Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 *		IPv4 specific functions
   9 *
  10 *
  11 *		code split from:
  12 *		linux/ipv4/tcp.c
  13 *		linux/ipv4/tcp_input.c
  14 *		linux/ipv4/tcp_output.c
  15 *
  16 *		See tcp.c for author information
  17 *
  18 *	This program is free software; you can redistribute it and/or
  19 *      modify it under the terms of the GNU General Public License
  20 *      as published by the Free Software Foundation; either version
  21 *      2 of the License, or (at your option) any later version.
  22 */
  23
  24/*
  25 * Changes:
  26 *		David S. Miller	:	New socket lookup architecture.
  27 *					This code is dedicated to John Dyson.
  28 *		David S. Miller :	Change semantics of established hash,
  29 *					half is devoted to TIME_WAIT sockets
  30 *					and the rest go in the other half.
  31 *		Andi Kleen :		Add support for syncookies and fixed
  32 *					some bugs: ip options weren't passed to
  33 *					the TCP layer, missed a check for an
  34 *					ACK bit.
  35 *		Andi Kleen :		Implemented fast path mtu discovery.
  36 *	     				Fixed many serious bugs in the
  37 *					request_sock handling and moved
  38 *					most of it into the af independent code.
  39 *					Added tail drop and some other bugfixes.
  40 *					Added new listen semantics.
  41 *		Mike McLagan	:	Routing by source
  42 *	Juan Jose Ciarlante:		ip_dynaddr bits
  43 *		Andi Kleen:		various fixes.
  44 *	Vitaly E. Lavrov	:	Transparent proxy revived after year
  45 *					coma.
  46 *	Andi Kleen		:	Fix new listen.
  47 *	Andi Kleen		:	Fix accept error reporting.
  48 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  49 *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
  50 *					a single port at the same time.
  51 */
  52
  53#define pr_fmt(fmt) "TCP: " fmt
  54
  55#include <linux/bottom_half.h>
  56#include <linux/types.h>
  57#include <linux/fcntl.h>
  58#include <linux/module.h>
  59#include <linux/random.h>
  60#include <linux/cache.h>
  61#include <linux/jhash.h>
  62#include <linux/init.h>
  63#include <linux/times.h>
  64#include <linux/slab.h>
 
  65
  66#include <net/net_namespace.h>
  67#include <net/icmp.h>
  68#include <net/inet_hashtables.h>
  69#include <net/tcp.h>
  70#include <net/transp_v6.h>
  71#include <net/ipv6.h>
  72#include <net/inet_common.h>
  73#include <net/timewait_sock.h>
  74#include <net/xfrm.h>
  75#include <net/netdma.h>
  76#include <net/secure_seq.h>
  77#include <net/tcp_memcontrol.h>
  78#include <net/busy_poll.h>
 
  79
  80#include <linux/inet.h>
  81#include <linux/ipv6.h>
  82#include <linux/stddef.h>
  83#include <linux/proc_fs.h>
  84#include <linux/seq_file.h>
 
 
 
  85
  86#include <linux/crypto.h>
  87#include <linux/scatterlist.h>
  88
  89int sysctl_tcp_tw_reuse __read_mostly;
  90int sysctl_tcp_low_latency __read_mostly;
  91EXPORT_SYMBOL(sysctl_tcp_low_latency);
  92
  93
  94#ifdef CONFIG_TCP_MD5SIG
  95static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
  96			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
  97#endif
  98
  99struct inet_hashinfo tcp_hashinfo;
 100EXPORT_SYMBOL(tcp_hashinfo);
 101
 102static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 103{
 104	return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
 105					  ip_hdr(skb)->saddr,
 106					  tcp_hdr(skb)->dest,
 107					  tcp_hdr(skb)->source);
 108}
 109
 110int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
 111{
 
 
 112	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
 113	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114
 115	/* With PAWS, it is safe from the viewpoint
 116	   of data integrity. Even without PAWS it is safe provided sequence
 117	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
 118
 119	   Actually, the idea is close to VJ's one, only timestamp cache is
 120	   held not per host, but per port pair and TW bucket is used as state
 121	   holder.
 122
 123	   If TW bucket has been already destroyed we fall back to VJ's scheme
 124	   and use initial timestamp retrieved from peer table.
 125	 */
 126	if (tcptw->tw_ts_recent_stamp &&
 127	    (twp == NULL || (sysctl_tcp_tw_reuse &&
 128			     get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
 129		tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
 130		if (tp->write_seq == 0)
 131			tp->write_seq = 1;
 132		tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
 133		tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
 134		sock_hold(sktw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 135		return 1;
 136	}
 137
 138	return 0;
 139}
 140EXPORT_SYMBOL_GPL(tcp_twsk_unique);
 141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 142/* This will initiate an outgoing connection. */
 143int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
 144{
 145	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
 
 146	struct inet_sock *inet = inet_sk(sk);
 147	struct tcp_sock *tp = tcp_sk(sk);
 
 
 148	__be16 orig_sport, orig_dport;
 149	__be32 daddr, nexthop;
 150	struct flowi4 *fl4;
 151	struct rtable *rt;
 152	int err;
 153	struct ip_options_rcu *inet_opt;
 154
 155	if (addr_len < sizeof(struct sockaddr_in))
 156		return -EINVAL;
 157
 158	if (usin->sin_family != AF_INET)
 159		return -EAFNOSUPPORT;
 160
 161	nexthop = daddr = usin->sin_addr.s_addr;
 162	inet_opt = rcu_dereference_protected(inet->inet_opt,
 163					     sock_owned_by_user(sk));
 164	if (inet_opt && inet_opt->opt.srr) {
 165		if (!daddr)
 166			return -EINVAL;
 167		nexthop = inet_opt->opt.faddr;
 168	}
 169
 170	orig_sport = inet->inet_sport;
 171	orig_dport = usin->sin_port;
 172	fl4 = &inet->cork.fl.u.ip4;
 173	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
 174			      RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
 175			      IPPROTO_TCP,
 176			      orig_sport, orig_dport, sk);
 177	if (IS_ERR(rt)) {
 178		err = PTR_ERR(rt);
 179		if (err == -ENETUNREACH)
 180			IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
 181		return err;
 182	}
 183
 184	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
 185		ip_rt_put(rt);
 186		return -ENETUNREACH;
 187	}
 188
 189	if (!inet_opt || !inet_opt->opt.srr)
 190		daddr = fl4->daddr;
 191
 192	if (!inet->inet_saddr)
 193		inet->inet_saddr = fl4->saddr;
 194	inet->inet_rcv_saddr = inet->inet_saddr;
 
 
 
 
 
 
 
 
 195
 196	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
 197		/* Reset inherited state */
 198		tp->rx_opt.ts_recent	   = 0;
 199		tp->rx_opt.ts_recent_stamp = 0;
 200		if (likely(!tp->repair))
 201			tp->write_seq	   = 0;
 202	}
 203
 204	if (tcp_death_row.sysctl_tw_recycle &&
 205	    !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
 206		tcp_fetch_timewait_stamp(sk, &rt->dst);
 207
 208	inet->inet_dport = usin->sin_port;
 209	inet->inet_daddr = daddr;
 210
 211	inet_csk(sk)->icsk_ext_hdr_len = 0;
 212	if (inet_opt)
 213		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
 214
 215	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
 216
 217	/* Socket identity is still unknown (sport may be zero).
 218	 * However we set state to SYN-SENT and not releasing socket
 219	 * lock select source port, enter ourselves into the hash tables and
 220	 * complete initialization after this.
 221	 */
 222	tcp_set_state(sk, TCP_SYN_SENT);
 223	err = inet_hash_connect(&tcp_death_row, sk);
 224	if (err)
 225		goto failure;
 226
 
 
 227	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
 228			       inet->inet_sport, inet->inet_dport, sk);
 229	if (IS_ERR(rt)) {
 230		err = PTR_ERR(rt);
 231		rt = NULL;
 232		goto failure;
 233	}
 
 234	/* OK, now commit destination to socket.  */
 235	sk->sk_gso_type = SKB_GSO_TCPV4;
 236	sk_setup_caps(sk, &rt->dst);
 
 237
 238	if (!tp->write_seq && likely(!tp->repair))
 239		tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
 240							   inet->inet_daddr,
 241							   inet->inet_sport,
 242							   usin->sin_port);
 
 
 
 
 
 
 243
 244	inet->inet_id = tp->write_seq ^ jiffies;
 
 
 
 
 
 245
 246	err = tcp_connect(sk);
 247
 248	rt = NULL;
 249	if (err)
 250		goto failure;
 251
 252	return 0;
 253
 254failure:
 255	/*
 256	 * This unhashes the socket and releases the local port,
 257	 * if necessary.
 258	 */
 259	tcp_set_state(sk, TCP_CLOSE);
 
 260	ip_rt_put(rt);
 261	sk->sk_route_caps = 0;
 262	inet->inet_dport = 0;
 263	return err;
 264}
 265EXPORT_SYMBOL(tcp_v4_connect);
 266
 267/*
 268 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
 269 * It can be called through tcp_release_cb() if socket was owned by user
 270 * at the time tcp_v4_err() was called to handle ICMP message.
 271 */
 272static void tcp_v4_mtu_reduced(struct sock *sk)
 273{
 274	struct dst_entry *dst;
 275	struct inet_sock *inet = inet_sk(sk);
 276	u32 mtu = tcp_sk(sk)->mtu_info;
 
 277
 
 
 
 278	dst = inet_csk_update_pmtu(sk, mtu);
 279	if (!dst)
 280		return;
 281
 282	/* Something is about to be wrong... Remember soft error
 283	 * for the case, if this connection will not able to recover.
 284	 */
 285	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
 286		sk->sk_err_soft = EMSGSIZE;
 287
 288	mtu = dst_mtu(dst);
 289
 290	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
 291	    ip_sk_accept_pmtu(sk) &&
 292	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
 293		tcp_sync_mss(sk, mtu);
 294
 295		/* Resend the TCP packet because it's
 296		 * clear that the old packet has been
 297		 * dropped. This is the new "fast" path mtu
 298		 * discovery.
 299		 */
 300		tcp_simple_retransmit(sk);
 301	} /* else let the usual retransmit timer handle it */
 302}
 
 303
 304static void do_redirect(struct sk_buff *skb, struct sock *sk)
 305{
 306	struct dst_entry *dst = __sk_dst_check(sk, 0);
 307
 308	if (dst)
 309		dst->ops->redirect(dst, sk, skb);
 310}
 311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 312/*
 313 * This routine is called by the ICMP module when it gets some
 314 * sort of error condition.  If err < 0 then the socket should
 315 * be closed and the error returned to the user.  If err > 0
 316 * it's just the icmp type << 8 | icmp code.  After adjustment
 317 * header points to the first 8 bytes of the tcp header.  We need
 318 * to find the appropriate port.
 319 *
 320 * The locking strategy used here is very "optimistic". When
 321 * someone else accesses the socket the ICMP is just dropped
 322 * and for some paths there is no check at all.
 323 * A more general error queue to queue errors for later handling
 324 * is probably better.
 325 *
 326 */
 327
 328void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
 329{
 330	const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
 331	struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
 332	struct inet_connection_sock *icsk;
 333	struct tcp_sock *tp;
 334	struct inet_sock *inet;
 335	const int type = icmp_hdr(icmp_skb)->type;
 336	const int code = icmp_hdr(icmp_skb)->code;
 337	struct sock *sk;
 338	struct sk_buff *skb;
 339	struct request_sock *req;
 340	__u32 seq;
 341	__u32 remaining;
 342	int err;
 343	struct net *net = dev_net(icmp_skb->dev);
 344
 345	if (icmp_skb->len < (iph->ihl << 2) + 8) {
 346		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
 347		return;
 348	}
 349
 350	sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
 351			iph->saddr, th->source, inet_iif(icmp_skb));
 
 352	if (!sk) {
 353		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
 354		return;
 355	}
 356	if (sk->sk_state == TCP_TIME_WAIT) {
 
 
 357		inet_twsk_put(inet_twsk(sk));
 358		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 359	}
 360
 361	bh_lock_sock(sk);
 362	/* If too many ICMPs get dropped on busy
 363	 * servers this needs to be solved differently.
 364	 * We do take care of PMTU discovery (RFC1191) special case :
 365	 * we can receive locally generated ICMP messages while socket is held.
 366	 */
 367	if (sock_owned_by_user(sk)) {
 368		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
 369			NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
 370	}
 371	if (sk->sk_state == TCP_CLOSE)
 372		goto out;
 373
 374	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
 375		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
 376		goto out;
 
 
 
 377	}
 378
 379	icsk = inet_csk(sk);
 380	tp = tcp_sk(sk);
 381	req = tp->fastopen_rsk;
 382	seq = ntohl(th->seq);
 
 383	if (sk->sk_state != TCP_LISTEN &&
 384	    !between(seq, tp->snd_una, tp->snd_nxt) &&
 385	    (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
 386		/* For a Fast Open socket, allow seq to be snt_isn. */
 387		NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
 388		goto out;
 389	}
 390
 391	switch (type) {
 392	case ICMP_REDIRECT:
 393		do_redirect(icmp_skb, sk);
 
 394		goto out;
 395	case ICMP_SOURCE_QUENCH:
 396		/* Just silently ignore these. */
 397		goto out;
 398	case ICMP_PARAMETERPROB:
 399		err = EPROTO;
 400		break;
 401	case ICMP_DEST_UNREACH:
 402		if (code > NR_ICMP_UNREACH)
 403			goto out;
 404
 405		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
 406			/* We are not interested in TCP_LISTEN and open_requests
 407			 * (SYN-ACKs send out by Linux are always <576bytes so
 408			 * they should go through unfragmented).
 409			 */
 410			if (sk->sk_state == TCP_LISTEN)
 411				goto out;
 412
 413			tp->mtu_info = info;
 414			if (!sock_owned_by_user(sk)) {
 415				tcp_v4_mtu_reduced(sk);
 416			} else {
 417				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
 418					sock_hold(sk);
 419			}
 420			goto out;
 421		}
 422
 423		err = icmp_err_convert[code].errno;
 424		/* check if icmp_skb allows revert of backoff
 425		 * (see draft-zimmermann-tcp-lcd) */
 426		if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
 427			break;
 428		if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
 429		    !icsk->icsk_backoff)
 430			break;
 431
 432		/* XXX (TFO) - revisit the following logic for TFO */
 433
 434		if (sock_owned_by_user(sk))
 435			break;
 436
 437		icsk->icsk_backoff--;
 438		inet_csk(sk)->icsk_rto = (tp->srtt_us ? __tcp_set_rto(tp) :
 439			TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
 440		tcp_bound_rto(sk);
 441
 442		skb = tcp_write_queue_head(sk);
 443		BUG_ON(!skb);
 444
 445		remaining = icsk->icsk_rto - min(icsk->icsk_rto,
 446				tcp_time_stamp - TCP_SKB_CB(skb)->when);
 447
 448		if (remaining) {
 449			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
 450						  remaining, TCP_RTO_MAX);
 451		} else {
 452			/* RTO revert clocked out retransmission.
 453			 * Will retransmit now */
 454			tcp_retransmit_timer(sk);
 455		}
 456
 457		break;
 458	case ICMP_TIME_EXCEEDED:
 459		err = EHOSTUNREACH;
 460		break;
 461	default:
 462		goto out;
 463	}
 464
 465	/* XXX (TFO) - if it's a TFO socket and has been accepted, rather
 466	 * than following the TCP_SYN_RECV case and closing the socket,
 467	 * we ignore the ICMP error and keep trying like a fully established
 468	 * socket. Is this the right thing to do?
 469	 */
 470	if (req && req->sk == NULL)
 471		goto out;
 472
 473	switch (sk->sk_state) {
 474		struct request_sock *req, **prev;
 475	case TCP_LISTEN:
 476		if (sock_owned_by_user(sk))
 477			goto out;
 478
 479		req = inet_csk_search_req(sk, &prev, th->dest,
 480					  iph->daddr, iph->saddr);
 481		if (!req)
 482			goto out;
 483
 484		/* ICMPs are not backlogged, hence we cannot get
 485		   an established socket here.
 486		 */
 487		WARN_ON(req->sk);
 488
 489		if (seq != tcp_rsk(req)->snt_isn) {
 490			NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
 491			goto out;
 492		}
 493
 494		/*
 495		 * Still in SYN_RECV, just remove it silently.
 496		 * There is no good way to pass the error to the newly
 497		 * created socket, and POSIX does not want network
 498		 * errors returned from accept().
 499		 */
 500		inet_csk_reqsk_queue_drop(sk, req, prev);
 501		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
 502		goto out;
 503
 504	case TCP_SYN_SENT:
 505	case TCP_SYN_RECV:  /* Cannot happen.
 506			       It can f.e. if SYNs crossed,
 507			       or Fast Open.
 508			     */
 509		if (!sock_owned_by_user(sk)) {
 510			sk->sk_err = err;
 511
 512			sk->sk_error_report(sk);
 513
 514			tcp_done(sk);
 515		} else {
 516			sk->sk_err_soft = err;
 517		}
 518		goto out;
 519	}
 520
 521	/* If we've already connected we will keep trying
 522	 * until we time out, or the user gives up.
 523	 *
 524	 * rfc1122 4.2.3.9 allows to consider as hard errors
 525	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
 526	 * but it is obsoleted by pmtu discovery).
 527	 *
 528	 * Note, that in modern internet, where routing is unreliable
 529	 * and in each dark corner broken firewalls sit, sending random
 530	 * errors ordered by their masters even this two messages finally lose
 531	 * their original sense (even Linux sends invalid PORT_UNREACHs)
 532	 *
 533	 * Now we are in compliance with RFCs.
 534	 *							--ANK (980905)
 535	 */
 536
 537	inet = inet_sk(sk);
 538	if (!sock_owned_by_user(sk) && inet->recverr) {
 539		sk->sk_err = err;
 540		sk->sk_error_report(sk);
 541	} else	{ /* Only an error on timeout */
 542		sk->sk_err_soft = err;
 543	}
 544
 545out:
 546	bh_unlock_sock(sk);
 547	sock_put(sk);
 
 548}
 549
 550void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
 551{
 552	struct tcphdr *th = tcp_hdr(skb);
 553
 554	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 555		th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
 556		skb->csum_start = skb_transport_header(skb) - skb->head;
 557		skb->csum_offset = offsetof(struct tcphdr, check);
 558	} else {
 559		th->check = tcp_v4_check(skb->len, saddr, daddr,
 560					 csum_partial(th,
 561						      th->doff << 2,
 562						      skb->csum));
 563	}
 564}
 565
 566/* This routine computes an IPv4 TCP checksum. */
 567void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
 568{
 569	const struct inet_sock *inet = inet_sk(sk);
 570
 571	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
 572}
 573EXPORT_SYMBOL(tcp_v4_send_check);
 574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 575/*
 576 *	This routine will send an RST to the other tcp.
 577 *
 578 *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
 579 *		      for reset.
 580 *	Answer: if a packet caused RST, it is not for a socket
 581 *		existing in our system, if it is matched to a socket,
 582 *		it is just duplicate segment or bug in other side's TCP.
 583 *		So that we build reply only basing on parameters
 584 *		arrived with segment.
 585 *	Exception: precedence violation. We do not implement it in any case.
 586 */
 587
 588static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
 
 589{
 590	const struct tcphdr *th = tcp_hdr(skb);
 591	struct {
 592		struct tcphdr th;
 593#ifdef CONFIG_TCP_MD5SIG
 594		__be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
 595#endif
 596	} rep;
 
 
 597	struct ip_reply_arg arg;
 598#ifdef CONFIG_TCP_MD5SIG
 599	struct tcp_md5sig_key *key;
 600	const __u8 *hash_location = NULL;
 601	unsigned char newhash[16];
 602	int genhash;
 603	struct sock *sk1 = NULL;
 
 604#endif
 
 
 605	struct net *net;
 
 606
 607	/* Never send a reset in response to a reset. */
 608	if (th->rst)
 609		return;
 610
 611	if (skb_rtable(skb)->rt_type != RTN_LOCAL)
 
 
 
 612		return;
 613
 614	/* Swap the send and the receive. */
 615	memset(&rep, 0, sizeof(rep));
 616	rep.th.dest   = th->source;
 617	rep.th.source = th->dest;
 618	rep.th.doff   = sizeof(struct tcphdr) / 4;
 619	rep.th.rst    = 1;
 620
 621	if (th->ack) {
 622		rep.th.seq = th->ack_seq;
 623	} else {
 624		rep.th.ack = 1;
 625		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
 626				       skb->len - (th->doff << 2));
 627	}
 628
 629	memset(&arg, 0, sizeof(arg));
 630	arg.iov[0].iov_base = (unsigned char *)&rep;
 631	arg.iov[0].iov_len  = sizeof(rep.th);
 632
 
 
 
 
 
 
 
 
 
 633#ifdef CONFIG_TCP_MD5SIG
 634	hash_location = tcp_parse_md5sig_option(th);
 635	if (!sk && hash_location) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636		/*
 637		 * active side is lost. Try to find listening socket through
 638		 * source port, and then find md5 key through listening socket.
 639		 * we are not loose security here:
 640		 * Incoming packet is checked with md5 hash with finding key,
 641		 * no RST generated if md5 hash doesn't match.
 642		 */
 643		sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
 644					     &tcp_hashinfo, ip_hdr(skb)->saddr,
 645					     th->source, ip_hdr(skb)->daddr,
 646					     ntohs(th->source), inet_iif(skb));
 647		/* don't send rst if it can't find key */
 648		if (!sk1)
 649			return;
 650		rcu_read_lock();
 651		key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
 652					&ip_hdr(skb)->saddr, AF_INET);
 
 
 
 
 653		if (!key)
 654			goto release_sk1;
 
 
 
 
 
 655
 656		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
 657		if (genhash || memcmp(hash_location, newhash, 16) != 0)
 658			goto release_sk1;
 659	} else {
 660		key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
 661					     &ip_hdr(skb)->saddr,
 662					     AF_INET) : NULL;
 663	}
 664
 665	if (key) {
 666		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
 667				   (TCPOPT_NOP << 16) |
 668				   (TCPOPT_MD5SIG << 8) |
 669				   TCPOLEN_MD5SIG);
 670		/* Update length and the length the header thinks exists */
 671		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 672		rep.th.doff = arg.iov[0].iov_len / 4;
 673
 674		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
 675				     key, ip_hdr(skb)->saddr,
 676				     ip_hdr(skb)->daddr, &rep.th);
 677	}
 678#endif
 
 
 
 
 
 
 
 
 
 
 
 679	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 680				      ip_hdr(skb)->saddr, /* XXX */
 681				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 682	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 683	arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
 
 684	/* When socket is gone, all binding information is lost.
 685	 * routing might fail in this case. No choice here, if we choose to force
 686	 * input interface, we will misroute in case of asymmetric route.
 687	 */
 688	if (sk)
 689		arg.bound_dev_if = sk->sk_bound_dev_if;
 690
 691	net = dev_net(skb_dst(skb)->dev);
 
 
 
 
 692	arg.tos = ip_hdr(skb)->tos;
 693	ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
 694			      ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
 
 
 695
 696	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
 697	TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698
 699#ifdef CONFIG_TCP_MD5SIG
 700release_sk1:
 701	if (sk1) {
 702		rcu_read_unlock();
 703		sock_put(sk1);
 704	}
 705#endif
 706}
 707
 708/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
 709   outside socket context is ugly, certainly. What can I do?
 710 */
 711
 712static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
 
 713			    u32 win, u32 tsval, u32 tsecr, int oif,
 714			    struct tcp_md5sig_key *key,
 715			    int reply_flags, u8 tos)
 716{
 717	const struct tcphdr *th = tcp_hdr(skb);
 718	struct {
 719		struct tcphdr th;
 720		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
 721#ifdef CONFIG_TCP_MD5SIG
 722			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
 723#endif
 724			];
 725	} rep;
 
 726	struct ip_reply_arg arg;
 727	struct net *net = dev_net(skb_dst(skb)->dev);
 
 728
 729	memset(&rep.th, 0, sizeof(struct tcphdr));
 730	memset(&arg, 0, sizeof(arg));
 731
 732	arg.iov[0].iov_base = (unsigned char *)&rep;
 733	arg.iov[0].iov_len  = sizeof(rep.th);
 734	if (tsecr) {
 735		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 736				   (TCPOPT_TIMESTAMP << 8) |
 737				   TCPOLEN_TIMESTAMP);
 738		rep.opt[1] = htonl(tsval);
 739		rep.opt[2] = htonl(tsecr);
 740		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
 741	}
 742
 743	/* Swap the send and the receive. */
 744	rep.th.dest    = th->source;
 745	rep.th.source  = th->dest;
 746	rep.th.doff    = arg.iov[0].iov_len / 4;
 747	rep.th.seq     = htonl(seq);
 748	rep.th.ack_seq = htonl(ack);
 749	rep.th.ack     = 1;
 750	rep.th.window  = htons(win);
 751
 752#ifdef CONFIG_TCP_MD5SIG
 753	if (key) {
 754		int offset = (tsecr) ? 3 : 0;
 755
 756		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
 757					  (TCPOPT_NOP << 16) |
 758					  (TCPOPT_MD5SIG << 8) |
 759					  TCPOLEN_MD5SIG);
 760		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 761		rep.th.doff = arg.iov[0].iov_len/4;
 762
 763		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
 764				    key, ip_hdr(skb)->saddr,
 765				    ip_hdr(skb)->daddr, &rep.th);
 766	}
 767#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 768	arg.flags = reply_flags;
 769	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 770				      ip_hdr(skb)->saddr, /* XXX */
 771				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 772	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 773	if (oif)
 774		arg.bound_dev_if = oif;
 775	arg.tos = tos;
 776	ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
 777			      ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
 778
 779	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 780}
 781
 782static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
 783{
 784	struct inet_timewait_sock *tw = inet_twsk(sk);
 785	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786
 787	tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
 
 788			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
 789			tcp_time_stamp + tcptw->tw_ts_offset,
 790			tcptw->tw_ts_recent,
 791			tw->tw_bound_dev_if,
 792			tcp_twsk_md5_key(tcptw),
 793			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
 794			tw->tw_tos
 795			);
 796
 797	inet_twsk_put(tw);
 798}
 799
 800static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
 801				  struct request_sock *req)
 802{
 
 
 803	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
 804	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
 805	 */
 806	tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
 807			tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
 808			tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
 809			tcp_time_stamp,
 810			req->ts_recent,
 811			0,
 812			tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
 813					  AF_INET),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 814			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
 815			ip_hdr(skb)->tos);
 
 
 
 816}
 817
 818/*
 819 *	Send a SYN-ACK after having received a SYN.
 820 *	This still operates on a request_sock only, not on a big
 821 *	socket.
 822 */
 823static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
 
 824			      struct request_sock *req,
 825			      u16 queue_mapping)
 
 
 826{
 827	const struct inet_request_sock *ireq = inet_rsk(req);
 828	struct flowi4 fl4;
 829	int err = -1;
 830	struct sk_buff *skb;
 
 831
 832	/* First, grab a route. */
 833	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
 834		return -1;
 835
 836	skb = tcp_make_synack(sk, dst, req, NULL);
 837
 838	if (skb) {
 839		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
 840
 841		skb_set_queue_mapping(skb, queue_mapping);
 
 
 
 
 
 
 
 
 
 
 842		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
 843					    ireq->ir_rmt_addr,
 844					    ireq->opt);
 
 
 845		err = net_xmit_eval(err);
 846		if (!tcp_rsk(req)->snt_synack && !err)
 847			tcp_rsk(req)->snt_synack = tcp_time_stamp;
 848	}
 849
 850	return err;
 851}
 852
 853static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req)
 854{
 855	int res = tcp_v4_send_synack(sk, NULL, req, 0);
 856
 857	if (!res) {
 858		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
 859		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
 860	}
 861	return res;
 862}
 863
 864/*
 865 *	IPv4 request_sock destructor.
 866 */
 867static void tcp_v4_reqsk_destructor(struct request_sock *req)
 868{
 869	kfree(inet_rsk(req)->opt);
 870}
 871
 
 872/*
 873 * Return true if a syncookie should be sent
 
 
 874 */
 875bool tcp_syn_flood_action(struct sock *sk,
 876			 const struct sk_buff *skb,
 877			 const char *proto)
 878{
 879	const char *msg = "Dropping request";
 880	bool want_cookie = false;
 881	struct listen_sock *lopt;
 882
 883#ifdef CONFIG_SYN_COOKIES
 884	if (sysctl_tcp_syncookies) {
 885		msg = "Sending cookies";
 886		want_cookie = true;
 887		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
 888	} else
 889#endif
 890		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
 891
 892	lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
 893	if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
 894		lopt->synflood_warned = 1;
 895		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
 896			proto, ntohs(tcp_hdr(skb)->dest), msg);
 897	}
 898	return want_cookie;
 
 
 
 
 
 899}
 900EXPORT_SYMBOL(tcp_syn_flood_action);
 901
 902/*
 903 * Save and compile IPv4 options into the request_sock if needed.
 904 */
 905static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
 906{
 907	const struct ip_options *opt = &(IPCB(skb)->opt);
 908	struct ip_options_rcu *dopt = NULL;
 
 
 
 
 909
 910	if (opt && opt->optlen) {
 911		int opt_size = sizeof(*dopt) + opt->optlen;
 
 
 
 912
 913		dopt = kmalloc(opt_size, GFP_ATOMIC);
 914		if (dopt) {
 915			if (ip_options_echo(&dopt->opt, skb)) {
 916				kfree(dopt);
 917				dopt = NULL;
 918			}
 
 
 
 
 
 
 
 
 
 
 
 
 919		}
 
 
 
 920	}
 921	return dopt;
 922}
 
 923
 924#ifdef CONFIG_TCP_MD5SIG
 925/*
 926 * RFC2385 MD5 checksumming requires a mapping of
 927 * IP address->MD5 Key.
 928 * We need to maintain these in the sk structure.
 929 */
 930
 931/* Find the Key structure for an address.  */
 932struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
 933					 const union tcp_md5_addr *addr,
 934					 int family)
 935{
 936	struct tcp_sock *tp = tcp_sk(sk);
 937	struct tcp_md5sig_key *key;
 938	unsigned int size = sizeof(struct in_addr);
 939	struct tcp_md5sig_info *md5sig;
 940
 941	/* caller either holds rcu_read_lock() or socket lock */
 942	md5sig = rcu_dereference_check(tp->md5sig_info,
 943				       sock_owned_by_user(sk) ||
 944				       lockdep_is_held(&sk->sk_lock.slock));
 945	if (!md5sig)
 946		return NULL;
 947#if IS_ENABLED(CONFIG_IPV6)
 948	if (family == AF_INET6)
 949		size = sizeof(struct in6_addr);
 950#endif
 951	hlist_for_each_entry_rcu(key, &md5sig->head, node) {
 
 952		if (key->family != family)
 953			continue;
 954		if (!memcmp(&key->addr, addr, size))
 
 
 
 
 
 955			return key;
 956	}
 957	return NULL;
 958}
 959EXPORT_SYMBOL(tcp_md5_do_lookup);
 960
 961struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
 962					 struct sock *addr_sk)
 963{
 964	union tcp_md5_addr *addr;
 
 965
 966	addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
 967	return tcp_md5_do_lookup(sk, addr, AF_INET);
 
 
 968}
 969EXPORT_SYMBOL(tcp_v4_md5_lookup);
 970
 971static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
 972						      struct request_sock *req)
 973{
 974	union tcp_md5_addr *addr;
 
 975
 976	addr = (union tcp_md5_addr *)&inet_rsk(req)->ir_rmt_addr;
 977	return tcp_md5_do_lookup(sk, addr, AF_INET);
 
 
 
 
 
 
 978}
 979
 980/* This can be called on a newly created socket, from other files */
 981int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
 982		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
 
 983{
 984	/* Add Key to the list */
 985	struct tcp_md5sig_key *key;
 986	struct tcp_sock *tp = tcp_sk(sk);
 987	struct tcp_md5sig_info *md5sig;
 988
 989	key = tcp_md5_do_lookup(sk, addr, family);
 990	if (key) {
 991		/* Pre-existing entry - just update that one. */
 992		memcpy(key->key, newkey, newkeylen);
 993		key->keylen = newkeylen;
 
 
 
 
 
 
 
 
 
 
 
 
 994		return 0;
 995	}
 996
 997	md5sig = rcu_dereference_protected(tp->md5sig_info,
 998					   sock_owned_by_user(sk));
 999	if (!md5sig) {
1000		md5sig = kmalloc(sizeof(*md5sig), gfp);
1001		if (!md5sig)
1002			return -ENOMEM;
1003
1004		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1005		INIT_HLIST_HEAD(&md5sig->head);
1006		rcu_assign_pointer(tp->md5sig_info, md5sig);
1007	}
1008
1009	key = sock_kmalloc(sk, sizeof(*key), gfp);
1010	if (!key)
1011		return -ENOMEM;
1012	if (!tcp_alloc_md5sig_pool()) {
1013		sock_kfree_s(sk, key, sizeof(*key));
1014		return -ENOMEM;
1015	}
1016
1017	memcpy(key->key, newkey, newkeylen);
1018	key->keylen = newkeylen;
1019	key->family = family;
 
 
 
1020	memcpy(&key->addr, addr,
1021	       (family == AF_INET6) ? sizeof(struct in6_addr) :
1022				      sizeof(struct in_addr));
1023	hlist_add_head_rcu(&key->node, &md5sig->head);
1024	return 0;
1025}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1026EXPORT_SYMBOL(tcp_md5_do_add);
1027
1028int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1029{
1030	struct tcp_md5sig_key *key;
1031
1032	key = tcp_md5_do_lookup(sk, addr, family);
1033	if (!key)
1034		return -ENOENT;
1035	hlist_del_rcu(&key->node);
1036	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1037	kfree_rcu(key, rcu);
1038	return 0;
1039}
1040EXPORT_SYMBOL(tcp_md5_do_del);
1041
1042static void tcp_clear_md5_list(struct sock *sk)
1043{
1044	struct tcp_sock *tp = tcp_sk(sk);
1045	struct tcp_md5sig_key *key;
1046	struct hlist_node *n;
1047	struct tcp_md5sig_info *md5sig;
1048
1049	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1050
1051	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1052		hlist_del_rcu(&key->node);
1053		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1054		kfree_rcu(key, rcu);
1055	}
1056}
1057
1058static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1059				 int optlen)
1060{
1061	struct tcp_md5sig cmd;
1062	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
 
 
 
 
 
1063
1064	if (optlen < sizeof(cmd))
1065		return -EINVAL;
1066
1067	if (copy_from_user(&cmd, optval, sizeof(cmd)))
1068		return -EFAULT;
1069
1070	if (sin->sin_family != AF_INET)
1071		return -EINVAL;
1072
1073	if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1074		return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1075				      AF_INET);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1076
1077	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1078		return -EINVAL;
1079
1080	return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1081			      AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1082			      GFP_KERNEL);
 
 
 
 
 
1083}
1084
1085static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1086					__be32 daddr, __be32 saddr, int nbytes)
 
1087{
1088	struct tcp4_pseudohdr *bp;
1089	struct scatterlist sg;
 
1090
1091	bp = &hp->md5_blk.ip4;
1092
1093	/*
1094	 * 1. the TCP pseudo-header (in the order: source IP address,
1095	 * destination IP address, zero-padded protocol number, and
1096	 * segment length)
1097	 */
1098	bp->saddr = saddr;
1099	bp->daddr = daddr;
1100	bp->pad = 0;
1101	bp->protocol = IPPROTO_TCP;
1102	bp->len = cpu_to_be16(nbytes);
1103
1104	sg_init_one(&sg, bp, sizeof(*bp));
1105	return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
 
 
 
 
 
 
1106}
1107
1108static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1109			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1110{
1111	struct tcp_md5sig_pool *hp;
1112	struct hash_desc *desc;
1113
1114	hp = tcp_get_md5sig_pool();
1115	if (!hp)
1116		goto clear_hash_noput;
1117	desc = &hp->md5_desc;
1118
1119	if (crypto_hash_init(desc))
1120		goto clear_hash;
1121	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1122		goto clear_hash;
1123	if (tcp_md5_hash_header(hp, th))
1124		goto clear_hash;
1125	if (tcp_md5_hash_key(hp, key))
1126		goto clear_hash;
1127	if (crypto_hash_final(desc, md5_hash))
 
1128		goto clear_hash;
1129
1130	tcp_put_md5sig_pool();
1131	return 0;
1132
1133clear_hash:
1134	tcp_put_md5sig_pool();
1135clear_hash_noput:
1136	memset(md5_hash, 0, 16);
1137	return 1;
1138}
1139
1140int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1141			const struct sock *sk, const struct request_sock *req,
1142			const struct sk_buff *skb)
1143{
1144	struct tcp_md5sig_pool *hp;
1145	struct hash_desc *desc;
1146	const struct tcphdr *th = tcp_hdr(skb);
 
1147	__be32 saddr, daddr;
1148
1149	if (sk) {
1150		saddr = inet_sk(sk)->inet_saddr;
1151		daddr = inet_sk(sk)->inet_daddr;
1152	} else if (req) {
1153		saddr = inet_rsk(req)->ir_loc_addr;
1154		daddr = inet_rsk(req)->ir_rmt_addr;
1155	} else {
1156		const struct iphdr *iph = ip_hdr(skb);
1157		saddr = iph->saddr;
1158		daddr = iph->daddr;
1159	}
1160
1161	hp = tcp_get_md5sig_pool();
1162	if (!hp)
1163		goto clear_hash_noput;
1164	desc = &hp->md5_desc;
1165
1166	if (crypto_hash_init(desc))
1167		goto clear_hash;
1168
1169	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1170		goto clear_hash;
1171	if (tcp_md5_hash_header(hp, th))
1172		goto clear_hash;
1173	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1174		goto clear_hash;
1175	if (tcp_md5_hash_key(hp, key))
1176		goto clear_hash;
1177	if (crypto_hash_final(desc, md5_hash))
 
1178		goto clear_hash;
1179
1180	tcp_put_md5sig_pool();
1181	return 0;
1182
1183clear_hash:
1184	tcp_put_md5sig_pool();
1185clear_hash_noput:
1186	memset(md5_hash, 0, 16);
1187	return 1;
1188}
1189EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1190
1191static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1192{
1193	/*
1194	 * This gets called for each TCP segment that arrives
1195	 * so we want to be efficient.
1196	 * We have 3 drop cases:
1197	 * o No MD5 hash and one expected.
1198	 * o MD5 hash and we're not expecting one.
1199	 * o MD5 hash and its wrong.
1200	 */
1201	const __u8 *hash_location = NULL;
1202	struct tcp_md5sig_key *hash_expected;
1203	const struct iphdr *iph = ip_hdr(skb);
1204	const struct tcphdr *th = tcp_hdr(skb);
1205	int genhash;
1206	unsigned char newhash[16];
1207
1208	hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1209					  AF_INET);
1210	hash_location = tcp_parse_md5sig_option(th);
 
 
 
1211
1212	/* We've parsed the options - do we have a hash? */
1213	if (!hash_expected && !hash_location)
1214		return false;
 
1215
1216	if (hash_expected && !hash_location) {
1217		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1218		return true;
1219	}
 
 
 
1220
1221	if (!hash_expected && hash_location) {
1222		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1223		return true;
1224	}
1225
1226	/* Okay, so this is hash_expected and hash_location -
1227	 * so we need to calculate the checksum.
1228	 */
1229	genhash = tcp_v4_md5_hash_skb(newhash,
1230				      hash_expected,
1231				      NULL, NULL, skb);
1232
1233	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1234		net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1235				     &iph->saddr, ntohs(th->source),
1236				     &iph->daddr, ntohs(th->dest),
1237				     genhash ? " tcp_v4_calc_md5_hash failed"
1238				     : "");
1239		return true;
1240	}
1241	return false;
1242}
1243
1244#endif
1245
1246struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1247	.family		=	PF_INET,
1248	.obj_size	=	sizeof(struct tcp_request_sock),
1249	.rtx_syn_ack	=	tcp_v4_rtx_synack,
1250	.send_ack	=	tcp_v4_reqsk_send_ack,
1251	.destructor	=	tcp_v4_reqsk_destructor,
1252	.send_reset	=	tcp_v4_send_reset,
1253	.syn_ack_timeout = 	tcp_syn_ack_timeout,
1254};
1255
 
 
1256#ifdef CONFIG_TCP_MD5SIG
1257static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1258	.md5_lookup	=	tcp_v4_reqsk_md5_lookup,
1259	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1260};
1261#endif
1262
1263static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1264			       struct request_sock *req,
1265			       struct tcp_fastopen_cookie *foc,
1266			       struct tcp_fastopen_cookie *valid_foc)
1267{
1268	bool skip_cookie = false;
1269	struct fastopen_queue *fastopenq;
1270
1271	if (likely(!fastopen_cookie_present(foc))) {
1272		/* See include/net/tcp.h for the meaning of these knobs */
1273		if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1274		    ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1275		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1276			skip_cookie = true; /* no cookie to validate */
1277		else
1278			return false;
1279	}
1280	fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1281	/* A FO option is present; bump the counter. */
1282	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1283
1284	/* Make sure the listener has enabled fastopen, and we don't
1285	 * exceed the max # of pending TFO requests allowed before trying
1286	 * to validating the cookie in order to avoid burning CPU cycles
1287	 * unnecessarily.
1288	 *
1289	 * XXX (TFO) - The implication of checking the max_qlen before
1290	 * processing a cookie request is that clients can't differentiate
1291	 * between qlen overflow causing Fast Open to be disabled
1292	 * temporarily vs a server not supporting Fast Open at all.
1293	 */
1294	if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1295	    fastopenq == NULL || fastopenq->max_qlen == 0)
1296		return false;
1297
1298	if (fastopenq->qlen >= fastopenq->max_qlen) {
1299		struct request_sock *req1;
1300		spin_lock(&fastopenq->lock);
1301		req1 = fastopenq->rskq_rst_head;
1302		if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1303			spin_unlock(&fastopenq->lock);
1304			NET_INC_STATS_BH(sock_net(sk),
1305			    LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1306			/* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1307			foc->len = -1;
1308			return false;
1309		}
1310		fastopenq->rskq_rst_head = req1->dl_next;
1311		fastopenq->qlen--;
1312		spin_unlock(&fastopenq->lock);
1313		reqsk_free(req1);
1314	}
1315	if (skip_cookie) {
1316		tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1317		return true;
1318	}
1319
1320	if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1321		if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1322			tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr,
1323						ip_hdr(skb)->daddr, valid_foc);
1324			if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1325			    memcmp(&foc->val[0], &valid_foc->val[0],
1326			    TCP_FASTOPEN_COOKIE_SIZE) != 0)
1327				return false;
1328			valid_foc->len = -1;
1329		}
1330		/* Acknowledge the data received from the peer. */
1331		tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1332		return true;
1333	} else if (foc->len == 0) { /* Client requesting a cookie */
1334		tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr,
1335					ip_hdr(skb)->daddr, valid_foc);
1336		NET_INC_STATS_BH(sock_net(sk),
1337		    LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1338	} else {
1339		/* Client sent a cookie with wrong size. Treat it
1340		 * the same as invalid and return a valid one.
1341		 */
1342		tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr,
1343					ip_hdr(skb)->daddr, valid_foc);
1344	}
1345	return false;
1346}
1347
1348static int tcp_v4_conn_req_fastopen(struct sock *sk,
1349				    struct sk_buff *skb,
1350				    struct sk_buff *skb_synack,
1351				    struct request_sock *req)
1352{
1353	struct tcp_sock *tp = tcp_sk(sk);
1354	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1355	const struct inet_request_sock *ireq = inet_rsk(req);
1356	struct sock *child;
1357	int err;
1358
1359	req->num_retrans = 0;
1360	req->num_timeout = 0;
1361	req->sk = NULL;
1362
1363	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1364	if (child == NULL) {
1365		NET_INC_STATS_BH(sock_net(sk),
1366				 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1367		kfree_skb(skb_synack);
1368		return -1;
1369	}
1370	err = ip_build_and_send_pkt(skb_synack, sk, ireq->ir_loc_addr,
1371				    ireq->ir_rmt_addr, ireq->opt);
1372	err = net_xmit_eval(err);
1373	if (!err)
1374		tcp_rsk(req)->snt_synack = tcp_time_stamp;
1375	/* XXX (TFO) - is it ok to ignore error and continue? */
1376
1377	spin_lock(&queue->fastopenq->lock);
1378	queue->fastopenq->qlen++;
1379	spin_unlock(&queue->fastopenq->lock);
1380
1381	/* Initialize the child socket. Have to fix some values to take
1382	 * into account the child is a Fast Open socket and is created
1383	 * only out of the bits carried in the SYN packet.
1384	 */
1385	tp = tcp_sk(child);
1386
1387	tp->fastopen_rsk = req;
1388	/* Do a hold on the listner sk so that if the listener is being
1389	 * closed, the child that has been accepted can live on and still
1390	 * access listen_lock.
1391	 */
1392	sock_hold(sk);
1393	tcp_rsk(req)->listener = sk;
1394
1395	/* RFC1323: The window in SYN & SYN/ACK segments is never
1396	 * scaled. So correct it appropriately.
1397	 */
1398	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1399
1400	/* Activate the retrans timer so that SYNACK can be retransmitted.
1401	 * The request socket is not added to the SYN table of the parent
1402	 * because it's been added to the accept queue directly.
1403	 */
1404	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1405	    TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1406
1407	/* Add the child socket directly into the accept queue */
1408	inet_csk_reqsk_queue_add(sk, req, child);
1409
1410	/* Now finish processing the fastopen child socket. */
1411	inet_csk(child)->icsk_af_ops->rebuild_header(child);
1412	tcp_init_congestion_control(child);
1413	tcp_mtup_init(child);
1414	tcp_init_metrics(child);
1415	tcp_init_buffer_space(child);
1416
1417	/* Queue the data carried in the SYN packet. We need to first
1418	 * bump skb's refcnt because the caller will attempt to free it.
1419	 *
1420	 * XXX (TFO) - we honor a zero-payload TFO request for now.
1421	 * (Any reason not to?)
1422	 */
1423	if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1424		/* Don't queue the skb if there is no payload in SYN.
1425		 * XXX (TFO) - How about SYN+FIN?
1426		 */
1427		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1428	} else {
1429		skb = skb_get(skb);
1430		skb_dst_drop(skb);
1431		__skb_pull(skb, tcp_hdr(skb)->doff * 4);
1432		skb_set_owner_r(skb, child);
1433		__skb_queue_tail(&child->sk_receive_queue, skb);
1434		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1435		tp->syn_data_acked = 1;
1436	}
1437	sk->sk_data_ready(sk);
1438	bh_unlock_sock(child);
1439	sock_put(child);
1440	WARN_ON(req->sk == NULL);
1441	return 0;
1442}
1443
1444int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1445{
1446	struct tcp_options_received tmp_opt;
1447	struct request_sock *req;
1448	struct inet_request_sock *ireq;
1449	struct tcp_sock *tp = tcp_sk(sk);
1450	struct dst_entry *dst = NULL;
1451	__be32 saddr = ip_hdr(skb)->saddr;
1452	__be32 daddr = ip_hdr(skb)->daddr;
1453	__u32 isn = TCP_SKB_CB(skb)->when;
1454	bool want_cookie = false;
1455	struct flowi4 fl4;
1456	struct tcp_fastopen_cookie foc = { .len = -1 };
1457	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1458	struct sk_buff *skb_synack;
1459	int do_fastopen;
1460
1461	/* Never answer to SYNs send to broadcast or multicast */
1462	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1463		goto drop;
1464
1465	/* TW buckets are converted to open requests without
1466	 * limitations, they conserve resources and peer is
1467	 * evidently real one.
1468	 */
1469	if ((sysctl_tcp_syncookies == 2 ||
1470	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
1471		want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1472		if (!want_cookie)
1473			goto drop;
1474	}
1475
1476	/* Accept backlog is full. If we have already queued enough
1477	 * of warm entries in syn queue, drop request. It is better than
1478	 * clogging syn queue with openreqs with exponentially increasing
1479	 * timeout.
1480	 */
1481	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
1482		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1483		goto drop;
1484	}
1485
1486	req = inet_reqsk_alloc(&tcp_request_sock_ops);
1487	if (!req)
1488		goto drop;
1489
1490#ifdef CONFIG_TCP_MD5SIG
1491	tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1492#endif
1493
1494	tcp_clear_options(&tmp_opt);
1495	tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1496	tmp_opt.user_mss  = tp->rx_opt.user_mss;
1497	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
1498
1499	if (want_cookie && !tmp_opt.saw_tstamp)
1500		tcp_clear_options(&tmp_opt);
1501
1502	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1503	tcp_openreq_init(req, &tmp_opt, skb);
1504
1505	ireq = inet_rsk(req);
1506	ireq->ir_loc_addr = daddr;
1507	ireq->ir_rmt_addr = saddr;
1508	ireq->no_srccheck = inet_sk(sk)->transparent;
1509	ireq->opt = tcp_v4_save_options(skb);
1510
1511	if (security_inet_conn_request(sk, skb, req))
1512		goto drop_and_free;
1513
1514	if (!want_cookie || tmp_opt.tstamp_ok)
1515		TCP_ECN_create_request(req, skb, sock_net(sk));
1516
1517	if (want_cookie) {
1518		isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1519		req->cookie_ts = tmp_opt.tstamp_ok;
1520	} else if (!isn) {
1521		/* VJ's idea. We save last timestamp seen
1522		 * from the destination in peer table, when entering
1523		 * state TIME-WAIT, and check against it before
1524		 * accepting new connection request.
1525		 *
1526		 * If "isn" is not zero, this request hit alive
1527		 * timewait bucket, so that all the necessary checks
1528		 * are made in the function processing timewait state.
1529		 */
1530		if (tmp_opt.saw_tstamp &&
1531		    tcp_death_row.sysctl_tw_recycle &&
1532		    (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1533		    fl4.daddr == saddr) {
1534			if (!tcp_peer_is_proven(req, dst, true)) {
1535				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1536				goto drop_and_release;
1537			}
1538		}
1539		/* Kill the following clause, if you dislike this way. */
1540		else if (!sysctl_tcp_syncookies &&
1541			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1542			  (sysctl_max_syn_backlog >> 2)) &&
1543			 !tcp_peer_is_proven(req, dst, false)) {
1544			/* Without syncookies last quarter of
1545			 * backlog is filled with destinations,
1546			 * proven to be alive.
1547			 * It means that we continue to communicate
1548			 * to destinations, already remembered
1549			 * to the moment of synflood.
1550			 */
1551			LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1552				       &saddr, ntohs(tcp_hdr(skb)->source));
1553			goto drop_and_release;
1554		}
1555
1556		isn = tcp_v4_init_sequence(skb);
1557	}
1558	tcp_rsk(req)->snt_isn = isn;
1559
1560	if (dst == NULL) {
1561		dst = inet_csk_route_req(sk, &fl4, req);
1562		if (dst == NULL)
1563			goto drop_and_free;
1564	}
1565	do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1566
1567	/* We don't call tcp_v4_send_synack() directly because we need
1568	 * to make sure a child socket can be created successfully before
1569	 * sending back synack!
1570	 *
1571	 * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1572	 * (or better yet, call tcp_send_synack() in the child context
1573	 * directly, but will have to fix bunch of other code first)
1574	 * after syn_recv_sock() except one will need to first fix the
1575	 * latter to remove its dependency on the current implementation
1576	 * of tcp_v4_send_synack()->tcp_select_initial_window().
1577	 */
1578	skb_synack = tcp_make_synack(sk, dst, req,
1579	    fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1580
1581	if (skb_synack) {
1582		__tcp_v4_send_check(skb_synack, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1583		skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1584	} else
1585		goto drop_and_free;
1586
1587	if (likely(!do_fastopen)) {
1588		int err;
1589		err = ip_build_and_send_pkt(skb_synack, sk, ireq->ir_loc_addr,
1590		     ireq->ir_rmt_addr, ireq->opt);
1591		err = net_xmit_eval(err);
1592		if (err || want_cookie)
1593			goto drop_and_free;
1594
1595		tcp_rsk(req)->snt_synack = tcp_time_stamp;
1596		tcp_rsk(req)->listener = NULL;
1597		/* Add the request_sock to the SYN table */
1598		inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1599		if (fastopen_cookie_present(&foc) && foc.len != 0)
1600			NET_INC_STATS_BH(sock_net(sk),
1601			    LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1602	} else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req))
1603		goto drop_and_free;
1604
1605	return 0;
1606
1607drop_and_release:
1608	dst_release(dst);
1609drop_and_free:
1610	reqsk_free(req);
1611drop:
1612	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1613	return 0;
1614}
1615EXPORT_SYMBOL(tcp_v4_conn_request);
1616
1617
1618/*
1619 * The three way handshake has completed - we got a valid synack -
1620 * now create the new socket.
1621 */
1622struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1623				  struct request_sock *req,
1624				  struct dst_entry *dst)
 
 
1625{
1626	struct inet_request_sock *ireq;
 
1627	struct inet_sock *newinet;
1628	struct tcp_sock *newtp;
1629	struct sock *newsk;
1630#ifdef CONFIG_TCP_MD5SIG
 
1631	struct tcp_md5sig_key *key;
 
1632#endif
1633	struct ip_options_rcu *inet_opt;
1634
1635	if (sk_acceptq_is_full(sk))
1636		goto exit_overflow;
1637
1638	newsk = tcp_create_openreq_child(sk, req, skb);
1639	if (!newsk)
1640		goto exit_nonewsk;
1641
1642	newsk->sk_gso_type = SKB_GSO_TCPV4;
1643	inet_sk_rx_dst_set(newsk, skb);
1644
1645	newtp		      = tcp_sk(newsk);
1646	newinet		      = inet_sk(newsk);
1647	ireq		      = inet_rsk(req);
1648	newinet->inet_daddr   = ireq->ir_rmt_addr;
1649	newinet->inet_rcv_saddr = ireq->ir_loc_addr;
1650	newinet->inet_saddr	      = ireq->ir_loc_addr;
1651	inet_opt	      = ireq->opt;
1652	rcu_assign_pointer(newinet->inet_opt, inet_opt);
1653	ireq->opt	      = NULL;
1654	newinet->mc_index     = inet_iif(skb);
1655	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1656	newinet->rcv_tos      = ip_hdr(skb)->tos;
1657	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1658	if (inet_opt)
1659		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1660	newinet->inet_id = newtp->write_seq ^ jiffies;
 
 
 
 
 
 
1661
1662	if (!dst) {
1663		dst = inet_csk_route_child_sock(sk, newsk, req);
1664		if (!dst)
1665			goto put_and_exit;
1666	} else {
1667		/* syncookie case : see end of cookie_v4_check() */
1668	}
1669	sk_setup_caps(newsk, dst);
1670
 
 
1671	tcp_sync_mss(newsk, dst_mtu(dst));
1672	newtp->advmss = dst_metric_advmss(dst);
1673	if (tcp_sk(sk)->rx_opt.user_mss &&
1674	    tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1675		newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1676
1677	tcp_initialize_rcv_mss(newsk);
1678
1679#ifdef CONFIG_TCP_MD5SIG
 
1680	/* Copy over the MD5 key from the original socket */
1681	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1682				AF_INET);
1683	if (key != NULL) {
1684		/*
1685		 * We're using one, so create a matching key
1686		 * on the newsk structure. If we fail to get
1687		 * memory, then we end up not copying the key
1688		 * across. Shucks.
1689		 */
1690		tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1691			       AF_INET, key->key, key->keylen, GFP_ATOMIC);
1692		sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1693	}
1694#endif
 
 
 
 
1695
1696	if (__inet_inherit_port(sk, newsk) < 0)
1697		goto put_and_exit;
1698	__inet_hash_nolisten(newsk, NULL);
 
 
 
 
 
 
1699
 
 
 
 
 
 
 
 
 
1700	return newsk;
1701
1702exit_overflow:
1703	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1704exit_nonewsk:
1705	dst_release(dst);
1706exit:
1707	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1708	return NULL;
1709put_and_exit:
 
1710	inet_csk_prepare_forced_close(newsk);
1711	tcp_done(newsk);
1712	goto exit;
1713}
1714EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1715
1716static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1717{
1718	struct tcphdr *th = tcp_hdr(skb);
1719	const struct iphdr *iph = ip_hdr(skb);
1720	struct sock *nsk;
1721	struct request_sock **prev;
1722	/* Find possible connection requests. */
1723	struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1724						       iph->saddr, iph->daddr);
1725	if (req)
1726		return tcp_check_req(sk, skb, req, prev, false);
1727
1728	nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1729			th->source, iph->daddr, th->dest, inet_iif(skb));
1730
1731	if (nsk) {
1732		if (nsk->sk_state != TCP_TIME_WAIT) {
1733			bh_lock_sock(nsk);
1734			return nsk;
1735		}
1736		inet_twsk_put(inet_twsk(nsk));
1737		return NULL;
1738	}
1739
1740#ifdef CONFIG_SYN_COOKIES
 
 
1741	if (!th->syn)
1742		sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1743#endif
1744	return sk;
1745}
1746
1747static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
 
1748{
1749	const struct iphdr *iph = ip_hdr(skb);
1750
1751	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1752		if (!tcp_v4_check(skb->len, iph->saddr,
1753				  iph->daddr, skb->csum)) {
1754			skb->ip_summed = CHECKSUM_UNNECESSARY;
1755			return 0;
1756		}
1757	}
1758
1759	skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1760				       skb->len, IPPROTO_TCP, 0);
1761
1762	if (skb->len <= 76) {
1763		return __skb_checksum_complete(skb);
1764	}
1765	return 0;
 
1766}
1767
1768
 
1769/* The socket must have it's spinlock held when we get
1770 * here.
1771 *
1772 * We have a potential double-lock case here, so even when
1773 * doing backlog processing we use the BH locking scheme.
1774 * This is because we cannot sleep with the original spinlock
1775 * held.
1776 */
1777int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1778{
 
1779	struct sock *rsk;
1780#ifdef CONFIG_TCP_MD5SIG
1781	/*
1782	 * We really want to reject the packet as early as possible
1783	 * if:
1784	 *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1785	 *  o There is an MD5 option and we're not expecting one
1786	 */
1787	if (tcp_v4_inbound_md5_hash(sk, skb))
1788		goto discard;
1789#endif
1790
1791	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1792		struct dst_entry *dst = sk->sk_rx_dst;
 
 
 
1793
1794		sock_rps_save_rxhash(sk, skb);
 
1795		if (dst) {
1796			if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1797			    dst->ops->check(dst, 0) == NULL) {
 
 
1798				dst_release(dst);
1799				sk->sk_rx_dst = NULL;
1800			}
1801		}
1802		tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1803		return 0;
1804	}
1805
1806	if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1807		goto csum_err;
1808
1809	if (sk->sk_state == TCP_LISTEN) {
1810		struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1811		if (!nsk)
1812			goto discard;
1813
 
 
1814		if (nsk != sk) {
1815			sock_rps_save_rxhash(nsk, skb);
1816			if (tcp_child_process(sk, nsk, skb)) {
1817				rsk = nsk;
1818				goto reset;
1819			}
1820			return 0;
1821		}
1822	} else
1823		sock_rps_save_rxhash(sk, skb);
1824
1825	if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
 
1826		rsk = sk;
1827		goto reset;
1828	}
1829	return 0;
1830
1831reset:
1832	tcp_v4_send_reset(rsk, skb);
1833discard:
1834	kfree_skb(skb);
1835	/* Be careful here. If this function gets more complicated and
1836	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1837	 * might be destroyed here. This current version compiles correctly,
1838	 * but you have been warned.
1839	 */
1840	return 0;
1841
1842csum_err:
1843	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1844	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
 
 
1845	goto discard;
1846}
1847EXPORT_SYMBOL(tcp_v4_do_rcv);
1848
1849void tcp_v4_early_demux(struct sk_buff *skb)
1850{
 
1851	const struct iphdr *iph;
1852	const struct tcphdr *th;
1853	struct sock *sk;
1854
1855	if (skb->pkt_type != PACKET_HOST)
1856		return;
1857
1858	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1859		return;
1860
1861	iph = ip_hdr(skb);
1862	th = tcp_hdr(skb);
1863
1864	if (th->doff < sizeof(struct tcphdr) / 4)
1865		return;
1866
1867	sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1868				       iph->saddr, th->source,
1869				       iph->daddr, ntohs(th->dest),
1870				       skb->skb_iif);
1871	if (sk) {
1872		skb->sk = sk;
1873		skb->destructor = sock_edemux;
1874		if (sk->sk_state != TCP_TIME_WAIT) {
1875			struct dst_entry *dst = sk->sk_rx_dst;
1876
1877			if (dst)
1878				dst = dst_check(dst, 0);
1879			if (dst &&
1880			    inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1881				skb_dst_set_noref(skb, dst);
1882		}
1883	}
 
1884}
1885
1886/* Packet is added to VJ-style prequeue for processing in process
1887 * context, if a reader task is waiting. Apparently, this exciting
1888 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1889 * failed somewhere. Latency? Burstiness? Well, at least now we will
1890 * see, why it failed. 8)8)				  --ANK
1891 *
1892 */
1893bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1894{
1895	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1896
1897	if (sysctl_tcp_low_latency || !tp->ucopy.task)
1898		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1899
1900	if (skb->len <= tcp_hdrlen(skb) &&
1901	    skb_queue_len(&tp->ucopy.prequeue) == 0)
 
 
 
 
 
 
 
 
 
 
 
 
1902		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1903
1904	skb_dst_force(skb);
1905	__skb_queue_tail(&tp->ucopy.prequeue, skb);
1906	tp->ucopy.memory += skb->truesize;
1907	if (tp->ucopy.memory > sk->sk_rcvbuf) {
1908		struct sk_buff *skb1;
1909
1910		BUG_ON(sock_owned_by_user(sk));
1911
1912		while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1913			sk_backlog_rcv(sk, skb1);
1914			NET_INC_STATS_BH(sock_net(sk),
1915					 LINUX_MIB_TCPPREQUEUEDROPPED);
1916		}
1917
1918		tp->ucopy.memory = 0;
1919	} else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1920		wake_up_interruptible_sync_poll(sk_sleep(sk),
1921					   POLLIN | POLLRDNORM | POLLRDBAND);
1922		if (!inet_csk_ack_scheduled(sk))
1923			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1924						  (3 * tcp_rto_min(sk)) / 4,
1925						  TCP_RTO_MAX);
1926	}
1927	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1928}
1929EXPORT_SYMBOL(tcp_prequeue);
1930
1931/*
1932 *	From tcp_input.c
1933 */
1934
1935int tcp_v4_rcv(struct sk_buff *skb)
1936{
 
 
 
 
1937	const struct iphdr *iph;
1938	const struct tcphdr *th;
1939	struct sock *sk;
 
1940	int ret;
1941	struct net *net = dev_net(skb->dev);
1942
 
1943	if (skb->pkt_type != PACKET_HOST)
1944		goto discard_it;
1945
1946	/* Count it even if it's bad */
1947	TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1948
1949	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1950		goto discard_it;
1951
1952	th = tcp_hdr(skb);
1953
1954	if (th->doff < sizeof(struct tcphdr) / 4)
 
1955		goto bad_packet;
 
1956	if (!pskb_may_pull(skb, th->doff * 4))
1957		goto discard_it;
1958
1959	/* An explanation is required here, I think.
1960	 * Packet length and doff are validated by header prediction,
1961	 * provided case of th->doff==0 is eliminated.
1962	 * So, we defer the checks. */
1963	if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
 
1964		goto csum_error;
1965
1966	th = tcp_hdr(skb);
1967	iph = ip_hdr(skb);
1968	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1969	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1970				    skb->len - th->doff * 4);
1971	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1972	TCP_SKB_CB(skb)->when	 = 0;
1973	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1974	TCP_SKB_CB(skb)->sacked	 = 0;
1975
1976	sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1977	if (!sk)
1978		goto no_tcp_socket;
1979
1980process:
1981	if (sk->sk_state == TCP_TIME_WAIT)
1982		goto do_time_wait;
1983
1984	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1985		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1986		goto discard_and_relse;
1987	}
1988
1989	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
 
 
1990		goto discard_and_relse;
1991	nf_reset(skb);
1992
1993	if (sk_filter(sk, skb))
 
 
 
1994		goto discard_and_relse;
 
 
 
 
1995
1996	sk_mark_napi_id(sk, skb);
1997	skb->dev = NULL;
1998
 
 
 
 
 
 
 
1999	bh_lock_sock_nested(sk);
 
2000	ret = 0;
2001	if (!sock_owned_by_user(sk)) {
2002#ifdef CONFIG_NET_DMA
2003		struct tcp_sock *tp = tcp_sk(sk);
2004		if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2005			tp->ucopy.dma_chan = net_dma_find_channel();
2006		if (tp->ucopy.dma_chan)
2007			ret = tcp_v4_do_rcv(sk, skb);
2008		else
2009#endif
2010		{
2011			if (!tcp_prequeue(sk, skb))
2012				ret = tcp_v4_do_rcv(sk, skb);
2013		}
2014	} else if (unlikely(sk_add_backlog(sk, skb,
2015					   sk->sk_rcvbuf + sk->sk_sndbuf))) {
2016		bh_unlock_sock(sk);
2017		NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2018		goto discard_and_relse;
2019	}
2020	bh_unlock_sock(sk);
2021
2022	sock_put(sk);
 
 
2023
2024	return ret;
2025
2026no_tcp_socket:
 
2027	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2028		goto discard_it;
2029
2030	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
 
 
2031csum_error:
2032		TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
 
 
2033bad_packet:
2034		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2035	} else {
2036		tcp_v4_send_reset(NULL, skb);
2037	}
2038
2039discard_it:
 
2040	/* Discard frame. */
2041	kfree_skb(skb);
2042	return 0;
2043
2044discard_and_relse:
2045	sock_put(sk);
 
 
2046	goto discard_it;
2047
2048do_time_wait:
2049	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
 
2050		inet_twsk_put(inet_twsk(sk));
2051		goto discard_it;
2052	}
2053
2054	if (skb->len < (th->doff << 2)) {
2055		inet_twsk_put(inet_twsk(sk));
2056		goto bad_packet;
2057	}
2058	if (tcp_checksum_complete(skb)) {
2059		inet_twsk_put(inet_twsk(sk));
2060		goto csum_error;
2061	}
2062	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2063	case TCP_TW_SYN: {
2064		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2065							&tcp_hashinfo,
 
2066							iph->saddr, th->source,
2067							iph->daddr, th->dest,
2068							inet_iif(skb));
 
2069		if (sk2) {
2070			inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2071			inet_twsk_put(inet_twsk(sk));
2072			sk = sk2;
 
 
 
2073			goto process;
2074		}
2075		/* Fall through to ACK */
2076	}
 
 
2077	case TCP_TW_ACK:
2078		tcp_v4_timewait_ack(sk, skb);
2079		break;
2080	case TCP_TW_RST:
2081		goto no_tcp_socket;
 
 
2082	case TCP_TW_SUCCESS:;
2083	}
2084	goto discard_it;
2085}
2086
2087static struct timewait_sock_ops tcp_timewait_sock_ops = {
2088	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2089	.twsk_unique	= tcp_twsk_unique,
2090	.twsk_destructor= tcp_twsk_destructor,
2091};
2092
2093void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2094{
2095	struct dst_entry *dst = skb_dst(skb);
2096
2097	dst_hold(dst);
2098	sk->sk_rx_dst = dst;
2099	inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
 
2100}
2101EXPORT_SYMBOL(inet_sk_rx_dst_set);
2102
2103const struct inet_connection_sock_af_ops ipv4_specific = {
2104	.queue_xmit	   = ip_queue_xmit,
2105	.send_check	   = tcp_v4_send_check,
2106	.rebuild_header	   = inet_sk_rebuild_header,
2107	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2108	.conn_request	   = tcp_v4_conn_request,
2109	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2110	.net_header_len	   = sizeof(struct iphdr),
2111	.setsockopt	   = ip_setsockopt,
2112	.getsockopt	   = ip_getsockopt,
2113	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2114	.sockaddr_len	   = sizeof(struct sockaddr_in),
2115	.bind_conflict	   = inet_csk_bind_conflict,
2116#ifdef CONFIG_COMPAT
2117	.compat_setsockopt = compat_ip_setsockopt,
2118	.compat_getsockopt = compat_ip_getsockopt,
2119#endif
2120};
2121EXPORT_SYMBOL(ipv4_specific);
2122
2123#ifdef CONFIG_TCP_MD5SIG
2124static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
 
2125	.md5_lookup		= tcp_v4_md5_lookup,
2126	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2127	.md5_parse		= tcp_v4_parse_md5_keys,
 
 
 
 
 
 
 
2128};
2129#endif
2130
2131/* NOTE: A lot of things set to zero explicitly by call to
2132 *       sk_alloc() so need not be done here.
2133 */
2134static int tcp_v4_init_sock(struct sock *sk)
2135{
2136	struct inet_connection_sock *icsk = inet_csk(sk);
2137
2138	tcp_init_sock(sk);
2139
2140	icsk->icsk_af_ops = &ipv4_specific;
2141
2142#ifdef CONFIG_TCP_MD5SIG
2143	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2144#endif
2145
2146	return 0;
2147}
2148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2149void tcp_v4_destroy_sock(struct sock *sk)
2150{
2151	struct tcp_sock *tp = tcp_sk(sk);
2152
 
 
 
 
 
 
2153	tcp_clear_xmit_timers(sk);
2154
2155	tcp_cleanup_congestion_control(sk);
2156
 
 
2157	/* Cleanup up the write buffer. */
2158	tcp_write_queue_purge(sk);
2159
 
 
 
2160	/* Cleans up our, hopefully empty, out_of_order_queue. */
2161	__skb_queue_purge(&tp->out_of_order_queue);
2162
2163#ifdef CONFIG_TCP_MD5SIG
2164	/* Clean up the MD5 key list, if any */
2165	if (tp->md5sig_info) {
 
 
 
2166		tcp_clear_md5_list(sk);
2167		kfree_rcu(tp->md5sig_info, rcu);
2168		tp->md5sig_info = NULL;
2169	}
2170#endif
2171
2172#ifdef CONFIG_NET_DMA
2173	/* Cleans up our sk_async_wait_queue */
2174	__skb_queue_purge(&sk->sk_async_wait_queue);
2175#endif
2176
2177	/* Clean prequeue, it must be empty really */
2178	__skb_queue_purge(&tp->ucopy.prequeue);
2179
2180	/* Clean up a referenced TCP bind bucket. */
2181	if (inet_csk(sk)->icsk_bind_hash)
2182		inet_put_port(sk);
2183
2184	BUG_ON(tp->fastopen_rsk != NULL);
2185
2186	/* If socket is aborted during connect operation */
2187	tcp_free_fastopen_req(tp);
 
 
2188
2189	sk_sockets_allocated_dec(sk);
2190	sock_release_memcg(sk);
2191}
2192EXPORT_SYMBOL(tcp_v4_destroy_sock);
2193
2194#ifdef CONFIG_PROC_FS
2195/* Proc filesystem TCP sock list dumping. */
2196
2197/*
2198 * Get next listener socket follow cur.  If cur is NULL, get first socket
2199 * starting from bucket given in st->bucket; when st->bucket is zero the
2200 * very first socket in the hash table is returned.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2201 */
2202static void *listening_get_next(struct seq_file *seq, void *cur)
2203{
2204	struct inet_connection_sock *icsk;
 
2205	struct hlist_nulls_node *node;
 
2206	struct sock *sk = cur;
2207	struct inet_listen_hashbucket *ilb;
2208	struct tcp_iter_state *st = seq->private;
2209	struct net *net = seq_file_net(seq);
2210
2211	if (!sk) {
2212		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2213		spin_lock_bh(&ilb->lock);
2214		sk = sk_nulls_head(&ilb->head);
2215		st->offset = 0;
2216		goto get_sk;
2217	}
2218	ilb = &tcp_hashinfo.listening_hash[st->bucket];
2219	++st->num;
2220	++st->offset;
2221
2222	if (st->state == TCP_SEQ_STATE_OPENREQ) {
2223		struct request_sock *req = cur;
2224
2225		icsk = inet_csk(st->syn_wait_sk);
2226		req = req->dl_next;
2227		while (1) {
2228			while (req) {
2229				if (req->rsk_ops->family == st->family) {
2230					cur = req;
2231					goto out;
2232				}
2233				req = req->dl_next;
2234			}
2235			if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2236				break;
2237get_req:
2238			req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2239		}
2240		sk	  = sk_nulls_next(st->syn_wait_sk);
2241		st->state = TCP_SEQ_STATE_LISTENING;
2242		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2243	} else {
2244		icsk = inet_csk(sk);
2245		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2246		if (reqsk_queue_len(&icsk->icsk_accept_queue))
2247			goto start_req;
2248		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2249		sk = sk_nulls_next(sk);
2250	}
2251get_sk:
2252	sk_nulls_for_each_from(sk, node) {
2253		if (!net_eq(sock_net(sk), net))
2254			continue;
2255		if (sk->sk_family == st->family) {
2256			cur = sk;
2257			goto out;
2258		}
2259		icsk = inet_csk(sk);
2260		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2261		if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2262start_req:
2263			st->uid		= sock_i_uid(sk);
2264			st->syn_wait_sk = sk;
2265			st->state	= TCP_SEQ_STATE_OPENREQ;
2266			st->sbucket	= 0;
2267			goto get_req;
2268		}
2269		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2270	}
2271	spin_unlock_bh(&ilb->lock);
2272	st->offset = 0;
2273	if (++st->bucket < INET_LHTABLE_SIZE) {
2274		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2275		spin_lock_bh(&ilb->lock);
2276		sk = sk_nulls_head(&ilb->head);
2277		goto get_sk;
2278	}
2279	cur = NULL;
2280out:
2281	return cur;
 
 
 
2282}
2283
2284static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2285{
2286	struct tcp_iter_state *st = seq->private;
2287	void *rc;
2288
2289	st->bucket = 0;
2290	st->offset = 0;
2291	rc = listening_get_next(seq, NULL);
2292
2293	while (rc && *pos) {
2294		rc = listening_get_next(seq, rc);
2295		--*pos;
2296	}
2297	return rc;
2298}
2299
2300static inline bool empty_bucket(const struct tcp_iter_state *st)
 
2301{
2302	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
2303}
2304
2305/*
2306 * Get first established socket starting from bucket given in st->bucket.
2307 * If st->bucket is zero, the very first socket in the hash is returned.
2308 */
2309static void *established_get_first(struct seq_file *seq)
2310{
 
2311	struct tcp_iter_state *st = seq->private;
2312	struct net *net = seq_file_net(seq);
2313	void *rc = NULL;
2314
2315	st->offset = 0;
2316	for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2317		struct sock *sk;
2318		struct hlist_nulls_node *node;
2319		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
 
 
2320
2321		/* Lockless fast path for the common case of empty buckets */
2322		if (empty_bucket(st))
2323			continue;
2324
2325		spin_lock_bh(lock);
2326		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2327			if (sk->sk_family != st->family ||
2328			    !net_eq(sock_net(sk), net)) {
2329				continue;
2330			}
2331			rc = sk;
2332			goto out;
2333		}
2334		spin_unlock_bh(lock);
2335	}
2336out:
2337	return rc;
2338}
2339
2340static void *established_get_next(struct seq_file *seq, void *cur)
2341{
2342	struct sock *sk = cur;
2343	struct hlist_nulls_node *node;
2344	struct tcp_iter_state *st = seq->private;
2345	struct net *net = seq_file_net(seq);
 
2346
2347	++st->num;
2348	++st->offset;
2349
2350	sk = sk_nulls_next(sk);
2351
2352	sk_nulls_for_each_from(sk, node) {
2353		if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2354			return sk;
2355	}
2356
2357	spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2358	++st->bucket;
2359	return established_get_first(seq);
2360}
2361
2362static void *established_get_idx(struct seq_file *seq, loff_t pos)
2363{
2364	struct tcp_iter_state *st = seq->private;
2365	void *rc;
2366
2367	st->bucket = 0;
2368	rc = established_get_first(seq);
2369
2370	while (rc && pos) {
2371		rc = established_get_next(seq, rc);
2372		--pos;
2373	}
2374	return rc;
2375}
2376
2377static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2378{
2379	void *rc;
2380	struct tcp_iter_state *st = seq->private;
2381
2382	st->state = TCP_SEQ_STATE_LISTENING;
2383	rc	  = listening_get_idx(seq, &pos);
2384
2385	if (!rc) {
2386		st->state = TCP_SEQ_STATE_ESTABLISHED;
2387		rc	  = established_get_idx(seq, pos);
2388	}
2389
2390	return rc;
2391}
2392
2393static void *tcp_seek_last_pos(struct seq_file *seq)
2394{
 
2395	struct tcp_iter_state *st = seq->private;
 
2396	int offset = st->offset;
2397	int orig_num = st->num;
2398	void *rc = NULL;
2399
2400	switch (st->state) {
2401	case TCP_SEQ_STATE_OPENREQ:
2402	case TCP_SEQ_STATE_LISTENING:
2403		if (st->bucket >= INET_LHTABLE_SIZE)
2404			break;
2405		st->state = TCP_SEQ_STATE_LISTENING;
2406		rc = listening_get_next(seq, NULL);
2407		while (offset-- && rc)
2408			rc = listening_get_next(seq, rc);
2409		if (rc)
2410			break;
2411		st->bucket = 0;
2412		st->state = TCP_SEQ_STATE_ESTABLISHED;
2413		/* Fallthrough */
2414	case TCP_SEQ_STATE_ESTABLISHED:
2415		if (st->bucket > tcp_hashinfo.ehash_mask)
2416			break;
2417		rc = established_get_first(seq);
2418		while (offset-- && rc)
2419			rc = established_get_next(seq, rc);
2420	}
2421
2422	st->num = orig_num;
2423
2424	return rc;
2425}
2426
2427static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2428{
2429	struct tcp_iter_state *st = seq->private;
2430	void *rc;
2431
2432	if (*pos && *pos == st->last_pos) {
2433		rc = tcp_seek_last_pos(seq);
2434		if (rc)
2435			goto out;
2436	}
2437
2438	st->state = TCP_SEQ_STATE_LISTENING;
2439	st->num = 0;
2440	st->bucket = 0;
2441	st->offset = 0;
2442	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2443
2444out:
2445	st->last_pos = *pos;
2446	return rc;
2447}
 
2448
2449static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2450{
2451	struct tcp_iter_state *st = seq->private;
2452	void *rc = NULL;
2453
2454	if (v == SEQ_START_TOKEN) {
2455		rc = tcp_get_idx(seq, 0);
2456		goto out;
2457	}
2458
2459	switch (st->state) {
2460	case TCP_SEQ_STATE_OPENREQ:
2461	case TCP_SEQ_STATE_LISTENING:
2462		rc = listening_get_next(seq, v);
2463		if (!rc) {
2464			st->state = TCP_SEQ_STATE_ESTABLISHED;
2465			st->bucket = 0;
2466			st->offset = 0;
2467			rc	  = established_get_first(seq);
2468		}
2469		break;
2470	case TCP_SEQ_STATE_ESTABLISHED:
2471		rc = established_get_next(seq, v);
2472		break;
2473	}
2474out:
2475	++*pos;
2476	st->last_pos = *pos;
2477	return rc;
2478}
 
2479
2480static void tcp_seq_stop(struct seq_file *seq, void *v)
2481{
 
2482	struct tcp_iter_state *st = seq->private;
2483
2484	switch (st->state) {
2485	case TCP_SEQ_STATE_OPENREQ:
2486		if (v) {
2487			struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2488			read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2489		}
2490	case TCP_SEQ_STATE_LISTENING:
2491		if (v != SEQ_START_TOKEN)
2492			spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2493		break;
2494	case TCP_SEQ_STATE_ESTABLISHED:
2495		if (v)
2496			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2497		break;
2498	}
2499}
 
2500
2501int tcp_seq_open(struct inode *inode, struct file *file)
2502{
2503	struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2504	struct tcp_iter_state *s;
2505	int err;
2506
2507	err = seq_open_net(inode, file, &afinfo->seq_ops,
2508			  sizeof(struct tcp_iter_state));
2509	if (err < 0)
2510		return err;
2511
2512	s = ((struct seq_file *)file->private_data)->private;
2513	s->family		= afinfo->family;
2514	s->last_pos 		= 0;
2515	return 0;
2516}
2517EXPORT_SYMBOL(tcp_seq_open);
2518
2519int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2520{
2521	int rc = 0;
2522	struct proc_dir_entry *p;
2523
2524	afinfo->seq_ops.start		= tcp_seq_start;
2525	afinfo->seq_ops.next		= tcp_seq_next;
2526	afinfo->seq_ops.stop		= tcp_seq_stop;
2527
2528	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2529			     afinfo->seq_fops, afinfo);
2530	if (!p)
2531		rc = -ENOMEM;
2532	return rc;
2533}
2534EXPORT_SYMBOL(tcp_proc_register);
2535
2536void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2537{
2538	remove_proc_entry(afinfo->name, net->proc_net);
2539}
2540EXPORT_SYMBOL(tcp_proc_unregister);
2541
2542static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2543			 struct seq_file *f, int i, kuid_t uid)
2544{
2545	const struct inet_request_sock *ireq = inet_rsk(req);
2546	long delta = req->expires - jiffies;
2547
2548	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2549		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2550		i,
2551		ireq->ir_loc_addr,
2552		ntohs(inet_sk(sk)->inet_sport),
2553		ireq->ir_rmt_addr,
2554		ntohs(ireq->ir_rmt_port),
2555		TCP_SYN_RECV,
2556		0, 0, /* could print option size, but that is af dependent. */
2557		1,    /* timers active (only the expire timer) */
2558		jiffies_delta_to_clock_t(delta),
2559		req->num_timeout,
2560		from_kuid_munged(seq_user_ns(f), uid),
 
2561		0,  /* non standard timer */
2562		0, /* open_requests have no inode */
2563		atomic_read(&sk->sk_refcnt),
2564		req);
2565}
2566
2567static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2568{
2569	int timer_active;
2570	unsigned long timer_expires;
2571	const struct tcp_sock *tp = tcp_sk(sk);
2572	const struct inet_connection_sock *icsk = inet_csk(sk);
2573	const struct inet_sock *inet = inet_sk(sk);
2574	struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2575	__be32 dest = inet->inet_daddr;
2576	__be32 src = inet->inet_rcv_saddr;
2577	__u16 destp = ntohs(inet->inet_dport);
2578	__u16 srcp = ntohs(inet->inet_sport);
 
2579	int rx_queue;
 
2580
2581	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2582	    icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2583	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
 
2584		timer_active	= 1;
2585		timer_expires	= icsk->icsk_timeout;
2586	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2587		timer_active	= 4;
2588		timer_expires	= icsk->icsk_timeout;
2589	} else if (timer_pending(&sk->sk_timer)) {
2590		timer_active	= 2;
2591		timer_expires	= sk->sk_timer.expires;
2592	} else {
2593		timer_active	= 0;
2594		timer_expires = jiffies;
2595	}
2596
2597	if (sk->sk_state == TCP_LISTEN)
2598		rx_queue = sk->sk_ack_backlog;
 
2599	else
2600		/*
2601		 * because we dont lock socket, we might find a transient negative value
2602		 */
2603		rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
 
2604
2605	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2606			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2607		i, src, srcp, dest, destp, sk->sk_state,
2608		tp->write_seq - tp->snd_una,
2609		rx_queue,
2610		timer_active,
2611		jiffies_delta_to_clock_t(timer_expires - jiffies),
2612		icsk->icsk_retransmits,
2613		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2614		icsk->icsk_probes_out,
2615		sock_i_ino(sk),
2616		atomic_read(&sk->sk_refcnt), sk,
2617		jiffies_to_clock_t(icsk->icsk_rto),
2618		jiffies_to_clock_t(icsk->icsk_ack.ato),
2619		(icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2620		tp->snd_cwnd,
2621		sk->sk_state == TCP_LISTEN ?
2622		    (fastopenq ? fastopenq->max_qlen : 0) :
2623		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2624}
2625
2626static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2627			       struct seq_file *f, int i)
2628{
 
2629	__be32 dest, src;
2630	__u16 destp, srcp;
2631	s32 delta = tw->tw_ttd - inet_tw_time_stamp();
2632
2633	dest  = tw->tw_daddr;
2634	src   = tw->tw_rcv_saddr;
2635	destp = ntohs(tw->tw_dport);
2636	srcp  = ntohs(tw->tw_sport);
2637
2638	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2639		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2640		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2641		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2642		atomic_read(&tw->tw_refcnt), tw);
2643}
2644
2645#define TMPSZ 150
2646
2647static int tcp4_seq_show(struct seq_file *seq, void *v)
2648{
2649	struct tcp_iter_state *st;
2650	struct sock *sk = v;
2651
2652	seq_setwidth(seq, TMPSZ - 1);
2653	if (v == SEQ_START_TOKEN) {
2654		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2655			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2656			   "inode");
2657		goto out;
2658	}
2659	st = seq->private;
2660
2661	switch (st->state) {
2662	case TCP_SEQ_STATE_LISTENING:
2663	case TCP_SEQ_STATE_ESTABLISHED:
2664		if (sk->sk_state == TCP_TIME_WAIT)
2665			get_timewait4_sock(v, seq, st->num);
2666		else
2667			get_tcp4_sock(v, seq, st->num);
2668		break;
2669	case TCP_SEQ_STATE_OPENREQ:
2670		get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid);
2671		break;
2672	}
2673out:
2674	seq_pad(seq, '\n');
2675	return 0;
2676}
2677
2678static const struct file_operations tcp_afinfo_seq_fops = {
2679	.owner   = THIS_MODULE,
2680	.open    = tcp_seq_open,
2681	.read    = seq_read,
2682	.llseek  = seq_lseek,
2683	.release = seq_release_net
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2684};
2685
2686static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2687	.name		= "tcp",
2688	.family		= AF_INET,
2689	.seq_fops	= &tcp_afinfo_seq_fops,
2690	.seq_ops	= {
2691		.show		= tcp4_seq_show,
2692	},
2693};
2694
2695static int __net_init tcp4_proc_init_net(struct net *net)
2696{
2697	return tcp_proc_register(net, &tcp4_seq_afinfo);
 
 
 
2698}
2699
2700static void __net_exit tcp4_proc_exit_net(struct net *net)
2701{
2702	tcp_proc_unregister(net, &tcp4_seq_afinfo);
2703}
2704
2705static struct pernet_operations tcp4_net_ops = {
2706	.init = tcp4_proc_init_net,
2707	.exit = tcp4_proc_exit_net,
2708};
2709
2710int __init tcp4_proc_init(void)
2711{
2712	return register_pernet_subsys(&tcp4_net_ops);
2713}
2714
2715void tcp4_proc_exit(void)
2716{
2717	unregister_pernet_subsys(&tcp4_net_ops);
2718}
2719#endif /* CONFIG_PROC_FS */
2720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2721struct proto tcp_prot = {
2722	.name			= "TCP",
2723	.owner			= THIS_MODULE,
2724	.close			= tcp_close,
 
2725	.connect		= tcp_v4_connect,
2726	.disconnect		= tcp_disconnect,
2727	.accept			= inet_csk_accept,
2728	.ioctl			= tcp_ioctl,
2729	.init			= tcp_v4_init_sock,
2730	.destroy		= tcp_v4_destroy_sock,
2731	.shutdown		= tcp_shutdown,
2732	.setsockopt		= tcp_setsockopt,
2733	.getsockopt		= tcp_getsockopt,
 
 
2734	.recvmsg		= tcp_recvmsg,
2735	.sendmsg		= tcp_sendmsg,
2736	.sendpage		= tcp_sendpage,
2737	.backlog_rcv		= tcp_v4_do_rcv,
2738	.release_cb		= tcp_release_cb,
2739	.mtu_reduced		= tcp_v4_mtu_reduced,
2740	.hash			= inet_hash,
2741	.unhash			= inet_unhash,
2742	.get_port		= inet_csk_get_port,
 
 
 
 
2743	.enter_memory_pressure	= tcp_enter_memory_pressure,
 
2744	.stream_memory_free	= tcp_stream_memory_free,
2745	.sockets_allocated	= &tcp_sockets_allocated,
2746	.orphan_count		= &tcp_orphan_count,
 
2747	.memory_allocated	= &tcp_memory_allocated,
 
 
2748	.memory_pressure	= &tcp_memory_pressure,
2749	.sysctl_mem		= sysctl_tcp_mem,
2750	.sysctl_wmem		= sysctl_tcp_wmem,
2751	.sysctl_rmem		= sysctl_tcp_rmem,
2752	.max_header		= MAX_TCP_HEADER,
2753	.obj_size		= sizeof(struct tcp_sock),
2754	.slab_flags		= SLAB_DESTROY_BY_RCU,
2755	.twsk_prot		= &tcp_timewait_sock_ops,
2756	.rsk_prot		= &tcp_request_sock_ops,
2757	.h.hashinfo		= &tcp_hashinfo,
2758	.no_autobind		= true,
2759#ifdef CONFIG_COMPAT
2760	.compat_setsockopt	= compat_tcp_setsockopt,
2761	.compat_getsockopt	= compat_tcp_getsockopt,
2762#endif
2763#ifdef CONFIG_MEMCG_KMEM
2764	.init_cgroup		= tcp_init_cgroup,
2765	.destroy_cgroup		= tcp_destroy_cgroup,
2766	.proto_cgroup		= tcp_proto_cgroup,
2767#endif
2768};
2769EXPORT_SYMBOL(tcp_prot);
2770
2771static int __net_init tcp_sk_init(struct net *net)
2772{
2773	net->ipv4.sysctl_tcp_ecn = 2;
2774	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2775}
2776
2777static void __net_exit tcp_sk_exit(struct net *net)
2778{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2779}
2780
2781static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2782{
2783	inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2784}
2785
2786static struct pernet_operations __net_initdata tcp_sk_ops = {
2787       .init	   = tcp_sk_init,
2788       .exit	   = tcp_sk_exit,
2789       .exit_batch = tcp_sk_exit_batch,
2790};
2791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2792void __init tcp_v4_init(void)
2793{
2794	inet_hashinfo_init(&tcp_hashinfo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2795	if (register_pernet_subsys(&tcp_sk_ops))
2796		panic("Failed to create the TCP control socket.\n");
 
 
 
 
2797}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 *		IPv4 specific functions
  10 *
 
  11 *		code split from:
  12 *		linux/ipv4/tcp.c
  13 *		linux/ipv4/tcp_input.c
  14 *		linux/ipv4/tcp_output.c
  15 *
  16 *		See tcp.c for author information
 
 
 
 
 
  17 */
  18
  19/*
  20 * Changes:
  21 *		David S. Miller	:	New socket lookup architecture.
  22 *					This code is dedicated to John Dyson.
  23 *		David S. Miller :	Change semantics of established hash,
  24 *					half is devoted to TIME_WAIT sockets
  25 *					and the rest go in the other half.
  26 *		Andi Kleen :		Add support for syncookies and fixed
  27 *					some bugs: ip options weren't passed to
  28 *					the TCP layer, missed a check for an
  29 *					ACK bit.
  30 *		Andi Kleen :		Implemented fast path mtu discovery.
  31 *	     				Fixed many serious bugs in the
  32 *					request_sock handling and moved
  33 *					most of it into the af independent code.
  34 *					Added tail drop and some other bugfixes.
  35 *					Added new listen semantics.
  36 *		Mike McLagan	:	Routing by source
  37 *	Juan Jose Ciarlante:		ip_dynaddr bits
  38 *		Andi Kleen:		various fixes.
  39 *	Vitaly E. Lavrov	:	Transparent proxy revived after year
  40 *					coma.
  41 *	Andi Kleen		:	Fix new listen.
  42 *	Andi Kleen		:	Fix accept error reporting.
  43 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  44 *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
  45 *					a single port at the same time.
  46 */
  47
  48#define pr_fmt(fmt) "TCP: " fmt
  49
  50#include <linux/bottom_half.h>
  51#include <linux/types.h>
  52#include <linux/fcntl.h>
  53#include <linux/module.h>
  54#include <linux/random.h>
  55#include <linux/cache.h>
  56#include <linux/jhash.h>
  57#include <linux/init.h>
  58#include <linux/times.h>
  59#include <linux/slab.h>
  60#include <linux/sched.h>
  61
  62#include <net/net_namespace.h>
  63#include <net/icmp.h>
  64#include <net/inet_hashtables.h>
  65#include <net/tcp.h>
  66#include <net/transp_v6.h>
  67#include <net/ipv6.h>
  68#include <net/inet_common.h>
  69#include <net/timewait_sock.h>
  70#include <net/xfrm.h>
 
  71#include <net/secure_seq.h>
 
  72#include <net/busy_poll.h>
  73#include <net/rstreason.h>
  74
  75#include <linux/inet.h>
  76#include <linux/ipv6.h>
  77#include <linux/stddef.h>
  78#include <linux/proc_fs.h>
  79#include <linux/seq_file.h>
  80#include <linux/inetdevice.h>
  81#include <linux/btf_ids.h>
  82#include <linux/skbuff_ref.h>
  83
  84#include <crypto/hash.h>
  85#include <linux/scatterlist.h>
  86
  87#include <trace/events/tcp.h>
 
 
 
  88
  89#ifdef CONFIG_TCP_MD5SIG
  90static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
  91			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
  92#endif
  93
  94struct inet_hashinfo tcp_hashinfo;
  95EXPORT_SYMBOL(tcp_hashinfo);
  96
  97static DEFINE_PER_CPU(struct sock_bh_locked, ipv4_tcp_sk) = {
  98	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
  99};
 100
 101static DEFINE_MUTEX(tcp_exit_batch_mutex);
 102
 103static u32 tcp_v4_init_seq(const struct sk_buff *skb)
 104{
 105	return secure_tcp_seq(ip_hdr(skb)->daddr,
 106			      ip_hdr(skb)->saddr,
 107			      tcp_hdr(skb)->dest,
 108			      tcp_hdr(skb)->source);
 109}
 110
 111static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
 112{
 113	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
 
 
 
 114}
 115
 116int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
 117{
 118	int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse);
 119	const struct inet_timewait_sock *tw = inet_twsk(sktw);
 120	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
 121	struct tcp_sock *tp = tcp_sk(sk);
 122	int ts_recent_stamp;
 123
 124	if (READ_ONCE(tw->tw_substate) == TCP_FIN_WAIT2)
 125		reuse = 0;
 126
 127	if (reuse == 2) {
 128		/* Still does not detect *everything* that goes through
 129		 * lo, since we require a loopback src or dst address
 130		 * or direct binding to 'lo' interface.
 131		 */
 132		bool loopback = false;
 133		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
 134			loopback = true;
 135#if IS_ENABLED(CONFIG_IPV6)
 136		if (tw->tw_family == AF_INET6) {
 137			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
 138			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
 139			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
 140			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
 141				loopback = true;
 142		} else
 143#endif
 144		{
 145			if (ipv4_is_loopback(tw->tw_daddr) ||
 146			    ipv4_is_loopback(tw->tw_rcv_saddr))
 147				loopback = true;
 148		}
 149		if (!loopback)
 150			reuse = 0;
 151	}
 152
 153	/* With PAWS, it is safe from the viewpoint
 154	   of data integrity. Even without PAWS it is safe provided sequence
 155	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
 156
 157	   Actually, the idea is close to VJ's one, only timestamp cache is
 158	   held not per host, but per port pair and TW bucket is used as state
 159	   holder.
 160
 161	   If TW bucket has been already destroyed we fall back to VJ's scheme
 162	   and use initial timestamp retrieved from peer table.
 163	 */
 164	ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp);
 165	if (ts_recent_stamp &&
 166	    (!twp || (reuse && time_after32(ktime_get_seconds(),
 167					    ts_recent_stamp)))) {
 168		/* inet_twsk_hashdance_schedule() sets sk_refcnt after putting twsk
 169		 * and releasing the bucket lock.
 170		 */
 171		if (unlikely(!refcount_inc_not_zero(&sktw->sk_refcnt)))
 172			return 0;
 173
 174		/* In case of repair and re-using TIME-WAIT sockets we still
 175		 * want to be sure that it is safe as above but honor the
 176		 * sequence numbers and time stamps set as part of the repair
 177		 * process.
 178		 *
 179		 * Without this check re-using a TIME-WAIT socket with TCP
 180		 * repair would accumulate a -1 on the repair assigned
 181		 * sequence number. The first time it is reused the sequence
 182		 * is -1, the second time -2, etc. This fixes that issue
 183		 * without appearing to create any others.
 184		 */
 185		if (likely(!tp->repair)) {
 186			u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
 187
 188			if (!seq)
 189				seq = 1;
 190			WRITE_ONCE(tp->write_seq, seq);
 191			tp->rx_opt.ts_recent	   = READ_ONCE(tcptw->tw_ts_recent);
 192			tp->rx_opt.ts_recent_stamp = ts_recent_stamp;
 193		}
 194
 195		return 1;
 196	}
 197
 198	return 0;
 199}
 200EXPORT_SYMBOL_GPL(tcp_twsk_unique);
 201
 202static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
 203			      int addr_len)
 204{
 205	/* This check is replicated from tcp_v4_connect() and intended to
 206	 * prevent BPF program called below from accessing bytes that are out
 207	 * of the bound specified by user in addr_len.
 208	 */
 209	if (addr_len < sizeof(struct sockaddr_in))
 210		return -EINVAL;
 211
 212	sock_owned_by_me(sk);
 213
 214	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr, &addr_len);
 215}
 216
 217/* This will initiate an outgoing connection. */
 218int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
 219{
 220	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
 221	struct inet_timewait_death_row *tcp_death_row;
 222	struct inet_sock *inet = inet_sk(sk);
 223	struct tcp_sock *tp = tcp_sk(sk);
 224	struct ip_options_rcu *inet_opt;
 225	struct net *net = sock_net(sk);
 226	__be16 orig_sport, orig_dport;
 227	__be32 daddr, nexthop;
 228	struct flowi4 *fl4;
 229	struct rtable *rt;
 230	int err;
 
 231
 232	if (addr_len < sizeof(struct sockaddr_in))
 233		return -EINVAL;
 234
 235	if (usin->sin_family != AF_INET)
 236		return -EAFNOSUPPORT;
 237
 238	nexthop = daddr = usin->sin_addr.s_addr;
 239	inet_opt = rcu_dereference_protected(inet->inet_opt,
 240					     lockdep_sock_is_held(sk));
 241	if (inet_opt && inet_opt->opt.srr) {
 242		if (!daddr)
 243			return -EINVAL;
 244		nexthop = inet_opt->opt.faddr;
 245	}
 246
 247	orig_sport = inet->inet_sport;
 248	orig_dport = usin->sin_port;
 249	fl4 = &inet->cork.fl.u.ip4;
 250	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
 251			      sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport,
 252			      orig_dport, sk);
 
 253	if (IS_ERR(rt)) {
 254		err = PTR_ERR(rt);
 255		if (err == -ENETUNREACH)
 256			IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
 257		return err;
 258	}
 259
 260	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
 261		ip_rt_put(rt);
 262		return -ENETUNREACH;
 263	}
 264
 265	if (!inet_opt || !inet_opt->opt.srr)
 266		daddr = fl4->daddr;
 267
 268	tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
 269
 270	if (!inet->inet_saddr) {
 271		err = inet_bhash2_update_saddr(sk,  &fl4->saddr, AF_INET);
 272		if (err) {
 273			ip_rt_put(rt);
 274			return err;
 275		}
 276	} else {
 277		sk_rcv_saddr_set(sk, inet->inet_saddr);
 278	}
 279
 280	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
 281		/* Reset inherited state */
 282		tp->rx_opt.ts_recent	   = 0;
 283		tp->rx_opt.ts_recent_stamp = 0;
 284		if (likely(!tp->repair))
 285			WRITE_ONCE(tp->write_seq, 0);
 286	}
 287
 
 
 
 
 288	inet->inet_dport = usin->sin_port;
 289	sk_daddr_set(sk, daddr);
 290
 291	inet_csk(sk)->icsk_ext_hdr_len = 0;
 292	if (inet_opt)
 293		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
 294
 295	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
 296
 297	/* Socket identity is still unknown (sport may be zero).
 298	 * However we set state to SYN-SENT and not releasing socket
 299	 * lock select source port, enter ourselves into the hash tables and
 300	 * complete initialization after this.
 301	 */
 302	tcp_set_state(sk, TCP_SYN_SENT);
 303	err = inet_hash_connect(tcp_death_row, sk);
 304	if (err)
 305		goto failure;
 306
 307	sk_set_txhash(sk);
 308
 309	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
 310			       inet->inet_sport, inet->inet_dport, sk);
 311	if (IS_ERR(rt)) {
 312		err = PTR_ERR(rt);
 313		rt = NULL;
 314		goto failure;
 315	}
 316	tp->tcp_usec_ts = dst_tcp_usec_ts(&rt->dst);
 317	/* OK, now commit destination to socket.  */
 318	sk->sk_gso_type = SKB_GSO_TCPV4;
 319	sk_setup_caps(sk, &rt->dst);
 320	rt = NULL;
 321
 322	if (likely(!tp->repair)) {
 323		if (!tp->write_seq)
 324			WRITE_ONCE(tp->write_seq,
 325				   secure_tcp_seq(inet->inet_saddr,
 326						  inet->inet_daddr,
 327						  inet->inet_sport,
 328						  usin->sin_port));
 329		WRITE_ONCE(tp->tsoffset,
 330			   secure_tcp_ts_off(net, inet->inet_saddr,
 331					     inet->inet_daddr));
 332	}
 333
 334	atomic_set(&inet->inet_id, get_random_u16());
 335
 336	if (tcp_fastopen_defer_connect(sk, &err))
 337		return err;
 338	if (err)
 339		goto failure;
 340
 341	err = tcp_connect(sk);
 342
 
 343	if (err)
 344		goto failure;
 345
 346	return 0;
 347
 348failure:
 349	/*
 350	 * This unhashes the socket and releases the local port,
 351	 * if necessary.
 352	 */
 353	tcp_set_state(sk, TCP_CLOSE);
 354	inet_bhash2_reset_saddr(sk);
 355	ip_rt_put(rt);
 356	sk->sk_route_caps = 0;
 357	inet->inet_dport = 0;
 358	return err;
 359}
 360EXPORT_SYMBOL(tcp_v4_connect);
 361
 362/*
 363 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
 364 * It can be called through tcp_release_cb() if socket was owned by user
 365 * at the time tcp_v4_err() was called to handle ICMP message.
 366 */
 367void tcp_v4_mtu_reduced(struct sock *sk)
 368{
 
 369	struct inet_sock *inet = inet_sk(sk);
 370	struct dst_entry *dst;
 371	u32 mtu;
 372
 373	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
 374		return;
 375	mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
 376	dst = inet_csk_update_pmtu(sk, mtu);
 377	if (!dst)
 378		return;
 379
 380	/* Something is about to be wrong... Remember soft error
 381	 * for the case, if this connection will not able to recover.
 382	 */
 383	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
 384		WRITE_ONCE(sk->sk_err_soft, EMSGSIZE);
 385
 386	mtu = dst_mtu(dst);
 387
 388	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
 389	    ip_sk_accept_pmtu(sk) &&
 390	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
 391		tcp_sync_mss(sk, mtu);
 392
 393		/* Resend the TCP packet because it's
 394		 * clear that the old packet has been
 395		 * dropped. This is the new "fast" path mtu
 396		 * discovery.
 397		 */
 398		tcp_simple_retransmit(sk);
 399	} /* else let the usual retransmit timer handle it */
 400}
 401EXPORT_SYMBOL(tcp_v4_mtu_reduced);
 402
 403static void do_redirect(struct sk_buff *skb, struct sock *sk)
 404{
 405	struct dst_entry *dst = __sk_dst_check(sk, 0);
 406
 407	if (dst)
 408		dst->ops->redirect(dst, sk, skb);
 409}
 410
 411
 412/* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
 413void tcp_req_err(struct sock *sk, u32 seq, bool abort)
 414{
 415	struct request_sock *req = inet_reqsk(sk);
 416	struct net *net = sock_net(sk);
 417
 418	/* ICMPs are not backlogged, hence we cannot get
 419	 * an established socket here.
 420	 */
 421	if (seq != tcp_rsk(req)->snt_isn) {
 422		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
 423	} else if (abort) {
 424		/*
 425		 * Still in SYN_RECV, just remove it silently.
 426		 * There is no good way to pass the error to the newly
 427		 * created socket, and POSIX does not want network
 428		 * errors returned from accept().
 429		 */
 430		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
 431		tcp_listendrop(req->rsk_listener);
 432	}
 433	reqsk_put(req);
 434}
 435EXPORT_SYMBOL(tcp_req_err);
 436
 437/* TCP-LD (RFC 6069) logic */
 438void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
 439{
 440	struct inet_connection_sock *icsk = inet_csk(sk);
 441	struct tcp_sock *tp = tcp_sk(sk);
 442	struct sk_buff *skb;
 443	s32 remaining;
 444	u32 delta_us;
 445
 446	if (sock_owned_by_user(sk))
 447		return;
 448
 449	if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
 450	    !icsk->icsk_backoff)
 451		return;
 452
 453	skb = tcp_rtx_queue_head(sk);
 454	if (WARN_ON_ONCE(!skb))
 455		return;
 456
 457	icsk->icsk_backoff--;
 458	icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
 459	icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
 460
 461	tcp_mstamp_refresh(tp);
 462	delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
 463	remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
 464
 465	if (remaining > 0) {
 466		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
 467					  remaining, TCP_RTO_MAX);
 468	} else {
 469		/* RTO revert clocked out retransmission.
 470		 * Will retransmit now.
 471		 */
 472		tcp_retransmit_timer(sk);
 473	}
 474}
 475EXPORT_SYMBOL(tcp_ld_RTO_revert);
 476
 477/*
 478 * This routine is called by the ICMP module when it gets some
 479 * sort of error condition.  If err < 0 then the socket should
 480 * be closed and the error returned to the user.  If err > 0
 481 * it's just the icmp type << 8 | icmp code.  After adjustment
 482 * header points to the first 8 bytes of the tcp header.  We need
 483 * to find the appropriate port.
 484 *
 485 * The locking strategy used here is very "optimistic". When
 486 * someone else accesses the socket the ICMP is just dropped
 487 * and for some paths there is no check at all.
 488 * A more general error queue to queue errors for later handling
 489 * is probably better.
 490 *
 491 */
 492
 493int tcp_v4_err(struct sk_buff *skb, u32 info)
 494{
 495	const struct iphdr *iph = (const struct iphdr *)skb->data;
 496	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
 
 497	struct tcp_sock *tp;
 498	const int type = icmp_hdr(skb)->type;
 499	const int code = icmp_hdr(skb)->code;
 
 500	struct sock *sk;
 501	struct request_sock *fastopen;
 502	u32 seq, snd_una;
 
 
 503	int err;
 504	struct net *net = dev_net(skb->dev);
 
 
 
 
 
 505
 506	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
 507				       iph->daddr, th->dest, iph->saddr,
 508				       ntohs(th->source), inet_iif(skb), 0);
 509	if (!sk) {
 510		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 511		return -ENOENT;
 512	}
 513	if (sk->sk_state == TCP_TIME_WAIT) {
 514		/* To increase the counter of ignored icmps for TCP-AO */
 515		tcp_ao_ignore_icmp(sk, AF_INET, type, code);
 516		inet_twsk_put(inet_twsk(sk));
 517		return 0;
 518	}
 519	seq = ntohl(th->seq);
 520	if (sk->sk_state == TCP_NEW_SYN_RECV) {
 521		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
 522				     type == ICMP_TIME_EXCEEDED ||
 523				     (type == ICMP_DEST_UNREACH &&
 524				      (code == ICMP_NET_UNREACH ||
 525				       code == ICMP_HOST_UNREACH)));
 526		return 0;
 527	}
 528
 529	if (tcp_ao_ignore_icmp(sk, AF_INET, type, code)) {
 530		sock_put(sk);
 531		return 0;
 532	}
 533
 534	bh_lock_sock(sk);
 535	/* If too many ICMPs get dropped on busy
 536	 * servers this needs to be solved differently.
 537	 * We do take care of PMTU discovery (RFC1191) special case :
 538	 * we can receive locally generated ICMP messages while socket is held.
 539	 */
 540	if (sock_owned_by_user(sk)) {
 541		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
 542			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
 543	}
 544	if (sk->sk_state == TCP_CLOSE)
 545		goto out;
 546
 547	if (static_branch_unlikely(&ip4_min_ttl)) {
 548		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
 549		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
 550			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
 551			goto out;
 552		}
 553	}
 554
 
 555	tp = tcp_sk(sk);
 556	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
 557	fastopen = rcu_dereference(tp->fastopen_rsk);
 558	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
 559	if (sk->sk_state != TCP_LISTEN &&
 560	    !between(seq, snd_una, tp->snd_nxt)) {
 561		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
 
 
 562		goto out;
 563	}
 564
 565	switch (type) {
 566	case ICMP_REDIRECT:
 567		if (!sock_owned_by_user(sk))
 568			do_redirect(skb, sk);
 569		goto out;
 570	case ICMP_SOURCE_QUENCH:
 571		/* Just silently ignore these. */
 572		goto out;
 573	case ICMP_PARAMETERPROB:
 574		err = EPROTO;
 575		break;
 576	case ICMP_DEST_UNREACH:
 577		if (code > NR_ICMP_UNREACH)
 578			goto out;
 579
 580		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
 581			/* We are not interested in TCP_LISTEN and open_requests
 582			 * (SYN-ACKs send out by Linux are always <576bytes so
 583			 * they should go through unfragmented).
 584			 */
 585			if (sk->sk_state == TCP_LISTEN)
 586				goto out;
 587
 588			WRITE_ONCE(tp->mtu_info, info);
 589			if (!sock_owned_by_user(sk)) {
 590				tcp_v4_mtu_reduced(sk);
 591			} else {
 592				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
 593					sock_hold(sk);
 594			}
 595			goto out;
 596		}
 597
 598		err = icmp_err_convert[code].errno;
 599		/* check if this ICMP message allows revert of backoff.
 600		 * (see RFC 6069)
 601		 */
 602		if (!fastopen &&
 603		    (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
 604			tcp_ld_RTO_revert(sk, seq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 605		break;
 606	case ICMP_TIME_EXCEEDED:
 607		err = EHOSTUNREACH;
 608		break;
 609	default:
 610		goto out;
 611	}
 612
 
 
 
 
 
 
 
 
 613	switch (sk->sk_state) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 614	case TCP_SYN_SENT:
 615	case TCP_SYN_RECV:
 616		/* Only in fast or simultaneous open. If a fast open socket is
 617		 * already accepted it is treated as a connected one below.
 618		 */
 619		if (fastopen && !fastopen->sk)
 620			break;
 621
 622		ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
 623
 624		if (!sock_owned_by_user(sk))
 625			tcp_done_with_error(sk, err);
 626		else
 627			WRITE_ONCE(sk->sk_err_soft, err);
 628		goto out;
 629	}
 630
 631	/* If we've already connected we will keep trying
 632	 * until we time out, or the user gives up.
 633	 *
 634	 * rfc1122 4.2.3.9 allows to consider as hard errors
 635	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
 636	 * but it is obsoleted by pmtu discovery).
 637	 *
 638	 * Note, that in modern internet, where routing is unreliable
 639	 * and in each dark corner broken firewalls sit, sending random
 640	 * errors ordered by their masters even this two messages finally lose
 641	 * their original sense (even Linux sends invalid PORT_UNREACHs)
 642	 *
 643	 * Now we are in compliance with RFCs.
 644	 *							--ANK (980905)
 645	 */
 646
 647	if (!sock_owned_by_user(sk) &&
 648	    inet_test_bit(RECVERR, sk)) {
 649		WRITE_ONCE(sk->sk_err, err);
 650		sk_error_report(sk);
 651	} else	{ /* Only an error on timeout */
 652		WRITE_ONCE(sk->sk_err_soft, err);
 653	}
 654
 655out:
 656	bh_unlock_sock(sk);
 657	sock_put(sk);
 658	return 0;
 659}
 660
 661void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
 662{
 663	struct tcphdr *th = tcp_hdr(skb);
 664
 665	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
 666	skb->csum_start = skb_transport_header(skb) - skb->head;
 667	skb->csum_offset = offsetof(struct tcphdr, check);
 
 
 
 
 
 
 
 668}
 669
 670/* This routine computes an IPv4 TCP checksum. */
 671void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
 672{
 673	const struct inet_sock *inet = inet_sk(sk);
 674
 675	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
 676}
 677EXPORT_SYMBOL(tcp_v4_send_check);
 678
 679#define REPLY_OPTIONS_LEN      (MAX_TCP_OPTION_SPACE / sizeof(__be32))
 680
 681static bool tcp_v4_ao_sign_reset(const struct sock *sk, struct sk_buff *skb,
 682				 const struct tcp_ao_hdr *aoh,
 683				 struct ip_reply_arg *arg, struct tcphdr *reply,
 684				 __be32 reply_options[REPLY_OPTIONS_LEN])
 685{
 686#ifdef CONFIG_TCP_AO
 687	int sdif = tcp_v4_sdif(skb);
 688	int dif = inet_iif(skb);
 689	int l3index = sdif ? dif : 0;
 690	bool allocated_traffic_key;
 691	struct tcp_ao_key *key;
 692	char *traffic_key;
 693	bool drop = true;
 694	u32 ao_sne = 0;
 695	u8 keyid;
 696
 697	rcu_read_lock();
 698	if (tcp_ao_prepare_reset(sk, skb, aoh, l3index, ntohl(reply->seq),
 699				 &key, &traffic_key, &allocated_traffic_key,
 700				 &keyid, &ao_sne))
 701		goto out;
 702
 703	reply_options[0] = htonl((TCPOPT_AO << 24) | (tcp_ao_len(key) << 16) |
 704				 (aoh->rnext_keyid << 8) | keyid);
 705	arg->iov[0].iov_len += tcp_ao_len_aligned(key);
 706	reply->doff = arg->iov[0].iov_len / 4;
 707
 708	if (tcp_ao_hash_hdr(AF_INET, (char *)&reply_options[1],
 709			    key, traffic_key,
 710			    (union tcp_ao_addr *)&ip_hdr(skb)->saddr,
 711			    (union tcp_ao_addr *)&ip_hdr(skb)->daddr,
 712			    reply, ao_sne))
 713		goto out;
 714	drop = false;
 715out:
 716	rcu_read_unlock();
 717	if (allocated_traffic_key)
 718		kfree(traffic_key);
 719	return drop;
 720#else
 721	return true;
 722#endif
 723}
 724
 725/*
 726 *	This routine will send an RST to the other tcp.
 727 *
 728 *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
 729 *		      for reset.
 730 *	Answer: if a packet caused RST, it is not for a socket
 731 *		existing in our system, if it is matched to a socket,
 732 *		it is just duplicate segment or bug in other side's TCP.
 733 *		So that we build reply only basing on parameters
 734 *		arrived with segment.
 735 *	Exception: precedence violation. We do not implement it in any case.
 736 */
 737
 738static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb,
 739			      enum sk_rst_reason reason)
 740{
 741	const struct tcphdr *th = tcp_hdr(skb);
 742	struct {
 743		struct tcphdr th;
 744		__be32 opt[REPLY_OPTIONS_LEN];
 
 
 745	} rep;
 746	const __u8 *md5_hash_location = NULL;
 747	const struct tcp_ao_hdr *aoh;
 748	struct ip_reply_arg arg;
 749#ifdef CONFIG_TCP_MD5SIG
 750	struct tcp_md5sig_key *key = NULL;
 
 751	unsigned char newhash[16];
 
 752	struct sock *sk1 = NULL;
 753	int genhash;
 754#endif
 755	u64 transmit_time = 0;
 756	struct sock *ctl_sk;
 757	struct net *net;
 758	u32 txhash = 0;
 759
 760	/* Never send a reset in response to a reset. */
 761	if (th->rst)
 762		return;
 763
 764	/* If sk not NULL, it means we did a successful lookup and incoming
 765	 * route had to be correct. prequeue might have dropped our dst.
 766	 */
 767	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
 768		return;
 769
 770	/* Swap the send and the receive. */
 771	memset(&rep, 0, sizeof(rep));
 772	rep.th.dest   = th->source;
 773	rep.th.source = th->dest;
 774	rep.th.doff   = sizeof(struct tcphdr) / 4;
 775	rep.th.rst    = 1;
 776
 777	if (th->ack) {
 778		rep.th.seq = th->ack_seq;
 779	} else {
 780		rep.th.ack = 1;
 781		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
 782				       skb->len - (th->doff << 2));
 783	}
 784
 785	memset(&arg, 0, sizeof(arg));
 786	arg.iov[0].iov_base = (unsigned char *)&rep;
 787	arg.iov[0].iov_len  = sizeof(rep.th);
 788
 789	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
 790
 791	/* Invalid TCP option size or twice included auth */
 792	if (tcp_parse_auth_options(tcp_hdr(skb), &md5_hash_location, &aoh))
 793		return;
 794
 795	if (aoh && tcp_v4_ao_sign_reset(sk, skb, aoh, &arg, &rep.th, rep.opt))
 796		return;
 797
 798#ifdef CONFIG_TCP_MD5SIG
 799	rcu_read_lock();
 800	if (sk && sk_fullsock(sk)) {
 801		const union tcp_md5_addr *addr;
 802		int l3index;
 803
 804		/* sdif set, means packet ingressed via a device
 805		 * in an L3 domain and inet_iif is set to it.
 806		 */
 807		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
 808		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
 809		key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
 810	} else if (md5_hash_location) {
 811		const union tcp_md5_addr *addr;
 812		int sdif = tcp_v4_sdif(skb);
 813		int dif = inet_iif(skb);
 814		int l3index;
 815
 816		/*
 817		 * active side is lost. Try to find listening socket through
 818		 * source port, and then find md5 key through listening socket.
 819		 * we are not loose security here:
 820		 * Incoming packet is checked with md5 hash with finding key,
 821		 * no RST generated if md5 hash doesn't match.
 822		 */
 823		sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo,
 824					     NULL, 0, ip_hdr(skb)->saddr,
 825					     th->source, ip_hdr(skb)->daddr,
 826					     ntohs(th->source), dif, sdif);
 827		/* don't send rst if it can't find key */
 828		if (!sk1)
 829			goto out;
 830
 831		/* sdif set, means packet ingressed via a device
 832		 * in an L3 domain and dif is set to it.
 833		 */
 834		l3index = sdif ? dif : 0;
 835		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
 836		key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
 837		if (!key)
 838			goto out;
 839
 840
 841		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
 842		if (genhash || memcmp(md5_hash_location, newhash, 16) != 0)
 843			goto out;
 844
 
 
 
 
 
 
 
 845	}
 846
 847	if (key) {
 848		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
 849				   (TCPOPT_NOP << 16) |
 850				   (TCPOPT_MD5SIG << 8) |
 851				   TCPOLEN_MD5SIG);
 852		/* Update length and the length the header thinks exists */
 853		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 854		rep.th.doff = arg.iov[0].iov_len / 4;
 855
 856		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
 857				     key, ip_hdr(skb)->saddr,
 858				     ip_hdr(skb)->daddr, &rep.th);
 859	}
 860#endif
 861	/* Can't co-exist with TCPMD5, hence check rep.opt[0] */
 862	if (rep.opt[0] == 0) {
 863		__be32 mrst = mptcp_reset_option(skb);
 864
 865		if (mrst) {
 866			rep.opt[0] = mrst;
 867			arg.iov[0].iov_len += sizeof(mrst);
 868			rep.th.doff = arg.iov[0].iov_len / 4;
 869		}
 870	}
 871
 872	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 873				      ip_hdr(skb)->saddr, /* XXX */
 874				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 875	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 876	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
 877
 878	/* When socket is gone, all binding information is lost.
 879	 * routing might fail in this case. No choice here, if we choose to force
 880	 * input interface, we will misroute in case of asymmetric route.
 881	 */
 882	if (sk)
 883		arg.bound_dev_if = sk->sk_bound_dev_if;
 884
 885	trace_tcp_send_reset(sk, skb, reason);
 886
 887	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
 888		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
 889
 890	arg.tos = ip_hdr(skb)->tos;
 891	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
 892	local_bh_disable();
 893	local_lock_nested_bh(&ipv4_tcp_sk.bh_lock);
 894	ctl_sk = this_cpu_read(ipv4_tcp_sk.sock);
 895
 896	sock_net_set(ctl_sk, net);
 897	if (sk) {
 898		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
 899				   inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark);
 900		ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
 901				   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
 902		transmit_time = tcp_transmit_time(sk);
 903		xfrm_sk_clone_policy(ctl_sk, sk);
 904		txhash = (sk->sk_state == TCP_TIME_WAIT) ?
 905			 inet_twsk(sk)->tw_txhash : sk->sk_txhash;
 906	} else {
 907		ctl_sk->sk_mark = 0;
 908		ctl_sk->sk_priority = 0;
 909	}
 910	ip_send_unicast_reply(ctl_sk, sk,
 911			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
 912			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
 913			      &arg, arg.iov[0].iov_len,
 914			      transmit_time, txhash);
 915
 916	xfrm_sk_free_policy(ctl_sk);
 917	sock_net_set(ctl_sk, &init_net);
 918	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
 919	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
 920	local_unlock_nested_bh(&ipv4_tcp_sk.bh_lock);
 921	local_bh_enable();
 922
 923#ifdef CONFIG_TCP_MD5SIG
 924out:
 925	rcu_read_unlock();
 
 
 
 926#endif
 927}
 928
 929/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
 930   outside socket context is ugly, certainly. What can I do?
 931 */
 932
 933static void tcp_v4_send_ack(const struct sock *sk,
 934			    struct sk_buff *skb, u32 seq, u32 ack,
 935			    u32 win, u32 tsval, u32 tsecr, int oif,
 936			    struct tcp_key *key,
 937			    int reply_flags, u8 tos, u32 txhash)
 938{
 939	const struct tcphdr *th = tcp_hdr(skb);
 940	struct {
 941		struct tcphdr th;
 942		__be32 opt[(MAX_TCP_OPTION_SPACE  >> 2)];
 
 
 
 
 943	} rep;
 944	struct net *net = sock_net(sk);
 945	struct ip_reply_arg arg;
 946	struct sock *ctl_sk;
 947	u64 transmit_time;
 948
 949	memset(&rep.th, 0, sizeof(struct tcphdr));
 950	memset(&arg, 0, sizeof(arg));
 951
 952	arg.iov[0].iov_base = (unsigned char *)&rep;
 953	arg.iov[0].iov_len  = sizeof(rep.th);
 954	if (tsecr) {
 955		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 956				   (TCPOPT_TIMESTAMP << 8) |
 957				   TCPOLEN_TIMESTAMP);
 958		rep.opt[1] = htonl(tsval);
 959		rep.opt[2] = htonl(tsecr);
 960		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
 961	}
 962
 963	/* Swap the send and the receive. */
 964	rep.th.dest    = th->source;
 965	rep.th.source  = th->dest;
 966	rep.th.doff    = arg.iov[0].iov_len / 4;
 967	rep.th.seq     = htonl(seq);
 968	rep.th.ack_seq = htonl(ack);
 969	rep.th.ack     = 1;
 970	rep.th.window  = htons(win);
 971
 972#ifdef CONFIG_TCP_MD5SIG
 973	if (tcp_key_is_md5(key)) {
 974		int offset = (tsecr) ? 3 : 0;
 975
 976		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
 977					  (TCPOPT_NOP << 16) |
 978					  (TCPOPT_MD5SIG << 8) |
 979					  TCPOLEN_MD5SIG);
 980		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 981		rep.th.doff = arg.iov[0].iov_len/4;
 982
 983		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
 984				    key->md5_key, ip_hdr(skb)->saddr,
 985				    ip_hdr(skb)->daddr, &rep.th);
 986	}
 987#endif
 988#ifdef CONFIG_TCP_AO
 989	if (tcp_key_is_ao(key)) {
 990		int offset = (tsecr) ? 3 : 0;
 991
 992		rep.opt[offset++] = htonl((TCPOPT_AO << 24) |
 993					  (tcp_ao_len(key->ao_key) << 16) |
 994					  (key->ao_key->sndid << 8) |
 995					  key->rcv_next);
 996		arg.iov[0].iov_len += tcp_ao_len_aligned(key->ao_key);
 997		rep.th.doff = arg.iov[0].iov_len / 4;
 998
 999		tcp_ao_hash_hdr(AF_INET, (char *)&rep.opt[offset],
1000				key->ao_key, key->traffic_key,
1001				(union tcp_ao_addr *)&ip_hdr(skb)->saddr,
1002				(union tcp_ao_addr *)&ip_hdr(skb)->daddr,
1003				&rep.th, key->sne);
1004	}
1005#endif
1006	arg.flags = reply_flags;
1007	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
1008				      ip_hdr(skb)->saddr, /* XXX */
1009				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
1010	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
1011	if (oif)
1012		arg.bound_dev_if = oif;
1013	arg.tos = tos;
1014	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
1015	local_bh_disable();
1016	local_lock_nested_bh(&ipv4_tcp_sk.bh_lock);
1017	ctl_sk = this_cpu_read(ipv4_tcp_sk.sock);
1018	sock_net_set(ctl_sk, net);
1019	ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
1020			   inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark);
1021	ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
1022			   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
1023	transmit_time = tcp_transmit_time(sk);
1024	ip_send_unicast_reply(ctl_sk, sk,
1025			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
1026			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
1027			      &arg, arg.iov[0].iov_len,
1028			      transmit_time, txhash);
1029
1030	sock_net_set(ctl_sk, &init_net);
1031	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
1032	local_unlock_nested_bh(&ipv4_tcp_sk.bh_lock);
1033	local_bh_enable();
1034}
1035
1036static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
1037{
1038	struct inet_timewait_sock *tw = inet_twsk(sk);
1039	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
1040	struct tcp_key key = {};
1041#ifdef CONFIG_TCP_AO
1042	struct tcp_ao_info *ao_info;
1043
1044	if (static_branch_unlikely(&tcp_ao_needed.key)) {
1045		/* FIXME: the segment to-be-acked is not verified yet */
1046		ao_info = rcu_dereference(tcptw->ao_info);
1047		if (ao_info) {
1048			const struct tcp_ao_hdr *aoh;
1049
1050			if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) {
1051				inet_twsk_put(tw);
1052				return;
1053			}
1054
1055			if (aoh)
1056				key.ao_key = tcp_ao_established_key(sk, ao_info,
1057								    aoh->rnext_keyid, -1);
1058		}
1059	}
1060	if (key.ao_key) {
1061		struct tcp_ao_key *rnext_key;
1062
1063		key.traffic_key = snd_other_key(key.ao_key);
1064		key.sne = READ_ONCE(ao_info->snd_sne);
1065		rnext_key = READ_ONCE(ao_info->rnext_key);
1066		key.rcv_next = rnext_key->rcvid;
1067		key.type = TCP_KEY_AO;
1068#else
1069	if (0) {
1070#endif
1071	} else if (static_branch_tcp_md5()) {
1072		key.md5_key = tcp_twsk_md5_key(tcptw);
1073		if (key.md5_key)
1074			key.type = TCP_KEY_MD5;
1075	}
1076
1077	tcp_v4_send_ack(sk, skb,
1078			tcptw->tw_snd_nxt, READ_ONCE(tcptw->tw_rcv_nxt),
1079			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
1080			tcp_tw_tsval(tcptw),
1081			READ_ONCE(tcptw->tw_ts_recent),
1082			tw->tw_bound_dev_if, &key,
 
1083			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
1084			tw->tw_tos,
1085			tw->tw_txhash);
1086
1087	inet_twsk_put(tw);
1088}
1089
1090static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
1091				  struct request_sock *req)
1092{
1093	struct tcp_key key = {};
1094
1095	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
1096	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
1097	 */
1098	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
1099					     tcp_sk(sk)->snd_nxt;
1100
1101#ifdef CONFIG_TCP_AO
1102	if (static_branch_unlikely(&tcp_ao_needed.key) &&
1103	    tcp_rsk_used_ao(req)) {
1104		const union tcp_md5_addr *addr;
1105		const struct tcp_ao_hdr *aoh;
1106		int l3index;
1107
1108		/* Invalid TCP option size or twice included auth */
1109		if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
1110			return;
1111		if (!aoh)
1112			return;
1113
1114		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1115		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1116		key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET,
1117					      aoh->rnext_keyid, -1);
1118		if (unlikely(!key.ao_key)) {
1119			/* Send ACK with any matching MKT for the peer */
1120			key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET, -1, -1);
1121			/* Matching key disappeared (user removed the key?)
1122			 * let the handshake timeout.
1123			 */
1124			if (!key.ao_key) {
1125				net_info_ratelimited("TCP-AO key for (%pI4, %d)->(%pI4, %d) suddenly disappeared, won't ACK new connection\n",
1126						     addr,
1127						     ntohs(tcp_hdr(skb)->source),
1128						     &ip_hdr(skb)->daddr,
1129						     ntohs(tcp_hdr(skb)->dest));
1130				return;
1131			}
1132		}
1133		key.traffic_key = kmalloc(tcp_ao_digest_size(key.ao_key), GFP_ATOMIC);
1134		if (!key.traffic_key)
1135			return;
1136
1137		key.type = TCP_KEY_AO;
1138		key.rcv_next = aoh->keyid;
1139		tcp_v4_ao_calc_key_rsk(key.ao_key, key.traffic_key, req);
1140#else
1141	if (0) {
1142#endif
1143	} else if (static_branch_tcp_md5()) {
1144		const union tcp_md5_addr *addr;
1145		int l3index;
1146
1147		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1148		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1149		key.md5_key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1150		if (key.md5_key)
1151			key.type = TCP_KEY_MD5;
1152	}
1153
1154	tcp_v4_send_ack(sk, skb, seq,
1155			tcp_rsk(req)->rcv_nxt,
1156			tcp_synack_window(req) >> inet_rsk(req)->rcv_wscale,
1157			tcp_rsk_tsval(tcp_rsk(req)),
1158			READ_ONCE(req->ts_recent),
1159			0, &key,
1160			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
1161			ip_hdr(skb)->tos,
1162			READ_ONCE(tcp_rsk(req)->txhash));
1163	if (tcp_key_is_ao(&key))
1164		kfree(key.traffic_key);
1165}
1166
1167/*
1168 *	Send a SYN-ACK after having received a SYN.
1169 *	This still operates on a request_sock only, not on a big
1170 *	socket.
1171 */
1172static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
1173			      struct flowi *fl,
1174			      struct request_sock *req,
1175			      struct tcp_fastopen_cookie *foc,
1176			      enum tcp_synack_type synack_type,
1177			      struct sk_buff *syn_skb)
1178{
1179	const struct inet_request_sock *ireq = inet_rsk(req);
1180	struct flowi4 fl4;
1181	int err = -1;
1182	struct sk_buff *skb;
1183	u8 tos;
1184
1185	/* First, grab a route. */
1186	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
1187		return -1;
1188
1189	skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
1190
1191	if (skb) {
1192		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1193
1194		tos = READ_ONCE(inet_sk(sk)->tos);
1195
1196		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1197			tos = (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1198			      (tos & INET_ECN_MASK);
1199
1200		if (!INET_ECN_is_capable(tos) &&
1201		    tcp_bpf_ca_needs_ecn((struct sock *)req))
1202			tos |= INET_ECN_ECT_0;
1203
1204		rcu_read_lock();
1205		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1206					    ireq->ir_rmt_addr,
1207					    rcu_dereference(ireq->ireq_opt),
1208					    tos);
1209		rcu_read_unlock();
1210		err = net_xmit_eval(err);
 
 
1211	}
1212
1213	return err;
1214}
1215
 
 
 
 
 
 
 
 
 
 
 
1216/*
1217 *	IPv4 request_sock destructor.
1218 */
1219static void tcp_v4_reqsk_destructor(struct request_sock *req)
1220{
1221	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1222}
1223
1224#ifdef CONFIG_TCP_MD5SIG
1225/*
1226 * RFC2385 MD5 checksumming requires a mapping of
1227 * IP address->MD5 Key.
1228 * We need to maintain these in the sk structure.
1229 */
 
 
 
 
 
 
 
1230
1231DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ);
1232EXPORT_SYMBOL(tcp_md5_needed);
 
 
 
 
 
 
1233
1234static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1235{
1236	if (!old)
1237		return true;
1238
1239	/* l3index always overrides non-l3index */
1240	if (old->l3index && new->l3index == 0)
1241		return false;
1242	if (old->l3index == 0 && new->l3index)
1243		return true;
1244
1245	return old->prefixlen < new->prefixlen;
1246}
 
1247
1248/* Find the Key structure for an address.  */
1249struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1250					   const union tcp_md5_addr *addr,
1251					   int family, bool any_l3index)
1252{
1253	const struct tcp_sock *tp = tcp_sk(sk);
1254	struct tcp_md5sig_key *key;
1255	const struct tcp_md5sig_info *md5sig;
1256	__be32 mask;
1257	struct tcp_md5sig_key *best_match = NULL;
1258	bool match;
1259
1260	/* caller either holds rcu_read_lock() or socket lock */
1261	md5sig = rcu_dereference_check(tp->md5sig_info,
1262				       lockdep_sock_is_held(sk));
1263	if (!md5sig)
1264		return NULL;
1265
1266	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1267				 lockdep_sock_is_held(sk)) {
1268		if (key->family != family)
1269			continue;
1270		if (!any_l3index && key->flags & TCP_MD5SIG_FLAG_IFINDEX &&
1271		    key->l3index != l3index)
1272			continue;
1273		if (family == AF_INET) {
1274			mask = inet_make_mask(key->prefixlen);
1275			match = (key->addr.a4.s_addr & mask) ==
1276				(addr->a4.s_addr & mask);
1277#if IS_ENABLED(CONFIG_IPV6)
1278		} else if (family == AF_INET6) {
1279			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1280						  key->prefixlen);
1281#endif
1282		} else {
1283			match = false;
1284		}
1285
1286		if (match && better_md5_match(best_match, key))
1287			best_match = key;
1288	}
1289	return best_match;
1290}
1291EXPORT_SYMBOL(__tcp_md5_do_lookup);
1292
1293static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1294						      const union tcp_md5_addr *addr,
1295						      int family, u8 prefixlen,
1296						      int l3index, u8 flags)
 
 
 
 
 
 
 
1297{
1298	const struct tcp_sock *tp = tcp_sk(sk);
1299	struct tcp_md5sig_key *key;
1300	unsigned int size = sizeof(struct in_addr);
1301	const struct tcp_md5sig_info *md5sig;
1302
1303	/* caller either holds rcu_read_lock() or socket lock */
1304	md5sig = rcu_dereference_check(tp->md5sig_info,
1305				       lockdep_sock_is_held(sk));
 
1306	if (!md5sig)
1307		return NULL;
1308#if IS_ENABLED(CONFIG_IPV6)
1309	if (family == AF_INET6)
1310		size = sizeof(struct in6_addr);
1311#endif
1312	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1313				 lockdep_sock_is_held(sk)) {
1314		if (key->family != family)
1315			continue;
1316		if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
1317			continue;
1318		if (key->l3index != l3index)
1319			continue;
1320		if (!memcmp(&key->addr, addr, size) &&
1321		    key->prefixlen == prefixlen)
1322			return key;
1323	}
1324	return NULL;
1325}
 
1326
1327struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1328					 const struct sock *addr_sk)
1329{
1330	const union tcp_md5_addr *addr;
1331	int l3index;
1332
1333	l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1334						 addr_sk->sk_bound_dev_if);
1335	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1336	return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1337}
1338EXPORT_SYMBOL(tcp_v4_md5_lookup);
1339
1340static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp)
 
1341{
1342	struct tcp_sock *tp = tcp_sk(sk);
1343	struct tcp_md5sig_info *md5sig;
1344
1345	md5sig = kmalloc(sizeof(*md5sig), gfp);
1346	if (!md5sig)
1347		return -ENOMEM;
1348
1349	sk_gso_disable(sk);
1350	INIT_HLIST_HEAD(&md5sig->head);
1351	rcu_assign_pointer(tp->md5sig_info, md5sig);
1352	return 0;
1353}
1354
1355/* This can be called on a newly created socket, from other files */
1356static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1357			    int family, u8 prefixlen, int l3index, u8 flags,
1358			    const u8 *newkey, u8 newkeylen, gfp_t gfp)
1359{
1360	/* Add Key to the list */
1361	struct tcp_md5sig_key *key;
1362	struct tcp_sock *tp = tcp_sk(sk);
1363	struct tcp_md5sig_info *md5sig;
1364
1365	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1366	if (key) {
1367		/* Pre-existing entry - just update that one.
1368		 * Note that the key might be used concurrently.
1369		 * data_race() is telling kcsan that we do not care of
1370		 * key mismatches, since changing MD5 key on live flows
1371		 * can lead to packet drops.
1372		 */
1373		data_race(memcpy(key->key, newkey, newkeylen));
1374
1375		/* Pairs with READ_ONCE() in tcp_md5_hash_key().
1376		 * Also note that a reader could catch new key->keylen value
1377		 * but old key->key[], this is the reason we use __GFP_ZERO
1378		 * at sock_kmalloc() time below these lines.
1379		 */
1380		WRITE_ONCE(key->keylen, newkeylen);
1381
1382		return 0;
1383	}
1384
1385	md5sig = rcu_dereference_protected(tp->md5sig_info,
1386					   lockdep_sock_is_held(sk));
 
 
 
 
1387
1388	key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
 
 
 
 
 
1389	if (!key)
1390		return -ENOMEM;
 
 
 
 
1391
1392	memcpy(key->key, newkey, newkeylen);
1393	key->keylen = newkeylen;
1394	key->family = family;
1395	key->prefixlen = prefixlen;
1396	key->l3index = l3index;
1397	key->flags = flags;
1398	memcpy(&key->addr, addr,
1399	       (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) :
1400								 sizeof(struct in_addr));
1401	hlist_add_head_rcu(&key->node, &md5sig->head);
1402	return 0;
1403}
1404
1405int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1406		   int family, u8 prefixlen, int l3index, u8 flags,
1407		   const u8 *newkey, u8 newkeylen)
1408{
1409	struct tcp_sock *tp = tcp_sk(sk);
1410
1411	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1412		if (tcp_md5_alloc_sigpool())
1413			return -ENOMEM;
1414
1415		if (tcp_md5sig_info_add(sk, GFP_KERNEL)) {
1416			tcp_md5_release_sigpool();
1417			return -ENOMEM;
1418		}
1419
1420		if (!static_branch_inc(&tcp_md5_needed.key)) {
1421			struct tcp_md5sig_info *md5sig;
1422
1423			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1424			rcu_assign_pointer(tp->md5sig_info, NULL);
1425			kfree_rcu(md5sig, rcu);
1426			tcp_md5_release_sigpool();
1427			return -EUSERS;
1428		}
1429	}
1430
1431	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags,
1432				newkey, newkeylen, GFP_KERNEL);
1433}
1434EXPORT_SYMBOL(tcp_md5_do_add);
1435
1436int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1437		     int family, u8 prefixlen, int l3index,
1438		     struct tcp_md5sig_key *key)
1439{
1440	struct tcp_sock *tp = tcp_sk(sk);
1441
1442	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1443		tcp_md5_add_sigpool();
1444
1445		if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC))) {
1446			tcp_md5_release_sigpool();
1447			return -ENOMEM;
1448		}
1449
1450		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) {
1451			struct tcp_md5sig_info *md5sig;
1452
1453			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1454			net_warn_ratelimited("Too many TCP-MD5 keys in the system\n");
1455			rcu_assign_pointer(tp->md5sig_info, NULL);
1456			kfree_rcu(md5sig, rcu);
1457			tcp_md5_release_sigpool();
1458			return -EUSERS;
1459		}
1460	}
1461
1462	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index,
1463				key->flags, key->key, key->keylen,
1464				sk_gfp_mask(sk, GFP_ATOMIC));
1465}
1466EXPORT_SYMBOL(tcp_md5_key_copy);
1467
1468int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1469		   u8 prefixlen, int l3index, u8 flags)
1470{
1471	struct tcp_md5sig_key *key;
1472
1473	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1474	if (!key)
1475		return -ENOENT;
1476	hlist_del_rcu(&key->node);
1477	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1478	kfree_rcu(key, rcu);
1479	return 0;
1480}
1481EXPORT_SYMBOL(tcp_md5_do_del);
1482
1483void tcp_clear_md5_list(struct sock *sk)
1484{
1485	struct tcp_sock *tp = tcp_sk(sk);
1486	struct tcp_md5sig_key *key;
1487	struct hlist_node *n;
1488	struct tcp_md5sig_info *md5sig;
1489
1490	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1491
1492	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1493		hlist_del_rcu(&key->node);
1494		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1495		kfree_rcu(key, rcu);
1496	}
1497}
1498
1499static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1500				 sockptr_t optval, int optlen)
1501{
1502	struct tcp_md5sig cmd;
1503	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1504	const union tcp_md5_addr *addr;
1505	u8 prefixlen = 32;
1506	int l3index = 0;
1507	bool l3flag;
1508	u8 flags;
1509
1510	if (optlen < sizeof(cmd))
1511		return -EINVAL;
1512
1513	if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1514		return -EFAULT;
1515
1516	if (sin->sin_family != AF_INET)
1517		return -EINVAL;
1518
1519	flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1520	l3flag = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1521
1522	if (optname == TCP_MD5SIG_EXT &&
1523	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1524		prefixlen = cmd.tcpm_prefixlen;
1525		if (prefixlen > 32)
1526			return -EINVAL;
1527	}
1528
1529	if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
1530	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1531		struct net_device *dev;
1532
1533		rcu_read_lock();
1534		dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1535		if (dev && netif_is_l3_master(dev))
1536			l3index = dev->ifindex;
1537
1538		rcu_read_unlock();
1539
1540		/* ok to reference set/not set outside of rcu;
1541		 * right now device MUST be an L3 master
1542		 */
1543		if (!dev || !l3index)
1544			return -EINVAL;
1545	}
1546
1547	addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1548
1549	if (!cmd.tcpm_keylen)
1550		return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
1551
1552	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1553		return -EINVAL;
1554
1555	/* Don't allow keys for peers that have a matching TCP-AO key.
1556	 * See the comment in tcp_ao_add_cmd()
1557	 */
1558	if (tcp_ao_required(sk, addr, AF_INET, l3flag ? l3index : -1, false))
1559		return -EKEYREJECTED;
1560
1561	return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
1562			      cmd.tcpm_key, cmd.tcpm_keylen);
1563}
1564
1565static int tcp_v4_md5_hash_headers(struct tcp_sigpool *hp,
1566				   __be32 daddr, __be32 saddr,
1567				   const struct tcphdr *th, int nbytes)
1568{
1569	struct tcp4_pseudohdr *bp;
1570	struct scatterlist sg;
1571	struct tcphdr *_th;
1572
1573	bp = hp->scratch;
 
 
 
 
 
 
1574	bp->saddr = saddr;
1575	bp->daddr = daddr;
1576	bp->pad = 0;
1577	bp->protocol = IPPROTO_TCP;
1578	bp->len = cpu_to_be16(nbytes);
1579
1580	_th = (struct tcphdr *)(bp + 1);
1581	memcpy(_th, th, sizeof(*th));
1582	_th->check = 0;
1583
1584	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1585	ahash_request_set_crypt(hp->req, &sg, NULL,
1586				sizeof(*bp) + sizeof(*th));
1587	return crypto_ahash_update(hp->req);
1588}
1589
1590static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1591			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1592{
1593	struct tcp_sigpool hp;
 
1594
1595	if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1596		goto clear_hash_nostart;
 
 
1597
1598	if (crypto_ahash_init(hp.req))
 
 
1599		goto clear_hash;
1600	if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, th->doff << 2))
1601		goto clear_hash;
1602	if (tcp_md5_hash_key(&hp, key))
1603		goto clear_hash;
1604	ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1605	if (crypto_ahash_final(hp.req))
1606		goto clear_hash;
1607
1608	tcp_sigpool_end(&hp);
1609	return 0;
1610
1611clear_hash:
1612	tcp_sigpool_end(&hp);
1613clear_hash_nostart:
1614	memset(md5_hash, 0, 16);
1615	return 1;
1616}
1617
1618int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1619			const struct sock *sk,
1620			const struct sk_buff *skb)
1621{
 
 
1622	const struct tcphdr *th = tcp_hdr(skb);
1623	struct tcp_sigpool hp;
1624	__be32 saddr, daddr;
1625
1626	if (sk) { /* valid for establish/request sockets */
1627		saddr = sk->sk_rcv_saddr;
1628		daddr = sk->sk_daddr;
 
 
 
1629	} else {
1630		const struct iphdr *iph = ip_hdr(skb);
1631		saddr = iph->saddr;
1632		daddr = iph->daddr;
1633	}
1634
1635	if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1636		goto clear_hash_nostart;
 
 
1637
1638	if (crypto_ahash_init(hp.req))
1639		goto clear_hash;
1640
1641	if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, skb->len))
 
 
1642		goto clear_hash;
1643	if (tcp_sigpool_hash_skb_data(&hp, skb, th->doff << 2))
1644		goto clear_hash;
1645	if (tcp_md5_hash_key(&hp, key))
1646		goto clear_hash;
1647	ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1648	if (crypto_ahash_final(hp.req))
1649		goto clear_hash;
1650
1651	tcp_sigpool_end(&hp);
1652	return 0;
1653
1654clear_hash:
1655	tcp_sigpool_end(&hp);
1656clear_hash_nostart:
1657	memset(md5_hash, 0, 16);
1658	return 1;
1659}
1660EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1661
1662#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1663
1664static void tcp_v4_init_req(struct request_sock *req,
1665			    const struct sock *sk_listener,
1666			    struct sk_buff *skb)
1667{
1668	struct inet_request_sock *ireq = inet_rsk(req);
1669	struct net *net = sock_net(sk_listener);
1670
1671	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1672	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1673	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1674}
1675
1676static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1677					  struct sk_buff *skb,
1678					  struct flowi *fl,
1679					  struct request_sock *req,
1680					  u32 tw_isn)
1681{
1682	tcp_v4_init_req(req, sk, skb);
1683
1684	if (security_inet_conn_request(sk, skb, req))
1685		return NULL;
 
 
1686
1687	return inet_csk_route_req(sk, &fl->u.ip4, req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1688}
1689
 
 
1690struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1691	.family		=	PF_INET,
1692	.obj_size	=	sizeof(struct tcp_request_sock),
1693	.rtx_syn_ack	=	tcp_rtx_synack,
1694	.send_ack	=	tcp_v4_reqsk_send_ack,
1695	.destructor	=	tcp_v4_reqsk_destructor,
1696	.send_reset	=	tcp_v4_send_reset,
1697	.syn_ack_timeout =	tcp_syn_ack_timeout,
1698};
1699
1700const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1701	.mss_clamp	=	TCP_MSS_DEFAULT,
1702#ifdef CONFIG_TCP_MD5SIG
1703	.req_md5_lookup	=	tcp_v4_md5_lookup,
 
1704	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
 
1705#endif
1706#ifdef CONFIG_TCP_AO
1707	.ao_lookup	=	tcp_v4_ao_lookup_rsk,
1708	.ao_calc_key	=	tcp_v4_ao_calc_key_rsk,
1709	.ao_synack_hash	=	tcp_v4_ao_synack_hash,
1710#endif
1711#ifdef CONFIG_SYN_COOKIES
1712	.cookie_init_seq =	cookie_v4_init_sequence,
1713#endif
1714	.route_req	=	tcp_v4_route_req,
1715	.init_seq	=	tcp_v4_init_seq,
1716	.init_ts_off	=	tcp_v4_init_ts_off,
1717	.send_synack	=	tcp_v4_send_synack,
1718};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1719
1720int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1721{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1722	/* Never answer to SYNs send to broadcast or multicast */
1723	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1724		goto drop;
1725
1726	return tcp_conn_request(&tcp_request_sock_ops,
1727				&tcp_request_sock_ipv4_ops, sk, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1728
 
 
 
 
 
 
1729drop:
1730	tcp_listendrop(sk);
1731	return 0;
1732}
1733EXPORT_SYMBOL(tcp_v4_conn_request);
1734
1735
1736/*
1737 * The three way handshake has completed - we got a valid synack -
1738 * now create the new socket.
1739 */
1740struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1741				  struct request_sock *req,
1742				  struct dst_entry *dst,
1743				  struct request_sock *req_unhash,
1744				  bool *own_req)
1745{
1746	struct inet_request_sock *ireq;
1747	bool found_dup_sk = false;
1748	struct inet_sock *newinet;
1749	struct tcp_sock *newtp;
1750	struct sock *newsk;
1751#ifdef CONFIG_TCP_MD5SIG
1752	const union tcp_md5_addr *addr;
1753	struct tcp_md5sig_key *key;
1754	int l3index;
1755#endif
1756	struct ip_options_rcu *inet_opt;
1757
1758	if (sk_acceptq_is_full(sk))
1759		goto exit_overflow;
1760
1761	newsk = tcp_create_openreq_child(sk, req, skb);
1762	if (!newsk)
1763		goto exit_nonewsk;
1764
1765	newsk->sk_gso_type = SKB_GSO_TCPV4;
1766	inet_sk_rx_dst_set(newsk, skb);
1767
1768	newtp		      = tcp_sk(newsk);
1769	newinet		      = inet_sk(newsk);
1770	ireq		      = inet_rsk(req);
1771	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1772	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1773	newsk->sk_bound_dev_if = ireq->ir_iif;
1774	newinet->inet_saddr   = ireq->ir_loc_addr;
1775	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1776	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1777	newinet->mc_index     = inet_iif(skb);
1778	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1779	newinet->rcv_tos      = ip_hdr(skb)->tos;
1780	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1781	if (inet_opt)
1782		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1783	atomic_set(&newinet->inet_id, get_random_u16());
1784
1785	/* Set ToS of the new socket based upon the value of incoming SYN.
1786	 * ECT bits are set later in tcp_init_transfer().
1787	 */
1788	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1789		newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1790
1791	if (!dst) {
1792		dst = inet_csk_route_child_sock(sk, newsk, req);
1793		if (!dst)
1794			goto put_and_exit;
1795	} else {
1796		/* syncookie case : see end of cookie_v4_check() */
1797	}
1798	sk_setup_caps(newsk, dst);
1799
1800	tcp_ca_openreq_child(newsk, dst);
1801
1802	tcp_sync_mss(newsk, dst_mtu(dst));
1803	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
 
 
 
1804
1805	tcp_initialize_rcv_mss(newsk);
1806
1807#ifdef CONFIG_TCP_MD5SIG
1808	l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1809	/* Copy over the MD5 key from the original socket */
1810	addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1811	key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1812	if (key && !tcp_rsk_used_ao(req)) {
1813		if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key))
1814			goto put_and_exit;
1815		sk_gso_disable(newsk);
 
 
 
 
 
 
1816	}
1817#endif
1818#ifdef CONFIG_TCP_AO
1819	if (tcp_ao_copy_all_matching(sk, newsk, req, skb, AF_INET))
1820		goto put_and_exit; /* OOM, release back memory */
1821#endif
1822
1823	if (__inet_inherit_port(sk, newsk) < 0)
1824		goto put_and_exit;
1825	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1826				       &found_dup_sk);
1827	if (likely(*own_req)) {
1828		tcp_move_syn(newtp, req);
1829		ireq->ireq_opt = NULL;
1830	} else {
1831		newinet->inet_opt = NULL;
1832
1833		if (!req_unhash && found_dup_sk) {
1834			/* This code path should only be executed in the
1835			 * syncookie case only
1836			 */
1837			bh_unlock_sock(newsk);
1838			sock_put(newsk);
1839			newsk = NULL;
1840		}
1841	}
1842	return newsk;
1843
1844exit_overflow:
1845	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1846exit_nonewsk:
1847	dst_release(dst);
1848exit:
1849	tcp_listendrop(sk);
1850	return NULL;
1851put_and_exit:
1852	newinet->inet_opt = NULL;
1853	inet_csk_prepare_forced_close(newsk);
1854	tcp_done(newsk);
1855	goto exit;
1856}
1857EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1858
1859static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1860{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1861#ifdef CONFIG_SYN_COOKIES
1862	const struct tcphdr *th = tcp_hdr(skb);
1863
1864	if (!th->syn)
1865		sk = cookie_v4_check(sk, skb);
1866#endif
1867	return sk;
1868}
1869
1870u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1871			 struct tcphdr *th, u32 *cookie)
1872{
1873	u16 mss = 0;
1874#ifdef CONFIG_SYN_COOKIES
1875	mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1876				    &tcp_request_sock_ipv4_ops, sk, th);
1877	if (mss) {
1878		*cookie = __cookie_v4_init_sequence(iph, th, &mss);
1879		tcp_synq_overflow(sk);
 
 
 
 
 
 
 
 
1880	}
1881#endif
1882	return mss;
1883}
1884
1885INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1886							   u32));
1887/* The socket must have it's spinlock held when we get
1888 * here, unless it is a TCP_LISTEN socket.
1889 *
1890 * We have a potential double-lock case here, so even when
1891 * doing backlog processing we use the BH locking scheme.
1892 * This is because we cannot sleep with the original spinlock
1893 * held.
1894 */
1895int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1896{
1897	enum skb_drop_reason reason;
1898	struct sock *rsk;
 
 
 
 
 
 
 
 
 
 
1899
1900	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1901		struct dst_entry *dst;
1902
1903		dst = rcu_dereference_protected(sk->sk_rx_dst,
1904						lockdep_sock_is_held(sk));
1905
1906		sock_rps_save_rxhash(sk, skb);
1907		sk_mark_napi_id(sk, skb);
1908		if (dst) {
1909			if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
1910			    !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1911					     dst, 0)) {
1912				RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
1913				dst_release(dst);
 
1914			}
1915		}
1916		tcp_rcv_established(sk, skb);
1917		return 0;
1918	}
1919
1920	if (tcp_checksum_complete(skb))
1921		goto csum_err;
1922
1923	if (sk->sk_state == TCP_LISTEN) {
1924		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
 
 
1925
1926		if (!nsk)
1927			return 0;
1928		if (nsk != sk) {
1929			reason = tcp_child_process(sk, nsk, skb);
1930			if (reason) {
1931				rsk = nsk;
1932				goto reset;
1933			}
1934			return 0;
1935		}
1936	} else
1937		sock_rps_save_rxhash(sk, skb);
1938
1939	reason = tcp_rcv_state_process(sk, skb);
1940	if (reason) {
1941		rsk = sk;
1942		goto reset;
1943	}
1944	return 0;
1945
1946reset:
1947	tcp_v4_send_reset(rsk, skb, sk_rst_convert_drop_reason(reason));
1948discard:
1949	sk_skb_reason_drop(sk, skb, reason);
1950	/* Be careful here. If this function gets more complicated and
1951	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1952	 * might be destroyed here. This current version compiles correctly,
1953	 * but you have been warned.
1954	 */
1955	return 0;
1956
1957csum_err:
1958	reason = SKB_DROP_REASON_TCP_CSUM;
1959	trace_tcp_bad_csum(skb);
1960	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1961	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1962	goto discard;
1963}
1964EXPORT_SYMBOL(tcp_v4_do_rcv);
1965
1966int tcp_v4_early_demux(struct sk_buff *skb)
1967{
1968	struct net *net = dev_net(skb->dev);
1969	const struct iphdr *iph;
1970	const struct tcphdr *th;
1971	struct sock *sk;
1972
1973	if (skb->pkt_type != PACKET_HOST)
1974		return 0;
1975
1976	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1977		return 0;
1978
1979	iph = ip_hdr(skb);
1980	th = tcp_hdr(skb);
1981
1982	if (th->doff < sizeof(struct tcphdr) / 4)
1983		return 0;
1984
1985	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
1986				       iph->saddr, th->source,
1987				       iph->daddr, ntohs(th->dest),
1988				       skb->skb_iif, inet_sdif(skb));
1989	if (sk) {
1990		skb->sk = sk;
1991		skb->destructor = sock_edemux;
1992		if (sk_fullsock(sk)) {
1993			struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
1994
1995			if (dst)
1996				dst = dst_check(dst, 0);
1997			if (dst &&
1998			    sk->sk_rx_dst_ifindex == skb->skb_iif)
1999				skb_dst_set_noref(skb, dst);
2000		}
2001	}
2002	return 0;
2003}
2004
2005bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
2006		     enum skb_drop_reason *reason)
 
 
 
 
 
 
2007{
2008	u32 tail_gso_size, tail_gso_segs;
2009	struct skb_shared_info *shinfo;
2010	const struct tcphdr *th;
2011	struct tcphdr *thtail;
2012	struct sk_buff *tail;
2013	unsigned int hdrlen;
2014	bool fragstolen;
2015	u32 gso_segs;
2016	u32 gso_size;
2017	u64 limit;
2018	int delta;
2019
2020	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
2021	 * we can fix skb->truesize to its real value to avoid future drops.
2022	 * This is valid because skb is not yet charged to the socket.
2023	 * It has been noticed pure SACK packets were sometimes dropped
2024	 * (if cooked by drivers without copybreak feature).
2025	 */
2026	skb_condense(skb);
2027
2028	tcp_cleanup_skb(skb);
2029
2030	if (unlikely(tcp_checksum_complete(skb))) {
2031		bh_unlock_sock(sk);
2032		trace_tcp_bad_csum(skb);
2033		*reason = SKB_DROP_REASON_TCP_CSUM;
2034		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
2035		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
2036		return true;
2037	}
2038
2039	/* Attempt coalescing to last skb in backlog, even if we are
2040	 * above the limits.
2041	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
2042	 */
2043	th = (const struct tcphdr *)skb->data;
2044	hdrlen = th->doff * 4;
2045
2046	tail = sk->sk_backlog.tail;
2047	if (!tail)
2048		goto no_coalesce;
2049	thtail = (struct tcphdr *)tail->data;
2050
2051	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
2052	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
2053	    ((TCP_SKB_CB(tail)->tcp_flags |
2054	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
2055	    !((TCP_SKB_CB(tail)->tcp_flags &
2056	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
2057	    ((TCP_SKB_CB(tail)->tcp_flags ^
2058	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
2059	    !tcp_skb_can_collapse_rx(tail, skb) ||
2060	    thtail->doff != th->doff ||
2061	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
2062		goto no_coalesce;
2063
2064	__skb_pull(skb, hdrlen);
2065
2066	shinfo = skb_shinfo(skb);
2067	gso_size = shinfo->gso_size ?: skb->len;
2068	gso_segs = shinfo->gso_segs ?: 1;
2069
2070	shinfo = skb_shinfo(tail);
2071	tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
2072	tail_gso_segs = shinfo->gso_segs ?: 1;
2073
2074	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
2075		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
2076
2077		if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
2078			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
2079			thtail->window = th->window;
2080		}
2081
2082		/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
2083		 * thtail->fin, so that the fast path in tcp_rcv_established()
2084		 * is not entered if we append a packet with a FIN.
2085		 * SYN, RST, URG are not present.
2086		 * ACK is set on both packets.
2087		 * PSH : we do not really care in TCP stack,
2088		 *       at least for 'GRO' packets.
2089		 */
2090		thtail->fin |= th->fin;
2091		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2092
2093		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2094			TCP_SKB_CB(tail)->has_rxtstamp = true;
2095			tail->tstamp = skb->tstamp;
2096			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
2097		}
2098
2099		/* Not as strict as GRO. We only need to carry mss max value */
2100		shinfo->gso_size = max(gso_size, tail_gso_size);
2101		shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
2102
2103		sk->sk_backlog.len += delta;
2104		__NET_INC_STATS(sock_net(sk),
2105				LINUX_MIB_TCPBACKLOGCOALESCE);
2106		kfree_skb_partial(skb, fragstolen);
2107		return false;
2108	}
2109	__skb_push(skb, hdrlen);
2110
2111no_coalesce:
2112	/* sk->sk_backlog.len is reset only at the end of __release_sock().
2113	 * Both sk->sk_backlog.len and sk->sk_rmem_alloc could reach
2114	 * sk_rcvbuf in normal conditions.
2115	 */
2116	limit = ((u64)READ_ONCE(sk->sk_rcvbuf)) << 1;
2117
2118	limit += ((u32)READ_ONCE(sk->sk_sndbuf)) >> 1;
2119
2120	/* Only socket owner can try to collapse/prune rx queues
2121	 * to reduce memory overhead, so add a little headroom here.
2122	 * Few sockets backlog are possibly concurrently non empty.
2123	 */
2124	limit += 64 * 1024;
2125
2126	limit = min_t(u64, limit, UINT_MAX);
2127
2128	if (unlikely(sk_add_backlog(sk, skb, limit))) {
2129		bh_unlock_sock(sk);
2130		*reason = SKB_DROP_REASON_SOCKET_BACKLOG;
2131		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
2132		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133	}
2134	return false;
2135}
2136EXPORT_SYMBOL(tcp_add_backlog);
2137
2138int tcp_filter(struct sock *sk, struct sk_buff *skb)
2139{
2140	struct tcphdr *th = (struct tcphdr *)skb->data;
2141
2142	return sk_filter_trim_cap(sk, skb, th->doff * 4);
2143}
2144EXPORT_SYMBOL(tcp_filter);
2145
2146static void tcp_v4_restore_cb(struct sk_buff *skb)
2147{
2148	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
2149		sizeof(struct inet_skb_parm));
2150}
2151
2152static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
2153			   const struct tcphdr *th)
2154{
2155	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
2156	 * barrier() makes sure compiler wont play fool^Waliasing games.
2157	 */
2158	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
2159		sizeof(struct inet_skb_parm));
2160	barrier();
2161
2162	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
2163	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
2164				    skb->len - th->doff * 4);
2165	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
2166	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
2167	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
2168	TCP_SKB_CB(skb)->sacked	 = 0;
2169	TCP_SKB_CB(skb)->has_rxtstamp =
2170			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
2171}
 
2172
2173/*
2174 *	From tcp_input.c
2175 */
2176
2177int tcp_v4_rcv(struct sk_buff *skb)
2178{
2179	struct net *net = dev_net(skb->dev);
2180	enum skb_drop_reason drop_reason;
2181	int sdif = inet_sdif(skb);
2182	int dif = inet_iif(skb);
2183	const struct iphdr *iph;
2184	const struct tcphdr *th;
2185	struct sock *sk = NULL;
2186	bool refcounted;
2187	int ret;
2188	u32 isn;
2189
2190	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2191	if (skb->pkt_type != PACKET_HOST)
2192		goto discard_it;
2193
2194	/* Count it even if it's bad */
2195	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
2196
2197	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
2198		goto discard_it;
2199
2200	th = (const struct tcphdr *)skb->data;
2201
2202	if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
2203		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2204		goto bad_packet;
2205	}
2206	if (!pskb_may_pull(skb, th->doff * 4))
2207		goto discard_it;
2208
2209	/* An explanation is required here, I think.
2210	 * Packet length and doff are validated by header prediction,
2211	 * provided case of th->doff==0 is eliminated.
2212	 * So, we defer the checks. */
2213
2214	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
2215		goto csum_error;
2216
2217	th = (const struct tcphdr *)skb->data;
2218	iph = ip_hdr(skb);
2219lookup:
2220	sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo,
2221			       skb, __tcp_hdrlen(th), th->source,
2222			       th->dest, sdif, &refcounted);
 
 
 
 
 
2223	if (!sk)
2224		goto no_tcp_socket;
2225
 
2226	if (sk->sk_state == TCP_TIME_WAIT)
2227		goto do_time_wait;
2228
2229	if (sk->sk_state == TCP_NEW_SYN_RECV) {
2230		struct request_sock *req = inet_reqsk(sk);
2231		bool req_stolen = false;
2232		struct sock *nsk;
2233
2234		sk = req->rsk_listener;
2235		if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2236			drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2237		else
2238			drop_reason = tcp_inbound_hash(sk, req, skb,
2239						       &iph->saddr, &iph->daddr,
2240						       AF_INET, dif, sdif);
2241		if (unlikely(drop_reason)) {
2242			sk_drops_add(sk, skb);
2243			reqsk_put(req);
2244			goto discard_it;
2245		}
2246		if (tcp_checksum_complete(skb)) {
2247			reqsk_put(req);
2248			goto csum_error;
2249		}
2250		if (unlikely(sk->sk_state != TCP_LISTEN)) {
2251			nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
2252			if (!nsk) {
2253				inet_csk_reqsk_queue_drop_and_put(sk, req);
2254				goto lookup;
2255			}
2256			sk = nsk;
2257			/* reuseport_migrate_sock() has already held one sk_refcnt
2258			 * before returning.
2259			 */
2260		} else {
2261			/* We own a reference on the listener, increase it again
2262			 * as we might lose it too soon.
2263			 */
2264			sock_hold(sk);
2265		}
2266		refcounted = true;
2267		nsk = NULL;
2268		if (!tcp_filter(sk, skb)) {
2269			th = (const struct tcphdr *)skb->data;
2270			iph = ip_hdr(skb);
2271			tcp_v4_fill_cb(skb, iph, th);
2272			nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
2273		} else {
2274			drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2275		}
2276		if (!nsk) {
2277			reqsk_put(req);
2278			if (req_stolen) {
2279				/* Another cpu got exclusive access to req
2280				 * and created a full blown socket.
2281				 * Try to feed this packet to this socket
2282				 * instead of discarding it.
2283				 */
2284				tcp_v4_restore_cb(skb);
2285				sock_put(sk);
2286				goto lookup;
2287			}
2288			goto discard_and_relse;
2289		}
2290		nf_reset_ct(skb);
2291		if (nsk == sk) {
2292			reqsk_put(req);
2293			tcp_v4_restore_cb(skb);
2294		} else {
2295			drop_reason = tcp_child_process(sk, nsk, skb);
2296			if (drop_reason) {
2297				enum sk_rst_reason rst_reason;
2298
2299				rst_reason = sk_rst_convert_drop_reason(drop_reason);
2300				tcp_v4_send_reset(nsk, skb, rst_reason);
2301				goto discard_and_relse;
2302			}
2303			sock_put(sk);
2304			return 0;
2305		}
2306	}
2307
2308process:
2309	if (static_branch_unlikely(&ip4_min_ttl)) {
2310		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
2311		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
2312			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2313			drop_reason = SKB_DROP_REASON_TCP_MINTTL;
2314			goto discard_and_relse;
2315		}
2316	}
2317
2318	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2319		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2320		goto discard_and_relse;
2321	}
2322
2323	drop_reason = tcp_inbound_hash(sk, NULL, skb, &iph->saddr, &iph->daddr,
2324				       AF_INET, dif, sdif);
2325	if (drop_reason)
2326		goto discard_and_relse;
 
2327
2328	nf_reset_ct(skb);
2329
2330	if (tcp_filter(sk, skb)) {
2331		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2332		goto discard_and_relse;
2333	}
2334	th = (const struct tcphdr *)skb->data;
2335	iph = ip_hdr(skb);
2336	tcp_v4_fill_cb(skb, iph, th);
2337
 
2338	skb->dev = NULL;
2339
2340	if (sk->sk_state == TCP_LISTEN) {
2341		ret = tcp_v4_do_rcv(sk, skb);
2342		goto put_and_return;
2343	}
2344
2345	sk_incoming_cpu_update(sk);
2346
2347	bh_lock_sock_nested(sk);
2348	tcp_segs_in(tcp_sk(sk), skb);
2349	ret = 0;
2350	if (!sock_owned_by_user(sk)) {
2351		ret = tcp_v4_do_rcv(sk, skb);
2352	} else {
2353		if (tcp_add_backlog(sk, skb, &drop_reason))
2354			goto discard_and_relse;
 
 
 
 
 
 
 
 
 
 
 
 
 
2355	}
2356	bh_unlock_sock(sk);
2357
2358put_and_return:
2359	if (refcounted)
2360		sock_put(sk);
2361
2362	return ret;
2363
2364no_tcp_socket:
2365	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2366	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2367		goto discard_it;
2368
2369	tcp_v4_fill_cb(skb, iph, th);
2370
2371	if (tcp_checksum_complete(skb)) {
2372csum_error:
2373		drop_reason = SKB_DROP_REASON_TCP_CSUM;
2374		trace_tcp_bad_csum(skb);
2375		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2376bad_packet:
2377		__TCP_INC_STATS(net, TCP_MIB_INERRS);
2378	} else {
2379		tcp_v4_send_reset(NULL, skb, sk_rst_convert_drop_reason(drop_reason));
2380	}
2381
2382discard_it:
2383	SKB_DR_OR(drop_reason, NOT_SPECIFIED);
2384	/* Discard frame. */
2385	sk_skb_reason_drop(sk, skb, drop_reason);
2386	return 0;
2387
2388discard_and_relse:
2389	sk_drops_add(sk, skb);
2390	if (refcounted)
2391		sock_put(sk);
2392	goto discard_it;
2393
2394do_time_wait:
2395	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2396		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2397		inet_twsk_put(inet_twsk(sk));
2398		goto discard_it;
2399	}
2400
2401	tcp_v4_fill_cb(skb, iph, th);
2402
 
 
2403	if (tcp_checksum_complete(skb)) {
2404		inet_twsk_put(inet_twsk(sk));
2405		goto csum_error;
2406	}
2407	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th, &isn)) {
2408	case TCP_TW_SYN: {
2409		struct sock *sk2 = inet_lookup_listener(net,
2410							net->ipv4.tcp_death_row.hashinfo,
2411							skb, __tcp_hdrlen(th),
2412							iph->saddr, th->source,
2413							iph->daddr, th->dest,
2414							inet_iif(skb),
2415							sdif);
2416		if (sk2) {
2417			inet_twsk_deschedule_put(inet_twsk(sk));
 
2418			sk = sk2;
2419			tcp_v4_restore_cb(skb);
2420			refcounted = false;
2421			__this_cpu_write(tcp_tw_isn, isn);
2422			goto process;
2423		}
 
2424	}
2425		/* to ACK */
2426		fallthrough;
2427	case TCP_TW_ACK:
2428		tcp_v4_timewait_ack(sk, skb);
2429		break;
2430	case TCP_TW_RST:
2431		tcp_v4_send_reset(sk, skb, SK_RST_REASON_TCP_TIMEWAIT_SOCKET);
2432		inet_twsk_deschedule_put(inet_twsk(sk));
2433		goto discard_it;
2434	case TCP_TW_SUCCESS:;
2435	}
2436	goto discard_it;
2437}
2438
2439static struct timewait_sock_ops tcp_timewait_sock_ops = {
2440	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
 
2441	.twsk_destructor= tcp_twsk_destructor,
2442};
2443
2444void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2445{
2446	struct dst_entry *dst = skb_dst(skb);
2447
2448	if (dst && dst_hold_safe(dst)) {
2449		rcu_assign_pointer(sk->sk_rx_dst, dst);
2450		sk->sk_rx_dst_ifindex = skb->skb_iif;
2451	}
2452}
2453EXPORT_SYMBOL(inet_sk_rx_dst_set);
2454
2455const struct inet_connection_sock_af_ops ipv4_specific = {
2456	.queue_xmit	   = ip_queue_xmit,
2457	.send_check	   = tcp_v4_send_check,
2458	.rebuild_header	   = inet_sk_rebuild_header,
2459	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2460	.conn_request	   = tcp_v4_conn_request,
2461	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2462	.net_header_len	   = sizeof(struct iphdr),
2463	.setsockopt	   = ip_setsockopt,
2464	.getsockopt	   = ip_getsockopt,
2465	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2466	.sockaddr_len	   = sizeof(struct sockaddr_in),
2467	.mtu_reduced	   = tcp_v4_mtu_reduced,
 
 
 
 
2468};
2469EXPORT_SYMBOL(ipv4_specific);
2470
2471#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2472static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2473#ifdef CONFIG_TCP_MD5SIG
2474	.md5_lookup		= tcp_v4_md5_lookup,
2475	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2476	.md5_parse		= tcp_v4_parse_md5_keys,
2477#endif
2478#ifdef CONFIG_TCP_AO
2479	.ao_lookup		= tcp_v4_ao_lookup,
2480	.calc_ao_hash		= tcp_v4_ao_hash_skb,
2481	.ao_parse		= tcp_v4_parse_ao,
2482	.ao_calc_key_sk		= tcp_v4_ao_calc_key_sk,
2483#endif
2484};
2485#endif
2486
2487/* NOTE: A lot of things set to zero explicitly by call to
2488 *       sk_alloc() so need not be done here.
2489 */
2490static int tcp_v4_init_sock(struct sock *sk)
2491{
2492	struct inet_connection_sock *icsk = inet_csk(sk);
2493
2494	tcp_init_sock(sk);
2495
2496	icsk->icsk_af_ops = &ipv4_specific;
2497
2498#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2499	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2500#endif
2501
2502	return 0;
2503}
2504
2505#ifdef CONFIG_TCP_MD5SIG
2506static void tcp_md5sig_info_free_rcu(struct rcu_head *head)
2507{
2508	struct tcp_md5sig_info *md5sig;
2509
2510	md5sig = container_of(head, struct tcp_md5sig_info, rcu);
2511	kfree(md5sig);
2512	static_branch_slow_dec_deferred(&tcp_md5_needed);
2513	tcp_md5_release_sigpool();
2514}
2515#endif
2516
2517static void tcp_release_user_frags(struct sock *sk)
2518{
2519#ifdef CONFIG_PAGE_POOL
2520	unsigned long index;
2521	void *netmem;
2522
2523	xa_for_each(&sk->sk_user_frags, index, netmem)
2524		WARN_ON_ONCE(!napi_pp_put_page((__force netmem_ref)netmem));
2525#endif
2526}
2527
2528void tcp_v4_destroy_sock(struct sock *sk)
2529{
2530	struct tcp_sock *tp = tcp_sk(sk);
2531
2532	tcp_release_user_frags(sk);
2533
2534	xa_destroy(&sk->sk_user_frags);
2535
2536	trace_tcp_destroy_sock(sk);
2537
2538	tcp_clear_xmit_timers(sk);
2539
2540	tcp_cleanup_congestion_control(sk);
2541
2542	tcp_cleanup_ulp(sk);
2543
2544	/* Cleanup up the write buffer. */
2545	tcp_write_queue_purge(sk);
2546
2547	/* Check if we want to disable active TFO */
2548	tcp_fastopen_active_disable_ofo_check(sk);
2549
2550	/* Cleans up our, hopefully empty, out_of_order_queue. */
2551	skb_rbtree_purge(&tp->out_of_order_queue);
2552
2553#ifdef CONFIG_TCP_MD5SIG
2554	/* Clean up the MD5 key list, if any */
2555	if (tp->md5sig_info) {
2556		struct tcp_md5sig_info *md5sig;
2557
2558		md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
2559		tcp_clear_md5_list(sk);
2560		call_rcu(&md5sig->rcu, tcp_md5sig_info_free_rcu);
2561		rcu_assign_pointer(tp->md5sig_info, NULL);
2562	}
2563#endif
2564	tcp_ao_destroy_sock(sk, false);
 
 
 
 
 
 
 
2565
2566	/* Clean up a referenced TCP bind bucket. */
2567	if (inet_csk(sk)->icsk_bind_hash)
2568		inet_put_port(sk);
2569
2570	BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
2571
2572	/* If socket is aborted during connect operation */
2573	tcp_free_fastopen_req(tp);
2574	tcp_fastopen_destroy_cipher(sk);
2575	tcp_saved_syn_free(tp);
2576
2577	sk_sockets_allocated_dec(sk);
 
2578}
2579EXPORT_SYMBOL(tcp_v4_destroy_sock);
2580
2581#ifdef CONFIG_PROC_FS
2582/* Proc filesystem TCP sock list dumping. */
2583
2584static unsigned short seq_file_family(const struct seq_file *seq);
2585
2586static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2587{
2588	unsigned short family = seq_file_family(seq);
2589
2590	/* AF_UNSPEC is used as a match all */
2591	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2592		net_eq(sock_net(sk), seq_file_net(seq)));
2593}
2594
2595/* Find a non empty bucket (starting from st->bucket)
2596 * and return the first sk from it.
2597 */
2598static void *listening_get_first(struct seq_file *seq)
2599{
2600	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2601	struct tcp_iter_state *st = seq->private;
2602
2603	st->offset = 0;
2604	for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) {
2605		struct inet_listen_hashbucket *ilb2;
2606		struct hlist_nulls_node *node;
2607		struct sock *sk;
2608
2609		ilb2 = &hinfo->lhash2[st->bucket];
2610		if (hlist_nulls_empty(&ilb2->nulls_head))
2611			continue;
2612
2613		spin_lock(&ilb2->lock);
2614		sk_nulls_for_each(sk, node, &ilb2->nulls_head) {
2615			if (seq_sk_match(seq, sk))
2616				return sk;
2617		}
2618		spin_unlock(&ilb2->lock);
2619	}
2620
2621	return NULL;
2622}
2623
2624/* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
2625 * If "cur" is the last one in the st->bucket,
2626 * call listening_get_first() to return the first sk of the next
2627 * non empty bucket.
2628 */
2629static void *listening_get_next(struct seq_file *seq, void *cur)
2630{
2631	struct tcp_iter_state *st = seq->private;
2632	struct inet_listen_hashbucket *ilb2;
2633	struct hlist_nulls_node *node;
2634	struct inet_hashinfo *hinfo;
2635	struct sock *sk = cur;
 
 
 
2636
 
 
 
 
 
 
 
 
2637	++st->num;
2638	++st->offset;
2639
2640	sk = sk_nulls_next(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2641	sk_nulls_for_each_from(sk, node) {
2642		if (seq_sk_match(seq, sk))
2643			return sk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2644	}
2645
2646	hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2647	ilb2 = &hinfo->lhash2[st->bucket];
2648	spin_unlock(&ilb2->lock);
2649	++st->bucket;
2650	return listening_get_first(seq);
2651}
2652
2653static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2654{
2655	struct tcp_iter_state *st = seq->private;
2656	void *rc;
2657
2658	st->bucket = 0;
2659	st->offset = 0;
2660	rc = listening_get_first(seq);
2661
2662	while (rc && *pos) {
2663		rc = listening_get_next(seq, rc);
2664		--*pos;
2665	}
2666	return rc;
2667}
2668
2669static inline bool empty_bucket(struct inet_hashinfo *hinfo,
2670				const struct tcp_iter_state *st)
2671{
2672	return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain);
2673}
2674
2675/*
2676 * Get first established socket starting from bucket given in st->bucket.
2677 * If st->bucket is zero, the very first socket in the hash is returned.
2678 */
2679static void *established_get_first(struct seq_file *seq)
2680{
2681	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2682	struct tcp_iter_state *st = seq->private;
 
 
2683
2684	st->offset = 0;
2685	for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) {
2686		struct sock *sk;
2687		struct hlist_nulls_node *node;
2688		spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket);
2689
2690		cond_resched();
2691
2692		/* Lockless fast path for the common case of empty buckets */
2693		if (empty_bucket(hinfo, st))
2694			continue;
2695
2696		spin_lock_bh(lock);
2697		sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) {
2698			if (seq_sk_match(seq, sk))
2699				return sk;
 
 
 
 
2700		}
2701		spin_unlock_bh(lock);
2702	}
2703
2704	return NULL;
2705}
2706
2707static void *established_get_next(struct seq_file *seq, void *cur)
2708{
2709	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
 
2710	struct tcp_iter_state *st = seq->private;
2711	struct hlist_nulls_node *node;
2712	struct sock *sk = cur;
2713
2714	++st->num;
2715	++st->offset;
2716
2717	sk = sk_nulls_next(sk);
2718
2719	sk_nulls_for_each_from(sk, node) {
2720		if (seq_sk_match(seq, sk))
2721			return sk;
2722	}
2723
2724	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2725	++st->bucket;
2726	return established_get_first(seq);
2727}
2728
2729static void *established_get_idx(struct seq_file *seq, loff_t pos)
2730{
2731	struct tcp_iter_state *st = seq->private;
2732	void *rc;
2733
2734	st->bucket = 0;
2735	rc = established_get_first(seq);
2736
2737	while (rc && pos) {
2738		rc = established_get_next(seq, rc);
2739		--pos;
2740	}
2741	return rc;
2742}
2743
2744static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2745{
2746	void *rc;
2747	struct tcp_iter_state *st = seq->private;
2748
2749	st->state = TCP_SEQ_STATE_LISTENING;
2750	rc	  = listening_get_idx(seq, &pos);
2751
2752	if (!rc) {
2753		st->state = TCP_SEQ_STATE_ESTABLISHED;
2754		rc	  = established_get_idx(seq, pos);
2755	}
2756
2757	return rc;
2758}
2759
2760static void *tcp_seek_last_pos(struct seq_file *seq)
2761{
2762	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2763	struct tcp_iter_state *st = seq->private;
2764	int bucket = st->bucket;
2765	int offset = st->offset;
2766	int orig_num = st->num;
2767	void *rc = NULL;
2768
2769	switch (st->state) {
 
2770	case TCP_SEQ_STATE_LISTENING:
2771		if (st->bucket > hinfo->lhash2_mask)
2772			break;
2773		rc = listening_get_first(seq);
2774		while (offset-- && rc && bucket == st->bucket)
 
2775			rc = listening_get_next(seq, rc);
2776		if (rc)
2777			break;
2778		st->bucket = 0;
2779		st->state = TCP_SEQ_STATE_ESTABLISHED;
2780		fallthrough;
2781	case TCP_SEQ_STATE_ESTABLISHED:
2782		if (st->bucket > hinfo->ehash_mask)
2783			break;
2784		rc = established_get_first(seq);
2785		while (offset-- && rc && bucket == st->bucket)
2786			rc = established_get_next(seq, rc);
2787	}
2788
2789	st->num = orig_num;
2790
2791	return rc;
2792}
2793
2794void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2795{
2796	struct tcp_iter_state *st = seq->private;
2797	void *rc;
2798
2799	if (*pos && *pos == st->last_pos) {
2800		rc = tcp_seek_last_pos(seq);
2801		if (rc)
2802			goto out;
2803	}
2804
2805	st->state = TCP_SEQ_STATE_LISTENING;
2806	st->num = 0;
2807	st->bucket = 0;
2808	st->offset = 0;
2809	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2810
2811out:
2812	st->last_pos = *pos;
2813	return rc;
2814}
2815EXPORT_SYMBOL(tcp_seq_start);
2816
2817void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2818{
2819	struct tcp_iter_state *st = seq->private;
2820	void *rc = NULL;
2821
2822	if (v == SEQ_START_TOKEN) {
2823		rc = tcp_get_idx(seq, 0);
2824		goto out;
2825	}
2826
2827	switch (st->state) {
 
2828	case TCP_SEQ_STATE_LISTENING:
2829		rc = listening_get_next(seq, v);
2830		if (!rc) {
2831			st->state = TCP_SEQ_STATE_ESTABLISHED;
2832			st->bucket = 0;
2833			st->offset = 0;
2834			rc	  = established_get_first(seq);
2835		}
2836		break;
2837	case TCP_SEQ_STATE_ESTABLISHED:
2838		rc = established_get_next(seq, v);
2839		break;
2840	}
2841out:
2842	++*pos;
2843	st->last_pos = *pos;
2844	return rc;
2845}
2846EXPORT_SYMBOL(tcp_seq_next);
2847
2848void tcp_seq_stop(struct seq_file *seq, void *v)
2849{
2850	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2851	struct tcp_iter_state *st = seq->private;
2852
2853	switch (st->state) {
 
 
 
 
 
2854	case TCP_SEQ_STATE_LISTENING:
2855		if (v != SEQ_START_TOKEN)
2856			spin_unlock(&hinfo->lhash2[st->bucket].lock);
2857		break;
2858	case TCP_SEQ_STATE_ESTABLISHED:
2859		if (v)
2860			spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2861		break;
2862	}
2863}
2864EXPORT_SYMBOL(tcp_seq_stop);
2865
2866static void get_openreq4(const struct request_sock *req,
2867			 struct seq_file *f, int i)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2868{
2869	const struct inet_request_sock *ireq = inet_rsk(req);
2870	long delta = req->rsk_timer.expires - jiffies;
2871
2872	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2873		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2874		i,
2875		ireq->ir_loc_addr,
2876		ireq->ir_num,
2877		ireq->ir_rmt_addr,
2878		ntohs(ireq->ir_rmt_port),
2879		TCP_SYN_RECV,
2880		0, 0, /* could print option size, but that is af dependent. */
2881		1,    /* timers active (only the expire timer) */
2882		jiffies_delta_to_clock_t(delta),
2883		req->num_timeout,
2884		from_kuid_munged(seq_user_ns(f),
2885				 sock_i_uid(req->rsk_listener)),
2886		0,  /* non standard timer */
2887		0, /* open_requests have no inode */
2888		0,
2889		req);
2890}
2891
2892static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2893{
2894	int timer_active;
2895	unsigned long timer_expires;
2896	const struct tcp_sock *tp = tcp_sk(sk);
2897	const struct inet_connection_sock *icsk = inet_csk(sk);
2898	const struct inet_sock *inet = inet_sk(sk);
2899	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2900	__be32 dest = inet->inet_daddr;
2901	__be32 src = inet->inet_rcv_saddr;
2902	__u16 destp = ntohs(inet->inet_dport);
2903	__u16 srcp = ntohs(inet->inet_sport);
2904	u8 icsk_pending;
2905	int rx_queue;
2906	int state;
2907
2908	icsk_pending = smp_load_acquire(&icsk->icsk_pending);
2909	if (icsk_pending == ICSK_TIME_RETRANS ||
2910	    icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2911	    icsk_pending == ICSK_TIME_LOSS_PROBE) {
2912		timer_active	= 1;
2913		timer_expires	= icsk->icsk_timeout;
2914	} else if (icsk_pending == ICSK_TIME_PROBE0) {
2915		timer_active	= 4;
2916		timer_expires	= icsk->icsk_timeout;
2917	} else if (timer_pending(&sk->sk_timer)) {
2918		timer_active	= 2;
2919		timer_expires	= sk->sk_timer.expires;
2920	} else {
2921		timer_active	= 0;
2922		timer_expires = jiffies;
2923	}
2924
2925	state = inet_sk_state_load(sk);
2926	if (state == TCP_LISTEN)
2927		rx_queue = READ_ONCE(sk->sk_ack_backlog);
2928	else
2929		/* Because we don't lock the socket,
2930		 * we might find a transient negative value.
2931		 */
2932		rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2933				      READ_ONCE(tp->copied_seq), 0);
2934
2935	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2936			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2937		i, src, srcp, dest, destp, state,
2938		READ_ONCE(tp->write_seq) - tp->snd_una,
2939		rx_queue,
2940		timer_active,
2941		jiffies_delta_to_clock_t(timer_expires - jiffies),
2942		icsk->icsk_retransmits,
2943		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2944		icsk->icsk_probes_out,
2945		sock_i_ino(sk),
2946		refcount_read(&sk->sk_refcnt), sk,
2947		jiffies_to_clock_t(icsk->icsk_rto),
2948		jiffies_to_clock_t(icsk->icsk_ack.ato),
2949		(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2950		tcp_snd_cwnd(tp),
2951		state == TCP_LISTEN ?
2952		    fastopenq->max_qlen :
2953		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2954}
2955
2956static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2957			       struct seq_file *f, int i)
2958{
2959	long delta = tw->tw_timer.expires - jiffies;
2960	__be32 dest, src;
2961	__u16 destp, srcp;
 
2962
2963	dest  = tw->tw_daddr;
2964	src   = tw->tw_rcv_saddr;
2965	destp = ntohs(tw->tw_dport);
2966	srcp  = ntohs(tw->tw_sport);
2967
2968	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2969		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2970		i, src, srcp, dest, destp, READ_ONCE(tw->tw_substate), 0, 0,
2971		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2972		refcount_read(&tw->tw_refcnt), tw);
2973}
2974
2975#define TMPSZ 150
2976
2977static int tcp4_seq_show(struct seq_file *seq, void *v)
2978{
2979	struct tcp_iter_state *st;
2980	struct sock *sk = v;
2981
2982	seq_setwidth(seq, TMPSZ - 1);
2983	if (v == SEQ_START_TOKEN) {
2984		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2985			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2986			   "inode");
2987		goto out;
2988	}
2989	st = seq->private;
2990
2991	if (sk->sk_state == TCP_TIME_WAIT)
2992		get_timewait4_sock(v, seq, st->num);
2993	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2994		get_openreq4(v, seq, st->num);
2995	else
2996		get_tcp4_sock(v, seq, st->num);
 
 
 
 
 
 
2997out:
2998	seq_pad(seq, '\n');
2999	return 0;
3000}
3001
3002#ifdef CONFIG_BPF_SYSCALL
3003struct bpf_tcp_iter_state {
3004	struct tcp_iter_state state;
3005	unsigned int cur_sk;
3006	unsigned int end_sk;
3007	unsigned int max_sk;
3008	struct sock **batch;
3009	bool st_bucket_done;
3010};
3011
3012struct bpf_iter__tcp {
3013	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3014	__bpf_md_ptr(struct sock_common *, sk_common);
3015	uid_t uid __aligned(8);
3016};
3017
3018static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3019			     struct sock_common *sk_common, uid_t uid)
3020{
3021	struct bpf_iter__tcp ctx;
3022
3023	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3024	ctx.meta = meta;
3025	ctx.sk_common = sk_common;
3026	ctx.uid = uid;
3027	return bpf_iter_run_prog(prog, &ctx);
3028}
3029
3030static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
3031{
3032	while (iter->cur_sk < iter->end_sk)
3033		sock_gen_put(iter->batch[iter->cur_sk++]);
3034}
3035
3036static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
3037				      unsigned int new_batch_sz)
3038{
3039	struct sock **new_batch;
3040
3041	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
3042			     GFP_USER | __GFP_NOWARN);
3043	if (!new_batch)
3044		return -ENOMEM;
3045
3046	bpf_iter_tcp_put_batch(iter);
3047	kvfree(iter->batch);
3048	iter->batch = new_batch;
3049	iter->max_sk = new_batch_sz;
3050
3051	return 0;
3052}
3053
3054static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
3055						 struct sock *start_sk)
3056{
3057	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3058	struct bpf_tcp_iter_state *iter = seq->private;
3059	struct tcp_iter_state *st = &iter->state;
3060	struct hlist_nulls_node *node;
3061	unsigned int expected = 1;
3062	struct sock *sk;
3063
3064	sock_hold(start_sk);
3065	iter->batch[iter->end_sk++] = start_sk;
3066
3067	sk = sk_nulls_next(start_sk);
3068	sk_nulls_for_each_from(sk, node) {
3069		if (seq_sk_match(seq, sk)) {
3070			if (iter->end_sk < iter->max_sk) {
3071				sock_hold(sk);
3072				iter->batch[iter->end_sk++] = sk;
3073			}
3074			expected++;
3075		}
3076	}
3077	spin_unlock(&hinfo->lhash2[st->bucket].lock);
3078
3079	return expected;
3080}
3081
3082static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
3083						   struct sock *start_sk)
3084{
3085	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3086	struct bpf_tcp_iter_state *iter = seq->private;
3087	struct tcp_iter_state *st = &iter->state;
3088	struct hlist_nulls_node *node;
3089	unsigned int expected = 1;
3090	struct sock *sk;
3091
3092	sock_hold(start_sk);
3093	iter->batch[iter->end_sk++] = start_sk;
3094
3095	sk = sk_nulls_next(start_sk);
3096	sk_nulls_for_each_from(sk, node) {
3097		if (seq_sk_match(seq, sk)) {
3098			if (iter->end_sk < iter->max_sk) {
3099				sock_hold(sk);
3100				iter->batch[iter->end_sk++] = sk;
3101			}
3102			expected++;
3103		}
3104	}
3105	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
3106
3107	return expected;
3108}
3109
3110static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
3111{
3112	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3113	struct bpf_tcp_iter_state *iter = seq->private;
3114	struct tcp_iter_state *st = &iter->state;
3115	unsigned int expected;
3116	bool resized = false;
3117	struct sock *sk;
3118
3119	/* The st->bucket is done.  Directly advance to the next
3120	 * bucket instead of having the tcp_seek_last_pos() to skip
3121	 * one by one in the current bucket and eventually find out
3122	 * it has to advance to the next bucket.
3123	 */
3124	if (iter->st_bucket_done) {
3125		st->offset = 0;
3126		st->bucket++;
3127		if (st->state == TCP_SEQ_STATE_LISTENING &&
3128		    st->bucket > hinfo->lhash2_mask) {
3129			st->state = TCP_SEQ_STATE_ESTABLISHED;
3130			st->bucket = 0;
3131		}
3132	}
3133
3134again:
3135	/* Get a new batch */
3136	iter->cur_sk = 0;
3137	iter->end_sk = 0;
3138	iter->st_bucket_done = false;
3139
3140	sk = tcp_seek_last_pos(seq);
3141	if (!sk)
3142		return NULL; /* Done */
3143
3144	if (st->state == TCP_SEQ_STATE_LISTENING)
3145		expected = bpf_iter_tcp_listening_batch(seq, sk);
3146	else
3147		expected = bpf_iter_tcp_established_batch(seq, sk);
3148
3149	if (iter->end_sk == expected) {
3150		iter->st_bucket_done = true;
3151		return sk;
3152	}
3153
3154	if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) {
3155		resized = true;
3156		goto again;
3157	}
3158
3159	return sk;
3160}
3161
3162static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
3163{
3164	/* bpf iter does not support lseek, so it always
3165	 * continue from where it was stop()-ped.
3166	 */
3167	if (*pos)
3168		return bpf_iter_tcp_batch(seq);
3169
3170	return SEQ_START_TOKEN;
3171}
3172
3173static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3174{
3175	struct bpf_tcp_iter_state *iter = seq->private;
3176	struct tcp_iter_state *st = &iter->state;
3177	struct sock *sk;
3178
3179	/* Whenever seq_next() is called, the iter->cur_sk is
3180	 * done with seq_show(), so advance to the next sk in
3181	 * the batch.
3182	 */
3183	if (iter->cur_sk < iter->end_sk) {
3184		/* Keeping st->num consistent in tcp_iter_state.
3185		 * bpf_iter_tcp does not use st->num.
3186		 * meta.seq_num is used instead.
3187		 */
3188		st->num++;
3189		/* Move st->offset to the next sk in the bucket such that
3190		 * the future start() will resume at st->offset in
3191		 * st->bucket.  See tcp_seek_last_pos().
3192		 */
3193		st->offset++;
3194		sock_gen_put(iter->batch[iter->cur_sk++]);
3195	}
3196
3197	if (iter->cur_sk < iter->end_sk)
3198		sk = iter->batch[iter->cur_sk];
3199	else
3200		sk = bpf_iter_tcp_batch(seq);
3201
3202	++*pos;
3203	/* Keeping st->last_pos consistent in tcp_iter_state.
3204	 * bpf iter does not do lseek, so st->last_pos always equals to *pos.
3205	 */
3206	st->last_pos = *pos;
3207	return sk;
3208}
3209
3210static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
3211{
3212	struct bpf_iter_meta meta;
3213	struct bpf_prog *prog;
3214	struct sock *sk = v;
3215	uid_t uid;
3216	int ret;
3217
3218	if (v == SEQ_START_TOKEN)
3219		return 0;
3220
3221	if (sk_fullsock(sk))
3222		lock_sock(sk);
3223
3224	if (unlikely(sk_unhashed(sk))) {
3225		ret = SEQ_SKIP;
3226		goto unlock;
3227	}
3228
3229	if (sk->sk_state == TCP_TIME_WAIT) {
3230		uid = 0;
3231	} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
3232		const struct request_sock *req = v;
3233
3234		uid = from_kuid_munged(seq_user_ns(seq),
3235				       sock_i_uid(req->rsk_listener));
3236	} else {
3237		uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3238	}
3239
3240	meta.seq = seq;
3241	prog = bpf_iter_get_info(&meta, false);
3242	ret = tcp_prog_seq_show(prog, &meta, v, uid);
3243
3244unlock:
3245	if (sk_fullsock(sk))
3246		release_sock(sk);
3247	return ret;
3248
3249}
3250
3251static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
3252{
3253	struct bpf_tcp_iter_state *iter = seq->private;
3254	struct bpf_iter_meta meta;
3255	struct bpf_prog *prog;
3256
3257	if (!v) {
3258		meta.seq = seq;
3259		prog = bpf_iter_get_info(&meta, true);
3260		if (prog)
3261			(void)tcp_prog_seq_show(prog, &meta, v, 0);
3262	}
3263
3264	if (iter->cur_sk < iter->end_sk) {
3265		bpf_iter_tcp_put_batch(iter);
3266		iter->st_bucket_done = false;
3267	}
3268}
3269
3270static const struct seq_operations bpf_iter_tcp_seq_ops = {
3271	.show		= bpf_iter_tcp_seq_show,
3272	.start		= bpf_iter_tcp_seq_start,
3273	.next		= bpf_iter_tcp_seq_next,
3274	.stop		= bpf_iter_tcp_seq_stop,
3275};
3276#endif
3277static unsigned short seq_file_family(const struct seq_file *seq)
3278{
3279	const struct tcp_seq_afinfo *afinfo;
3280
3281#ifdef CONFIG_BPF_SYSCALL
3282	/* Iterated from bpf_iter.  Let the bpf prog to filter instead. */
3283	if (seq->op == &bpf_iter_tcp_seq_ops)
3284		return AF_UNSPEC;
3285#endif
3286
3287	/* Iterated from proc fs */
3288	afinfo = pde_data(file_inode(seq->file));
3289	return afinfo->family;
3290}
3291
3292static const struct seq_operations tcp4_seq_ops = {
3293	.show		= tcp4_seq_show,
3294	.start		= tcp_seq_start,
3295	.next		= tcp_seq_next,
3296	.stop		= tcp_seq_stop,
3297};
3298
3299static struct tcp_seq_afinfo tcp4_seq_afinfo = {
 
3300	.family		= AF_INET,
 
 
 
 
3301};
3302
3303static int __net_init tcp4_proc_init_net(struct net *net)
3304{
3305	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
3306			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
3307		return -ENOMEM;
3308	return 0;
3309}
3310
3311static void __net_exit tcp4_proc_exit_net(struct net *net)
3312{
3313	remove_proc_entry("tcp", net->proc_net);
3314}
3315
3316static struct pernet_operations tcp4_net_ops = {
3317	.init = tcp4_proc_init_net,
3318	.exit = tcp4_proc_exit_net,
3319};
3320
3321int __init tcp4_proc_init(void)
3322{
3323	return register_pernet_subsys(&tcp4_net_ops);
3324}
3325
3326void tcp4_proc_exit(void)
3327{
3328	unregister_pernet_subsys(&tcp4_net_ops);
3329}
3330#endif /* CONFIG_PROC_FS */
3331
3332/* @wake is one when sk_stream_write_space() calls us.
3333 * This sends EPOLLOUT only if notsent_bytes is half the limit.
3334 * This mimics the strategy used in sock_def_write_space().
3335 */
3336bool tcp_stream_memory_free(const struct sock *sk, int wake)
3337{
3338	const struct tcp_sock *tp = tcp_sk(sk);
3339	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
3340			    READ_ONCE(tp->snd_nxt);
3341
3342	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
3343}
3344EXPORT_SYMBOL(tcp_stream_memory_free);
3345
3346struct proto tcp_prot = {
3347	.name			= "TCP",
3348	.owner			= THIS_MODULE,
3349	.close			= tcp_close,
3350	.pre_connect		= tcp_v4_pre_connect,
3351	.connect		= tcp_v4_connect,
3352	.disconnect		= tcp_disconnect,
3353	.accept			= inet_csk_accept,
3354	.ioctl			= tcp_ioctl,
3355	.init			= tcp_v4_init_sock,
3356	.destroy		= tcp_v4_destroy_sock,
3357	.shutdown		= tcp_shutdown,
3358	.setsockopt		= tcp_setsockopt,
3359	.getsockopt		= tcp_getsockopt,
3360	.bpf_bypass_getsockopt	= tcp_bpf_bypass_getsockopt,
3361	.keepalive		= tcp_set_keepalive,
3362	.recvmsg		= tcp_recvmsg,
3363	.sendmsg		= tcp_sendmsg,
3364	.splice_eof		= tcp_splice_eof,
3365	.backlog_rcv		= tcp_v4_do_rcv,
3366	.release_cb		= tcp_release_cb,
 
3367	.hash			= inet_hash,
3368	.unhash			= inet_unhash,
3369	.get_port		= inet_csk_get_port,
3370	.put_port		= inet_put_port,
3371#ifdef CONFIG_BPF_SYSCALL
3372	.psock_update_sk_prot	= tcp_bpf_update_proto,
3373#endif
3374	.enter_memory_pressure	= tcp_enter_memory_pressure,
3375	.leave_memory_pressure	= tcp_leave_memory_pressure,
3376	.stream_memory_free	= tcp_stream_memory_free,
3377	.sockets_allocated	= &tcp_sockets_allocated,
3378	.orphan_count		= &tcp_orphan_count,
3379
3380	.memory_allocated	= &tcp_memory_allocated,
3381	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3382
3383	.memory_pressure	= &tcp_memory_pressure,
3384	.sysctl_mem		= sysctl_tcp_mem,
3385	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3386	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3387	.max_header		= MAX_TCP_HEADER,
3388	.obj_size		= sizeof(struct tcp_sock),
3389	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
3390	.twsk_prot		= &tcp_timewait_sock_ops,
3391	.rsk_prot		= &tcp_request_sock_ops,
3392	.h.hashinfo		= NULL,
3393	.no_autobind		= true,
3394	.diag_destroy		= tcp_abort,
 
 
 
 
 
 
 
 
3395};
3396EXPORT_SYMBOL(tcp_prot);
3397
3398static void __net_exit tcp_sk_exit(struct net *net)
3399{
3400	if (net->ipv4.tcp_congestion_control)
3401		bpf_module_put(net->ipv4.tcp_congestion_control,
3402			       net->ipv4.tcp_congestion_control->owner);
3403}
3404
3405static void __net_init tcp_set_hashinfo(struct net *net)
3406{
3407	struct inet_hashinfo *hinfo;
3408	unsigned int ehash_entries;
3409	struct net *old_net;
3410
3411	if (net_eq(net, &init_net))
3412		goto fallback;
3413
3414	old_net = current->nsproxy->net_ns;
3415	ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries);
3416	if (!ehash_entries)
3417		goto fallback;
3418
3419	ehash_entries = roundup_pow_of_two(ehash_entries);
3420	hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries);
3421	if (!hinfo) {
3422		pr_warn("Failed to allocate TCP ehash (entries: %u) "
3423			"for a netns, fallback to the global one\n",
3424			ehash_entries);
3425fallback:
3426		hinfo = &tcp_hashinfo;
3427		ehash_entries = tcp_hashinfo.ehash_mask + 1;
3428	}
3429
3430	net->ipv4.tcp_death_row.hashinfo = hinfo;
3431	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2;
3432	net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128);
3433}
3434
3435static int __net_init tcp_sk_init(struct net *net)
3436{
3437	net->ipv4.sysctl_tcp_ecn = 2;
3438	net->ipv4.sysctl_tcp_ecn_fallback = 1;
3439
3440	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
3441	net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
3442	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
3443	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
3444	net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
3445
3446	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
3447	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
3448	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
3449
3450	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
3451	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
3452	net->ipv4.sysctl_tcp_syncookies = 1;
3453	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
3454	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
3455	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
3456	net->ipv4.sysctl_tcp_orphan_retries = 0;
3457	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
3458	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
3459	net->ipv4.sysctl_tcp_tw_reuse = 2;
3460	net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
3461
3462	refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1);
3463	tcp_set_hashinfo(net);
3464
3465	net->ipv4.sysctl_tcp_sack = 1;
3466	net->ipv4.sysctl_tcp_window_scaling = 1;
3467	net->ipv4.sysctl_tcp_timestamps = 1;
3468	net->ipv4.sysctl_tcp_early_retrans = 3;
3469	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
3470	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
3471	net->ipv4.sysctl_tcp_retrans_collapse = 1;
3472	net->ipv4.sysctl_tcp_max_reordering = 300;
3473	net->ipv4.sysctl_tcp_dsack = 1;
3474	net->ipv4.sysctl_tcp_app_win = 31;
3475	net->ipv4.sysctl_tcp_adv_win_scale = 1;
3476	net->ipv4.sysctl_tcp_frto = 2;
3477	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
3478	/* This limits the percentage of the congestion window which we
3479	 * will allow a single TSO frame to consume.  Building TSO frames
3480	 * which are too large can cause TCP streams to be bursty.
3481	 */
3482	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
3483	/* Default TSQ limit of 16 TSO segments */
3484	net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
3485
3486	/* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */
3487	net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX;
3488
3489	net->ipv4.sysctl_tcp_min_tso_segs = 2;
3490	net->ipv4.sysctl_tcp_tso_rtt_log = 9;  /* 2^9 = 512 usec */
3491	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
3492	net->ipv4.sysctl_tcp_autocorking = 1;
3493	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
3494	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
3495	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
3496	if (net != &init_net) {
3497		memcpy(net->ipv4.sysctl_tcp_rmem,
3498		       init_net.ipv4.sysctl_tcp_rmem,
3499		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
3500		memcpy(net->ipv4.sysctl_tcp_wmem,
3501		       init_net.ipv4.sysctl_tcp_wmem,
3502		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
3503	}
3504	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
3505	net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
3506	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
3507	net->ipv4.sysctl_tcp_backlog_ack_defer = 1;
3508	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
3509	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
3510	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
3511
3512	/* Set default values for PLB */
3513	net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */
3514	net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3;
3515	net->ipv4.sysctl_tcp_plb_rehash_rounds = 12;
3516	net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60;
3517	/* Default congestion threshold for PLB to mark a round is 50% */
3518	net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2;
3519
3520	/* Reno is always built in */
3521	if (!net_eq(net, &init_net) &&
3522	    bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
3523			       init_net.ipv4.tcp_congestion_control->owner))
3524		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
3525	else
3526		net->ipv4.tcp_congestion_control = &tcp_reno;
3527
3528	net->ipv4.sysctl_tcp_syn_linear_timeouts = 4;
3529	net->ipv4.sysctl_tcp_shrink_window = 0;
3530
3531	net->ipv4.sysctl_tcp_pingpong_thresh = 1;
3532	net->ipv4.sysctl_tcp_rto_min_us = jiffies_to_usecs(TCP_RTO_MIN);
3533
3534	return 0;
3535}
3536
3537static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3538{
3539	struct net *net;
3540
3541	/* make sure concurrent calls to tcp_sk_exit_batch from net_cleanup_work
3542	 * and failed setup_net error unwinding path are serialized.
3543	 *
3544	 * tcp_twsk_purge() handles twsk in any dead netns, not just those in
3545	 * net_exit_list, the thread that dismantles a particular twsk must
3546	 * do so without other thread progressing to refcount_dec_and_test() of
3547	 * tcp_death_row.tw_refcount.
3548	 */
3549	mutex_lock(&tcp_exit_batch_mutex);
3550
3551	tcp_twsk_purge(net_exit_list);
3552
3553	list_for_each_entry(net, net_exit_list, exit_list) {
3554		inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo);
3555		WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
3556		tcp_fastopen_ctx_destroy(net);
3557	}
3558
3559	mutex_unlock(&tcp_exit_batch_mutex);
3560}
3561
3562static struct pernet_operations __net_initdata tcp_sk_ops = {
3563       .init	   = tcp_sk_init,
3564       .exit	   = tcp_sk_exit,
3565       .exit_batch = tcp_sk_exit_batch,
3566};
3567
3568#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3569DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3570		     struct sock_common *sk_common, uid_t uid)
3571
3572#define INIT_BATCH_SZ 16
3573
3574static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3575{
3576	struct bpf_tcp_iter_state *iter = priv_data;
3577	int err;
3578
3579	err = bpf_iter_init_seq_net(priv_data, aux);
3580	if (err)
3581		return err;
3582
3583	err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ);
3584	if (err) {
3585		bpf_iter_fini_seq_net(priv_data);
3586		return err;
3587	}
3588
3589	return 0;
3590}
3591
3592static void bpf_iter_fini_tcp(void *priv_data)
3593{
3594	struct bpf_tcp_iter_state *iter = priv_data;
3595
3596	bpf_iter_fini_seq_net(priv_data);
3597	kvfree(iter->batch);
3598}
3599
3600static const struct bpf_iter_seq_info tcp_seq_info = {
3601	.seq_ops		= &bpf_iter_tcp_seq_ops,
3602	.init_seq_private	= bpf_iter_init_tcp,
3603	.fini_seq_private	= bpf_iter_fini_tcp,
3604	.seq_priv_size		= sizeof(struct bpf_tcp_iter_state),
3605};
3606
3607static const struct bpf_func_proto *
3608bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
3609			    const struct bpf_prog *prog)
3610{
3611	switch (func_id) {
3612	case BPF_FUNC_setsockopt:
3613		return &bpf_sk_setsockopt_proto;
3614	case BPF_FUNC_getsockopt:
3615		return &bpf_sk_getsockopt_proto;
3616	default:
3617		return NULL;
3618	}
3619}
3620
3621static struct bpf_iter_reg tcp_reg_info = {
3622	.target			= "tcp",
3623	.ctx_arg_info_size	= 1,
3624	.ctx_arg_info		= {
3625		{ offsetof(struct bpf_iter__tcp, sk_common),
3626		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3627	},
3628	.get_func_proto		= bpf_iter_tcp_get_func_proto,
3629	.seq_info		= &tcp_seq_info,
3630};
3631
3632static void __init bpf_iter_register(void)
3633{
3634	tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3635	if (bpf_iter_reg_target(&tcp_reg_info))
3636		pr_warn("Warning: could not register bpf iterator tcp\n");
3637}
3638
3639#endif
3640
3641void __init tcp_v4_init(void)
3642{
3643	int cpu, res;
3644
3645	for_each_possible_cpu(cpu) {
3646		struct sock *sk;
3647
3648		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
3649					   IPPROTO_TCP, &init_net);
3650		if (res)
3651			panic("Failed to create the TCP control socket.\n");
3652		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
3653
3654		/* Please enforce IP_DF and IPID==0 for RST and
3655		 * ACK sent in SYN-RECV and TIME-WAIT state.
3656		 */
3657		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
3658
3659		sk->sk_clockid = CLOCK_MONOTONIC;
3660
3661		per_cpu(ipv4_tcp_sk.sock, cpu) = sk;
3662	}
3663	if (register_pernet_subsys(&tcp_sk_ops))
3664		panic("Failed to create the TCP control socket.\n");
3665
3666#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3667	bpf_iter_register();
3668#endif
3669}