Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v3.15
   1/*
   2 *	IP multicast routing support for mrouted 3.6/3.8
   3 *
   4 *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
   5 *	  Linux Consultancy and Custom Driver Development
   6 *
   7 *	This program is free software; you can redistribute it and/or
   8 *	modify it under the terms of the GNU General Public License
   9 *	as published by the Free Software Foundation; either version
  10 *	2 of the License, or (at your option) any later version.
  11 *
  12 *	Fixes:
  13 *	Michael Chastain	:	Incorrect size of copying.
  14 *	Alan Cox		:	Added the cache manager code
  15 *	Alan Cox		:	Fixed the clone/copy bug and device race.
  16 *	Mike McLagan		:	Routing by source
  17 *	Malcolm Beattie		:	Buffer handling fixes.
  18 *	Alexey Kuznetsov	:	Double buffer free and other fixes.
  19 *	SVR Anand		:	Fixed several multicast bugs and problems.
  20 *	Alexey Kuznetsov	:	Status, optimisations and more.
  21 *	Brad Parker		:	Better behaviour on mrouted upcall
  22 *					overflow.
  23 *      Carlos Picoto           :       PIMv1 Support
  24 *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
  25 *					Relax this requirement to work with older peers.
  26 *
  27 */
  28
  29#include <asm/uaccess.h>
  30#include <linux/types.h>
  31#include <linux/capability.h>
  32#include <linux/errno.h>
  33#include <linux/timer.h>
  34#include <linux/mm.h>
  35#include <linux/kernel.h>
  36#include <linux/fcntl.h>
  37#include <linux/stat.h>
  38#include <linux/socket.h>
  39#include <linux/in.h>
  40#include <linux/inet.h>
  41#include <linux/netdevice.h>
  42#include <linux/inetdevice.h>
  43#include <linux/igmp.h>
  44#include <linux/proc_fs.h>
  45#include <linux/seq_file.h>
  46#include <linux/mroute.h>
  47#include <linux/init.h>
  48#include <linux/if_ether.h>
  49#include <linux/slab.h>
  50#include <net/net_namespace.h>
  51#include <net/ip.h>
  52#include <net/protocol.h>
  53#include <linux/skbuff.h>
  54#include <net/route.h>
  55#include <net/sock.h>
  56#include <net/icmp.h>
  57#include <net/udp.h>
  58#include <net/raw.h>
  59#include <linux/notifier.h>
  60#include <linux/if_arp.h>
  61#include <linux/netfilter_ipv4.h>
  62#include <linux/compat.h>
  63#include <linux/export.h>
  64#include <net/ip_tunnels.h>
  65#include <net/checksum.h>
  66#include <net/netlink.h>
  67#include <net/fib_rules.h>
  68#include <linux/netconf.h>
  69
  70#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  71#define CONFIG_IP_PIMSM	1
  72#endif
  73
  74struct mr_table {
  75	struct list_head	list;
  76#ifdef CONFIG_NET_NS
  77	struct net		*net;
  78#endif
  79	u32			id;
  80	struct sock __rcu	*mroute_sk;
  81	struct timer_list	ipmr_expire_timer;
  82	struct list_head	mfc_unres_queue;
  83	struct list_head	mfc_cache_array[MFC_LINES];
  84	struct vif_device	vif_table[MAXVIFS];
  85	int			maxvif;
  86	atomic_t		cache_resolve_queue_len;
  87	bool			mroute_do_assert;
  88	bool			mroute_do_pim;
  89#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  90	int			mroute_reg_vif_num;
  91#endif
  92};
  93
  94struct ipmr_rule {
  95	struct fib_rule		common;
  96};
  97
  98struct ipmr_result {
  99	struct mr_table		*mrt;
 100};
 101
 102/* Big lock, protecting vif table, mrt cache and mroute socket state.
 103 * Note that the changes are semaphored via rtnl_lock.
 104 */
 105
 106static DEFINE_RWLOCK(mrt_lock);
 107
 108/*
 109 *	Multicast router control variables
 110 */
 111
 112#define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
 113
 114/* Special spinlock for queue of unresolved entries */
 115static DEFINE_SPINLOCK(mfc_unres_lock);
 116
 117/* We return to original Alan's scheme. Hash table of resolved
 118 * entries is changed only in process context and protected
 119 * with weak lock mrt_lock. Queue of unresolved entries is protected
 120 * with strong spinlock mfc_unres_lock.
 121 *
 122 * In this case data path is free of exclusive locks at all.
 123 */
 124
 125static struct kmem_cache *mrt_cachep __read_mostly;
 126
 127static struct mr_table *ipmr_new_table(struct net *net, u32 id);
 128static void ipmr_free_table(struct mr_table *mrt);
 129
 130static void ip_mr_forward(struct net *net, struct mr_table *mrt,
 131			  struct sk_buff *skb, struct mfc_cache *cache,
 132			  int local);
 133static int ipmr_cache_report(struct mr_table *mrt,
 134			     struct sk_buff *pkt, vifi_t vifi, int assert);
 135static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
 136			      struct mfc_cache *c, struct rtmsg *rtm);
 137static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
 138				 int cmd);
 139static void mroute_clean_tables(struct mr_table *mrt);
 140static void ipmr_expire_process(unsigned long arg);
 141
 142#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 143#define ipmr_for_each_table(mrt, net) \
 144	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
 145
 146static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 147{
 148	struct mr_table *mrt;
 149
 150	ipmr_for_each_table(mrt, net) {
 151		if (mrt->id == id)
 152			return mrt;
 153	}
 154	return NULL;
 155}
 156
 157static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 158			   struct mr_table **mrt)
 159{
 160	int err;
 161	struct ipmr_result res;
 162	struct fib_lookup_arg arg = {
 163		.result = &res,
 164		.flags = FIB_LOOKUP_NOREF,
 165	};
 166
 167	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
 168			       flowi4_to_flowi(flp4), 0, &arg);
 169	if (err < 0)
 170		return err;
 171	*mrt = res.mrt;
 172	return 0;
 173}
 174
 175static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
 176			    int flags, struct fib_lookup_arg *arg)
 177{
 178	struct ipmr_result *res = arg->result;
 179	struct mr_table *mrt;
 180
 181	switch (rule->action) {
 182	case FR_ACT_TO_TBL:
 183		break;
 184	case FR_ACT_UNREACHABLE:
 185		return -ENETUNREACH;
 186	case FR_ACT_PROHIBIT:
 187		return -EACCES;
 188	case FR_ACT_BLACKHOLE:
 189	default:
 190		return -EINVAL;
 191	}
 192
 193	mrt = ipmr_get_table(rule->fr_net, rule->table);
 194	if (mrt == NULL)
 195		return -EAGAIN;
 196	res->mrt = mrt;
 197	return 0;
 198}
 199
 200static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
 201{
 202	return 1;
 203}
 204
 205static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
 206	FRA_GENERIC_POLICY,
 207};
 208
 209static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
 210			       struct fib_rule_hdr *frh, struct nlattr **tb)
 211{
 212	return 0;
 213}
 214
 215static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
 216			     struct nlattr **tb)
 217{
 218	return 1;
 219}
 220
 221static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
 222			  struct fib_rule_hdr *frh)
 223{
 224	frh->dst_len = 0;
 225	frh->src_len = 0;
 226	frh->tos     = 0;
 227	return 0;
 228}
 229
 230static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
 231	.family		= RTNL_FAMILY_IPMR,
 232	.rule_size	= sizeof(struct ipmr_rule),
 233	.addr_size	= sizeof(u32),
 234	.action		= ipmr_rule_action,
 235	.match		= ipmr_rule_match,
 236	.configure	= ipmr_rule_configure,
 237	.compare	= ipmr_rule_compare,
 238	.default_pref	= fib_default_rule_pref,
 239	.fill		= ipmr_rule_fill,
 240	.nlgroup	= RTNLGRP_IPV4_RULE,
 241	.policy		= ipmr_rule_policy,
 242	.owner		= THIS_MODULE,
 243};
 244
 245static int __net_init ipmr_rules_init(struct net *net)
 246{
 247	struct fib_rules_ops *ops;
 248	struct mr_table *mrt;
 249	int err;
 250
 251	ops = fib_rules_register(&ipmr_rules_ops_template, net);
 252	if (IS_ERR(ops))
 253		return PTR_ERR(ops);
 254
 255	INIT_LIST_HEAD(&net->ipv4.mr_tables);
 256
 257	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 258	if (mrt == NULL) {
 259		err = -ENOMEM;
 260		goto err1;
 261	}
 262
 263	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
 264	if (err < 0)
 265		goto err2;
 266
 267	net->ipv4.mr_rules_ops = ops;
 268	return 0;
 269
 270err2:
 271	kfree(mrt);
 272err1:
 273	fib_rules_unregister(ops);
 274	return err;
 275}
 276
 277static void __net_exit ipmr_rules_exit(struct net *net)
 278{
 279	struct mr_table *mrt, *next;
 280
 281	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
 282		list_del(&mrt->list);
 283		ipmr_free_table(mrt);
 284	}
 285	fib_rules_unregister(net->ipv4.mr_rules_ops);
 286}
 287#else
 288#define ipmr_for_each_table(mrt, net) \
 289	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
 290
 291static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 292{
 293	return net->ipv4.mrt;
 294}
 295
 296static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 297			   struct mr_table **mrt)
 298{
 299	*mrt = net->ipv4.mrt;
 300	return 0;
 301}
 302
 303static int __net_init ipmr_rules_init(struct net *net)
 304{
 305	net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 306	return net->ipv4.mrt ? 0 : -ENOMEM;
 307}
 308
 309static void __net_exit ipmr_rules_exit(struct net *net)
 310{
 311	ipmr_free_table(net->ipv4.mrt);
 312}
 313#endif
 314
 315static struct mr_table *ipmr_new_table(struct net *net, u32 id)
 316{
 317	struct mr_table *mrt;
 318	unsigned int i;
 319
 320	mrt = ipmr_get_table(net, id);
 321	if (mrt != NULL)
 322		return mrt;
 323
 324	mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
 325	if (mrt == NULL)
 326		return NULL;
 327	write_pnet(&mrt->net, net);
 328	mrt->id = id;
 329
 330	/* Forwarding cache */
 331	for (i = 0; i < MFC_LINES; i++)
 332		INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
 333
 334	INIT_LIST_HEAD(&mrt->mfc_unres_queue);
 335
 336	setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
 337		    (unsigned long)mrt);
 338
 339#ifdef CONFIG_IP_PIMSM
 340	mrt->mroute_reg_vif_num = -1;
 341#endif
 342#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 343	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
 344#endif
 345	return mrt;
 346}
 347
 348static void ipmr_free_table(struct mr_table *mrt)
 349{
 350	del_timer_sync(&mrt->ipmr_expire_timer);
 351	mroute_clean_tables(mrt);
 352	kfree(mrt);
 353}
 354
 355/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
 356
 357static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
 358{
 359	struct net *net = dev_net(dev);
 360
 361	dev_close(dev);
 362
 363	dev = __dev_get_by_name(net, "tunl0");
 364	if (dev) {
 365		const struct net_device_ops *ops = dev->netdev_ops;
 366		struct ifreq ifr;
 367		struct ip_tunnel_parm p;
 368
 369		memset(&p, 0, sizeof(p));
 370		p.iph.daddr = v->vifc_rmt_addr.s_addr;
 371		p.iph.saddr = v->vifc_lcl_addr.s_addr;
 372		p.iph.version = 4;
 373		p.iph.ihl = 5;
 374		p.iph.protocol = IPPROTO_IPIP;
 375		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 376		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 377
 378		if (ops->ndo_do_ioctl) {
 379			mm_segment_t oldfs = get_fs();
 380
 381			set_fs(KERNEL_DS);
 382			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
 383			set_fs(oldfs);
 384		}
 385	}
 386}
 387
 388static
 389struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
 390{
 391	struct net_device  *dev;
 392
 393	dev = __dev_get_by_name(net, "tunl0");
 394
 395	if (dev) {
 396		const struct net_device_ops *ops = dev->netdev_ops;
 397		int err;
 398		struct ifreq ifr;
 399		struct ip_tunnel_parm p;
 400		struct in_device  *in_dev;
 401
 402		memset(&p, 0, sizeof(p));
 403		p.iph.daddr = v->vifc_rmt_addr.s_addr;
 404		p.iph.saddr = v->vifc_lcl_addr.s_addr;
 405		p.iph.version = 4;
 406		p.iph.ihl = 5;
 407		p.iph.protocol = IPPROTO_IPIP;
 408		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 409		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 410
 411		if (ops->ndo_do_ioctl) {
 412			mm_segment_t oldfs = get_fs();
 413
 414			set_fs(KERNEL_DS);
 415			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
 416			set_fs(oldfs);
 417		} else {
 418			err = -EOPNOTSUPP;
 419		}
 420		dev = NULL;
 421
 422		if (err == 0 &&
 423		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
 424			dev->flags |= IFF_MULTICAST;
 425
 426			in_dev = __in_dev_get_rtnl(dev);
 427			if (in_dev == NULL)
 428				goto failure;
 429
 430			ipv4_devconf_setall(in_dev);
 431			neigh_parms_data_state_setall(in_dev->arp_parms);
 432			IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 433
 434			if (dev_open(dev))
 435				goto failure;
 436			dev_hold(dev);
 437		}
 438	}
 439	return dev;
 440
 441failure:
 442	/* allow the register to be completed before unregistering. */
 443	rtnl_unlock();
 444	rtnl_lock();
 445
 446	unregister_netdevice(dev);
 447	return NULL;
 448}
 449
 450#ifdef CONFIG_IP_PIMSM
 451
 452static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
 453{
 454	struct net *net = dev_net(dev);
 455	struct mr_table *mrt;
 456	struct flowi4 fl4 = {
 457		.flowi4_oif	= dev->ifindex,
 458		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
 459		.flowi4_mark	= skb->mark,
 460	};
 461	int err;
 462
 463	err = ipmr_fib_lookup(net, &fl4, &mrt);
 464	if (err < 0) {
 465		kfree_skb(skb);
 466		return err;
 467	}
 468
 469	read_lock(&mrt_lock);
 470	dev->stats.tx_bytes += skb->len;
 471	dev->stats.tx_packets++;
 472	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
 473	read_unlock(&mrt_lock);
 474	kfree_skb(skb);
 475	return NETDEV_TX_OK;
 476}
 477
 478static const struct net_device_ops reg_vif_netdev_ops = {
 479	.ndo_start_xmit	= reg_vif_xmit,
 480};
 481
 482static void reg_vif_setup(struct net_device *dev)
 483{
 484	dev->type		= ARPHRD_PIMREG;
 485	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
 486	dev->flags		= IFF_NOARP;
 487	dev->netdev_ops		= &reg_vif_netdev_ops,
 488	dev->destructor		= free_netdev;
 489	dev->features		|= NETIF_F_NETNS_LOCAL;
 490}
 491
 492static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 493{
 494	struct net_device *dev;
 495	struct in_device *in_dev;
 496	char name[IFNAMSIZ];
 497
 498	if (mrt->id == RT_TABLE_DEFAULT)
 499		sprintf(name, "pimreg");
 500	else
 501		sprintf(name, "pimreg%u", mrt->id);
 502
 503	dev = alloc_netdev(0, name, reg_vif_setup);
 504
 505	if (dev == NULL)
 506		return NULL;
 507
 508	dev_net_set(dev, net);
 509
 510	if (register_netdevice(dev)) {
 511		free_netdev(dev);
 512		return NULL;
 513	}
 514	dev->iflink = 0;
 515
 516	rcu_read_lock();
 517	in_dev = __in_dev_get_rcu(dev);
 518	if (!in_dev) {
 519		rcu_read_unlock();
 520		goto failure;
 521	}
 522
 523	ipv4_devconf_setall(in_dev);
 524	neigh_parms_data_state_setall(in_dev->arp_parms);
 525	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 526	rcu_read_unlock();
 527
 528	if (dev_open(dev))
 529		goto failure;
 530
 531	dev_hold(dev);
 532
 533	return dev;
 534
 535failure:
 536	/* allow the register to be completed before unregistering. */
 537	rtnl_unlock();
 538	rtnl_lock();
 539
 540	unregister_netdevice(dev);
 541	return NULL;
 542}
 543#endif
 544
 545/**
 546 *	vif_delete - Delete a VIF entry
 547 *	@notify: Set to 1, if the caller is a notifier_call
 548 */
 549
 550static int vif_delete(struct mr_table *mrt, int vifi, int notify,
 551		      struct list_head *head)
 552{
 553	struct vif_device *v;
 554	struct net_device *dev;
 555	struct in_device *in_dev;
 556
 557	if (vifi < 0 || vifi >= mrt->maxvif)
 558		return -EADDRNOTAVAIL;
 559
 560	v = &mrt->vif_table[vifi];
 561
 562	write_lock_bh(&mrt_lock);
 563	dev = v->dev;
 564	v->dev = NULL;
 565
 566	if (!dev) {
 567		write_unlock_bh(&mrt_lock);
 568		return -EADDRNOTAVAIL;
 569	}
 570
 571#ifdef CONFIG_IP_PIMSM
 572	if (vifi == mrt->mroute_reg_vif_num)
 573		mrt->mroute_reg_vif_num = -1;
 574#endif
 575
 576	if (vifi + 1 == mrt->maxvif) {
 577		int tmp;
 578
 579		for (tmp = vifi - 1; tmp >= 0; tmp--) {
 580			if (VIF_EXISTS(mrt, tmp))
 581				break;
 582		}
 583		mrt->maxvif = tmp+1;
 584	}
 585
 586	write_unlock_bh(&mrt_lock);
 587
 588	dev_set_allmulti(dev, -1);
 589
 590	in_dev = __in_dev_get_rtnl(dev);
 591	if (in_dev) {
 592		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
 593		inet_netconf_notify_devconf(dev_net(dev),
 594					    NETCONFA_MC_FORWARDING,
 595					    dev->ifindex, &in_dev->cnf);
 596		ip_rt_multicast_event(in_dev);
 597	}
 598
 599	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
 600		unregister_netdevice_queue(dev, head);
 601
 602	dev_put(dev);
 603	return 0;
 604}
 605
 606static void ipmr_cache_free_rcu(struct rcu_head *head)
 607{
 608	struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
 609
 610	kmem_cache_free(mrt_cachep, c);
 611}
 612
 613static inline void ipmr_cache_free(struct mfc_cache *c)
 614{
 615	call_rcu(&c->rcu, ipmr_cache_free_rcu);
 616}
 617
 618/* Destroy an unresolved cache entry, killing queued skbs
 619 * and reporting error to netlink readers.
 620 */
 621
 622static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
 623{
 624	struct net *net = read_pnet(&mrt->net);
 625	struct sk_buff *skb;
 626	struct nlmsgerr *e;
 627
 628	atomic_dec(&mrt->cache_resolve_queue_len);
 629
 630	while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
 631		if (ip_hdr(skb)->version == 0) {
 632			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 633			nlh->nlmsg_type = NLMSG_ERROR;
 634			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
 635			skb_trim(skb, nlh->nlmsg_len);
 636			e = nlmsg_data(nlh);
 637			e->error = -ETIMEDOUT;
 638			memset(&e->msg, 0, sizeof(e->msg));
 639
 640			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
 641		} else {
 642			kfree_skb(skb);
 643		}
 644	}
 645
 646	ipmr_cache_free(c);
 647}
 648
 649
 650/* Timer process for the unresolved queue. */
 651
 652static void ipmr_expire_process(unsigned long arg)
 653{
 654	struct mr_table *mrt = (struct mr_table *)arg;
 655	unsigned long now;
 656	unsigned long expires;
 657	struct mfc_cache *c, *next;
 658
 659	if (!spin_trylock(&mfc_unres_lock)) {
 660		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
 661		return;
 662	}
 663
 664	if (list_empty(&mrt->mfc_unres_queue))
 665		goto out;
 666
 667	now = jiffies;
 668	expires = 10*HZ;
 669
 670	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
 671		if (time_after(c->mfc_un.unres.expires, now)) {
 672			unsigned long interval = c->mfc_un.unres.expires - now;
 673			if (interval < expires)
 674				expires = interval;
 675			continue;
 676		}
 677
 678		list_del(&c->list);
 679		mroute_netlink_event(mrt, c, RTM_DELROUTE);
 680		ipmr_destroy_unres(mrt, c);
 681	}
 682
 683	if (!list_empty(&mrt->mfc_unres_queue))
 684		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
 685
 686out:
 687	spin_unlock(&mfc_unres_lock);
 688}
 689
 690/* Fill oifs list. It is called under write locked mrt_lock. */
 691
 692static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
 693				   unsigned char *ttls)
 694{
 695	int vifi;
 696
 697	cache->mfc_un.res.minvif = MAXVIFS;
 698	cache->mfc_un.res.maxvif = 0;
 699	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
 700
 701	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
 702		if (VIF_EXISTS(mrt, vifi) &&
 703		    ttls[vifi] && ttls[vifi] < 255) {
 704			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
 705			if (cache->mfc_un.res.minvif > vifi)
 706				cache->mfc_un.res.minvif = vifi;
 707			if (cache->mfc_un.res.maxvif <= vifi)
 708				cache->mfc_un.res.maxvif = vifi + 1;
 709		}
 710	}
 711}
 712
 713static int vif_add(struct net *net, struct mr_table *mrt,
 714		   struct vifctl *vifc, int mrtsock)
 715{
 716	int vifi = vifc->vifc_vifi;
 717	struct vif_device *v = &mrt->vif_table[vifi];
 718	struct net_device *dev;
 719	struct in_device *in_dev;
 720	int err;
 721
 722	/* Is vif busy ? */
 723	if (VIF_EXISTS(mrt, vifi))
 724		return -EADDRINUSE;
 725
 726	switch (vifc->vifc_flags) {
 727#ifdef CONFIG_IP_PIMSM
 728	case VIFF_REGISTER:
 729		/*
 730		 * Special Purpose VIF in PIM
 731		 * All the packets will be sent to the daemon
 732		 */
 733		if (mrt->mroute_reg_vif_num >= 0)
 734			return -EADDRINUSE;
 735		dev = ipmr_reg_vif(net, mrt);
 736		if (!dev)
 737			return -ENOBUFS;
 738		err = dev_set_allmulti(dev, 1);
 739		if (err) {
 740			unregister_netdevice(dev);
 741			dev_put(dev);
 742			return err;
 743		}
 744		break;
 745#endif
 746	case VIFF_TUNNEL:
 747		dev = ipmr_new_tunnel(net, vifc);
 748		if (!dev)
 749			return -ENOBUFS;
 750		err = dev_set_allmulti(dev, 1);
 751		if (err) {
 752			ipmr_del_tunnel(dev, vifc);
 753			dev_put(dev);
 754			return err;
 755		}
 756		break;
 757
 758	case VIFF_USE_IFINDEX:
 759	case 0:
 760		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
 761			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
 762			if (dev && __in_dev_get_rtnl(dev) == NULL) {
 763				dev_put(dev);
 764				return -EADDRNOTAVAIL;
 765			}
 766		} else {
 767			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
 768		}
 769		if (!dev)
 770			return -EADDRNOTAVAIL;
 771		err = dev_set_allmulti(dev, 1);
 772		if (err) {
 773			dev_put(dev);
 774			return err;
 775		}
 776		break;
 777	default:
 778		return -EINVAL;
 779	}
 780
 781	in_dev = __in_dev_get_rtnl(dev);
 782	if (!in_dev) {
 783		dev_put(dev);
 784		return -EADDRNOTAVAIL;
 785	}
 786	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
 787	inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
 788				    &in_dev->cnf);
 789	ip_rt_multicast_event(in_dev);
 790
 791	/* Fill in the VIF structures */
 792
 793	v->rate_limit = vifc->vifc_rate_limit;
 794	v->local = vifc->vifc_lcl_addr.s_addr;
 795	v->remote = vifc->vifc_rmt_addr.s_addr;
 796	v->flags = vifc->vifc_flags;
 797	if (!mrtsock)
 798		v->flags |= VIFF_STATIC;
 799	v->threshold = vifc->vifc_threshold;
 800	v->bytes_in = 0;
 801	v->bytes_out = 0;
 802	v->pkt_in = 0;
 803	v->pkt_out = 0;
 804	v->link = dev->ifindex;
 805	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
 806		v->link = dev->iflink;
 807
 808	/* And finish update writing critical data */
 809	write_lock_bh(&mrt_lock);
 810	v->dev = dev;
 811#ifdef CONFIG_IP_PIMSM
 812	if (v->flags & VIFF_REGISTER)
 813		mrt->mroute_reg_vif_num = vifi;
 814#endif
 815	if (vifi+1 > mrt->maxvif)
 816		mrt->maxvif = vifi+1;
 817	write_unlock_bh(&mrt_lock);
 818	return 0;
 819}
 820
 821/* called with rcu_read_lock() */
 822static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
 823					 __be32 origin,
 824					 __be32 mcastgrp)
 825{
 826	int line = MFC_HASH(mcastgrp, origin);
 827	struct mfc_cache *c;
 828
 829	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
 830		if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
 831			return c;
 832	}
 833	return NULL;
 834}
 835
 836/* Look for a (*,*,oif) entry */
 837static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
 838						    int vifi)
 839{
 840	int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
 841	struct mfc_cache *c;
 842
 843	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
 844		if (c->mfc_origin == htonl(INADDR_ANY) &&
 845		    c->mfc_mcastgrp == htonl(INADDR_ANY) &&
 846		    c->mfc_un.res.ttls[vifi] < 255)
 847			return c;
 848
 849	return NULL;
 850}
 851
 852/* Look for a (*,G) entry */
 853static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
 854					     __be32 mcastgrp, int vifi)
 855{
 856	int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
 857	struct mfc_cache *c, *proxy;
 858
 859	if (mcastgrp == htonl(INADDR_ANY))
 860		goto skip;
 861
 862	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
 863		if (c->mfc_origin == htonl(INADDR_ANY) &&
 864		    c->mfc_mcastgrp == mcastgrp) {
 865			if (c->mfc_un.res.ttls[vifi] < 255)
 866				return c;
 867
 868			/* It's ok if the vifi is part of the static tree */
 869			proxy = ipmr_cache_find_any_parent(mrt,
 870							   c->mfc_parent);
 871			if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
 872				return c;
 873		}
 874
 875skip:
 876	return ipmr_cache_find_any_parent(mrt, vifi);
 877}
 878
 879/*
 880 *	Allocate a multicast cache entry
 881 */
 882static struct mfc_cache *ipmr_cache_alloc(void)
 883{
 884	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
 885
 886	if (c)
 887		c->mfc_un.res.minvif = MAXVIFS;
 888	return c;
 889}
 890
 891static struct mfc_cache *ipmr_cache_alloc_unres(void)
 892{
 893	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
 894
 895	if (c) {
 896		skb_queue_head_init(&c->mfc_un.unres.unresolved);
 897		c->mfc_un.unres.expires = jiffies + 10*HZ;
 898	}
 899	return c;
 900}
 901
 902/*
 903 *	A cache entry has gone into a resolved state from queued
 904 */
 905
 906static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
 907			       struct mfc_cache *uc, struct mfc_cache *c)
 908{
 909	struct sk_buff *skb;
 910	struct nlmsgerr *e;
 911
 912	/* Play the pending entries through our router */
 913
 914	while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
 915		if (ip_hdr(skb)->version == 0) {
 916			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 917
 918			if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
 919				nlh->nlmsg_len = skb_tail_pointer(skb) -
 920						 (u8 *)nlh;
 921			} else {
 922				nlh->nlmsg_type = NLMSG_ERROR;
 923				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
 924				skb_trim(skb, nlh->nlmsg_len);
 925				e = nlmsg_data(nlh);
 926				e->error = -EMSGSIZE;
 927				memset(&e->msg, 0, sizeof(e->msg));
 928			}
 929
 930			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
 931		} else {
 932			ip_mr_forward(net, mrt, skb, c, 0);
 933		}
 934	}
 935}
 936
 937/*
 938 *	Bounce a cache query up to mrouted. We could use netlink for this but mrouted
 939 *	expects the following bizarre scheme.
 940 *
 941 *	Called under mrt_lock.
 942 */
 943
 944static int ipmr_cache_report(struct mr_table *mrt,
 945			     struct sk_buff *pkt, vifi_t vifi, int assert)
 946{
 947	struct sk_buff *skb;
 948	const int ihl = ip_hdrlen(pkt);
 949	struct igmphdr *igmp;
 950	struct igmpmsg *msg;
 951	struct sock *mroute_sk;
 952	int ret;
 953
 954#ifdef CONFIG_IP_PIMSM
 955	if (assert == IGMPMSG_WHOLEPKT)
 956		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
 957	else
 958#endif
 959		skb = alloc_skb(128, GFP_ATOMIC);
 960
 961	if (!skb)
 962		return -ENOBUFS;
 963
 964#ifdef CONFIG_IP_PIMSM
 965	if (assert == IGMPMSG_WHOLEPKT) {
 966		/* Ugly, but we have no choice with this interface.
 967		 * Duplicate old header, fix ihl, length etc.
 968		 * And all this only to mangle msg->im_msgtype and
 969		 * to set msg->im_mbz to "mbz" :-)
 970		 */
 971		skb_push(skb, sizeof(struct iphdr));
 972		skb_reset_network_header(skb);
 973		skb_reset_transport_header(skb);
 974		msg = (struct igmpmsg *)skb_network_header(skb);
 975		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
 976		msg->im_msgtype = IGMPMSG_WHOLEPKT;
 977		msg->im_mbz = 0;
 978		msg->im_vif = mrt->mroute_reg_vif_num;
 979		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
 980		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
 981					     sizeof(struct iphdr));
 982	} else
 983#endif
 984	{
 985
 986	/* Copy the IP header */
 987
 988	skb_set_network_header(skb, skb->len);
 989	skb_put(skb, ihl);
 990	skb_copy_to_linear_data(skb, pkt->data, ihl);
 991	ip_hdr(skb)->protocol = 0;	/* Flag to the kernel this is a route add */
 992	msg = (struct igmpmsg *)skb_network_header(skb);
 993	msg->im_vif = vifi;
 994	skb_dst_set(skb, dst_clone(skb_dst(pkt)));
 995
 996	/* Add our header */
 997
 998	igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
 999	igmp->type	=
1000	msg->im_msgtype = assert;
1001	igmp->code	= 0;
1002	ip_hdr(skb)->tot_len = htons(skb->len);		/* Fix the length */
1003	skb->transport_header = skb->network_header;
1004	}
1005
1006	rcu_read_lock();
1007	mroute_sk = rcu_dereference(mrt->mroute_sk);
1008	if (mroute_sk == NULL) {
1009		rcu_read_unlock();
1010		kfree_skb(skb);
1011		return -EINVAL;
1012	}
1013
1014	/* Deliver to mrouted */
1015
1016	ret = sock_queue_rcv_skb(mroute_sk, skb);
1017	rcu_read_unlock();
1018	if (ret < 0) {
1019		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1020		kfree_skb(skb);
1021	}
1022
1023	return ret;
1024}
1025
1026/*
1027 *	Queue a packet for resolution. It gets locked cache entry!
1028 */
1029
1030static int
1031ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
1032{
1033	bool found = false;
1034	int err;
1035	struct mfc_cache *c;
1036	const struct iphdr *iph = ip_hdr(skb);
1037
1038	spin_lock_bh(&mfc_unres_lock);
1039	list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1040		if (c->mfc_mcastgrp == iph->daddr &&
1041		    c->mfc_origin == iph->saddr) {
1042			found = true;
1043			break;
1044		}
1045	}
1046
1047	if (!found) {
1048		/* Create a new entry if allowable */
1049
1050		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1051		    (c = ipmr_cache_alloc_unres()) == NULL) {
1052			spin_unlock_bh(&mfc_unres_lock);
1053
1054			kfree_skb(skb);
1055			return -ENOBUFS;
1056		}
1057
1058		/* Fill in the new cache entry */
1059
1060		c->mfc_parent	= -1;
1061		c->mfc_origin	= iph->saddr;
1062		c->mfc_mcastgrp	= iph->daddr;
1063
1064		/* Reflect first query at mrouted. */
1065
1066		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1067		if (err < 0) {
1068			/* If the report failed throw the cache entry
1069			   out - Brad Parker
1070			 */
1071			spin_unlock_bh(&mfc_unres_lock);
1072
1073			ipmr_cache_free(c);
1074			kfree_skb(skb);
1075			return err;
1076		}
1077
1078		atomic_inc(&mrt->cache_resolve_queue_len);
1079		list_add(&c->list, &mrt->mfc_unres_queue);
1080		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1081
1082		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1083			mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1084	}
1085
1086	/* See if we can append the packet */
1087
1088	if (c->mfc_un.unres.unresolved.qlen > 3) {
1089		kfree_skb(skb);
1090		err = -ENOBUFS;
1091	} else {
1092		skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1093		err = 0;
1094	}
1095
1096	spin_unlock_bh(&mfc_unres_lock);
1097	return err;
1098}
1099
1100/*
1101 *	MFC cache manipulation by user space mroute daemon
1102 */
1103
1104static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1105{
1106	int line;
1107	struct mfc_cache *c, *next;
1108
1109	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1110
1111	list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1112		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1113		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1114		    (parent == -1 || parent == c->mfc_parent)) {
1115			list_del_rcu(&c->list);
1116			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1117			ipmr_cache_free(c);
1118			return 0;
1119		}
1120	}
1121	return -ENOENT;
1122}
1123
1124static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1125			struct mfcctl *mfc, int mrtsock, int parent)
1126{
1127	bool found = false;
1128	int line;
1129	struct mfc_cache *uc, *c;
1130
1131	if (mfc->mfcc_parent >= MAXVIFS)
1132		return -ENFILE;
1133
1134	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1135
1136	list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1137		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1138		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1139		    (parent == -1 || parent == c->mfc_parent)) {
1140			found = true;
1141			break;
1142		}
1143	}
1144
1145	if (found) {
1146		write_lock_bh(&mrt_lock);
1147		c->mfc_parent = mfc->mfcc_parent;
1148		ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1149		if (!mrtsock)
1150			c->mfc_flags |= MFC_STATIC;
1151		write_unlock_bh(&mrt_lock);
1152		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1153		return 0;
1154	}
1155
1156	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1157	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1158		return -EINVAL;
1159
1160	c = ipmr_cache_alloc();
1161	if (c == NULL)
1162		return -ENOMEM;
1163
1164	c->mfc_origin = mfc->mfcc_origin.s_addr;
1165	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1166	c->mfc_parent = mfc->mfcc_parent;
1167	ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1168	if (!mrtsock)
1169		c->mfc_flags |= MFC_STATIC;
1170
1171	list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1172
1173	/*
1174	 *	Check to see if we resolved a queued list. If so we
1175	 *	need to send on the frames and tidy up.
1176	 */
1177	found = false;
1178	spin_lock_bh(&mfc_unres_lock);
1179	list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1180		if (uc->mfc_origin == c->mfc_origin &&
1181		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1182			list_del(&uc->list);
1183			atomic_dec(&mrt->cache_resolve_queue_len);
1184			found = true;
1185			break;
1186		}
1187	}
1188	if (list_empty(&mrt->mfc_unres_queue))
1189		del_timer(&mrt->ipmr_expire_timer);
1190	spin_unlock_bh(&mfc_unres_lock);
1191
1192	if (found) {
1193		ipmr_cache_resolve(net, mrt, uc, c);
1194		ipmr_cache_free(uc);
1195	}
1196	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1197	return 0;
1198}
1199
1200/*
1201 *	Close the multicast socket, and clear the vif tables etc
1202 */
1203
1204static void mroute_clean_tables(struct mr_table *mrt)
1205{
1206	int i;
1207	LIST_HEAD(list);
1208	struct mfc_cache *c, *next;
1209
1210	/* Shut down all active vif entries */
1211
1212	for (i = 0; i < mrt->maxvif; i++) {
1213		if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1214			vif_delete(mrt, i, 0, &list);
1215	}
1216	unregister_netdevice_many(&list);
1217
1218	/* Wipe the cache */
1219
1220	for (i = 0; i < MFC_LINES; i++) {
1221		list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1222			if (c->mfc_flags & MFC_STATIC)
1223				continue;
1224			list_del_rcu(&c->list);
1225			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1226			ipmr_cache_free(c);
1227		}
1228	}
1229
1230	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1231		spin_lock_bh(&mfc_unres_lock);
1232		list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1233			list_del(&c->list);
1234			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1235			ipmr_destroy_unres(mrt, c);
1236		}
1237		spin_unlock_bh(&mfc_unres_lock);
1238	}
1239}
1240
1241/* called from ip_ra_control(), before an RCU grace period,
1242 * we dont need to call synchronize_rcu() here
1243 */
1244static void mrtsock_destruct(struct sock *sk)
1245{
1246	struct net *net = sock_net(sk);
1247	struct mr_table *mrt;
1248
1249	rtnl_lock();
1250	ipmr_for_each_table(mrt, net) {
1251		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1252			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1253			inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1254						    NETCONFA_IFINDEX_ALL,
1255						    net->ipv4.devconf_all);
1256			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1257			mroute_clean_tables(mrt);
1258		}
1259	}
1260	rtnl_unlock();
1261}
1262
1263/*
1264 *	Socket options and virtual interface manipulation. The whole
1265 *	virtual interface system is a complete heap, but unfortunately
1266 *	that's how BSD mrouted happens to think. Maybe one day with a proper
1267 *	MOSPF/PIM router set up we can clean this up.
1268 */
1269
1270int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1271{
1272	int ret, parent = 0;
1273	struct vifctl vif;
1274	struct mfcctl mfc;
1275	struct net *net = sock_net(sk);
1276	struct mr_table *mrt;
1277
1278	if (sk->sk_type != SOCK_RAW ||
1279	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1280		return -EOPNOTSUPP;
1281
1282	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1283	if (mrt == NULL)
1284		return -ENOENT;
1285
1286	if (optname != MRT_INIT) {
1287		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1288		    !ns_capable(net->user_ns, CAP_NET_ADMIN))
1289			return -EACCES;
1290	}
1291
1292	switch (optname) {
1293	case MRT_INIT:
 
 
 
1294		if (optlen != sizeof(int))
1295			return -EINVAL;
1296
1297		rtnl_lock();
1298		if (rtnl_dereference(mrt->mroute_sk)) {
1299			rtnl_unlock();
1300			return -EADDRINUSE;
1301		}
1302
1303		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1304		if (ret == 0) {
1305			rcu_assign_pointer(mrt->mroute_sk, sk);
1306			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1307			inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1308						    NETCONFA_IFINDEX_ALL,
1309						    net->ipv4.devconf_all);
1310		}
1311		rtnl_unlock();
1312		return ret;
1313	case MRT_DONE:
1314		if (sk != rcu_access_pointer(mrt->mroute_sk))
1315			return -EACCES;
1316		return ip_ra_control(sk, 0, NULL);
1317	case MRT_ADD_VIF:
1318	case MRT_DEL_VIF:
1319		if (optlen != sizeof(vif))
1320			return -EINVAL;
1321		if (copy_from_user(&vif, optval, sizeof(vif)))
1322			return -EFAULT;
1323		if (vif.vifc_vifi >= MAXVIFS)
1324			return -ENFILE;
1325		rtnl_lock();
1326		if (optname == MRT_ADD_VIF) {
1327			ret = vif_add(net, mrt, &vif,
1328				      sk == rtnl_dereference(mrt->mroute_sk));
1329		} else {
1330			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1331		}
1332		rtnl_unlock();
1333		return ret;
1334
1335		/*
1336		 *	Manipulate the forwarding caches. These live
1337		 *	in a sort of kernel/user symbiosis.
1338		 */
1339	case MRT_ADD_MFC:
1340	case MRT_DEL_MFC:
1341		parent = -1;
1342	case MRT_ADD_MFC_PROXY:
1343	case MRT_DEL_MFC_PROXY:
1344		if (optlen != sizeof(mfc))
1345			return -EINVAL;
1346		if (copy_from_user(&mfc, optval, sizeof(mfc)))
1347			return -EFAULT;
1348		if (parent == 0)
1349			parent = mfc.mfcc_parent;
1350		rtnl_lock();
1351		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1352			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1353		else
1354			ret = ipmr_mfc_add(net, mrt, &mfc,
1355					   sk == rtnl_dereference(mrt->mroute_sk),
1356					   parent);
1357		rtnl_unlock();
1358		return ret;
1359		/*
1360		 *	Control PIM assert.
1361		 */
1362	case MRT_ASSERT:
1363	{
1364		int v;
1365		if (optlen != sizeof(v))
1366			return -EINVAL;
1367		if (get_user(v, (int __user *)optval))
1368			return -EFAULT;
1369		mrt->mroute_do_assert = v;
1370		return 0;
1371	}
1372#ifdef CONFIG_IP_PIMSM
1373	case MRT_PIM:
1374	{
1375		int v;
1376
1377		if (optlen != sizeof(v))
1378			return -EINVAL;
1379		if (get_user(v, (int __user *)optval))
1380			return -EFAULT;
1381		v = !!v;
1382
1383		rtnl_lock();
1384		ret = 0;
1385		if (v != mrt->mroute_do_pim) {
1386			mrt->mroute_do_pim = v;
1387			mrt->mroute_do_assert = v;
1388		}
1389		rtnl_unlock();
1390		return ret;
1391	}
1392#endif
1393#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1394	case MRT_TABLE:
1395	{
1396		u32 v;
1397
1398		if (optlen != sizeof(u32))
1399			return -EINVAL;
1400		if (get_user(v, (u32 __user *)optval))
1401			return -EFAULT;
1402
1403		/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
1404		if (v != RT_TABLE_DEFAULT && v >= 1000000000)
1405			return -EINVAL;
1406
1407		rtnl_lock();
1408		ret = 0;
1409		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1410			ret = -EBUSY;
1411		} else {
1412			if (!ipmr_new_table(net, v))
1413				ret = -ENOMEM;
1414			else
1415				raw_sk(sk)->ipmr_table = v;
1416		}
1417		rtnl_unlock();
1418		return ret;
1419	}
1420#endif
1421	/*
1422	 *	Spurious command, or MRT_VERSION which you cannot
1423	 *	set.
1424	 */
1425	default:
1426		return -ENOPROTOOPT;
1427	}
1428}
1429
1430/*
1431 *	Getsock opt support for the multicast routing system.
1432 */
1433
1434int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1435{
1436	int olr;
1437	int val;
1438	struct net *net = sock_net(sk);
1439	struct mr_table *mrt;
1440
1441	if (sk->sk_type != SOCK_RAW ||
1442	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1443		return -EOPNOTSUPP;
1444
1445	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1446	if (mrt == NULL)
1447		return -ENOENT;
1448
1449	if (optname != MRT_VERSION &&
1450#ifdef CONFIG_IP_PIMSM
1451	   optname != MRT_PIM &&
1452#endif
1453	   optname != MRT_ASSERT)
1454		return -ENOPROTOOPT;
1455
1456	if (get_user(olr, optlen))
1457		return -EFAULT;
1458
1459	olr = min_t(unsigned int, olr, sizeof(int));
1460	if (olr < 0)
1461		return -EINVAL;
1462
1463	if (put_user(olr, optlen))
1464		return -EFAULT;
1465	if (optname == MRT_VERSION)
1466		val = 0x0305;
1467#ifdef CONFIG_IP_PIMSM
1468	else if (optname == MRT_PIM)
1469		val = mrt->mroute_do_pim;
1470#endif
1471	else
1472		val = mrt->mroute_do_assert;
1473	if (copy_to_user(optval, &val, olr))
1474		return -EFAULT;
1475	return 0;
1476}
1477
1478/*
1479 *	The IP multicast ioctl support routines.
1480 */
1481
1482int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1483{
1484	struct sioc_sg_req sr;
1485	struct sioc_vif_req vr;
1486	struct vif_device *vif;
1487	struct mfc_cache *c;
1488	struct net *net = sock_net(sk);
1489	struct mr_table *mrt;
1490
1491	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1492	if (mrt == NULL)
1493		return -ENOENT;
1494
1495	switch (cmd) {
1496	case SIOCGETVIFCNT:
1497		if (copy_from_user(&vr, arg, sizeof(vr)))
1498			return -EFAULT;
1499		if (vr.vifi >= mrt->maxvif)
1500			return -EINVAL;
1501		read_lock(&mrt_lock);
1502		vif = &mrt->vif_table[vr.vifi];
1503		if (VIF_EXISTS(mrt, vr.vifi)) {
1504			vr.icount = vif->pkt_in;
1505			vr.ocount = vif->pkt_out;
1506			vr.ibytes = vif->bytes_in;
1507			vr.obytes = vif->bytes_out;
1508			read_unlock(&mrt_lock);
1509
1510			if (copy_to_user(arg, &vr, sizeof(vr)))
1511				return -EFAULT;
1512			return 0;
1513		}
1514		read_unlock(&mrt_lock);
1515		return -EADDRNOTAVAIL;
1516	case SIOCGETSGCNT:
1517		if (copy_from_user(&sr, arg, sizeof(sr)))
1518			return -EFAULT;
1519
1520		rcu_read_lock();
1521		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1522		if (c) {
1523			sr.pktcnt = c->mfc_un.res.pkt;
1524			sr.bytecnt = c->mfc_un.res.bytes;
1525			sr.wrong_if = c->mfc_un.res.wrong_if;
1526			rcu_read_unlock();
1527
1528			if (copy_to_user(arg, &sr, sizeof(sr)))
1529				return -EFAULT;
1530			return 0;
1531		}
1532		rcu_read_unlock();
1533		return -EADDRNOTAVAIL;
1534	default:
1535		return -ENOIOCTLCMD;
1536	}
1537}
1538
1539#ifdef CONFIG_COMPAT
1540struct compat_sioc_sg_req {
1541	struct in_addr src;
1542	struct in_addr grp;
1543	compat_ulong_t pktcnt;
1544	compat_ulong_t bytecnt;
1545	compat_ulong_t wrong_if;
1546};
1547
1548struct compat_sioc_vif_req {
1549	vifi_t	vifi;		/* Which iface */
1550	compat_ulong_t icount;
1551	compat_ulong_t ocount;
1552	compat_ulong_t ibytes;
1553	compat_ulong_t obytes;
1554};
1555
1556int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1557{
1558	struct compat_sioc_sg_req sr;
1559	struct compat_sioc_vif_req vr;
1560	struct vif_device *vif;
1561	struct mfc_cache *c;
1562	struct net *net = sock_net(sk);
1563	struct mr_table *mrt;
1564
1565	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1566	if (mrt == NULL)
1567		return -ENOENT;
1568
1569	switch (cmd) {
1570	case SIOCGETVIFCNT:
1571		if (copy_from_user(&vr, arg, sizeof(vr)))
1572			return -EFAULT;
1573		if (vr.vifi >= mrt->maxvif)
1574			return -EINVAL;
1575		read_lock(&mrt_lock);
1576		vif = &mrt->vif_table[vr.vifi];
1577		if (VIF_EXISTS(mrt, vr.vifi)) {
1578			vr.icount = vif->pkt_in;
1579			vr.ocount = vif->pkt_out;
1580			vr.ibytes = vif->bytes_in;
1581			vr.obytes = vif->bytes_out;
1582			read_unlock(&mrt_lock);
1583
1584			if (copy_to_user(arg, &vr, sizeof(vr)))
1585				return -EFAULT;
1586			return 0;
1587		}
1588		read_unlock(&mrt_lock);
1589		return -EADDRNOTAVAIL;
1590	case SIOCGETSGCNT:
1591		if (copy_from_user(&sr, arg, sizeof(sr)))
1592			return -EFAULT;
1593
1594		rcu_read_lock();
1595		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1596		if (c) {
1597			sr.pktcnt = c->mfc_un.res.pkt;
1598			sr.bytecnt = c->mfc_un.res.bytes;
1599			sr.wrong_if = c->mfc_un.res.wrong_if;
1600			rcu_read_unlock();
1601
1602			if (copy_to_user(arg, &sr, sizeof(sr)))
1603				return -EFAULT;
1604			return 0;
1605		}
1606		rcu_read_unlock();
1607		return -EADDRNOTAVAIL;
1608	default:
1609		return -ENOIOCTLCMD;
1610	}
1611}
1612#endif
1613
1614
1615static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1616{
1617	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1618	struct net *net = dev_net(dev);
1619	struct mr_table *mrt;
1620	struct vif_device *v;
1621	int ct;
1622
1623	if (event != NETDEV_UNREGISTER)
1624		return NOTIFY_DONE;
1625
1626	ipmr_for_each_table(mrt, net) {
1627		v = &mrt->vif_table[0];
1628		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1629			if (v->dev == dev)
1630				vif_delete(mrt, ct, 1, NULL);
1631		}
1632	}
1633	return NOTIFY_DONE;
1634}
1635
1636
1637static struct notifier_block ip_mr_notifier = {
1638	.notifier_call = ipmr_device_event,
1639};
1640
1641/*
1642 *	Encapsulate a packet by attaching a valid IPIP header to it.
1643 *	This avoids tunnel drivers and other mess and gives us the speed so
1644 *	important for multicast video.
1645 */
1646
1647static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1648{
1649	struct iphdr *iph;
1650	const struct iphdr *old_iph = ip_hdr(skb);
1651
1652	skb_push(skb, sizeof(struct iphdr));
1653	skb->transport_header = skb->network_header;
1654	skb_reset_network_header(skb);
1655	iph = ip_hdr(skb);
1656
1657	iph->version	=	4;
1658	iph->tos	=	old_iph->tos;
1659	iph->ttl	=	old_iph->ttl;
1660	iph->frag_off	=	0;
1661	iph->daddr	=	daddr;
1662	iph->saddr	=	saddr;
1663	iph->protocol	=	IPPROTO_IPIP;
1664	iph->ihl	=	5;
1665	iph->tot_len	=	htons(skb->len);
1666	ip_select_ident(skb, skb_dst(skb), NULL);
1667	ip_send_check(iph);
1668
1669	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1670	nf_reset(skb);
1671}
1672
1673static inline int ipmr_forward_finish(struct sk_buff *skb)
1674{
1675	struct ip_options *opt = &(IPCB(skb)->opt);
1676
1677	IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1678	IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
1679
1680	if (unlikely(opt->optlen))
1681		ip_forward_options(skb);
1682
1683	return dst_output(skb);
1684}
1685
1686/*
1687 *	Processing handlers for ipmr_forward
1688 */
1689
1690static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1691			    struct sk_buff *skb, struct mfc_cache *c, int vifi)
1692{
1693	const struct iphdr *iph = ip_hdr(skb);
1694	struct vif_device *vif = &mrt->vif_table[vifi];
1695	struct net_device *dev;
1696	struct rtable *rt;
1697	struct flowi4 fl4;
1698	int    encap = 0;
1699
1700	if (vif->dev == NULL)
1701		goto out_free;
1702
1703#ifdef CONFIG_IP_PIMSM
1704	if (vif->flags & VIFF_REGISTER) {
1705		vif->pkt_out++;
1706		vif->bytes_out += skb->len;
1707		vif->dev->stats.tx_bytes += skb->len;
1708		vif->dev->stats.tx_packets++;
1709		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1710		goto out_free;
1711	}
1712#endif
1713
1714	if (vif->flags & VIFF_TUNNEL) {
1715		rt = ip_route_output_ports(net, &fl4, NULL,
1716					   vif->remote, vif->local,
1717					   0, 0,
1718					   IPPROTO_IPIP,
1719					   RT_TOS(iph->tos), vif->link);
1720		if (IS_ERR(rt))
1721			goto out_free;
1722		encap = sizeof(struct iphdr);
1723	} else {
1724		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1725					   0, 0,
1726					   IPPROTO_IPIP,
1727					   RT_TOS(iph->tos), vif->link);
1728		if (IS_ERR(rt))
1729			goto out_free;
1730	}
1731
1732	dev = rt->dst.dev;
1733
1734	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1735		/* Do not fragment multicasts. Alas, IPv4 does not
1736		 * allow to send ICMP, so that packets will disappear
1737		 * to blackhole.
1738		 */
1739
1740		IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1741		ip_rt_put(rt);
1742		goto out_free;
1743	}
1744
1745	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1746
1747	if (skb_cow(skb, encap)) {
1748		ip_rt_put(rt);
1749		goto out_free;
1750	}
1751
1752	vif->pkt_out++;
1753	vif->bytes_out += skb->len;
1754
1755	skb_dst_drop(skb);
1756	skb_dst_set(skb, &rt->dst);
1757	ip_decrease_ttl(ip_hdr(skb));
1758
1759	/* FIXME: forward and output firewalls used to be called here.
1760	 * What do we do with netfilter? -- RR
1761	 */
1762	if (vif->flags & VIFF_TUNNEL) {
1763		ip_encap(skb, vif->local, vif->remote);
1764		/* FIXME: extra output firewall step used to be here. --RR */
1765		vif->dev->stats.tx_packets++;
1766		vif->dev->stats.tx_bytes += skb->len;
1767	}
1768
1769	IPCB(skb)->flags |= IPSKB_FORWARDED;
1770
1771	/*
1772	 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1773	 * not only before forwarding, but after forwarding on all output
1774	 * interfaces. It is clear, if mrouter runs a multicasting
1775	 * program, it should receive packets not depending to what interface
1776	 * program is joined.
1777	 * If we will not make it, the program will have to join on all
1778	 * interfaces. On the other hand, multihoming host (or router, but
1779	 * not mrouter) cannot join to more than one interface - it will
1780	 * result in receiving multiple packets.
1781	 */
1782	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1783		ipmr_forward_finish);
1784	return;
1785
1786out_free:
1787	kfree_skb(skb);
1788}
1789
1790static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1791{
1792	int ct;
1793
1794	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1795		if (mrt->vif_table[ct].dev == dev)
1796			break;
1797	}
1798	return ct;
1799}
1800
1801/* "local" means that we should preserve one skb (for local delivery) */
1802
1803static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1804			  struct sk_buff *skb, struct mfc_cache *cache,
1805			  int local)
1806{
1807	int psend = -1;
1808	int vif, ct;
1809	int true_vifi = ipmr_find_vif(mrt, skb->dev);
1810
1811	vif = cache->mfc_parent;
1812	cache->mfc_un.res.pkt++;
1813	cache->mfc_un.res.bytes += skb->len;
1814
1815	if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1816		struct mfc_cache *cache_proxy;
1817
1818		/* For an (*,G) entry, we only check that the incomming
1819		 * interface is part of the static tree.
1820		 */
1821		cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1822		if (cache_proxy &&
1823		    cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1824			goto forward;
1825	}
1826
1827	/*
1828	 * Wrong interface: drop packet and (maybe) send PIM assert.
1829	 */
1830	if (mrt->vif_table[vif].dev != skb->dev) {
 
 
1831		if (rt_is_output_route(skb_rtable(skb))) {
1832			/* It is our own packet, looped back.
1833			 * Very complicated situation...
1834			 *
1835			 * The best workaround until routing daemons will be
1836			 * fixed is not to redistribute packet, if it was
1837			 * send through wrong interface. It means, that
1838			 * multicast applications WILL NOT work for
1839			 * (S,G), which have default multicast route pointing
1840			 * to wrong oif. In any case, it is not a good
1841			 * idea to use multicasting applications on router.
1842			 */
1843			goto dont_forward;
1844		}
1845
1846		cache->mfc_un.res.wrong_if++;
 
1847
1848		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1849		    /* pimsm uses asserts, when switching from RPT to SPT,
1850		     * so that we cannot check that packet arrived on an oif.
1851		     * It is bad, but otherwise we would need to move pretty
1852		     * large chunk of pimd to kernel. Ough... --ANK
1853		     */
1854		    (mrt->mroute_do_pim ||
1855		     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1856		    time_after(jiffies,
1857			       cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1858			cache->mfc_un.res.last_assert = jiffies;
1859			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1860		}
1861		goto dont_forward;
1862	}
1863
1864forward:
1865	mrt->vif_table[vif].pkt_in++;
1866	mrt->vif_table[vif].bytes_in += skb->len;
1867
1868	/*
1869	 *	Forward the frame
1870	 */
1871	if (cache->mfc_origin == htonl(INADDR_ANY) &&
1872	    cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1873		if (true_vifi >= 0 &&
1874		    true_vifi != cache->mfc_parent &&
1875		    ip_hdr(skb)->ttl >
1876				cache->mfc_un.res.ttls[cache->mfc_parent]) {
1877			/* It's an (*,*) entry and the packet is not coming from
1878			 * the upstream: forward the packet to the upstream
1879			 * only.
1880			 */
1881			psend = cache->mfc_parent;
1882			goto last_forward;
1883		}
1884		goto dont_forward;
1885	}
1886	for (ct = cache->mfc_un.res.maxvif - 1;
1887	     ct >= cache->mfc_un.res.minvif; ct--) {
1888		/* For (*,G) entry, don't forward to the incoming interface */
1889		if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1890		     ct != true_vifi) &&
1891		    ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1892			if (psend != -1) {
1893				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1894
1895				if (skb2)
1896					ipmr_queue_xmit(net, mrt, skb2, cache,
1897							psend);
1898			}
1899			psend = ct;
1900		}
1901	}
1902last_forward:
1903	if (psend != -1) {
1904		if (local) {
1905			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1906
1907			if (skb2)
1908				ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1909		} else {
1910			ipmr_queue_xmit(net, mrt, skb, cache, psend);
1911			return;
1912		}
1913	}
1914
1915dont_forward:
1916	if (!local)
1917		kfree_skb(skb);
 
1918}
1919
1920static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1921{
1922	struct rtable *rt = skb_rtable(skb);
1923	struct iphdr *iph = ip_hdr(skb);
1924	struct flowi4 fl4 = {
1925		.daddr = iph->daddr,
1926		.saddr = iph->saddr,
1927		.flowi4_tos = RT_TOS(iph->tos),
1928		.flowi4_oif = (rt_is_output_route(rt) ?
1929			       skb->dev->ifindex : 0),
1930		.flowi4_iif = (rt_is_output_route(rt) ?
1931			       LOOPBACK_IFINDEX :
1932			       skb->dev->ifindex),
1933		.flowi4_mark = skb->mark,
1934	};
1935	struct mr_table *mrt;
1936	int err;
1937
1938	err = ipmr_fib_lookup(net, &fl4, &mrt);
1939	if (err)
1940		return ERR_PTR(err);
1941	return mrt;
1942}
1943
1944/*
1945 *	Multicast packets for forwarding arrive here
1946 *	Called with rcu_read_lock();
1947 */
1948
1949int ip_mr_input(struct sk_buff *skb)
1950{
1951	struct mfc_cache *cache;
1952	struct net *net = dev_net(skb->dev);
1953	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1954	struct mr_table *mrt;
1955
1956	/* Packet is looped back after forward, it should not be
1957	 * forwarded second time, but still can be delivered locally.
1958	 */
1959	if (IPCB(skb)->flags & IPSKB_FORWARDED)
1960		goto dont_forward;
1961
1962	mrt = ipmr_rt_fib_lookup(net, skb);
1963	if (IS_ERR(mrt)) {
1964		kfree_skb(skb);
1965		return PTR_ERR(mrt);
1966	}
1967	if (!local) {
1968		if (IPCB(skb)->opt.router_alert) {
1969			if (ip_call_ra_chain(skb))
1970				return 0;
1971		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1972			/* IGMPv1 (and broken IGMPv2 implementations sort of
1973			 * Cisco IOS <= 11.2(8)) do not put router alert
1974			 * option to IGMP packets destined to routable
1975			 * groups. It is very bad, because it means
1976			 * that we can forward NO IGMP messages.
1977			 */
1978			struct sock *mroute_sk;
1979
1980			mroute_sk = rcu_dereference(mrt->mroute_sk);
1981			if (mroute_sk) {
1982				nf_reset(skb);
1983				raw_rcv(mroute_sk, skb);
1984				return 0;
1985			}
1986		    }
1987	}
1988
1989	/* already under rcu_read_lock() */
1990	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1991	if (cache == NULL) {
1992		int vif = ipmr_find_vif(mrt, skb->dev);
1993
1994		if (vif >= 0)
1995			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
1996						    vif);
1997	}
1998
1999	/*
2000	 *	No usable cache entry
2001	 */
2002	if (cache == NULL) {
2003		int vif;
2004
2005		if (local) {
2006			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2007			ip_local_deliver(skb);
2008			if (skb2 == NULL)
2009				return -ENOBUFS;
2010			skb = skb2;
2011		}
2012
2013		read_lock(&mrt_lock);
2014		vif = ipmr_find_vif(mrt, skb->dev);
2015		if (vif >= 0) {
2016			int err2 = ipmr_cache_unresolved(mrt, vif, skb);
2017			read_unlock(&mrt_lock);
2018
2019			return err2;
2020		}
2021		read_unlock(&mrt_lock);
2022		kfree_skb(skb);
2023		return -ENODEV;
2024	}
2025
2026	read_lock(&mrt_lock);
2027	ip_mr_forward(net, mrt, skb, cache, local);
2028	read_unlock(&mrt_lock);
2029
2030	if (local)
2031		return ip_local_deliver(skb);
2032
2033	return 0;
2034
2035dont_forward:
2036	if (local)
2037		return ip_local_deliver(skb);
2038	kfree_skb(skb);
2039	return 0;
2040}
2041
2042#ifdef CONFIG_IP_PIMSM
2043/* called with rcu_read_lock() */
2044static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
2045		     unsigned int pimlen)
2046{
2047	struct net_device *reg_dev = NULL;
2048	struct iphdr *encap;
2049
2050	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
2051	/*
2052	 * Check that:
2053	 * a. packet is really sent to a multicast group
2054	 * b. packet is not a NULL-REGISTER
2055	 * c. packet is not truncated
2056	 */
2057	if (!ipv4_is_multicast(encap->daddr) ||
2058	    encap->tot_len == 0 ||
2059	    ntohs(encap->tot_len) + pimlen > skb->len)
2060		return 1;
2061
2062	read_lock(&mrt_lock);
2063	if (mrt->mroute_reg_vif_num >= 0)
2064		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
2065	read_unlock(&mrt_lock);
2066
2067	if (reg_dev == NULL)
2068		return 1;
2069
2070	skb->mac_header = skb->network_header;
2071	skb_pull(skb, (u8 *)encap - skb->data);
2072	skb_reset_network_header(skb);
2073	skb->protocol = htons(ETH_P_IP);
2074	skb->ip_summed = CHECKSUM_NONE;
 
2075
2076	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
2077
2078	netif_rx(skb);
2079
2080	return NET_RX_SUCCESS;
2081}
2082#endif
2083
2084#ifdef CONFIG_IP_PIMSM_V1
2085/*
2086 * Handle IGMP messages of PIMv1
2087 */
2088
2089int pim_rcv_v1(struct sk_buff *skb)
2090{
2091	struct igmphdr *pim;
2092	struct net *net = dev_net(skb->dev);
2093	struct mr_table *mrt;
2094
2095	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2096		goto drop;
2097
2098	pim = igmp_hdr(skb);
2099
2100	mrt = ipmr_rt_fib_lookup(net, skb);
2101	if (IS_ERR(mrt))
2102		goto drop;
2103	if (!mrt->mroute_do_pim ||
2104	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2105		goto drop;
2106
2107	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2108drop:
2109		kfree_skb(skb);
2110	}
2111	return 0;
2112}
2113#endif
2114
2115#ifdef CONFIG_IP_PIMSM_V2
2116static int pim_rcv(struct sk_buff *skb)
2117{
2118	struct pimreghdr *pim;
2119	struct net *net = dev_net(skb->dev);
2120	struct mr_table *mrt;
2121
2122	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2123		goto drop;
2124
2125	pim = (struct pimreghdr *)skb_transport_header(skb);
2126	if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
2127	    (pim->flags & PIM_NULL_REGISTER) ||
2128	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2129	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2130		goto drop;
2131
2132	mrt = ipmr_rt_fib_lookup(net, skb);
2133	if (IS_ERR(mrt))
2134		goto drop;
2135	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2136drop:
2137		kfree_skb(skb);
2138	}
2139	return 0;
2140}
2141#endif
2142
2143static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2144			      struct mfc_cache *c, struct rtmsg *rtm)
2145{
2146	int ct;
2147	struct rtnexthop *nhp;
2148	struct nlattr *mp_attr;
2149	struct rta_mfc_stats mfcs;
2150
2151	/* If cache is unresolved, don't try to parse IIF and OIF */
2152	if (c->mfc_parent >= MAXVIFS)
2153		return -ENOENT;
2154
2155	if (VIF_EXISTS(mrt, c->mfc_parent) &&
2156	    nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2157		return -EMSGSIZE;
2158
2159	if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2160		return -EMSGSIZE;
2161
2162	for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2163		if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2164			if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2165				nla_nest_cancel(skb, mp_attr);
2166				return -EMSGSIZE;
2167			}
2168
2169			nhp->rtnh_flags = 0;
2170			nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2171			nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2172			nhp->rtnh_len = sizeof(*nhp);
2173		}
2174	}
2175
2176	nla_nest_end(skb, mp_attr);
2177
2178	mfcs.mfcs_packets = c->mfc_un.res.pkt;
2179	mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2180	mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2181	if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
2182		return -EMSGSIZE;
2183
2184	rtm->rtm_type = RTN_MULTICAST;
2185	return 1;
 
 
 
 
2186}
2187
2188int ipmr_get_route(struct net *net, struct sk_buff *skb,
2189		   __be32 saddr, __be32 daddr,
2190		   struct rtmsg *rtm, int nowait)
2191{
2192	struct mfc_cache *cache;
2193	struct mr_table *mrt;
2194	int err;
2195
2196	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2197	if (mrt == NULL)
2198		return -ENOENT;
2199
2200	rcu_read_lock();
2201	cache = ipmr_cache_find(mrt, saddr, daddr);
2202	if (cache == NULL && skb->dev) {
2203		int vif = ipmr_find_vif(mrt, skb->dev);
2204
2205		if (vif >= 0)
2206			cache = ipmr_cache_find_any(mrt, daddr, vif);
2207	}
2208	if (cache == NULL) {
2209		struct sk_buff *skb2;
2210		struct iphdr *iph;
2211		struct net_device *dev;
2212		int vif = -1;
2213
2214		if (nowait) {
2215			rcu_read_unlock();
2216			return -EAGAIN;
2217		}
2218
2219		dev = skb->dev;
2220		read_lock(&mrt_lock);
2221		if (dev)
2222			vif = ipmr_find_vif(mrt, dev);
2223		if (vif < 0) {
2224			read_unlock(&mrt_lock);
2225			rcu_read_unlock();
2226			return -ENODEV;
2227		}
2228		skb2 = skb_clone(skb, GFP_ATOMIC);
2229		if (!skb2) {
2230			read_unlock(&mrt_lock);
2231			rcu_read_unlock();
2232			return -ENOMEM;
2233		}
2234
2235		skb_push(skb2, sizeof(struct iphdr));
2236		skb_reset_network_header(skb2);
2237		iph = ip_hdr(skb2);
2238		iph->ihl = sizeof(struct iphdr) >> 2;
2239		iph->saddr = saddr;
2240		iph->daddr = daddr;
2241		iph->version = 0;
2242		err = ipmr_cache_unresolved(mrt, vif, skb2);
2243		read_unlock(&mrt_lock);
2244		rcu_read_unlock();
2245		return err;
2246	}
2247
2248	read_lock(&mrt_lock);
2249	if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2250		cache->mfc_flags |= MFC_NOTIFY;
2251	err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2252	read_unlock(&mrt_lock);
2253	rcu_read_unlock();
2254	return err;
2255}
2256
2257static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2258			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2259			    int flags)
2260{
2261	struct nlmsghdr *nlh;
2262	struct rtmsg *rtm;
2263	int err;
2264
2265	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2266	if (nlh == NULL)
2267		return -EMSGSIZE;
2268
2269	rtm = nlmsg_data(nlh);
2270	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2271	rtm->rtm_dst_len  = 32;
2272	rtm->rtm_src_len  = 32;
2273	rtm->rtm_tos      = 0;
2274	rtm->rtm_table    = mrt->id;
2275	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2276		goto nla_put_failure;
2277	rtm->rtm_type     = RTN_MULTICAST;
2278	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2279	if (c->mfc_flags & MFC_STATIC)
2280		rtm->rtm_protocol = RTPROT_STATIC;
2281	else
2282		rtm->rtm_protocol = RTPROT_MROUTED;
2283	rtm->rtm_flags    = 0;
2284
2285	if (nla_put_be32(skb, RTA_SRC, c->mfc_origin) ||
2286	    nla_put_be32(skb, RTA_DST, c->mfc_mcastgrp))
2287		goto nla_put_failure;
2288	err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2289	/* do not break the dump if cache is unresolved */
2290	if (err < 0 && err != -ENOENT)
2291		goto nla_put_failure;
2292
2293	return nlmsg_end(skb, nlh);
2294
2295nla_put_failure:
2296	nlmsg_cancel(skb, nlh);
2297	return -EMSGSIZE;
2298}
2299
2300static size_t mroute_msgsize(bool unresolved, int maxvif)
2301{
2302	size_t len =
2303		NLMSG_ALIGN(sizeof(struct rtmsg))
2304		+ nla_total_size(4)	/* RTA_TABLE */
2305		+ nla_total_size(4)	/* RTA_SRC */
2306		+ nla_total_size(4)	/* RTA_DST */
2307		;
2308
2309	if (!unresolved)
2310		len = len
2311		      + nla_total_size(4)	/* RTA_IIF */
2312		      + nla_total_size(0)	/* RTA_MULTIPATH */
2313		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2314						/* RTA_MFC_STATS */
2315		      + nla_total_size(sizeof(struct rta_mfc_stats))
2316		;
2317
2318	return len;
2319}
2320
2321static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2322				 int cmd)
2323{
2324	struct net *net = read_pnet(&mrt->net);
2325	struct sk_buff *skb;
2326	int err = -ENOBUFS;
2327
2328	skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2329			GFP_ATOMIC);
2330	if (skb == NULL)
2331		goto errout;
2332
2333	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2334	if (err < 0)
2335		goto errout;
2336
2337	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2338	return;
2339
2340errout:
2341	kfree_skb(skb);
2342	if (err < 0)
2343		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2344}
2345
2346static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2347{
2348	struct net *net = sock_net(skb->sk);
2349	struct mr_table *mrt;
2350	struct mfc_cache *mfc;
2351	unsigned int t = 0, s_t;
2352	unsigned int h = 0, s_h;
2353	unsigned int e = 0, s_e;
2354
2355	s_t = cb->args[0];
2356	s_h = cb->args[1];
2357	s_e = cb->args[2];
2358
2359	rcu_read_lock();
2360	ipmr_for_each_table(mrt, net) {
2361		if (t < s_t)
2362			goto next_table;
2363		if (t > s_t)
2364			s_h = 0;
2365		for (h = s_h; h < MFC_LINES; h++) {
2366			list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2367				if (e < s_e)
2368					goto next_entry;
2369				if (ipmr_fill_mroute(mrt, skb,
2370						     NETLINK_CB(cb->skb).portid,
2371						     cb->nlh->nlmsg_seq,
2372						     mfc, RTM_NEWROUTE,
2373						     NLM_F_MULTI) < 0)
2374					goto done;
2375next_entry:
2376				e++;
2377			}
2378			e = s_e = 0;
2379		}
2380		spin_lock_bh(&mfc_unres_lock);
2381		list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2382			if (e < s_e)
2383				goto next_entry2;
2384			if (ipmr_fill_mroute(mrt, skb,
2385					     NETLINK_CB(cb->skb).portid,
2386					     cb->nlh->nlmsg_seq,
2387					     mfc, RTM_NEWROUTE,
2388					     NLM_F_MULTI) < 0) {
2389				spin_unlock_bh(&mfc_unres_lock);
2390				goto done;
2391			}
2392next_entry2:
2393			e++;
2394		}
2395		spin_unlock_bh(&mfc_unres_lock);
2396		e = s_e = 0;
2397		s_h = 0;
2398next_table:
2399		t++;
2400	}
2401done:
2402	rcu_read_unlock();
2403
2404	cb->args[2] = e;
2405	cb->args[1] = h;
2406	cb->args[0] = t;
2407
2408	return skb->len;
2409}
2410
2411#ifdef CONFIG_PROC_FS
2412/*
2413 *	The /proc interfaces to multicast routing :
2414 *	/proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2415 */
2416struct ipmr_vif_iter {
2417	struct seq_net_private p;
2418	struct mr_table *mrt;
2419	int ct;
2420};
2421
2422static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2423					   struct ipmr_vif_iter *iter,
2424					   loff_t pos)
2425{
2426	struct mr_table *mrt = iter->mrt;
2427
2428	for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2429		if (!VIF_EXISTS(mrt, iter->ct))
2430			continue;
2431		if (pos-- == 0)
2432			return &mrt->vif_table[iter->ct];
2433	}
2434	return NULL;
2435}
2436
2437static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2438	__acquires(mrt_lock)
2439{
2440	struct ipmr_vif_iter *iter = seq->private;
2441	struct net *net = seq_file_net(seq);
2442	struct mr_table *mrt;
2443
2444	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2445	if (mrt == NULL)
2446		return ERR_PTR(-ENOENT);
2447
2448	iter->mrt = mrt;
2449
2450	read_lock(&mrt_lock);
2451	return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2452		: SEQ_START_TOKEN;
2453}
2454
2455static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2456{
2457	struct ipmr_vif_iter *iter = seq->private;
2458	struct net *net = seq_file_net(seq);
2459	struct mr_table *mrt = iter->mrt;
2460
2461	++*pos;
2462	if (v == SEQ_START_TOKEN)
2463		return ipmr_vif_seq_idx(net, iter, 0);
2464
2465	while (++iter->ct < mrt->maxvif) {
2466		if (!VIF_EXISTS(mrt, iter->ct))
2467			continue;
2468		return &mrt->vif_table[iter->ct];
2469	}
2470	return NULL;
2471}
2472
2473static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2474	__releases(mrt_lock)
2475{
2476	read_unlock(&mrt_lock);
2477}
2478
2479static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2480{
2481	struct ipmr_vif_iter *iter = seq->private;
2482	struct mr_table *mrt = iter->mrt;
2483
2484	if (v == SEQ_START_TOKEN) {
2485		seq_puts(seq,
2486			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2487	} else {
2488		const struct vif_device *vif = v;
2489		const char *name =  vif->dev ? vif->dev->name : "none";
2490
2491		seq_printf(seq,
2492			   "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2493			   vif - mrt->vif_table,
2494			   name, vif->bytes_in, vif->pkt_in,
2495			   vif->bytes_out, vif->pkt_out,
2496			   vif->flags, vif->local, vif->remote);
2497	}
2498	return 0;
2499}
2500
2501static const struct seq_operations ipmr_vif_seq_ops = {
2502	.start = ipmr_vif_seq_start,
2503	.next  = ipmr_vif_seq_next,
2504	.stop  = ipmr_vif_seq_stop,
2505	.show  = ipmr_vif_seq_show,
2506};
2507
2508static int ipmr_vif_open(struct inode *inode, struct file *file)
2509{
2510	return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2511			    sizeof(struct ipmr_vif_iter));
2512}
2513
2514static const struct file_operations ipmr_vif_fops = {
2515	.owner	 = THIS_MODULE,
2516	.open    = ipmr_vif_open,
2517	.read    = seq_read,
2518	.llseek  = seq_lseek,
2519	.release = seq_release_net,
2520};
2521
2522struct ipmr_mfc_iter {
2523	struct seq_net_private p;
2524	struct mr_table *mrt;
2525	struct list_head *cache;
2526	int ct;
2527};
2528
2529
2530static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2531					  struct ipmr_mfc_iter *it, loff_t pos)
2532{
2533	struct mr_table *mrt = it->mrt;
2534	struct mfc_cache *mfc;
2535
2536	rcu_read_lock();
2537	for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2538		it->cache = &mrt->mfc_cache_array[it->ct];
2539		list_for_each_entry_rcu(mfc, it->cache, list)
2540			if (pos-- == 0)
2541				return mfc;
2542	}
2543	rcu_read_unlock();
2544
2545	spin_lock_bh(&mfc_unres_lock);
2546	it->cache = &mrt->mfc_unres_queue;
2547	list_for_each_entry(mfc, it->cache, list)
2548		if (pos-- == 0)
2549			return mfc;
2550	spin_unlock_bh(&mfc_unres_lock);
2551
2552	it->cache = NULL;
2553	return NULL;
2554}
2555
2556
2557static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2558{
2559	struct ipmr_mfc_iter *it = seq->private;
2560	struct net *net = seq_file_net(seq);
2561	struct mr_table *mrt;
2562
2563	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2564	if (mrt == NULL)
2565		return ERR_PTR(-ENOENT);
2566
2567	it->mrt = mrt;
2568	it->cache = NULL;
2569	it->ct = 0;
2570	return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2571		: SEQ_START_TOKEN;
2572}
2573
2574static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2575{
2576	struct mfc_cache *mfc = v;
2577	struct ipmr_mfc_iter *it = seq->private;
2578	struct net *net = seq_file_net(seq);
2579	struct mr_table *mrt = it->mrt;
2580
2581	++*pos;
2582
2583	if (v == SEQ_START_TOKEN)
2584		return ipmr_mfc_seq_idx(net, seq->private, 0);
2585
2586	if (mfc->list.next != it->cache)
2587		return list_entry(mfc->list.next, struct mfc_cache, list);
2588
2589	if (it->cache == &mrt->mfc_unres_queue)
2590		goto end_of_list;
2591
2592	BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2593
2594	while (++it->ct < MFC_LINES) {
2595		it->cache = &mrt->mfc_cache_array[it->ct];
2596		if (list_empty(it->cache))
2597			continue;
2598		return list_first_entry(it->cache, struct mfc_cache, list);
2599	}
2600
2601	/* exhausted cache_array, show unresolved */
2602	rcu_read_unlock();
2603	it->cache = &mrt->mfc_unres_queue;
2604	it->ct = 0;
2605
2606	spin_lock_bh(&mfc_unres_lock);
2607	if (!list_empty(it->cache))
2608		return list_first_entry(it->cache, struct mfc_cache, list);
2609
2610end_of_list:
2611	spin_unlock_bh(&mfc_unres_lock);
2612	it->cache = NULL;
2613
2614	return NULL;
2615}
2616
2617static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2618{
2619	struct ipmr_mfc_iter *it = seq->private;
2620	struct mr_table *mrt = it->mrt;
2621
2622	if (it->cache == &mrt->mfc_unres_queue)
2623		spin_unlock_bh(&mfc_unres_lock);
2624	else if (it->cache == &mrt->mfc_cache_array[it->ct])
2625		rcu_read_unlock();
2626}
2627
2628static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2629{
2630	int n;
2631
2632	if (v == SEQ_START_TOKEN) {
2633		seq_puts(seq,
2634		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2635	} else {
2636		const struct mfc_cache *mfc = v;
2637		const struct ipmr_mfc_iter *it = seq->private;
2638		const struct mr_table *mrt = it->mrt;
2639
2640		seq_printf(seq, "%08X %08X %-3hd",
2641			   (__force u32) mfc->mfc_mcastgrp,
2642			   (__force u32) mfc->mfc_origin,
2643			   mfc->mfc_parent);
2644
2645		if (it->cache != &mrt->mfc_unres_queue) {
2646			seq_printf(seq, " %8lu %8lu %8lu",
2647				   mfc->mfc_un.res.pkt,
2648				   mfc->mfc_un.res.bytes,
2649				   mfc->mfc_un.res.wrong_if);
2650			for (n = mfc->mfc_un.res.minvif;
2651			     n < mfc->mfc_un.res.maxvif; n++) {
2652				if (VIF_EXISTS(mrt, n) &&
2653				    mfc->mfc_un.res.ttls[n] < 255)
2654					seq_printf(seq,
2655					   " %2d:%-3d",
2656					   n, mfc->mfc_un.res.ttls[n]);
2657			}
2658		} else {
2659			/* unresolved mfc_caches don't contain
2660			 * pkt, bytes and wrong_if values
2661			 */
2662			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2663		}
2664		seq_putc(seq, '\n');
2665	}
2666	return 0;
2667}
2668
2669static const struct seq_operations ipmr_mfc_seq_ops = {
2670	.start = ipmr_mfc_seq_start,
2671	.next  = ipmr_mfc_seq_next,
2672	.stop  = ipmr_mfc_seq_stop,
2673	.show  = ipmr_mfc_seq_show,
2674};
2675
2676static int ipmr_mfc_open(struct inode *inode, struct file *file)
2677{
2678	return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2679			    sizeof(struct ipmr_mfc_iter));
2680}
2681
2682static const struct file_operations ipmr_mfc_fops = {
2683	.owner	 = THIS_MODULE,
2684	.open    = ipmr_mfc_open,
2685	.read    = seq_read,
2686	.llseek  = seq_lseek,
2687	.release = seq_release_net,
2688};
2689#endif
2690
2691#ifdef CONFIG_IP_PIMSM_V2
2692static const struct net_protocol pim_protocol = {
2693	.handler	=	pim_rcv,
2694	.netns_ok	=	1,
2695};
2696#endif
2697
2698
2699/*
2700 *	Setup for IP multicast routing
2701 */
2702static int __net_init ipmr_net_init(struct net *net)
2703{
2704	int err;
2705
2706	err = ipmr_rules_init(net);
2707	if (err < 0)
2708		goto fail;
2709
2710#ifdef CONFIG_PROC_FS
2711	err = -ENOMEM;
2712	if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2713		goto proc_vif_fail;
2714	if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2715		goto proc_cache_fail;
2716#endif
2717	return 0;
2718
2719#ifdef CONFIG_PROC_FS
2720proc_cache_fail:
2721	remove_proc_entry("ip_mr_vif", net->proc_net);
2722proc_vif_fail:
2723	ipmr_rules_exit(net);
2724#endif
2725fail:
2726	return err;
2727}
2728
2729static void __net_exit ipmr_net_exit(struct net *net)
2730{
2731#ifdef CONFIG_PROC_FS
2732	remove_proc_entry("ip_mr_cache", net->proc_net);
2733	remove_proc_entry("ip_mr_vif", net->proc_net);
2734#endif
2735	ipmr_rules_exit(net);
2736}
2737
2738static struct pernet_operations ipmr_net_ops = {
2739	.init = ipmr_net_init,
2740	.exit = ipmr_net_exit,
2741};
2742
2743int __init ip_mr_init(void)
2744{
2745	int err;
2746
2747	mrt_cachep = kmem_cache_create("ip_mrt_cache",
2748				       sizeof(struct mfc_cache),
2749				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2750				       NULL);
2751	if (!mrt_cachep)
2752		return -ENOMEM;
2753
2754	err = register_pernet_subsys(&ipmr_net_ops);
2755	if (err)
2756		goto reg_pernet_fail;
2757
2758	err = register_netdevice_notifier(&ip_mr_notifier);
2759	if (err)
2760		goto reg_notif_fail;
2761#ifdef CONFIG_IP_PIMSM_V2
2762	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2763		pr_err("%s: can't add PIM protocol\n", __func__);
2764		err = -EAGAIN;
2765		goto add_proto_fail;
2766	}
2767#endif
2768	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2769		      NULL, ipmr_rtm_dumproute, NULL);
2770	return 0;
2771
2772#ifdef CONFIG_IP_PIMSM_V2
2773add_proto_fail:
2774	unregister_netdevice_notifier(&ip_mr_notifier);
2775#endif
2776reg_notif_fail:
2777	unregister_pernet_subsys(&ipmr_net_ops);
2778reg_pernet_fail:
2779	kmem_cache_destroy(mrt_cachep);
2780	return err;
2781}
v3.5.6
   1/*
   2 *	IP multicast routing support for mrouted 3.6/3.8
   3 *
   4 *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
   5 *	  Linux Consultancy and Custom Driver Development
   6 *
   7 *	This program is free software; you can redistribute it and/or
   8 *	modify it under the terms of the GNU General Public License
   9 *	as published by the Free Software Foundation; either version
  10 *	2 of the License, or (at your option) any later version.
  11 *
  12 *	Fixes:
  13 *	Michael Chastain	:	Incorrect size of copying.
  14 *	Alan Cox		:	Added the cache manager code
  15 *	Alan Cox		:	Fixed the clone/copy bug and device race.
  16 *	Mike McLagan		:	Routing by source
  17 *	Malcolm Beattie		:	Buffer handling fixes.
  18 *	Alexey Kuznetsov	:	Double buffer free and other fixes.
  19 *	SVR Anand		:	Fixed several multicast bugs and problems.
  20 *	Alexey Kuznetsov	:	Status, optimisations and more.
  21 *	Brad Parker		:	Better behaviour on mrouted upcall
  22 *					overflow.
  23 *      Carlos Picoto           :       PIMv1 Support
  24 *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
  25 *					Relax this requirement to work with older peers.
  26 *
  27 */
  28
  29#include <asm/uaccess.h>
  30#include <linux/types.h>
  31#include <linux/capability.h>
  32#include <linux/errno.h>
  33#include <linux/timer.h>
  34#include <linux/mm.h>
  35#include <linux/kernel.h>
  36#include <linux/fcntl.h>
  37#include <linux/stat.h>
  38#include <linux/socket.h>
  39#include <linux/in.h>
  40#include <linux/inet.h>
  41#include <linux/netdevice.h>
  42#include <linux/inetdevice.h>
  43#include <linux/igmp.h>
  44#include <linux/proc_fs.h>
  45#include <linux/seq_file.h>
  46#include <linux/mroute.h>
  47#include <linux/init.h>
  48#include <linux/if_ether.h>
  49#include <linux/slab.h>
  50#include <net/net_namespace.h>
  51#include <net/ip.h>
  52#include <net/protocol.h>
  53#include <linux/skbuff.h>
  54#include <net/route.h>
  55#include <net/sock.h>
  56#include <net/icmp.h>
  57#include <net/udp.h>
  58#include <net/raw.h>
  59#include <linux/notifier.h>
  60#include <linux/if_arp.h>
  61#include <linux/netfilter_ipv4.h>
  62#include <linux/compat.h>
  63#include <linux/export.h>
  64#include <net/ipip.h>
  65#include <net/checksum.h>
  66#include <net/netlink.h>
  67#include <net/fib_rules.h>
 
  68
  69#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  70#define CONFIG_IP_PIMSM	1
  71#endif
  72
  73struct mr_table {
  74	struct list_head	list;
  75#ifdef CONFIG_NET_NS
  76	struct net		*net;
  77#endif
  78	u32			id;
  79	struct sock __rcu	*mroute_sk;
  80	struct timer_list	ipmr_expire_timer;
  81	struct list_head	mfc_unres_queue;
  82	struct list_head	mfc_cache_array[MFC_LINES];
  83	struct vif_device	vif_table[MAXVIFS];
  84	int			maxvif;
  85	atomic_t		cache_resolve_queue_len;
  86	int			mroute_do_assert;
  87	int			mroute_do_pim;
  88#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  89	int			mroute_reg_vif_num;
  90#endif
  91};
  92
  93struct ipmr_rule {
  94	struct fib_rule		common;
  95};
  96
  97struct ipmr_result {
  98	struct mr_table		*mrt;
  99};
 100
 101/* Big lock, protecting vif table, mrt cache and mroute socket state.
 102 * Note that the changes are semaphored via rtnl_lock.
 103 */
 104
 105static DEFINE_RWLOCK(mrt_lock);
 106
 107/*
 108 *	Multicast router control variables
 109 */
 110
 111#define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
 112
 113/* Special spinlock for queue of unresolved entries */
 114static DEFINE_SPINLOCK(mfc_unres_lock);
 115
 116/* We return to original Alan's scheme. Hash table of resolved
 117 * entries is changed only in process context and protected
 118 * with weak lock mrt_lock. Queue of unresolved entries is protected
 119 * with strong spinlock mfc_unres_lock.
 120 *
 121 * In this case data path is free of exclusive locks at all.
 122 */
 123
 124static struct kmem_cache *mrt_cachep __read_mostly;
 125
 126static struct mr_table *ipmr_new_table(struct net *net, u32 id);
 127static void ipmr_free_table(struct mr_table *mrt);
 128
 129static int ip_mr_forward(struct net *net, struct mr_table *mrt,
 130			 struct sk_buff *skb, struct mfc_cache *cache,
 131			 int local);
 132static int ipmr_cache_report(struct mr_table *mrt,
 133			     struct sk_buff *pkt, vifi_t vifi, int assert);
 134static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
 135			      struct mfc_cache *c, struct rtmsg *rtm);
 
 
 136static void mroute_clean_tables(struct mr_table *mrt);
 137static void ipmr_expire_process(unsigned long arg);
 138
 139#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 140#define ipmr_for_each_table(mrt, net) \
 141	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
 142
 143static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 144{
 145	struct mr_table *mrt;
 146
 147	ipmr_for_each_table(mrt, net) {
 148		if (mrt->id == id)
 149			return mrt;
 150	}
 151	return NULL;
 152}
 153
 154static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 155			   struct mr_table **mrt)
 156{
 
 157	struct ipmr_result res;
 158	struct fib_lookup_arg arg = { .result = &res, };
 159	int err;
 
 
 160
 161	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
 162			       flowi4_to_flowi(flp4), 0, &arg);
 163	if (err < 0)
 164		return err;
 165	*mrt = res.mrt;
 166	return 0;
 167}
 168
 169static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
 170			    int flags, struct fib_lookup_arg *arg)
 171{
 172	struct ipmr_result *res = arg->result;
 173	struct mr_table *mrt;
 174
 175	switch (rule->action) {
 176	case FR_ACT_TO_TBL:
 177		break;
 178	case FR_ACT_UNREACHABLE:
 179		return -ENETUNREACH;
 180	case FR_ACT_PROHIBIT:
 181		return -EACCES;
 182	case FR_ACT_BLACKHOLE:
 183	default:
 184		return -EINVAL;
 185	}
 186
 187	mrt = ipmr_get_table(rule->fr_net, rule->table);
 188	if (mrt == NULL)
 189		return -EAGAIN;
 190	res->mrt = mrt;
 191	return 0;
 192}
 193
 194static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
 195{
 196	return 1;
 197}
 198
 199static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
 200	FRA_GENERIC_POLICY,
 201};
 202
 203static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
 204			       struct fib_rule_hdr *frh, struct nlattr **tb)
 205{
 206	return 0;
 207}
 208
 209static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
 210			     struct nlattr **tb)
 211{
 212	return 1;
 213}
 214
 215static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
 216			  struct fib_rule_hdr *frh)
 217{
 218	frh->dst_len = 0;
 219	frh->src_len = 0;
 220	frh->tos     = 0;
 221	return 0;
 222}
 223
 224static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template = {
 225	.family		= RTNL_FAMILY_IPMR,
 226	.rule_size	= sizeof(struct ipmr_rule),
 227	.addr_size	= sizeof(u32),
 228	.action		= ipmr_rule_action,
 229	.match		= ipmr_rule_match,
 230	.configure	= ipmr_rule_configure,
 231	.compare	= ipmr_rule_compare,
 232	.default_pref	= fib_default_rule_pref,
 233	.fill		= ipmr_rule_fill,
 234	.nlgroup	= RTNLGRP_IPV4_RULE,
 235	.policy		= ipmr_rule_policy,
 236	.owner		= THIS_MODULE,
 237};
 238
 239static int __net_init ipmr_rules_init(struct net *net)
 240{
 241	struct fib_rules_ops *ops;
 242	struct mr_table *mrt;
 243	int err;
 244
 245	ops = fib_rules_register(&ipmr_rules_ops_template, net);
 246	if (IS_ERR(ops))
 247		return PTR_ERR(ops);
 248
 249	INIT_LIST_HEAD(&net->ipv4.mr_tables);
 250
 251	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 252	if (mrt == NULL) {
 253		err = -ENOMEM;
 254		goto err1;
 255	}
 256
 257	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
 258	if (err < 0)
 259		goto err2;
 260
 261	net->ipv4.mr_rules_ops = ops;
 262	return 0;
 263
 264err2:
 265	kfree(mrt);
 266err1:
 267	fib_rules_unregister(ops);
 268	return err;
 269}
 270
 271static void __net_exit ipmr_rules_exit(struct net *net)
 272{
 273	struct mr_table *mrt, *next;
 274
 275	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
 276		list_del(&mrt->list);
 277		ipmr_free_table(mrt);
 278	}
 279	fib_rules_unregister(net->ipv4.mr_rules_ops);
 280}
 281#else
 282#define ipmr_for_each_table(mrt, net) \
 283	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
 284
 285static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 286{
 287	return net->ipv4.mrt;
 288}
 289
 290static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 291			   struct mr_table **mrt)
 292{
 293	*mrt = net->ipv4.mrt;
 294	return 0;
 295}
 296
 297static int __net_init ipmr_rules_init(struct net *net)
 298{
 299	net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 300	return net->ipv4.mrt ? 0 : -ENOMEM;
 301}
 302
 303static void __net_exit ipmr_rules_exit(struct net *net)
 304{
 305	ipmr_free_table(net->ipv4.mrt);
 306}
 307#endif
 308
 309static struct mr_table *ipmr_new_table(struct net *net, u32 id)
 310{
 311	struct mr_table *mrt;
 312	unsigned int i;
 313
 314	mrt = ipmr_get_table(net, id);
 315	if (mrt != NULL)
 316		return mrt;
 317
 318	mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
 319	if (mrt == NULL)
 320		return NULL;
 321	write_pnet(&mrt->net, net);
 322	mrt->id = id;
 323
 324	/* Forwarding cache */
 325	for (i = 0; i < MFC_LINES; i++)
 326		INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
 327
 328	INIT_LIST_HEAD(&mrt->mfc_unres_queue);
 329
 330	setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
 331		    (unsigned long)mrt);
 332
 333#ifdef CONFIG_IP_PIMSM
 334	mrt->mroute_reg_vif_num = -1;
 335#endif
 336#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 337	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
 338#endif
 339	return mrt;
 340}
 341
 342static void ipmr_free_table(struct mr_table *mrt)
 343{
 344	del_timer_sync(&mrt->ipmr_expire_timer);
 345	mroute_clean_tables(mrt);
 346	kfree(mrt);
 347}
 348
 349/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
 350
 351static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
 352{
 353	struct net *net = dev_net(dev);
 354
 355	dev_close(dev);
 356
 357	dev = __dev_get_by_name(net, "tunl0");
 358	if (dev) {
 359		const struct net_device_ops *ops = dev->netdev_ops;
 360		struct ifreq ifr;
 361		struct ip_tunnel_parm p;
 362
 363		memset(&p, 0, sizeof(p));
 364		p.iph.daddr = v->vifc_rmt_addr.s_addr;
 365		p.iph.saddr = v->vifc_lcl_addr.s_addr;
 366		p.iph.version = 4;
 367		p.iph.ihl = 5;
 368		p.iph.protocol = IPPROTO_IPIP;
 369		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 370		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 371
 372		if (ops->ndo_do_ioctl) {
 373			mm_segment_t oldfs = get_fs();
 374
 375			set_fs(KERNEL_DS);
 376			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
 377			set_fs(oldfs);
 378		}
 379	}
 380}
 381
 382static
 383struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
 384{
 385	struct net_device  *dev;
 386
 387	dev = __dev_get_by_name(net, "tunl0");
 388
 389	if (dev) {
 390		const struct net_device_ops *ops = dev->netdev_ops;
 391		int err;
 392		struct ifreq ifr;
 393		struct ip_tunnel_parm p;
 394		struct in_device  *in_dev;
 395
 396		memset(&p, 0, sizeof(p));
 397		p.iph.daddr = v->vifc_rmt_addr.s_addr;
 398		p.iph.saddr = v->vifc_lcl_addr.s_addr;
 399		p.iph.version = 4;
 400		p.iph.ihl = 5;
 401		p.iph.protocol = IPPROTO_IPIP;
 402		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 403		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 404
 405		if (ops->ndo_do_ioctl) {
 406			mm_segment_t oldfs = get_fs();
 407
 408			set_fs(KERNEL_DS);
 409			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
 410			set_fs(oldfs);
 411		} else {
 412			err = -EOPNOTSUPP;
 413		}
 414		dev = NULL;
 415
 416		if (err == 0 &&
 417		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
 418			dev->flags |= IFF_MULTICAST;
 419
 420			in_dev = __in_dev_get_rtnl(dev);
 421			if (in_dev == NULL)
 422				goto failure;
 423
 424			ipv4_devconf_setall(in_dev);
 
 425			IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 426
 427			if (dev_open(dev))
 428				goto failure;
 429			dev_hold(dev);
 430		}
 431	}
 432	return dev;
 433
 434failure:
 435	/* allow the register to be completed before unregistering. */
 436	rtnl_unlock();
 437	rtnl_lock();
 438
 439	unregister_netdevice(dev);
 440	return NULL;
 441}
 442
 443#ifdef CONFIG_IP_PIMSM
 444
 445static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
 446{
 447	struct net *net = dev_net(dev);
 448	struct mr_table *mrt;
 449	struct flowi4 fl4 = {
 450		.flowi4_oif	= dev->ifindex,
 451		.flowi4_iif	= skb->skb_iif,
 452		.flowi4_mark	= skb->mark,
 453	};
 454	int err;
 455
 456	err = ipmr_fib_lookup(net, &fl4, &mrt);
 457	if (err < 0) {
 458		kfree_skb(skb);
 459		return err;
 460	}
 461
 462	read_lock(&mrt_lock);
 463	dev->stats.tx_bytes += skb->len;
 464	dev->stats.tx_packets++;
 465	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
 466	read_unlock(&mrt_lock);
 467	kfree_skb(skb);
 468	return NETDEV_TX_OK;
 469}
 470
 471static const struct net_device_ops reg_vif_netdev_ops = {
 472	.ndo_start_xmit	= reg_vif_xmit,
 473};
 474
 475static void reg_vif_setup(struct net_device *dev)
 476{
 477	dev->type		= ARPHRD_PIMREG;
 478	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
 479	dev->flags		= IFF_NOARP;
 480	dev->netdev_ops		= &reg_vif_netdev_ops,
 481	dev->destructor		= free_netdev;
 482	dev->features		|= NETIF_F_NETNS_LOCAL;
 483}
 484
 485static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 486{
 487	struct net_device *dev;
 488	struct in_device *in_dev;
 489	char name[IFNAMSIZ];
 490
 491	if (mrt->id == RT_TABLE_DEFAULT)
 492		sprintf(name, "pimreg");
 493	else
 494		sprintf(name, "pimreg%u", mrt->id);
 495
 496	dev = alloc_netdev(0, name, reg_vif_setup);
 497
 498	if (dev == NULL)
 499		return NULL;
 500
 501	dev_net_set(dev, net);
 502
 503	if (register_netdevice(dev)) {
 504		free_netdev(dev);
 505		return NULL;
 506	}
 507	dev->iflink = 0;
 508
 509	rcu_read_lock();
 510	in_dev = __in_dev_get_rcu(dev);
 511	if (!in_dev) {
 512		rcu_read_unlock();
 513		goto failure;
 514	}
 515
 516	ipv4_devconf_setall(in_dev);
 
 517	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 518	rcu_read_unlock();
 519
 520	if (dev_open(dev))
 521		goto failure;
 522
 523	dev_hold(dev);
 524
 525	return dev;
 526
 527failure:
 528	/* allow the register to be completed before unregistering. */
 529	rtnl_unlock();
 530	rtnl_lock();
 531
 532	unregister_netdevice(dev);
 533	return NULL;
 534}
 535#endif
 536
 537/*
 538 *	Delete a VIF entry
 539 *	@notify: Set to 1, if the caller is a notifier_call
 540 */
 541
 542static int vif_delete(struct mr_table *mrt, int vifi, int notify,
 543		      struct list_head *head)
 544{
 545	struct vif_device *v;
 546	struct net_device *dev;
 547	struct in_device *in_dev;
 548
 549	if (vifi < 0 || vifi >= mrt->maxvif)
 550		return -EADDRNOTAVAIL;
 551
 552	v = &mrt->vif_table[vifi];
 553
 554	write_lock_bh(&mrt_lock);
 555	dev = v->dev;
 556	v->dev = NULL;
 557
 558	if (!dev) {
 559		write_unlock_bh(&mrt_lock);
 560		return -EADDRNOTAVAIL;
 561	}
 562
 563#ifdef CONFIG_IP_PIMSM
 564	if (vifi == mrt->mroute_reg_vif_num)
 565		mrt->mroute_reg_vif_num = -1;
 566#endif
 567
 568	if (vifi + 1 == mrt->maxvif) {
 569		int tmp;
 570
 571		for (tmp = vifi - 1; tmp >= 0; tmp--) {
 572			if (VIF_EXISTS(mrt, tmp))
 573				break;
 574		}
 575		mrt->maxvif = tmp+1;
 576	}
 577
 578	write_unlock_bh(&mrt_lock);
 579
 580	dev_set_allmulti(dev, -1);
 581
 582	in_dev = __in_dev_get_rtnl(dev);
 583	if (in_dev) {
 584		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
 
 
 
 585		ip_rt_multicast_event(in_dev);
 586	}
 587
 588	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
 589		unregister_netdevice_queue(dev, head);
 590
 591	dev_put(dev);
 592	return 0;
 593}
 594
 595static void ipmr_cache_free_rcu(struct rcu_head *head)
 596{
 597	struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
 598
 599	kmem_cache_free(mrt_cachep, c);
 600}
 601
 602static inline void ipmr_cache_free(struct mfc_cache *c)
 603{
 604	call_rcu(&c->rcu, ipmr_cache_free_rcu);
 605}
 606
 607/* Destroy an unresolved cache entry, killing queued skbs
 608 * and reporting error to netlink readers.
 609 */
 610
 611static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
 612{
 613	struct net *net = read_pnet(&mrt->net);
 614	struct sk_buff *skb;
 615	struct nlmsgerr *e;
 616
 617	atomic_dec(&mrt->cache_resolve_queue_len);
 618
 619	while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
 620		if (ip_hdr(skb)->version == 0) {
 621			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 622			nlh->nlmsg_type = NLMSG_ERROR;
 623			nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
 624			skb_trim(skb, nlh->nlmsg_len);
 625			e = NLMSG_DATA(nlh);
 626			e->error = -ETIMEDOUT;
 627			memset(&e->msg, 0, sizeof(e->msg));
 628
 629			rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
 630		} else {
 631			kfree_skb(skb);
 632		}
 633	}
 634
 635	ipmr_cache_free(c);
 636}
 637
 638
 639/* Timer process for the unresolved queue. */
 640
 641static void ipmr_expire_process(unsigned long arg)
 642{
 643	struct mr_table *mrt = (struct mr_table *)arg;
 644	unsigned long now;
 645	unsigned long expires;
 646	struct mfc_cache *c, *next;
 647
 648	if (!spin_trylock(&mfc_unres_lock)) {
 649		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
 650		return;
 651	}
 652
 653	if (list_empty(&mrt->mfc_unres_queue))
 654		goto out;
 655
 656	now = jiffies;
 657	expires = 10*HZ;
 658
 659	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
 660		if (time_after(c->mfc_un.unres.expires, now)) {
 661			unsigned long interval = c->mfc_un.unres.expires - now;
 662			if (interval < expires)
 663				expires = interval;
 664			continue;
 665		}
 666
 667		list_del(&c->list);
 
 668		ipmr_destroy_unres(mrt, c);
 669	}
 670
 671	if (!list_empty(&mrt->mfc_unres_queue))
 672		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
 673
 674out:
 675	spin_unlock(&mfc_unres_lock);
 676}
 677
 678/* Fill oifs list. It is called under write locked mrt_lock. */
 679
 680static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
 681				   unsigned char *ttls)
 682{
 683	int vifi;
 684
 685	cache->mfc_un.res.minvif = MAXVIFS;
 686	cache->mfc_un.res.maxvif = 0;
 687	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
 688
 689	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
 690		if (VIF_EXISTS(mrt, vifi) &&
 691		    ttls[vifi] && ttls[vifi] < 255) {
 692			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
 693			if (cache->mfc_un.res.minvif > vifi)
 694				cache->mfc_un.res.minvif = vifi;
 695			if (cache->mfc_un.res.maxvif <= vifi)
 696				cache->mfc_un.res.maxvif = vifi + 1;
 697		}
 698	}
 699}
 700
 701static int vif_add(struct net *net, struct mr_table *mrt,
 702		   struct vifctl *vifc, int mrtsock)
 703{
 704	int vifi = vifc->vifc_vifi;
 705	struct vif_device *v = &mrt->vif_table[vifi];
 706	struct net_device *dev;
 707	struct in_device *in_dev;
 708	int err;
 709
 710	/* Is vif busy ? */
 711	if (VIF_EXISTS(mrt, vifi))
 712		return -EADDRINUSE;
 713
 714	switch (vifc->vifc_flags) {
 715#ifdef CONFIG_IP_PIMSM
 716	case VIFF_REGISTER:
 717		/*
 718		 * Special Purpose VIF in PIM
 719		 * All the packets will be sent to the daemon
 720		 */
 721		if (mrt->mroute_reg_vif_num >= 0)
 722			return -EADDRINUSE;
 723		dev = ipmr_reg_vif(net, mrt);
 724		if (!dev)
 725			return -ENOBUFS;
 726		err = dev_set_allmulti(dev, 1);
 727		if (err) {
 728			unregister_netdevice(dev);
 729			dev_put(dev);
 730			return err;
 731		}
 732		break;
 733#endif
 734	case VIFF_TUNNEL:
 735		dev = ipmr_new_tunnel(net, vifc);
 736		if (!dev)
 737			return -ENOBUFS;
 738		err = dev_set_allmulti(dev, 1);
 739		if (err) {
 740			ipmr_del_tunnel(dev, vifc);
 741			dev_put(dev);
 742			return err;
 743		}
 744		break;
 745
 746	case VIFF_USE_IFINDEX:
 747	case 0:
 748		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
 749			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
 750			if (dev && __in_dev_get_rtnl(dev) == NULL) {
 751				dev_put(dev);
 752				return -EADDRNOTAVAIL;
 753			}
 754		} else {
 755			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
 756		}
 757		if (!dev)
 758			return -EADDRNOTAVAIL;
 759		err = dev_set_allmulti(dev, 1);
 760		if (err) {
 761			dev_put(dev);
 762			return err;
 763		}
 764		break;
 765	default:
 766		return -EINVAL;
 767	}
 768
 769	in_dev = __in_dev_get_rtnl(dev);
 770	if (!in_dev) {
 771		dev_put(dev);
 772		return -EADDRNOTAVAIL;
 773	}
 774	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
 
 
 775	ip_rt_multicast_event(in_dev);
 776
 777	/* Fill in the VIF structures */
 778
 779	v->rate_limit = vifc->vifc_rate_limit;
 780	v->local = vifc->vifc_lcl_addr.s_addr;
 781	v->remote = vifc->vifc_rmt_addr.s_addr;
 782	v->flags = vifc->vifc_flags;
 783	if (!mrtsock)
 784		v->flags |= VIFF_STATIC;
 785	v->threshold = vifc->vifc_threshold;
 786	v->bytes_in = 0;
 787	v->bytes_out = 0;
 788	v->pkt_in = 0;
 789	v->pkt_out = 0;
 790	v->link = dev->ifindex;
 791	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
 792		v->link = dev->iflink;
 793
 794	/* And finish update writing critical data */
 795	write_lock_bh(&mrt_lock);
 796	v->dev = dev;
 797#ifdef CONFIG_IP_PIMSM
 798	if (v->flags & VIFF_REGISTER)
 799		mrt->mroute_reg_vif_num = vifi;
 800#endif
 801	if (vifi+1 > mrt->maxvif)
 802		mrt->maxvif = vifi+1;
 803	write_unlock_bh(&mrt_lock);
 804	return 0;
 805}
 806
 807/* called with rcu_read_lock() */
 808static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
 809					 __be32 origin,
 810					 __be32 mcastgrp)
 811{
 812	int line = MFC_HASH(mcastgrp, origin);
 813	struct mfc_cache *c;
 814
 815	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
 816		if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
 817			return c;
 818	}
 819	return NULL;
 820}
 821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 822/*
 823 *	Allocate a multicast cache entry
 824 */
 825static struct mfc_cache *ipmr_cache_alloc(void)
 826{
 827	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
 828
 829	if (c)
 830		c->mfc_un.res.minvif = MAXVIFS;
 831	return c;
 832}
 833
 834static struct mfc_cache *ipmr_cache_alloc_unres(void)
 835{
 836	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
 837
 838	if (c) {
 839		skb_queue_head_init(&c->mfc_un.unres.unresolved);
 840		c->mfc_un.unres.expires = jiffies + 10*HZ;
 841	}
 842	return c;
 843}
 844
 845/*
 846 *	A cache entry has gone into a resolved state from queued
 847 */
 848
 849static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
 850			       struct mfc_cache *uc, struct mfc_cache *c)
 851{
 852	struct sk_buff *skb;
 853	struct nlmsgerr *e;
 854
 855	/* Play the pending entries through our router */
 856
 857	while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
 858		if (ip_hdr(skb)->version == 0) {
 859			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 860
 861			if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
 862				nlh->nlmsg_len = skb_tail_pointer(skb) -
 863						 (u8 *)nlh;
 864			} else {
 865				nlh->nlmsg_type = NLMSG_ERROR;
 866				nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
 867				skb_trim(skb, nlh->nlmsg_len);
 868				e = NLMSG_DATA(nlh);
 869				e->error = -EMSGSIZE;
 870				memset(&e->msg, 0, sizeof(e->msg));
 871			}
 872
 873			rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
 874		} else {
 875			ip_mr_forward(net, mrt, skb, c, 0);
 876		}
 877	}
 878}
 879
 880/*
 881 *	Bounce a cache query up to mrouted. We could use netlink for this but mrouted
 882 *	expects the following bizarre scheme.
 883 *
 884 *	Called under mrt_lock.
 885 */
 886
 887static int ipmr_cache_report(struct mr_table *mrt,
 888			     struct sk_buff *pkt, vifi_t vifi, int assert)
 889{
 890	struct sk_buff *skb;
 891	const int ihl = ip_hdrlen(pkt);
 892	struct igmphdr *igmp;
 893	struct igmpmsg *msg;
 894	struct sock *mroute_sk;
 895	int ret;
 896
 897#ifdef CONFIG_IP_PIMSM
 898	if (assert == IGMPMSG_WHOLEPKT)
 899		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
 900	else
 901#endif
 902		skb = alloc_skb(128, GFP_ATOMIC);
 903
 904	if (!skb)
 905		return -ENOBUFS;
 906
 907#ifdef CONFIG_IP_PIMSM
 908	if (assert == IGMPMSG_WHOLEPKT) {
 909		/* Ugly, but we have no choice with this interface.
 910		 * Duplicate old header, fix ihl, length etc.
 911		 * And all this only to mangle msg->im_msgtype and
 912		 * to set msg->im_mbz to "mbz" :-)
 913		 */
 914		skb_push(skb, sizeof(struct iphdr));
 915		skb_reset_network_header(skb);
 916		skb_reset_transport_header(skb);
 917		msg = (struct igmpmsg *)skb_network_header(skb);
 918		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
 919		msg->im_msgtype = IGMPMSG_WHOLEPKT;
 920		msg->im_mbz = 0;
 921		msg->im_vif = mrt->mroute_reg_vif_num;
 922		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
 923		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
 924					     sizeof(struct iphdr));
 925	} else
 926#endif
 927	{
 928
 929	/* Copy the IP header */
 930
 931	skb->network_header = skb->tail;
 932	skb_put(skb, ihl);
 933	skb_copy_to_linear_data(skb, pkt->data, ihl);
 934	ip_hdr(skb)->protocol = 0;	/* Flag to the kernel this is a route add */
 935	msg = (struct igmpmsg *)skb_network_header(skb);
 936	msg->im_vif = vifi;
 937	skb_dst_set(skb, dst_clone(skb_dst(pkt)));
 938
 939	/* Add our header */
 940
 941	igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
 942	igmp->type	=
 943	msg->im_msgtype = assert;
 944	igmp->code	= 0;
 945	ip_hdr(skb)->tot_len = htons(skb->len);		/* Fix the length */
 946	skb->transport_header = skb->network_header;
 947	}
 948
 949	rcu_read_lock();
 950	mroute_sk = rcu_dereference(mrt->mroute_sk);
 951	if (mroute_sk == NULL) {
 952		rcu_read_unlock();
 953		kfree_skb(skb);
 954		return -EINVAL;
 955	}
 956
 957	/* Deliver to mrouted */
 958
 959	ret = sock_queue_rcv_skb(mroute_sk, skb);
 960	rcu_read_unlock();
 961	if (ret < 0) {
 962		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
 963		kfree_skb(skb);
 964	}
 965
 966	return ret;
 967}
 968
 969/*
 970 *	Queue a packet for resolution. It gets locked cache entry!
 971 */
 972
 973static int
 974ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
 975{
 976	bool found = false;
 977	int err;
 978	struct mfc_cache *c;
 979	const struct iphdr *iph = ip_hdr(skb);
 980
 981	spin_lock_bh(&mfc_unres_lock);
 982	list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
 983		if (c->mfc_mcastgrp == iph->daddr &&
 984		    c->mfc_origin == iph->saddr) {
 985			found = true;
 986			break;
 987		}
 988	}
 989
 990	if (!found) {
 991		/* Create a new entry if allowable */
 992
 993		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
 994		    (c = ipmr_cache_alloc_unres()) == NULL) {
 995			spin_unlock_bh(&mfc_unres_lock);
 996
 997			kfree_skb(skb);
 998			return -ENOBUFS;
 999		}
1000
1001		/* Fill in the new cache entry */
1002
1003		c->mfc_parent	= -1;
1004		c->mfc_origin	= iph->saddr;
1005		c->mfc_mcastgrp	= iph->daddr;
1006
1007		/* Reflect first query at mrouted. */
1008
1009		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1010		if (err < 0) {
1011			/* If the report failed throw the cache entry
1012			   out - Brad Parker
1013			 */
1014			spin_unlock_bh(&mfc_unres_lock);
1015
1016			ipmr_cache_free(c);
1017			kfree_skb(skb);
1018			return err;
1019		}
1020
1021		atomic_inc(&mrt->cache_resolve_queue_len);
1022		list_add(&c->list, &mrt->mfc_unres_queue);
 
1023
1024		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1025			mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1026	}
1027
1028	/* See if we can append the packet */
1029
1030	if (c->mfc_un.unres.unresolved.qlen > 3) {
1031		kfree_skb(skb);
1032		err = -ENOBUFS;
1033	} else {
1034		skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1035		err = 0;
1036	}
1037
1038	spin_unlock_bh(&mfc_unres_lock);
1039	return err;
1040}
1041
1042/*
1043 *	MFC cache manipulation by user space mroute daemon
1044 */
1045
1046static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc)
1047{
1048	int line;
1049	struct mfc_cache *c, *next;
1050
1051	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1052
1053	list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1054		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1055		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
 
1056			list_del_rcu(&c->list);
1057
1058			ipmr_cache_free(c);
1059			return 0;
1060		}
1061	}
1062	return -ENOENT;
1063}
1064
1065static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1066			struct mfcctl *mfc, int mrtsock)
1067{
1068	bool found = false;
1069	int line;
1070	struct mfc_cache *uc, *c;
1071
1072	if (mfc->mfcc_parent >= MAXVIFS)
1073		return -ENFILE;
1074
1075	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1076
1077	list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1078		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1079		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
 
1080			found = true;
1081			break;
1082		}
1083	}
1084
1085	if (found) {
1086		write_lock_bh(&mrt_lock);
1087		c->mfc_parent = mfc->mfcc_parent;
1088		ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1089		if (!mrtsock)
1090			c->mfc_flags |= MFC_STATIC;
1091		write_unlock_bh(&mrt_lock);
 
1092		return 0;
1093	}
1094
1095	if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
 
1096		return -EINVAL;
1097
1098	c = ipmr_cache_alloc();
1099	if (c == NULL)
1100		return -ENOMEM;
1101
1102	c->mfc_origin = mfc->mfcc_origin.s_addr;
1103	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1104	c->mfc_parent = mfc->mfcc_parent;
1105	ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1106	if (!mrtsock)
1107		c->mfc_flags |= MFC_STATIC;
1108
1109	list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1110
1111	/*
1112	 *	Check to see if we resolved a queued list. If so we
1113	 *	need to send on the frames and tidy up.
1114	 */
1115	found = false;
1116	spin_lock_bh(&mfc_unres_lock);
1117	list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1118		if (uc->mfc_origin == c->mfc_origin &&
1119		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1120			list_del(&uc->list);
1121			atomic_dec(&mrt->cache_resolve_queue_len);
1122			found = true;
1123			break;
1124		}
1125	}
1126	if (list_empty(&mrt->mfc_unres_queue))
1127		del_timer(&mrt->ipmr_expire_timer);
1128	spin_unlock_bh(&mfc_unres_lock);
1129
1130	if (found) {
1131		ipmr_cache_resolve(net, mrt, uc, c);
1132		ipmr_cache_free(uc);
1133	}
 
1134	return 0;
1135}
1136
1137/*
1138 *	Close the multicast socket, and clear the vif tables etc
1139 */
1140
1141static void mroute_clean_tables(struct mr_table *mrt)
1142{
1143	int i;
1144	LIST_HEAD(list);
1145	struct mfc_cache *c, *next;
1146
1147	/* Shut down all active vif entries */
1148
1149	for (i = 0; i < mrt->maxvif; i++) {
1150		if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1151			vif_delete(mrt, i, 0, &list);
1152	}
1153	unregister_netdevice_many(&list);
1154
1155	/* Wipe the cache */
1156
1157	for (i = 0; i < MFC_LINES; i++) {
1158		list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1159			if (c->mfc_flags & MFC_STATIC)
1160				continue;
1161			list_del_rcu(&c->list);
 
1162			ipmr_cache_free(c);
1163		}
1164	}
1165
1166	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1167		spin_lock_bh(&mfc_unres_lock);
1168		list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1169			list_del(&c->list);
 
1170			ipmr_destroy_unres(mrt, c);
1171		}
1172		spin_unlock_bh(&mfc_unres_lock);
1173	}
1174}
1175
1176/* called from ip_ra_control(), before an RCU grace period,
1177 * we dont need to call synchronize_rcu() here
1178 */
1179static void mrtsock_destruct(struct sock *sk)
1180{
1181	struct net *net = sock_net(sk);
1182	struct mr_table *mrt;
1183
1184	rtnl_lock();
1185	ipmr_for_each_table(mrt, net) {
1186		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1187			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
 
 
 
1188			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1189			mroute_clean_tables(mrt);
1190		}
1191	}
1192	rtnl_unlock();
1193}
1194
1195/*
1196 *	Socket options and virtual interface manipulation. The whole
1197 *	virtual interface system is a complete heap, but unfortunately
1198 *	that's how BSD mrouted happens to think. Maybe one day with a proper
1199 *	MOSPF/PIM router set up we can clean this up.
1200 */
1201
1202int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1203{
1204	int ret;
1205	struct vifctl vif;
1206	struct mfcctl mfc;
1207	struct net *net = sock_net(sk);
1208	struct mr_table *mrt;
1209
 
 
 
 
1210	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1211	if (mrt == NULL)
1212		return -ENOENT;
1213
1214	if (optname != MRT_INIT) {
1215		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1216		    !capable(CAP_NET_ADMIN))
1217			return -EACCES;
1218	}
1219
1220	switch (optname) {
1221	case MRT_INIT:
1222		if (sk->sk_type != SOCK_RAW ||
1223		    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1224			return -EOPNOTSUPP;
1225		if (optlen != sizeof(int))
1226			return -ENOPROTOOPT;
1227
1228		rtnl_lock();
1229		if (rtnl_dereference(mrt->mroute_sk)) {
1230			rtnl_unlock();
1231			return -EADDRINUSE;
1232		}
1233
1234		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1235		if (ret == 0) {
1236			rcu_assign_pointer(mrt->mroute_sk, sk);
1237			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
 
 
 
1238		}
1239		rtnl_unlock();
1240		return ret;
1241	case MRT_DONE:
1242		if (sk != rcu_access_pointer(mrt->mroute_sk))
1243			return -EACCES;
1244		return ip_ra_control(sk, 0, NULL);
1245	case MRT_ADD_VIF:
1246	case MRT_DEL_VIF:
1247		if (optlen != sizeof(vif))
1248			return -EINVAL;
1249		if (copy_from_user(&vif, optval, sizeof(vif)))
1250			return -EFAULT;
1251		if (vif.vifc_vifi >= MAXVIFS)
1252			return -ENFILE;
1253		rtnl_lock();
1254		if (optname == MRT_ADD_VIF) {
1255			ret = vif_add(net, mrt, &vif,
1256				      sk == rtnl_dereference(mrt->mroute_sk));
1257		} else {
1258			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1259		}
1260		rtnl_unlock();
1261		return ret;
1262
1263		/*
1264		 *	Manipulate the forwarding caches. These live
1265		 *	in a sort of kernel/user symbiosis.
1266		 */
1267	case MRT_ADD_MFC:
1268	case MRT_DEL_MFC:
 
 
 
1269		if (optlen != sizeof(mfc))
1270			return -EINVAL;
1271		if (copy_from_user(&mfc, optval, sizeof(mfc)))
1272			return -EFAULT;
 
 
1273		rtnl_lock();
1274		if (optname == MRT_DEL_MFC)
1275			ret = ipmr_mfc_delete(mrt, &mfc);
1276		else
1277			ret = ipmr_mfc_add(net, mrt, &mfc,
1278					   sk == rtnl_dereference(mrt->mroute_sk));
 
1279		rtnl_unlock();
1280		return ret;
1281		/*
1282		 *	Control PIM assert.
1283		 */
1284	case MRT_ASSERT:
1285	{
1286		int v;
 
 
1287		if (get_user(v, (int __user *)optval))
1288			return -EFAULT;
1289		mrt->mroute_do_assert = (v) ? 1 : 0;
1290		return 0;
1291	}
1292#ifdef CONFIG_IP_PIMSM
1293	case MRT_PIM:
1294	{
1295		int v;
1296
 
 
1297		if (get_user(v, (int __user *)optval))
1298			return -EFAULT;
1299		v = (v) ? 1 : 0;
1300
1301		rtnl_lock();
1302		ret = 0;
1303		if (v != mrt->mroute_do_pim) {
1304			mrt->mroute_do_pim = v;
1305			mrt->mroute_do_assert = v;
1306		}
1307		rtnl_unlock();
1308		return ret;
1309	}
1310#endif
1311#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1312	case MRT_TABLE:
1313	{
1314		u32 v;
1315
1316		if (optlen != sizeof(u32))
1317			return -EINVAL;
1318		if (get_user(v, (u32 __user *)optval))
1319			return -EFAULT;
1320
 
 
 
 
1321		rtnl_lock();
1322		ret = 0;
1323		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1324			ret = -EBUSY;
1325		} else {
1326			if (!ipmr_new_table(net, v))
1327				ret = -ENOMEM;
1328			raw_sk(sk)->ipmr_table = v;
 
1329		}
1330		rtnl_unlock();
1331		return ret;
1332	}
1333#endif
1334	/*
1335	 *	Spurious command, or MRT_VERSION which you cannot
1336	 *	set.
1337	 */
1338	default:
1339		return -ENOPROTOOPT;
1340	}
1341}
1342
1343/*
1344 *	Getsock opt support for the multicast routing system.
1345 */
1346
1347int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1348{
1349	int olr;
1350	int val;
1351	struct net *net = sock_net(sk);
1352	struct mr_table *mrt;
1353
 
 
 
 
1354	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1355	if (mrt == NULL)
1356		return -ENOENT;
1357
1358	if (optname != MRT_VERSION &&
1359#ifdef CONFIG_IP_PIMSM
1360	   optname != MRT_PIM &&
1361#endif
1362	   optname != MRT_ASSERT)
1363		return -ENOPROTOOPT;
1364
1365	if (get_user(olr, optlen))
1366		return -EFAULT;
1367
1368	olr = min_t(unsigned int, olr, sizeof(int));
1369	if (olr < 0)
1370		return -EINVAL;
1371
1372	if (put_user(olr, optlen))
1373		return -EFAULT;
1374	if (optname == MRT_VERSION)
1375		val = 0x0305;
1376#ifdef CONFIG_IP_PIMSM
1377	else if (optname == MRT_PIM)
1378		val = mrt->mroute_do_pim;
1379#endif
1380	else
1381		val = mrt->mroute_do_assert;
1382	if (copy_to_user(optval, &val, olr))
1383		return -EFAULT;
1384	return 0;
1385}
1386
1387/*
1388 *	The IP multicast ioctl support routines.
1389 */
1390
1391int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1392{
1393	struct sioc_sg_req sr;
1394	struct sioc_vif_req vr;
1395	struct vif_device *vif;
1396	struct mfc_cache *c;
1397	struct net *net = sock_net(sk);
1398	struct mr_table *mrt;
1399
1400	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1401	if (mrt == NULL)
1402		return -ENOENT;
1403
1404	switch (cmd) {
1405	case SIOCGETVIFCNT:
1406		if (copy_from_user(&vr, arg, sizeof(vr)))
1407			return -EFAULT;
1408		if (vr.vifi >= mrt->maxvif)
1409			return -EINVAL;
1410		read_lock(&mrt_lock);
1411		vif = &mrt->vif_table[vr.vifi];
1412		if (VIF_EXISTS(mrt, vr.vifi)) {
1413			vr.icount = vif->pkt_in;
1414			vr.ocount = vif->pkt_out;
1415			vr.ibytes = vif->bytes_in;
1416			vr.obytes = vif->bytes_out;
1417			read_unlock(&mrt_lock);
1418
1419			if (copy_to_user(arg, &vr, sizeof(vr)))
1420				return -EFAULT;
1421			return 0;
1422		}
1423		read_unlock(&mrt_lock);
1424		return -EADDRNOTAVAIL;
1425	case SIOCGETSGCNT:
1426		if (copy_from_user(&sr, arg, sizeof(sr)))
1427			return -EFAULT;
1428
1429		rcu_read_lock();
1430		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1431		if (c) {
1432			sr.pktcnt = c->mfc_un.res.pkt;
1433			sr.bytecnt = c->mfc_un.res.bytes;
1434			sr.wrong_if = c->mfc_un.res.wrong_if;
1435			rcu_read_unlock();
1436
1437			if (copy_to_user(arg, &sr, sizeof(sr)))
1438				return -EFAULT;
1439			return 0;
1440		}
1441		rcu_read_unlock();
1442		return -EADDRNOTAVAIL;
1443	default:
1444		return -ENOIOCTLCMD;
1445	}
1446}
1447
1448#ifdef CONFIG_COMPAT
1449struct compat_sioc_sg_req {
1450	struct in_addr src;
1451	struct in_addr grp;
1452	compat_ulong_t pktcnt;
1453	compat_ulong_t bytecnt;
1454	compat_ulong_t wrong_if;
1455};
1456
1457struct compat_sioc_vif_req {
1458	vifi_t	vifi;		/* Which iface */
1459	compat_ulong_t icount;
1460	compat_ulong_t ocount;
1461	compat_ulong_t ibytes;
1462	compat_ulong_t obytes;
1463};
1464
1465int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1466{
1467	struct compat_sioc_sg_req sr;
1468	struct compat_sioc_vif_req vr;
1469	struct vif_device *vif;
1470	struct mfc_cache *c;
1471	struct net *net = sock_net(sk);
1472	struct mr_table *mrt;
1473
1474	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1475	if (mrt == NULL)
1476		return -ENOENT;
1477
1478	switch (cmd) {
1479	case SIOCGETVIFCNT:
1480		if (copy_from_user(&vr, arg, sizeof(vr)))
1481			return -EFAULT;
1482		if (vr.vifi >= mrt->maxvif)
1483			return -EINVAL;
1484		read_lock(&mrt_lock);
1485		vif = &mrt->vif_table[vr.vifi];
1486		if (VIF_EXISTS(mrt, vr.vifi)) {
1487			vr.icount = vif->pkt_in;
1488			vr.ocount = vif->pkt_out;
1489			vr.ibytes = vif->bytes_in;
1490			vr.obytes = vif->bytes_out;
1491			read_unlock(&mrt_lock);
1492
1493			if (copy_to_user(arg, &vr, sizeof(vr)))
1494				return -EFAULT;
1495			return 0;
1496		}
1497		read_unlock(&mrt_lock);
1498		return -EADDRNOTAVAIL;
1499	case SIOCGETSGCNT:
1500		if (copy_from_user(&sr, arg, sizeof(sr)))
1501			return -EFAULT;
1502
1503		rcu_read_lock();
1504		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1505		if (c) {
1506			sr.pktcnt = c->mfc_un.res.pkt;
1507			sr.bytecnt = c->mfc_un.res.bytes;
1508			sr.wrong_if = c->mfc_un.res.wrong_if;
1509			rcu_read_unlock();
1510
1511			if (copy_to_user(arg, &sr, sizeof(sr)))
1512				return -EFAULT;
1513			return 0;
1514		}
1515		rcu_read_unlock();
1516		return -EADDRNOTAVAIL;
1517	default:
1518		return -ENOIOCTLCMD;
1519	}
1520}
1521#endif
1522
1523
1524static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1525{
1526	struct net_device *dev = ptr;
1527	struct net *net = dev_net(dev);
1528	struct mr_table *mrt;
1529	struct vif_device *v;
1530	int ct;
1531
1532	if (event != NETDEV_UNREGISTER)
1533		return NOTIFY_DONE;
1534
1535	ipmr_for_each_table(mrt, net) {
1536		v = &mrt->vif_table[0];
1537		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1538			if (v->dev == dev)
1539				vif_delete(mrt, ct, 1, NULL);
1540		}
1541	}
1542	return NOTIFY_DONE;
1543}
1544
1545
1546static struct notifier_block ip_mr_notifier = {
1547	.notifier_call = ipmr_device_event,
1548};
1549
1550/*
1551 *	Encapsulate a packet by attaching a valid IPIP header to it.
1552 *	This avoids tunnel drivers and other mess and gives us the speed so
1553 *	important for multicast video.
1554 */
1555
1556static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1557{
1558	struct iphdr *iph;
1559	const struct iphdr *old_iph = ip_hdr(skb);
1560
1561	skb_push(skb, sizeof(struct iphdr));
1562	skb->transport_header = skb->network_header;
1563	skb_reset_network_header(skb);
1564	iph = ip_hdr(skb);
1565
1566	iph->version	=	4;
1567	iph->tos	=	old_iph->tos;
1568	iph->ttl	=	old_iph->ttl;
1569	iph->frag_off	=	0;
1570	iph->daddr	=	daddr;
1571	iph->saddr	=	saddr;
1572	iph->protocol	=	IPPROTO_IPIP;
1573	iph->ihl	=	5;
1574	iph->tot_len	=	htons(skb->len);
1575	ip_select_ident(iph, skb_dst(skb), NULL);
1576	ip_send_check(iph);
1577
1578	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1579	nf_reset(skb);
1580}
1581
1582static inline int ipmr_forward_finish(struct sk_buff *skb)
1583{
1584	struct ip_options *opt = &(IPCB(skb)->opt);
1585
1586	IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1587	IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
1588
1589	if (unlikely(opt->optlen))
1590		ip_forward_options(skb);
1591
1592	return dst_output(skb);
1593}
1594
1595/*
1596 *	Processing handlers for ipmr_forward
1597 */
1598
1599static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1600			    struct sk_buff *skb, struct mfc_cache *c, int vifi)
1601{
1602	const struct iphdr *iph = ip_hdr(skb);
1603	struct vif_device *vif = &mrt->vif_table[vifi];
1604	struct net_device *dev;
1605	struct rtable *rt;
1606	struct flowi4 fl4;
1607	int    encap = 0;
1608
1609	if (vif->dev == NULL)
1610		goto out_free;
1611
1612#ifdef CONFIG_IP_PIMSM
1613	if (vif->flags & VIFF_REGISTER) {
1614		vif->pkt_out++;
1615		vif->bytes_out += skb->len;
1616		vif->dev->stats.tx_bytes += skb->len;
1617		vif->dev->stats.tx_packets++;
1618		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1619		goto out_free;
1620	}
1621#endif
1622
1623	if (vif->flags & VIFF_TUNNEL) {
1624		rt = ip_route_output_ports(net, &fl4, NULL,
1625					   vif->remote, vif->local,
1626					   0, 0,
1627					   IPPROTO_IPIP,
1628					   RT_TOS(iph->tos), vif->link);
1629		if (IS_ERR(rt))
1630			goto out_free;
1631		encap = sizeof(struct iphdr);
1632	} else {
1633		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1634					   0, 0,
1635					   IPPROTO_IPIP,
1636					   RT_TOS(iph->tos), vif->link);
1637		if (IS_ERR(rt))
1638			goto out_free;
1639	}
1640
1641	dev = rt->dst.dev;
1642
1643	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1644		/* Do not fragment multicasts. Alas, IPv4 does not
1645		 * allow to send ICMP, so that packets will disappear
1646		 * to blackhole.
1647		 */
1648
1649		IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1650		ip_rt_put(rt);
1651		goto out_free;
1652	}
1653
1654	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1655
1656	if (skb_cow(skb, encap)) {
1657		ip_rt_put(rt);
1658		goto out_free;
1659	}
1660
1661	vif->pkt_out++;
1662	vif->bytes_out += skb->len;
1663
1664	skb_dst_drop(skb);
1665	skb_dst_set(skb, &rt->dst);
1666	ip_decrease_ttl(ip_hdr(skb));
1667
1668	/* FIXME: forward and output firewalls used to be called here.
1669	 * What do we do with netfilter? -- RR
1670	 */
1671	if (vif->flags & VIFF_TUNNEL) {
1672		ip_encap(skb, vif->local, vif->remote);
1673		/* FIXME: extra output firewall step used to be here. --RR */
1674		vif->dev->stats.tx_packets++;
1675		vif->dev->stats.tx_bytes += skb->len;
1676	}
1677
1678	IPCB(skb)->flags |= IPSKB_FORWARDED;
1679
1680	/*
1681	 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1682	 * not only before forwarding, but after forwarding on all output
1683	 * interfaces. It is clear, if mrouter runs a multicasting
1684	 * program, it should receive packets not depending to what interface
1685	 * program is joined.
1686	 * If we will not make it, the program will have to join on all
1687	 * interfaces. On the other hand, multihoming host (or router, but
1688	 * not mrouter) cannot join to more than one interface - it will
1689	 * result in receiving multiple packets.
1690	 */
1691	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1692		ipmr_forward_finish);
1693	return;
1694
1695out_free:
1696	kfree_skb(skb);
1697}
1698
1699static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1700{
1701	int ct;
1702
1703	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1704		if (mrt->vif_table[ct].dev == dev)
1705			break;
1706	}
1707	return ct;
1708}
1709
1710/* "local" means that we should preserve one skb (for local delivery) */
1711
1712static int ip_mr_forward(struct net *net, struct mr_table *mrt,
1713			 struct sk_buff *skb, struct mfc_cache *cache,
1714			 int local)
1715{
1716	int psend = -1;
1717	int vif, ct;
 
1718
1719	vif = cache->mfc_parent;
1720	cache->mfc_un.res.pkt++;
1721	cache->mfc_un.res.bytes += skb->len;
1722
 
 
 
 
 
 
 
 
 
 
 
 
1723	/*
1724	 * Wrong interface: drop packet and (maybe) send PIM assert.
1725	 */
1726	if (mrt->vif_table[vif].dev != skb->dev) {
1727		int true_vifi;
1728
1729		if (rt_is_output_route(skb_rtable(skb))) {
1730			/* It is our own packet, looped back.
1731			 * Very complicated situation...
1732			 *
1733			 * The best workaround until routing daemons will be
1734			 * fixed is not to redistribute packet, if it was
1735			 * send through wrong interface. It means, that
1736			 * multicast applications WILL NOT work for
1737			 * (S,G), which have default multicast route pointing
1738			 * to wrong oif. In any case, it is not a good
1739			 * idea to use multicasting applications on router.
1740			 */
1741			goto dont_forward;
1742		}
1743
1744		cache->mfc_un.res.wrong_if++;
1745		true_vifi = ipmr_find_vif(mrt, skb->dev);
1746
1747		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1748		    /* pimsm uses asserts, when switching from RPT to SPT,
1749		     * so that we cannot check that packet arrived on an oif.
1750		     * It is bad, but otherwise we would need to move pretty
1751		     * large chunk of pimd to kernel. Ough... --ANK
1752		     */
1753		    (mrt->mroute_do_pim ||
1754		     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1755		    time_after(jiffies,
1756			       cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1757			cache->mfc_un.res.last_assert = jiffies;
1758			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1759		}
1760		goto dont_forward;
1761	}
1762
 
1763	mrt->vif_table[vif].pkt_in++;
1764	mrt->vif_table[vif].bytes_in += skb->len;
1765
1766	/*
1767	 *	Forward the frame
1768	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1769	for (ct = cache->mfc_un.res.maxvif - 1;
1770	     ct >= cache->mfc_un.res.minvif; ct--) {
1771		if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
 
 
 
1772			if (psend != -1) {
1773				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1774
1775				if (skb2)
1776					ipmr_queue_xmit(net, mrt, skb2, cache,
1777							psend);
1778			}
1779			psend = ct;
1780		}
1781	}
 
1782	if (psend != -1) {
1783		if (local) {
1784			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1785
1786			if (skb2)
1787				ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1788		} else {
1789			ipmr_queue_xmit(net, mrt, skb, cache, psend);
1790			return 0;
1791		}
1792	}
1793
1794dont_forward:
1795	if (!local)
1796		kfree_skb(skb);
1797	return 0;
1798}
1799
1800static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1801{
1802	struct rtable *rt = skb_rtable(skb);
1803	struct iphdr *iph = ip_hdr(skb);
1804	struct flowi4 fl4 = {
1805		.daddr = iph->daddr,
1806		.saddr = iph->saddr,
1807		.flowi4_tos = RT_TOS(iph->tos),
1808		.flowi4_oif = rt->rt_oif,
1809		.flowi4_iif = rt->rt_iif,
1810		.flowi4_mark = rt->rt_mark,
 
 
 
1811	};
1812	struct mr_table *mrt;
1813	int err;
1814
1815	err = ipmr_fib_lookup(net, &fl4, &mrt);
1816	if (err)
1817		return ERR_PTR(err);
1818	return mrt;
1819}
1820
1821/*
1822 *	Multicast packets for forwarding arrive here
1823 *	Called with rcu_read_lock();
1824 */
1825
1826int ip_mr_input(struct sk_buff *skb)
1827{
1828	struct mfc_cache *cache;
1829	struct net *net = dev_net(skb->dev);
1830	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1831	struct mr_table *mrt;
1832
1833	/* Packet is looped back after forward, it should not be
1834	 * forwarded second time, but still can be delivered locally.
1835	 */
1836	if (IPCB(skb)->flags & IPSKB_FORWARDED)
1837		goto dont_forward;
1838
1839	mrt = ipmr_rt_fib_lookup(net, skb);
1840	if (IS_ERR(mrt)) {
1841		kfree_skb(skb);
1842		return PTR_ERR(mrt);
1843	}
1844	if (!local) {
1845		if (IPCB(skb)->opt.router_alert) {
1846			if (ip_call_ra_chain(skb))
1847				return 0;
1848		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1849			/* IGMPv1 (and broken IGMPv2 implementations sort of
1850			 * Cisco IOS <= 11.2(8)) do not put router alert
1851			 * option to IGMP packets destined to routable
1852			 * groups. It is very bad, because it means
1853			 * that we can forward NO IGMP messages.
1854			 */
1855			struct sock *mroute_sk;
1856
1857			mroute_sk = rcu_dereference(mrt->mroute_sk);
1858			if (mroute_sk) {
1859				nf_reset(skb);
1860				raw_rcv(mroute_sk, skb);
1861				return 0;
1862			}
1863		    }
1864	}
1865
1866	/* already under rcu_read_lock() */
1867	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
 
 
 
 
 
 
 
1868
1869	/*
1870	 *	No usable cache entry
1871	 */
1872	if (cache == NULL) {
1873		int vif;
1874
1875		if (local) {
1876			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1877			ip_local_deliver(skb);
1878			if (skb2 == NULL)
1879				return -ENOBUFS;
1880			skb = skb2;
1881		}
1882
1883		read_lock(&mrt_lock);
1884		vif = ipmr_find_vif(mrt, skb->dev);
1885		if (vif >= 0) {
1886			int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1887			read_unlock(&mrt_lock);
1888
1889			return err2;
1890		}
1891		read_unlock(&mrt_lock);
1892		kfree_skb(skb);
1893		return -ENODEV;
1894	}
1895
1896	read_lock(&mrt_lock);
1897	ip_mr_forward(net, mrt, skb, cache, local);
1898	read_unlock(&mrt_lock);
1899
1900	if (local)
1901		return ip_local_deliver(skb);
1902
1903	return 0;
1904
1905dont_forward:
1906	if (local)
1907		return ip_local_deliver(skb);
1908	kfree_skb(skb);
1909	return 0;
1910}
1911
1912#ifdef CONFIG_IP_PIMSM
1913/* called with rcu_read_lock() */
1914static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
1915		     unsigned int pimlen)
1916{
1917	struct net_device *reg_dev = NULL;
1918	struct iphdr *encap;
1919
1920	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
1921	/*
1922	 * Check that:
1923	 * a. packet is really sent to a multicast group
1924	 * b. packet is not a NULL-REGISTER
1925	 * c. packet is not truncated
1926	 */
1927	if (!ipv4_is_multicast(encap->daddr) ||
1928	    encap->tot_len == 0 ||
1929	    ntohs(encap->tot_len) + pimlen > skb->len)
1930		return 1;
1931
1932	read_lock(&mrt_lock);
1933	if (mrt->mroute_reg_vif_num >= 0)
1934		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
1935	read_unlock(&mrt_lock);
1936
1937	if (reg_dev == NULL)
1938		return 1;
1939
1940	skb->mac_header = skb->network_header;
1941	skb_pull(skb, (u8 *)encap - skb->data);
1942	skb_reset_network_header(skb);
1943	skb->protocol = htons(ETH_P_IP);
1944	skb->ip_summed = CHECKSUM_NONE;
1945	skb->pkt_type = PACKET_HOST;
1946
1947	skb_tunnel_rx(skb, reg_dev);
1948
1949	netif_rx(skb);
1950
1951	return NET_RX_SUCCESS;
1952}
1953#endif
1954
1955#ifdef CONFIG_IP_PIMSM_V1
1956/*
1957 * Handle IGMP messages of PIMv1
1958 */
1959
1960int pim_rcv_v1(struct sk_buff *skb)
1961{
1962	struct igmphdr *pim;
1963	struct net *net = dev_net(skb->dev);
1964	struct mr_table *mrt;
1965
1966	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1967		goto drop;
1968
1969	pim = igmp_hdr(skb);
1970
1971	mrt = ipmr_rt_fib_lookup(net, skb);
1972	if (IS_ERR(mrt))
1973		goto drop;
1974	if (!mrt->mroute_do_pim ||
1975	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
1976		goto drop;
1977
1978	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1979drop:
1980		kfree_skb(skb);
1981	}
1982	return 0;
1983}
1984#endif
1985
1986#ifdef CONFIG_IP_PIMSM_V2
1987static int pim_rcv(struct sk_buff *skb)
1988{
1989	struct pimreghdr *pim;
1990	struct net *net = dev_net(skb->dev);
1991	struct mr_table *mrt;
1992
1993	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1994		goto drop;
1995
1996	pim = (struct pimreghdr *)skb_transport_header(skb);
1997	if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
1998	    (pim->flags & PIM_NULL_REGISTER) ||
1999	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2000	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2001		goto drop;
2002
2003	mrt = ipmr_rt_fib_lookup(net, skb);
2004	if (IS_ERR(mrt))
2005		goto drop;
2006	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2007drop:
2008		kfree_skb(skb);
2009	}
2010	return 0;
2011}
2012#endif
2013
2014static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2015			      struct mfc_cache *c, struct rtmsg *rtm)
2016{
2017	int ct;
2018	struct rtnexthop *nhp;
2019	u8 *b = skb_tail_pointer(skb);
2020	struct rtattr *mp_head;
2021
2022	/* If cache is unresolved, don't try to parse IIF and OIF */
2023	if (c->mfc_parent >= MAXVIFS)
2024		return -ENOENT;
2025
2026	if (VIF_EXISTS(mrt, c->mfc_parent))
2027		RTA_PUT(skb, RTA_IIF, 4, &mrt->vif_table[c->mfc_parent].dev->ifindex);
 
2028
2029	mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
 
2030
2031	for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2032		if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2033			if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
2034				goto rtattr_failure;
2035			nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
 
 
2036			nhp->rtnh_flags = 0;
2037			nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2038			nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2039			nhp->rtnh_len = sizeof(*nhp);
2040		}
2041	}
2042	mp_head->rta_type = RTA_MULTIPATH;
2043	mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
 
 
 
 
 
 
 
2044	rtm->rtm_type = RTN_MULTICAST;
2045	return 1;
2046
2047rtattr_failure:
2048	nlmsg_trim(skb, b);
2049	return -EMSGSIZE;
2050}
2051
2052int ipmr_get_route(struct net *net, struct sk_buff *skb,
2053		   __be32 saddr, __be32 daddr,
2054		   struct rtmsg *rtm, int nowait)
2055{
2056	struct mfc_cache *cache;
2057	struct mr_table *mrt;
2058	int err;
2059
2060	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2061	if (mrt == NULL)
2062		return -ENOENT;
2063
2064	rcu_read_lock();
2065	cache = ipmr_cache_find(mrt, saddr, daddr);
 
 
2066
 
 
 
2067	if (cache == NULL) {
2068		struct sk_buff *skb2;
2069		struct iphdr *iph;
2070		struct net_device *dev;
2071		int vif = -1;
2072
2073		if (nowait) {
2074			rcu_read_unlock();
2075			return -EAGAIN;
2076		}
2077
2078		dev = skb->dev;
2079		read_lock(&mrt_lock);
2080		if (dev)
2081			vif = ipmr_find_vif(mrt, dev);
2082		if (vif < 0) {
2083			read_unlock(&mrt_lock);
2084			rcu_read_unlock();
2085			return -ENODEV;
2086		}
2087		skb2 = skb_clone(skb, GFP_ATOMIC);
2088		if (!skb2) {
2089			read_unlock(&mrt_lock);
2090			rcu_read_unlock();
2091			return -ENOMEM;
2092		}
2093
2094		skb_push(skb2, sizeof(struct iphdr));
2095		skb_reset_network_header(skb2);
2096		iph = ip_hdr(skb2);
2097		iph->ihl = sizeof(struct iphdr) >> 2;
2098		iph->saddr = saddr;
2099		iph->daddr = daddr;
2100		iph->version = 0;
2101		err = ipmr_cache_unresolved(mrt, vif, skb2);
2102		read_unlock(&mrt_lock);
2103		rcu_read_unlock();
2104		return err;
2105	}
2106
2107	read_lock(&mrt_lock);
2108	if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2109		cache->mfc_flags |= MFC_NOTIFY;
2110	err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2111	read_unlock(&mrt_lock);
2112	rcu_read_unlock();
2113	return err;
2114}
2115
2116static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2117			    u32 pid, u32 seq, struct mfc_cache *c)
 
2118{
2119	struct nlmsghdr *nlh;
2120	struct rtmsg *rtm;
 
2121
2122	nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI);
2123	if (nlh == NULL)
2124		return -EMSGSIZE;
2125
2126	rtm = nlmsg_data(nlh);
2127	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2128	rtm->rtm_dst_len  = 32;
2129	rtm->rtm_src_len  = 32;
2130	rtm->rtm_tos      = 0;
2131	rtm->rtm_table    = mrt->id;
2132	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2133		goto nla_put_failure;
2134	rtm->rtm_type     = RTN_MULTICAST;
2135	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2136	rtm->rtm_protocol = RTPROT_UNSPEC;
 
 
 
2137	rtm->rtm_flags    = 0;
2138
2139	if (nla_put_be32(skb, RTA_SRC, c->mfc_origin) ||
2140	    nla_put_be32(skb, RTA_DST, c->mfc_mcastgrp))
2141		goto nla_put_failure;
2142	if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0)
 
 
2143		goto nla_put_failure;
2144
2145	return nlmsg_end(skb, nlh);
2146
2147nla_put_failure:
2148	nlmsg_cancel(skb, nlh);
2149	return -EMSGSIZE;
2150}
2151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2152static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2153{
2154	struct net *net = sock_net(skb->sk);
2155	struct mr_table *mrt;
2156	struct mfc_cache *mfc;
2157	unsigned int t = 0, s_t;
2158	unsigned int h = 0, s_h;
2159	unsigned int e = 0, s_e;
2160
2161	s_t = cb->args[0];
2162	s_h = cb->args[1];
2163	s_e = cb->args[2];
2164
2165	rcu_read_lock();
2166	ipmr_for_each_table(mrt, net) {
2167		if (t < s_t)
2168			goto next_table;
2169		if (t > s_t)
2170			s_h = 0;
2171		for (h = s_h; h < MFC_LINES; h++) {
2172			list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2173				if (e < s_e)
2174					goto next_entry;
2175				if (ipmr_fill_mroute(mrt, skb,
2176						     NETLINK_CB(cb->skb).pid,
2177						     cb->nlh->nlmsg_seq,
2178						     mfc) < 0)
 
2179					goto done;
2180next_entry:
2181				e++;
2182			}
2183			e = s_e = 0;
2184		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2185		s_h = 0;
2186next_table:
2187		t++;
2188	}
2189done:
2190	rcu_read_unlock();
2191
2192	cb->args[2] = e;
2193	cb->args[1] = h;
2194	cb->args[0] = t;
2195
2196	return skb->len;
2197}
2198
2199#ifdef CONFIG_PROC_FS
2200/*
2201 *	The /proc interfaces to multicast routing :
2202 *	/proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2203 */
2204struct ipmr_vif_iter {
2205	struct seq_net_private p;
2206	struct mr_table *mrt;
2207	int ct;
2208};
2209
2210static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2211					   struct ipmr_vif_iter *iter,
2212					   loff_t pos)
2213{
2214	struct mr_table *mrt = iter->mrt;
2215
2216	for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2217		if (!VIF_EXISTS(mrt, iter->ct))
2218			continue;
2219		if (pos-- == 0)
2220			return &mrt->vif_table[iter->ct];
2221	}
2222	return NULL;
2223}
2224
2225static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2226	__acquires(mrt_lock)
2227{
2228	struct ipmr_vif_iter *iter = seq->private;
2229	struct net *net = seq_file_net(seq);
2230	struct mr_table *mrt;
2231
2232	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2233	if (mrt == NULL)
2234		return ERR_PTR(-ENOENT);
2235
2236	iter->mrt = mrt;
2237
2238	read_lock(&mrt_lock);
2239	return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2240		: SEQ_START_TOKEN;
2241}
2242
2243static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2244{
2245	struct ipmr_vif_iter *iter = seq->private;
2246	struct net *net = seq_file_net(seq);
2247	struct mr_table *mrt = iter->mrt;
2248
2249	++*pos;
2250	if (v == SEQ_START_TOKEN)
2251		return ipmr_vif_seq_idx(net, iter, 0);
2252
2253	while (++iter->ct < mrt->maxvif) {
2254		if (!VIF_EXISTS(mrt, iter->ct))
2255			continue;
2256		return &mrt->vif_table[iter->ct];
2257	}
2258	return NULL;
2259}
2260
2261static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2262	__releases(mrt_lock)
2263{
2264	read_unlock(&mrt_lock);
2265}
2266
2267static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2268{
2269	struct ipmr_vif_iter *iter = seq->private;
2270	struct mr_table *mrt = iter->mrt;
2271
2272	if (v == SEQ_START_TOKEN) {
2273		seq_puts(seq,
2274			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2275	} else {
2276		const struct vif_device *vif = v;
2277		const char *name =  vif->dev ? vif->dev->name : "none";
2278
2279		seq_printf(seq,
2280			   "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2281			   vif - mrt->vif_table,
2282			   name, vif->bytes_in, vif->pkt_in,
2283			   vif->bytes_out, vif->pkt_out,
2284			   vif->flags, vif->local, vif->remote);
2285	}
2286	return 0;
2287}
2288
2289static const struct seq_operations ipmr_vif_seq_ops = {
2290	.start = ipmr_vif_seq_start,
2291	.next  = ipmr_vif_seq_next,
2292	.stop  = ipmr_vif_seq_stop,
2293	.show  = ipmr_vif_seq_show,
2294};
2295
2296static int ipmr_vif_open(struct inode *inode, struct file *file)
2297{
2298	return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2299			    sizeof(struct ipmr_vif_iter));
2300}
2301
2302static const struct file_operations ipmr_vif_fops = {
2303	.owner	 = THIS_MODULE,
2304	.open    = ipmr_vif_open,
2305	.read    = seq_read,
2306	.llseek  = seq_lseek,
2307	.release = seq_release_net,
2308};
2309
2310struct ipmr_mfc_iter {
2311	struct seq_net_private p;
2312	struct mr_table *mrt;
2313	struct list_head *cache;
2314	int ct;
2315};
2316
2317
2318static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2319					  struct ipmr_mfc_iter *it, loff_t pos)
2320{
2321	struct mr_table *mrt = it->mrt;
2322	struct mfc_cache *mfc;
2323
2324	rcu_read_lock();
2325	for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2326		it->cache = &mrt->mfc_cache_array[it->ct];
2327		list_for_each_entry_rcu(mfc, it->cache, list)
2328			if (pos-- == 0)
2329				return mfc;
2330	}
2331	rcu_read_unlock();
2332
2333	spin_lock_bh(&mfc_unres_lock);
2334	it->cache = &mrt->mfc_unres_queue;
2335	list_for_each_entry(mfc, it->cache, list)
2336		if (pos-- == 0)
2337			return mfc;
2338	spin_unlock_bh(&mfc_unres_lock);
2339
2340	it->cache = NULL;
2341	return NULL;
2342}
2343
2344
2345static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2346{
2347	struct ipmr_mfc_iter *it = seq->private;
2348	struct net *net = seq_file_net(seq);
2349	struct mr_table *mrt;
2350
2351	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2352	if (mrt == NULL)
2353		return ERR_PTR(-ENOENT);
2354
2355	it->mrt = mrt;
2356	it->cache = NULL;
2357	it->ct = 0;
2358	return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2359		: SEQ_START_TOKEN;
2360}
2361
2362static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2363{
2364	struct mfc_cache *mfc = v;
2365	struct ipmr_mfc_iter *it = seq->private;
2366	struct net *net = seq_file_net(seq);
2367	struct mr_table *mrt = it->mrt;
2368
2369	++*pos;
2370
2371	if (v == SEQ_START_TOKEN)
2372		return ipmr_mfc_seq_idx(net, seq->private, 0);
2373
2374	if (mfc->list.next != it->cache)
2375		return list_entry(mfc->list.next, struct mfc_cache, list);
2376
2377	if (it->cache == &mrt->mfc_unres_queue)
2378		goto end_of_list;
2379
2380	BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2381
2382	while (++it->ct < MFC_LINES) {
2383		it->cache = &mrt->mfc_cache_array[it->ct];
2384		if (list_empty(it->cache))
2385			continue;
2386		return list_first_entry(it->cache, struct mfc_cache, list);
2387	}
2388
2389	/* exhausted cache_array, show unresolved */
2390	rcu_read_unlock();
2391	it->cache = &mrt->mfc_unres_queue;
2392	it->ct = 0;
2393
2394	spin_lock_bh(&mfc_unres_lock);
2395	if (!list_empty(it->cache))
2396		return list_first_entry(it->cache, struct mfc_cache, list);
2397
2398end_of_list:
2399	spin_unlock_bh(&mfc_unres_lock);
2400	it->cache = NULL;
2401
2402	return NULL;
2403}
2404
2405static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2406{
2407	struct ipmr_mfc_iter *it = seq->private;
2408	struct mr_table *mrt = it->mrt;
2409
2410	if (it->cache == &mrt->mfc_unres_queue)
2411		spin_unlock_bh(&mfc_unres_lock);
2412	else if (it->cache == &mrt->mfc_cache_array[it->ct])
2413		rcu_read_unlock();
2414}
2415
2416static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2417{
2418	int n;
2419
2420	if (v == SEQ_START_TOKEN) {
2421		seq_puts(seq,
2422		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2423	} else {
2424		const struct mfc_cache *mfc = v;
2425		const struct ipmr_mfc_iter *it = seq->private;
2426		const struct mr_table *mrt = it->mrt;
2427
2428		seq_printf(seq, "%08X %08X %-3hd",
2429			   (__force u32) mfc->mfc_mcastgrp,
2430			   (__force u32) mfc->mfc_origin,
2431			   mfc->mfc_parent);
2432
2433		if (it->cache != &mrt->mfc_unres_queue) {
2434			seq_printf(seq, " %8lu %8lu %8lu",
2435				   mfc->mfc_un.res.pkt,
2436				   mfc->mfc_un.res.bytes,
2437				   mfc->mfc_un.res.wrong_if);
2438			for (n = mfc->mfc_un.res.minvif;
2439			     n < mfc->mfc_un.res.maxvif; n++) {
2440				if (VIF_EXISTS(mrt, n) &&
2441				    mfc->mfc_un.res.ttls[n] < 255)
2442					seq_printf(seq,
2443					   " %2d:%-3d",
2444					   n, mfc->mfc_un.res.ttls[n]);
2445			}
2446		} else {
2447			/* unresolved mfc_caches don't contain
2448			 * pkt, bytes and wrong_if values
2449			 */
2450			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2451		}
2452		seq_putc(seq, '\n');
2453	}
2454	return 0;
2455}
2456
2457static const struct seq_operations ipmr_mfc_seq_ops = {
2458	.start = ipmr_mfc_seq_start,
2459	.next  = ipmr_mfc_seq_next,
2460	.stop  = ipmr_mfc_seq_stop,
2461	.show  = ipmr_mfc_seq_show,
2462};
2463
2464static int ipmr_mfc_open(struct inode *inode, struct file *file)
2465{
2466	return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2467			    sizeof(struct ipmr_mfc_iter));
2468}
2469
2470static const struct file_operations ipmr_mfc_fops = {
2471	.owner	 = THIS_MODULE,
2472	.open    = ipmr_mfc_open,
2473	.read    = seq_read,
2474	.llseek  = seq_lseek,
2475	.release = seq_release_net,
2476};
2477#endif
2478
2479#ifdef CONFIG_IP_PIMSM_V2
2480static const struct net_protocol pim_protocol = {
2481	.handler	=	pim_rcv,
2482	.netns_ok	=	1,
2483};
2484#endif
2485
2486
2487/*
2488 *	Setup for IP multicast routing
2489 */
2490static int __net_init ipmr_net_init(struct net *net)
2491{
2492	int err;
2493
2494	err = ipmr_rules_init(net);
2495	if (err < 0)
2496		goto fail;
2497
2498#ifdef CONFIG_PROC_FS
2499	err = -ENOMEM;
2500	if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops))
2501		goto proc_vif_fail;
2502	if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops))
2503		goto proc_cache_fail;
2504#endif
2505	return 0;
2506
2507#ifdef CONFIG_PROC_FS
2508proc_cache_fail:
2509	proc_net_remove(net, "ip_mr_vif");
2510proc_vif_fail:
2511	ipmr_rules_exit(net);
2512#endif
2513fail:
2514	return err;
2515}
2516
2517static void __net_exit ipmr_net_exit(struct net *net)
2518{
2519#ifdef CONFIG_PROC_FS
2520	proc_net_remove(net, "ip_mr_cache");
2521	proc_net_remove(net, "ip_mr_vif");
2522#endif
2523	ipmr_rules_exit(net);
2524}
2525
2526static struct pernet_operations ipmr_net_ops = {
2527	.init = ipmr_net_init,
2528	.exit = ipmr_net_exit,
2529};
2530
2531int __init ip_mr_init(void)
2532{
2533	int err;
2534
2535	mrt_cachep = kmem_cache_create("ip_mrt_cache",
2536				       sizeof(struct mfc_cache),
2537				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2538				       NULL);
2539	if (!mrt_cachep)
2540		return -ENOMEM;
2541
2542	err = register_pernet_subsys(&ipmr_net_ops);
2543	if (err)
2544		goto reg_pernet_fail;
2545
2546	err = register_netdevice_notifier(&ip_mr_notifier);
2547	if (err)
2548		goto reg_notif_fail;
2549#ifdef CONFIG_IP_PIMSM_V2
2550	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2551		pr_err("%s: can't add PIM protocol\n", __func__);
2552		err = -EAGAIN;
2553		goto add_proto_fail;
2554	}
2555#endif
2556	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2557		      NULL, ipmr_rtm_dumproute, NULL);
2558	return 0;
2559
2560#ifdef CONFIG_IP_PIMSM_V2
2561add_proto_fail:
2562	unregister_netdevice_notifier(&ip_mr_notifier);
2563#endif
2564reg_notif_fail:
2565	unregister_pernet_subsys(&ipmr_net_ops);
2566reg_pernet_fail:
2567	kmem_cache_destroy(mrt_cachep);
2568	return err;
2569}