Loading...
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally described in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51#define VERSION "0.409"
52
53#include <asm/uaccess.h>
54#include <linux/bitops.h>
55#include <linux/types.h>
56#include <linux/kernel.h>
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
64#include <linux/inetdevice.h>
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
68#include <linux/rcupdate.h>
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
73#include <linux/slab.h>
74#include <linux/export.h>
75#include <net/net_namespace.h>
76#include <net/ip.h>
77#include <net/protocol.h>
78#include <net/route.h>
79#include <net/tcp.h>
80#include <net/sock.h>
81#include <net/ip_fib.h>
82#include "fib_lookup.h"
83
84#define MAX_STAT_DEPTH 32
85
86#define KEYLENGTH (8*sizeof(t_key))
87
88typedef unsigned int t_key;
89
90#define T_TNODE 0
91#define T_LEAF 1
92#define NODE_TYPE_MASK 0x1UL
93#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
94
95#define IS_TNODE(n) (!(n->parent & T_LEAF))
96#define IS_LEAF(n) (n->parent & T_LEAF)
97
98struct rt_trie_node {
99 unsigned long parent;
100 t_key key;
101};
102
103struct leaf {
104 unsigned long parent;
105 t_key key;
106 struct hlist_head list;
107 struct rcu_head rcu;
108};
109
110struct leaf_info {
111 struct hlist_node hlist;
112 int plen;
113 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
114 struct list_head falh;
115 struct rcu_head rcu;
116};
117
118struct tnode {
119 unsigned long parent;
120 t_key key;
121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
123 unsigned int full_children; /* KEYLENGTH bits needed */
124 unsigned int empty_children; /* KEYLENGTH bits needed */
125 union {
126 struct rcu_head rcu;
127 struct tnode *tnode_free;
128 };
129 struct rt_trie_node __rcu *child[0];
130};
131
132#ifdef CONFIG_IP_FIB_TRIE_STATS
133struct trie_use_stats {
134 unsigned int gets;
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
139 unsigned int resize_node_skipped;
140};
141#endif
142
143struct trie_stat {
144 unsigned int totdepth;
145 unsigned int maxdepth;
146 unsigned int tnodes;
147 unsigned int leaves;
148 unsigned int nullpointers;
149 unsigned int prefixes;
150 unsigned int nodesizes[MAX_STAT_DEPTH];
151};
152
153struct trie {
154 struct rt_trie_node __rcu *trie;
155#ifdef CONFIG_IP_FIB_TRIE_STATS
156 struct trie_use_stats stats;
157#endif
158};
159
160static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
161 int wasfull);
162static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
163static struct tnode *inflate(struct trie *t, struct tnode *tn);
164static struct tnode *halve(struct trie *t, struct tnode *tn);
165/* tnodes to free after resize(); protected by RTNL */
166static struct tnode *tnode_free_head;
167static size_t tnode_free_size;
168
169/*
170 * synchronize_rcu after call_rcu for that many pages; it should be especially
171 * useful before resizing the root node with PREEMPT_NONE configs; the value was
172 * obtained experimentally, aiming to avoid visible slowdown.
173 */
174static const int sync_pages = 128;
175
176static struct kmem_cache *fn_alias_kmem __read_mostly;
177static struct kmem_cache *trie_leaf_kmem __read_mostly;
178
179/*
180 * caller must hold RTNL
181 */
182static inline struct tnode *node_parent(const struct rt_trie_node *node)
183{
184 unsigned long parent;
185
186 parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held());
187
188 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
189}
190
191/*
192 * caller must hold RCU read lock or RTNL
193 */
194static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node)
195{
196 unsigned long parent;
197
198 parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() ||
199 lockdep_rtnl_is_held());
200
201 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
202}
203
204/* Same as rcu_assign_pointer
205 * but that macro() assumes that value is a pointer.
206 */
207static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
208{
209 smp_wmb();
210 node->parent = (unsigned long)ptr | NODE_TYPE(node);
211}
212
213/*
214 * caller must hold RTNL
215 */
216static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i)
217{
218 BUG_ON(i >= 1U << tn->bits);
219
220 return rtnl_dereference(tn->child[i]);
221}
222
223/*
224 * caller must hold RCU read lock or RTNL
225 */
226static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i)
227{
228 BUG_ON(i >= 1U << tn->bits);
229
230 return rcu_dereference_rtnl(tn->child[i]);
231}
232
233static inline int tnode_child_length(const struct tnode *tn)
234{
235 return 1 << tn->bits;
236}
237
238static inline t_key mask_pfx(t_key k, unsigned int l)
239{
240 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
241}
242
243static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
244{
245 if (offset < KEYLENGTH)
246 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
247 else
248 return 0;
249}
250
251static inline int tkey_equals(t_key a, t_key b)
252{
253 return a == b;
254}
255
256static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
257{
258 if (bits == 0 || offset >= KEYLENGTH)
259 return 1;
260 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
261 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
262}
263
264static inline int tkey_mismatch(t_key a, int offset, t_key b)
265{
266 t_key diff = a ^ b;
267 int i = offset;
268
269 if (!diff)
270 return 0;
271 while ((diff << i) >> (KEYLENGTH-1) == 0)
272 i++;
273 return i;
274}
275
276/*
277 To understand this stuff, an understanding of keys and all their bits is
278 necessary. Every node in the trie has a key associated with it, but not
279 all of the bits in that key are significant.
280
281 Consider a node 'n' and its parent 'tp'.
282
283 If n is a leaf, every bit in its key is significant. Its presence is
284 necessitated by path compression, since during a tree traversal (when
285 searching for a leaf - unless we are doing an insertion) we will completely
286 ignore all skipped bits we encounter. Thus we need to verify, at the end of
287 a potentially successful search, that we have indeed been walking the
288 correct key path.
289
290 Note that we can never "miss" the correct key in the tree if present by
291 following the wrong path. Path compression ensures that segments of the key
292 that are the same for all keys with a given prefix are skipped, but the
293 skipped part *is* identical for each node in the subtrie below the skipped
294 bit! trie_insert() in this implementation takes care of that - note the
295 call to tkey_sub_equals() in trie_insert().
296
297 if n is an internal node - a 'tnode' here, the various parts of its key
298 have many different meanings.
299
300 Example:
301 _________________________________________________________________
302 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
303 -----------------------------------------------------------------
304 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
305
306 _________________________________________________________________
307 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
308 -----------------------------------------------------------------
309 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
310
311 tp->pos = 7
312 tp->bits = 3
313 n->pos = 15
314 n->bits = 4
315
316 First, let's just ignore the bits that come before the parent tp, that is
317 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
318 not use them for anything.
319
320 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
321 index into the parent's child array. That is, they will be used to find
322 'n' among tp's children.
323
324 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
325 for the node n.
326
327 All the bits we have seen so far are significant to the node n. The rest
328 of the bits are really not needed or indeed known in n->key.
329
330 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
331 n's child array, and will of course be different for each child.
332
333
334 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
335 at this point.
336
337*/
338
339static inline void check_tnode(const struct tnode *tn)
340{
341 WARN_ON(tn && tn->pos+tn->bits > 32);
342}
343
344static const int halve_threshold = 25;
345static const int inflate_threshold = 50;
346static const int halve_threshold_root = 15;
347static const int inflate_threshold_root = 30;
348
349static void __alias_free_mem(struct rcu_head *head)
350{
351 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
352 kmem_cache_free(fn_alias_kmem, fa);
353}
354
355static inline void alias_free_mem_rcu(struct fib_alias *fa)
356{
357 call_rcu(&fa->rcu, __alias_free_mem);
358}
359
360static void __leaf_free_rcu(struct rcu_head *head)
361{
362 struct leaf *l = container_of(head, struct leaf, rcu);
363 kmem_cache_free(trie_leaf_kmem, l);
364}
365
366static inline void free_leaf(struct leaf *l)
367{
368 call_rcu(&l->rcu, __leaf_free_rcu);
369}
370
371static inline void free_leaf_info(struct leaf_info *leaf)
372{
373 kfree_rcu(leaf, rcu);
374}
375
376static struct tnode *tnode_alloc(size_t size)
377{
378 if (size <= PAGE_SIZE)
379 return kzalloc(size, GFP_KERNEL);
380 else
381 return vzalloc(size);
382}
383
384static void __tnode_free_rcu(struct rcu_head *head)
385{
386 struct tnode *tn = container_of(head, struct tnode, rcu);
387 size_t size = sizeof(struct tnode) +
388 (sizeof(struct rt_trie_node *) << tn->bits);
389
390 if (size <= PAGE_SIZE)
391 kfree(tn);
392 else
393 vfree(tn);
394}
395
396static inline void tnode_free(struct tnode *tn)
397{
398 if (IS_LEAF(tn))
399 free_leaf((struct leaf *) tn);
400 else
401 call_rcu(&tn->rcu, __tnode_free_rcu);
402}
403
404static void tnode_free_safe(struct tnode *tn)
405{
406 BUG_ON(IS_LEAF(tn));
407 tn->tnode_free = tnode_free_head;
408 tnode_free_head = tn;
409 tnode_free_size += sizeof(struct tnode) +
410 (sizeof(struct rt_trie_node *) << tn->bits);
411}
412
413static void tnode_free_flush(void)
414{
415 struct tnode *tn;
416
417 while ((tn = tnode_free_head)) {
418 tnode_free_head = tn->tnode_free;
419 tn->tnode_free = NULL;
420 tnode_free(tn);
421 }
422
423 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
424 tnode_free_size = 0;
425 synchronize_rcu();
426 }
427}
428
429static struct leaf *leaf_new(void)
430{
431 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
432 if (l) {
433 l->parent = T_LEAF;
434 INIT_HLIST_HEAD(&l->list);
435 }
436 return l;
437}
438
439static struct leaf_info *leaf_info_new(int plen)
440{
441 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
442 if (li) {
443 li->plen = plen;
444 li->mask_plen = ntohl(inet_make_mask(plen));
445 INIT_LIST_HEAD(&li->falh);
446 }
447 return li;
448}
449
450static struct tnode *tnode_new(t_key key, int pos, int bits)
451{
452 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
453 struct tnode *tn = tnode_alloc(sz);
454
455 if (tn) {
456 tn->parent = T_TNODE;
457 tn->pos = pos;
458 tn->bits = bits;
459 tn->key = key;
460 tn->full_children = 0;
461 tn->empty_children = 1<<bits;
462 }
463
464 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
465 sizeof(struct rt_trie_node *) << bits);
466 return tn;
467}
468
469/*
470 * Check whether a tnode 'n' is "full", i.e. it is an internal node
471 * and no bits are skipped. See discussion in dyntree paper p. 6
472 */
473
474static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
475{
476 if (n == NULL || IS_LEAF(n))
477 return 0;
478
479 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
480}
481
482static inline void put_child(struct tnode *tn, int i,
483 struct rt_trie_node *n)
484{
485 tnode_put_child_reorg(tn, i, n, -1);
486}
487
488 /*
489 * Add a child at position i overwriting the old value.
490 * Update the value of full_children and empty_children.
491 */
492
493static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
494 int wasfull)
495{
496 struct rt_trie_node *chi = rtnl_dereference(tn->child[i]);
497 int isfull;
498
499 BUG_ON(i >= 1<<tn->bits);
500
501 /* update emptyChildren */
502 if (n == NULL && chi != NULL)
503 tn->empty_children++;
504 else if (n != NULL && chi == NULL)
505 tn->empty_children--;
506
507 /* update fullChildren */
508 if (wasfull == -1)
509 wasfull = tnode_full(tn, chi);
510
511 isfull = tnode_full(tn, n);
512 if (wasfull && !isfull)
513 tn->full_children--;
514 else if (!wasfull && isfull)
515 tn->full_children++;
516
517 if (n)
518 node_set_parent(n, tn);
519
520 rcu_assign_pointer(tn->child[i], n);
521}
522
523#define MAX_WORK 10
524static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
525{
526 int i;
527 struct tnode *old_tn;
528 int inflate_threshold_use;
529 int halve_threshold_use;
530 int max_work;
531
532 if (!tn)
533 return NULL;
534
535 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
536 tn, inflate_threshold, halve_threshold);
537
538 /* No children */
539 if (tn->empty_children == tnode_child_length(tn)) {
540 tnode_free_safe(tn);
541 return NULL;
542 }
543 /* One child */
544 if (tn->empty_children == tnode_child_length(tn) - 1)
545 goto one_child;
546 /*
547 * Double as long as the resulting node has a number of
548 * nonempty nodes that are above the threshold.
549 */
550
551 /*
552 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
553 * the Helsinki University of Technology and Matti Tikkanen of Nokia
554 * Telecommunications, page 6:
555 * "A node is doubled if the ratio of non-empty children to all
556 * children in the *doubled* node is at least 'high'."
557 *
558 * 'high' in this instance is the variable 'inflate_threshold'. It
559 * is expressed as a percentage, so we multiply it with
560 * tnode_child_length() and instead of multiplying by 2 (since the
561 * child array will be doubled by inflate()) and multiplying
562 * the left-hand side by 100 (to handle the percentage thing) we
563 * multiply the left-hand side by 50.
564 *
565 * The left-hand side may look a bit weird: tnode_child_length(tn)
566 * - tn->empty_children is of course the number of non-null children
567 * in the current node. tn->full_children is the number of "full"
568 * children, that is non-null tnodes with a skip value of 0.
569 * All of those will be doubled in the resulting inflated tnode, so
570 * we just count them one extra time here.
571 *
572 * A clearer way to write this would be:
573 *
574 * to_be_doubled = tn->full_children;
575 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
576 * tn->full_children;
577 *
578 * new_child_length = tnode_child_length(tn) * 2;
579 *
580 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
581 * new_child_length;
582 * if (new_fill_factor >= inflate_threshold)
583 *
584 * ...and so on, tho it would mess up the while () loop.
585 *
586 * anyway,
587 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
588 * inflate_threshold
589 *
590 * avoid a division:
591 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
592 * inflate_threshold * new_child_length
593 *
594 * expand not_to_be_doubled and to_be_doubled, and shorten:
595 * 100 * (tnode_child_length(tn) - tn->empty_children +
596 * tn->full_children) >= inflate_threshold * new_child_length
597 *
598 * expand new_child_length:
599 * 100 * (tnode_child_length(tn) - tn->empty_children +
600 * tn->full_children) >=
601 * inflate_threshold * tnode_child_length(tn) * 2
602 *
603 * shorten again:
604 * 50 * (tn->full_children + tnode_child_length(tn) -
605 * tn->empty_children) >= inflate_threshold *
606 * tnode_child_length(tn)
607 *
608 */
609
610 check_tnode(tn);
611
612 /* Keep root node larger */
613
614 if (!node_parent((struct rt_trie_node *)tn)) {
615 inflate_threshold_use = inflate_threshold_root;
616 halve_threshold_use = halve_threshold_root;
617 } else {
618 inflate_threshold_use = inflate_threshold;
619 halve_threshold_use = halve_threshold;
620 }
621
622 max_work = MAX_WORK;
623 while ((tn->full_children > 0 && max_work-- &&
624 50 * (tn->full_children + tnode_child_length(tn)
625 - tn->empty_children)
626 >= inflate_threshold_use * tnode_child_length(tn))) {
627
628 old_tn = tn;
629 tn = inflate(t, tn);
630
631 if (IS_ERR(tn)) {
632 tn = old_tn;
633#ifdef CONFIG_IP_FIB_TRIE_STATS
634 t->stats.resize_node_skipped++;
635#endif
636 break;
637 }
638 }
639
640 check_tnode(tn);
641
642 /* Return if at least one inflate is run */
643 if (max_work != MAX_WORK)
644 return (struct rt_trie_node *) tn;
645
646 /*
647 * Halve as long as the number of empty children in this
648 * node is above threshold.
649 */
650
651 max_work = MAX_WORK;
652 while (tn->bits > 1 && max_work-- &&
653 100 * (tnode_child_length(tn) - tn->empty_children) <
654 halve_threshold_use * tnode_child_length(tn)) {
655
656 old_tn = tn;
657 tn = halve(t, tn);
658 if (IS_ERR(tn)) {
659 tn = old_tn;
660#ifdef CONFIG_IP_FIB_TRIE_STATS
661 t->stats.resize_node_skipped++;
662#endif
663 break;
664 }
665 }
666
667
668 /* Only one child remains */
669 if (tn->empty_children == tnode_child_length(tn) - 1) {
670one_child:
671 for (i = 0; i < tnode_child_length(tn); i++) {
672 struct rt_trie_node *n;
673
674 n = rtnl_dereference(tn->child[i]);
675 if (!n)
676 continue;
677
678 /* compress one level */
679
680 node_set_parent(n, NULL);
681 tnode_free_safe(tn);
682 return n;
683 }
684 }
685 return (struct rt_trie_node *) tn;
686}
687
688
689static void tnode_clean_free(struct tnode *tn)
690{
691 int i;
692 struct tnode *tofree;
693
694 for (i = 0; i < tnode_child_length(tn); i++) {
695 tofree = (struct tnode *)rtnl_dereference(tn->child[i]);
696 if (tofree)
697 tnode_free(tofree);
698 }
699 tnode_free(tn);
700}
701
702static struct tnode *inflate(struct trie *t, struct tnode *tn)
703{
704 struct tnode *oldtnode = tn;
705 int olen = tnode_child_length(tn);
706 int i;
707
708 pr_debug("In inflate\n");
709
710 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
711
712 if (!tn)
713 return ERR_PTR(-ENOMEM);
714
715 /*
716 * Preallocate and store tnodes before the actual work so we
717 * don't get into an inconsistent state if memory allocation
718 * fails. In case of failure we return the oldnode and inflate
719 * of tnode is ignored.
720 */
721
722 for (i = 0; i < olen; i++) {
723 struct tnode *inode;
724
725 inode = (struct tnode *) tnode_get_child(oldtnode, i);
726 if (inode &&
727 IS_TNODE(inode) &&
728 inode->pos == oldtnode->pos + oldtnode->bits &&
729 inode->bits > 1) {
730 struct tnode *left, *right;
731 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
732
733 left = tnode_new(inode->key&(~m), inode->pos + 1,
734 inode->bits - 1);
735 if (!left)
736 goto nomem;
737
738 right = tnode_new(inode->key|m, inode->pos + 1,
739 inode->bits - 1);
740
741 if (!right) {
742 tnode_free(left);
743 goto nomem;
744 }
745
746 put_child(tn, 2*i, (struct rt_trie_node *) left);
747 put_child(tn, 2*i+1, (struct rt_trie_node *) right);
748 }
749 }
750
751 for (i = 0; i < olen; i++) {
752 struct tnode *inode;
753 struct rt_trie_node *node = tnode_get_child(oldtnode, i);
754 struct tnode *left, *right;
755 int size, j;
756
757 /* An empty child */
758 if (node == NULL)
759 continue;
760
761 /* A leaf or an internal node with skipped bits */
762
763 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
764 tn->pos + tn->bits - 1) {
765 put_child(tn,
766 tkey_extract_bits(node->key, oldtnode->pos, oldtnode->bits + 1),
767 node);
768 continue;
769 }
770
771 /* An internal node with two children */
772 inode = (struct tnode *) node;
773
774 if (inode->bits == 1) {
775 put_child(tn, 2*i, rtnl_dereference(inode->child[0]));
776 put_child(tn, 2*i+1, rtnl_dereference(inode->child[1]));
777
778 tnode_free_safe(inode);
779 continue;
780 }
781
782 /* An internal node with more than two children */
783
784 /* We will replace this node 'inode' with two new
785 * ones, 'left' and 'right', each with half of the
786 * original children. The two new nodes will have
787 * a position one bit further down the key and this
788 * means that the "significant" part of their keys
789 * (see the discussion near the top of this file)
790 * will differ by one bit, which will be "0" in
791 * left's key and "1" in right's key. Since we are
792 * moving the key position by one step, the bit that
793 * we are moving away from - the bit at position
794 * (inode->pos) - is the one that will differ between
795 * left and right. So... we synthesize that bit in the
796 * two new keys.
797 * The mask 'm' below will be a single "one" bit at
798 * the position (inode->pos)
799 */
800
801 /* Use the old key, but set the new significant
802 * bit to zero.
803 */
804
805 left = (struct tnode *) tnode_get_child(tn, 2*i);
806 put_child(tn, 2*i, NULL);
807
808 BUG_ON(!left);
809
810 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
811 put_child(tn, 2*i+1, NULL);
812
813 BUG_ON(!right);
814
815 size = tnode_child_length(left);
816 for (j = 0; j < size; j++) {
817 put_child(left, j, rtnl_dereference(inode->child[j]));
818 put_child(right, j, rtnl_dereference(inode->child[j + size]));
819 }
820 put_child(tn, 2*i, resize(t, left));
821 put_child(tn, 2*i+1, resize(t, right));
822
823 tnode_free_safe(inode);
824 }
825 tnode_free_safe(oldtnode);
826 return tn;
827nomem:
828 tnode_clean_free(tn);
829 return ERR_PTR(-ENOMEM);
830}
831
832static struct tnode *halve(struct trie *t, struct tnode *tn)
833{
834 struct tnode *oldtnode = tn;
835 struct rt_trie_node *left, *right;
836 int i;
837 int olen = tnode_child_length(tn);
838
839 pr_debug("In halve\n");
840
841 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
842
843 if (!tn)
844 return ERR_PTR(-ENOMEM);
845
846 /*
847 * Preallocate and store tnodes before the actual work so we
848 * don't get into an inconsistent state if memory allocation
849 * fails. In case of failure we return the oldnode and halve
850 * of tnode is ignored.
851 */
852
853 for (i = 0; i < olen; i += 2) {
854 left = tnode_get_child(oldtnode, i);
855 right = tnode_get_child(oldtnode, i+1);
856
857 /* Two nonempty children */
858 if (left && right) {
859 struct tnode *newn;
860
861 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
862
863 if (!newn)
864 goto nomem;
865
866 put_child(tn, i/2, (struct rt_trie_node *)newn);
867 }
868
869 }
870
871 for (i = 0; i < olen; i += 2) {
872 struct tnode *newBinNode;
873
874 left = tnode_get_child(oldtnode, i);
875 right = tnode_get_child(oldtnode, i+1);
876
877 /* At least one of the children is empty */
878 if (left == NULL) {
879 if (right == NULL) /* Both are empty */
880 continue;
881 put_child(tn, i/2, right);
882 continue;
883 }
884
885 if (right == NULL) {
886 put_child(tn, i/2, left);
887 continue;
888 }
889
890 /* Two nonempty children */
891 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
892 put_child(tn, i/2, NULL);
893 put_child(newBinNode, 0, left);
894 put_child(newBinNode, 1, right);
895 put_child(tn, i/2, resize(t, newBinNode));
896 }
897 tnode_free_safe(oldtnode);
898 return tn;
899nomem:
900 tnode_clean_free(tn);
901 return ERR_PTR(-ENOMEM);
902}
903
904/* readside must use rcu_read_lock currently dump routines
905 via get_fa_head and dump */
906
907static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
908{
909 struct hlist_head *head = &l->list;
910 struct leaf_info *li;
911
912 hlist_for_each_entry_rcu(li, head, hlist)
913 if (li->plen == plen)
914 return li;
915
916 return NULL;
917}
918
919static inline struct list_head *get_fa_head(struct leaf *l, int plen)
920{
921 struct leaf_info *li = find_leaf_info(l, plen);
922
923 if (!li)
924 return NULL;
925
926 return &li->falh;
927}
928
929static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
930{
931 struct leaf_info *li = NULL, *last = NULL;
932
933 if (hlist_empty(head)) {
934 hlist_add_head_rcu(&new->hlist, head);
935 } else {
936 hlist_for_each_entry(li, head, hlist) {
937 if (new->plen > li->plen)
938 break;
939
940 last = li;
941 }
942 if (last)
943 hlist_add_after_rcu(&last->hlist, &new->hlist);
944 else
945 hlist_add_before_rcu(&new->hlist, &li->hlist);
946 }
947}
948
949/* rcu_read_lock needs to be hold by caller from readside */
950
951static struct leaf *
952fib_find_node(struct trie *t, u32 key)
953{
954 int pos;
955 struct tnode *tn;
956 struct rt_trie_node *n;
957
958 pos = 0;
959 n = rcu_dereference_rtnl(t->trie);
960
961 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
962 tn = (struct tnode *) n;
963
964 check_tnode(tn);
965
966 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
967 pos = tn->pos + tn->bits;
968 n = tnode_get_child_rcu(tn,
969 tkey_extract_bits(key,
970 tn->pos,
971 tn->bits));
972 } else
973 break;
974 }
975 /* Case we have found a leaf. Compare prefixes */
976
977 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
978 return (struct leaf *)n;
979
980 return NULL;
981}
982
983static void trie_rebalance(struct trie *t, struct tnode *tn)
984{
985 int wasfull;
986 t_key cindex, key;
987 struct tnode *tp;
988
989 key = tn->key;
990
991 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
992 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
993 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
994 tn = (struct tnode *)resize(t, tn);
995
996 tnode_put_child_reorg(tp, cindex,
997 (struct rt_trie_node *)tn, wasfull);
998
999 tp = node_parent((struct rt_trie_node *) tn);
1000 if (!tp)
1001 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1002
1003 tnode_free_flush();
1004 if (!tp)
1005 break;
1006 tn = tp;
1007 }
1008
1009 /* Handle last (top) tnode */
1010 if (IS_TNODE(tn))
1011 tn = (struct tnode *)resize(t, tn);
1012
1013 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1014 tnode_free_flush();
1015}
1016
1017/* only used from updater-side */
1018
1019static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1020{
1021 int pos, newpos;
1022 struct tnode *tp = NULL, *tn = NULL;
1023 struct rt_trie_node *n;
1024 struct leaf *l;
1025 int missbit;
1026 struct list_head *fa_head = NULL;
1027 struct leaf_info *li;
1028 t_key cindex;
1029
1030 pos = 0;
1031 n = rtnl_dereference(t->trie);
1032
1033 /* If we point to NULL, stop. Either the tree is empty and we should
1034 * just put a new leaf in if, or we have reached an empty child slot,
1035 * and we should just put our new leaf in that.
1036 * If we point to a T_TNODE, check if it matches our key. Note that
1037 * a T_TNODE might be skipping any number of bits - its 'pos' need
1038 * not be the parent's 'pos'+'bits'!
1039 *
1040 * If it does match the current key, get pos/bits from it, extract
1041 * the index from our key, push the T_TNODE and walk the tree.
1042 *
1043 * If it doesn't, we have to replace it with a new T_TNODE.
1044 *
1045 * If we point to a T_LEAF, it might or might not have the same key
1046 * as we do. If it does, just change the value, update the T_LEAF's
1047 * value, and return it.
1048 * If it doesn't, we need to replace it with a T_TNODE.
1049 */
1050
1051 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1052 tn = (struct tnode *) n;
1053
1054 check_tnode(tn);
1055
1056 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1057 tp = tn;
1058 pos = tn->pos + tn->bits;
1059 n = tnode_get_child(tn,
1060 tkey_extract_bits(key,
1061 tn->pos,
1062 tn->bits));
1063
1064 BUG_ON(n && node_parent(n) != tn);
1065 } else
1066 break;
1067 }
1068
1069 /*
1070 * n ----> NULL, LEAF or TNODE
1071 *
1072 * tp is n's (parent) ----> NULL or TNODE
1073 */
1074
1075 BUG_ON(tp && IS_LEAF(tp));
1076
1077 /* Case 1: n is a leaf. Compare prefixes */
1078
1079 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1080 l = (struct leaf *) n;
1081 li = leaf_info_new(plen);
1082
1083 if (!li)
1084 return NULL;
1085
1086 fa_head = &li->falh;
1087 insert_leaf_info(&l->list, li);
1088 goto done;
1089 }
1090 l = leaf_new();
1091
1092 if (!l)
1093 return NULL;
1094
1095 l->key = key;
1096 li = leaf_info_new(plen);
1097
1098 if (!li) {
1099 free_leaf(l);
1100 return NULL;
1101 }
1102
1103 fa_head = &li->falh;
1104 insert_leaf_info(&l->list, li);
1105
1106 if (t->trie && n == NULL) {
1107 /* Case 2: n is NULL, and will just insert a new leaf */
1108
1109 node_set_parent((struct rt_trie_node *)l, tp);
1110
1111 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1112 put_child(tp, cindex, (struct rt_trie_node *)l);
1113 } else {
1114 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1115 /*
1116 * Add a new tnode here
1117 * first tnode need some special handling
1118 */
1119
1120 if (n) {
1121 pos = tp ? tp->pos+tp->bits : 0;
1122 newpos = tkey_mismatch(key, pos, n->key);
1123 tn = tnode_new(n->key, newpos, 1);
1124 } else {
1125 newpos = 0;
1126 tn = tnode_new(key, newpos, 1); /* First tnode */
1127 }
1128
1129 if (!tn) {
1130 free_leaf_info(li);
1131 free_leaf(l);
1132 return NULL;
1133 }
1134
1135 node_set_parent((struct rt_trie_node *)tn, tp);
1136
1137 missbit = tkey_extract_bits(key, newpos, 1);
1138 put_child(tn, missbit, (struct rt_trie_node *)l);
1139 put_child(tn, 1-missbit, n);
1140
1141 if (tp) {
1142 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1143 put_child(tp, cindex, (struct rt_trie_node *)tn);
1144 } else {
1145 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1146 tp = tn;
1147 }
1148 }
1149
1150 if (tp && tp->pos + tp->bits > 32)
1151 pr_warn("fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1152 tp, tp->pos, tp->bits, key, plen);
1153
1154 /* Rebalance the trie */
1155
1156 trie_rebalance(t, tp);
1157done:
1158 return fa_head;
1159}
1160
1161/*
1162 * Caller must hold RTNL.
1163 */
1164int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1165{
1166 struct trie *t = (struct trie *) tb->tb_data;
1167 struct fib_alias *fa, *new_fa;
1168 struct list_head *fa_head = NULL;
1169 struct fib_info *fi;
1170 int plen = cfg->fc_dst_len;
1171 u8 tos = cfg->fc_tos;
1172 u32 key, mask;
1173 int err;
1174 struct leaf *l;
1175
1176 if (plen > 32)
1177 return -EINVAL;
1178
1179 key = ntohl(cfg->fc_dst);
1180
1181 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1182
1183 mask = ntohl(inet_make_mask(plen));
1184
1185 if (key & ~mask)
1186 return -EINVAL;
1187
1188 key = key & mask;
1189
1190 fi = fib_create_info(cfg);
1191 if (IS_ERR(fi)) {
1192 err = PTR_ERR(fi);
1193 goto err;
1194 }
1195
1196 l = fib_find_node(t, key);
1197 fa = NULL;
1198
1199 if (l) {
1200 fa_head = get_fa_head(l, plen);
1201 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1202 }
1203
1204 /* Now fa, if non-NULL, points to the first fib alias
1205 * with the same keys [prefix,tos,priority], if such key already
1206 * exists or to the node before which we will insert new one.
1207 *
1208 * If fa is NULL, we will need to allocate a new one and
1209 * insert to the head of f.
1210 *
1211 * If f is NULL, no fib node matched the destination key
1212 * and we need to allocate a new one of those as well.
1213 */
1214
1215 if (fa && fa->fa_tos == tos &&
1216 fa->fa_info->fib_priority == fi->fib_priority) {
1217 struct fib_alias *fa_first, *fa_match;
1218
1219 err = -EEXIST;
1220 if (cfg->fc_nlflags & NLM_F_EXCL)
1221 goto out;
1222
1223 /* We have 2 goals:
1224 * 1. Find exact match for type, scope, fib_info to avoid
1225 * duplicate routes
1226 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1227 */
1228 fa_match = NULL;
1229 fa_first = fa;
1230 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1231 list_for_each_entry_continue(fa, fa_head, fa_list) {
1232 if (fa->fa_tos != tos)
1233 break;
1234 if (fa->fa_info->fib_priority != fi->fib_priority)
1235 break;
1236 if (fa->fa_type == cfg->fc_type &&
1237 fa->fa_info == fi) {
1238 fa_match = fa;
1239 break;
1240 }
1241 }
1242
1243 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1244 struct fib_info *fi_drop;
1245 u8 state;
1246
1247 fa = fa_first;
1248 if (fa_match) {
1249 if (fa == fa_match)
1250 err = 0;
1251 goto out;
1252 }
1253 err = -ENOBUFS;
1254 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1255 if (new_fa == NULL)
1256 goto out;
1257
1258 fi_drop = fa->fa_info;
1259 new_fa->fa_tos = fa->fa_tos;
1260 new_fa->fa_info = fi;
1261 new_fa->fa_type = cfg->fc_type;
1262 state = fa->fa_state;
1263 new_fa->fa_state = state & ~FA_S_ACCESSED;
1264
1265 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1266 alias_free_mem_rcu(fa);
1267
1268 fib_release_info(fi_drop);
1269 if (state & FA_S_ACCESSED)
1270 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1271 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1272 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1273
1274 goto succeeded;
1275 }
1276 /* Error if we find a perfect match which
1277 * uses the same scope, type, and nexthop
1278 * information.
1279 */
1280 if (fa_match)
1281 goto out;
1282
1283 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1284 fa = fa_first;
1285 }
1286 err = -ENOENT;
1287 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1288 goto out;
1289
1290 err = -ENOBUFS;
1291 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1292 if (new_fa == NULL)
1293 goto out;
1294
1295 new_fa->fa_info = fi;
1296 new_fa->fa_tos = tos;
1297 new_fa->fa_type = cfg->fc_type;
1298 new_fa->fa_state = 0;
1299 /*
1300 * Insert new entry to the list.
1301 */
1302
1303 if (!fa_head) {
1304 fa_head = fib_insert_node(t, key, plen);
1305 if (unlikely(!fa_head)) {
1306 err = -ENOMEM;
1307 goto out_free_new_fa;
1308 }
1309 }
1310
1311 if (!plen)
1312 tb->tb_num_default++;
1313
1314 list_add_tail_rcu(&new_fa->fa_list,
1315 (fa ? &fa->fa_list : fa_head));
1316
1317 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1318 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1319 &cfg->fc_nlinfo, 0);
1320succeeded:
1321 return 0;
1322
1323out_free_new_fa:
1324 kmem_cache_free(fn_alias_kmem, new_fa);
1325out:
1326 fib_release_info(fi);
1327err:
1328 return err;
1329}
1330
1331/* should be called with rcu_read_lock */
1332static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
1333 t_key key, const struct flowi4 *flp,
1334 struct fib_result *res, int fib_flags)
1335{
1336 struct leaf_info *li;
1337 struct hlist_head *hhead = &l->list;
1338
1339 hlist_for_each_entry_rcu(li, hhead, hlist) {
1340 struct fib_alias *fa;
1341
1342 if (l->key != (key & li->mask_plen))
1343 continue;
1344
1345 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1346 struct fib_info *fi = fa->fa_info;
1347 int nhsel, err;
1348
1349 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1350 continue;
1351 if (fi->fib_dead)
1352 continue;
1353 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1354 continue;
1355 fib_alias_accessed(fa);
1356 err = fib_props[fa->fa_type].error;
1357 if (err) {
1358#ifdef CONFIG_IP_FIB_TRIE_STATS
1359 t->stats.semantic_match_passed++;
1360#endif
1361 return err;
1362 }
1363 if (fi->fib_flags & RTNH_F_DEAD)
1364 continue;
1365 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1366 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1367
1368 if (nh->nh_flags & RTNH_F_DEAD)
1369 continue;
1370 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1371 continue;
1372
1373#ifdef CONFIG_IP_FIB_TRIE_STATS
1374 t->stats.semantic_match_passed++;
1375#endif
1376 res->prefixlen = li->plen;
1377 res->nh_sel = nhsel;
1378 res->type = fa->fa_type;
1379 res->scope = fa->fa_info->fib_scope;
1380 res->fi = fi;
1381 res->table = tb;
1382 res->fa_head = &li->falh;
1383 if (!(fib_flags & FIB_LOOKUP_NOREF))
1384 atomic_inc(&fi->fib_clntref);
1385 return 0;
1386 }
1387 }
1388
1389#ifdef CONFIG_IP_FIB_TRIE_STATS
1390 t->stats.semantic_match_miss++;
1391#endif
1392 }
1393
1394 return 1;
1395}
1396
1397int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1398 struct fib_result *res, int fib_flags)
1399{
1400 struct trie *t = (struct trie *) tb->tb_data;
1401 int ret;
1402 struct rt_trie_node *n;
1403 struct tnode *pn;
1404 unsigned int pos, bits;
1405 t_key key = ntohl(flp->daddr);
1406 unsigned int chopped_off;
1407 t_key cindex = 0;
1408 unsigned int current_prefix_length = KEYLENGTH;
1409 struct tnode *cn;
1410 t_key pref_mismatch;
1411
1412 rcu_read_lock();
1413
1414 n = rcu_dereference(t->trie);
1415 if (!n)
1416 goto failed;
1417
1418#ifdef CONFIG_IP_FIB_TRIE_STATS
1419 t->stats.gets++;
1420#endif
1421
1422 /* Just a leaf? */
1423 if (IS_LEAF(n)) {
1424 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1425 goto found;
1426 }
1427
1428 pn = (struct tnode *) n;
1429 chopped_off = 0;
1430
1431 while (pn) {
1432 pos = pn->pos;
1433 bits = pn->bits;
1434
1435 if (!chopped_off)
1436 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1437 pos, bits);
1438
1439 n = tnode_get_child_rcu(pn, cindex);
1440
1441 if (n == NULL) {
1442#ifdef CONFIG_IP_FIB_TRIE_STATS
1443 t->stats.null_node_hit++;
1444#endif
1445 goto backtrace;
1446 }
1447
1448 if (IS_LEAF(n)) {
1449 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1450 if (ret > 0)
1451 goto backtrace;
1452 goto found;
1453 }
1454
1455 cn = (struct tnode *)n;
1456
1457 /*
1458 * It's a tnode, and we can do some extra checks here if we
1459 * like, to avoid descending into a dead-end branch.
1460 * This tnode is in the parent's child array at index
1461 * key[p_pos..p_pos+p_bits] but potentially with some bits
1462 * chopped off, so in reality the index may be just a
1463 * subprefix, padded with zero at the end.
1464 * We can also take a look at any skipped bits in this
1465 * tnode - everything up to p_pos is supposed to be ok,
1466 * and the non-chopped bits of the index (se previous
1467 * paragraph) are also guaranteed ok, but the rest is
1468 * considered unknown.
1469 *
1470 * The skipped bits are key[pos+bits..cn->pos].
1471 */
1472
1473 /* If current_prefix_length < pos+bits, we are already doing
1474 * actual prefix matching, which means everything from
1475 * pos+(bits-chopped_off) onward must be zero along some
1476 * branch of this subtree - otherwise there is *no* valid
1477 * prefix present. Here we can only check the skipped
1478 * bits. Remember, since we have already indexed into the
1479 * parent's child array, we know that the bits we chopped of
1480 * *are* zero.
1481 */
1482
1483 /* NOTA BENE: Checking only skipped bits
1484 for the new node here */
1485
1486 if (current_prefix_length < pos+bits) {
1487 if (tkey_extract_bits(cn->key, current_prefix_length,
1488 cn->pos - current_prefix_length)
1489 || !(cn->child[0]))
1490 goto backtrace;
1491 }
1492
1493 /*
1494 * If chopped_off=0, the index is fully validated and we
1495 * only need to look at the skipped bits for this, the new,
1496 * tnode. What we actually want to do is to find out if
1497 * these skipped bits match our key perfectly, or if we will
1498 * have to count on finding a matching prefix further down,
1499 * because if we do, we would like to have some way of
1500 * verifying the existence of such a prefix at this point.
1501 */
1502
1503 /* The only thing we can do at this point is to verify that
1504 * any such matching prefix can indeed be a prefix to our
1505 * key, and if the bits in the node we are inspecting that
1506 * do not match our key are not ZERO, this cannot be true.
1507 * Thus, find out where there is a mismatch (before cn->pos)
1508 * and verify that all the mismatching bits are zero in the
1509 * new tnode's key.
1510 */
1511
1512 /*
1513 * Note: We aren't very concerned about the piece of
1514 * the key that precede pn->pos+pn->bits, since these
1515 * have already been checked. The bits after cn->pos
1516 * aren't checked since these are by definition
1517 * "unknown" at this point. Thus, what we want to see
1518 * is if we are about to enter the "prefix matching"
1519 * state, and in that case verify that the skipped
1520 * bits that will prevail throughout this subtree are
1521 * zero, as they have to be if we are to find a
1522 * matching prefix.
1523 */
1524
1525 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
1526
1527 /*
1528 * In short: If skipped bits in this node do not match
1529 * the search key, enter the "prefix matching"
1530 * state.directly.
1531 */
1532 if (pref_mismatch) {
1533 /* fls(x) = __fls(x) + 1 */
1534 int mp = KEYLENGTH - __fls(pref_mismatch) - 1;
1535
1536 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
1537 goto backtrace;
1538
1539 if (current_prefix_length >= cn->pos)
1540 current_prefix_length = mp;
1541 }
1542
1543 pn = (struct tnode *)n; /* Descend */
1544 chopped_off = 0;
1545 continue;
1546
1547backtrace:
1548 chopped_off++;
1549
1550 /* As zero don't change the child key (cindex) */
1551 while ((chopped_off <= pn->bits)
1552 && !(cindex & (1<<(chopped_off-1))))
1553 chopped_off++;
1554
1555 /* Decrease current_... with bits chopped off */
1556 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1557 current_prefix_length = pn->pos + pn->bits
1558 - chopped_off;
1559
1560 /*
1561 * Either we do the actual chop off according or if we have
1562 * chopped off all bits in this tnode walk up to our parent.
1563 */
1564
1565 if (chopped_off <= pn->bits) {
1566 cindex &= ~(1 << (chopped_off-1));
1567 } else {
1568 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
1569 if (!parent)
1570 goto failed;
1571
1572 /* Get Child's index */
1573 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1574 pn = parent;
1575 chopped_off = 0;
1576
1577#ifdef CONFIG_IP_FIB_TRIE_STATS
1578 t->stats.backtrack++;
1579#endif
1580 goto backtrace;
1581 }
1582 }
1583failed:
1584 ret = 1;
1585found:
1586 rcu_read_unlock();
1587 return ret;
1588}
1589EXPORT_SYMBOL_GPL(fib_table_lookup);
1590
1591/*
1592 * Remove the leaf and return parent.
1593 */
1594static void trie_leaf_remove(struct trie *t, struct leaf *l)
1595{
1596 struct tnode *tp = node_parent((struct rt_trie_node *) l);
1597
1598 pr_debug("entering trie_leaf_remove(%p)\n", l);
1599
1600 if (tp) {
1601 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1602 put_child(tp, cindex, NULL);
1603 trie_rebalance(t, tp);
1604 } else
1605 RCU_INIT_POINTER(t->trie, NULL);
1606
1607 free_leaf(l);
1608}
1609
1610/*
1611 * Caller must hold RTNL.
1612 */
1613int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1614{
1615 struct trie *t = (struct trie *) tb->tb_data;
1616 u32 key, mask;
1617 int plen = cfg->fc_dst_len;
1618 u8 tos = cfg->fc_tos;
1619 struct fib_alias *fa, *fa_to_delete;
1620 struct list_head *fa_head;
1621 struct leaf *l;
1622 struct leaf_info *li;
1623
1624 if (plen > 32)
1625 return -EINVAL;
1626
1627 key = ntohl(cfg->fc_dst);
1628 mask = ntohl(inet_make_mask(plen));
1629
1630 if (key & ~mask)
1631 return -EINVAL;
1632
1633 key = key & mask;
1634 l = fib_find_node(t, key);
1635
1636 if (!l)
1637 return -ESRCH;
1638
1639 li = find_leaf_info(l, plen);
1640
1641 if (!li)
1642 return -ESRCH;
1643
1644 fa_head = &li->falh;
1645 fa = fib_find_alias(fa_head, tos, 0);
1646
1647 if (!fa)
1648 return -ESRCH;
1649
1650 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1651
1652 fa_to_delete = NULL;
1653 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1654 list_for_each_entry_continue(fa, fa_head, fa_list) {
1655 struct fib_info *fi = fa->fa_info;
1656
1657 if (fa->fa_tos != tos)
1658 break;
1659
1660 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1661 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1662 fa->fa_info->fib_scope == cfg->fc_scope) &&
1663 (!cfg->fc_prefsrc ||
1664 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1665 (!cfg->fc_protocol ||
1666 fi->fib_protocol == cfg->fc_protocol) &&
1667 fib_nh_match(cfg, fi) == 0) {
1668 fa_to_delete = fa;
1669 break;
1670 }
1671 }
1672
1673 if (!fa_to_delete)
1674 return -ESRCH;
1675
1676 fa = fa_to_delete;
1677 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1678 &cfg->fc_nlinfo, 0);
1679
1680 list_del_rcu(&fa->fa_list);
1681
1682 if (!plen)
1683 tb->tb_num_default--;
1684
1685 if (list_empty(fa_head)) {
1686 hlist_del_rcu(&li->hlist);
1687 free_leaf_info(li);
1688 }
1689
1690 if (hlist_empty(&l->list))
1691 trie_leaf_remove(t, l);
1692
1693 if (fa->fa_state & FA_S_ACCESSED)
1694 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1695
1696 fib_release_info(fa->fa_info);
1697 alias_free_mem_rcu(fa);
1698 return 0;
1699}
1700
1701static int trie_flush_list(struct list_head *head)
1702{
1703 struct fib_alias *fa, *fa_node;
1704 int found = 0;
1705
1706 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1707 struct fib_info *fi = fa->fa_info;
1708
1709 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1710 list_del_rcu(&fa->fa_list);
1711 fib_release_info(fa->fa_info);
1712 alias_free_mem_rcu(fa);
1713 found++;
1714 }
1715 }
1716 return found;
1717}
1718
1719static int trie_flush_leaf(struct leaf *l)
1720{
1721 int found = 0;
1722 struct hlist_head *lih = &l->list;
1723 struct hlist_node *tmp;
1724 struct leaf_info *li = NULL;
1725
1726 hlist_for_each_entry_safe(li, tmp, lih, hlist) {
1727 found += trie_flush_list(&li->falh);
1728
1729 if (list_empty(&li->falh)) {
1730 hlist_del_rcu(&li->hlist);
1731 free_leaf_info(li);
1732 }
1733 }
1734 return found;
1735}
1736
1737/*
1738 * Scan for the next right leaf starting at node p->child[idx]
1739 * Since we have back pointer, no recursion necessary.
1740 */
1741static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
1742{
1743 do {
1744 t_key idx;
1745
1746 if (c)
1747 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1748 else
1749 idx = 0;
1750
1751 while (idx < 1u << p->bits) {
1752 c = tnode_get_child_rcu(p, idx++);
1753 if (!c)
1754 continue;
1755
1756 if (IS_LEAF(c))
1757 return (struct leaf *) c;
1758
1759 /* Rescan start scanning in new node */
1760 p = (struct tnode *) c;
1761 idx = 0;
1762 }
1763
1764 /* Node empty, walk back up to parent */
1765 c = (struct rt_trie_node *) p;
1766 } while ((p = node_parent_rcu(c)) != NULL);
1767
1768 return NULL; /* Root of trie */
1769}
1770
1771static struct leaf *trie_firstleaf(struct trie *t)
1772{
1773 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
1774
1775 if (!n)
1776 return NULL;
1777
1778 if (IS_LEAF(n)) /* trie is just a leaf */
1779 return (struct leaf *) n;
1780
1781 return leaf_walk_rcu(n, NULL);
1782}
1783
1784static struct leaf *trie_nextleaf(struct leaf *l)
1785{
1786 struct rt_trie_node *c = (struct rt_trie_node *) l;
1787 struct tnode *p = node_parent_rcu(c);
1788
1789 if (!p)
1790 return NULL; /* trie with just one leaf */
1791
1792 return leaf_walk_rcu(p, c);
1793}
1794
1795static struct leaf *trie_leafindex(struct trie *t, int index)
1796{
1797 struct leaf *l = trie_firstleaf(t);
1798
1799 while (l && index-- > 0)
1800 l = trie_nextleaf(l);
1801
1802 return l;
1803}
1804
1805
1806/*
1807 * Caller must hold RTNL.
1808 */
1809int fib_table_flush(struct fib_table *tb)
1810{
1811 struct trie *t = (struct trie *) tb->tb_data;
1812 struct leaf *l, *ll = NULL;
1813 int found = 0;
1814
1815 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1816 found += trie_flush_leaf(l);
1817
1818 if (ll && hlist_empty(&ll->list))
1819 trie_leaf_remove(t, ll);
1820 ll = l;
1821 }
1822
1823 if (ll && hlist_empty(&ll->list))
1824 trie_leaf_remove(t, ll);
1825
1826 pr_debug("trie_flush found=%d\n", found);
1827 return found;
1828}
1829
1830void fib_free_table(struct fib_table *tb)
1831{
1832 kfree(tb);
1833}
1834
1835static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1836 struct fib_table *tb,
1837 struct sk_buff *skb, struct netlink_callback *cb)
1838{
1839 int i, s_i;
1840 struct fib_alias *fa;
1841 __be32 xkey = htonl(key);
1842
1843 s_i = cb->args[5];
1844 i = 0;
1845
1846 /* rcu_read_lock is hold by caller */
1847
1848 list_for_each_entry_rcu(fa, fah, fa_list) {
1849 if (i < s_i) {
1850 i++;
1851 continue;
1852 }
1853
1854 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1855 cb->nlh->nlmsg_seq,
1856 RTM_NEWROUTE,
1857 tb->tb_id,
1858 fa->fa_type,
1859 xkey,
1860 plen,
1861 fa->fa_tos,
1862 fa->fa_info, NLM_F_MULTI) < 0) {
1863 cb->args[5] = i;
1864 return -1;
1865 }
1866 i++;
1867 }
1868 cb->args[5] = i;
1869 return skb->len;
1870}
1871
1872static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1873 struct sk_buff *skb, struct netlink_callback *cb)
1874{
1875 struct leaf_info *li;
1876 int i, s_i;
1877
1878 s_i = cb->args[4];
1879 i = 0;
1880
1881 /* rcu_read_lock is hold by caller */
1882 hlist_for_each_entry_rcu(li, &l->list, hlist) {
1883 if (i < s_i) {
1884 i++;
1885 continue;
1886 }
1887
1888 if (i > s_i)
1889 cb->args[5] = 0;
1890
1891 if (list_empty(&li->falh))
1892 continue;
1893
1894 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1895 cb->args[4] = i;
1896 return -1;
1897 }
1898 i++;
1899 }
1900
1901 cb->args[4] = i;
1902 return skb->len;
1903}
1904
1905int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1906 struct netlink_callback *cb)
1907{
1908 struct leaf *l;
1909 struct trie *t = (struct trie *) tb->tb_data;
1910 t_key key = cb->args[2];
1911 int count = cb->args[3];
1912
1913 rcu_read_lock();
1914 /* Dump starting at last key.
1915 * Note: 0.0.0.0/0 (ie default) is first key.
1916 */
1917 if (count == 0)
1918 l = trie_firstleaf(t);
1919 else {
1920 /* Normally, continue from last key, but if that is missing
1921 * fallback to using slow rescan
1922 */
1923 l = fib_find_node(t, key);
1924 if (!l)
1925 l = trie_leafindex(t, count);
1926 }
1927
1928 while (l) {
1929 cb->args[2] = l->key;
1930 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1931 cb->args[3] = count;
1932 rcu_read_unlock();
1933 return -1;
1934 }
1935
1936 ++count;
1937 l = trie_nextleaf(l);
1938 memset(&cb->args[4], 0,
1939 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1940 }
1941 cb->args[3] = count;
1942 rcu_read_unlock();
1943
1944 return skb->len;
1945}
1946
1947void __init fib_trie_init(void)
1948{
1949 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1950 sizeof(struct fib_alias),
1951 0, SLAB_PANIC, NULL);
1952
1953 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1954 max(sizeof(struct leaf),
1955 sizeof(struct leaf_info)),
1956 0, SLAB_PANIC, NULL);
1957}
1958
1959
1960struct fib_table *fib_trie_table(u32 id)
1961{
1962 struct fib_table *tb;
1963 struct trie *t;
1964
1965 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1966 GFP_KERNEL);
1967 if (tb == NULL)
1968 return NULL;
1969
1970 tb->tb_id = id;
1971 tb->tb_default = -1;
1972 tb->tb_num_default = 0;
1973
1974 t = (struct trie *) tb->tb_data;
1975 memset(t, 0, sizeof(*t));
1976
1977 return tb;
1978}
1979
1980#ifdef CONFIG_PROC_FS
1981/* Depth first Trie walk iterator */
1982struct fib_trie_iter {
1983 struct seq_net_private p;
1984 struct fib_table *tb;
1985 struct tnode *tnode;
1986 unsigned int index;
1987 unsigned int depth;
1988};
1989
1990static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
1991{
1992 struct tnode *tn = iter->tnode;
1993 unsigned int cindex = iter->index;
1994 struct tnode *p;
1995
1996 /* A single entry routing table */
1997 if (!tn)
1998 return NULL;
1999
2000 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2001 iter->tnode, iter->index, iter->depth);
2002rescan:
2003 while (cindex < (1<<tn->bits)) {
2004 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
2005
2006 if (n) {
2007 if (IS_LEAF(n)) {
2008 iter->tnode = tn;
2009 iter->index = cindex + 1;
2010 } else {
2011 /* push down one level */
2012 iter->tnode = (struct tnode *) n;
2013 iter->index = 0;
2014 ++iter->depth;
2015 }
2016 return n;
2017 }
2018
2019 ++cindex;
2020 }
2021
2022 /* Current node exhausted, pop back up */
2023 p = node_parent_rcu((struct rt_trie_node *)tn);
2024 if (p) {
2025 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2026 tn = p;
2027 --iter->depth;
2028 goto rescan;
2029 }
2030
2031 /* got root? */
2032 return NULL;
2033}
2034
2035static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
2036 struct trie *t)
2037{
2038 struct rt_trie_node *n;
2039
2040 if (!t)
2041 return NULL;
2042
2043 n = rcu_dereference(t->trie);
2044 if (!n)
2045 return NULL;
2046
2047 if (IS_TNODE(n)) {
2048 iter->tnode = (struct tnode *) n;
2049 iter->index = 0;
2050 iter->depth = 1;
2051 } else {
2052 iter->tnode = NULL;
2053 iter->index = 0;
2054 iter->depth = 0;
2055 }
2056
2057 return n;
2058}
2059
2060static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2061{
2062 struct rt_trie_node *n;
2063 struct fib_trie_iter iter;
2064
2065 memset(s, 0, sizeof(*s));
2066
2067 rcu_read_lock();
2068 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2069 if (IS_LEAF(n)) {
2070 struct leaf *l = (struct leaf *)n;
2071 struct leaf_info *li;
2072
2073 s->leaves++;
2074 s->totdepth += iter.depth;
2075 if (iter.depth > s->maxdepth)
2076 s->maxdepth = iter.depth;
2077
2078 hlist_for_each_entry_rcu(li, &l->list, hlist)
2079 ++s->prefixes;
2080 } else {
2081 const struct tnode *tn = (const struct tnode *) n;
2082 int i;
2083
2084 s->tnodes++;
2085 if (tn->bits < MAX_STAT_DEPTH)
2086 s->nodesizes[tn->bits]++;
2087
2088 for (i = 0; i < (1<<tn->bits); i++)
2089 if (!tn->child[i])
2090 s->nullpointers++;
2091 }
2092 }
2093 rcu_read_unlock();
2094}
2095
2096/*
2097 * This outputs /proc/net/fib_triestats
2098 */
2099static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2100{
2101 unsigned int i, max, pointers, bytes, avdepth;
2102
2103 if (stat->leaves)
2104 avdepth = stat->totdepth*100 / stat->leaves;
2105 else
2106 avdepth = 0;
2107
2108 seq_printf(seq, "\tAver depth: %u.%02d\n",
2109 avdepth / 100, avdepth % 100);
2110 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2111
2112 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2113 bytes = sizeof(struct leaf) * stat->leaves;
2114
2115 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2116 bytes += sizeof(struct leaf_info) * stat->prefixes;
2117
2118 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2119 bytes += sizeof(struct tnode) * stat->tnodes;
2120
2121 max = MAX_STAT_DEPTH;
2122 while (max > 0 && stat->nodesizes[max-1] == 0)
2123 max--;
2124
2125 pointers = 0;
2126 for (i = 1; i < max; i++)
2127 if (stat->nodesizes[i] != 0) {
2128 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2129 pointers += (1<<i) * stat->nodesizes[i];
2130 }
2131 seq_putc(seq, '\n');
2132 seq_printf(seq, "\tPointers: %u\n", pointers);
2133
2134 bytes += sizeof(struct rt_trie_node *) * pointers;
2135 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2136 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2137}
2138
2139#ifdef CONFIG_IP_FIB_TRIE_STATS
2140static void trie_show_usage(struct seq_file *seq,
2141 const struct trie_use_stats *stats)
2142{
2143 seq_printf(seq, "\nCounters:\n---------\n");
2144 seq_printf(seq, "gets = %u\n", stats->gets);
2145 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2146 seq_printf(seq, "semantic match passed = %u\n",
2147 stats->semantic_match_passed);
2148 seq_printf(seq, "semantic match miss = %u\n",
2149 stats->semantic_match_miss);
2150 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2151 seq_printf(seq, "skipped node resize = %u\n\n",
2152 stats->resize_node_skipped);
2153}
2154#endif /* CONFIG_IP_FIB_TRIE_STATS */
2155
2156static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2157{
2158 if (tb->tb_id == RT_TABLE_LOCAL)
2159 seq_puts(seq, "Local:\n");
2160 else if (tb->tb_id == RT_TABLE_MAIN)
2161 seq_puts(seq, "Main:\n");
2162 else
2163 seq_printf(seq, "Id %d:\n", tb->tb_id);
2164}
2165
2166
2167static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2168{
2169 struct net *net = (struct net *)seq->private;
2170 unsigned int h;
2171
2172 seq_printf(seq,
2173 "Basic info: size of leaf:"
2174 " %Zd bytes, size of tnode: %Zd bytes.\n",
2175 sizeof(struct leaf), sizeof(struct tnode));
2176
2177 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2178 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2179 struct fib_table *tb;
2180
2181 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2182 struct trie *t = (struct trie *) tb->tb_data;
2183 struct trie_stat stat;
2184
2185 if (!t)
2186 continue;
2187
2188 fib_table_print(seq, tb);
2189
2190 trie_collect_stats(t, &stat);
2191 trie_show_stats(seq, &stat);
2192#ifdef CONFIG_IP_FIB_TRIE_STATS
2193 trie_show_usage(seq, &t->stats);
2194#endif
2195 }
2196 }
2197
2198 return 0;
2199}
2200
2201static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2202{
2203 return single_open_net(inode, file, fib_triestat_seq_show);
2204}
2205
2206static const struct file_operations fib_triestat_fops = {
2207 .owner = THIS_MODULE,
2208 .open = fib_triestat_seq_open,
2209 .read = seq_read,
2210 .llseek = seq_lseek,
2211 .release = single_release_net,
2212};
2213
2214static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2215{
2216 struct fib_trie_iter *iter = seq->private;
2217 struct net *net = seq_file_net(seq);
2218 loff_t idx = 0;
2219 unsigned int h;
2220
2221 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2222 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2223 struct fib_table *tb;
2224
2225 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2226 struct rt_trie_node *n;
2227
2228 for (n = fib_trie_get_first(iter,
2229 (struct trie *) tb->tb_data);
2230 n; n = fib_trie_get_next(iter))
2231 if (pos == idx++) {
2232 iter->tb = tb;
2233 return n;
2234 }
2235 }
2236 }
2237
2238 return NULL;
2239}
2240
2241static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2242 __acquires(RCU)
2243{
2244 rcu_read_lock();
2245 return fib_trie_get_idx(seq, *pos);
2246}
2247
2248static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2249{
2250 struct fib_trie_iter *iter = seq->private;
2251 struct net *net = seq_file_net(seq);
2252 struct fib_table *tb = iter->tb;
2253 struct hlist_node *tb_node;
2254 unsigned int h;
2255 struct rt_trie_node *n;
2256
2257 ++*pos;
2258 /* next node in same table */
2259 n = fib_trie_get_next(iter);
2260 if (n)
2261 return n;
2262
2263 /* walk rest of this hash chain */
2264 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2265 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2266 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2267 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2268 if (n)
2269 goto found;
2270 }
2271
2272 /* new hash chain */
2273 while (++h < FIB_TABLE_HASHSZ) {
2274 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2275 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2276 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2277 if (n)
2278 goto found;
2279 }
2280 }
2281 return NULL;
2282
2283found:
2284 iter->tb = tb;
2285 return n;
2286}
2287
2288static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2289 __releases(RCU)
2290{
2291 rcu_read_unlock();
2292}
2293
2294static void seq_indent(struct seq_file *seq, int n)
2295{
2296 while (n-- > 0)
2297 seq_puts(seq, " ");
2298}
2299
2300static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2301{
2302 switch (s) {
2303 case RT_SCOPE_UNIVERSE: return "universe";
2304 case RT_SCOPE_SITE: return "site";
2305 case RT_SCOPE_LINK: return "link";
2306 case RT_SCOPE_HOST: return "host";
2307 case RT_SCOPE_NOWHERE: return "nowhere";
2308 default:
2309 snprintf(buf, len, "scope=%d", s);
2310 return buf;
2311 }
2312}
2313
2314static const char *const rtn_type_names[__RTN_MAX] = {
2315 [RTN_UNSPEC] = "UNSPEC",
2316 [RTN_UNICAST] = "UNICAST",
2317 [RTN_LOCAL] = "LOCAL",
2318 [RTN_BROADCAST] = "BROADCAST",
2319 [RTN_ANYCAST] = "ANYCAST",
2320 [RTN_MULTICAST] = "MULTICAST",
2321 [RTN_BLACKHOLE] = "BLACKHOLE",
2322 [RTN_UNREACHABLE] = "UNREACHABLE",
2323 [RTN_PROHIBIT] = "PROHIBIT",
2324 [RTN_THROW] = "THROW",
2325 [RTN_NAT] = "NAT",
2326 [RTN_XRESOLVE] = "XRESOLVE",
2327};
2328
2329static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2330{
2331 if (t < __RTN_MAX && rtn_type_names[t])
2332 return rtn_type_names[t];
2333 snprintf(buf, len, "type %u", t);
2334 return buf;
2335}
2336
2337/* Pretty print the trie */
2338static int fib_trie_seq_show(struct seq_file *seq, void *v)
2339{
2340 const struct fib_trie_iter *iter = seq->private;
2341 struct rt_trie_node *n = v;
2342
2343 if (!node_parent_rcu(n))
2344 fib_table_print(seq, iter->tb);
2345
2346 if (IS_TNODE(n)) {
2347 struct tnode *tn = (struct tnode *) n;
2348 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2349
2350 seq_indent(seq, iter->depth-1);
2351 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2352 &prf, tn->pos, tn->bits, tn->full_children,
2353 tn->empty_children);
2354
2355 } else {
2356 struct leaf *l = (struct leaf *) n;
2357 struct leaf_info *li;
2358 __be32 val = htonl(l->key);
2359
2360 seq_indent(seq, iter->depth);
2361 seq_printf(seq, " |-- %pI4\n", &val);
2362
2363 hlist_for_each_entry_rcu(li, &l->list, hlist) {
2364 struct fib_alias *fa;
2365
2366 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2367 char buf1[32], buf2[32];
2368
2369 seq_indent(seq, iter->depth+1);
2370 seq_printf(seq, " /%d %s %s", li->plen,
2371 rtn_scope(buf1, sizeof(buf1),
2372 fa->fa_info->fib_scope),
2373 rtn_type(buf2, sizeof(buf2),
2374 fa->fa_type));
2375 if (fa->fa_tos)
2376 seq_printf(seq, " tos=%d", fa->fa_tos);
2377 seq_putc(seq, '\n');
2378 }
2379 }
2380 }
2381
2382 return 0;
2383}
2384
2385static const struct seq_operations fib_trie_seq_ops = {
2386 .start = fib_trie_seq_start,
2387 .next = fib_trie_seq_next,
2388 .stop = fib_trie_seq_stop,
2389 .show = fib_trie_seq_show,
2390};
2391
2392static int fib_trie_seq_open(struct inode *inode, struct file *file)
2393{
2394 return seq_open_net(inode, file, &fib_trie_seq_ops,
2395 sizeof(struct fib_trie_iter));
2396}
2397
2398static const struct file_operations fib_trie_fops = {
2399 .owner = THIS_MODULE,
2400 .open = fib_trie_seq_open,
2401 .read = seq_read,
2402 .llseek = seq_lseek,
2403 .release = seq_release_net,
2404};
2405
2406struct fib_route_iter {
2407 struct seq_net_private p;
2408 struct trie *main_trie;
2409 loff_t pos;
2410 t_key key;
2411};
2412
2413static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2414{
2415 struct leaf *l = NULL;
2416 struct trie *t = iter->main_trie;
2417
2418 /* use cache location of last found key */
2419 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2420 pos -= iter->pos;
2421 else {
2422 iter->pos = 0;
2423 l = trie_firstleaf(t);
2424 }
2425
2426 while (l && pos-- > 0) {
2427 iter->pos++;
2428 l = trie_nextleaf(l);
2429 }
2430
2431 if (l)
2432 iter->key = pos; /* remember it */
2433 else
2434 iter->pos = 0; /* forget it */
2435
2436 return l;
2437}
2438
2439static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2440 __acquires(RCU)
2441{
2442 struct fib_route_iter *iter = seq->private;
2443 struct fib_table *tb;
2444
2445 rcu_read_lock();
2446 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2447 if (!tb)
2448 return NULL;
2449
2450 iter->main_trie = (struct trie *) tb->tb_data;
2451 if (*pos == 0)
2452 return SEQ_START_TOKEN;
2453 else
2454 return fib_route_get_idx(iter, *pos - 1);
2455}
2456
2457static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2458{
2459 struct fib_route_iter *iter = seq->private;
2460 struct leaf *l = v;
2461
2462 ++*pos;
2463 if (v == SEQ_START_TOKEN) {
2464 iter->pos = 0;
2465 l = trie_firstleaf(iter->main_trie);
2466 } else {
2467 iter->pos++;
2468 l = trie_nextleaf(l);
2469 }
2470
2471 if (l)
2472 iter->key = l->key;
2473 else
2474 iter->pos = 0;
2475 return l;
2476}
2477
2478static void fib_route_seq_stop(struct seq_file *seq, void *v)
2479 __releases(RCU)
2480{
2481 rcu_read_unlock();
2482}
2483
2484static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2485{
2486 unsigned int flags = 0;
2487
2488 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2489 flags = RTF_REJECT;
2490 if (fi && fi->fib_nh->nh_gw)
2491 flags |= RTF_GATEWAY;
2492 if (mask == htonl(0xFFFFFFFF))
2493 flags |= RTF_HOST;
2494 flags |= RTF_UP;
2495 return flags;
2496}
2497
2498/*
2499 * This outputs /proc/net/route.
2500 * The format of the file is not supposed to be changed
2501 * and needs to be same as fib_hash output to avoid breaking
2502 * legacy utilities
2503 */
2504static int fib_route_seq_show(struct seq_file *seq, void *v)
2505{
2506 struct leaf *l = v;
2507 struct leaf_info *li;
2508
2509 if (v == SEQ_START_TOKEN) {
2510 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2511 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2512 "\tWindow\tIRTT");
2513 return 0;
2514 }
2515
2516 hlist_for_each_entry_rcu(li, &l->list, hlist) {
2517 struct fib_alias *fa;
2518 __be32 mask, prefix;
2519
2520 mask = inet_make_mask(li->plen);
2521 prefix = htonl(l->key);
2522
2523 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2524 const struct fib_info *fi = fa->fa_info;
2525 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2526
2527 if (fa->fa_type == RTN_BROADCAST
2528 || fa->fa_type == RTN_MULTICAST)
2529 continue;
2530
2531 seq_setwidth(seq, 127);
2532
2533 if (fi)
2534 seq_printf(seq,
2535 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2536 "%d\t%08X\t%d\t%u\t%u",
2537 fi->fib_dev ? fi->fib_dev->name : "*",
2538 prefix,
2539 fi->fib_nh->nh_gw, flags, 0, 0,
2540 fi->fib_priority,
2541 mask,
2542 (fi->fib_advmss ?
2543 fi->fib_advmss + 40 : 0),
2544 fi->fib_window,
2545 fi->fib_rtt >> 3);
2546 else
2547 seq_printf(seq,
2548 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2549 "%d\t%08X\t%d\t%u\t%u",
2550 prefix, 0, flags, 0, 0, 0,
2551 mask, 0, 0, 0);
2552
2553 seq_pad(seq, '\n');
2554 }
2555 }
2556
2557 return 0;
2558}
2559
2560static const struct seq_operations fib_route_seq_ops = {
2561 .start = fib_route_seq_start,
2562 .next = fib_route_seq_next,
2563 .stop = fib_route_seq_stop,
2564 .show = fib_route_seq_show,
2565};
2566
2567static int fib_route_seq_open(struct inode *inode, struct file *file)
2568{
2569 return seq_open_net(inode, file, &fib_route_seq_ops,
2570 sizeof(struct fib_route_iter));
2571}
2572
2573static const struct file_operations fib_route_fops = {
2574 .owner = THIS_MODULE,
2575 .open = fib_route_seq_open,
2576 .read = seq_read,
2577 .llseek = seq_lseek,
2578 .release = seq_release_net,
2579};
2580
2581int __net_init fib_proc_init(struct net *net)
2582{
2583 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2584 goto out1;
2585
2586 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2587 &fib_triestat_fops))
2588 goto out2;
2589
2590 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2591 goto out3;
2592
2593 return 0;
2594
2595out3:
2596 remove_proc_entry("fib_triestat", net->proc_net);
2597out2:
2598 remove_proc_entry("fib_trie", net->proc_net);
2599out1:
2600 return -ENOMEM;
2601}
2602
2603void __net_exit fib_proc_exit(struct net *net)
2604{
2605 remove_proc_entry("fib_trie", net->proc_net);
2606 remove_proc_entry("fib_triestat", net->proc_net);
2607 remove_proc_entry("route", net->proc_net);
2608}
2609
2610#endif /* CONFIG_PROC_FS */
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally described in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51#define VERSION "0.409"
52
53#include <asm/uaccess.h>
54#include <linux/bitops.h>
55#include <linux/types.h>
56#include <linux/kernel.h>
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
64#include <linux/inetdevice.h>
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
68#include <linux/rcupdate.h>
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
73#include <linux/slab.h>
74#include <linux/prefetch.h>
75#include <linux/export.h>
76#include <net/net_namespace.h>
77#include <net/ip.h>
78#include <net/protocol.h>
79#include <net/route.h>
80#include <net/tcp.h>
81#include <net/sock.h>
82#include <net/ip_fib.h>
83#include "fib_lookup.h"
84
85#define MAX_STAT_DEPTH 32
86
87#define KEYLENGTH (8*sizeof(t_key))
88
89typedef unsigned int t_key;
90
91#define T_TNODE 0
92#define T_LEAF 1
93#define NODE_TYPE_MASK 0x1UL
94#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
95
96#define IS_TNODE(n) (!(n->parent & T_LEAF))
97#define IS_LEAF(n) (n->parent & T_LEAF)
98
99struct rt_trie_node {
100 unsigned long parent;
101 t_key key;
102};
103
104struct leaf {
105 unsigned long parent;
106 t_key key;
107 struct hlist_head list;
108 struct rcu_head rcu;
109};
110
111struct leaf_info {
112 struct hlist_node hlist;
113 int plen;
114 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
115 struct list_head falh;
116 struct rcu_head rcu;
117};
118
119struct tnode {
120 unsigned long parent;
121 t_key key;
122 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
123 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
124 unsigned int full_children; /* KEYLENGTH bits needed */
125 unsigned int empty_children; /* KEYLENGTH bits needed */
126 union {
127 struct rcu_head rcu;
128 struct work_struct work;
129 struct tnode *tnode_free;
130 };
131 struct rt_trie_node __rcu *child[0];
132};
133
134#ifdef CONFIG_IP_FIB_TRIE_STATS
135struct trie_use_stats {
136 unsigned int gets;
137 unsigned int backtrack;
138 unsigned int semantic_match_passed;
139 unsigned int semantic_match_miss;
140 unsigned int null_node_hit;
141 unsigned int resize_node_skipped;
142};
143#endif
144
145struct trie_stat {
146 unsigned int totdepth;
147 unsigned int maxdepth;
148 unsigned int tnodes;
149 unsigned int leaves;
150 unsigned int nullpointers;
151 unsigned int prefixes;
152 unsigned int nodesizes[MAX_STAT_DEPTH];
153};
154
155struct trie {
156 struct rt_trie_node __rcu *trie;
157#ifdef CONFIG_IP_FIB_TRIE_STATS
158 struct trie_use_stats stats;
159#endif
160};
161
162static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n);
163static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
164 int wasfull);
165static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
166static struct tnode *inflate(struct trie *t, struct tnode *tn);
167static struct tnode *halve(struct trie *t, struct tnode *tn);
168/* tnodes to free after resize(); protected by RTNL */
169static struct tnode *tnode_free_head;
170static size_t tnode_free_size;
171
172/*
173 * synchronize_rcu after call_rcu for that many pages; it should be especially
174 * useful before resizing the root node with PREEMPT_NONE configs; the value was
175 * obtained experimentally, aiming to avoid visible slowdown.
176 */
177static const int sync_pages = 128;
178
179static struct kmem_cache *fn_alias_kmem __read_mostly;
180static struct kmem_cache *trie_leaf_kmem __read_mostly;
181
182/*
183 * caller must hold RTNL
184 */
185static inline struct tnode *node_parent(const struct rt_trie_node *node)
186{
187 unsigned long parent;
188
189 parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held());
190
191 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
192}
193
194/*
195 * caller must hold RCU read lock or RTNL
196 */
197static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node)
198{
199 unsigned long parent;
200
201 parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() ||
202 lockdep_rtnl_is_held());
203
204 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
205}
206
207/* Same as rcu_assign_pointer
208 * but that macro() assumes that value is a pointer.
209 */
210static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
211{
212 smp_wmb();
213 node->parent = (unsigned long)ptr | NODE_TYPE(node);
214}
215
216/*
217 * caller must hold RTNL
218 */
219static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i)
220{
221 BUG_ON(i >= 1U << tn->bits);
222
223 return rtnl_dereference(tn->child[i]);
224}
225
226/*
227 * caller must hold RCU read lock or RTNL
228 */
229static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i)
230{
231 BUG_ON(i >= 1U << tn->bits);
232
233 return rcu_dereference_rtnl(tn->child[i]);
234}
235
236static inline int tnode_child_length(const struct tnode *tn)
237{
238 return 1 << tn->bits;
239}
240
241static inline t_key mask_pfx(t_key k, unsigned int l)
242{
243 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
244}
245
246static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
247{
248 if (offset < KEYLENGTH)
249 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
250 else
251 return 0;
252}
253
254static inline int tkey_equals(t_key a, t_key b)
255{
256 return a == b;
257}
258
259static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
260{
261 if (bits == 0 || offset >= KEYLENGTH)
262 return 1;
263 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
264 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
265}
266
267static inline int tkey_mismatch(t_key a, int offset, t_key b)
268{
269 t_key diff = a ^ b;
270 int i = offset;
271
272 if (!diff)
273 return 0;
274 while ((diff << i) >> (KEYLENGTH-1) == 0)
275 i++;
276 return i;
277}
278
279/*
280 To understand this stuff, an understanding of keys and all their bits is
281 necessary. Every node in the trie has a key associated with it, but not
282 all of the bits in that key are significant.
283
284 Consider a node 'n' and its parent 'tp'.
285
286 If n is a leaf, every bit in its key is significant. Its presence is
287 necessitated by path compression, since during a tree traversal (when
288 searching for a leaf - unless we are doing an insertion) we will completely
289 ignore all skipped bits we encounter. Thus we need to verify, at the end of
290 a potentially successful search, that we have indeed been walking the
291 correct key path.
292
293 Note that we can never "miss" the correct key in the tree if present by
294 following the wrong path. Path compression ensures that segments of the key
295 that are the same for all keys with a given prefix are skipped, but the
296 skipped part *is* identical for each node in the subtrie below the skipped
297 bit! trie_insert() in this implementation takes care of that - note the
298 call to tkey_sub_equals() in trie_insert().
299
300 if n is an internal node - a 'tnode' here, the various parts of its key
301 have many different meanings.
302
303 Example:
304 _________________________________________________________________
305 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
306 -----------------------------------------------------------------
307 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
308
309 _________________________________________________________________
310 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
311 -----------------------------------------------------------------
312 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
313
314 tp->pos = 7
315 tp->bits = 3
316 n->pos = 15
317 n->bits = 4
318
319 First, let's just ignore the bits that come before the parent tp, that is
320 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
321 not use them for anything.
322
323 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
324 index into the parent's child array. That is, they will be used to find
325 'n' among tp's children.
326
327 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
328 for the node n.
329
330 All the bits we have seen so far are significant to the node n. The rest
331 of the bits are really not needed or indeed known in n->key.
332
333 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
334 n's child array, and will of course be different for each child.
335
336
337 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
338 at this point.
339
340*/
341
342static inline void check_tnode(const struct tnode *tn)
343{
344 WARN_ON(tn && tn->pos+tn->bits > 32);
345}
346
347static const int halve_threshold = 25;
348static const int inflate_threshold = 50;
349static const int halve_threshold_root = 15;
350static const int inflate_threshold_root = 30;
351
352static void __alias_free_mem(struct rcu_head *head)
353{
354 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
355 kmem_cache_free(fn_alias_kmem, fa);
356}
357
358static inline void alias_free_mem_rcu(struct fib_alias *fa)
359{
360 call_rcu(&fa->rcu, __alias_free_mem);
361}
362
363static void __leaf_free_rcu(struct rcu_head *head)
364{
365 struct leaf *l = container_of(head, struct leaf, rcu);
366 kmem_cache_free(trie_leaf_kmem, l);
367}
368
369static inline void free_leaf(struct leaf *l)
370{
371 call_rcu_bh(&l->rcu, __leaf_free_rcu);
372}
373
374static inline void free_leaf_info(struct leaf_info *leaf)
375{
376 kfree_rcu(leaf, rcu);
377}
378
379static struct tnode *tnode_alloc(size_t size)
380{
381 if (size <= PAGE_SIZE)
382 return kzalloc(size, GFP_KERNEL);
383 else
384 return vzalloc(size);
385}
386
387static void __tnode_vfree(struct work_struct *arg)
388{
389 struct tnode *tn = container_of(arg, struct tnode, work);
390 vfree(tn);
391}
392
393static void __tnode_free_rcu(struct rcu_head *head)
394{
395 struct tnode *tn = container_of(head, struct tnode, rcu);
396 size_t size = sizeof(struct tnode) +
397 (sizeof(struct rt_trie_node *) << tn->bits);
398
399 if (size <= PAGE_SIZE)
400 kfree(tn);
401 else {
402 INIT_WORK(&tn->work, __tnode_vfree);
403 schedule_work(&tn->work);
404 }
405}
406
407static inline void tnode_free(struct tnode *tn)
408{
409 if (IS_LEAF(tn))
410 free_leaf((struct leaf *) tn);
411 else
412 call_rcu(&tn->rcu, __tnode_free_rcu);
413}
414
415static void tnode_free_safe(struct tnode *tn)
416{
417 BUG_ON(IS_LEAF(tn));
418 tn->tnode_free = tnode_free_head;
419 tnode_free_head = tn;
420 tnode_free_size += sizeof(struct tnode) +
421 (sizeof(struct rt_trie_node *) << tn->bits);
422}
423
424static void tnode_free_flush(void)
425{
426 struct tnode *tn;
427
428 while ((tn = tnode_free_head)) {
429 tnode_free_head = tn->tnode_free;
430 tn->tnode_free = NULL;
431 tnode_free(tn);
432 }
433
434 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
435 tnode_free_size = 0;
436 synchronize_rcu();
437 }
438}
439
440static struct leaf *leaf_new(void)
441{
442 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
443 if (l) {
444 l->parent = T_LEAF;
445 INIT_HLIST_HEAD(&l->list);
446 }
447 return l;
448}
449
450static struct leaf_info *leaf_info_new(int plen)
451{
452 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
453 if (li) {
454 li->plen = plen;
455 li->mask_plen = ntohl(inet_make_mask(plen));
456 INIT_LIST_HEAD(&li->falh);
457 }
458 return li;
459}
460
461static struct tnode *tnode_new(t_key key, int pos, int bits)
462{
463 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
464 struct tnode *tn = tnode_alloc(sz);
465
466 if (tn) {
467 tn->parent = T_TNODE;
468 tn->pos = pos;
469 tn->bits = bits;
470 tn->key = key;
471 tn->full_children = 0;
472 tn->empty_children = 1<<bits;
473 }
474
475 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
476 sizeof(struct rt_trie_node) << bits);
477 return tn;
478}
479
480/*
481 * Check whether a tnode 'n' is "full", i.e. it is an internal node
482 * and no bits are skipped. See discussion in dyntree paper p. 6
483 */
484
485static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
486{
487 if (n == NULL || IS_LEAF(n))
488 return 0;
489
490 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
491}
492
493static inline void put_child(struct trie *t, struct tnode *tn, int i,
494 struct rt_trie_node *n)
495{
496 tnode_put_child_reorg(tn, i, n, -1);
497}
498
499 /*
500 * Add a child at position i overwriting the old value.
501 * Update the value of full_children and empty_children.
502 */
503
504static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
505 int wasfull)
506{
507 struct rt_trie_node *chi = rtnl_dereference(tn->child[i]);
508 int isfull;
509
510 BUG_ON(i >= 1<<tn->bits);
511
512 /* update emptyChildren */
513 if (n == NULL && chi != NULL)
514 tn->empty_children++;
515 else if (n != NULL && chi == NULL)
516 tn->empty_children--;
517
518 /* update fullChildren */
519 if (wasfull == -1)
520 wasfull = tnode_full(tn, chi);
521
522 isfull = tnode_full(tn, n);
523 if (wasfull && !isfull)
524 tn->full_children--;
525 else if (!wasfull && isfull)
526 tn->full_children++;
527
528 if (n)
529 node_set_parent(n, tn);
530
531 rcu_assign_pointer(tn->child[i], n);
532}
533
534#define MAX_WORK 10
535static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
536{
537 int i;
538 struct tnode *old_tn;
539 int inflate_threshold_use;
540 int halve_threshold_use;
541 int max_work;
542
543 if (!tn)
544 return NULL;
545
546 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
547 tn, inflate_threshold, halve_threshold);
548
549 /* No children */
550 if (tn->empty_children == tnode_child_length(tn)) {
551 tnode_free_safe(tn);
552 return NULL;
553 }
554 /* One child */
555 if (tn->empty_children == tnode_child_length(tn) - 1)
556 goto one_child;
557 /*
558 * Double as long as the resulting node has a number of
559 * nonempty nodes that are above the threshold.
560 */
561
562 /*
563 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
564 * the Helsinki University of Technology and Matti Tikkanen of Nokia
565 * Telecommunications, page 6:
566 * "A node is doubled if the ratio of non-empty children to all
567 * children in the *doubled* node is at least 'high'."
568 *
569 * 'high' in this instance is the variable 'inflate_threshold'. It
570 * is expressed as a percentage, so we multiply it with
571 * tnode_child_length() and instead of multiplying by 2 (since the
572 * child array will be doubled by inflate()) and multiplying
573 * the left-hand side by 100 (to handle the percentage thing) we
574 * multiply the left-hand side by 50.
575 *
576 * The left-hand side may look a bit weird: tnode_child_length(tn)
577 * - tn->empty_children is of course the number of non-null children
578 * in the current node. tn->full_children is the number of "full"
579 * children, that is non-null tnodes with a skip value of 0.
580 * All of those will be doubled in the resulting inflated tnode, so
581 * we just count them one extra time here.
582 *
583 * A clearer way to write this would be:
584 *
585 * to_be_doubled = tn->full_children;
586 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
587 * tn->full_children;
588 *
589 * new_child_length = tnode_child_length(tn) * 2;
590 *
591 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
592 * new_child_length;
593 * if (new_fill_factor >= inflate_threshold)
594 *
595 * ...and so on, tho it would mess up the while () loop.
596 *
597 * anyway,
598 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
599 * inflate_threshold
600 *
601 * avoid a division:
602 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
603 * inflate_threshold * new_child_length
604 *
605 * expand not_to_be_doubled and to_be_doubled, and shorten:
606 * 100 * (tnode_child_length(tn) - tn->empty_children +
607 * tn->full_children) >= inflate_threshold * new_child_length
608 *
609 * expand new_child_length:
610 * 100 * (tnode_child_length(tn) - tn->empty_children +
611 * tn->full_children) >=
612 * inflate_threshold * tnode_child_length(tn) * 2
613 *
614 * shorten again:
615 * 50 * (tn->full_children + tnode_child_length(tn) -
616 * tn->empty_children) >= inflate_threshold *
617 * tnode_child_length(tn)
618 *
619 */
620
621 check_tnode(tn);
622
623 /* Keep root node larger */
624
625 if (!node_parent((struct rt_trie_node *)tn)) {
626 inflate_threshold_use = inflate_threshold_root;
627 halve_threshold_use = halve_threshold_root;
628 } else {
629 inflate_threshold_use = inflate_threshold;
630 halve_threshold_use = halve_threshold;
631 }
632
633 max_work = MAX_WORK;
634 while ((tn->full_children > 0 && max_work-- &&
635 50 * (tn->full_children + tnode_child_length(tn)
636 - tn->empty_children)
637 >= inflate_threshold_use * tnode_child_length(tn))) {
638
639 old_tn = tn;
640 tn = inflate(t, tn);
641
642 if (IS_ERR(tn)) {
643 tn = old_tn;
644#ifdef CONFIG_IP_FIB_TRIE_STATS
645 t->stats.resize_node_skipped++;
646#endif
647 break;
648 }
649 }
650
651 check_tnode(tn);
652
653 /* Return if at least one inflate is run */
654 if (max_work != MAX_WORK)
655 return (struct rt_trie_node *) tn;
656
657 /*
658 * Halve as long as the number of empty children in this
659 * node is above threshold.
660 */
661
662 max_work = MAX_WORK;
663 while (tn->bits > 1 && max_work-- &&
664 100 * (tnode_child_length(tn) - tn->empty_children) <
665 halve_threshold_use * tnode_child_length(tn)) {
666
667 old_tn = tn;
668 tn = halve(t, tn);
669 if (IS_ERR(tn)) {
670 tn = old_tn;
671#ifdef CONFIG_IP_FIB_TRIE_STATS
672 t->stats.resize_node_skipped++;
673#endif
674 break;
675 }
676 }
677
678
679 /* Only one child remains */
680 if (tn->empty_children == tnode_child_length(tn) - 1) {
681one_child:
682 for (i = 0; i < tnode_child_length(tn); i++) {
683 struct rt_trie_node *n;
684
685 n = rtnl_dereference(tn->child[i]);
686 if (!n)
687 continue;
688
689 /* compress one level */
690
691 node_set_parent(n, NULL);
692 tnode_free_safe(tn);
693 return n;
694 }
695 }
696 return (struct rt_trie_node *) tn;
697}
698
699
700static void tnode_clean_free(struct tnode *tn)
701{
702 int i;
703 struct tnode *tofree;
704
705 for (i = 0; i < tnode_child_length(tn); i++) {
706 tofree = (struct tnode *)rtnl_dereference(tn->child[i]);
707 if (tofree)
708 tnode_free(tofree);
709 }
710 tnode_free(tn);
711}
712
713static struct tnode *inflate(struct trie *t, struct tnode *tn)
714{
715 struct tnode *oldtnode = tn;
716 int olen = tnode_child_length(tn);
717 int i;
718
719 pr_debug("In inflate\n");
720
721 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
722
723 if (!tn)
724 return ERR_PTR(-ENOMEM);
725
726 /*
727 * Preallocate and store tnodes before the actual work so we
728 * don't get into an inconsistent state if memory allocation
729 * fails. In case of failure we return the oldnode and inflate
730 * of tnode is ignored.
731 */
732
733 for (i = 0; i < olen; i++) {
734 struct tnode *inode;
735
736 inode = (struct tnode *) tnode_get_child(oldtnode, i);
737 if (inode &&
738 IS_TNODE(inode) &&
739 inode->pos == oldtnode->pos + oldtnode->bits &&
740 inode->bits > 1) {
741 struct tnode *left, *right;
742 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
743
744 left = tnode_new(inode->key&(~m), inode->pos + 1,
745 inode->bits - 1);
746 if (!left)
747 goto nomem;
748
749 right = tnode_new(inode->key|m, inode->pos + 1,
750 inode->bits - 1);
751
752 if (!right) {
753 tnode_free(left);
754 goto nomem;
755 }
756
757 put_child(t, tn, 2*i, (struct rt_trie_node *) left);
758 put_child(t, tn, 2*i+1, (struct rt_trie_node *) right);
759 }
760 }
761
762 for (i = 0; i < olen; i++) {
763 struct tnode *inode;
764 struct rt_trie_node *node = tnode_get_child(oldtnode, i);
765 struct tnode *left, *right;
766 int size, j;
767
768 /* An empty child */
769 if (node == NULL)
770 continue;
771
772 /* A leaf or an internal node with skipped bits */
773
774 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
775 tn->pos + tn->bits - 1) {
776 if (tkey_extract_bits(node->key,
777 oldtnode->pos + oldtnode->bits,
778 1) == 0)
779 put_child(t, tn, 2*i, node);
780 else
781 put_child(t, tn, 2*i+1, node);
782 continue;
783 }
784
785 /* An internal node with two children */
786 inode = (struct tnode *) node;
787
788 if (inode->bits == 1) {
789 put_child(t, tn, 2*i, rtnl_dereference(inode->child[0]));
790 put_child(t, tn, 2*i+1, rtnl_dereference(inode->child[1]));
791
792 tnode_free_safe(inode);
793 continue;
794 }
795
796 /* An internal node with more than two children */
797
798 /* We will replace this node 'inode' with two new
799 * ones, 'left' and 'right', each with half of the
800 * original children. The two new nodes will have
801 * a position one bit further down the key and this
802 * means that the "significant" part of their keys
803 * (see the discussion near the top of this file)
804 * will differ by one bit, which will be "0" in
805 * left's key and "1" in right's key. Since we are
806 * moving the key position by one step, the bit that
807 * we are moving away from - the bit at position
808 * (inode->pos) - is the one that will differ between
809 * left and right. So... we synthesize that bit in the
810 * two new keys.
811 * The mask 'm' below will be a single "one" bit at
812 * the position (inode->pos)
813 */
814
815 /* Use the old key, but set the new significant
816 * bit to zero.
817 */
818
819 left = (struct tnode *) tnode_get_child(tn, 2*i);
820 put_child(t, tn, 2*i, NULL);
821
822 BUG_ON(!left);
823
824 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
825 put_child(t, tn, 2*i+1, NULL);
826
827 BUG_ON(!right);
828
829 size = tnode_child_length(left);
830 for (j = 0; j < size; j++) {
831 put_child(t, left, j, rtnl_dereference(inode->child[j]));
832 put_child(t, right, j, rtnl_dereference(inode->child[j + size]));
833 }
834 put_child(t, tn, 2*i, resize(t, left));
835 put_child(t, tn, 2*i+1, resize(t, right));
836
837 tnode_free_safe(inode);
838 }
839 tnode_free_safe(oldtnode);
840 return tn;
841nomem:
842 tnode_clean_free(tn);
843 return ERR_PTR(-ENOMEM);
844}
845
846static struct tnode *halve(struct trie *t, struct tnode *tn)
847{
848 struct tnode *oldtnode = tn;
849 struct rt_trie_node *left, *right;
850 int i;
851 int olen = tnode_child_length(tn);
852
853 pr_debug("In halve\n");
854
855 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
856
857 if (!tn)
858 return ERR_PTR(-ENOMEM);
859
860 /*
861 * Preallocate and store tnodes before the actual work so we
862 * don't get into an inconsistent state if memory allocation
863 * fails. In case of failure we return the oldnode and halve
864 * of tnode is ignored.
865 */
866
867 for (i = 0; i < olen; i += 2) {
868 left = tnode_get_child(oldtnode, i);
869 right = tnode_get_child(oldtnode, i+1);
870
871 /* Two nonempty children */
872 if (left && right) {
873 struct tnode *newn;
874
875 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
876
877 if (!newn)
878 goto nomem;
879
880 put_child(t, tn, i/2, (struct rt_trie_node *)newn);
881 }
882
883 }
884
885 for (i = 0; i < olen; i += 2) {
886 struct tnode *newBinNode;
887
888 left = tnode_get_child(oldtnode, i);
889 right = tnode_get_child(oldtnode, i+1);
890
891 /* At least one of the children is empty */
892 if (left == NULL) {
893 if (right == NULL) /* Both are empty */
894 continue;
895 put_child(t, tn, i/2, right);
896 continue;
897 }
898
899 if (right == NULL) {
900 put_child(t, tn, i/2, left);
901 continue;
902 }
903
904 /* Two nonempty children */
905 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
906 put_child(t, tn, i/2, NULL);
907 put_child(t, newBinNode, 0, left);
908 put_child(t, newBinNode, 1, right);
909 put_child(t, tn, i/2, resize(t, newBinNode));
910 }
911 tnode_free_safe(oldtnode);
912 return tn;
913nomem:
914 tnode_clean_free(tn);
915 return ERR_PTR(-ENOMEM);
916}
917
918/* readside must use rcu_read_lock currently dump routines
919 via get_fa_head and dump */
920
921static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
922{
923 struct hlist_head *head = &l->list;
924 struct hlist_node *node;
925 struct leaf_info *li;
926
927 hlist_for_each_entry_rcu(li, node, head, hlist)
928 if (li->plen == plen)
929 return li;
930
931 return NULL;
932}
933
934static inline struct list_head *get_fa_head(struct leaf *l, int plen)
935{
936 struct leaf_info *li = find_leaf_info(l, plen);
937
938 if (!li)
939 return NULL;
940
941 return &li->falh;
942}
943
944static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
945{
946 struct leaf_info *li = NULL, *last = NULL;
947 struct hlist_node *node;
948
949 if (hlist_empty(head)) {
950 hlist_add_head_rcu(&new->hlist, head);
951 } else {
952 hlist_for_each_entry(li, node, head, hlist) {
953 if (new->plen > li->plen)
954 break;
955
956 last = li;
957 }
958 if (last)
959 hlist_add_after_rcu(&last->hlist, &new->hlist);
960 else
961 hlist_add_before_rcu(&new->hlist, &li->hlist);
962 }
963}
964
965/* rcu_read_lock needs to be hold by caller from readside */
966
967static struct leaf *
968fib_find_node(struct trie *t, u32 key)
969{
970 int pos;
971 struct tnode *tn;
972 struct rt_trie_node *n;
973
974 pos = 0;
975 n = rcu_dereference_rtnl(t->trie);
976
977 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
978 tn = (struct tnode *) n;
979
980 check_tnode(tn);
981
982 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
983 pos = tn->pos + tn->bits;
984 n = tnode_get_child_rcu(tn,
985 tkey_extract_bits(key,
986 tn->pos,
987 tn->bits));
988 } else
989 break;
990 }
991 /* Case we have found a leaf. Compare prefixes */
992
993 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
994 return (struct leaf *)n;
995
996 return NULL;
997}
998
999static void trie_rebalance(struct trie *t, struct tnode *tn)
1000{
1001 int wasfull;
1002 t_key cindex, key;
1003 struct tnode *tp;
1004
1005 key = tn->key;
1006
1007 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
1008 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1009 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
1010 tn = (struct tnode *) resize(t, (struct tnode *)tn);
1011
1012 tnode_put_child_reorg((struct tnode *)tp, cindex,
1013 (struct rt_trie_node *)tn, wasfull);
1014
1015 tp = node_parent((struct rt_trie_node *) tn);
1016 if (!tp)
1017 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1018
1019 tnode_free_flush();
1020 if (!tp)
1021 break;
1022 tn = tp;
1023 }
1024
1025 /* Handle last (top) tnode */
1026 if (IS_TNODE(tn))
1027 tn = (struct tnode *)resize(t, (struct tnode *)tn);
1028
1029 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1030 tnode_free_flush();
1031}
1032
1033/* only used from updater-side */
1034
1035static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1036{
1037 int pos, newpos;
1038 struct tnode *tp = NULL, *tn = NULL;
1039 struct rt_trie_node *n;
1040 struct leaf *l;
1041 int missbit;
1042 struct list_head *fa_head = NULL;
1043 struct leaf_info *li;
1044 t_key cindex;
1045
1046 pos = 0;
1047 n = rtnl_dereference(t->trie);
1048
1049 /* If we point to NULL, stop. Either the tree is empty and we should
1050 * just put a new leaf in if, or we have reached an empty child slot,
1051 * and we should just put our new leaf in that.
1052 * If we point to a T_TNODE, check if it matches our key. Note that
1053 * a T_TNODE might be skipping any number of bits - its 'pos' need
1054 * not be the parent's 'pos'+'bits'!
1055 *
1056 * If it does match the current key, get pos/bits from it, extract
1057 * the index from our key, push the T_TNODE and walk the tree.
1058 *
1059 * If it doesn't, we have to replace it with a new T_TNODE.
1060 *
1061 * If we point to a T_LEAF, it might or might not have the same key
1062 * as we do. If it does, just change the value, update the T_LEAF's
1063 * value, and return it.
1064 * If it doesn't, we need to replace it with a T_TNODE.
1065 */
1066
1067 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1068 tn = (struct tnode *) n;
1069
1070 check_tnode(tn);
1071
1072 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1073 tp = tn;
1074 pos = tn->pos + tn->bits;
1075 n = tnode_get_child(tn,
1076 tkey_extract_bits(key,
1077 tn->pos,
1078 tn->bits));
1079
1080 BUG_ON(n && node_parent(n) != tn);
1081 } else
1082 break;
1083 }
1084
1085 /*
1086 * n ----> NULL, LEAF or TNODE
1087 *
1088 * tp is n's (parent) ----> NULL or TNODE
1089 */
1090
1091 BUG_ON(tp && IS_LEAF(tp));
1092
1093 /* Case 1: n is a leaf. Compare prefixes */
1094
1095 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1096 l = (struct leaf *) n;
1097 li = leaf_info_new(plen);
1098
1099 if (!li)
1100 return NULL;
1101
1102 fa_head = &li->falh;
1103 insert_leaf_info(&l->list, li);
1104 goto done;
1105 }
1106 l = leaf_new();
1107
1108 if (!l)
1109 return NULL;
1110
1111 l->key = key;
1112 li = leaf_info_new(plen);
1113
1114 if (!li) {
1115 free_leaf(l);
1116 return NULL;
1117 }
1118
1119 fa_head = &li->falh;
1120 insert_leaf_info(&l->list, li);
1121
1122 if (t->trie && n == NULL) {
1123 /* Case 2: n is NULL, and will just insert a new leaf */
1124
1125 node_set_parent((struct rt_trie_node *)l, tp);
1126
1127 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1128 put_child(t, (struct tnode *)tp, cindex, (struct rt_trie_node *)l);
1129 } else {
1130 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1131 /*
1132 * Add a new tnode here
1133 * first tnode need some special handling
1134 */
1135
1136 if (tp)
1137 pos = tp->pos+tp->bits;
1138 else
1139 pos = 0;
1140
1141 if (n) {
1142 newpos = tkey_mismatch(key, pos, n->key);
1143 tn = tnode_new(n->key, newpos, 1);
1144 } else {
1145 newpos = 0;
1146 tn = tnode_new(key, newpos, 1); /* First tnode */
1147 }
1148
1149 if (!tn) {
1150 free_leaf_info(li);
1151 free_leaf(l);
1152 return NULL;
1153 }
1154
1155 node_set_parent((struct rt_trie_node *)tn, tp);
1156
1157 missbit = tkey_extract_bits(key, newpos, 1);
1158 put_child(t, tn, missbit, (struct rt_trie_node *)l);
1159 put_child(t, tn, 1-missbit, n);
1160
1161 if (tp) {
1162 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1163 put_child(t, (struct tnode *)tp, cindex,
1164 (struct rt_trie_node *)tn);
1165 } else {
1166 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1167 tp = tn;
1168 }
1169 }
1170
1171 if (tp && tp->pos + tp->bits > 32)
1172 pr_warn("fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1173 tp, tp->pos, tp->bits, key, plen);
1174
1175 /* Rebalance the trie */
1176
1177 trie_rebalance(t, tp);
1178done:
1179 return fa_head;
1180}
1181
1182/*
1183 * Caller must hold RTNL.
1184 */
1185int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1186{
1187 struct trie *t = (struct trie *) tb->tb_data;
1188 struct fib_alias *fa, *new_fa;
1189 struct list_head *fa_head = NULL;
1190 struct fib_info *fi;
1191 int plen = cfg->fc_dst_len;
1192 u8 tos = cfg->fc_tos;
1193 u32 key, mask;
1194 int err;
1195 struct leaf *l;
1196
1197 if (plen > 32)
1198 return -EINVAL;
1199
1200 key = ntohl(cfg->fc_dst);
1201
1202 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1203
1204 mask = ntohl(inet_make_mask(plen));
1205
1206 if (key & ~mask)
1207 return -EINVAL;
1208
1209 key = key & mask;
1210
1211 fi = fib_create_info(cfg);
1212 if (IS_ERR(fi)) {
1213 err = PTR_ERR(fi);
1214 goto err;
1215 }
1216
1217 l = fib_find_node(t, key);
1218 fa = NULL;
1219
1220 if (l) {
1221 fa_head = get_fa_head(l, plen);
1222 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1223 }
1224
1225 /* Now fa, if non-NULL, points to the first fib alias
1226 * with the same keys [prefix,tos,priority], if such key already
1227 * exists or to the node before which we will insert new one.
1228 *
1229 * If fa is NULL, we will need to allocate a new one and
1230 * insert to the head of f.
1231 *
1232 * If f is NULL, no fib node matched the destination key
1233 * and we need to allocate a new one of those as well.
1234 */
1235
1236 if (fa && fa->fa_tos == tos &&
1237 fa->fa_info->fib_priority == fi->fib_priority) {
1238 struct fib_alias *fa_first, *fa_match;
1239
1240 err = -EEXIST;
1241 if (cfg->fc_nlflags & NLM_F_EXCL)
1242 goto out;
1243
1244 /* We have 2 goals:
1245 * 1. Find exact match for type, scope, fib_info to avoid
1246 * duplicate routes
1247 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1248 */
1249 fa_match = NULL;
1250 fa_first = fa;
1251 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1252 list_for_each_entry_continue(fa, fa_head, fa_list) {
1253 if (fa->fa_tos != tos)
1254 break;
1255 if (fa->fa_info->fib_priority != fi->fib_priority)
1256 break;
1257 if (fa->fa_type == cfg->fc_type &&
1258 fa->fa_info == fi) {
1259 fa_match = fa;
1260 break;
1261 }
1262 }
1263
1264 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1265 struct fib_info *fi_drop;
1266 u8 state;
1267
1268 fa = fa_first;
1269 if (fa_match) {
1270 if (fa == fa_match)
1271 err = 0;
1272 goto out;
1273 }
1274 err = -ENOBUFS;
1275 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1276 if (new_fa == NULL)
1277 goto out;
1278
1279 fi_drop = fa->fa_info;
1280 new_fa->fa_tos = fa->fa_tos;
1281 new_fa->fa_info = fi;
1282 new_fa->fa_type = cfg->fc_type;
1283 state = fa->fa_state;
1284 new_fa->fa_state = state & ~FA_S_ACCESSED;
1285
1286 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1287 alias_free_mem_rcu(fa);
1288
1289 fib_release_info(fi_drop);
1290 if (state & FA_S_ACCESSED)
1291 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1292 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1293 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1294
1295 goto succeeded;
1296 }
1297 /* Error if we find a perfect match which
1298 * uses the same scope, type, and nexthop
1299 * information.
1300 */
1301 if (fa_match)
1302 goto out;
1303
1304 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1305 fa = fa_first;
1306 }
1307 err = -ENOENT;
1308 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1309 goto out;
1310
1311 err = -ENOBUFS;
1312 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1313 if (new_fa == NULL)
1314 goto out;
1315
1316 new_fa->fa_info = fi;
1317 new_fa->fa_tos = tos;
1318 new_fa->fa_type = cfg->fc_type;
1319 new_fa->fa_state = 0;
1320 /*
1321 * Insert new entry to the list.
1322 */
1323
1324 if (!fa_head) {
1325 fa_head = fib_insert_node(t, key, plen);
1326 if (unlikely(!fa_head)) {
1327 err = -ENOMEM;
1328 goto out_free_new_fa;
1329 }
1330 }
1331
1332 if (!plen)
1333 tb->tb_num_default++;
1334
1335 list_add_tail_rcu(&new_fa->fa_list,
1336 (fa ? &fa->fa_list : fa_head));
1337
1338 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1339 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1340 &cfg->fc_nlinfo, 0);
1341succeeded:
1342 return 0;
1343
1344out_free_new_fa:
1345 kmem_cache_free(fn_alias_kmem, new_fa);
1346out:
1347 fib_release_info(fi);
1348err:
1349 return err;
1350}
1351
1352/* should be called with rcu_read_lock */
1353static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
1354 t_key key, const struct flowi4 *flp,
1355 struct fib_result *res, int fib_flags)
1356{
1357 struct leaf_info *li;
1358 struct hlist_head *hhead = &l->list;
1359 struct hlist_node *node;
1360
1361 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1362 struct fib_alias *fa;
1363
1364 if (l->key != (key & li->mask_plen))
1365 continue;
1366
1367 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1368 struct fib_info *fi = fa->fa_info;
1369 int nhsel, err;
1370
1371 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1372 continue;
1373 if (fi->fib_dead)
1374 continue;
1375 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1376 continue;
1377 fib_alias_accessed(fa);
1378 err = fib_props[fa->fa_type].error;
1379 if (err) {
1380#ifdef CONFIG_IP_FIB_TRIE_STATS
1381 t->stats.semantic_match_passed++;
1382#endif
1383 return err;
1384 }
1385 if (fi->fib_flags & RTNH_F_DEAD)
1386 continue;
1387 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1388 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1389
1390 if (nh->nh_flags & RTNH_F_DEAD)
1391 continue;
1392 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1393 continue;
1394
1395#ifdef CONFIG_IP_FIB_TRIE_STATS
1396 t->stats.semantic_match_passed++;
1397#endif
1398 res->prefixlen = li->plen;
1399 res->nh_sel = nhsel;
1400 res->type = fa->fa_type;
1401 res->scope = fa->fa_info->fib_scope;
1402 res->fi = fi;
1403 res->table = tb;
1404 res->fa_head = &li->falh;
1405 if (!(fib_flags & FIB_LOOKUP_NOREF))
1406 atomic_inc(&fi->fib_clntref);
1407 return 0;
1408 }
1409 }
1410
1411#ifdef CONFIG_IP_FIB_TRIE_STATS
1412 t->stats.semantic_match_miss++;
1413#endif
1414 }
1415
1416 return 1;
1417}
1418
1419int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1420 struct fib_result *res, int fib_flags)
1421{
1422 struct trie *t = (struct trie *) tb->tb_data;
1423 int ret;
1424 struct rt_trie_node *n;
1425 struct tnode *pn;
1426 unsigned int pos, bits;
1427 t_key key = ntohl(flp->daddr);
1428 unsigned int chopped_off;
1429 t_key cindex = 0;
1430 unsigned int current_prefix_length = KEYLENGTH;
1431 struct tnode *cn;
1432 t_key pref_mismatch;
1433
1434 rcu_read_lock();
1435
1436 n = rcu_dereference(t->trie);
1437 if (!n)
1438 goto failed;
1439
1440#ifdef CONFIG_IP_FIB_TRIE_STATS
1441 t->stats.gets++;
1442#endif
1443
1444 /* Just a leaf? */
1445 if (IS_LEAF(n)) {
1446 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1447 goto found;
1448 }
1449
1450 pn = (struct tnode *) n;
1451 chopped_off = 0;
1452
1453 while (pn) {
1454 pos = pn->pos;
1455 bits = pn->bits;
1456
1457 if (!chopped_off)
1458 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1459 pos, bits);
1460
1461 n = tnode_get_child_rcu(pn, cindex);
1462
1463 if (n == NULL) {
1464#ifdef CONFIG_IP_FIB_TRIE_STATS
1465 t->stats.null_node_hit++;
1466#endif
1467 goto backtrace;
1468 }
1469
1470 if (IS_LEAF(n)) {
1471 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1472 if (ret > 0)
1473 goto backtrace;
1474 goto found;
1475 }
1476
1477 cn = (struct tnode *)n;
1478
1479 /*
1480 * It's a tnode, and we can do some extra checks here if we
1481 * like, to avoid descending into a dead-end branch.
1482 * This tnode is in the parent's child array at index
1483 * key[p_pos..p_pos+p_bits] but potentially with some bits
1484 * chopped off, so in reality the index may be just a
1485 * subprefix, padded with zero at the end.
1486 * We can also take a look at any skipped bits in this
1487 * tnode - everything up to p_pos is supposed to be ok,
1488 * and the non-chopped bits of the index (se previous
1489 * paragraph) are also guaranteed ok, but the rest is
1490 * considered unknown.
1491 *
1492 * The skipped bits are key[pos+bits..cn->pos].
1493 */
1494
1495 /* If current_prefix_length < pos+bits, we are already doing
1496 * actual prefix matching, which means everything from
1497 * pos+(bits-chopped_off) onward must be zero along some
1498 * branch of this subtree - otherwise there is *no* valid
1499 * prefix present. Here we can only check the skipped
1500 * bits. Remember, since we have already indexed into the
1501 * parent's child array, we know that the bits we chopped of
1502 * *are* zero.
1503 */
1504
1505 /* NOTA BENE: Checking only skipped bits
1506 for the new node here */
1507
1508 if (current_prefix_length < pos+bits) {
1509 if (tkey_extract_bits(cn->key, current_prefix_length,
1510 cn->pos - current_prefix_length)
1511 || !(cn->child[0]))
1512 goto backtrace;
1513 }
1514
1515 /*
1516 * If chopped_off=0, the index is fully validated and we
1517 * only need to look at the skipped bits for this, the new,
1518 * tnode. What we actually want to do is to find out if
1519 * these skipped bits match our key perfectly, or if we will
1520 * have to count on finding a matching prefix further down,
1521 * because if we do, we would like to have some way of
1522 * verifying the existence of such a prefix at this point.
1523 */
1524
1525 /* The only thing we can do at this point is to verify that
1526 * any such matching prefix can indeed be a prefix to our
1527 * key, and if the bits in the node we are inspecting that
1528 * do not match our key are not ZERO, this cannot be true.
1529 * Thus, find out where there is a mismatch (before cn->pos)
1530 * and verify that all the mismatching bits are zero in the
1531 * new tnode's key.
1532 */
1533
1534 /*
1535 * Note: We aren't very concerned about the piece of
1536 * the key that precede pn->pos+pn->bits, since these
1537 * have already been checked. The bits after cn->pos
1538 * aren't checked since these are by definition
1539 * "unknown" at this point. Thus, what we want to see
1540 * is if we are about to enter the "prefix matching"
1541 * state, and in that case verify that the skipped
1542 * bits that will prevail throughout this subtree are
1543 * zero, as they have to be if we are to find a
1544 * matching prefix.
1545 */
1546
1547 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
1548
1549 /*
1550 * In short: If skipped bits in this node do not match
1551 * the search key, enter the "prefix matching"
1552 * state.directly.
1553 */
1554 if (pref_mismatch) {
1555 int mp = KEYLENGTH - fls(pref_mismatch);
1556
1557 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
1558 goto backtrace;
1559
1560 if (current_prefix_length >= cn->pos)
1561 current_prefix_length = mp;
1562 }
1563
1564 pn = (struct tnode *)n; /* Descend */
1565 chopped_off = 0;
1566 continue;
1567
1568backtrace:
1569 chopped_off++;
1570
1571 /* As zero don't change the child key (cindex) */
1572 while ((chopped_off <= pn->bits)
1573 && !(cindex & (1<<(chopped_off-1))))
1574 chopped_off++;
1575
1576 /* Decrease current_... with bits chopped off */
1577 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1578 current_prefix_length = pn->pos + pn->bits
1579 - chopped_off;
1580
1581 /*
1582 * Either we do the actual chop off according or if we have
1583 * chopped off all bits in this tnode walk up to our parent.
1584 */
1585
1586 if (chopped_off <= pn->bits) {
1587 cindex &= ~(1 << (chopped_off-1));
1588 } else {
1589 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
1590 if (!parent)
1591 goto failed;
1592
1593 /* Get Child's index */
1594 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1595 pn = parent;
1596 chopped_off = 0;
1597
1598#ifdef CONFIG_IP_FIB_TRIE_STATS
1599 t->stats.backtrack++;
1600#endif
1601 goto backtrace;
1602 }
1603 }
1604failed:
1605 ret = 1;
1606found:
1607 rcu_read_unlock();
1608 return ret;
1609}
1610EXPORT_SYMBOL_GPL(fib_table_lookup);
1611
1612/*
1613 * Remove the leaf and return parent.
1614 */
1615static void trie_leaf_remove(struct trie *t, struct leaf *l)
1616{
1617 struct tnode *tp = node_parent((struct rt_trie_node *) l);
1618
1619 pr_debug("entering trie_leaf_remove(%p)\n", l);
1620
1621 if (tp) {
1622 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1623 put_child(t, (struct tnode *)tp, cindex, NULL);
1624 trie_rebalance(t, tp);
1625 } else
1626 RCU_INIT_POINTER(t->trie, NULL);
1627
1628 free_leaf(l);
1629}
1630
1631/*
1632 * Caller must hold RTNL.
1633 */
1634int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1635{
1636 struct trie *t = (struct trie *) tb->tb_data;
1637 u32 key, mask;
1638 int plen = cfg->fc_dst_len;
1639 u8 tos = cfg->fc_tos;
1640 struct fib_alias *fa, *fa_to_delete;
1641 struct list_head *fa_head;
1642 struct leaf *l;
1643 struct leaf_info *li;
1644
1645 if (plen > 32)
1646 return -EINVAL;
1647
1648 key = ntohl(cfg->fc_dst);
1649 mask = ntohl(inet_make_mask(plen));
1650
1651 if (key & ~mask)
1652 return -EINVAL;
1653
1654 key = key & mask;
1655 l = fib_find_node(t, key);
1656
1657 if (!l)
1658 return -ESRCH;
1659
1660 fa_head = get_fa_head(l, plen);
1661 fa = fib_find_alias(fa_head, tos, 0);
1662
1663 if (!fa)
1664 return -ESRCH;
1665
1666 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1667
1668 fa_to_delete = NULL;
1669 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1670 list_for_each_entry_continue(fa, fa_head, fa_list) {
1671 struct fib_info *fi = fa->fa_info;
1672
1673 if (fa->fa_tos != tos)
1674 break;
1675
1676 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1677 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1678 fa->fa_info->fib_scope == cfg->fc_scope) &&
1679 (!cfg->fc_prefsrc ||
1680 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1681 (!cfg->fc_protocol ||
1682 fi->fib_protocol == cfg->fc_protocol) &&
1683 fib_nh_match(cfg, fi) == 0) {
1684 fa_to_delete = fa;
1685 break;
1686 }
1687 }
1688
1689 if (!fa_to_delete)
1690 return -ESRCH;
1691
1692 fa = fa_to_delete;
1693 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1694 &cfg->fc_nlinfo, 0);
1695
1696 l = fib_find_node(t, key);
1697 li = find_leaf_info(l, plen);
1698
1699 list_del_rcu(&fa->fa_list);
1700
1701 if (!plen)
1702 tb->tb_num_default--;
1703
1704 if (list_empty(fa_head)) {
1705 hlist_del_rcu(&li->hlist);
1706 free_leaf_info(li);
1707 }
1708
1709 if (hlist_empty(&l->list))
1710 trie_leaf_remove(t, l);
1711
1712 if (fa->fa_state & FA_S_ACCESSED)
1713 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1714
1715 fib_release_info(fa->fa_info);
1716 alias_free_mem_rcu(fa);
1717 return 0;
1718}
1719
1720static int trie_flush_list(struct list_head *head)
1721{
1722 struct fib_alias *fa, *fa_node;
1723 int found = 0;
1724
1725 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1726 struct fib_info *fi = fa->fa_info;
1727
1728 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1729 list_del_rcu(&fa->fa_list);
1730 fib_release_info(fa->fa_info);
1731 alias_free_mem_rcu(fa);
1732 found++;
1733 }
1734 }
1735 return found;
1736}
1737
1738static int trie_flush_leaf(struct leaf *l)
1739{
1740 int found = 0;
1741 struct hlist_head *lih = &l->list;
1742 struct hlist_node *node, *tmp;
1743 struct leaf_info *li = NULL;
1744
1745 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1746 found += trie_flush_list(&li->falh);
1747
1748 if (list_empty(&li->falh)) {
1749 hlist_del_rcu(&li->hlist);
1750 free_leaf_info(li);
1751 }
1752 }
1753 return found;
1754}
1755
1756/*
1757 * Scan for the next right leaf starting at node p->child[idx]
1758 * Since we have back pointer, no recursion necessary.
1759 */
1760static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
1761{
1762 do {
1763 t_key idx;
1764
1765 if (c)
1766 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1767 else
1768 idx = 0;
1769
1770 while (idx < 1u << p->bits) {
1771 c = tnode_get_child_rcu(p, idx++);
1772 if (!c)
1773 continue;
1774
1775 if (IS_LEAF(c)) {
1776 prefetch(rcu_dereference_rtnl(p->child[idx]));
1777 return (struct leaf *) c;
1778 }
1779
1780 /* Rescan start scanning in new node */
1781 p = (struct tnode *) c;
1782 idx = 0;
1783 }
1784
1785 /* Node empty, walk back up to parent */
1786 c = (struct rt_trie_node *) p;
1787 } while ((p = node_parent_rcu(c)) != NULL);
1788
1789 return NULL; /* Root of trie */
1790}
1791
1792static struct leaf *trie_firstleaf(struct trie *t)
1793{
1794 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
1795
1796 if (!n)
1797 return NULL;
1798
1799 if (IS_LEAF(n)) /* trie is just a leaf */
1800 return (struct leaf *) n;
1801
1802 return leaf_walk_rcu(n, NULL);
1803}
1804
1805static struct leaf *trie_nextleaf(struct leaf *l)
1806{
1807 struct rt_trie_node *c = (struct rt_trie_node *) l;
1808 struct tnode *p = node_parent_rcu(c);
1809
1810 if (!p)
1811 return NULL; /* trie with just one leaf */
1812
1813 return leaf_walk_rcu(p, c);
1814}
1815
1816static struct leaf *trie_leafindex(struct trie *t, int index)
1817{
1818 struct leaf *l = trie_firstleaf(t);
1819
1820 while (l && index-- > 0)
1821 l = trie_nextleaf(l);
1822
1823 return l;
1824}
1825
1826
1827/*
1828 * Caller must hold RTNL.
1829 */
1830int fib_table_flush(struct fib_table *tb)
1831{
1832 struct trie *t = (struct trie *) tb->tb_data;
1833 struct leaf *l, *ll = NULL;
1834 int found = 0;
1835
1836 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1837 found += trie_flush_leaf(l);
1838
1839 if (ll && hlist_empty(&ll->list))
1840 trie_leaf_remove(t, ll);
1841 ll = l;
1842 }
1843
1844 if (ll && hlist_empty(&ll->list))
1845 trie_leaf_remove(t, ll);
1846
1847 pr_debug("trie_flush found=%d\n", found);
1848 return found;
1849}
1850
1851void fib_free_table(struct fib_table *tb)
1852{
1853 kfree(tb);
1854}
1855
1856static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1857 struct fib_table *tb,
1858 struct sk_buff *skb, struct netlink_callback *cb)
1859{
1860 int i, s_i;
1861 struct fib_alias *fa;
1862 __be32 xkey = htonl(key);
1863
1864 s_i = cb->args[5];
1865 i = 0;
1866
1867 /* rcu_read_lock is hold by caller */
1868
1869 list_for_each_entry_rcu(fa, fah, fa_list) {
1870 if (i < s_i) {
1871 i++;
1872 continue;
1873 }
1874
1875 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1876 cb->nlh->nlmsg_seq,
1877 RTM_NEWROUTE,
1878 tb->tb_id,
1879 fa->fa_type,
1880 xkey,
1881 plen,
1882 fa->fa_tos,
1883 fa->fa_info, NLM_F_MULTI) < 0) {
1884 cb->args[5] = i;
1885 return -1;
1886 }
1887 i++;
1888 }
1889 cb->args[5] = i;
1890 return skb->len;
1891}
1892
1893static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1894 struct sk_buff *skb, struct netlink_callback *cb)
1895{
1896 struct leaf_info *li;
1897 struct hlist_node *node;
1898 int i, s_i;
1899
1900 s_i = cb->args[4];
1901 i = 0;
1902
1903 /* rcu_read_lock is hold by caller */
1904 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1905 if (i < s_i) {
1906 i++;
1907 continue;
1908 }
1909
1910 if (i > s_i)
1911 cb->args[5] = 0;
1912
1913 if (list_empty(&li->falh))
1914 continue;
1915
1916 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1917 cb->args[4] = i;
1918 return -1;
1919 }
1920 i++;
1921 }
1922
1923 cb->args[4] = i;
1924 return skb->len;
1925}
1926
1927int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1928 struct netlink_callback *cb)
1929{
1930 struct leaf *l;
1931 struct trie *t = (struct trie *) tb->tb_data;
1932 t_key key = cb->args[2];
1933 int count = cb->args[3];
1934
1935 rcu_read_lock();
1936 /* Dump starting at last key.
1937 * Note: 0.0.0.0/0 (ie default) is first key.
1938 */
1939 if (count == 0)
1940 l = trie_firstleaf(t);
1941 else {
1942 /* Normally, continue from last key, but if that is missing
1943 * fallback to using slow rescan
1944 */
1945 l = fib_find_node(t, key);
1946 if (!l)
1947 l = trie_leafindex(t, count);
1948 }
1949
1950 while (l) {
1951 cb->args[2] = l->key;
1952 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1953 cb->args[3] = count;
1954 rcu_read_unlock();
1955 return -1;
1956 }
1957
1958 ++count;
1959 l = trie_nextleaf(l);
1960 memset(&cb->args[4], 0,
1961 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1962 }
1963 cb->args[3] = count;
1964 rcu_read_unlock();
1965
1966 return skb->len;
1967}
1968
1969void __init fib_trie_init(void)
1970{
1971 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1972 sizeof(struct fib_alias),
1973 0, SLAB_PANIC, NULL);
1974
1975 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1976 max(sizeof(struct leaf),
1977 sizeof(struct leaf_info)),
1978 0, SLAB_PANIC, NULL);
1979}
1980
1981
1982struct fib_table *fib_trie_table(u32 id)
1983{
1984 struct fib_table *tb;
1985 struct trie *t;
1986
1987 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1988 GFP_KERNEL);
1989 if (tb == NULL)
1990 return NULL;
1991
1992 tb->tb_id = id;
1993 tb->tb_default = -1;
1994 tb->tb_num_default = 0;
1995
1996 t = (struct trie *) tb->tb_data;
1997 memset(t, 0, sizeof(*t));
1998
1999 return tb;
2000}
2001
2002#ifdef CONFIG_PROC_FS
2003/* Depth first Trie walk iterator */
2004struct fib_trie_iter {
2005 struct seq_net_private p;
2006 struct fib_table *tb;
2007 struct tnode *tnode;
2008 unsigned int index;
2009 unsigned int depth;
2010};
2011
2012static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
2013{
2014 struct tnode *tn = iter->tnode;
2015 unsigned int cindex = iter->index;
2016 struct tnode *p;
2017
2018 /* A single entry routing table */
2019 if (!tn)
2020 return NULL;
2021
2022 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2023 iter->tnode, iter->index, iter->depth);
2024rescan:
2025 while (cindex < (1<<tn->bits)) {
2026 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
2027
2028 if (n) {
2029 if (IS_LEAF(n)) {
2030 iter->tnode = tn;
2031 iter->index = cindex + 1;
2032 } else {
2033 /* push down one level */
2034 iter->tnode = (struct tnode *) n;
2035 iter->index = 0;
2036 ++iter->depth;
2037 }
2038 return n;
2039 }
2040
2041 ++cindex;
2042 }
2043
2044 /* Current node exhausted, pop back up */
2045 p = node_parent_rcu((struct rt_trie_node *)tn);
2046 if (p) {
2047 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2048 tn = p;
2049 --iter->depth;
2050 goto rescan;
2051 }
2052
2053 /* got root? */
2054 return NULL;
2055}
2056
2057static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
2058 struct trie *t)
2059{
2060 struct rt_trie_node *n;
2061
2062 if (!t)
2063 return NULL;
2064
2065 n = rcu_dereference(t->trie);
2066 if (!n)
2067 return NULL;
2068
2069 if (IS_TNODE(n)) {
2070 iter->tnode = (struct tnode *) n;
2071 iter->index = 0;
2072 iter->depth = 1;
2073 } else {
2074 iter->tnode = NULL;
2075 iter->index = 0;
2076 iter->depth = 0;
2077 }
2078
2079 return n;
2080}
2081
2082static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2083{
2084 struct rt_trie_node *n;
2085 struct fib_trie_iter iter;
2086
2087 memset(s, 0, sizeof(*s));
2088
2089 rcu_read_lock();
2090 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2091 if (IS_LEAF(n)) {
2092 struct leaf *l = (struct leaf *)n;
2093 struct leaf_info *li;
2094 struct hlist_node *tmp;
2095
2096 s->leaves++;
2097 s->totdepth += iter.depth;
2098 if (iter.depth > s->maxdepth)
2099 s->maxdepth = iter.depth;
2100
2101 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2102 ++s->prefixes;
2103 } else {
2104 const struct tnode *tn = (const struct tnode *) n;
2105 int i;
2106
2107 s->tnodes++;
2108 if (tn->bits < MAX_STAT_DEPTH)
2109 s->nodesizes[tn->bits]++;
2110
2111 for (i = 0; i < (1<<tn->bits); i++)
2112 if (!tn->child[i])
2113 s->nullpointers++;
2114 }
2115 }
2116 rcu_read_unlock();
2117}
2118
2119/*
2120 * This outputs /proc/net/fib_triestats
2121 */
2122static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2123{
2124 unsigned int i, max, pointers, bytes, avdepth;
2125
2126 if (stat->leaves)
2127 avdepth = stat->totdepth*100 / stat->leaves;
2128 else
2129 avdepth = 0;
2130
2131 seq_printf(seq, "\tAver depth: %u.%02d\n",
2132 avdepth / 100, avdepth % 100);
2133 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2134
2135 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2136 bytes = sizeof(struct leaf) * stat->leaves;
2137
2138 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2139 bytes += sizeof(struct leaf_info) * stat->prefixes;
2140
2141 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2142 bytes += sizeof(struct tnode) * stat->tnodes;
2143
2144 max = MAX_STAT_DEPTH;
2145 while (max > 0 && stat->nodesizes[max-1] == 0)
2146 max--;
2147
2148 pointers = 0;
2149 for (i = 1; i <= max; i++)
2150 if (stat->nodesizes[i] != 0) {
2151 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2152 pointers += (1<<i) * stat->nodesizes[i];
2153 }
2154 seq_putc(seq, '\n');
2155 seq_printf(seq, "\tPointers: %u\n", pointers);
2156
2157 bytes += sizeof(struct rt_trie_node *) * pointers;
2158 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2159 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2160}
2161
2162#ifdef CONFIG_IP_FIB_TRIE_STATS
2163static void trie_show_usage(struct seq_file *seq,
2164 const struct trie_use_stats *stats)
2165{
2166 seq_printf(seq, "\nCounters:\n---------\n");
2167 seq_printf(seq, "gets = %u\n", stats->gets);
2168 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2169 seq_printf(seq, "semantic match passed = %u\n",
2170 stats->semantic_match_passed);
2171 seq_printf(seq, "semantic match miss = %u\n",
2172 stats->semantic_match_miss);
2173 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2174 seq_printf(seq, "skipped node resize = %u\n\n",
2175 stats->resize_node_skipped);
2176}
2177#endif /* CONFIG_IP_FIB_TRIE_STATS */
2178
2179static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2180{
2181 if (tb->tb_id == RT_TABLE_LOCAL)
2182 seq_puts(seq, "Local:\n");
2183 else if (tb->tb_id == RT_TABLE_MAIN)
2184 seq_puts(seq, "Main:\n");
2185 else
2186 seq_printf(seq, "Id %d:\n", tb->tb_id);
2187}
2188
2189
2190static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2191{
2192 struct net *net = (struct net *)seq->private;
2193 unsigned int h;
2194
2195 seq_printf(seq,
2196 "Basic info: size of leaf:"
2197 " %Zd bytes, size of tnode: %Zd bytes.\n",
2198 sizeof(struct leaf), sizeof(struct tnode));
2199
2200 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2201 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2202 struct hlist_node *node;
2203 struct fib_table *tb;
2204
2205 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2206 struct trie *t = (struct trie *) tb->tb_data;
2207 struct trie_stat stat;
2208
2209 if (!t)
2210 continue;
2211
2212 fib_table_print(seq, tb);
2213
2214 trie_collect_stats(t, &stat);
2215 trie_show_stats(seq, &stat);
2216#ifdef CONFIG_IP_FIB_TRIE_STATS
2217 trie_show_usage(seq, &t->stats);
2218#endif
2219 }
2220 }
2221
2222 return 0;
2223}
2224
2225static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2226{
2227 return single_open_net(inode, file, fib_triestat_seq_show);
2228}
2229
2230static const struct file_operations fib_triestat_fops = {
2231 .owner = THIS_MODULE,
2232 .open = fib_triestat_seq_open,
2233 .read = seq_read,
2234 .llseek = seq_lseek,
2235 .release = single_release_net,
2236};
2237
2238static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2239{
2240 struct fib_trie_iter *iter = seq->private;
2241 struct net *net = seq_file_net(seq);
2242 loff_t idx = 0;
2243 unsigned int h;
2244
2245 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2246 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2247 struct hlist_node *node;
2248 struct fib_table *tb;
2249
2250 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2251 struct rt_trie_node *n;
2252
2253 for (n = fib_trie_get_first(iter,
2254 (struct trie *) tb->tb_data);
2255 n; n = fib_trie_get_next(iter))
2256 if (pos == idx++) {
2257 iter->tb = tb;
2258 return n;
2259 }
2260 }
2261 }
2262
2263 return NULL;
2264}
2265
2266static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2267 __acquires(RCU)
2268{
2269 rcu_read_lock();
2270 return fib_trie_get_idx(seq, *pos);
2271}
2272
2273static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2274{
2275 struct fib_trie_iter *iter = seq->private;
2276 struct net *net = seq_file_net(seq);
2277 struct fib_table *tb = iter->tb;
2278 struct hlist_node *tb_node;
2279 unsigned int h;
2280 struct rt_trie_node *n;
2281
2282 ++*pos;
2283 /* next node in same table */
2284 n = fib_trie_get_next(iter);
2285 if (n)
2286 return n;
2287
2288 /* walk rest of this hash chain */
2289 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2290 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2291 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2292 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2293 if (n)
2294 goto found;
2295 }
2296
2297 /* new hash chain */
2298 while (++h < FIB_TABLE_HASHSZ) {
2299 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2300 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2301 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2302 if (n)
2303 goto found;
2304 }
2305 }
2306 return NULL;
2307
2308found:
2309 iter->tb = tb;
2310 return n;
2311}
2312
2313static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2314 __releases(RCU)
2315{
2316 rcu_read_unlock();
2317}
2318
2319static void seq_indent(struct seq_file *seq, int n)
2320{
2321 while (n-- > 0)
2322 seq_puts(seq, " ");
2323}
2324
2325static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2326{
2327 switch (s) {
2328 case RT_SCOPE_UNIVERSE: return "universe";
2329 case RT_SCOPE_SITE: return "site";
2330 case RT_SCOPE_LINK: return "link";
2331 case RT_SCOPE_HOST: return "host";
2332 case RT_SCOPE_NOWHERE: return "nowhere";
2333 default:
2334 snprintf(buf, len, "scope=%d", s);
2335 return buf;
2336 }
2337}
2338
2339static const char *const rtn_type_names[__RTN_MAX] = {
2340 [RTN_UNSPEC] = "UNSPEC",
2341 [RTN_UNICAST] = "UNICAST",
2342 [RTN_LOCAL] = "LOCAL",
2343 [RTN_BROADCAST] = "BROADCAST",
2344 [RTN_ANYCAST] = "ANYCAST",
2345 [RTN_MULTICAST] = "MULTICAST",
2346 [RTN_BLACKHOLE] = "BLACKHOLE",
2347 [RTN_UNREACHABLE] = "UNREACHABLE",
2348 [RTN_PROHIBIT] = "PROHIBIT",
2349 [RTN_THROW] = "THROW",
2350 [RTN_NAT] = "NAT",
2351 [RTN_XRESOLVE] = "XRESOLVE",
2352};
2353
2354static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2355{
2356 if (t < __RTN_MAX && rtn_type_names[t])
2357 return rtn_type_names[t];
2358 snprintf(buf, len, "type %u", t);
2359 return buf;
2360}
2361
2362/* Pretty print the trie */
2363static int fib_trie_seq_show(struct seq_file *seq, void *v)
2364{
2365 const struct fib_trie_iter *iter = seq->private;
2366 struct rt_trie_node *n = v;
2367
2368 if (!node_parent_rcu(n))
2369 fib_table_print(seq, iter->tb);
2370
2371 if (IS_TNODE(n)) {
2372 struct tnode *tn = (struct tnode *) n;
2373 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2374
2375 seq_indent(seq, iter->depth-1);
2376 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2377 &prf, tn->pos, tn->bits, tn->full_children,
2378 tn->empty_children);
2379
2380 } else {
2381 struct leaf *l = (struct leaf *) n;
2382 struct leaf_info *li;
2383 struct hlist_node *node;
2384 __be32 val = htonl(l->key);
2385
2386 seq_indent(seq, iter->depth);
2387 seq_printf(seq, " |-- %pI4\n", &val);
2388
2389 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2390 struct fib_alias *fa;
2391
2392 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2393 char buf1[32], buf2[32];
2394
2395 seq_indent(seq, iter->depth+1);
2396 seq_printf(seq, " /%d %s %s", li->plen,
2397 rtn_scope(buf1, sizeof(buf1),
2398 fa->fa_info->fib_scope),
2399 rtn_type(buf2, sizeof(buf2),
2400 fa->fa_type));
2401 if (fa->fa_tos)
2402 seq_printf(seq, " tos=%d", fa->fa_tos);
2403 seq_putc(seq, '\n');
2404 }
2405 }
2406 }
2407
2408 return 0;
2409}
2410
2411static const struct seq_operations fib_trie_seq_ops = {
2412 .start = fib_trie_seq_start,
2413 .next = fib_trie_seq_next,
2414 .stop = fib_trie_seq_stop,
2415 .show = fib_trie_seq_show,
2416};
2417
2418static int fib_trie_seq_open(struct inode *inode, struct file *file)
2419{
2420 return seq_open_net(inode, file, &fib_trie_seq_ops,
2421 sizeof(struct fib_trie_iter));
2422}
2423
2424static const struct file_operations fib_trie_fops = {
2425 .owner = THIS_MODULE,
2426 .open = fib_trie_seq_open,
2427 .read = seq_read,
2428 .llseek = seq_lseek,
2429 .release = seq_release_net,
2430};
2431
2432struct fib_route_iter {
2433 struct seq_net_private p;
2434 struct trie *main_trie;
2435 loff_t pos;
2436 t_key key;
2437};
2438
2439static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2440{
2441 struct leaf *l = NULL;
2442 struct trie *t = iter->main_trie;
2443
2444 /* use cache location of last found key */
2445 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2446 pos -= iter->pos;
2447 else {
2448 iter->pos = 0;
2449 l = trie_firstleaf(t);
2450 }
2451
2452 while (l && pos-- > 0) {
2453 iter->pos++;
2454 l = trie_nextleaf(l);
2455 }
2456
2457 if (l)
2458 iter->key = pos; /* remember it */
2459 else
2460 iter->pos = 0; /* forget it */
2461
2462 return l;
2463}
2464
2465static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2466 __acquires(RCU)
2467{
2468 struct fib_route_iter *iter = seq->private;
2469 struct fib_table *tb;
2470
2471 rcu_read_lock();
2472 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2473 if (!tb)
2474 return NULL;
2475
2476 iter->main_trie = (struct trie *) tb->tb_data;
2477 if (*pos == 0)
2478 return SEQ_START_TOKEN;
2479 else
2480 return fib_route_get_idx(iter, *pos - 1);
2481}
2482
2483static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2484{
2485 struct fib_route_iter *iter = seq->private;
2486 struct leaf *l = v;
2487
2488 ++*pos;
2489 if (v == SEQ_START_TOKEN) {
2490 iter->pos = 0;
2491 l = trie_firstleaf(iter->main_trie);
2492 } else {
2493 iter->pos++;
2494 l = trie_nextleaf(l);
2495 }
2496
2497 if (l)
2498 iter->key = l->key;
2499 else
2500 iter->pos = 0;
2501 return l;
2502}
2503
2504static void fib_route_seq_stop(struct seq_file *seq, void *v)
2505 __releases(RCU)
2506{
2507 rcu_read_unlock();
2508}
2509
2510static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2511{
2512 unsigned int flags = 0;
2513
2514 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2515 flags = RTF_REJECT;
2516 if (fi && fi->fib_nh->nh_gw)
2517 flags |= RTF_GATEWAY;
2518 if (mask == htonl(0xFFFFFFFF))
2519 flags |= RTF_HOST;
2520 flags |= RTF_UP;
2521 return flags;
2522}
2523
2524/*
2525 * This outputs /proc/net/route.
2526 * The format of the file is not supposed to be changed
2527 * and needs to be same as fib_hash output to avoid breaking
2528 * legacy utilities
2529 */
2530static int fib_route_seq_show(struct seq_file *seq, void *v)
2531{
2532 struct leaf *l = v;
2533 struct leaf_info *li;
2534 struct hlist_node *node;
2535
2536 if (v == SEQ_START_TOKEN) {
2537 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2538 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2539 "\tWindow\tIRTT");
2540 return 0;
2541 }
2542
2543 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2544 struct fib_alias *fa;
2545 __be32 mask, prefix;
2546
2547 mask = inet_make_mask(li->plen);
2548 prefix = htonl(l->key);
2549
2550 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2551 const struct fib_info *fi = fa->fa_info;
2552 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2553 int len;
2554
2555 if (fa->fa_type == RTN_BROADCAST
2556 || fa->fa_type == RTN_MULTICAST)
2557 continue;
2558
2559 if (fi)
2560 seq_printf(seq,
2561 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2562 "%d\t%08X\t%d\t%u\t%u%n",
2563 fi->fib_dev ? fi->fib_dev->name : "*",
2564 prefix,
2565 fi->fib_nh->nh_gw, flags, 0, 0,
2566 fi->fib_priority,
2567 mask,
2568 (fi->fib_advmss ?
2569 fi->fib_advmss + 40 : 0),
2570 fi->fib_window,
2571 fi->fib_rtt >> 3, &len);
2572 else
2573 seq_printf(seq,
2574 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2575 "%d\t%08X\t%d\t%u\t%u%n",
2576 prefix, 0, flags, 0, 0, 0,
2577 mask, 0, 0, 0, &len);
2578
2579 seq_printf(seq, "%*s\n", 127 - len, "");
2580 }
2581 }
2582
2583 return 0;
2584}
2585
2586static const struct seq_operations fib_route_seq_ops = {
2587 .start = fib_route_seq_start,
2588 .next = fib_route_seq_next,
2589 .stop = fib_route_seq_stop,
2590 .show = fib_route_seq_show,
2591};
2592
2593static int fib_route_seq_open(struct inode *inode, struct file *file)
2594{
2595 return seq_open_net(inode, file, &fib_route_seq_ops,
2596 sizeof(struct fib_route_iter));
2597}
2598
2599static const struct file_operations fib_route_fops = {
2600 .owner = THIS_MODULE,
2601 .open = fib_route_seq_open,
2602 .read = seq_read,
2603 .llseek = seq_lseek,
2604 .release = seq_release_net,
2605};
2606
2607int __net_init fib_proc_init(struct net *net)
2608{
2609 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2610 goto out1;
2611
2612 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2613 &fib_triestat_fops))
2614 goto out2;
2615
2616 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2617 goto out3;
2618
2619 return 0;
2620
2621out3:
2622 proc_net_remove(net, "fib_triestat");
2623out2:
2624 proc_net_remove(net, "fib_trie");
2625out1:
2626 return -ENOMEM;
2627}
2628
2629void __net_exit fib_proc_exit(struct net *net)
2630{
2631 proc_net_remove(net, "fib_trie");
2632 proc_net_remove(net, "fib_triestat");
2633 proc_net_remove(net, "route");
2634}
2635
2636#endif /* CONFIG_PROC_FS */