return 0;
1668
1669csum_err:
 
1670	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1671	goto discard;
1672}
1673EXPORT_SYMBOL(tcp_v4_do_rcv);
1674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1675/*
1676 *	From tcp_input.c
1677 */
1678
1679int tcp_v4_rcv(struct sk_buff *skb)
1680{
1681	const struct iphdr *iph;
1682	const struct tcphdr *th;
1683	struct sock *sk;
1684	int ret;
1685	struct net *net = dev_net(skb->dev);
1686
1687	if (skb->pkt_type != PACKET_HOST)
1688		goto discard_it;
1689
1690	/* Count it even if it's bad */
1691	TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1692
1693	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1694		goto discard_it;
1695
1696	th = tcp_hdr(skb);
1697
1698	if (th->doff < sizeof(struct tcphdr) / 4)
1699		goto bad_packet;
1700	if (!pskb_may_pull(skb, th->doff * 4))
1701		goto discard_it;
1702
1703	/* An explanation is required here, I think.
1704	 * Packet length and doff are validated by header prediction,
1705	 * provided case of th->doff==0 is eliminated.
1706	 * So, we defer the checks. */
1707	if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1708		goto bad_packet;
1709
1710	th = tcp_hdr(skb);
1711	iph = ip_hdr(skb);
1712	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1713	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1714				    skb->len - th->doff * 4);
1715	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1716	TCP_SKB_CB(skb)->when	 = 0;
1717	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1718	TCP_SKB_CB(skb)->sacked	 = 0;
1719
1720	sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1721	if (!sk)
1722		goto no_tcp_socket;
1723
1724process:
1725	if (sk->sk_state == TCP_TIME_WAIT)
1726		goto do_time_wait;
1727
1728	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1729		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1730		goto discard_and_relse;
1731	}
1732
1733	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1734		goto discard_and_relse;
1735	nf_reset(skb);
1736
1737	if (sk_filter(sk, skb))
1738		goto discard_and_relse;
1739
 
1740	skb->dev = NULL;
1741
1742	bh_lock_sock_nested(sk);
1743	ret = 0;
1744	if (!sock_owned_by_user(sk)) {
1745#ifdef CONFIG_NET_DMA
1746		struct tcp_sock *tp = tcp_sk(sk);
1747		if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1748			tp->ucopy.dma_chan = net_dma_find_channel();
1749		if (tp->ucopy.dma_chan)
1750			ret = tcp_v4_do_rcv(sk, skb);
1751		else
1752#endif
1753		{
1754			if (!tcp_prequeue(sk, skb))
1755				ret = tcp_v4_do_rcv(sk, skb);
1756		}
1757	} else if (unlikely(sk_add_backlog(sk, skb,
1758					   sk->sk_rcvbuf + sk->sk_sndbuf))) {
1759		bh_unlock_sock(sk);
1760		NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1761		goto discard_and_relse;
1762	}
1763	bh_unlock_sock(sk);
1764
1765	sock_put(sk);
1766
1767	return ret;
1768
1769no_tcp_socket:
1770	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1771		goto discard_it;
1772
1773	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
 
 
1774bad_packet:
1775		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1776	} else {
1777		tcp_v4_send_reset(NULL, skb);
1778	}
1779
1780discard_it:
1781	/* Discard frame. */
1782	kfree_skb(skb);
1783	return 0;
1784
1785discard_and_relse:
1786	sock_put(sk);
1787	goto discard_it;
1788
1789do_time_wait:
1790	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1791		inet_twsk_put(inet_twsk(sk));
1792		goto discard_it;
1793	}
1794
1795	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1796		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
 
 
 
1797		inet_twsk_put(inet_twsk(sk));
1798		goto discard_it;
1799	}
1800	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1801	case TCP_TW_SYN: {
1802		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1803							&tcp_hashinfo,
 
1804							iph->daddr, th->dest,
1805							inet_iif(skb));
1806		if (sk2) {
1807			inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1808			inet_twsk_put(inet_twsk(sk));
1809			sk = sk2;
1810			goto process;
1811		}
1812		/* Fall through to ACK */
1813	}
1814	case TCP_TW_ACK:
1815		tcp_v4_timewait_ack(sk, skb);
1816		break;
1817	case TCP_TW_RST:
1818		goto no_tcp_socket;
1819	case TCP_TW_SUCCESS:;
1820	}
1821	goto discard_it;
1822}
1823
1824struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1825{
1826	struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1827	struct inet_sock *inet = inet_sk(sk);
1828	struct inet_peer *peer;
1829
1830	if (!rt ||
1831	    inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1832		peer = inet_getpeer_v4(inet->inet_daddr, 1);
1833		*release_it = true;
1834	} else {
1835		if (!rt->peer)
1836			rt_bind_peer(rt, inet->inet_daddr, 1);
1837		peer = rt->peer;
1838		*release_it = false;
1839	}
1840
1841	return peer;
1842}
1843EXPORT_SYMBOL(tcp_v4_get_peer);
1844
1845void *tcp_v4_tw_get_peer(struct sock *sk)
1846{
1847	const struct inet_timewait_sock *tw = inet_twsk(sk);
1848
1849	return inet_getpeer_v4(tw->tw_daddr, 1);
1850}
1851EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1852
1853static struct timewait_sock_ops tcp_timewait_sock_ops = {
1854	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
1855	.twsk_unique	= tcp_twsk_unique,
1856	.twsk_destructor= tcp_twsk_destructor,
1857	.twsk_getpeer	= tcp_v4_tw_get_peer,
1858};
1859
 
 
 
 
 
 
 
 
 
 
1860const struct inet_connection_sock_af_ops ipv4_specific = {
1861	.queue_xmit	   = ip_queue_xmit,
1862	.send_check	   = tcp_v4_send_check,
1863	.rebuild_header	   = inet_sk_rebuild_header,
 
1864	.conn_request	   = tcp_v4_conn_request,
1865	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
1866	.get_peer	   = tcp_v4_get_peer,
1867	.net_header_len	   = sizeof(struct iphdr),
1868	.setsockopt	   = ip_setsockopt,
1869	.getsockopt	   = ip_getsockopt,
1870	.addr2sockaddr	   = inet_csk_addr2sockaddr,
1871	.sockaddr_len	   = sizeof(struct sockaddr_in),
1872	.bind_conflict	   = inet_csk_bind_conflict,
1873#ifdef CONFIG_COMPAT
1874	.compat_setsockopt = compat_ip_setsockopt,
1875	.compat_getsockopt = compat_ip_getsockopt,
1876#endif
1877};
1878EXPORT_SYMBOL(ipv4_specific);
1879
1880#ifdef CONFIG_TCP_MD5SIG
1881static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1882	.md5_lookup		= tcp_v4_md5_lookup,
1883	.calc_md5_hash		= tcp_v4_md5_hash_skb,
1884	.md5_parse		= tcp_v4_parse_md5_keys,
1885};
1886#endif
1887
1888/* NOTE: A lot of things set to zero explicitly by call to
1889 *       sk_alloc() so need not be done here.
1890 */
1891static int tcp_v4_init_sock(struct sock *sk)
1892{
1893	struct inet_connection_sock *icsk = inet_csk(sk);
1894
1895	tcp_init_sock(sk);
1896
1897	icsk->icsk_af_ops = &ipv4_specific;
1898
1899#ifdef CONFIG_TCP_MD5SIG
1900	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1901#endif
1902
1903	return 0;
1904}
1905
1906void tcp_v4_destroy_sock(struct sock *sk)
1907{
1908	struct tcp_sock *tp = tcp_sk(sk);
1909
1910	tcp_clear_xmit_timers(sk);
1911
1912	tcp_cleanup_congestion_control(sk);
1913
1914	/* Cleanup up the write buffer. */
1915	tcp_write_queue_purge(sk);
1916
1917	/* Cleans up our, hopefully empty, out_of_order_queue. */
1918	__skb_queue_purge(&tp->out_of_order_queue);
1919
1920#ifdef CONFIG_TCP_MD5SIG
1921	/* Clean up the MD5 key list, if any */
1922	if (tp->md5sig_info) {
1923		tcp_clear_md5_list(sk);
1924		kfree_rcu(tp->md5sig_info, rcu);
1925		tp->md5sig_info = NULL;
1926	}
1927#endif
1928
1929#ifdef CONFIG_NET_DMA
1930	/* Cleans up our sk_async_wait_queue */
1931	__skb_queue_purge(&sk->sk_async_wait_queue);
1932#endif
1933
1934	/* Clean prequeue, it must be empty really */
1935	__skb_queue_purge(&tp->ucopy.prequeue);
1936
1937	/* Clean up a referenced TCP bind bucket. */
1938	if (inet_csk(sk)->icsk_bind_hash)
1939		inet_put_port(sk);
1940
1941	/*
1942	 * If sendmsg cached page exists, toss it.
1943	 */
1944	if (sk->sk_sndmsg_page) {
1945		__free_page(sk->sk_sndmsg_page);
1946		sk->sk_sndmsg_page = NULL;
1947	}
1948
1949	/* TCP Cookie Transactions */
1950	if (tp->cookie_values != NULL) {
1951		kref_put(&tp->cookie_values->kref,
1952			 tcp_cookie_values_release);
1953		tp->cookie_values = NULL;
1954	}
1955
1956	sk_sockets_allocated_dec(sk);
1957	sock_release_memcg(sk);
1958}
1959EXPORT_SYMBOL(tcp_v4_destroy_sock);
1960
1961#ifdef CONFIG_PROC_FS
1962/* Proc filesystem TCP sock list dumping. */
1963
1964static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1965{
1966	return hlist_nulls_empty(head) ? NULL :
1967		list_entry(head->first, struct inet_timewait_sock, tw_node);
1968}
1969
1970static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1971{
1972	return !is_a_nulls(tw->tw_node.next) ?
1973		hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1974}
1975
1976/*
1977 * Get next listener socket follow cur.  If cur is NULL, get first socket
1978 * starting from bucket given in st->bucket; when st->bucket is zero the
1979 * very first socket in the hash table is returned.
1980 */
1981static void *listening_get_next(struct seq_file *seq, void *cur)
1982{
1983	struct inet_connection_sock *icsk;
1984	struct hlist_nulls_node *node;
1985	struct sock *sk = cur;
1986	struct inet_listen_hashbucket *ilb;
1987	struct tcp_iter_state *st = seq->private;
1988	struct net *net = seq_file_net(seq);
1989
1990	if (!sk) {
1991		ilb = &tcp_hashinfo.listening_hash[st->bucket];
1992		spin_lock_bh(&ilb->lock);
1993		sk = sk_nulls_head(&ilb->head);
1994		st->offset = 0;
1995		goto get_sk;
1996	}
1997	ilb = &tcp_hashinfo.listening_hash[st->bucket];
1998	++st->num;
1999	++st->offset;
2000
2001	if (st->state == TCP_SEQ_STATE_OPENREQ) {
2002		struct request_sock *req = cur;
2003
2004		icsk = inet_csk(st->syn_wait_sk);
2005		req = req->dl_next;
2006		while (1) {
2007			while (req) {
2008				if (req->rsk_ops->family == st->family) {
2009					cur = req;
2010					goto out;
2011				}
2012				req = req->dl_next;
2013			}
2014			if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2015				break;
2016get_req:
2017			req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2018		}
2019		sk	  = sk_nulls_next(st->syn_wait_sk);
2020		st->state = TCP_SEQ_STATE_LISTENING;
2021		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2022	} else {
2023		icsk = inet_csk(sk);
2024		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2025		if (reqsk_queue_len(&icsk->icsk_accept_queue))
2026			goto start_req;
2027		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2028		sk = sk_nulls_next(sk);
2029	}
2030get_sk:
2031	sk_nulls_for_each_from(sk, node) {
2032		if (!net_eq(sock_net(sk), net))
2033			continue;
2034		if (sk->sk_family == st->family) {
2035			cur = sk;
2036			goto out;
2037		}
2038		icsk = inet_csk(sk);
2039		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2040		if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2041start_req:
2042			st->uid		= sock_i_uid(sk);
2043			st->syn_wait_sk = sk;
2044			st->state	= TCP_SEQ_STATE_OPENREQ;
2045			st->sbucket	= 0;
2046			goto get_req;
2047		}
2048		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2049	}
2050	spin_unlock_bh(&ilb->lock);
2051	st->offset = 0;
2052	if (++st->bucket < INET_LHTABLE_SIZE) {
2053		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2054		spin_lock_bh(&ilb->lock);
2055		sk = sk_nulls_head(&ilb->head);
2056		goto get_sk;
2057	}
2058	cur = NULL;
2059out:
2060	return cur;
2061}
2062
2063static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2064{
2065	struct tcp_iter_state *st = seq->private;
2066	void *rc;
2067
2068	st->bucket = 0;
2069	st->offset = 0;
2070	rc = listening_get_next(seq, NULL);
2071
2072	while (rc && *pos) {
2073		rc = listening_get_next(seq, rc);
2074		--*pos;
2075	}
2076	return rc;
2077}
2078
2079static inline bool empty_bucket(struct tcp_iter_state *st)
2080{
2081	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2082		hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2083}
2084
2085/*
2086 * Get first established socket starting from bucket given in st->bucket.
2087 * If st->bucket is zero, the very first socket in the hash is returned.
2088 */
2089static void *established_get_first(struct seq_file *seq)
2090{
2091	struct tcp_iter_state *st = seq->private;
2092	struct net *net = seq_file_net(seq);
2093	void *rc = NULL;
2094
2095	st->offset = 0;
2096	for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2097		struct sock *sk;
2098		struct hlist_nulls_node *node;
2099		struct inet_timewait_sock *tw;
2100		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2101
2102		/* Lockless fast path for the common case of empty buckets */
2103		if (empty_bucket(st))
2104			continue;
2105
2106		spin_lock_bh(lock);
2107		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2108			if (sk->sk_family != st->family ||
2109			    !net_eq(sock_net(sk), net)) {
2110				continue;
2111			}
2112			rc = sk;
2113			goto out;
2114		}
2115		st->state = TCP_SEQ_STATE_TIME_WAIT;
2116		inet_twsk_for_each(tw, node,
2117				   &tcp_hashinfo.ehash[st->bucket].twchain) {
2118			if (tw->tw_family != st->family ||
2119			    !net_eq(twsk_net(tw), net)) {
2120				continue;
2121			}
2122			rc = tw;
2123			goto out;
2124		}
2125		spin_unlock_bh(lock);
2126		st->state = TCP_SEQ_STATE_ESTABLISHED;
2127	}
2128out:
2129	return rc;
2130}
2131
2132static void *established_get_next(struct seq_file *seq, void *cur)
2133{
2134	struct sock *sk = cur;
2135	struct inet_timewait_sock *tw;
2136	struct hlist_nulls_node *node;
2137	struct tcp_iter_state *st = seq->private;
2138	struct net *net = seq_file_net(seq);
2139
2140	++st->num;
2141	++st->offset;
2142
2143	if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2144		tw = cur;
2145		tw = tw_next(tw);
2146get_tw:
2147		while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2148			tw = tw_next(tw);
2149		}
2150		if (tw) {
2151			cur = tw;
2152			goto out;
2153		}
2154		spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2155		st->state = TCP_SEQ_STATE_ESTABLISHED;
2156
2157		/* Look for next non empty bucket */
2158		st->offset = 0;
2159		while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2160				empty_bucket(st))
2161			;
2162		if (st->bucket > tcp_hashinfo.ehash_mask)
2163			return NULL;
2164
2165		spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2166		sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2167	} else
2168		sk = sk_nulls_next(sk);
2169
2170	sk_nulls_for_each_from(sk, node) {
2171		if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2172			goto found;
2173	}
2174
2175	st->state = TCP_SEQ_STATE_TIME_WAIT;
2176	tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2177	goto get_tw;
2178found:
2179	cur = sk;
2180out:
2181	return cur;
2182}
2183
2184static void *established_get_idx(struct seq_file *seq, loff_t pos)
2185{
2186	struct tcp_iter_state *st = seq->private;
2187	void *rc;
2188
2189	st->bucket = 0;
2190	rc = established_get_first(seq);
2191
2192	while (rc && pos) {
2193		rc = established_get_next(seq, rc);
2194		--pos;
2195	}
2196	return rc;
2197}
2198
2199static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2200{
2201	void *rc;
2202	struct tcp_iter_state *st = seq->private;
2203
2204	st->state = TCP_SEQ_STATE_LISTENING;
2205	rc	  = listening_get_idx(seq, &pos);
2206
2207	if (!rc) {
2208		st->state = TCP_SEQ_STATE_ESTABLISHED;
2209		rc	  = established_get_idx(seq, pos);
2210	}
2211
2212	return rc;
2213}
2214
2215static void *tcp_seek_last_pos(struct seq_file *seq)
2216{
2217	struct tcp_iter_state *st = seq->private;
2218	int offset = st->offset;
2219	int orig_num = st->num;
2220	void *rc = NULL;
2221
2222	switch (st->state) {
2223	case TCP_SEQ_STATE_OPENREQ:
2224	case TCP_SEQ_STATE_LISTENING:
2225		if (st->bucket >= INET_LHTABLE_SIZE)
2226			break;
2227		st->state = TCP_SEQ_STATE_LISTENING;
2228		rc = listening_get_next(seq, NULL);
2229		while (offset-- && rc)
2230			rc = listening_get_next(seq, rc);
2231		if (rc)
2232			break;
2233		st->bucket = 0;
 
2234		/* Fallthrough */
2235	case TCP_SEQ_STATE_ESTABLISHED:
2236	case TCP_SEQ_STATE_TIME_WAIT:
2237		st->state = TCP_SEQ_STATE_ESTABLISHED;
2238		if (st->bucket > tcp_hashinfo.ehash_mask)
2239			break;
2240		rc = established_get_first(seq);
2241		while (offset-- && rc)
2242			rc = established_get_next(seq, rc);
2243	}
2244
2245	st->num = orig_num;
2246
2247	return rc;
2248}
2249
2250static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2251{
2252	struct tcp_iter_state *st = seq->private;
2253	void *rc;
2254
2255	if (*pos && *pos == st->last_pos) {
2256		rc = tcp_seek_last_pos(seq);
2257		if (rc)
2258			goto out;
2259	}
2260
2261	st->state = TCP_SEQ_STATE_LISTENING;
2262	st->num = 0;
2263	st->bucket = 0;
2264	st->offset = 0;
2265	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2266
2267out:
2268	st->last_pos = *pos;
2269	return rc;
2270}
2271
2272static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2273{
2274	struct tcp_iter_state *st = seq->private;
2275	void *rc = NULL;
2276
2277	if (v == SEQ_START_TOKEN) {
2278		rc = tcp_get_idx(seq, 0);
2279		goto out;
2280	}
2281
2282	switch (st->state) {
2283	case TCP_SEQ_STATE_OPENREQ:
2284	case TCP_SEQ_STATE_LISTENING:
2285		rc = listening_get_next(seq, v);
2286		if (!rc) {
2287			st->state = TCP_SEQ_STATE_ESTABLISHED;
2288			st->bucket = 0;
2289			st->offset = 0;
2290			rc	  = established_get_first(seq);
2291		}
2292		break;
2293	case TCP_SEQ_STATE_ESTABLISHED:
2294	case TCP_SEQ_STATE_TIME_WAIT:
2295		rc = established_get_next(seq, v);
2296		break;
2297	}
2298out:
2299	++*pos;
2300	st->last_pos = *pos;
2301	return rc;
2302}
2303
2304static void tcp_seq_stop(struct seq_file *seq, void *v)
2305{
2306	struct tcp_iter_state *st = seq->private;
2307
2308	switch (st->state) {
2309	case TCP_SEQ_STATE_OPENREQ:
2310		if (v) {
2311			struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2312			read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2313		}
2314	case TCP_SEQ_STATE_LISTENING:
2315		if (v != SEQ_START_TOKEN)
2316			spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2317		break;
2318	case TCP_SEQ_STATE_TIME_WAIT:
2319	case TCP_SEQ_STATE_ESTABLISHED:
2320		if (v)
2321			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2322		break;
2323	}
2324}
2325
2326int tcp_seq_open(struct inode *inode, struct file *file)
2327{
2328	struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2329	struct tcp_iter_state *s;
2330	int err;
2331
2332	err = seq_open_net(inode, file, &afinfo->seq_ops,
2333			  sizeof(struct tcp_iter_state));
2334	if (err < 0)
2335		return err;
2336
2337	s = ((struct seq_file *)file->private_data)->private;
2338	s->family		= afinfo->family;
2339	s->last_pos 		= 0;
2340	return 0;
2341}
2342EXPORT_SYMBOL(tcp_seq_open);
2343
2344int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2345{
2346	int rc = 0;
2347	struct proc_dir_entry *p;
2348
2349	afinfo->seq_ops.start		= tcp_seq_start;
2350	afinfo->seq_ops.next		= tcp_seq_next;
2351	afinfo->seq_ops.stop		= tcp_seq_stop;
2352
2353	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2354			     afinfo->seq_fops, afinfo);
2355	if (!p)
2356		rc = -ENOMEM;
2357	return rc;
2358}
2359EXPORT_SYMBOL(tcp_proc_register);
2360
2361void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2362{
2363	proc_net_remove(net, afinfo->name);
2364}
2365EXPORT_SYMBOL(tcp_proc_unregister);
2366
2367static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2368			 struct seq_file *f, int i, int uid, int *len)
2369{
2370	const struct inet_request_sock *ireq = inet_rsk(req);
2371	int ttd = req->expires - jiffies;
2372
2373	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2374		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2375		i,
2376		ireq->loc_addr,
2377		ntohs(inet_sk(sk)->inet_sport),
2378		ireq->rmt_addr,
2379		ntohs(ireq->rmt_port),
2380		TCP_SYN_RECV,
2381		0, 0, /* could print option size, but that is af dependent. */
2382		1,    /* timers active (only the expire timer) */
2383		jiffies_to_clock_t(ttd),
2384		req->retrans,
2385		uid,
2386		0,  /* non standard timer */
2387		0, /* open_requests have no inode */
2388		atomic_read(&sk->sk_refcnt),
2389		req,
2390		len);
2391}
2392
2393static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2394{
2395	int timer_active;
2396	unsigned long timer_expires;
2397	const struct tcp_sock *tp = tcp_sk(sk);
2398	const struct inet_connection_sock *icsk = inet_csk(sk);
2399	const struct inet_sock *inet = inet_sk(sk);
 
2400	__be32 dest = inet->inet_daddr;
2401	__be32 src = inet->inet_rcv_saddr;
2402	__u16 destp = ntohs(inet->inet_dport);
2403	__u16 srcp = ntohs(inet->inet_sport);
2404	int rx_queue;
2405
2406	if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
 
 
2407		timer_active	= 1;
2408		timer_expires	= icsk->icsk_timeout;
2409	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2410		timer_active	= 4;
2411		timer_expires	= icsk->icsk_timeout;
2412	} else if (timer_pending(&sk->sk_timer)) {
2413		timer_active	= 2;
2414		timer_expires	= sk->sk_timer.expires;
2415	} else {
2416		timer_active	= 0;
2417		timer_expires = jiffies;
2418	}
2419
2420	if (sk->sk_state == TCP_LISTEN)
2421		rx_queue = sk->sk_ack_backlog;
2422	else
2423		/*
2424		 * because we dont lock socket, we might find a transient negative value
2425		 */
2426		rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2427
2428	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2429			"%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2430		i, src, srcp, dest, destp, sk->sk_state,
2431		tp->write_seq - tp->snd_una,
2432		rx_queue,
2433		timer_active,
2434		jiffies_to_clock_t(timer_expires - jiffies),
2435		icsk->icsk_retransmits,
2436		sock_i_uid(sk),
2437		icsk->icsk_probes_out,
2438		sock_i_ino(sk),
2439		atomic_read(&sk->sk_refcnt), sk,
2440		jiffies_to_clock_t(icsk->icsk_rto),
2441		jiffies_to_clock_t(icsk->icsk_ack.ato),
2442		(icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2443		tp->snd_cwnd,
2444		tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2445		len);
 
2446}
2447
2448static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2449			       struct seq_file *f, int i, int *len)
2450{
2451	__be32 dest, src;
2452	__u16 destp, srcp;
2453	int ttd = tw->tw_ttd - jiffies;
2454
2455	if (ttd < 0)
2456		ttd = 0;
2457
2458	dest  = tw->tw_daddr;
2459	src   = tw->tw_rcv_saddr;
2460	destp = ntohs(tw->tw_dport);
2461	srcp  = ntohs(tw->tw_sport);
2462
2463	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2464		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2465		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2466		3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2467		atomic_read(&tw->tw_refcnt), tw, len);
2468}
2469
2470#define TMPSZ 150
2471
2472static int tcp4_seq_show(struct seq_file *seq, void *v)
2473{
2474	struct tcp_iter_state *st;
2475	int len;
2476
 
2477	if (v == SEQ_START_TOKEN) {
2478		seq_printf(seq, "%-*s\n", TMPSZ - 1,
2479			   "  sl  local_address rem_address   st tx_queue "
2480			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2481			   "inode");
2482		goto out;
2483	}
2484	st = seq->private;
2485
2486	switch (st->state) {
2487	case TCP_SEQ_STATE_LISTENING:
2488	case TCP_SEQ_STATE_ESTABLISHED:
2489		get_tcp4_sock(v, seq, st->num, &len);
 
 
 
2490		break;
2491	case TCP_SEQ_STATE_OPENREQ:
2492		get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2493		break;
2494	case TCP_SEQ_STATE_TIME_WAIT:
2495		get_timewait4_sock(v, seq, st->num, &len);
2496		break;
2497	}
2498	seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2499out:
 
2500	return 0;
2501}
2502
2503static const struct file_operations tcp_afinfo_seq_fops = {
2504	.owner   = THIS_MODULE,
2505	.open    = tcp_seq_open,
2506	.read    = seq_read,
2507	.llseek  = seq_lseek,
2508	.release = seq_release_net
2509};
2510
2511static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2512	.name		= "tcp",
2513	.family		= AF_INET,
2514	.seq_fops	= &tcp_afinfo_seq_fops,
2515	.seq_ops	= {
2516		.show		= tcp4_seq_show,
2517	},
2518};
2519
2520static int __net_init tcp4_proc_init_net(struct net *net)
2521{
2522	return tcp_proc_register(net, &tcp4_seq_afinfo);
2523}
2524
2525static void __net_exit tcp4_proc_exit_net(struct net *net)
2526{
2527	tcp_proc_unregister(net, &tcp4_seq_afinfo);
2528}
2529
2530static struct pernet_operations tcp4_net_ops = {
2531	.init = tcp4_proc_init_net,
2532	.exit = tcp4_proc_exit_net,
2533};
2534
2535int __init tcp4_proc_init(void)
2536{
2537	return register_pernet_subsys(&tcp4_net_ops);
2538}
2539
2540void tcp4_proc_exit(void)
2541{
2542	unregister_pernet_subsys(&tcp4_net_ops);
2543}
2544#endif /* CONFIG_PROC_FS */
2545
2546struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2547{
2548	const struct iphdr *iph = skb_gro_network_header(skb);
2549
2550	switch (skb->ip_summed) {
2551	case CHECKSUM_COMPLETE:
2552		if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2553				  skb->csum)) {
2554			skb->ip_summed = CHECKSUM_UNNECESSARY;
2555			break;
2556		}
2557
2558		/* fall through */
2559	case CHECKSUM_NONE:
2560		NAPI_GRO_CB(skb)->flush = 1;
2561		return NULL;
2562	}
2563
2564	return tcp_gro_receive(head, skb);
2565}
2566
2567int tcp4_gro_complete(struct sk_buff *skb)
2568{
2569	const struct iphdr *iph = ip_hdr(skb);
2570	struct tcphdr *th = tcp_hdr(skb);
2571
2572	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2573				  iph->saddr, iph->daddr, 0);
2574	skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2575
2576	return tcp_gro_complete(skb);
2577}
2578
2579struct proto tcp_prot = {
2580	.name			= "TCP",
2581	.owner			= THIS_MODULE,
2582	.close			= tcp_close,
2583	.connect		= tcp_v4_connect,
2584	.disconnect		= tcp_disconnect,
2585	.accept			= inet_csk_accept,
2586	.ioctl			= tcp_ioctl,
2587	.init			= tcp_v4_init_sock,
2588	.destroy		= tcp_v4_destroy_sock,
2589	.shutdown		= tcp_shutdown,
2590	.setsockopt		= tcp_setsockopt,
2591	.getsockopt		= tcp_getsockopt,
2592	.recvmsg		= tcp_recvmsg,
2593	.sendmsg		= tcp_sendmsg,
2594	.sendpage		= tcp_sendpage,
2595	.backlog_rcv		= tcp_v4_do_rcv,
 
 
2596	.hash			= inet_hash,
2597	.unhash			= inet_unhash,
2598	.get_port		= inet_csk_get_port,
2599	.enter_memory_pressure	= tcp_enter_memory_pressure,
 
2600	.sockets_allocated	= &tcp_sockets_allocated,
2601	.orphan_count		= &tcp_orphan_count,
2602	.memory_allocated	= &tcp_memory_allocated,
2603	.memory_pressure	= &tcp_memory_pressure,
 
2604	.sysctl_wmem		= sysctl_tcp_wmem,
2605	.sysctl_rmem		= sysctl_tcp_rmem,
2606	.max_header		= MAX_TCP_HEADER,
2607	.obj_size		= sizeof(struct tcp_sock),
2608	.slab_flags		= SLAB_DESTROY_BY_RCU,
2609	.twsk_prot		= &tcp_timewait_sock_ops,
2610	.rsk_prot		= &tcp_request_sock_ops,
2611	.h.hashinfo		= &tcp_hashinfo,
2612	.no_autobind		= true,
2613#ifdef CONFIG_COMPAT
2614	.compat_setsockopt	= compat_tcp_setsockopt,
2615	.compat_getsockopt	= compat_tcp_getsockopt,
2616#endif
2617#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
2618	.init_cgroup		= tcp_init_cgroup,
2619	.destroy_cgroup		= tcp_destroy_cgroup,
2620	.proto_cgroup		= tcp_proto_cgroup,
2621#endif
2622};
2623EXPORT_SYMBOL(tcp_prot);
2624
2625static int __net_init tcp_sk_init(struct net *net)
2626{
2627	return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2628				    PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2629}
2630
2631static void __net_exit tcp_sk_exit(struct net *net)
2632{
2633	inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2634}
2635
2636static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2637{
2638	inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2639}
2640
2641static struct pernet_operations __net_initdata tcp_sk_ops = {
2642       .init	   = tcp_sk_init,
2643       .exit	   = tcp_sk_exit,
2644       .exit_batch = tcp_sk_exit_batch,
2645};
2646
2647void __init tcp_v4_init(void)
2648{
2649	inet_hashinfo_init(&tcp_hashinfo);
2650	if (register_pernet_subsys(&tcp_sk_ops))
2651		panic("Failed to create the TCP control socket.\n");
2652}