Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 *	IP multicast routing support for mrouted 3.6/3.8
   3 *
   4 *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
   5 *	  Linux Consultancy and Custom Driver Development
   6 *
   7 *	This program is free software; you can redistribute it and/or
   8 *	modify it under the terms of the GNU General Public License
   9 *	as published by the Free Software Foundation; either version
  10 *	2 of the License, or (at your option) any later version.
  11 *
  12 *	Fixes:
  13 *	Michael Chastain	:	Incorrect size of copying.
  14 *	Alan Cox		:	Added the cache manager code
  15 *	Alan Cox		:	Fixed the clone/copy bug and device race.
  16 *	Mike McLagan		:	Routing by source
  17 *	Malcolm Beattie		:	Buffer handling fixes.
  18 *	Alexey Kuznetsov	:	Double buffer free and other fixes.
  19 *	SVR Anand		:	Fixed several multicast bugs and problems.
  20 *	Alexey Kuznetsov	:	Status, optimisations and more.
  21 *	Brad Parker		:	Better behaviour on mrouted upcall
  22 *					overflow.
  23 *      Carlos Picoto           :       PIMv1 Support
  24 *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
  25 *					Relax this requirement to work with older peers.
  26 *
  27 */
  28
  29#include <asm/uaccess.h>
  30#include <linux/types.h>
 
  31#include <linux/capability.h>
  32#include <linux/errno.h>
  33#include <linux/timer.h>
  34#include <linux/mm.h>
  35#include <linux/kernel.h>
  36#include <linux/fcntl.h>
  37#include <linux/stat.h>
  38#include <linux/socket.h>
  39#include <linux/in.h>
  40#include <linux/inet.h>
  41#include <linux/netdevice.h>
  42#include <linux/inetdevice.h>
  43#include <linux/igmp.h>
  44#include <linux/proc_fs.h>
  45#include <linux/seq_file.h>
  46#include <linux/mroute.h>
  47#include <linux/init.h>
  48#include <linux/if_ether.h>
  49#include <linux/slab.h>
  50#include <net/net_namespace.h>
  51#include <net/ip.h>
  52#include <net/protocol.h>
  53#include <linux/skbuff.h>
  54#include <net/route.h>
  55#include <net/sock.h>
  56#include <net/icmp.h>
  57#include <net/udp.h>
  58#include <net/raw.h>
  59#include <linux/notifier.h>
  60#include <linux/if_arp.h>
  61#include <linux/netfilter_ipv4.h>
  62#include <linux/compat.h>
  63#include <linux/export.h>
 
  64#include <net/ip_tunnels.h>
  65#include <net/checksum.h>
  66#include <net/netlink.h>
  67#include <net/fib_rules.h>
  68#include <linux/netconf.h>
 
 
  69
  70#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  71#define CONFIG_IP_PIMSM	1
  72#endif
  73
  74struct mr_table {
  75	struct list_head	list;
  76#ifdef CONFIG_NET_NS
  77	struct net		*net;
  78#endif
  79	u32			id;
  80	struct sock __rcu	*mroute_sk;
  81	struct timer_list	ipmr_expire_timer;
  82	struct list_head	mfc_unres_queue;
  83	struct list_head	mfc_cache_array[MFC_LINES];
  84	struct vif_device	vif_table[MAXVIFS];
  85	int			maxvif;
  86	atomic_t		cache_resolve_queue_len;
  87	bool			mroute_do_assert;
  88	bool			mroute_do_pim;
  89#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  90	int			mroute_reg_vif_num;
  91#endif
  92};
  93
  94struct ipmr_rule {
  95	struct fib_rule		common;
  96};
  97
  98struct ipmr_result {
  99	struct mr_table		*mrt;
 100};
 101
 102/* Big lock, protecting vif table, mrt cache and mroute socket state.
 103 * Note that the changes are semaphored via rtnl_lock.
 104 */
 105
 106static DEFINE_RWLOCK(mrt_lock);
 107
 108/*
 109 *	Multicast router control variables
 110 */
 
 111
 112#define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
 113
 114/* Special spinlock for queue of unresolved entries */
 115static DEFINE_SPINLOCK(mfc_unres_lock);
 116
 117/* We return to original Alan's scheme. Hash table of resolved
 118 * entries is changed only in process context and protected
 119 * with weak lock mrt_lock. Queue of unresolved entries is protected
 120 * with strong spinlock mfc_unres_lock.
 121 *
 122 * In this case data path is free of exclusive locks at all.
 123 */
 124
 125static struct kmem_cache *mrt_cachep __read_mostly;
 126
 127static struct mr_table *ipmr_new_table(struct net *net, u32 id);
 128static void ipmr_free_table(struct mr_table *mrt);
 129
 130static void ip_mr_forward(struct net *net, struct mr_table *mrt,
 131			  struct sk_buff *skb, struct mfc_cache *cache,
 132			  int local);
 133static int ipmr_cache_report(struct mr_table *mrt,
 134			     struct sk_buff *pkt, vifi_t vifi, int assert);
 135static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
 136			      struct mfc_cache *c, struct rtmsg *rtm);
 137static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
 138				 int cmd);
 139static void mroute_clean_tables(struct mr_table *mrt);
 140static void ipmr_expire_process(unsigned long arg);
 
 141
 142#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 143#define ipmr_for_each_table(mrt, net) \
 144	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
 
 
 145
 146static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147{
 148	struct mr_table *mrt;
 149
 150	ipmr_for_each_table(mrt, net) {
 151		if (mrt->id == id)
 152			return mrt;
 153	}
 154	return NULL;
 155}
 156
 
 
 
 
 
 
 
 
 
 
 157static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 158			   struct mr_table **mrt)
 159{
 160	int err;
 161	struct ipmr_result res;
 162	struct fib_lookup_arg arg = {
 163		.result = &res,
 164		.flags = FIB_LOOKUP_NOREF,
 165	};
 166
 
 
 
 167	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
 168			       flowi4_to_flowi(flp4), 0, &arg);
 169	if (err < 0)
 170		return err;
 171	*mrt = res.mrt;
 172	return 0;
 173}
 174
 175static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
 176			    int flags, struct fib_lookup_arg *arg)
 177{
 178	struct ipmr_result *res = arg->result;
 179	struct mr_table *mrt;
 180
 181	switch (rule->action) {
 182	case FR_ACT_TO_TBL:
 183		break;
 184	case FR_ACT_UNREACHABLE:
 185		return -ENETUNREACH;
 186	case FR_ACT_PROHIBIT:
 187		return -EACCES;
 188	case FR_ACT_BLACKHOLE:
 189	default:
 190		return -EINVAL;
 191	}
 192
 193	mrt = ipmr_get_table(rule->fr_net, rule->table);
 194	if (mrt == NULL)
 
 
 195		return -EAGAIN;
 196	res->mrt = mrt;
 197	return 0;
 198}
 199
 200static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
 201{
 202	return 1;
 203}
 204
 205static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
 206	FRA_GENERIC_POLICY,
 207};
 208
 209static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
 210			       struct fib_rule_hdr *frh, struct nlattr **tb)
 
 211{
 212	return 0;
 213}
 214
 215static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
 216			     struct nlattr **tb)
 217{
 218	return 1;
 219}
 220
 221static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
 222			  struct fib_rule_hdr *frh)
 223{
 224	frh->dst_len = 0;
 225	frh->src_len = 0;
 226	frh->tos     = 0;
 227	return 0;
 228}
 229
 230static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
 231	.family		= RTNL_FAMILY_IPMR,
 232	.rule_size	= sizeof(struct ipmr_rule),
 233	.addr_size	= sizeof(u32),
 234	.action		= ipmr_rule_action,
 235	.match		= ipmr_rule_match,
 236	.configure	= ipmr_rule_configure,
 237	.compare	= ipmr_rule_compare,
 238	.default_pref	= fib_default_rule_pref,
 239	.fill		= ipmr_rule_fill,
 240	.nlgroup	= RTNLGRP_IPV4_RULE,
 241	.policy		= ipmr_rule_policy,
 242	.owner		= THIS_MODULE,
 243};
 244
 245static int __net_init ipmr_rules_init(struct net *net)
 246{
 247	struct fib_rules_ops *ops;
 248	struct mr_table *mrt;
 249	int err;
 250
 251	ops = fib_rules_register(&ipmr_rules_ops_template, net);
 252	if (IS_ERR(ops))
 253		return PTR_ERR(ops);
 254
 255	INIT_LIST_HEAD(&net->ipv4.mr_tables);
 256
 257	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 258	if (mrt == NULL) {
 259		err = -ENOMEM;
 260		goto err1;
 261	}
 262
 263	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
 264	if (err < 0)
 265		goto err2;
 266
 267	net->ipv4.mr_rules_ops = ops;
 268	return 0;
 269
 270err2:
 271	kfree(mrt);
 
 
 272err1:
 273	fib_rules_unregister(ops);
 274	return err;
 275}
 276
 277static void __net_exit ipmr_rules_exit(struct net *net)
 278{
 279	struct mr_table *mrt, *next;
 280
 
 281	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
 282		list_del(&mrt->list);
 283		ipmr_free_table(mrt);
 284	}
 285	fib_rules_unregister(net->ipv4.mr_rules_ops);
 286}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 287#else
 288#define ipmr_for_each_table(mrt, net) \
 289	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
 290
 
 
 
 
 
 
 
 
 
 
 
 
 
 291static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 292{
 293	return net->ipv4.mrt;
 294}
 295
 
 
 296static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 297			   struct mr_table **mrt)
 298{
 299	*mrt = net->ipv4.mrt;
 300	return 0;
 301}
 302
 303static int __net_init ipmr_rules_init(struct net *net)
 304{
 305	net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 306	return net->ipv4.mrt ? 0 : -ENOMEM;
 
 
 
 
 
 307}
 308
 309static void __net_exit ipmr_rules_exit(struct net *net)
 310{
 
 311	ipmr_free_table(net->ipv4.mrt);
 
 312}
 313#endif
 314
 315static struct mr_table *ipmr_new_table(struct net *net, u32 id)
 
 316{
 317	struct mr_table *mrt;
 318	unsigned int i;
 319
 320	mrt = ipmr_get_table(net, id);
 321	if (mrt != NULL)
 322		return mrt;
 
 323
 324	mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
 325	if (mrt == NULL)
 326		return NULL;
 327	write_pnet(&mrt->net, net);
 328	mrt->id = id;
 
 329
 330	/* Forwarding cache */
 331	for (i = 0; i < MFC_LINES; i++)
 332		INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
 
 
 333
 334	INIT_LIST_HEAD(&mrt->mfc_unres_queue);
 
 
 335
 336	setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
 337		    (unsigned long)mrt);
 
 
 
 
 
 
 338
 339#ifdef CONFIG_IP_PIMSM
 340	mrt->mroute_reg_vif_num = -1;
 341#endif
 342#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 343	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
 344#endif
 345	return mrt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 346}
 347
 348static void ipmr_free_table(struct mr_table *mrt)
 349{
 350	del_timer_sync(&mrt->ipmr_expire_timer);
 351	mroute_clean_tables(mrt);
 
 
 
 
 
 
 352	kfree(mrt);
 353}
 354
 355/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
 356
 357static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
 
 358{
 359	struct net *net = dev_net(dev);
 360
 361	dev_close(dev);
 362
 363	dev = __dev_get_by_name(net, "tunl0");
 364	if (dev) {
 365		const struct net_device_ops *ops = dev->netdev_ops;
 366		struct ifreq ifr;
 367		struct ip_tunnel_parm p;
 368
 369		memset(&p, 0, sizeof(p));
 370		p.iph.daddr = v->vifc_rmt_addr.s_addr;
 371		p.iph.saddr = v->vifc_lcl_addr.s_addr;
 372		p.iph.version = 4;
 373		p.iph.ihl = 5;
 374		p.iph.protocol = IPPROTO_IPIP;
 375		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 376		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 377
 378		if (ops->ndo_do_ioctl) {
 379			mm_segment_t oldfs = get_fs();
 380
 381			set_fs(KERNEL_DS);
 382			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
 383			set_fs(oldfs);
 384		}
 385	}
 386}
 387
 388static
 389struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
 390{
 391	struct net_device  *dev;
 392
 393	dev = __dev_get_by_name(net, "tunl0");
 394
 395	if (dev) {
 396		const struct net_device_ops *ops = dev->netdev_ops;
 397		int err;
 398		struct ifreq ifr;
 399		struct ip_tunnel_parm p;
 400		struct in_device  *in_dev;
 401
 402		memset(&p, 0, sizeof(p));
 403		p.iph.daddr = v->vifc_rmt_addr.s_addr;
 404		p.iph.saddr = v->vifc_lcl_addr.s_addr;
 405		p.iph.version = 4;
 406		p.iph.ihl = 5;
 407		p.iph.protocol = IPPROTO_IPIP;
 408		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 409		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 410
 411		if (ops->ndo_do_ioctl) {
 412			mm_segment_t oldfs = get_fs();
 413
 414			set_fs(KERNEL_DS);
 415			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
 416			set_fs(oldfs);
 417		} else {
 418			err = -EOPNOTSUPP;
 419		}
 420		dev = NULL;
 421
 422		if (err == 0 &&
 423		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
 424			dev->flags |= IFF_MULTICAST;
 425
 426			in_dev = __in_dev_get_rtnl(dev);
 427			if (in_dev == NULL)
 428				goto failure;
 
 
 
 429
 430			ipv4_devconf_setall(in_dev);
 431			neigh_parms_data_state_setall(in_dev->arp_parms);
 432			IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 
 
 
 433
 434			if (dev_open(dev))
 435				goto failure;
 436			dev_hold(dev);
 437		}
 438	}
 439	return dev;
 440
 441failure:
 442	/* allow the register to be completed before unregistering. */
 443	rtnl_unlock();
 444	rtnl_lock();
 
 
 
 
 
 
 
 
 
 
 
 445
 446	unregister_netdevice(dev);
 447	return NULL;
 
 
 448}
 449
 450#ifdef CONFIG_IP_PIMSM
 451
 452static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
 453{
 454	struct net *net = dev_net(dev);
 455	struct mr_table *mrt;
 456	struct flowi4 fl4 = {
 457		.flowi4_oif	= dev->ifindex,
 458		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
 459		.flowi4_mark	= skb->mark,
 460	};
 461	int err;
 462
 463	err = ipmr_fib_lookup(net, &fl4, &mrt);
 464	if (err < 0) {
 465		kfree_skb(skb);
 466		return err;
 467	}
 468
 469	read_lock(&mrt_lock);
 470	dev->stats.tx_bytes += skb->len;
 471	dev->stats.tx_packets++;
 472	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
 473	read_unlock(&mrt_lock);
 
 
 
 
 474	kfree_skb(skb);
 475	return NETDEV_TX_OK;
 476}
 477
 
 
 
 
 
 478static const struct net_device_ops reg_vif_netdev_ops = {
 479	.ndo_start_xmit	= reg_vif_xmit,
 
 480};
 481
 482static void reg_vif_setup(struct net_device *dev)
 483{
 484	dev->type		= ARPHRD_PIMREG;
 485	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
 486	dev->flags		= IFF_NOARP;
 487	dev->netdev_ops		= &reg_vif_netdev_ops,
 488	dev->destructor		= free_netdev;
 489	dev->features		|= NETIF_F_NETNS_LOCAL;
 490}
 491
 492static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 493{
 494	struct net_device *dev;
 495	struct in_device *in_dev;
 496	char name[IFNAMSIZ];
 497
 498	if (mrt->id == RT_TABLE_DEFAULT)
 499		sprintf(name, "pimreg");
 500	else
 501		sprintf(name, "pimreg%u", mrt->id);
 502
 503	dev = alloc_netdev(0, name, reg_vif_setup);
 504
 505	if (dev == NULL)
 506		return NULL;
 507
 508	dev_net_set(dev, net);
 509
 510	if (register_netdevice(dev)) {
 511		free_netdev(dev);
 512		return NULL;
 513	}
 514	dev->iflink = 0;
 515
 516	rcu_read_lock();
 517	in_dev = __in_dev_get_rcu(dev);
 518	if (!in_dev) {
 519		rcu_read_unlock();
 520		goto failure;
 521	}
 522
 523	ipv4_devconf_setall(in_dev);
 524	neigh_parms_data_state_setall(in_dev->arp_parms);
 525	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 526	rcu_read_unlock();
 527
 528	if (dev_open(dev))
 529		goto failure;
 530
 531	dev_hold(dev);
 532
 533	return dev;
 534
 535failure:
 536	/* allow the register to be completed before unregistering. */
 537	rtnl_unlock();
 538	rtnl_lock();
 539
 540	unregister_netdevice(dev);
 541	return NULL;
 542}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 543#endif
 544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 545/**
 546 *	vif_delete - Delete a VIF entry
 
 
 547 *	@notify: Set to 1, if the caller is a notifier_call
 
 548 */
 549
 550static int vif_delete(struct mr_table *mrt, int vifi, int notify,
 551		      struct list_head *head)
 552{
 
 553	struct vif_device *v;
 554	struct net_device *dev;
 555	struct in_device *in_dev;
 556
 557	if (vifi < 0 || vifi >= mrt->maxvif)
 558		return -EADDRNOTAVAIL;
 559
 560	v = &mrt->vif_table[vifi];
 561
 562	write_lock_bh(&mrt_lock);
 563	dev = v->dev;
 564	v->dev = NULL;
 565
 566	if (!dev) {
 567		write_unlock_bh(&mrt_lock);
 568		return -EADDRNOTAVAIL;
 569	}
 570
 571#ifdef CONFIG_IP_PIMSM
 572	if (vifi == mrt->mroute_reg_vif_num)
 573		mrt->mroute_reg_vif_num = -1;
 574#endif
 575
 
 
 
 
 
 
 
 
 
 576	if (vifi + 1 == mrt->maxvif) {
 577		int tmp;
 578
 579		for (tmp = vifi - 1; tmp >= 0; tmp--) {
 580			if (VIF_EXISTS(mrt, tmp))
 581				break;
 582		}
 583		mrt->maxvif = tmp+1;
 584	}
 585
 586	write_unlock_bh(&mrt_lock);
 587
 588	dev_set_allmulti(dev, -1);
 589
 590	in_dev = __in_dev_get_rtnl(dev);
 591	if (in_dev) {
 592		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
 593		inet_netconf_notify_devconf(dev_net(dev),
 594					    NETCONFA_MC_FORWARDING,
 595					    dev->ifindex, &in_dev->cnf);
 596		ip_rt_multicast_event(in_dev);
 597	}
 598
 599	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
 600		unregister_netdevice_queue(dev, head);
 601
 602	dev_put(dev);
 603	return 0;
 604}
 605
 606static void ipmr_cache_free_rcu(struct rcu_head *head)
 607{
 608	struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
 609
 610	kmem_cache_free(mrt_cachep, c);
 611}
 612
 613static inline void ipmr_cache_free(struct mfc_cache *c)
 614{
 615	call_rcu(&c->rcu, ipmr_cache_free_rcu);
 616}
 617
 618/* Destroy an unresolved cache entry, killing queued skbs
 619 * and reporting error to netlink readers.
 620 */
 621
 622static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
 623{
 624	struct net *net = read_pnet(&mrt->net);
 625	struct sk_buff *skb;
 626	struct nlmsgerr *e;
 627
 628	atomic_dec(&mrt->cache_resolve_queue_len);
 629
 630	while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
 631		if (ip_hdr(skb)->version == 0) {
 632			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 
 633			nlh->nlmsg_type = NLMSG_ERROR;
 634			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
 635			skb_trim(skb, nlh->nlmsg_len);
 636			e = nlmsg_data(nlh);
 637			e->error = -ETIMEDOUT;
 638			memset(&e->msg, 0, sizeof(e->msg));
 639
 640			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
 641		} else {
 642			kfree_skb(skb);
 643		}
 644	}
 645
 646	ipmr_cache_free(c);
 647}
 648
 649
 650/* Timer process for the unresolved queue. */
 651
 652static void ipmr_expire_process(unsigned long arg)
 653{
 654	struct mr_table *mrt = (struct mr_table *)arg;
 655	unsigned long now;
 656	unsigned long expires;
 657	struct mfc_cache *c, *next;
 658
 659	if (!spin_trylock(&mfc_unres_lock)) {
 660		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
 661		return;
 662	}
 663
 664	if (list_empty(&mrt->mfc_unres_queue))
 665		goto out;
 666
 667	now = jiffies;
 668	expires = 10*HZ;
 669
 670	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
 671		if (time_after(c->mfc_un.unres.expires, now)) {
 672			unsigned long interval = c->mfc_un.unres.expires - now;
 673			if (interval < expires)
 674				expires = interval;
 675			continue;
 676		}
 677
 678		list_del(&c->list);
 679		mroute_netlink_event(mrt, c, RTM_DELROUTE);
 680		ipmr_destroy_unres(mrt, c);
 681	}
 682
 683	if (!list_empty(&mrt->mfc_unres_queue))
 684		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
 685
 686out:
 687	spin_unlock(&mfc_unres_lock);
 688}
 689
 690/* Fill oifs list. It is called under write locked mrt_lock. */
 691
 692static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
 693				   unsigned char *ttls)
 694{
 695	int vifi;
 696
 697	cache->mfc_un.res.minvif = MAXVIFS;
 698	cache->mfc_un.res.maxvif = 0;
 699	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
 700
 701	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
 702		if (VIF_EXISTS(mrt, vifi) &&
 703		    ttls[vifi] && ttls[vifi] < 255) {
 704			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
 705			if (cache->mfc_un.res.minvif > vifi)
 706				cache->mfc_un.res.minvif = vifi;
 707			if (cache->mfc_un.res.maxvif <= vifi)
 708				cache->mfc_un.res.maxvif = vifi + 1;
 709		}
 710	}
 
 711}
 712
 713static int vif_add(struct net *net, struct mr_table *mrt,
 714		   struct vifctl *vifc, int mrtsock)
 715{
 
 716	int vifi = vifc->vifc_vifi;
 717	struct vif_device *v = &mrt->vif_table[vifi];
 718	struct net_device *dev;
 719	struct in_device *in_dev;
 720	int err;
 721
 722	/* Is vif busy ? */
 723	if (VIF_EXISTS(mrt, vifi))
 724		return -EADDRINUSE;
 725
 726	switch (vifc->vifc_flags) {
 727#ifdef CONFIG_IP_PIMSM
 728	case VIFF_REGISTER:
 729		/*
 730		 * Special Purpose VIF in PIM
 
 731		 * All the packets will be sent to the daemon
 732		 */
 733		if (mrt->mroute_reg_vif_num >= 0)
 734			return -EADDRINUSE;
 735		dev = ipmr_reg_vif(net, mrt);
 736		if (!dev)
 737			return -ENOBUFS;
 738		err = dev_set_allmulti(dev, 1);
 739		if (err) {
 740			unregister_netdevice(dev);
 741			dev_put(dev);
 742			return err;
 743		}
 744		break;
 745#endif
 746	case VIFF_TUNNEL:
 747		dev = ipmr_new_tunnel(net, vifc);
 748		if (!dev)
 749			return -ENOBUFS;
 750		err = dev_set_allmulti(dev, 1);
 751		if (err) {
 752			ipmr_del_tunnel(dev, vifc);
 753			dev_put(dev);
 754			return err;
 755		}
 756		break;
 757
 758	case VIFF_USE_IFINDEX:
 759	case 0:
 760		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
 761			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
 762			if (dev && __in_dev_get_rtnl(dev) == NULL) {
 763				dev_put(dev);
 764				return -EADDRNOTAVAIL;
 765			}
 766		} else {
 767			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
 768		}
 769		if (!dev)
 770			return -EADDRNOTAVAIL;
 771		err = dev_set_allmulti(dev, 1);
 772		if (err) {
 773			dev_put(dev);
 774			return err;
 775		}
 776		break;
 777	default:
 778		return -EINVAL;
 779	}
 780
 781	in_dev = __in_dev_get_rtnl(dev);
 782	if (!in_dev) {
 783		dev_put(dev);
 784		return -EADDRNOTAVAIL;
 785	}
 786	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
 787	inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
 788				    &in_dev->cnf);
 789	ip_rt_multicast_event(in_dev);
 790
 791	/* Fill in the VIF structures */
 
 
 
 
 
 
 
 
 
 
 
 
 792
 793	v->rate_limit = vifc->vifc_rate_limit;
 794	v->local = vifc->vifc_lcl_addr.s_addr;
 795	v->remote = vifc->vifc_rmt_addr.s_addr;
 796	v->flags = vifc->vifc_flags;
 797	if (!mrtsock)
 798		v->flags |= VIFF_STATIC;
 799	v->threshold = vifc->vifc_threshold;
 800	v->bytes_in = 0;
 801	v->bytes_out = 0;
 802	v->pkt_in = 0;
 803	v->pkt_out = 0;
 804	v->link = dev->ifindex;
 805	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
 806		v->link = dev->iflink;
 807
 808	/* And finish update writing critical data */
 809	write_lock_bh(&mrt_lock);
 810	v->dev = dev;
 811#ifdef CONFIG_IP_PIMSM
 812	if (v->flags & VIFF_REGISTER)
 813		mrt->mroute_reg_vif_num = vifi;
 814#endif
 
 815	if (vifi+1 > mrt->maxvif)
 816		mrt->maxvif = vifi+1;
 817	write_unlock_bh(&mrt_lock);
 
 
 818	return 0;
 819}
 820
 821/* called with rcu_read_lock() */
 822static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
 823					 __be32 origin,
 824					 __be32 mcastgrp)
 825{
 826	int line = MFC_HASH(mcastgrp, origin);
 827	struct mfc_cache *c;
 828
 829	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
 830		if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
 831			return c;
 832	}
 833	return NULL;
 834}
 835
 836/* Look for a (*,*,oif) entry */
 837static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
 838						    int vifi)
 839{
 840	int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
 841	struct mfc_cache *c;
 842
 843	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
 844		if (c->mfc_origin == htonl(INADDR_ANY) &&
 845		    c->mfc_mcastgrp == htonl(INADDR_ANY) &&
 846		    c->mfc_un.res.ttls[vifi] < 255)
 847			return c;
 848
 849	return NULL;
 850}
 851
 852/* Look for a (*,G) entry */
 853static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
 854					     __be32 mcastgrp, int vifi)
 855{
 856	int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
 857	struct mfc_cache *c, *proxy;
 
 
 858
 859	if (mcastgrp == htonl(INADDR_ANY))
 860		goto skip;
 
 
 861
 862	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
 863		if (c->mfc_origin == htonl(INADDR_ANY) &&
 864		    c->mfc_mcastgrp == mcastgrp) {
 865			if (c->mfc_un.res.ttls[vifi] < 255)
 866				return c;
 867
 868			/* It's ok if the vifi is part of the static tree */
 869			proxy = ipmr_cache_find_any_parent(mrt,
 870							   c->mfc_parent);
 871			if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
 872				return c;
 873		}
 874
 875skip:
 876	return ipmr_cache_find_any_parent(mrt, vifi);
 877}
 878
 879/*
 880 *	Allocate a multicast cache entry
 881 */
 882static struct mfc_cache *ipmr_cache_alloc(void)
 883{
 884	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
 885
 886	if (c)
 887		c->mfc_un.res.minvif = MAXVIFS;
 
 
 
 
 888	return c;
 889}
 890
 891static struct mfc_cache *ipmr_cache_alloc_unres(void)
 892{
 893	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
 894
 895	if (c) {
 896		skb_queue_head_init(&c->mfc_un.unres.unresolved);
 897		c->mfc_un.unres.expires = jiffies + 10*HZ;
 898	}
 899	return c;
 900}
 901
 902/*
 903 *	A cache entry has gone into a resolved state from queued
 904 */
 905
 906static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
 907			       struct mfc_cache *uc, struct mfc_cache *c)
 908{
 909	struct sk_buff *skb;
 910	struct nlmsgerr *e;
 911
 912	/* Play the pending entries through our router */
 913
 914	while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
 915		if (ip_hdr(skb)->version == 0) {
 916			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 
 917
 918			if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
 
 919				nlh->nlmsg_len = skb_tail_pointer(skb) -
 920						 (u8 *)nlh;
 921			} else {
 922				nlh->nlmsg_type = NLMSG_ERROR;
 923				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
 924				skb_trim(skb, nlh->nlmsg_len);
 925				e = nlmsg_data(nlh);
 926				e->error = -EMSGSIZE;
 927				memset(&e->msg, 0, sizeof(e->msg));
 928			}
 929
 930			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
 931		} else {
 932			ip_mr_forward(net, mrt, skb, c, 0);
 
 
 933		}
 934	}
 935}
 936
 937/*
 938 *	Bounce a cache query up to mrouted. We could use netlink for this but mrouted
 939 *	expects the following bizarre scheme.
 940 *
 941 *	Called under mrt_lock.
 942 */
 943
 944static int ipmr_cache_report(struct mr_table *mrt,
 945			     struct sk_buff *pkt, vifi_t vifi, int assert)
 946{
 947	struct sk_buff *skb;
 948	const int ihl = ip_hdrlen(pkt);
 
 949	struct igmphdr *igmp;
 950	struct igmpmsg *msg;
 951	struct sock *mroute_sk;
 952	int ret;
 953
 954#ifdef CONFIG_IP_PIMSM
 955	if (assert == IGMPMSG_WHOLEPKT)
 
 
 
 956		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
 957	else
 958#endif
 959		skb = alloc_skb(128, GFP_ATOMIC);
 960
 961	if (!skb)
 962		return -ENOBUFS;
 963
 964#ifdef CONFIG_IP_PIMSM
 965	if (assert == IGMPMSG_WHOLEPKT) {
 966		/* Ugly, but we have no choice with this interface.
 967		 * Duplicate old header, fix ihl, length etc.
 968		 * And all this only to mangle msg->im_msgtype and
 969		 * to set msg->im_mbz to "mbz" :-)
 970		 */
 971		skb_push(skb, sizeof(struct iphdr));
 972		skb_reset_network_header(skb);
 973		skb_reset_transport_header(skb);
 974		msg = (struct igmpmsg *)skb_network_header(skb);
 975		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
 976		msg->im_msgtype = IGMPMSG_WHOLEPKT;
 977		msg->im_mbz = 0;
 978		msg->im_vif = mrt->mroute_reg_vif_num;
 
 
 
 
 
 
 
 
 
 979		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
 980		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
 981					     sizeof(struct iphdr));
 982	} else
 983#endif
 984	{
 985
 986	/* Copy the IP header */
 987
 988	skb_set_network_header(skb, skb->len);
 989	skb_put(skb, ihl);
 990	skb_copy_to_linear_data(skb, pkt->data, ihl);
 991	ip_hdr(skb)->protocol = 0;	/* Flag to the kernel this is a route add */
 992	msg = (struct igmpmsg *)skb_network_header(skb);
 993	msg->im_vif = vifi;
 994	skb_dst_set(skb, dst_clone(skb_dst(pkt)));
 995
 996	/* Add our header */
 997
 998	igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
 999	igmp->type	=
1000	msg->im_msgtype = assert;
1001	igmp->code	= 0;
1002	ip_hdr(skb)->tot_len = htons(skb->len);		/* Fix the length */
1003	skb->transport_header = skb->network_header;
1004	}
1005
1006	rcu_read_lock();
1007	mroute_sk = rcu_dereference(mrt->mroute_sk);
1008	if (mroute_sk == NULL) {
1009		rcu_read_unlock();
1010		kfree_skb(skb);
1011		return -EINVAL;
1012	}
1013
1014	/* Deliver to mrouted */
1015
1016	ret = sock_queue_rcv_skb(mroute_sk, skb);
1017	rcu_read_unlock();
1018	if (ret < 0) {
1019		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1020		kfree_skb(skb);
1021	}
1022
1023	return ret;
1024}
1025
1026/*
1027 *	Queue a packet for resolution. It gets locked cache entry!
1028 */
1029
1030static int
1031ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
1032{
 
 
1033	bool found = false;
1034	int err;
1035	struct mfc_cache *c;
1036	const struct iphdr *iph = ip_hdr(skb);
1037
1038	spin_lock_bh(&mfc_unres_lock);
1039	list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1040		if (c->mfc_mcastgrp == iph->daddr &&
1041		    c->mfc_origin == iph->saddr) {
1042			found = true;
1043			break;
1044		}
1045	}
1046
1047	if (!found) {
1048		/* Create a new entry if allowable */
1049
1050		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1051		    (c = ipmr_cache_alloc_unres()) == NULL) {
1052			spin_unlock_bh(&mfc_unres_lock);
1053
1054			kfree_skb(skb);
1055			return -ENOBUFS;
1056		}
1057
1058		/* Fill in the new cache entry */
1059
1060		c->mfc_parent	= -1;
1061		c->mfc_origin	= iph->saddr;
1062		c->mfc_mcastgrp	= iph->daddr;
1063
1064		/* Reflect first query at mrouted. */
1065
1066		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
 
1067		if (err < 0) {
1068			/* If the report failed throw the cache entry
1069			   out - Brad Parker
1070			 */
1071			spin_unlock_bh(&mfc_unres_lock);
1072
1073			ipmr_cache_free(c);
1074			kfree_skb(skb);
1075			return err;
1076		}
1077
1078		atomic_inc(&mrt->cache_resolve_queue_len);
1079		list_add(&c->list, &mrt->mfc_unres_queue);
1080		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1081
1082		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1083			mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
 
1084	}
1085
1086	/* See if we can append the packet */
1087
1088	if (c->mfc_un.unres.unresolved.qlen > 3) {
1089		kfree_skb(skb);
1090		err = -ENOBUFS;
1091	} else {
1092		skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
 
 
 
 
1093		err = 0;
1094	}
1095
1096	spin_unlock_bh(&mfc_unres_lock);
1097	return err;
1098}
1099
1100/*
1101 *	MFC cache manipulation by user space mroute daemon
1102 */
1103
1104static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1105{
1106	int line;
1107	struct mfc_cache *c, *next;
1108
1109	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
 
 
 
 
 
 
 
 
 
 
 
1110
1111	list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1112		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1113		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1114		    (parent == -1 || parent == c->mfc_parent)) {
1115			list_del_rcu(&c->list);
1116			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1117			ipmr_cache_free(c);
1118			return 0;
1119		}
1120	}
1121	return -ENOENT;
1122}
1123
1124static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1125			struct mfcctl *mfc, int mrtsock, int parent)
1126{
1127	bool found = false;
1128	int line;
1129	struct mfc_cache *uc, *c;
 
 
 
1130
1131	if (mfc->mfcc_parent >= MAXVIFS)
1132		return -ENFILE;
1133
1134	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1135
1136	list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1137		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1138		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1139		    (parent == -1 || parent == c->mfc_parent)) {
1140			found = true;
1141			break;
1142		}
1143	}
1144
1145	if (found) {
1146		write_lock_bh(&mrt_lock);
1147		c->mfc_parent = mfc->mfcc_parent;
1148		ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1149		if (!mrtsock)
1150			c->mfc_flags |= MFC_STATIC;
1151		write_unlock_bh(&mrt_lock);
 
 
1152		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1153		return 0;
1154	}
1155
1156	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1157	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1158		return -EINVAL;
1159
1160	c = ipmr_cache_alloc();
1161	if (c == NULL)
1162		return -ENOMEM;
1163
1164	c->mfc_origin = mfc->mfcc_origin.s_addr;
1165	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1166	c->mfc_parent = mfc->mfcc_parent;
1167	ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1168	if (!mrtsock)
1169		c->mfc_flags |= MFC_STATIC;
1170
1171	list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1172
1173	/*
1174	 *	Check to see if we resolved a queued list. If so we
1175	 *	need to send on the frames and tidy up.
 
 
 
 
 
1176	 */
1177	found = false;
1178	spin_lock_bh(&mfc_unres_lock);
1179	list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
 
1180		if (uc->mfc_origin == c->mfc_origin &&
1181		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1182			list_del(&uc->list);
1183			atomic_dec(&mrt->cache_resolve_queue_len);
1184			found = true;
1185			break;
1186		}
1187	}
1188	if (list_empty(&mrt->mfc_unres_queue))
1189		del_timer(&mrt->ipmr_expire_timer);
1190	spin_unlock_bh(&mfc_unres_lock);
1191
1192	if (found) {
1193		ipmr_cache_resolve(net, mrt, uc, c);
1194		ipmr_cache_free(uc);
1195	}
 
1196	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1197	return 0;
1198}
1199
1200/*
1201 *	Close the multicast socket, and clear the vif tables etc
1202 */
1203
1204static void mroute_clean_tables(struct mr_table *mrt)
1205{
1206	int i;
 
 
1207	LIST_HEAD(list);
1208	struct mfc_cache *c, *next;
1209
1210	/* Shut down all active vif entries */
1211
1212	for (i = 0; i < mrt->maxvif; i++) {
1213		if (!(mrt->vif_table[i].flags & VIFF_STATIC))
 
 
 
1214			vif_delete(mrt, i, 0, &list);
 
 
1215	}
1216	unregister_netdevice_many(&list);
1217
1218	/* Wipe the cache */
1219
1220	for (i = 0; i < MFC_LINES; i++) {
1221		list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1222			if (c->mfc_flags & MFC_STATIC)
1223				continue;
 
1224			list_del_rcu(&c->list);
1225			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1226			ipmr_cache_free(c);
 
 
 
1227		}
1228	}
1229
1230	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1231		spin_lock_bh(&mfc_unres_lock);
1232		list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1233			list_del(&c->list);
1234			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1235			ipmr_destroy_unres(mrt, c);
 
 
 
 
1236		}
1237		spin_unlock_bh(&mfc_unres_lock);
1238	}
1239}
1240
1241/* called from ip_ra_control(), before an RCU grace period,
1242 * we dont need to call synchronize_rcu() here
1243 */
1244static void mrtsock_destruct(struct sock *sk)
1245{
1246	struct net *net = sock_net(sk);
1247	struct mr_table *mrt;
1248
1249	rtnl_lock();
1250	ipmr_for_each_table(mrt, net) {
1251		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1252			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1253			inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
 
1254						    NETCONFA_IFINDEX_ALL,
1255						    net->ipv4.devconf_all);
1256			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1257			mroute_clean_tables(mrt);
1258		}
1259	}
1260	rtnl_unlock();
1261}
1262
1263/*
1264 *	Socket options and virtual interface manipulation. The whole
1265 *	virtual interface system is a complete heap, but unfortunately
1266 *	that's how BSD mrouted happens to think. Maybe one day with a proper
1267 *	MOSPF/PIM router set up we can clean this up.
1268 */
1269
1270int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
 
1271{
1272	int ret, parent = 0;
1273	struct vifctl vif;
1274	struct mfcctl mfc;
1275	struct net *net = sock_net(sk);
 
1276	struct mr_table *mrt;
 
 
 
 
1277
 
 
1278	if (sk->sk_type != SOCK_RAW ||
1279	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1280		return -EOPNOTSUPP;
1281
1282	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1283	if (mrt == NULL)
1284		return -ENOENT;
1285
 
 
 
 
 
1286	if (optname != MRT_INIT) {
1287		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1288		    !ns_capable(net->user_ns, CAP_NET_ADMIN))
1289			return -EACCES;
 
 
1290	}
1291
1292	switch (optname) {
1293	case MRT_INIT:
1294		if (optlen != sizeof(int))
1295			return -EINVAL;
1296
1297		rtnl_lock();
1298		if (rtnl_dereference(mrt->mroute_sk)) {
1299			rtnl_unlock();
1300			return -EADDRINUSE;
1301		}
1302
1303		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1304		if (ret == 0) {
1305			rcu_assign_pointer(mrt->mroute_sk, sk);
1306			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1307			inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
 
1308						    NETCONFA_IFINDEX_ALL,
1309						    net->ipv4.devconf_all);
1310		}
1311		rtnl_unlock();
1312		return ret;
1313	case MRT_DONE:
1314		if (sk != rcu_access_pointer(mrt->mroute_sk))
1315			return -EACCES;
1316		return ip_ra_control(sk, 0, NULL);
 
 
 
 
 
 
 
 
 
1317	case MRT_ADD_VIF:
1318	case MRT_DEL_VIF:
1319		if (optlen != sizeof(vif))
1320			return -EINVAL;
1321		if (copy_from_user(&vif, optval, sizeof(vif)))
1322			return -EFAULT;
1323		if (vif.vifc_vifi >= MAXVIFS)
1324			return -ENFILE;
1325		rtnl_lock();
 
 
 
 
 
1326		if (optname == MRT_ADD_VIF) {
1327			ret = vif_add(net, mrt, &vif,
1328				      sk == rtnl_dereference(mrt->mroute_sk));
1329		} else {
1330			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1331		}
1332		rtnl_unlock();
1333		return ret;
1334
1335		/*
1336		 *	Manipulate the forwarding caches. These live
1337		 *	in a sort of kernel/user symbiosis.
1338		 */
1339	case MRT_ADD_MFC:
1340	case MRT_DEL_MFC:
1341		parent = -1;
 
1342	case MRT_ADD_MFC_PROXY:
1343	case MRT_DEL_MFC_PROXY:
1344		if (optlen != sizeof(mfc))
1345			return -EINVAL;
1346		if (copy_from_user(&mfc, optval, sizeof(mfc)))
1347			return -EFAULT;
 
 
 
 
1348		if (parent == 0)
1349			parent = mfc.mfcc_parent;
1350		rtnl_lock();
1351		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1352			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1353		else
1354			ret = ipmr_mfc_add(net, mrt, &mfc,
1355					   sk == rtnl_dereference(mrt->mroute_sk),
1356					   parent);
1357		rtnl_unlock();
1358		return ret;
1359		/*
1360		 *	Control PIM assert.
1361		 */
 
 
 
 
 
 
 
 
1362	case MRT_ASSERT:
1363	{
1364		int v;
1365		if (optlen != sizeof(v))
1366			return -EINVAL;
1367		if (get_user(v, (int __user *)optval))
1368			return -EFAULT;
1369		mrt->mroute_do_assert = v;
1370		return 0;
1371	}
1372#ifdef CONFIG_IP_PIMSM
1373	case MRT_PIM:
1374	{
1375		int v;
1376
1377		if (optlen != sizeof(v))
1378			return -EINVAL;
1379		if (get_user(v, (int __user *)optval))
1380			return -EFAULT;
1381		v = !!v;
 
 
 
 
1382
1383		rtnl_lock();
1384		ret = 0;
1385		if (v != mrt->mroute_do_pim) {
1386			mrt->mroute_do_pim = v;
1387			mrt->mroute_do_assert = v;
 
1388		}
1389		rtnl_unlock();
1390		return ret;
1391	}
1392#endif
1393#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1394	case MRT_TABLE:
1395	{
1396		u32 v;
1397
1398		if (optlen != sizeof(u32))
1399			return -EINVAL;
1400		if (get_user(v, (u32 __user *)optval))
1401			return -EFAULT;
1402
1403		/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
1404		if (v != RT_TABLE_DEFAULT && v >= 1000000000)
1405			return -EINVAL;
 
1406
1407		rtnl_lock();
1408		ret = 0;
1409		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1410			ret = -EBUSY;
1411		} else {
1412			if (!ipmr_new_table(net, v))
1413				ret = -ENOMEM;
 
1414			else
1415				raw_sk(sk)->ipmr_table = v;
1416		}
1417		rtnl_unlock();
1418		return ret;
1419	}
1420#endif
1421	/*
1422	 *	Spurious command, or MRT_VERSION which you cannot
1423	 *	set.
1424	 */
1425	default:
1426		return -ENOPROTOOPT;
1427	}
 
 
 
 
1428}
1429
1430/*
1431 *	Getsock opt support for the multicast routing system.
1432 */
 
 
 
 
1433
1434int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1435{
1436	int olr;
1437	int val;
1438	struct net *net = sock_net(sk);
1439	struct mr_table *mrt;
1440
1441	if (sk->sk_type != SOCK_RAW ||
1442	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1443		return -EOPNOTSUPP;
1444
1445	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1446	if (mrt == NULL)
1447		return -ENOENT;
1448
1449	if (optname != MRT_VERSION &&
1450#ifdef CONFIG_IP_PIMSM
1451	   optname != MRT_PIM &&
1452#endif
1453	   optname != MRT_ASSERT)
 
 
 
 
 
 
 
 
1454		return -ENOPROTOOPT;
 
1455
1456	if (get_user(olr, optlen))
1457		return -EFAULT;
1458
1459	olr = min_t(unsigned int, olr, sizeof(int));
1460	if (olr < 0)
1461		return -EINVAL;
1462
1463	if (put_user(olr, optlen))
 
 
1464		return -EFAULT;
1465	if (optname == MRT_VERSION)
1466		val = 0x0305;
1467#ifdef CONFIG_IP_PIMSM
1468	else if (optname == MRT_PIM)
1469		val = mrt->mroute_do_pim;
1470#endif
1471	else
1472		val = mrt->mroute_do_assert;
1473	if (copy_to_user(optval, &val, olr))
1474		return -EFAULT;
1475	return 0;
1476}
1477
1478/*
1479 *	The IP multicast ioctl support routines.
1480 */
1481
1482int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1483{
1484	struct sioc_sg_req sr;
1485	struct sioc_vif_req vr;
1486	struct vif_device *vif;
1487	struct mfc_cache *c;
1488	struct net *net = sock_net(sk);
 
 
1489	struct mr_table *mrt;
1490
1491	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1492	if (mrt == NULL)
1493		return -ENOENT;
1494
1495	switch (cmd) {
1496	case SIOCGETVIFCNT:
1497		if (copy_from_user(&vr, arg, sizeof(vr)))
1498			return -EFAULT;
1499		if (vr.vifi >= mrt->maxvif)
1500			return -EINVAL;
1501		read_lock(&mrt_lock);
1502		vif = &mrt->vif_table[vr.vifi];
1503		if (VIF_EXISTS(mrt, vr.vifi)) {
1504			vr.icount = vif->pkt_in;
1505			vr.ocount = vif->pkt_out;
1506			vr.ibytes = vif->bytes_in;
1507			vr.obytes = vif->bytes_out;
1508			read_unlock(&mrt_lock);
 
1509
1510			if (copy_to_user(arg, &vr, sizeof(vr)))
1511				return -EFAULT;
1512			return 0;
1513		}
1514		read_unlock(&mrt_lock);
1515		return -EADDRNOTAVAIL;
1516	case SIOCGETSGCNT:
1517		if (copy_from_user(&sr, arg, sizeof(sr)))
1518			return -EFAULT;
1519
1520		rcu_read_lock();
1521		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1522		if (c) {
1523			sr.pktcnt = c->mfc_un.res.pkt;
1524			sr.bytecnt = c->mfc_un.res.bytes;
1525			sr.wrong_if = c->mfc_un.res.wrong_if;
1526			rcu_read_unlock();
1527
1528			if (copy_to_user(arg, &sr, sizeof(sr)))
1529				return -EFAULT;
1530			return 0;
1531		}
1532		rcu_read_unlock();
1533		return -EADDRNOTAVAIL;
1534	default:
1535		return -ENOIOCTLCMD;
1536	}
1537}
1538
1539#ifdef CONFIG_COMPAT
1540struct compat_sioc_sg_req {
1541	struct in_addr src;
1542	struct in_addr grp;
1543	compat_ulong_t pktcnt;
1544	compat_ulong_t bytecnt;
1545	compat_ulong_t wrong_if;
1546};
1547
1548struct compat_sioc_vif_req {
1549	vifi_t	vifi;		/* Which iface */
1550	compat_ulong_t icount;
1551	compat_ulong_t ocount;
1552	compat_ulong_t ibytes;
1553	compat_ulong_t obytes;
1554};
1555
1556int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1557{
1558	struct compat_sioc_sg_req sr;
1559	struct compat_sioc_vif_req vr;
1560	struct vif_device *vif;
1561	struct mfc_cache *c;
1562	struct net *net = sock_net(sk);
1563	struct mr_table *mrt;
1564
1565	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1566	if (mrt == NULL)
1567		return -ENOENT;
1568
1569	switch (cmd) {
1570	case SIOCGETVIFCNT:
1571		if (copy_from_user(&vr, arg, sizeof(vr)))
1572			return -EFAULT;
1573		if (vr.vifi >= mrt->maxvif)
1574			return -EINVAL;
1575		read_lock(&mrt_lock);
 
1576		vif = &mrt->vif_table[vr.vifi];
1577		if (VIF_EXISTS(mrt, vr.vifi)) {
1578			vr.icount = vif->pkt_in;
1579			vr.ocount = vif->pkt_out;
1580			vr.ibytes = vif->bytes_in;
1581			vr.obytes = vif->bytes_out;
1582			read_unlock(&mrt_lock);
1583
1584			if (copy_to_user(arg, &vr, sizeof(vr)))
1585				return -EFAULT;
1586			return 0;
1587		}
1588		read_unlock(&mrt_lock);
1589		return -EADDRNOTAVAIL;
1590	case SIOCGETSGCNT:
1591		if (copy_from_user(&sr, arg, sizeof(sr)))
1592			return -EFAULT;
1593
1594		rcu_read_lock();
1595		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1596		if (c) {
1597			sr.pktcnt = c->mfc_un.res.pkt;
1598			sr.bytecnt = c->mfc_un.res.bytes;
1599			sr.wrong_if = c->mfc_un.res.wrong_if;
1600			rcu_read_unlock();
1601
1602			if (copy_to_user(arg, &sr, sizeof(sr)))
1603				return -EFAULT;
1604			return 0;
1605		}
1606		rcu_read_unlock();
1607		return -EADDRNOTAVAIL;
1608	default:
1609		return -ENOIOCTLCMD;
1610	}
1611}
1612#endif
1613
1614
1615static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1616{
1617	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1618	struct net *net = dev_net(dev);
1619	struct mr_table *mrt;
1620	struct vif_device *v;
1621	int ct;
1622
1623	if (event != NETDEV_UNREGISTER)
1624		return NOTIFY_DONE;
1625
1626	ipmr_for_each_table(mrt, net) {
1627		v = &mrt->vif_table[0];
1628		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1629			if (v->dev == dev)
1630				vif_delete(mrt, ct, 1, NULL);
1631		}
1632	}
1633	return NOTIFY_DONE;
1634}
1635
1636
1637static struct notifier_block ip_mr_notifier = {
1638	.notifier_call = ipmr_device_event,
1639};
1640
1641/*
1642 *	Encapsulate a packet by attaching a valid IPIP header to it.
1643 *	This avoids tunnel drivers and other mess and gives us the speed so
1644 *	important for multicast video.
1645 */
1646
1647static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1648{
1649	struct iphdr *iph;
1650	const struct iphdr *old_iph = ip_hdr(skb);
1651
1652	skb_push(skb, sizeof(struct iphdr));
1653	skb->transport_header = skb->network_header;
1654	skb_reset_network_header(skb);
1655	iph = ip_hdr(skb);
1656
1657	iph->version	=	4;
1658	iph->tos	=	old_iph->tos;
1659	iph->ttl	=	old_iph->ttl;
1660	iph->frag_off	=	0;
1661	iph->daddr	=	daddr;
1662	iph->saddr	=	saddr;
1663	iph->protocol	=	IPPROTO_IPIP;
1664	iph->ihl	=	5;
1665	iph->tot_len	=	htons(skb->len);
1666	ip_select_ident(skb, skb_dst(skb), NULL);
1667	ip_send_check(iph);
1668
1669	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1670	nf_reset(skb);
1671}
1672
1673static inline int ipmr_forward_finish(struct sk_buff *skb)
 
1674{
1675	struct ip_options *opt = &(IPCB(skb)->opt);
1676
1677	IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1678	IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
1679
1680	if (unlikely(opt->optlen))
1681		ip_forward_options(skb);
1682
1683	return dst_output(skb);
1684}
1685
1686/*
1687 *	Processing handlers for ipmr_forward
1688 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1689
1690static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1691			    struct sk_buff *skb, struct mfc_cache *c, int vifi)
1692{
1693	const struct iphdr *iph = ip_hdr(skb);
1694	struct vif_device *vif = &mrt->vif_table[vifi];
 
1695	struct net_device *dev;
1696	struct rtable *rt;
1697	struct flowi4 fl4;
1698	int    encap = 0;
1699
1700	if (vif->dev == NULL)
 
1701		goto out_free;
1702
1703#ifdef CONFIG_IP_PIMSM
1704	if (vif->flags & VIFF_REGISTER) {
1705		vif->pkt_out++;
1706		vif->bytes_out += skb->len;
1707		vif->dev->stats.tx_bytes += skb->len;
1708		vif->dev->stats.tx_packets++;
1709		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1710		goto out_free;
1711	}
1712#endif
 
 
1713
1714	if (vif->flags & VIFF_TUNNEL) {
1715		rt = ip_route_output_ports(net, &fl4, NULL,
1716					   vif->remote, vif->local,
1717					   0, 0,
1718					   IPPROTO_IPIP,
1719					   RT_TOS(iph->tos), vif->link);
1720		if (IS_ERR(rt))
1721			goto out_free;
1722		encap = sizeof(struct iphdr);
1723	} else {
1724		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1725					   0, 0,
1726					   IPPROTO_IPIP,
1727					   RT_TOS(iph->tos), vif->link);
1728		if (IS_ERR(rt))
1729			goto out_free;
1730	}
1731
1732	dev = rt->dst.dev;
1733
1734	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1735		/* Do not fragment multicasts. Alas, IPv4 does not
1736		 * allow to send ICMP, so that packets will disappear
1737		 * to blackhole.
1738		 */
1739
1740		IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1741		ip_rt_put(rt);
1742		goto out_free;
1743	}
1744
1745	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1746
1747	if (skb_cow(skb, encap)) {
1748		ip_rt_put(rt);
1749		goto out_free;
1750	}
1751
1752	vif->pkt_out++;
1753	vif->bytes_out += skb->len;
1754
1755	skb_dst_drop(skb);
1756	skb_dst_set(skb, &rt->dst);
1757	ip_decrease_ttl(ip_hdr(skb));
1758
1759	/* FIXME: forward and output firewalls used to be called here.
1760	 * What do we do with netfilter? -- RR
1761	 */
1762	if (vif->flags & VIFF_TUNNEL) {
1763		ip_encap(skb, vif->local, vif->remote);
1764		/* FIXME: extra output firewall step used to be here. --RR */
1765		vif->dev->stats.tx_packets++;
1766		vif->dev->stats.tx_bytes += skb->len;
1767	}
1768
1769	IPCB(skb)->flags |= IPSKB_FORWARDED;
1770
1771	/*
1772	 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1773	 * not only before forwarding, but after forwarding on all output
1774	 * interfaces. It is clear, if mrouter runs a multicasting
1775	 * program, it should receive packets not depending to what interface
1776	 * program is joined.
1777	 * If we will not make it, the program will have to join on all
1778	 * interfaces. On the other hand, multihoming host (or router, but
1779	 * not mrouter) cannot join to more than one interface - it will
1780	 * result in receiving multiple packets.
1781	 */
1782	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
 
1783		ipmr_forward_finish);
1784	return;
1785
1786out_free:
1787	kfree_skb(skb);
1788}
1789
1790static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
 
1791{
1792	int ct;
1793
1794	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1795		if (mrt->vif_table[ct].dev == dev)
1796			break;
1797	}
1798	return ct;
1799}
1800
1801/* "local" means that we should preserve one skb (for local delivery) */
1802
1803static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1804			  struct sk_buff *skb, struct mfc_cache *cache,
1805			  int local)
1806{
 
1807	int psend = -1;
1808	int vif, ct;
1809	int true_vifi = ipmr_find_vif(mrt, skb->dev);
1810
1811	vif = cache->mfc_parent;
1812	cache->mfc_un.res.pkt++;
1813	cache->mfc_un.res.bytes += skb->len;
 
1814
1815	if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1816		struct mfc_cache *cache_proxy;
1817
1818		/* For an (*,G) entry, we only check that the incomming
1819		 * interface is part of the static tree.
1820		 */
1821		cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1822		if (cache_proxy &&
1823		    cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1824			goto forward;
1825	}
1826
1827	/*
1828	 * Wrong interface: drop packet and (maybe) send PIM assert.
1829	 */
1830	if (mrt->vif_table[vif].dev != skb->dev) {
1831		if (rt_is_output_route(skb_rtable(skb))) {
1832			/* It is our own packet, looped back.
1833			 * Very complicated situation...
1834			 *
1835			 * The best workaround until routing daemons will be
1836			 * fixed is not to redistribute packet, if it was
1837			 * send through wrong interface. It means, that
1838			 * multicast applications WILL NOT work for
1839			 * (S,G), which have default multicast route pointing
1840			 * to wrong oif. In any case, it is not a good
1841			 * idea to use multicasting applications on router.
1842			 */
1843			goto dont_forward;
1844		}
1845
1846		cache->mfc_un.res.wrong_if++;
1847
1848		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1849		    /* pimsm uses asserts, when switching from RPT to SPT,
1850		     * so that we cannot check that packet arrived on an oif.
1851		     * It is bad, but otherwise we would need to move pretty
1852		     * large chunk of pimd to kernel. Ough... --ANK
1853		     */
1854		    (mrt->mroute_do_pim ||
1855		     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1856		    time_after(jiffies,
1857			       cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1858			cache->mfc_un.res.last_assert = jiffies;
 
1859			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
 
 
 
1860		}
1861		goto dont_forward;
1862	}
1863
1864forward:
1865	mrt->vif_table[vif].pkt_in++;
1866	mrt->vif_table[vif].bytes_in += skb->len;
1867
1868	/*
1869	 *	Forward the frame
1870	 */
1871	if (cache->mfc_origin == htonl(INADDR_ANY) &&
1872	    cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1873		if (true_vifi >= 0 &&
1874		    true_vifi != cache->mfc_parent &&
1875		    ip_hdr(skb)->ttl >
1876				cache->mfc_un.res.ttls[cache->mfc_parent]) {
1877			/* It's an (*,*) entry and the packet is not coming from
1878			 * the upstream: forward the packet to the upstream
1879			 * only.
1880			 */
1881			psend = cache->mfc_parent;
1882			goto last_forward;
1883		}
1884		goto dont_forward;
1885	}
1886	for (ct = cache->mfc_un.res.maxvif - 1;
1887	     ct >= cache->mfc_un.res.minvif; ct--) {
1888		/* For (*,G) entry, don't forward to the incoming interface */
1889		if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1890		     ct != true_vifi) &&
1891		    ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1892			if (psend != -1) {
1893				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1894
1895				if (skb2)
1896					ipmr_queue_xmit(net, mrt, skb2, cache,
1897							psend);
1898			}
1899			psend = ct;
1900		}
1901	}
1902last_forward:
1903	if (psend != -1) {
1904		if (local) {
1905			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1906
1907			if (skb2)
1908				ipmr_queue_xmit(net, mrt, skb2, cache, psend);
 
1909		} else {
1910			ipmr_queue_xmit(net, mrt, skb, cache, psend);
1911			return;
1912		}
1913	}
1914
1915dont_forward:
1916	if (!local)
1917		kfree_skb(skb);
1918}
1919
1920static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1921{
1922	struct rtable *rt = skb_rtable(skb);
1923	struct iphdr *iph = ip_hdr(skb);
1924	struct flowi4 fl4 = {
1925		.daddr = iph->daddr,
1926		.saddr = iph->saddr,
1927		.flowi4_tos = RT_TOS(iph->tos),
1928		.flowi4_oif = (rt_is_output_route(rt) ?
1929			       skb->dev->ifindex : 0),
1930		.flowi4_iif = (rt_is_output_route(rt) ?
1931			       LOOPBACK_IFINDEX :
1932			       skb->dev->ifindex),
1933		.flowi4_mark = skb->mark,
1934	};
1935	struct mr_table *mrt;
1936	int err;
1937
1938	err = ipmr_fib_lookup(net, &fl4, &mrt);
1939	if (err)
1940		return ERR_PTR(err);
1941	return mrt;
1942}
1943
1944/*
1945 *	Multicast packets for forwarding arrive here
1946 *	Called with rcu_read_lock();
1947 */
1948
1949int ip_mr_input(struct sk_buff *skb)
1950{
1951	struct mfc_cache *cache;
1952	struct net *net = dev_net(skb->dev);
1953	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1954	struct mr_table *mrt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1955
1956	/* Packet is looped back after forward, it should not be
1957	 * forwarded second time, but still can be delivered locally.
1958	 */
1959	if (IPCB(skb)->flags & IPSKB_FORWARDED)
1960		goto dont_forward;
1961
1962	mrt = ipmr_rt_fib_lookup(net, skb);
1963	if (IS_ERR(mrt)) {
1964		kfree_skb(skb);
1965		return PTR_ERR(mrt);
1966	}
1967	if (!local) {
1968		if (IPCB(skb)->opt.router_alert) {
1969			if (ip_call_ra_chain(skb))
1970				return 0;
1971		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1972			/* IGMPv1 (and broken IGMPv2 implementations sort of
1973			 * Cisco IOS <= 11.2(8)) do not put router alert
1974			 * option to IGMP packets destined to routable
1975			 * groups. It is very bad, because it means
1976			 * that we can forward NO IGMP messages.
1977			 */
1978			struct sock *mroute_sk;
1979
1980			mroute_sk = rcu_dereference(mrt->mroute_sk);
1981			if (mroute_sk) {
1982				nf_reset(skb);
1983				raw_rcv(mroute_sk, skb);
1984				return 0;
1985			}
1986		    }
1987	}
1988
1989	/* already under rcu_read_lock() */
1990	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1991	if (cache == NULL) {
1992		int vif = ipmr_find_vif(mrt, skb->dev);
1993
1994		if (vif >= 0)
1995			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
1996						    vif);
1997	}
1998
1999	/*
2000	 *	No usable cache entry
2001	 */
2002	if (cache == NULL) {
2003		int vif;
2004
2005		if (local) {
2006			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2007			ip_local_deliver(skb);
2008			if (skb2 == NULL)
2009				return -ENOBUFS;
2010			skb = skb2;
2011		}
2012
2013		read_lock(&mrt_lock);
2014		vif = ipmr_find_vif(mrt, skb->dev);
2015		if (vif >= 0) {
2016			int err2 = ipmr_cache_unresolved(mrt, vif, skb);
2017			read_unlock(&mrt_lock);
2018
2019			return err2;
2020		}
2021		read_unlock(&mrt_lock);
2022		kfree_skb(skb);
2023		return -ENODEV;
2024	}
2025
2026	read_lock(&mrt_lock);
2027	ip_mr_forward(net, mrt, skb, cache, local);
2028	read_unlock(&mrt_lock);
2029
2030	if (local)
2031		return ip_local_deliver(skb);
2032
2033	return 0;
2034
2035dont_forward:
2036	if (local)
2037		return ip_local_deliver(skb);
2038	kfree_skb(skb);
2039	return 0;
2040}
2041
2042#ifdef CONFIG_IP_PIMSM
2043/* called with rcu_read_lock() */
2044static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
2045		     unsigned int pimlen)
2046{
2047	struct net_device *reg_dev = NULL;
2048	struct iphdr *encap;
2049
2050	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
2051	/*
2052	 * Check that:
2053	 * a. packet is really sent to a multicast group
2054	 * b. packet is not a NULL-REGISTER
2055	 * c. packet is not truncated
2056	 */
2057	if (!ipv4_is_multicast(encap->daddr) ||
2058	    encap->tot_len == 0 ||
2059	    ntohs(encap->tot_len) + pimlen > skb->len)
2060		return 1;
2061
2062	read_lock(&mrt_lock);
2063	if (mrt->mroute_reg_vif_num >= 0)
2064		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
2065	read_unlock(&mrt_lock);
2066
2067	if (reg_dev == NULL)
2068		return 1;
2069
2070	skb->mac_header = skb->network_header;
2071	skb_pull(skb, (u8 *)encap - skb->data);
2072	skb_reset_network_header(skb);
2073	skb->protocol = htons(ETH_P_IP);
2074	skb->ip_summed = CHECKSUM_NONE;
2075
2076	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
2077
2078	netif_rx(skb);
2079
2080	return NET_RX_SUCCESS;
2081}
2082#endif
2083
2084#ifdef CONFIG_IP_PIMSM_V1
2085/*
2086 * Handle IGMP messages of PIMv1
2087 */
2088
2089int pim_rcv_v1(struct sk_buff *skb)
2090{
2091	struct igmphdr *pim;
2092	struct net *net = dev_net(skb->dev);
2093	struct mr_table *mrt;
2094
2095	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2096		goto drop;
2097
2098	pim = igmp_hdr(skb);
2099
2100	mrt = ipmr_rt_fib_lookup(net, skb);
2101	if (IS_ERR(mrt))
2102		goto drop;
2103	if (!mrt->mroute_do_pim ||
2104	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2105		goto drop;
2106
2107	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2108drop:
2109		kfree_skb(skb);
2110	}
2111	return 0;
2112}
2113#endif
2114
2115#ifdef CONFIG_IP_PIMSM_V2
2116static int pim_rcv(struct sk_buff *skb)
2117{
2118	struct pimreghdr *pim;
2119	struct net *net = dev_net(skb->dev);
2120	struct mr_table *mrt;
2121
2122	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2123		goto drop;
2124
2125	pim = (struct pimreghdr *)skb_transport_header(skb);
2126	if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
2127	    (pim->flags & PIM_NULL_REGISTER) ||
2128	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2129	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2130		goto drop;
2131
2132	mrt = ipmr_rt_fib_lookup(net, skb);
2133	if (IS_ERR(mrt))
2134		goto drop;
2135	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2136drop:
2137		kfree_skb(skb);
2138	}
2139	return 0;
2140}
2141#endif
2142
2143static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2144			      struct mfc_cache *c, struct rtmsg *rtm)
2145{
2146	int ct;
2147	struct rtnexthop *nhp;
2148	struct nlattr *mp_attr;
2149	struct rta_mfc_stats mfcs;
2150
2151	/* If cache is unresolved, don't try to parse IIF and OIF */
2152	if (c->mfc_parent >= MAXVIFS)
2153		return -ENOENT;
2154
2155	if (VIF_EXISTS(mrt, c->mfc_parent) &&
2156	    nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2157		return -EMSGSIZE;
2158
2159	if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2160		return -EMSGSIZE;
2161
2162	for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2163		if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2164			if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2165				nla_nest_cancel(skb, mp_attr);
2166				return -EMSGSIZE;
2167			}
2168
2169			nhp->rtnh_flags = 0;
2170			nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2171			nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2172			nhp->rtnh_len = sizeof(*nhp);
2173		}
2174	}
2175
2176	nla_nest_end(skb, mp_attr);
2177
2178	mfcs.mfcs_packets = c->mfc_un.res.pkt;
2179	mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2180	mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2181	if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
2182		return -EMSGSIZE;
2183
2184	rtm->rtm_type = RTN_MULTICAST;
2185	return 1;
2186}
2187
2188int ipmr_get_route(struct net *net, struct sk_buff *skb,
2189		   __be32 saddr, __be32 daddr,
2190		   struct rtmsg *rtm, int nowait)
2191{
2192	struct mfc_cache *cache;
2193	struct mr_table *mrt;
2194	int err;
2195
2196	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2197	if (mrt == NULL)
 
 
2198		return -ENOENT;
 
2199
2200	rcu_read_lock();
2201	cache = ipmr_cache_find(mrt, saddr, daddr);
2202	if (cache == NULL && skb->dev) {
2203		int vif = ipmr_find_vif(mrt, skb->dev);
2204
2205		if (vif >= 0)
2206			cache = ipmr_cache_find_any(mrt, daddr, vif);
2207	}
2208	if (cache == NULL) {
2209		struct sk_buff *skb2;
2210		struct iphdr *iph;
2211		struct net_device *dev;
2212		int vif = -1;
2213
2214		if (nowait) {
2215			rcu_read_unlock();
2216			return -EAGAIN;
2217		}
2218
2219		dev = skb->dev;
2220		read_lock(&mrt_lock);
2221		if (dev)
2222			vif = ipmr_find_vif(mrt, dev);
2223		if (vif < 0) {
2224			read_unlock(&mrt_lock);
2225			rcu_read_unlock();
2226			return -ENODEV;
2227		}
2228		skb2 = skb_clone(skb, GFP_ATOMIC);
 
2229		if (!skb2) {
2230			read_unlock(&mrt_lock);
2231			rcu_read_unlock();
2232			return -ENOMEM;
2233		}
2234
 
2235		skb_push(skb2, sizeof(struct iphdr));
2236		skb_reset_network_header(skb2);
2237		iph = ip_hdr(skb2);
2238		iph->ihl = sizeof(struct iphdr) >> 2;
2239		iph->saddr = saddr;
2240		iph->daddr = daddr;
2241		iph->version = 0;
2242		err = ipmr_cache_unresolved(mrt, vif, skb2);
2243		read_unlock(&mrt_lock);
2244		rcu_read_unlock();
2245		return err;
2246	}
2247
2248	read_lock(&mrt_lock);
2249	if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2250		cache->mfc_flags |= MFC_NOTIFY;
2251	err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2252	read_unlock(&mrt_lock);
2253	rcu_read_unlock();
2254	return err;
2255}
2256
2257static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2258			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2259			    int flags)
2260{
2261	struct nlmsghdr *nlh;
2262	struct rtmsg *rtm;
2263	int err;
2264
2265	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2266	if (nlh == NULL)
2267		return -EMSGSIZE;
2268
2269	rtm = nlmsg_data(nlh);
2270	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2271	rtm->rtm_dst_len  = 32;
2272	rtm->rtm_src_len  = 32;
2273	rtm->rtm_tos      = 0;
2274	rtm->rtm_table    = mrt->id;
2275	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2276		goto nla_put_failure;
2277	rtm->rtm_type     = RTN_MULTICAST;
2278	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2279	if (c->mfc_flags & MFC_STATIC)
2280		rtm->rtm_protocol = RTPROT_STATIC;
2281	else
2282		rtm->rtm_protocol = RTPROT_MROUTED;
2283	rtm->rtm_flags    = 0;
2284
2285	if (nla_put_be32(skb, RTA_SRC, c->mfc_origin) ||
2286	    nla_put_be32(skb, RTA_DST, c->mfc_mcastgrp))
2287		goto nla_put_failure;
2288	err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2289	/* do not break the dump if cache is unresolved */
2290	if (err < 0 && err != -ENOENT)
2291		goto nla_put_failure;
2292
2293	return nlmsg_end(skb, nlh);
 
2294
2295nla_put_failure:
2296	nlmsg_cancel(skb, nlh);
2297	return -EMSGSIZE;
2298}
2299
 
 
 
 
 
 
 
 
2300static size_t mroute_msgsize(bool unresolved, int maxvif)
2301{
2302	size_t len =
2303		NLMSG_ALIGN(sizeof(struct rtmsg))
2304		+ nla_total_size(4)	/* RTA_TABLE */
2305		+ nla_total_size(4)	/* RTA_SRC */
2306		+ nla_total_size(4)	/* RTA_DST */
2307		;
2308
2309	if (!unresolved)
2310		len = len
2311		      + nla_total_size(4)	/* RTA_IIF */
2312		      + nla_total_size(0)	/* RTA_MULTIPATH */
2313		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2314						/* RTA_MFC_STATS */
2315		      + nla_total_size(sizeof(struct rta_mfc_stats))
2316		;
2317
2318	return len;
2319}
2320
2321static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2322				 int cmd)
2323{
2324	struct net *net = read_pnet(&mrt->net);
2325	struct sk_buff *skb;
2326	int err = -ENOBUFS;
2327
2328	skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
 
2329			GFP_ATOMIC);
2330	if (skb == NULL)
2331		goto errout;
2332
2333	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2334	if (err < 0)
2335		goto errout;
2336
2337	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2338	return;
2339
2340errout:
2341	kfree_skb(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2342	if (err < 0)
2343		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2344}
2345
2346static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2347{
2348	struct net *net = sock_net(skb->sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2349	struct mr_table *mrt;
2350	struct mfc_cache *mfc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2351	unsigned int t = 0, s_t;
2352	unsigned int h = 0, s_h;
2353	unsigned int e = 0, s_e;
 
 
 
 
 
 
 
 
2354
2355	s_t = cb->args[0];
2356	s_h = cb->args[1];
2357	s_e = cb->args[2];
2358
2359	rcu_read_lock();
2360	ipmr_for_each_table(mrt, net) {
 
 
 
 
2361		if (t < s_t)
2362			goto next_table;
2363		if (t > s_t)
2364			s_h = 0;
2365		for (h = s_h; h < MFC_LINES; h++) {
2366			list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2367				if (e < s_e)
2368					goto next_entry;
2369				if (ipmr_fill_mroute(mrt, skb,
2370						     NETLINK_CB(cb->skb).portid,
2371						     cb->nlh->nlmsg_seq,
2372						     mfc, RTM_NEWROUTE,
2373						     NLM_F_MULTI) < 0)
2374					goto done;
2375next_entry:
2376				e++;
2377			}
2378			e = s_e = 0;
2379		}
2380		spin_lock_bh(&mfc_unres_lock);
2381		list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
 
 
 
 
 
 
 
 
 
 
 
2382			if (e < s_e)
2383				goto next_entry2;
2384			if (ipmr_fill_mroute(mrt, skb,
2385					     NETLINK_CB(cb->skb).portid,
2386					     cb->nlh->nlmsg_seq,
2387					     mfc, RTM_NEWROUTE,
2388					     NLM_F_MULTI) < 0) {
2389				spin_unlock_bh(&mfc_unres_lock);
2390				goto done;
2391			}
2392next_entry2:
2393			e++;
2394		}
2395		spin_unlock_bh(&mfc_unres_lock);
2396		e = s_e = 0;
2397		s_h = 0;
2398next_table:
 
 
2399		t++;
2400	}
2401done:
2402	rcu_read_unlock();
2403
2404	cb->args[2] = e;
2405	cb->args[1] = h;
2406	cb->args[0] = t;
2407
2408	return skb->len;
2409}
2410
2411#ifdef CONFIG_PROC_FS
2412/*
2413 *	The /proc interfaces to multicast routing :
2414 *	/proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2415 */
2416struct ipmr_vif_iter {
2417	struct seq_net_private p;
2418	struct mr_table *mrt;
2419	int ct;
2420};
2421
2422static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2423					   struct ipmr_vif_iter *iter,
2424					   loff_t pos)
2425{
2426	struct mr_table *mrt = iter->mrt;
2427
2428	for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2429		if (!VIF_EXISTS(mrt, iter->ct))
2430			continue;
2431		if (pos-- == 0)
2432			return &mrt->vif_table[iter->ct];
2433	}
2434	return NULL;
2435}
2436
2437static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2438	__acquires(mrt_lock)
2439{
2440	struct ipmr_vif_iter *iter = seq->private;
2441	struct net *net = seq_file_net(seq);
2442	struct mr_table *mrt;
2443
2444	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2445	if (mrt == NULL)
 
 
2446		return ERR_PTR(-ENOENT);
 
2447
2448	iter->mrt = mrt;
2449
2450	read_lock(&mrt_lock);
2451	return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2452		: SEQ_START_TOKEN;
2453}
2454
2455static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2456{
2457	struct ipmr_vif_iter *iter = seq->private;
2458	struct net *net = seq_file_net(seq);
2459	struct mr_table *mrt = iter->mrt;
2460
2461	++*pos;
2462	if (v == SEQ_START_TOKEN)
2463		return ipmr_vif_seq_idx(net, iter, 0);
2464
2465	while (++iter->ct < mrt->maxvif) {
2466		if (!VIF_EXISTS(mrt, iter->ct))
2467			continue;
2468		return &mrt->vif_table[iter->ct];
2469	}
2470	return NULL;
2471}
2472
2473static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2474	__releases(mrt_lock)
2475{
2476	read_unlock(&mrt_lock);
2477}
2478
2479static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2480{
2481	struct ipmr_vif_iter *iter = seq->private;
2482	struct mr_table *mrt = iter->mrt;
2483
2484	if (v == SEQ_START_TOKEN) {
2485		seq_puts(seq,
2486			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2487	} else {
2488		const struct vif_device *vif = v;
2489		const char *name =  vif->dev ? vif->dev->name : "none";
 
2490
 
 
2491		seq_printf(seq,
2492			   "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2493			   vif - mrt->vif_table,
2494			   name, vif->bytes_in, vif->pkt_in,
2495			   vif->bytes_out, vif->pkt_out,
2496			   vif->flags, vif->local, vif->remote);
2497	}
2498	return 0;
2499}
2500
2501static const struct seq_operations ipmr_vif_seq_ops = {
2502	.start = ipmr_vif_seq_start,
2503	.next  = ipmr_vif_seq_next,
2504	.stop  = ipmr_vif_seq_stop,
2505	.show  = ipmr_vif_seq_show,
2506};
2507
2508static int ipmr_vif_open(struct inode *inode, struct file *file)
2509{
2510	return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2511			    sizeof(struct ipmr_vif_iter));
2512}
2513
2514static const struct file_operations ipmr_vif_fops = {
2515	.owner	 = THIS_MODULE,
2516	.open    = ipmr_vif_open,
2517	.read    = seq_read,
2518	.llseek  = seq_lseek,
2519	.release = seq_release_net,
2520};
2521
2522struct ipmr_mfc_iter {
2523	struct seq_net_private p;
2524	struct mr_table *mrt;
2525	struct list_head *cache;
2526	int ct;
2527};
2528
2529
2530static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2531					  struct ipmr_mfc_iter *it, loff_t pos)
2532{
2533	struct mr_table *mrt = it->mrt;
2534	struct mfc_cache *mfc;
2535
2536	rcu_read_lock();
2537	for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2538		it->cache = &mrt->mfc_cache_array[it->ct];
2539		list_for_each_entry_rcu(mfc, it->cache, list)
2540			if (pos-- == 0)
2541				return mfc;
2542	}
2543	rcu_read_unlock();
2544
2545	spin_lock_bh(&mfc_unres_lock);
2546	it->cache = &mrt->mfc_unres_queue;
2547	list_for_each_entry(mfc, it->cache, list)
2548		if (pos-- == 0)
2549			return mfc;
2550	spin_unlock_bh(&mfc_unres_lock);
2551
2552	it->cache = NULL;
2553	return NULL;
2554}
2555
2556
2557static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2558{
2559	struct ipmr_mfc_iter *it = seq->private;
2560	struct net *net = seq_file_net(seq);
2561	struct mr_table *mrt;
2562
2563	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2564	if (mrt == NULL)
2565		return ERR_PTR(-ENOENT);
2566
2567	it->mrt = mrt;
2568	it->cache = NULL;
2569	it->ct = 0;
2570	return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2571		: SEQ_START_TOKEN;
2572}
2573
2574static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2575{
2576	struct mfc_cache *mfc = v;
2577	struct ipmr_mfc_iter *it = seq->private;
2578	struct net *net = seq_file_net(seq);
2579	struct mr_table *mrt = it->mrt;
2580
2581	++*pos;
2582
2583	if (v == SEQ_START_TOKEN)
2584		return ipmr_mfc_seq_idx(net, seq->private, 0);
2585
2586	if (mfc->list.next != it->cache)
2587		return list_entry(mfc->list.next, struct mfc_cache, list);
2588
2589	if (it->cache == &mrt->mfc_unres_queue)
2590		goto end_of_list;
2591
2592	BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2593
2594	while (++it->ct < MFC_LINES) {
2595		it->cache = &mrt->mfc_cache_array[it->ct];
2596		if (list_empty(it->cache))
2597			continue;
2598		return list_first_entry(it->cache, struct mfc_cache, list);
2599	}
2600
2601	/* exhausted cache_array, show unresolved */
2602	rcu_read_unlock();
2603	it->cache = &mrt->mfc_unres_queue;
2604	it->ct = 0;
2605
2606	spin_lock_bh(&mfc_unres_lock);
2607	if (!list_empty(it->cache))
2608		return list_first_entry(it->cache, struct mfc_cache, list);
2609
2610end_of_list:
2611	spin_unlock_bh(&mfc_unres_lock);
2612	it->cache = NULL;
2613
2614	return NULL;
2615}
2616
2617static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2618{
2619	struct ipmr_mfc_iter *it = seq->private;
2620	struct mr_table *mrt = it->mrt;
2621
2622	if (it->cache == &mrt->mfc_unres_queue)
2623		spin_unlock_bh(&mfc_unres_lock);
2624	else if (it->cache == &mrt->mfc_cache_array[it->ct])
2625		rcu_read_unlock();
2626}
2627
2628static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2629{
2630	int n;
2631
2632	if (v == SEQ_START_TOKEN) {
2633		seq_puts(seq,
2634		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2635	} else {
2636		const struct mfc_cache *mfc = v;
2637		const struct ipmr_mfc_iter *it = seq->private;
2638		const struct mr_table *mrt = it->mrt;
2639
2640		seq_printf(seq, "%08X %08X %-3hd",
2641			   (__force u32) mfc->mfc_mcastgrp,
2642			   (__force u32) mfc->mfc_origin,
2643			   mfc->mfc_parent);
2644
2645		if (it->cache != &mrt->mfc_unres_queue) {
2646			seq_printf(seq, " %8lu %8lu %8lu",
2647				   mfc->mfc_un.res.pkt,
2648				   mfc->mfc_un.res.bytes,
2649				   mfc->mfc_un.res.wrong_if);
2650			for (n = mfc->mfc_un.res.minvif;
2651			     n < mfc->mfc_un.res.maxvif; n++) {
2652				if (VIF_EXISTS(mrt, n) &&
2653				    mfc->mfc_un.res.ttls[n] < 255)
2654					seq_printf(seq,
2655					   " %2d:%-3d",
2656					   n, mfc->mfc_un.res.ttls[n]);
2657			}
2658		} else {
2659			/* unresolved mfc_caches don't contain
2660			 * pkt, bytes and wrong_if values
2661			 */
2662			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2663		}
2664		seq_putc(seq, '\n');
2665	}
2666	return 0;
2667}
2668
2669static const struct seq_operations ipmr_mfc_seq_ops = {
2670	.start = ipmr_mfc_seq_start,
2671	.next  = ipmr_mfc_seq_next,
2672	.stop  = ipmr_mfc_seq_stop,
2673	.show  = ipmr_mfc_seq_show,
2674};
2675
2676static int ipmr_mfc_open(struct inode *inode, struct file *file)
2677{
2678	return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2679			    sizeof(struct ipmr_mfc_iter));
2680}
2681
2682static const struct file_operations ipmr_mfc_fops = {
2683	.owner	 = THIS_MODULE,
2684	.open    = ipmr_mfc_open,
2685	.read    = seq_read,
2686	.llseek  = seq_lseek,
2687	.release = seq_release_net,
2688};
2689#endif
2690
2691#ifdef CONFIG_IP_PIMSM_V2
2692static const struct net_protocol pim_protocol = {
2693	.handler	=	pim_rcv,
2694	.netns_ok	=	1,
2695};
2696#endif
2697
 
 
 
 
2698
2699/*
2700 *	Setup for IP multicast routing
2701 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2702static int __net_init ipmr_net_init(struct net *net)
2703{
2704	int err;
2705
 
 
 
 
2706	err = ipmr_rules_init(net);
2707	if (err < 0)
2708		goto fail;
2709
2710#ifdef CONFIG_PROC_FS
2711	err = -ENOMEM;
2712	if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
 
2713		goto proc_vif_fail;
2714	if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
 
2715		goto proc_cache_fail;
2716#endif
2717	return 0;
2718
2719#ifdef CONFIG_PROC_FS
2720proc_cache_fail:
2721	remove_proc_entry("ip_mr_vif", net->proc_net);
2722proc_vif_fail:
 
2723	ipmr_rules_exit(net);
 
2724#endif
2725fail:
 
 
2726	return err;
2727}
2728
2729static void __net_exit ipmr_net_exit(struct net *net)
2730{
2731#ifdef CONFIG_PROC_FS
2732	remove_proc_entry("ip_mr_cache", net->proc_net);
2733	remove_proc_entry("ip_mr_vif", net->proc_net);
2734#endif
2735	ipmr_rules_exit(net);
 
 
 
 
 
 
 
 
 
 
2736}
2737
2738static struct pernet_operations ipmr_net_ops = {
2739	.init = ipmr_net_init,
2740	.exit = ipmr_net_exit,
 
 
 
 
 
 
 
 
 
 
 
 
2741};
2742
2743int __init ip_mr_init(void)
2744{
2745	int err;
2746
2747	mrt_cachep = kmem_cache_create("ip_mrt_cache",
2748				       sizeof(struct mfc_cache),
2749				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2750				       NULL);
2751	if (!mrt_cachep)
2752		return -ENOMEM;
2753
2754	err = register_pernet_subsys(&ipmr_net_ops);
2755	if (err)
2756		goto reg_pernet_fail;
2757
2758	err = register_netdevice_notifier(&ip_mr_notifier);
2759	if (err)
2760		goto reg_notif_fail;
2761#ifdef CONFIG_IP_PIMSM_V2
2762	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2763		pr_err("%s: can't add PIM protocol\n", __func__);
2764		err = -EAGAIN;
2765		goto add_proto_fail;
2766	}
2767#endif
2768	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2769		      NULL, ipmr_rtm_dumproute, NULL);
2770	return 0;
2771
2772#ifdef CONFIG_IP_PIMSM_V2
2773add_proto_fail:
2774	unregister_netdevice_notifier(&ip_mr_notifier);
2775#endif
2776reg_notif_fail:
2777	unregister_pernet_subsys(&ipmr_net_ops);
2778reg_pernet_fail:
2779	kmem_cache_destroy(mrt_cachep);
2780	return err;
2781}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *	IP multicast routing support for mrouted 3.6/3.8
   4 *
   5 *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
   6 *	  Linux Consultancy and Custom Driver Development
   7 *
 
 
 
 
 
   8 *	Fixes:
   9 *	Michael Chastain	:	Incorrect size of copying.
  10 *	Alan Cox		:	Added the cache manager code
  11 *	Alan Cox		:	Fixed the clone/copy bug and device race.
  12 *	Mike McLagan		:	Routing by source
  13 *	Malcolm Beattie		:	Buffer handling fixes.
  14 *	Alexey Kuznetsov	:	Double buffer free and other fixes.
  15 *	SVR Anand		:	Fixed several multicast bugs and problems.
  16 *	Alexey Kuznetsov	:	Status, optimisations and more.
  17 *	Brad Parker		:	Better behaviour on mrouted upcall
  18 *					overflow.
  19 *      Carlos Picoto           :       PIMv1 Support
  20 *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
  21 *					Relax this requirement to work with older peers.
 
  22 */
  23
  24#include <linux/uaccess.h>
  25#include <linux/types.h>
  26#include <linux/cache.h>
  27#include <linux/capability.h>
  28#include <linux/errno.h>
 
  29#include <linux/mm.h>
  30#include <linux/kernel.h>
  31#include <linux/fcntl.h>
  32#include <linux/stat.h>
  33#include <linux/socket.h>
  34#include <linux/in.h>
  35#include <linux/inet.h>
  36#include <linux/netdevice.h>
  37#include <linux/inetdevice.h>
  38#include <linux/igmp.h>
  39#include <linux/proc_fs.h>
  40#include <linux/seq_file.h>
  41#include <linux/mroute.h>
  42#include <linux/init.h>
  43#include <linux/if_ether.h>
  44#include <linux/slab.h>
  45#include <net/net_namespace.h>
  46#include <net/ip.h>
  47#include <net/protocol.h>
  48#include <linux/skbuff.h>
  49#include <net/route.h>
 
  50#include <net/icmp.h>
  51#include <net/udp.h>
  52#include <net/raw.h>
  53#include <linux/notifier.h>
  54#include <linux/if_arp.h>
  55#include <linux/netfilter_ipv4.h>
  56#include <linux/compat.h>
  57#include <linux/export.h>
  58#include <linux/rhashtable.h>
  59#include <net/ip_tunnels.h>
  60#include <net/checksum.h>
  61#include <net/netlink.h>
  62#include <net/fib_rules.h>
  63#include <linux/netconf.h>
  64#include <net/rtnh.h>
  65#include <net/inet_dscp.h>
  66
  67#include <linux/nospec.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  68
  69struct ipmr_rule {
  70	struct fib_rule		common;
  71};
  72
  73struct ipmr_result {
  74	struct mr_table		*mrt;
  75};
  76
  77/* Big lock, protecting vif table, mrt cache and mroute socket state.
  78 * Note that the changes are semaphored via rtnl_lock.
  79 */
  80
  81static DEFINE_SPINLOCK(mrt_lock);
  82
  83static struct net_device *vif_dev_read(const struct vif_device *vif)
  84{
  85	return rcu_dereference(vif->dev);
  86}
  87
  88/* Multicast router control variables */
  89
  90/* Special spinlock for queue of unresolved entries */
  91static DEFINE_SPINLOCK(mfc_unres_lock);
  92
  93/* We return to original Alan's scheme. Hash table of resolved
  94 * entries is changed only in process context and protected
  95 * with weak lock mrt_lock. Queue of unresolved entries is protected
  96 * with strong spinlock mfc_unres_lock.
  97 *
  98 * In this case data path is free of exclusive locks at all.
  99 */
 100
 101static struct kmem_cache *mrt_cachep __ro_after_init;
 102
 103static struct mr_table *ipmr_new_table(struct net *net, u32 id);
 104static void ipmr_free_table(struct mr_table *mrt);
 105
 106static void ip_mr_forward(struct net *net, struct mr_table *mrt,
 107			  struct net_device *dev, struct sk_buff *skb,
 108			  struct mfc_cache *cache, int local);
 109static int ipmr_cache_report(const struct mr_table *mrt,
 110			     struct sk_buff *pkt, vifi_t vifi, int assert);
 
 
 111static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
 112				 int cmd);
 113static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt);
 114static void mroute_clean_tables(struct mr_table *mrt, int flags);
 115static void ipmr_expire_process(struct timer_list *t);
 116
 117#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 118#define ipmr_for_each_table(mrt, net)					\
 119	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list,	\
 120				lockdep_rtnl_is_held() ||		\
 121				list_empty(&net->ipv4.mr_tables))
 122
 123static bool ipmr_can_free_table(struct net *net)
 124{
 125	return !check_net(net) || !net_initialized(net);
 126}
 127
 128static struct mr_table *ipmr_mr_table_iter(struct net *net,
 129					   struct mr_table *mrt)
 130{
 131	struct mr_table *ret;
 132
 133	if (!mrt)
 134		ret = list_entry_rcu(net->ipv4.mr_tables.next,
 135				     struct mr_table, list);
 136	else
 137		ret = list_entry_rcu(mrt->list.next,
 138				     struct mr_table, list);
 139
 140	if (&ret->list == &net->ipv4.mr_tables)
 141		return NULL;
 142	return ret;
 143}
 144
 145static struct mr_table *__ipmr_get_table(struct net *net, u32 id)
 146{
 147	struct mr_table *mrt;
 148
 149	ipmr_for_each_table(mrt, net) {
 150		if (mrt->id == id)
 151			return mrt;
 152	}
 153	return NULL;
 154}
 155
 156static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 157{
 158	struct mr_table *mrt;
 159
 160	rcu_read_lock();
 161	mrt = __ipmr_get_table(net, id);
 162	rcu_read_unlock();
 163	return mrt;
 164}
 165
 166static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 167			   struct mr_table **mrt)
 168{
 169	int err;
 170	struct ipmr_result res;
 171	struct fib_lookup_arg arg = {
 172		.result = &res,
 173		.flags = FIB_LOOKUP_NOREF,
 174	};
 175
 176	/* update flow if oif or iif point to device enslaved to l3mdev */
 177	l3mdev_update_flow(net, flowi4_to_flowi(flp4));
 178
 179	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
 180			       flowi4_to_flowi(flp4), 0, &arg);
 181	if (err < 0)
 182		return err;
 183	*mrt = res.mrt;
 184	return 0;
 185}
 186
 187static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
 188			    int flags, struct fib_lookup_arg *arg)
 189{
 190	struct ipmr_result *res = arg->result;
 191	struct mr_table *mrt;
 192
 193	switch (rule->action) {
 194	case FR_ACT_TO_TBL:
 195		break;
 196	case FR_ACT_UNREACHABLE:
 197		return -ENETUNREACH;
 198	case FR_ACT_PROHIBIT:
 199		return -EACCES;
 200	case FR_ACT_BLACKHOLE:
 201	default:
 202		return -EINVAL;
 203	}
 204
 205	arg->table = fib_rule_get_table(rule, arg);
 206
 207	mrt = __ipmr_get_table(rule->fr_net, arg->table);
 208	if (!mrt)
 209		return -EAGAIN;
 210	res->mrt = mrt;
 211	return 0;
 212}
 213
 214static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
 215{
 216	return 1;
 217}
 218
 
 
 
 
 219static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
 220			       struct fib_rule_hdr *frh, struct nlattr **tb,
 221			       struct netlink_ext_ack *extack)
 222{
 223	return 0;
 224}
 225
 226static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
 227			     struct nlattr **tb)
 228{
 229	return 1;
 230}
 231
 232static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
 233			  struct fib_rule_hdr *frh)
 234{
 235	frh->dst_len = 0;
 236	frh->src_len = 0;
 237	frh->tos     = 0;
 238	return 0;
 239}
 240
 241static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
 242	.family		= RTNL_FAMILY_IPMR,
 243	.rule_size	= sizeof(struct ipmr_rule),
 244	.addr_size	= sizeof(u32),
 245	.action		= ipmr_rule_action,
 246	.match		= ipmr_rule_match,
 247	.configure	= ipmr_rule_configure,
 248	.compare	= ipmr_rule_compare,
 
 249	.fill		= ipmr_rule_fill,
 250	.nlgroup	= RTNLGRP_IPV4_RULE,
 
 251	.owner		= THIS_MODULE,
 252};
 253
 254static int __net_init ipmr_rules_init(struct net *net)
 255{
 256	struct fib_rules_ops *ops;
 257	struct mr_table *mrt;
 258	int err;
 259
 260	ops = fib_rules_register(&ipmr_rules_ops_template, net);
 261	if (IS_ERR(ops))
 262		return PTR_ERR(ops);
 263
 264	INIT_LIST_HEAD(&net->ipv4.mr_tables);
 265
 266	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 267	if (IS_ERR(mrt)) {
 268		err = PTR_ERR(mrt);
 269		goto err1;
 270	}
 271
 272	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT);
 273	if (err < 0)
 274		goto err2;
 275
 276	net->ipv4.mr_rules_ops = ops;
 277	return 0;
 278
 279err2:
 280	rtnl_lock();
 281	ipmr_free_table(mrt);
 282	rtnl_unlock();
 283err1:
 284	fib_rules_unregister(ops);
 285	return err;
 286}
 287
 288static void __net_exit ipmr_rules_exit(struct net *net)
 289{
 290	struct mr_table *mrt, *next;
 291
 292	ASSERT_RTNL();
 293	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
 294		list_del(&mrt->list);
 295		ipmr_free_table(mrt);
 296	}
 297	fib_rules_unregister(net->ipv4.mr_rules_ops);
 298}
 299
 300static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
 301			   struct netlink_ext_ack *extack)
 302{
 303	return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack);
 304}
 305
 306static unsigned int ipmr_rules_seq_read(const struct net *net)
 307{
 308	return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
 309}
 310
 311bool ipmr_rule_default(const struct fib_rule *rule)
 312{
 313	return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
 314}
 315EXPORT_SYMBOL(ipmr_rule_default);
 316#else
 317#define ipmr_for_each_table(mrt, net) \
 318	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
 319
 320static bool ipmr_can_free_table(struct net *net)
 321{
 322	return !check_net(net);
 323}
 324
 325static struct mr_table *ipmr_mr_table_iter(struct net *net,
 326					   struct mr_table *mrt)
 327{
 328	if (!mrt)
 329		return net->ipv4.mrt;
 330	return NULL;
 331}
 332
 333static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 334{
 335	return net->ipv4.mrt;
 336}
 337
 338#define __ipmr_get_table ipmr_get_table
 339
 340static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 341			   struct mr_table **mrt)
 342{
 343	*mrt = net->ipv4.mrt;
 344	return 0;
 345}
 346
 347static int __net_init ipmr_rules_init(struct net *net)
 348{
 349	struct mr_table *mrt;
 350
 351	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 352	if (IS_ERR(mrt))
 353		return PTR_ERR(mrt);
 354	net->ipv4.mrt = mrt;
 355	return 0;
 356}
 357
 358static void __net_exit ipmr_rules_exit(struct net *net)
 359{
 360	ASSERT_RTNL();
 361	ipmr_free_table(net->ipv4.mrt);
 362	net->ipv4.mrt = NULL;
 363}
 
 364
 365static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
 366			   struct netlink_ext_ack *extack)
 367{
 368	return 0;
 369}
 370
 371static unsigned int ipmr_rules_seq_read(const struct net *net)
 372{
 373	return 0;
 374}
 375
 376bool ipmr_rule_default(const struct fib_rule *rule)
 377{
 378	return true;
 379}
 380EXPORT_SYMBOL(ipmr_rule_default);
 381#endif
 382
 383static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
 384				const void *ptr)
 385{
 386	const struct mfc_cache_cmp_arg *cmparg = arg->key;
 387	const struct mfc_cache *c = ptr;
 388
 389	return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
 390	       cmparg->mfc_origin != c->mfc_origin;
 391}
 392
 393static const struct rhashtable_params ipmr_rht_params = {
 394	.head_offset = offsetof(struct mr_mfc, mnode),
 395	.key_offset = offsetof(struct mfc_cache, cmparg),
 396	.key_len = sizeof(struct mfc_cache_cmp_arg),
 397	.nelem_hint = 3,
 398	.obj_cmpfn = ipmr_hash_cmp,
 399	.automatic_shrinking = true,
 400};
 401
 402static void ipmr_new_table_set(struct mr_table *mrt,
 403			       struct net *net)
 404{
 405#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 406	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
 407#endif
 408}
 409
 410static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
 411	.mfc_mcastgrp = htonl(INADDR_ANY),
 412	.mfc_origin = htonl(INADDR_ANY),
 413};
 414
 415static struct mr_table_ops ipmr_mr_table_ops = {
 416	.rht_params = &ipmr_rht_params,
 417	.cmparg_any = &ipmr_mr_table_ops_cmparg_any,
 418};
 419
 420static struct mr_table *ipmr_new_table(struct net *net, u32 id)
 421{
 422	struct mr_table *mrt;
 423
 424	/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
 425	if (id != RT_TABLE_DEFAULT && id >= 1000000000)
 426		return ERR_PTR(-EINVAL);
 427
 428	mrt = __ipmr_get_table(net, id);
 429	if (mrt)
 430		return mrt;
 431
 432	return mr_table_alloc(net, id, &ipmr_mr_table_ops,
 433			      ipmr_expire_process, ipmr_new_table_set);
 434}
 435
 436static void ipmr_free_table(struct mr_table *mrt)
 437{
 438	struct net *net = read_pnet(&mrt->net);
 439
 440	WARN_ON_ONCE(!ipmr_can_free_table(net));
 441
 442	timer_shutdown_sync(&mrt->ipmr_expire_timer);
 443	mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
 444				 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
 445	rhltable_destroy(&mrt->mfc_hash);
 446	kfree(mrt);
 447}
 448
 449/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
 450
 451/* Initialize ipmr pimreg/tunnel in_device */
 452static bool ipmr_init_vif_indev(const struct net_device *dev)
 453{
 454	struct in_device *in_dev;
 455
 456	ASSERT_RTNL();
 457
 458	in_dev = __in_dev_get_rtnl(dev);
 459	if (!in_dev)
 460		return false;
 461	ipv4_devconf_setall(in_dev);
 462	neigh_parms_data_state_setall(in_dev->arp_parms);
 463	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 464
 465	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466}
 467
 468static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
 469{
 470	struct net_device *tunnel_dev, *new_dev;
 471	struct ip_tunnel_parm_kern p = { };
 472	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 473
 474	tunnel_dev = __dev_get_by_name(net, "tunl0");
 475	if (!tunnel_dev)
 476		goto out;
 477
 478	p.iph.daddr = v->vifc_rmt_addr.s_addr;
 479	p.iph.saddr = v->vifc_lcl_addr.s_addr;
 480	p.iph.version = 4;
 481	p.iph.ihl = 5;
 482	p.iph.protocol = IPPROTO_IPIP;
 483	sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 484
 485	if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl)
 486		goto out;
 487	err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
 488			SIOCADDTUNNEL);
 489	if (err)
 490		goto out;
 491
 492	new_dev = __dev_get_by_name(net, p.name);
 493	if (!new_dev)
 494		goto out;
 
 
 
 495
 496	new_dev->flags |= IFF_MULTICAST;
 497	if (!ipmr_init_vif_indev(new_dev))
 498		goto out_unregister;
 499	if (dev_open(new_dev, NULL))
 500		goto out_unregister;
 501	dev_hold(new_dev);
 502	err = dev_set_allmulti(new_dev, 1);
 503	if (err) {
 504		dev_close(new_dev);
 505		tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
 506				SIOCDELTUNNEL);
 507		dev_put(new_dev);
 508		new_dev = ERR_PTR(err);
 509	}
 510	return new_dev;
 511
 512out_unregister:
 513	unregister_netdevice(new_dev);
 514out:
 515	return ERR_PTR(-ENOBUFS);
 516}
 517
 518#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
 
 519static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
 520{
 521	struct net *net = dev_net(dev);
 522	struct mr_table *mrt;
 523	struct flowi4 fl4 = {
 524		.flowi4_oif	= dev->ifindex,
 525		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
 526		.flowi4_mark	= skb->mark,
 527	};
 528	int err;
 529
 530	err = ipmr_fib_lookup(net, &fl4, &mrt);
 531	if (err < 0) {
 532		kfree_skb(skb);
 533		return err;
 534	}
 535
 536	DEV_STATS_ADD(dev, tx_bytes, skb->len);
 537	DEV_STATS_INC(dev, tx_packets);
 538	rcu_read_lock();
 539
 540	/* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
 541	ipmr_cache_report(mrt, skb, READ_ONCE(mrt->mroute_reg_vif_num),
 542			  IGMPMSG_WHOLEPKT);
 543
 544	rcu_read_unlock();
 545	kfree_skb(skb);
 546	return NETDEV_TX_OK;
 547}
 548
 549static int reg_vif_get_iflink(const struct net_device *dev)
 550{
 551	return 0;
 552}
 553
 554static const struct net_device_ops reg_vif_netdev_ops = {
 555	.ndo_start_xmit	= reg_vif_xmit,
 556	.ndo_get_iflink = reg_vif_get_iflink,
 557};
 558
 559static void reg_vif_setup(struct net_device *dev)
 560{
 561	dev->type		= ARPHRD_PIMREG;
 562	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
 563	dev->flags		= IFF_NOARP;
 564	dev->netdev_ops		= &reg_vif_netdev_ops;
 565	dev->needs_free_netdev	= true;
 566	dev->netns_local	= true;
 567}
 568
 569static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 570{
 571	struct net_device *dev;
 
 572	char name[IFNAMSIZ];
 573
 574	if (mrt->id == RT_TABLE_DEFAULT)
 575		sprintf(name, "pimreg");
 576	else
 577		sprintf(name, "pimreg%u", mrt->id);
 578
 579	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
 580
 581	if (!dev)
 582		return NULL;
 583
 584	dev_net_set(dev, net);
 585
 586	if (register_netdevice(dev)) {
 587		free_netdev(dev);
 588		return NULL;
 589	}
 
 590
 591	if (!ipmr_init_vif_indev(dev))
 
 
 
 592		goto failure;
 593	if (dev_open(dev, NULL))
 
 
 
 
 
 
 
 594		goto failure;
 595
 596	dev_hold(dev);
 597
 598	return dev;
 599
 600failure:
 
 
 
 
 601	unregister_netdevice(dev);
 602	return NULL;
 603}
 604
 605/* called with rcu_read_lock() */
 606static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
 607		     unsigned int pimlen)
 608{
 609	struct net_device *reg_dev = NULL;
 610	struct iphdr *encap;
 611	int vif_num;
 612
 613	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
 614	/* Check that:
 615	 * a. packet is really sent to a multicast group
 616	 * b. packet is not a NULL-REGISTER
 617	 * c. packet is not truncated
 618	 */
 619	if (!ipv4_is_multicast(encap->daddr) ||
 620	    encap->tot_len == 0 ||
 621	    ntohs(encap->tot_len) + pimlen > skb->len)
 622		return 1;
 623
 624	/* Pairs with WRITE_ONCE() in vif_add()/vid_delete() */
 625	vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
 626	if (vif_num >= 0)
 627		reg_dev = vif_dev_read(&mrt->vif_table[vif_num]);
 628	if (!reg_dev)
 629		return 1;
 630
 631	skb->mac_header = skb->network_header;
 632	skb_pull(skb, (u8 *)encap - skb->data);
 633	skb_reset_network_header(skb);
 634	skb->protocol = htons(ETH_P_IP);
 635	skb->ip_summed = CHECKSUM_NONE;
 636
 637	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
 638
 639	netif_rx(skb);
 640
 641	return NET_RX_SUCCESS;
 642}
 643#else
 644static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 645{
 646	return NULL;
 647}
 648#endif
 649
 650static int call_ipmr_vif_entry_notifiers(struct net *net,
 651					 enum fib_event_type event_type,
 652					 struct vif_device *vif,
 653					 struct net_device *vif_dev,
 654					 vifi_t vif_index, u32 tb_id)
 655{
 656	return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
 657				     vif, vif_dev, vif_index, tb_id,
 658				     &net->ipv4.ipmr_seq);
 659}
 660
 661static int call_ipmr_mfc_entry_notifiers(struct net *net,
 662					 enum fib_event_type event_type,
 663					 struct mfc_cache *mfc, u32 tb_id)
 664{
 665	return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
 666				     &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
 667}
 668
 669/**
 670 *	vif_delete - Delete a VIF entry
 671 *	@mrt: Table to delete from
 672 *	@vifi: VIF identifier to delete
 673 *	@notify: Set to 1, if the caller is a notifier_call
 674 *	@head: if unregistering the VIF, place it on this queue
 675 */
 
 676static int vif_delete(struct mr_table *mrt, int vifi, int notify,
 677		      struct list_head *head)
 678{
 679	struct net *net = read_pnet(&mrt->net);
 680	struct vif_device *v;
 681	struct net_device *dev;
 682	struct in_device *in_dev;
 683
 684	if (vifi < 0 || vifi >= mrt->maxvif)
 685		return -EADDRNOTAVAIL;
 686
 687	v = &mrt->vif_table[vifi];
 688
 689	dev = rtnl_dereference(v->dev);
 690	if (!dev)
 
 
 
 
 691		return -EADDRNOTAVAIL;
 
 
 
 
 
 
 692
 693	spin_lock(&mrt_lock);
 694	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, dev,
 695				      vifi, mrt->id);
 696	RCU_INIT_POINTER(v->dev, NULL);
 697
 698	if (vifi == mrt->mroute_reg_vif_num) {
 699		/* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
 700		WRITE_ONCE(mrt->mroute_reg_vif_num, -1);
 701	}
 702	if (vifi + 1 == mrt->maxvif) {
 703		int tmp;
 704
 705		for (tmp = vifi - 1; tmp >= 0; tmp--) {
 706			if (VIF_EXISTS(mrt, tmp))
 707				break;
 708		}
 709		WRITE_ONCE(mrt->maxvif, tmp + 1);
 710	}
 711
 712	spin_unlock(&mrt_lock);
 713
 714	dev_set_allmulti(dev, -1);
 715
 716	in_dev = __in_dev_get_rtnl(dev);
 717	if (in_dev) {
 718		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
 719		inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
 720					    NETCONFA_MC_FORWARDING,
 721					    dev->ifindex, &in_dev->cnf);
 722		ip_rt_multicast_event(in_dev);
 723	}
 724
 725	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
 726		unregister_netdevice_queue(dev, head);
 727
 728	netdev_put(dev, &v->dev_tracker);
 729	return 0;
 730}
 731
 732static void ipmr_cache_free_rcu(struct rcu_head *head)
 733{
 734	struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
 735
 736	kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
 737}
 738
 739static void ipmr_cache_free(struct mfc_cache *c)
 740{
 741	call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
 742}
 743
 744/* Destroy an unresolved cache entry, killing queued skbs
 745 * and reporting error to netlink readers.
 746 */
 
 747static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
 748{
 749	struct net *net = read_pnet(&mrt->net);
 750	struct sk_buff *skb;
 751	struct nlmsgerr *e;
 752
 753	atomic_dec(&mrt->cache_resolve_queue_len);
 754
 755	while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
 756		if (ip_hdr(skb)->version == 0) {
 757			struct nlmsghdr *nlh = skb_pull(skb,
 758							sizeof(struct iphdr));
 759			nlh->nlmsg_type = NLMSG_ERROR;
 760			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
 761			skb_trim(skb, nlh->nlmsg_len);
 762			e = nlmsg_data(nlh);
 763			e->error = -ETIMEDOUT;
 764			memset(&e->msg, 0, sizeof(e->msg));
 765
 766			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
 767		} else {
 768			kfree_skb(skb);
 769		}
 770	}
 771
 772	ipmr_cache_free(c);
 773}
 774
 
 775/* Timer process for the unresolved queue. */
 776static void ipmr_expire_process(struct timer_list *t)
 
 777{
 778	struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
 779	struct mr_mfc *c, *next;
 780	unsigned long expires;
 781	unsigned long now;
 782
 783	if (!spin_trylock(&mfc_unres_lock)) {
 784		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
 785		return;
 786	}
 787
 788	if (list_empty(&mrt->mfc_unres_queue))
 789		goto out;
 790
 791	now = jiffies;
 792	expires = 10*HZ;
 793
 794	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
 795		if (time_after(c->mfc_un.unres.expires, now)) {
 796			unsigned long interval = c->mfc_un.unres.expires - now;
 797			if (interval < expires)
 798				expires = interval;
 799			continue;
 800		}
 801
 802		list_del(&c->list);
 803		mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
 804		ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
 805	}
 806
 807	if (!list_empty(&mrt->mfc_unres_queue))
 808		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
 809
 810out:
 811	spin_unlock(&mfc_unres_lock);
 812}
 813
 814/* Fill oifs list. It is called under locked mrt_lock. */
 815static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
 
 816				   unsigned char *ttls)
 817{
 818	int vifi;
 819
 820	cache->mfc_un.res.minvif = MAXVIFS;
 821	cache->mfc_un.res.maxvif = 0;
 822	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
 823
 824	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
 825		if (VIF_EXISTS(mrt, vifi) &&
 826		    ttls[vifi] && ttls[vifi] < 255) {
 827			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
 828			if (cache->mfc_un.res.minvif > vifi)
 829				cache->mfc_un.res.minvif = vifi;
 830			if (cache->mfc_un.res.maxvif <= vifi)
 831				cache->mfc_un.res.maxvif = vifi + 1;
 832		}
 833	}
 834	WRITE_ONCE(cache->mfc_un.res.lastuse, jiffies);
 835}
 836
 837static int vif_add(struct net *net, struct mr_table *mrt,
 838		   struct vifctl *vifc, int mrtsock)
 839{
 840	struct netdev_phys_item_id ppid = { };
 841	int vifi = vifc->vifc_vifi;
 842	struct vif_device *v = &mrt->vif_table[vifi];
 843	struct net_device *dev;
 844	struct in_device *in_dev;
 845	int err;
 846
 847	/* Is vif busy ? */
 848	if (VIF_EXISTS(mrt, vifi))
 849		return -EADDRINUSE;
 850
 851	switch (vifc->vifc_flags) {
 
 852	case VIFF_REGISTER:
 853		if (!ipmr_pimsm_enabled())
 854			return -EINVAL;
 855		/* Special Purpose VIF in PIM
 856		 * All the packets will be sent to the daemon
 857		 */
 858		if (mrt->mroute_reg_vif_num >= 0)
 859			return -EADDRINUSE;
 860		dev = ipmr_reg_vif(net, mrt);
 861		if (!dev)
 862			return -ENOBUFS;
 863		err = dev_set_allmulti(dev, 1);
 864		if (err) {
 865			unregister_netdevice(dev);
 866			dev_put(dev);
 867			return err;
 868		}
 869		break;
 
 870	case VIFF_TUNNEL:
 871		dev = ipmr_new_tunnel(net, vifc);
 872		if (IS_ERR(dev))
 873			return PTR_ERR(dev);
 
 
 
 
 
 
 874		break;
 
 875	case VIFF_USE_IFINDEX:
 876	case 0:
 877		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
 878			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
 879			if (dev && !__in_dev_get_rtnl(dev)) {
 880				dev_put(dev);
 881				return -EADDRNOTAVAIL;
 882			}
 883		} else {
 884			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
 885		}
 886		if (!dev)
 887			return -EADDRNOTAVAIL;
 888		err = dev_set_allmulti(dev, 1);
 889		if (err) {
 890			dev_put(dev);
 891			return err;
 892		}
 893		break;
 894	default:
 895		return -EINVAL;
 896	}
 897
 898	in_dev = __in_dev_get_rtnl(dev);
 899	if (!in_dev) {
 900		dev_put(dev);
 901		return -EADDRNOTAVAIL;
 902	}
 903	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
 904	inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
 905				    dev->ifindex, &in_dev->cnf);
 906	ip_rt_multicast_event(in_dev);
 907
 908	/* Fill in the VIF structures */
 909	vif_device_init(v, dev, vifc->vifc_rate_limit,
 910			vifc->vifc_threshold,
 911			vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
 912			(VIFF_TUNNEL | VIFF_REGISTER));
 913
 914	err = dev_get_port_parent_id(dev, &ppid, true);
 915	if (err == 0) {
 916		memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
 917		v->dev_parent_id.id_len = ppid.id_len;
 918	} else {
 919		v->dev_parent_id.id_len = 0;
 920	}
 921
 
 922	v->local = vifc->vifc_lcl_addr.s_addr;
 923	v->remote = vifc->vifc_rmt_addr.s_addr;
 
 
 
 
 
 
 
 
 
 
 
 924
 925	/* And finish update writing critical data */
 926	spin_lock(&mrt_lock);
 927	rcu_assign_pointer(v->dev, dev);
 928	netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC);
 929	if (v->flags & VIFF_REGISTER) {
 930		/* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
 931		WRITE_ONCE(mrt->mroute_reg_vif_num, vifi);
 932	}
 933	if (vifi+1 > mrt->maxvif)
 934		WRITE_ONCE(mrt->maxvif, vifi + 1);
 935	spin_unlock(&mrt_lock);
 936	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, dev,
 937				      vifi, mrt->id);
 938	return 0;
 939}
 940
 941/* called with rcu_read_lock() */
 942static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
 943					 __be32 origin,
 944					 __be32 mcastgrp)
 945{
 946	struct mfc_cache_cmp_arg arg = {
 947			.mfc_mcastgrp = mcastgrp,
 948			.mfc_origin = origin
 949	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 950
 951	return mr_mfc_find(mrt, &arg);
 952}
 953
 954/* Look for a (*,G) entry */
 955static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
 956					     __be32 mcastgrp, int vifi)
 957{
 958	struct mfc_cache_cmp_arg arg = {
 959			.mfc_mcastgrp = mcastgrp,
 960			.mfc_origin = htonl(INADDR_ANY)
 961	};
 962
 963	if (mcastgrp == htonl(INADDR_ANY))
 964		return mr_mfc_find_any_parent(mrt, vifi);
 965	return mr_mfc_find_any(mrt, vifi, &arg);
 966}
 967
 968/* Look for a (S,G,iif) entry if parent != -1 */
 969static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
 970						__be32 origin, __be32 mcastgrp,
 971						int parent)
 972{
 973	struct mfc_cache_cmp_arg arg = {
 974			.mfc_mcastgrp = mcastgrp,
 975			.mfc_origin = origin,
 976	};
 
 
 
 977
 978	return mr_mfc_find_parent(mrt, &arg, parent);
 
 979}
 980
 981/* Allocate a multicast cache entry */
 
 
 982static struct mfc_cache *ipmr_cache_alloc(void)
 983{
 984	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
 985
 986	if (c) {
 987		c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
 988		c->_c.mfc_un.res.minvif = MAXVIFS;
 989		c->_c.free = ipmr_cache_free_rcu;
 990		refcount_set(&c->_c.mfc_un.res.refcount, 1);
 991	}
 992	return c;
 993}
 994
 995static struct mfc_cache *ipmr_cache_alloc_unres(void)
 996{
 997	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
 998
 999	if (c) {
1000		skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
1001		c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
1002	}
1003	return c;
1004}
1005
1006/* A cache entry has gone into a resolved state from queued */
 
 
 
1007static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
1008			       struct mfc_cache *uc, struct mfc_cache *c)
1009{
1010	struct sk_buff *skb;
1011	struct nlmsgerr *e;
1012
1013	/* Play the pending entries through our router */
1014	while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
 
1015		if (ip_hdr(skb)->version == 0) {
1016			struct nlmsghdr *nlh = skb_pull(skb,
1017							sizeof(struct iphdr));
1018
1019			if (mr_fill_mroute(mrt, skb, &c->_c,
1020					   nlmsg_data(nlh)) > 0) {
1021				nlh->nlmsg_len = skb_tail_pointer(skb) -
1022						 (u8 *)nlh;
1023			} else {
1024				nlh->nlmsg_type = NLMSG_ERROR;
1025				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
1026				skb_trim(skb, nlh->nlmsg_len);
1027				e = nlmsg_data(nlh);
1028				e->error = -EMSGSIZE;
1029				memset(&e->msg, 0, sizeof(e->msg));
1030			}
1031
1032			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1033		} else {
1034			rcu_read_lock();
1035			ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1036			rcu_read_unlock();
1037		}
1038	}
1039}
1040
1041/* Bounce a cache query up to mrouted and netlink.
 
 
1042 *
1043 * Called under rcu_read_lock().
1044 */
1045static int ipmr_cache_report(const struct mr_table *mrt,
 
1046			     struct sk_buff *pkt, vifi_t vifi, int assert)
1047{
 
1048	const int ihl = ip_hdrlen(pkt);
1049	struct sock *mroute_sk;
1050	struct igmphdr *igmp;
1051	struct igmpmsg *msg;
1052	struct sk_buff *skb;
1053	int ret;
1054
1055	mroute_sk = rcu_dereference(mrt->mroute_sk);
1056	if (!mroute_sk)
1057		return -EINVAL;
1058
1059	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1060		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1061	else
 
1062		skb = alloc_skb(128, GFP_ATOMIC);
1063
1064	if (!skb)
1065		return -ENOBUFS;
1066
1067	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
 
1068		/* Ugly, but we have no choice with this interface.
1069		 * Duplicate old header, fix ihl, length etc.
1070		 * And all this only to mangle msg->im_msgtype and
1071		 * to set msg->im_mbz to "mbz" :-)
1072		 */
1073		skb_push(skb, sizeof(struct iphdr));
1074		skb_reset_network_header(skb);
1075		skb_reset_transport_header(skb);
1076		msg = (struct igmpmsg *)skb_network_header(skb);
1077		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1078		msg->im_msgtype = assert;
1079		msg->im_mbz = 0;
1080		if (assert == IGMPMSG_WRVIFWHOLE) {
1081			msg->im_vif = vifi;
1082			msg->im_vif_hi = vifi >> 8;
1083		} else {
1084			/* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
1085			int vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
1086
1087			msg->im_vif = vif_num;
1088			msg->im_vif_hi = vif_num >> 8;
1089		}
1090		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1091		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1092					     sizeof(struct iphdr));
1093	} else {
1094		/* Copy the IP header */
1095		skb_set_network_header(skb, skb->len);
1096		skb_put(skb, ihl);
1097		skb_copy_to_linear_data(skb, pkt->data, ihl);
1098		/* Flag to the kernel this is a route add */
1099		ip_hdr(skb)->protocol = 0;
1100		msg = (struct igmpmsg *)skb_network_header(skb);
1101		msg->im_vif = vifi;
1102		msg->im_vif_hi = vifi >> 8;
1103		ipv4_pktinfo_prepare(mroute_sk, pkt, false);
1104		memcpy(skb->cb, pkt->cb, sizeof(skb->cb));
1105		/* Add our header */
1106		igmp = skb_put(skb, sizeof(struct igmphdr));
1107		igmp->type = assert;
1108		msg->im_msgtype = assert;
1109		igmp->code = 0;
1110		ip_hdr(skb)->tot_len = htons(skb->len);	/* Fix the length */
1111		skb->transport_header = skb->network_header;
 
 
 
1112	}
1113
1114	igmpmsg_netlink_event(mrt, skb);
 
 
 
 
 
 
1115
1116	/* Deliver to mrouted */
 
1117	ret = sock_queue_rcv_skb(mroute_sk, skb);
1118
1119	if (ret < 0) {
1120		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1121		kfree_skb(skb);
1122	}
1123
1124	return ret;
1125}
1126
1127/* Queue a packet for resolution. It gets locked cache entry! */
1128/* Called under rcu_read_lock() */
1129static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1130				 struct sk_buff *skb, struct net_device *dev)
 
 
1131{
1132	const struct iphdr *iph = ip_hdr(skb);
1133	struct mfc_cache *c;
1134	bool found = false;
1135	int err;
 
 
1136
1137	spin_lock_bh(&mfc_unres_lock);
1138	list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1139		if (c->mfc_mcastgrp == iph->daddr &&
1140		    c->mfc_origin == iph->saddr) {
1141			found = true;
1142			break;
1143		}
1144	}
1145
1146	if (!found) {
1147		/* Create a new entry if allowable */
1148		c = ipmr_cache_alloc_unres();
1149		if (!c) {
 
1150			spin_unlock_bh(&mfc_unres_lock);
1151
1152			kfree_skb(skb);
1153			return -ENOBUFS;
1154		}
1155
1156		/* Fill in the new cache entry */
1157		c->_c.mfc_parent = -1;
 
1158		c->mfc_origin	= iph->saddr;
1159		c->mfc_mcastgrp	= iph->daddr;
1160
1161		/* Reflect first query at mrouted. */
 
1162		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1163
1164		if (err < 0) {
1165			/* If the report failed throw the cache entry
1166			   out - Brad Parker
1167			 */
1168			spin_unlock_bh(&mfc_unres_lock);
1169
1170			ipmr_cache_free(c);
1171			kfree_skb(skb);
1172			return err;
1173		}
1174
1175		atomic_inc(&mrt->cache_resolve_queue_len);
1176		list_add(&c->_c.list, &mrt->mfc_unres_queue);
1177		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1178
1179		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1180			mod_timer(&mrt->ipmr_expire_timer,
1181				  c->_c.mfc_un.unres.expires);
1182	}
1183
1184	/* See if we can append the packet */
1185	if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
 
1186		kfree_skb(skb);
1187		err = -ENOBUFS;
1188	} else {
1189		if (dev) {
1190			skb->dev = dev;
1191			skb->skb_iif = dev->ifindex;
1192		}
1193		skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1194		err = 0;
1195	}
1196
1197	spin_unlock_bh(&mfc_unres_lock);
1198	return err;
1199}
1200
1201/* MFC cache manipulation by user space mroute daemon */
 
 
1202
1203static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1204{
1205	struct net *net = read_pnet(&mrt->net);
1206	struct mfc_cache *c;
1207
1208	/* The entries are added/deleted only under RTNL */
1209	rcu_read_lock();
1210	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1211				   mfc->mfcc_mcastgrp.s_addr, parent);
1212	rcu_read_unlock();
1213	if (!c)
1214		return -ENOENT;
1215	rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1216	list_del_rcu(&c->_c.list);
1217	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1218	mroute_netlink_event(mrt, c, RTM_DELROUTE);
1219	mr_cache_put(&c->_c);
1220
1221	return 0;
 
 
 
 
 
 
 
 
 
 
1222}
1223
1224static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1225			struct mfcctl *mfc, int mrtsock, int parent)
1226{
 
 
1227	struct mfc_cache *uc, *c;
1228	struct mr_mfc *_uc;
1229	bool found;
1230	int ret;
1231
1232	if (mfc->mfcc_parent >= MAXVIFS)
1233		return -ENFILE;
1234
1235	/* The entries are added/deleted only under RTNL */
1236	rcu_read_lock();
1237	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1238				   mfc->mfcc_mcastgrp.s_addr, parent);
1239	rcu_read_unlock();
1240	if (c) {
1241		spin_lock(&mrt_lock);
1242		c->_c.mfc_parent = mfc->mfcc_parent;
1243		ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
 
 
 
 
 
 
1244		if (!mrtsock)
1245			c->_c.mfc_flags |= MFC_STATIC;
1246		spin_unlock(&mrt_lock);
1247		call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1248					      mrt->id);
1249		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1250		return 0;
1251	}
1252
1253	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1254	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1255		return -EINVAL;
1256
1257	c = ipmr_cache_alloc();
1258	if (!c)
1259		return -ENOMEM;
1260
1261	c->mfc_origin = mfc->mfcc_origin.s_addr;
1262	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1263	c->_c.mfc_parent = mfc->mfcc_parent;
1264	ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1265	if (!mrtsock)
1266		c->_c.mfc_flags |= MFC_STATIC;
1267
1268	ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1269				  ipmr_rht_params);
1270	if (ret) {
1271		pr_err("ipmr: rhtable insert error %d\n", ret);
1272		ipmr_cache_free(c);
1273		return ret;
1274	}
1275	list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1276	/* Check to see if we resolved a queued list. If so we
1277	 * need to send on the frames and tidy up.
1278	 */
1279	found = false;
1280	spin_lock_bh(&mfc_unres_lock);
1281	list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1282		uc = (struct mfc_cache *)_uc;
1283		if (uc->mfc_origin == c->mfc_origin &&
1284		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1285			list_del(&_uc->list);
1286			atomic_dec(&mrt->cache_resolve_queue_len);
1287			found = true;
1288			break;
1289		}
1290	}
1291	if (list_empty(&mrt->mfc_unres_queue))
1292		del_timer(&mrt->ipmr_expire_timer);
1293	spin_unlock_bh(&mfc_unres_lock);
1294
1295	if (found) {
1296		ipmr_cache_resolve(net, mrt, uc, c);
1297		ipmr_cache_free(uc);
1298	}
1299	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1300	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1301	return 0;
1302}
1303
1304/* Close the multicast socket, and clear the vif tables etc */
1305static void mroute_clean_tables(struct mr_table *mrt, int flags)
 
 
 
1306{
1307	struct net *net = read_pnet(&mrt->net);
1308	struct mr_mfc *c, *tmp;
1309	struct mfc_cache *cache;
1310	LIST_HEAD(list);
1311	int i;
1312
1313	/* Shut down all active vif entries */
1314	if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1315		for (i = 0; i < mrt->maxvif; i++) {
1316			if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1317			     !(flags & MRT_FLUSH_VIFS_STATIC)) ||
1318			    (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1319				continue;
1320			vif_delete(mrt, i, 0, &list);
1321		}
1322		unregister_netdevice_many(&list);
1323	}
 
1324
1325	/* Wipe the cache */
1326	if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1327		list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1328			if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1329			    (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1330				continue;
1331			rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1332			list_del_rcu(&c->list);
1333			cache = (struct mfc_cache *)c;
1334			call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1335						      mrt->id);
1336			mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1337			mr_cache_put(c);
1338		}
1339	}
1340
1341	if (flags & MRT_FLUSH_MFC) {
1342		if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1343			spin_lock_bh(&mfc_unres_lock);
1344			list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1345				list_del(&c->list);
1346				cache = (struct mfc_cache *)c;
1347				mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1348				ipmr_destroy_unres(mrt, cache);
1349			}
1350			spin_unlock_bh(&mfc_unres_lock);
1351		}
 
1352	}
1353}
1354
1355/* called from ip_ra_control(), before an RCU grace period,
1356 * we don't need to call synchronize_rcu() here
1357 */
1358static void mrtsock_destruct(struct sock *sk)
1359{
1360	struct net *net = sock_net(sk);
1361	struct mr_table *mrt;
1362
1363	rtnl_lock();
1364	ipmr_for_each_table(mrt, net) {
1365		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1366			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1367			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1368						    NETCONFA_MC_FORWARDING,
1369						    NETCONFA_IFINDEX_ALL,
1370						    net->ipv4.devconf_all);
1371			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1372			mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1373		}
1374	}
1375	rtnl_unlock();
1376}
1377
1378/* Socket options and virtual interface manipulation. The whole
1379 * virtual interface system is a complete heap, but unfortunately
1380 * that's how BSD mrouted happens to think. Maybe one day with a proper
1381 * MOSPF/PIM router set up we can clean this up.
 
1382 */
1383
1384int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval,
1385			 unsigned int optlen)
1386{
 
 
 
1387	struct net *net = sock_net(sk);
1388	int val, ret = 0, parent = 0;
1389	struct mr_table *mrt;
1390	struct vifctl vif;
1391	struct mfcctl mfc;
1392	bool do_wrvifwhole;
1393	u32 uval;
1394
1395	/* There's one exception to the lock - MRT_DONE which needs to unlock */
1396	rtnl_lock();
1397	if (sk->sk_type != SOCK_RAW ||
1398	    inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1399		ret = -EOPNOTSUPP;
1400		goto out_unlock;
1401	}
 
 
1402
1403	mrt = __ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1404	if (!mrt) {
1405		ret = -ENOENT;
1406		goto out_unlock;
1407	}
1408	if (optname != MRT_INIT) {
1409		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1410		    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1411			ret = -EACCES;
1412			goto out_unlock;
1413		}
1414	}
1415
1416	switch (optname) {
1417	case MRT_INIT:
1418		if (optlen != sizeof(int)) {
1419			ret = -EINVAL;
1420			break;
1421		}
1422		if (rtnl_dereference(mrt->mroute_sk)) {
1423			ret = -EADDRINUSE;
1424			break;
1425		}
1426
1427		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1428		if (ret == 0) {
1429			rcu_assign_pointer(mrt->mroute_sk, sk);
1430			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1431			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1432						    NETCONFA_MC_FORWARDING,
1433						    NETCONFA_IFINDEX_ALL,
1434						    net->ipv4.devconf_all);
1435		}
1436		break;
 
1437	case MRT_DONE:
1438		if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1439			ret = -EACCES;
1440		} else {
1441			/* We need to unlock here because mrtsock_destruct takes
1442			 * care of rtnl itself and we can't change that due to
1443			 * the IP_ROUTER_ALERT setsockopt which runs without it.
1444			 */
1445			rtnl_unlock();
1446			ret = ip_ra_control(sk, 0, NULL);
1447			goto out;
1448		}
1449		break;
1450	case MRT_ADD_VIF:
1451	case MRT_DEL_VIF:
1452		if (optlen != sizeof(vif)) {
1453			ret = -EINVAL;
1454			break;
1455		}
1456		if (copy_from_sockptr(&vif, optval, sizeof(vif))) {
1457			ret = -EFAULT;
1458			break;
1459		}
1460		if (vif.vifc_vifi >= MAXVIFS) {
1461			ret = -ENFILE;
1462			break;
1463		}
1464		if (optname == MRT_ADD_VIF) {
1465			ret = vif_add(net, mrt, &vif,
1466				      sk == rtnl_dereference(mrt->mroute_sk));
1467		} else {
1468			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1469		}
1470		break;
1471	/* Manipulate the forwarding caches. These live
1472	 * in a sort of kernel/user symbiosis.
1473	 */
 
 
 
1474	case MRT_ADD_MFC:
1475	case MRT_DEL_MFC:
1476		parent = -1;
1477		fallthrough;
1478	case MRT_ADD_MFC_PROXY:
1479	case MRT_DEL_MFC_PROXY:
1480		if (optlen != sizeof(mfc)) {
1481			ret = -EINVAL;
1482			break;
1483		}
1484		if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) {
1485			ret = -EFAULT;
1486			break;
1487		}
1488		if (parent == 0)
1489			parent = mfc.mfcc_parent;
 
1490		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1491			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1492		else
1493			ret = ipmr_mfc_add(net, mrt, &mfc,
1494					   sk == rtnl_dereference(mrt->mroute_sk),
1495					   parent);
1496		break;
1497	case MRT_FLUSH:
1498		if (optlen != sizeof(val)) {
1499			ret = -EINVAL;
1500			break;
1501		}
1502		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1503			ret = -EFAULT;
1504			break;
1505		}
1506		mroute_clean_tables(mrt, val);
1507		break;
1508	/* Control PIM assert. */
1509	case MRT_ASSERT:
1510		if (optlen != sizeof(val)) {
1511			ret = -EINVAL;
1512			break;
1513		}
1514		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1515			ret = -EFAULT;
1516			break;
1517		}
1518		mrt->mroute_do_assert = val;
1519		break;
1520	case MRT_PIM:
1521		if (!ipmr_pimsm_enabled()) {
1522			ret = -ENOPROTOOPT;
1523			break;
1524		}
1525		if (optlen != sizeof(val)) {
1526			ret = -EINVAL;
1527			break;
1528		}
1529		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1530			ret = -EFAULT;
1531			break;
1532		}
1533
1534		do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1535		val = !!val;
1536		if (val != mrt->mroute_do_pim) {
1537			mrt->mroute_do_pim = val;
1538			mrt->mroute_do_assert = val;
1539			mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1540		}
1541		break;
 
 
 
 
1542	case MRT_TABLE:
1543		if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1544			ret = -ENOPROTOOPT;
1545			break;
1546		}
1547		if (optlen != sizeof(uval)) {
1548			ret = -EINVAL;
1549			break;
1550		}
1551		if (copy_from_sockptr(&uval, optval, sizeof(uval))) {
1552			ret = -EFAULT;
1553			break;
1554		}
1555
 
 
1556		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1557			ret = -EBUSY;
1558		} else {
1559			mrt = ipmr_new_table(net, uval);
1560			if (IS_ERR(mrt))
1561				ret = PTR_ERR(mrt);
1562			else
1563				raw_sk(sk)->ipmr_table = uval;
1564		}
1565		break;
1566	/* Spurious command, or MRT_VERSION which you cannot set. */
 
 
 
 
 
 
1567	default:
1568		ret = -ENOPROTOOPT;
1569	}
1570out_unlock:
1571	rtnl_unlock();
1572out:
1573	return ret;
1574}
1575
1576/* Execute if this ioctl is a special mroute ioctl */
1577int ipmr_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1578{
1579	switch (cmd) {
1580	/* These userspace buffers will be consumed by ipmr_ioctl() */
1581	case SIOCGETVIFCNT: {
1582		struct sioc_vif_req buffer;
1583
1584		return sock_ioctl_inout(sk, cmd, arg, &buffer,
1585				      sizeof(buffer));
1586		}
1587	case SIOCGETSGCNT: {
1588		struct sioc_sg_req buffer;
1589
1590		return sock_ioctl_inout(sk, cmd, arg, &buffer,
1591				      sizeof(buffer));
1592		}
1593	}
1594	/* return code > 0 means that the ioctl was not executed */
1595	return 1;
1596}
1597
1598/* Getsock opt support for the multicast routing system. */
1599int ip_mroute_getsockopt(struct sock *sk, int optname, sockptr_t optval,
1600			 sockptr_t optlen)
1601{
1602	int olr;
1603	int val;
1604	struct net *net = sock_net(sk);
1605	struct mr_table *mrt;
1606
1607	if (sk->sk_type != SOCK_RAW ||
1608	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1609		return -EOPNOTSUPP;
1610
1611	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1612	if (!mrt)
1613		return -ENOENT;
1614
1615	switch (optname) {
1616	case MRT_VERSION:
1617		val = 0x0305;
1618		break;
1619	case MRT_PIM:
1620		if (!ipmr_pimsm_enabled())
1621			return -ENOPROTOOPT;
1622		val = mrt->mroute_do_pim;
1623		break;
1624	case MRT_ASSERT:
1625		val = mrt->mroute_do_assert;
1626		break;
1627	default:
1628		return -ENOPROTOOPT;
1629	}
1630
1631	if (copy_from_sockptr(&olr, optlen, sizeof(int)))
1632		return -EFAULT;
 
 
1633	if (olr < 0)
1634		return -EINVAL;
1635
1636	olr = min_t(unsigned int, olr, sizeof(int));
1637
1638	if (copy_to_sockptr(optlen, &olr, sizeof(int)))
1639		return -EFAULT;
1640	if (copy_to_sockptr(optval, &val, olr))
 
 
 
 
 
 
 
 
1641		return -EFAULT;
1642	return 0;
1643}
1644
1645/* The IP multicast ioctl support routines. */
1646int ipmr_ioctl(struct sock *sk, int cmd, void *arg)
 
 
 
1647{
 
 
1648	struct vif_device *vif;
1649	struct mfc_cache *c;
1650	struct net *net = sock_net(sk);
1651	struct sioc_vif_req *vr;
1652	struct sioc_sg_req *sr;
1653	struct mr_table *mrt;
1654
1655	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1656	if (!mrt)
1657		return -ENOENT;
1658
1659	switch (cmd) {
1660	case SIOCGETVIFCNT:
1661		vr = (struct sioc_vif_req *)arg;
1662		if (vr->vifi >= mrt->maxvif)
 
1663			return -EINVAL;
1664		vr->vifi = array_index_nospec(vr->vifi, mrt->maxvif);
1665		rcu_read_lock();
1666		vif = &mrt->vif_table[vr->vifi];
1667		if (VIF_EXISTS(mrt, vr->vifi)) {
1668			vr->icount = READ_ONCE(vif->pkt_in);
1669			vr->ocount = READ_ONCE(vif->pkt_out);
1670			vr->ibytes = READ_ONCE(vif->bytes_in);
1671			vr->obytes = READ_ONCE(vif->bytes_out);
1672			rcu_read_unlock();
1673
 
 
1674			return 0;
1675		}
1676		rcu_read_unlock();
1677		return -EADDRNOTAVAIL;
1678	case SIOCGETSGCNT:
1679		sr = (struct sioc_sg_req *)arg;
 
1680
1681		rcu_read_lock();
1682		c = ipmr_cache_find(mrt, sr->src.s_addr, sr->grp.s_addr);
1683		if (c) {
1684			sr->pktcnt = atomic_long_read(&c->_c.mfc_un.res.pkt);
1685			sr->bytecnt = atomic_long_read(&c->_c.mfc_un.res.bytes);
1686			sr->wrong_if = atomic_long_read(&c->_c.mfc_un.res.wrong_if);
1687			rcu_read_unlock();
 
 
 
1688			return 0;
1689		}
1690		rcu_read_unlock();
1691		return -EADDRNOTAVAIL;
1692	default:
1693		return -ENOIOCTLCMD;
1694	}
1695}
1696
1697#ifdef CONFIG_COMPAT
1698struct compat_sioc_sg_req {
1699	struct in_addr src;
1700	struct in_addr grp;
1701	compat_ulong_t pktcnt;
1702	compat_ulong_t bytecnt;
1703	compat_ulong_t wrong_if;
1704};
1705
1706struct compat_sioc_vif_req {
1707	vifi_t	vifi;		/* Which iface */
1708	compat_ulong_t icount;
1709	compat_ulong_t ocount;
1710	compat_ulong_t ibytes;
1711	compat_ulong_t obytes;
1712};
1713
1714int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1715{
1716	struct compat_sioc_sg_req sr;
1717	struct compat_sioc_vif_req vr;
1718	struct vif_device *vif;
1719	struct mfc_cache *c;
1720	struct net *net = sock_net(sk);
1721	struct mr_table *mrt;
1722
1723	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1724	if (!mrt)
1725		return -ENOENT;
1726
1727	switch (cmd) {
1728	case SIOCGETVIFCNT:
1729		if (copy_from_user(&vr, arg, sizeof(vr)))
1730			return -EFAULT;
1731		if (vr.vifi >= mrt->maxvif)
1732			return -EINVAL;
1733		vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1734		rcu_read_lock();
1735		vif = &mrt->vif_table[vr.vifi];
1736		if (VIF_EXISTS(mrt, vr.vifi)) {
1737			vr.icount = READ_ONCE(vif->pkt_in);
1738			vr.ocount = READ_ONCE(vif->pkt_out);
1739			vr.ibytes = READ_ONCE(vif->bytes_in);
1740			vr.obytes = READ_ONCE(vif->bytes_out);
1741			rcu_read_unlock();
1742
1743			if (copy_to_user(arg, &vr, sizeof(vr)))
1744				return -EFAULT;
1745			return 0;
1746		}
1747		rcu_read_unlock();
1748		return -EADDRNOTAVAIL;
1749	case SIOCGETSGCNT:
1750		if (copy_from_user(&sr, arg, sizeof(sr)))
1751			return -EFAULT;
1752
1753		rcu_read_lock();
1754		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1755		if (c) {
1756			sr.pktcnt = atomic_long_read(&c->_c.mfc_un.res.pkt);
1757			sr.bytecnt = atomic_long_read(&c->_c.mfc_un.res.bytes);
1758			sr.wrong_if = atomic_long_read(&c->_c.mfc_un.res.wrong_if);
1759			rcu_read_unlock();
1760
1761			if (copy_to_user(arg, &sr, sizeof(sr)))
1762				return -EFAULT;
1763			return 0;
1764		}
1765		rcu_read_unlock();
1766		return -EADDRNOTAVAIL;
1767	default:
1768		return -ENOIOCTLCMD;
1769	}
1770}
1771#endif
1772
 
1773static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1774{
1775	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1776	struct net *net = dev_net(dev);
1777	struct mr_table *mrt;
1778	struct vif_device *v;
1779	int ct;
1780
1781	if (event != NETDEV_UNREGISTER)
1782		return NOTIFY_DONE;
1783
1784	ipmr_for_each_table(mrt, net) {
1785		v = &mrt->vif_table[0];
1786		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1787			if (rcu_access_pointer(v->dev) == dev)
1788				vif_delete(mrt, ct, 1, NULL);
1789		}
1790	}
1791	return NOTIFY_DONE;
1792}
1793
 
1794static struct notifier_block ip_mr_notifier = {
1795	.notifier_call = ipmr_device_event,
1796};
1797
1798/* Encapsulate a packet by attaching a valid IPIP header to it.
1799 * This avoids tunnel drivers and other mess and gives us the speed so
1800 * important for multicast video.
 
1801 */
1802static void ip_encap(struct net *net, struct sk_buff *skb,
1803		     __be32 saddr, __be32 daddr)
1804{
1805	struct iphdr *iph;
1806	const struct iphdr *old_iph = ip_hdr(skb);
1807
1808	skb_push(skb, sizeof(struct iphdr));
1809	skb->transport_header = skb->network_header;
1810	skb_reset_network_header(skb);
1811	iph = ip_hdr(skb);
1812
1813	iph->version	=	4;
1814	iph->tos	=	old_iph->tos;
1815	iph->ttl	=	old_iph->ttl;
1816	iph->frag_off	=	0;
1817	iph->daddr	=	daddr;
1818	iph->saddr	=	saddr;
1819	iph->protocol	=	IPPROTO_IPIP;
1820	iph->ihl	=	5;
1821	iph->tot_len	=	htons(skb->len);
1822	ip_select_ident(net, skb, NULL);
1823	ip_send_check(iph);
1824
1825	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1826	nf_reset_ct(skb);
1827}
1828
1829static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1830				      struct sk_buff *skb)
1831{
1832	struct ip_options *opt = &(IPCB(skb)->opt);
1833
1834	IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
 
1835
1836	if (unlikely(opt->optlen))
1837		ip_forward_options(skb);
1838
1839	return dst_output(net, sk, skb);
1840}
1841
1842#ifdef CONFIG_NET_SWITCHDEV
1843static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1844				   int in_vifi, int out_vifi)
1845{
1846	struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1847	struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1848
1849	if (!skb->offload_l3_fwd_mark)
1850		return false;
1851	if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1852		return false;
1853	return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1854					&in_vif->dev_parent_id);
1855}
1856#else
1857static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1858				   int in_vifi, int out_vifi)
1859{
1860	return false;
1861}
1862#endif
1863
1864/* Processing handlers for ipmr_forward, under rcu_read_lock() */
1865
1866static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1867			    int in_vifi, struct sk_buff *skb, int vifi)
1868{
1869	const struct iphdr *iph = ip_hdr(skb);
1870	struct vif_device *vif = &mrt->vif_table[vifi];
1871	struct net_device *vif_dev;
1872	struct net_device *dev;
1873	struct rtable *rt;
1874	struct flowi4 fl4;
1875	int    encap = 0;
1876
1877	vif_dev = vif_dev_read(vif);
1878	if (!vif_dev)
1879		goto out_free;
1880
 
1881	if (vif->flags & VIFF_REGISTER) {
1882		WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1883		WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1884		DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1885		DEV_STATS_INC(vif_dev, tx_packets);
1886		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1887		goto out_free;
1888	}
1889
1890	if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1891		goto out_free;
1892
1893	if (vif->flags & VIFF_TUNNEL) {
1894		rt = ip_route_output_ports(net, &fl4, NULL,
1895					   vif->remote, vif->local,
1896					   0, 0,
1897					   IPPROTO_IPIP,
1898					   iph->tos & INET_DSCP_MASK, vif->link);
1899		if (IS_ERR(rt))
1900			goto out_free;
1901		encap = sizeof(struct iphdr);
1902	} else {
1903		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1904					   0, 0,
1905					   IPPROTO_IPIP,
1906					   iph->tos & INET_DSCP_MASK, vif->link);
1907		if (IS_ERR(rt))
1908			goto out_free;
1909	}
1910
1911	dev = rt->dst.dev;
1912
1913	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1914		/* Do not fragment multicasts. Alas, IPv4 does not
1915		 * allow to send ICMP, so that packets will disappear
1916		 * to blackhole.
1917		 */
1918		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
 
1919		ip_rt_put(rt);
1920		goto out_free;
1921	}
1922
1923	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1924
1925	if (skb_cow(skb, encap)) {
1926		ip_rt_put(rt);
1927		goto out_free;
1928	}
1929
1930	WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1931	WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1932
1933	skb_dst_drop(skb);
1934	skb_dst_set(skb, &rt->dst);
1935	ip_decrease_ttl(ip_hdr(skb));
1936
1937	/* FIXME: forward and output firewalls used to be called here.
1938	 * What do we do with netfilter? -- RR
1939	 */
1940	if (vif->flags & VIFF_TUNNEL) {
1941		ip_encap(net, skb, vif->local, vif->remote);
1942		/* FIXME: extra output firewall step used to be here. --RR */
1943		DEV_STATS_INC(vif_dev, tx_packets);
1944		DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1945	}
1946
1947	IPCB(skb)->flags |= IPSKB_FORWARDED;
1948
1949	/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
 
1950	 * not only before forwarding, but after forwarding on all output
1951	 * interfaces. It is clear, if mrouter runs a multicasting
1952	 * program, it should receive packets not depending to what interface
1953	 * program is joined.
1954	 * If we will not make it, the program will have to join on all
1955	 * interfaces. On the other hand, multihoming host (or router, but
1956	 * not mrouter) cannot join to more than one interface - it will
1957	 * result in receiving multiple packets.
1958	 */
1959	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1960		net, NULL, skb, skb->dev, dev,
1961		ipmr_forward_finish);
1962	return;
1963
1964out_free:
1965	kfree_skb(skb);
1966}
1967
1968/* Called with mrt_lock or rcu_read_lock() */
1969static int ipmr_find_vif(const struct mr_table *mrt, struct net_device *dev)
1970{
1971	int ct;
1972	/* Pairs with WRITE_ONCE() in vif_delete()/vif_add() */
1973	for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) {
1974		if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev)
1975			break;
1976	}
1977	return ct;
1978}
1979
1980/* "local" means that we should preserve one skb (for local delivery) */
1981/* Called uner rcu_read_lock() */
1982static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1983			  struct net_device *dev, struct sk_buff *skb,
1984			  struct mfc_cache *c, int local)
1985{
1986	int true_vifi = ipmr_find_vif(mrt, dev);
1987	int psend = -1;
1988	int vif, ct;
 
1989
1990	vif = c->_c.mfc_parent;
1991	atomic_long_inc(&c->_c.mfc_un.res.pkt);
1992	atomic_long_add(skb->len, &c->_c.mfc_un.res.bytes);
1993	WRITE_ONCE(c->_c.mfc_un.res.lastuse, jiffies);
1994
1995	if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1996		struct mfc_cache *cache_proxy;
1997
1998		/* For an (*,G) entry, we only check that the incoming
1999		 * interface is part of the static tree.
2000		 */
2001		cache_proxy = mr_mfc_find_any_parent(mrt, vif);
2002		if (cache_proxy &&
2003		    cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
2004			goto forward;
2005	}
2006
2007	/* Wrong interface: drop packet and (maybe) send PIM assert. */
2008	if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) {
 
 
2009		if (rt_is_output_route(skb_rtable(skb))) {
2010			/* It is our own packet, looped back.
2011			 * Very complicated situation...
2012			 *
2013			 * The best workaround until routing daemons will be
2014			 * fixed is not to redistribute packet, if it was
2015			 * send through wrong interface. It means, that
2016			 * multicast applications WILL NOT work for
2017			 * (S,G), which have default multicast route pointing
2018			 * to wrong oif. In any case, it is not a good
2019			 * idea to use multicasting applications on router.
2020			 */
2021			goto dont_forward;
2022		}
2023
2024		atomic_long_inc(&c->_c.mfc_un.res.wrong_if);
2025
2026		if (true_vifi >= 0 && mrt->mroute_do_assert &&
2027		    /* pimsm uses asserts, when switching from RPT to SPT,
2028		     * so that we cannot check that packet arrived on an oif.
2029		     * It is bad, but otherwise we would need to move pretty
2030		     * large chunk of pimd to kernel. Ough... --ANK
2031		     */
2032		    (mrt->mroute_do_pim ||
2033		     c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
2034		    time_after(jiffies,
2035			       c->_c.mfc_un.res.last_assert +
2036			       MFC_ASSERT_THRESH)) {
2037			c->_c.mfc_un.res.last_assert = jiffies;
2038			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
2039			if (mrt->mroute_do_wrvifwhole)
2040				ipmr_cache_report(mrt, skb, true_vifi,
2041						  IGMPMSG_WRVIFWHOLE);
2042		}
2043		goto dont_forward;
2044	}
2045
2046forward:
2047	WRITE_ONCE(mrt->vif_table[vif].pkt_in,
2048		   mrt->vif_table[vif].pkt_in + 1);
2049	WRITE_ONCE(mrt->vif_table[vif].bytes_in,
2050		   mrt->vif_table[vif].bytes_in + skb->len);
2051
2052	/* Forward the frame */
2053	if (c->mfc_origin == htonl(INADDR_ANY) &&
2054	    c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2055		if (true_vifi >= 0 &&
2056		    true_vifi != c->_c.mfc_parent &&
2057		    ip_hdr(skb)->ttl >
2058				c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2059			/* It's an (*,*) entry and the packet is not coming from
2060			 * the upstream: forward the packet to the upstream
2061			 * only.
2062			 */
2063			psend = c->_c.mfc_parent;
2064			goto last_forward;
2065		}
2066		goto dont_forward;
2067	}
2068	for (ct = c->_c.mfc_un.res.maxvif - 1;
2069	     ct >= c->_c.mfc_un.res.minvif; ct--) {
2070		/* For (*,G) entry, don't forward to the incoming interface */
2071		if ((c->mfc_origin != htonl(INADDR_ANY) ||
2072		     ct != true_vifi) &&
2073		    ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2074			if (psend != -1) {
2075				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2076
2077				if (skb2)
2078					ipmr_queue_xmit(net, mrt, true_vifi,
2079							skb2, psend);
2080			}
2081			psend = ct;
2082		}
2083	}
2084last_forward:
2085	if (psend != -1) {
2086		if (local) {
2087			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2088
2089			if (skb2)
2090				ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2091						psend);
2092		} else {
2093			ipmr_queue_xmit(net, mrt, true_vifi, skb, psend);
2094			return;
2095		}
2096	}
2097
2098dont_forward:
2099	if (!local)
2100		kfree_skb(skb);
2101}
2102
2103static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2104{
2105	struct rtable *rt = skb_rtable(skb);
2106	struct iphdr *iph = ip_hdr(skb);
2107	struct flowi4 fl4 = {
2108		.daddr = iph->daddr,
2109		.saddr = iph->saddr,
2110		.flowi4_tos = inet_dscp_to_dsfield(ip4h_dscp(iph)),
2111		.flowi4_oif = (rt_is_output_route(rt) ?
2112			       skb->dev->ifindex : 0),
2113		.flowi4_iif = (rt_is_output_route(rt) ?
2114			       LOOPBACK_IFINDEX :
2115			       skb->dev->ifindex),
2116		.flowi4_mark = skb->mark,
2117	};
2118	struct mr_table *mrt;
2119	int err;
2120
2121	err = ipmr_fib_lookup(net, &fl4, &mrt);
2122	if (err)
2123		return ERR_PTR(err);
2124	return mrt;
2125}
2126
2127/* Multicast packets for forwarding arrive here
2128 * Called with rcu_read_lock();
 
2129 */
 
2130int ip_mr_input(struct sk_buff *skb)
2131{
2132	struct mfc_cache *cache;
2133	struct net *net = dev_net(skb->dev);
2134	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2135	struct mr_table *mrt;
2136	struct net_device *dev;
2137
2138	/* skb->dev passed in is the loX master dev for vrfs.
2139	 * As there are no vifs associated with loopback devices,
2140	 * get the proper interface that does have a vif associated with it.
2141	 */
2142	dev = skb->dev;
2143	if (netif_is_l3_master(skb->dev)) {
2144		dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2145		if (!dev) {
2146			kfree_skb(skb);
2147			return -ENODEV;
2148		}
2149	}
2150
2151	/* Packet is looped back after forward, it should not be
2152	 * forwarded second time, but still can be delivered locally.
2153	 */
2154	if (IPCB(skb)->flags & IPSKB_FORWARDED)
2155		goto dont_forward;
2156
2157	mrt = ipmr_rt_fib_lookup(net, skb);
2158	if (IS_ERR(mrt)) {
2159		kfree_skb(skb);
2160		return PTR_ERR(mrt);
2161	}
2162	if (!local) {
2163		if (IPCB(skb)->opt.router_alert) {
2164			if (ip_call_ra_chain(skb))
2165				return 0;
2166		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2167			/* IGMPv1 (and broken IGMPv2 implementations sort of
2168			 * Cisco IOS <= 11.2(8)) do not put router alert
2169			 * option to IGMP packets destined to routable
2170			 * groups. It is very bad, because it means
2171			 * that we can forward NO IGMP messages.
2172			 */
2173			struct sock *mroute_sk;
2174
2175			mroute_sk = rcu_dereference(mrt->mroute_sk);
2176			if (mroute_sk) {
2177				nf_reset_ct(skb);
2178				raw_rcv(mroute_sk, skb);
2179				return 0;
2180			}
2181		}
2182	}
2183
2184	/* already under rcu_read_lock() */
2185	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2186	if (!cache) {
2187		int vif = ipmr_find_vif(mrt, dev);
2188
2189		if (vif >= 0)
2190			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2191						    vif);
2192	}
2193
2194	/* No usable cache entry */
2195	if (!cache) {
 
 
2196		int vif;
2197
2198		if (local) {
2199			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2200			ip_local_deliver(skb);
2201			if (!skb2)
2202				return -ENOBUFS;
2203			skb = skb2;
2204		}
2205
2206		vif = ipmr_find_vif(mrt, dev);
2207		if (vif >= 0)
2208			return ipmr_cache_unresolved(mrt, vif, skb, dev);
 
 
 
 
 
 
2209		kfree_skb(skb);
2210		return -ENODEV;
2211	}
2212
2213	ip_mr_forward(net, mrt, dev, skb, cache, local);
 
 
2214
2215	if (local)
2216		return ip_local_deliver(skb);
2217
2218	return 0;
2219
2220dont_forward:
2221	if (local)
2222		return ip_local_deliver(skb);
2223	kfree_skb(skb);
2224	return 0;
2225}
2226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2227#ifdef CONFIG_IP_PIMSM_V1
2228/* Handle IGMP messages of PIMv1 */
 
 
 
2229int pim_rcv_v1(struct sk_buff *skb)
2230{
2231	struct igmphdr *pim;
2232	struct net *net = dev_net(skb->dev);
2233	struct mr_table *mrt;
2234
2235	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2236		goto drop;
2237
2238	pim = igmp_hdr(skb);
2239
2240	mrt = ipmr_rt_fib_lookup(net, skb);
2241	if (IS_ERR(mrt))
2242		goto drop;
2243	if (!mrt->mroute_do_pim ||
2244	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2245		goto drop;
2246
2247	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2248drop:
2249		kfree_skb(skb);
2250	}
2251	return 0;
2252}
2253#endif
2254
2255#ifdef CONFIG_IP_PIMSM_V2
2256static int pim_rcv(struct sk_buff *skb)
2257{
2258	struct pimreghdr *pim;
2259	struct net *net = dev_net(skb->dev);
2260	struct mr_table *mrt;
2261
2262	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2263		goto drop;
2264
2265	pim = (struct pimreghdr *)skb_transport_header(skb);
2266	if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2267	    (pim->flags & PIM_NULL_REGISTER) ||
2268	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2269	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2270		goto drop;
2271
2272	mrt = ipmr_rt_fib_lookup(net, skb);
2273	if (IS_ERR(mrt))
2274		goto drop;
2275	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2276drop:
2277		kfree_skb(skb);
2278	}
2279	return 0;
2280}
2281#endif
2282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2283int ipmr_get_route(struct net *net, struct sk_buff *skb,
2284		   __be32 saddr, __be32 daddr,
2285		   struct rtmsg *rtm, u32 portid)
2286{
2287	struct mfc_cache *cache;
2288	struct mr_table *mrt;
2289	int err;
2290
2291	rcu_read_lock();
2292	mrt = __ipmr_get_table(net, RT_TABLE_DEFAULT);
2293	if (!mrt) {
2294		rcu_read_unlock();
2295		return -ENOENT;
2296	}
2297
 
2298	cache = ipmr_cache_find(mrt, saddr, daddr);
2299	if (!cache && skb->dev) {
2300		int vif = ipmr_find_vif(mrt, skb->dev);
2301
2302		if (vif >= 0)
2303			cache = ipmr_cache_find_any(mrt, daddr, vif);
2304	}
2305	if (!cache) {
2306		struct sk_buff *skb2;
2307		struct iphdr *iph;
2308		struct net_device *dev;
2309		int vif = -1;
2310
 
 
 
 
 
2311		dev = skb->dev;
 
2312		if (dev)
2313			vif = ipmr_find_vif(mrt, dev);
2314		if (vif < 0) {
 
2315			rcu_read_unlock();
2316			return -ENODEV;
2317		}
2318
2319		skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr));
2320		if (!skb2) {
 
2321			rcu_read_unlock();
2322			return -ENOMEM;
2323		}
2324
2325		NETLINK_CB(skb2).portid = portid;
2326		skb_push(skb2, sizeof(struct iphdr));
2327		skb_reset_network_header(skb2);
2328		iph = ip_hdr(skb2);
2329		iph->ihl = sizeof(struct iphdr) >> 2;
2330		iph->saddr = saddr;
2331		iph->daddr = daddr;
2332		iph->version = 0;
2333		err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
 
2334		rcu_read_unlock();
2335		return err;
2336	}
2337
2338	err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
 
 
 
 
2339	rcu_read_unlock();
2340	return err;
2341}
2342
2343static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2344			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2345			    int flags)
2346{
2347	struct nlmsghdr *nlh;
2348	struct rtmsg *rtm;
2349	int err;
2350
2351	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2352	if (!nlh)
2353		return -EMSGSIZE;
2354
2355	rtm = nlmsg_data(nlh);
2356	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2357	rtm->rtm_dst_len  = 32;
2358	rtm->rtm_src_len  = 32;
2359	rtm->rtm_tos      = 0;
2360	rtm->rtm_table    = mrt->id;
2361	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2362		goto nla_put_failure;
2363	rtm->rtm_type     = RTN_MULTICAST;
2364	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2365	if (c->_c.mfc_flags & MFC_STATIC)
2366		rtm->rtm_protocol = RTPROT_STATIC;
2367	else
2368		rtm->rtm_protocol = RTPROT_MROUTED;
2369	rtm->rtm_flags    = 0;
2370
2371	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2372	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2373		goto nla_put_failure;
2374	err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2375	/* do not break the dump if cache is unresolved */
2376	if (err < 0 && err != -ENOENT)
2377		goto nla_put_failure;
2378
2379	nlmsg_end(skb, nlh);
2380	return 0;
2381
2382nla_put_failure:
2383	nlmsg_cancel(skb, nlh);
2384	return -EMSGSIZE;
2385}
2386
2387static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2388			     u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2389			     int flags)
2390{
2391	return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2392				cmd, flags);
2393}
2394
2395static size_t mroute_msgsize(bool unresolved, int maxvif)
2396{
2397	size_t len =
2398		NLMSG_ALIGN(sizeof(struct rtmsg))
2399		+ nla_total_size(4)	/* RTA_TABLE */
2400		+ nla_total_size(4)	/* RTA_SRC */
2401		+ nla_total_size(4)	/* RTA_DST */
2402		;
2403
2404	if (!unresolved)
2405		len = len
2406		      + nla_total_size(4)	/* RTA_IIF */
2407		      + nla_total_size(0)	/* RTA_MULTIPATH */
2408		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2409						/* RTA_MFC_STATS */
2410		      + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2411		;
2412
2413	return len;
2414}
2415
2416static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2417				 int cmd)
2418{
2419	struct net *net = read_pnet(&mrt->net);
2420	struct sk_buff *skb;
2421	int err = -ENOBUFS;
2422
2423	skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2424				       mrt->maxvif),
2425			GFP_ATOMIC);
2426	if (!skb)
2427		goto errout;
2428
2429	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2430	if (err < 0)
2431		goto errout;
2432
2433	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2434	return;
2435
2436errout:
2437	kfree_skb(skb);
2438	rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2439}
2440
2441static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2442{
2443	size_t len =
2444		NLMSG_ALIGN(sizeof(struct rtgenmsg))
2445		+ nla_total_size(1)	/* IPMRA_CREPORT_MSGTYPE */
2446		+ nla_total_size(4)	/* IPMRA_CREPORT_VIF_ID */
2447		+ nla_total_size(4)	/* IPMRA_CREPORT_SRC_ADDR */
2448		+ nla_total_size(4)	/* IPMRA_CREPORT_DST_ADDR */
2449		+ nla_total_size(4)	/* IPMRA_CREPORT_TABLE */
2450					/* IPMRA_CREPORT_PKT */
2451		+ nla_total_size(payloadlen)
2452		;
2453
2454	return len;
2455}
2456
2457static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt)
2458{
2459	struct net *net = read_pnet(&mrt->net);
2460	struct nlmsghdr *nlh;
2461	struct rtgenmsg *rtgenm;
2462	struct igmpmsg *msg;
2463	struct sk_buff *skb;
2464	struct nlattr *nla;
2465	int payloadlen;
2466
2467	payloadlen = pkt->len - sizeof(struct igmpmsg);
2468	msg = (struct igmpmsg *)skb_network_header(pkt);
2469
2470	skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2471	if (!skb)
2472		goto errout;
2473
2474	nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2475			sizeof(struct rtgenmsg), 0);
2476	if (!nlh)
2477		goto errout;
2478	rtgenm = nlmsg_data(nlh);
2479	rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2480	if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2481	    nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) ||
2482	    nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2483			    msg->im_src.s_addr) ||
2484	    nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2485			    msg->im_dst.s_addr) ||
2486	    nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id))
2487		goto nla_put_failure;
2488
2489	nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2490	if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2491				  nla_data(nla), payloadlen))
2492		goto nla_put_failure;
2493
2494	nlmsg_end(skb, nlh);
2495
2496	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2497	return;
2498
2499nla_put_failure:
2500	nlmsg_cancel(skb, nlh);
2501errout:
2502	kfree_skb(skb);
2503	rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2504}
2505
2506static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2507				       const struct nlmsghdr *nlh,
2508				       struct nlattr **tb,
2509				       struct netlink_ext_ack *extack)
2510{
2511	struct rtmsg *rtm;
2512	int i, err;
2513
2514	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) {
2515		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2516		return -EINVAL;
2517	}
2518
2519	if (!netlink_strict_get_check(skb))
2520		return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
2521					      rtm_ipv4_policy, extack);
2522
2523	rtm = nlmsg_data(nlh);
2524	if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2525	    (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2526	    rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2527	    rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2528		NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2529		return -EINVAL;
2530	}
2531
2532	err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
2533					    rtm_ipv4_policy, extack);
2534	if (err)
2535		return err;
2536
2537	if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2538	    (tb[RTA_DST] && !rtm->rtm_dst_len)) {
2539		NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2540		return -EINVAL;
2541	}
2542
2543	for (i = 0; i <= RTA_MAX; i++) {
2544		if (!tb[i])
2545			continue;
2546
2547		switch (i) {
2548		case RTA_SRC:
2549		case RTA_DST:
2550		case RTA_TABLE:
2551			break;
2552		default:
2553			NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2554			return -EINVAL;
2555		}
2556	}
2557
2558	return 0;
2559}
2560
2561static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2562			     struct netlink_ext_ack *extack)
2563{
2564	struct net *net = sock_net(in_skb->sk);
2565	struct nlattr *tb[RTA_MAX + 1];
2566	struct sk_buff *skb = NULL;
2567	struct mfc_cache *cache;
2568	struct mr_table *mrt;
2569	__be32 src, grp;
2570	u32 tableid;
2571	int err;
2572
2573	err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
2574	if (err < 0)
2575		goto errout;
2576
2577	src = nla_get_in_addr_default(tb[RTA_SRC], 0);
2578	grp = nla_get_in_addr_default(tb[RTA_DST], 0);
2579	tableid = nla_get_u32_default(tb[RTA_TABLE], 0);
2580
2581	mrt = __ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2582	if (!mrt) {
2583		err = -ENOENT;
2584		goto errout_free;
2585	}
2586
2587	/* entries are added/deleted only under RTNL */
2588	rcu_read_lock();
2589	cache = ipmr_cache_find(mrt, src, grp);
2590	rcu_read_unlock();
2591	if (!cache) {
2592		err = -ENOENT;
2593		goto errout_free;
2594	}
2595
2596	skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2597	if (!skb) {
2598		err = -ENOBUFS;
2599		goto errout_free;
2600	}
2601
2602	err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2603			       nlh->nlmsg_seq, cache,
2604			       RTM_NEWROUTE, 0);
2605	if (err < 0)
2606		goto errout_free;
2607
2608	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2609
2610errout:
2611	return err;
2612
2613errout_free:
2614	kfree_skb(skb);
2615	goto errout;
2616}
2617
2618static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2619{
2620	struct fib_dump_filter filter = {
2621		.rtnl_held = true,
2622	};
2623	int err;
2624
2625	if (cb->strict_check) {
2626		err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2627					    &filter, cb);
2628		if (err < 0)
2629			return err;
2630	}
2631
2632	if (filter.table_id) {
2633		struct mr_table *mrt;
2634
2635		mrt = __ipmr_get_table(sock_net(skb->sk), filter.table_id);
2636		if (!mrt) {
2637			if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR)
2638				return skb->len;
2639
2640			NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2641			return -ENOENT;
2642		}
2643		err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2644				    &mfc_unres_lock, &filter);
2645		return skb->len ? : err;
2646	}
2647
2648	return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2649				_ipmr_fill_mroute, &mfc_unres_lock, &filter);
2650}
2651
2652static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2653	[RTA_SRC]	= { .type = NLA_U32 },
2654	[RTA_DST]	= { .type = NLA_U32 },
2655	[RTA_IIF]	= { .type = NLA_U32 },
2656	[RTA_TABLE]	= { .type = NLA_U32 },
2657	[RTA_MULTIPATH]	= { .len = sizeof(struct rtnexthop) },
2658};
2659
2660static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2661{
2662	switch (rtm_protocol) {
2663	case RTPROT_STATIC:
2664	case RTPROT_MROUTED:
2665		return true;
2666	}
2667	return false;
2668}
2669
2670static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2671{
2672	struct rtnexthop *rtnh = nla_data(nla);
2673	int remaining = nla_len(nla), vifi = 0;
2674
2675	while (rtnh_ok(rtnh, remaining)) {
2676		mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2677		if (++vifi == MAXVIFS)
2678			break;
2679		rtnh = rtnh_next(rtnh, &remaining);
2680	}
2681
2682	return remaining > 0 ? -EINVAL : vifi;
2683}
2684
2685/* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2686static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2687			    struct mfcctl *mfcc, int *mrtsock,
2688			    struct mr_table **mrtret,
2689			    struct netlink_ext_ack *extack)
2690{
2691	struct net_device *dev = NULL;
2692	u32 tblid = RT_TABLE_DEFAULT;
2693	struct mr_table *mrt;
2694	struct nlattr *attr;
2695	struct rtmsg *rtm;
2696	int ret, rem;
2697
2698	ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX,
2699					rtm_ipmr_policy, extack);
2700	if (ret < 0)
2701		goto out;
2702	rtm = nlmsg_data(nlh);
2703
2704	ret = -EINVAL;
2705	if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2706	    rtm->rtm_type != RTN_MULTICAST ||
2707	    rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2708	    !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2709		goto out;
2710
2711	memset(mfcc, 0, sizeof(*mfcc));
2712	mfcc->mfcc_parent = -1;
2713	ret = 0;
2714	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2715		switch (nla_type(attr)) {
2716		case RTA_SRC:
2717			mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2718			break;
2719		case RTA_DST:
2720			mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2721			break;
2722		case RTA_IIF:
2723			dev = __dev_get_by_index(net, nla_get_u32(attr));
2724			if (!dev) {
2725				ret = -ENODEV;
2726				goto out;
2727			}
2728			break;
2729		case RTA_MULTIPATH:
2730			if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2731				ret = -EINVAL;
2732				goto out;
2733			}
2734			break;
2735		case RTA_PREFSRC:
2736			ret = 1;
2737			break;
2738		case RTA_TABLE:
2739			tblid = nla_get_u32(attr);
2740			break;
2741		}
2742	}
2743	mrt = __ipmr_get_table(net, tblid);
2744	if (!mrt) {
2745		ret = -ENOENT;
2746		goto out;
2747	}
2748	*mrtret = mrt;
2749	*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2750	if (dev)
2751		mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2752
2753out:
2754	return ret;
2755}
2756
2757/* takes care of both newroute and delroute */
2758static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2759			  struct netlink_ext_ack *extack)
2760{
2761	struct net *net = sock_net(skb->sk);
2762	int ret, mrtsock, parent;
2763	struct mr_table *tbl;
2764	struct mfcctl mfcc;
2765
2766	mrtsock = 0;
2767	tbl = NULL;
2768	ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2769	if (ret < 0)
2770		return ret;
2771
2772	parent = ret ? mfcc.mfcc_parent : -1;
2773	if (nlh->nlmsg_type == RTM_NEWROUTE)
2774		return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2775	else
2776		return ipmr_mfc_delete(tbl, &mfcc, parent);
2777}
2778
2779static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2780{
2781	u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2782
2783	if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2784	    nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2785	    nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2786			mrt->mroute_reg_vif_num) ||
2787	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2788		       mrt->mroute_do_assert) ||
2789	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2790	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2791		       mrt->mroute_do_wrvifwhole))
2792		return false;
2793
2794	return true;
2795}
2796
2797static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2798{
2799	struct net_device *vif_dev;
2800	struct nlattr *vif_nest;
2801	struct vif_device *vif;
2802
2803	vif = &mrt->vif_table[vifid];
2804	vif_dev = rtnl_dereference(vif->dev);
2805	/* if the VIF doesn't exist just continue */
2806	if (!vif_dev)
2807		return true;
2808
2809	vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF);
2810	if (!vif_nest)
2811		return false;
2812
2813	if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif_dev->ifindex) ||
2814	    nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2815	    nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2816	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2817			      IPMRA_VIFA_PAD) ||
2818	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2819			      IPMRA_VIFA_PAD) ||
2820	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2821			      IPMRA_VIFA_PAD) ||
2822	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2823			      IPMRA_VIFA_PAD) ||
2824	    nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2825	    nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2826		nla_nest_cancel(skb, vif_nest);
2827		return false;
2828	}
2829	nla_nest_end(skb, vif_nest);
2830
2831	return true;
2832}
2833
2834static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2835			       struct netlink_ext_ack *extack)
2836{
2837	struct ifinfomsg *ifm;
2838
2839	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
2840		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2841		return -EINVAL;
2842	}
2843
2844	if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2845		NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2846		return -EINVAL;
2847	}
2848
2849	ifm = nlmsg_data(nlh);
2850	if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2851	    ifm->ifi_change || ifm->ifi_index) {
2852		NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2853		return -EINVAL;
2854	}
2855
2856	return 0;
2857}
2858
2859static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2860{
2861	struct net *net = sock_net(skb->sk);
2862	struct nlmsghdr *nlh = NULL;
2863	unsigned int t = 0, s_t;
 
2864	unsigned int e = 0, s_e;
2865	struct mr_table *mrt;
2866
2867	if (cb->strict_check) {
2868		int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
2869
2870		if (err < 0)
2871			return err;
2872	}
2873
2874	s_t = cb->args[0];
2875	s_e = cb->args[1];
 
2876
 
2877	ipmr_for_each_table(mrt, net) {
2878		struct nlattr *vifs, *af;
2879		struct ifinfomsg *hdr;
2880		u32 i;
2881
2882		if (t < s_t)
2883			goto skip_table;
2884		nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2885				cb->nlh->nlmsg_seq, RTM_NEWLINK,
2886				sizeof(*hdr), NLM_F_MULTI);
2887		if (!nlh)
2888			break;
2889
2890		hdr = nlmsg_data(nlh);
2891		memset(hdr, 0, sizeof(*hdr));
2892		hdr->ifi_family = RTNL_FAMILY_IPMR;
2893
2894		af = nla_nest_start_noflag(skb, IFLA_AF_SPEC);
2895		if (!af) {
2896			nlmsg_cancel(skb, nlh);
2897			goto out;
 
 
2898		}
2899
2900		if (!ipmr_fill_table(mrt, skb)) {
2901			nlmsg_cancel(skb, nlh);
2902			goto out;
2903		}
2904
2905		vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS);
2906		if (!vifs) {
2907			nla_nest_end(skb, af);
2908			nlmsg_end(skb, nlh);
2909			goto out;
2910		}
2911		for (i = 0; i < mrt->maxvif; i++) {
2912			if (e < s_e)
2913				goto skip_entry;
2914			if (!ipmr_fill_vif(mrt, i, skb)) {
2915				nla_nest_end(skb, vifs);
2916				nla_nest_end(skb, af);
2917				nlmsg_end(skb, nlh);
2918				goto out;
 
 
2919			}
2920skip_entry:
2921			e++;
2922		}
2923		s_e = 0;
2924		e = 0;
2925		nla_nest_end(skb, vifs);
2926		nla_nest_end(skb, af);
2927		nlmsg_end(skb, nlh);
2928skip_table:
2929		t++;
2930	}
 
 
2931
2932out:
2933	cb->args[1] = e;
2934	cb->args[0] = t;
2935
2936	return skb->len;
2937}
2938
2939#ifdef CONFIG_PROC_FS
2940/* The /proc interfaces to multicast routing :
2941 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
 
2942 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2943
2944static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2945	__acquires(RCU)
2946{
2947	struct mr_vif_iter *iter = seq->private;
2948	struct net *net = seq_file_net(seq);
2949	struct mr_table *mrt;
2950
2951	rcu_read_lock();
2952	mrt = __ipmr_get_table(net, RT_TABLE_DEFAULT);
2953	if (!mrt) {
2954		rcu_read_unlock();
2955		return ERR_PTR(-ENOENT);
2956	}
2957
2958	iter->mrt = mrt;
2959
2960	return mr_vif_seq_start(seq, pos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2961}
2962
2963static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2964	__releases(RCU)
2965{
2966	rcu_read_unlock();
2967}
2968
2969static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2970{
2971	struct mr_vif_iter *iter = seq->private;
2972	struct mr_table *mrt = iter->mrt;
2973
2974	if (v == SEQ_START_TOKEN) {
2975		seq_puts(seq,
2976			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2977	} else {
2978		const struct vif_device *vif = v;
2979		const struct net_device *vif_dev;
2980		const char *name;
2981
2982		vif_dev = vif_dev_read(vif);
2983		name = vif_dev ? vif_dev->name : "none";
2984		seq_printf(seq,
2985			   "%2td %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2986			   vif - mrt->vif_table,
2987			   name, vif->bytes_in, vif->pkt_in,
2988			   vif->bytes_out, vif->pkt_out,
2989			   vif->flags, vif->local, vif->remote);
2990	}
2991	return 0;
2992}
2993
2994static const struct seq_operations ipmr_vif_seq_ops = {
2995	.start = ipmr_vif_seq_start,
2996	.next  = mr_vif_seq_next,
2997	.stop  = ipmr_vif_seq_stop,
2998	.show  = ipmr_vif_seq_show,
2999};
3000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3001static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
3002{
 
3003	struct net *net = seq_file_net(seq);
3004	struct mr_table *mrt;
3005
3006	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
3007	if (!mrt)
3008		return ERR_PTR(-ENOENT);
3009
3010	return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3011}
3012
3013static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
3014{
3015	int n;
3016
3017	if (v == SEQ_START_TOKEN) {
3018		seq_puts(seq,
3019		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
3020	} else {
3021		const struct mfc_cache *mfc = v;
3022		const struct mr_mfc_iter *it = seq->private;
3023		const struct mr_table *mrt = it->mrt;
3024
3025		seq_printf(seq, "%08X %08X %-3hd",
3026			   (__force u32) mfc->mfc_mcastgrp,
3027			   (__force u32) mfc->mfc_origin,
3028			   mfc->_c.mfc_parent);
3029
3030		if (it->cache != &mrt->mfc_unres_queue) {
3031			seq_printf(seq, " %8lu %8lu %8lu",
3032				   atomic_long_read(&mfc->_c.mfc_un.res.pkt),
3033				   atomic_long_read(&mfc->_c.mfc_un.res.bytes),
3034				   atomic_long_read(&mfc->_c.mfc_un.res.wrong_if));
3035			for (n = mfc->_c.mfc_un.res.minvif;
3036			     n < mfc->_c.mfc_un.res.maxvif; n++) {
3037				if (VIF_EXISTS(mrt, n) &&
3038				    mfc->_c.mfc_un.res.ttls[n] < 255)
3039					seq_printf(seq,
3040					   " %2d:%-3d",
3041					   n, mfc->_c.mfc_un.res.ttls[n]);
3042			}
3043		} else {
3044			/* unresolved mfc_caches don't contain
3045			 * pkt, bytes and wrong_if values
3046			 */
3047			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
3048		}
3049		seq_putc(seq, '\n');
3050	}
3051	return 0;
3052}
3053
3054static const struct seq_operations ipmr_mfc_seq_ops = {
3055	.start = ipmr_mfc_seq_start,
3056	.next  = mr_mfc_seq_next,
3057	.stop  = mr_mfc_seq_stop,
3058	.show  = ipmr_mfc_seq_show,
3059};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3060#endif
3061
3062#ifdef CONFIG_IP_PIMSM_V2
3063static const struct net_protocol pim_protocol = {
3064	.handler	=	pim_rcv,
 
3065};
3066#endif
3067
3068static unsigned int ipmr_seq_read(const struct net *net)
3069{
3070	return READ_ONCE(net->ipv4.ipmr_seq) + ipmr_rules_seq_read(net);
3071}
3072
3073static int ipmr_dump(struct net *net, struct notifier_block *nb,
3074		     struct netlink_ext_ack *extack)
3075{
3076	return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
3077		       ipmr_mr_table_iter, extack);
3078}
3079
3080static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3081	.family		= RTNL_FAMILY_IPMR,
3082	.fib_seq_read	= ipmr_seq_read,
3083	.fib_dump	= ipmr_dump,
3084	.owner		= THIS_MODULE,
3085};
3086
3087static int __net_init ipmr_notifier_init(struct net *net)
3088{
3089	struct fib_notifier_ops *ops;
3090
3091	net->ipv4.ipmr_seq = 0;
3092
3093	ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3094	if (IS_ERR(ops))
3095		return PTR_ERR(ops);
3096	net->ipv4.ipmr_notifier_ops = ops;
3097
3098	return 0;
3099}
3100
3101static void __net_exit ipmr_notifier_exit(struct net *net)
3102{
3103	fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3104	net->ipv4.ipmr_notifier_ops = NULL;
3105}
3106
3107/* Setup for IP multicast routing */
3108static int __net_init ipmr_net_init(struct net *net)
3109{
3110	int err;
3111
3112	err = ipmr_notifier_init(net);
3113	if (err)
3114		goto ipmr_notifier_fail;
3115
3116	err = ipmr_rules_init(net);
3117	if (err < 0)
3118		goto ipmr_rules_fail;
3119
3120#ifdef CONFIG_PROC_FS
3121	err = -ENOMEM;
3122	if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3123			sizeof(struct mr_vif_iter)))
3124		goto proc_vif_fail;
3125	if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3126			sizeof(struct mr_mfc_iter)))
3127		goto proc_cache_fail;
3128#endif
3129	return 0;
3130
3131#ifdef CONFIG_PROC_FS
3132proc_cache_fail:
3133	remove_proc_entry("ip_mr_vif", net->proc_net);
3134proc_vif_fail:
3135	rtnl_lock();
3136	ipmr_rules_exit(net);
3137	rtnl_unlock();
3138#endif
3139ipmr_rules_fail:
3140	ipmr_notifier_exit(net);
3141ipmr_notifier_fail:
3142	return err;
3143}
3144
3145static void __net_exit ipmr_net_exit(struct net *net)
3146{
3147#ifdef CONFIG_PROC_FS
3148	remove_proc_entry("ip_mr_cache", net->proc_net);
3149	remove_proc_entry("ip_mr_vif", net->proc_net);
3150#endif
3151	ipmr_notifier_exit(net);
3152}
3153
3154static void __net_exit ipmr_net_exit_batch(struct list_head *net_list)
3155{
3156	struct net *net;
3157
3158	rtnl_lock();
3159	list_for_each_entry(net, net_list, exit_list)
3160		ipmr_rules_exit(net);
3161	rtnl_unlock();
3162}
3163
3164static struct pernet_operations ipmr_net_ops = {
3165	.init = ipmr_net_init,
3166	.exit = ipmr_net_exit,
3167	.exit_batch = ipmr_net_exit_batch,
3168};
3169
3170static const struct rtnl_msg_handler ipmr_rtnl_msg_handlers[] __initconst = {
3171	{.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_GETLINK,
3172	 .dumpit = ipmr_rtm_dumplink},
3173	{.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_NEWROUTE,
3174	 .doit = ipmr_rtm_route},
3175	{.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_DELROUTE,
3176	 .doit = ipmr_rtm_route},
3177	{.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_GETROUTE,
3178	 .doit = ipmr_rtm_getroute, .dumpit = ipmr_rtm_dumproute},
3179};
3180
3181int __init ip_mr_init(void)
3182{
3183	int err;
3184
3185	mrt_cachep = KMEM_CACHE(mfc_cache, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
 
 
 
 
 
3186
3187	err = register_pernet_subsys(&ipmr_net_ops);
3188	if (err)
3189		goto reg_pernet_fail;
3190
3191	err = register_netdevice_notifier(&ip_mr_notifier);
3192	if (err)
3193		goto reg_notif_fail;
3194#ifdef CONFIG_IP_PIMSM_V2
3195	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3196		pr_err("%s: can't add PIM protocol\n", __func__);
3197		err = -EAGAIN;
3198		goto add_proto_fail;
3199	}
3200#endif
3201	rtnl_register_many(ipmr_rtnl_msg_handlers);
3202
3203	return 0;
3204
3205#ifdef CONFIG_IP_PIMSM_V2
3206add_proto_fail:
3207	unregister_netdevice_notifier(&ip_mr_notifier);
3208#endif
3209reg_notif_fail:
3210	unregister_pernet_subsys(&ipmr_net_ops);
3211reg_pernet_fail:
3212	kmem_cache_destroy(mrt_cachep);
3213	return err;
3214}