Loading...
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally described in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51#define VERSION "0.409"
52
53#include <asm/uaccess.h>
54#include <linux/bitops.h>
55#include <linux/types.h>
56#include <linux/kernel.h>
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
64#include <linux/inetdevice.h>
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
68#include <linux/rcupdate.h>
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
73#include <linux/slab.h>
74#include <linux/export.h>
75#include <net/net_namespace.h>
76#include <net/ip.h>
77#include <net/protocol.h>
78#include <net/route.h>
79#include <net/tcp.h>
80#include <net/sock.h>
81#include <net/ip_fib.h>
82#include "fib_lookup.h"
83
84#define MAX_STAT_DEPTH 32
85
86#define KEYLENGTH (8*sizeof(t_key))
87
88typedef unsigned int t_key;
89
90#define T_TNODE 0
91#define T_LEAF 1
92#define NODE_TYPE_MASK 0x1UL
93#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
94
95#define IS_TNODE(n) (!(n->parent & T_LEAF))
96#define IS_LEAF(n) (n->parent & T_LEAF)
97
98struct rt_trie_node {
99 unsigned long parent;
100 t_key key;
101};
102
103struct leaf {
104 unsigned long parent;
105 t_key key;
106 struct hlist_head list;
107 struct rcu_head rcu;
108};
109
110struct leaf_info {
111 struct hlist_node hlist;
112 int plen;
113 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
114 struct list_head falh;
115 struct rcu_head rcu;
116};
117
118struct tnode {
119 unsigned long parent;
120 t_key key;
121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
123 unsigned int full_children; /* KEYLENGTH bits needed */
124 unsigned int empty_children; /* KEYLENGTH bits needed */
125 union {
126 struct rcu_head rcu;
127 struct tnode *tnode_free;
128 };
129 struct rt_trie_node __rcu *child[0];
130};
131
132#ifdef CONFIG_IP_FIB_TRIE_STATS
133struct trie_use_stats {
134 unsigned int gets;
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
139 unsigned int resize_node_skipped;
140};
141#endif
142
143struct trie_stat {
144 unsigned int totdepth;
145 unsigned int maxdepth;
146 unsigned int tnodes;
147 unsigned int leaves;
148 unsigned int nullpointers;
149 unsigned int prefixes;
150 unsigned int nodesizes[MAX_STAT_DEPTH];
151};
152
153struct trie {
154 struct rt_trie_node __rcu *trie;
155#ifdef CONFIG_IP_FIB_TRIE_STATS
156 struct trie_use_stats stats;
157#endif
158};
159
160static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
161 int wasfull);
162static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
163static struct tnode *inflate(struct trie *t, struct tnode *tn);
164static struct tnode *halve(struct trie *t, struct tnode *tn);
165/* tnodes to free after resize(); protected by RTNL */
166static struct tnode *tnode_free_head;
167static size_t tnode_free_size;
168
169/*
170 * synchronize_rcu after call_rcu for that many pages; it should be especially
171 * useful before resizing the root node with PREEMPT_NONE configs; the value was
172 * obtained experimentally, aiming to avoid visible slowdown.
173 */
174static const int sync_pages = 128;
175
176static struct kmem_cache *fn_alias_kmem __read_mostly;
177static struct kmem_cache *trie_leaf_kmem __read_mostly;
178
179/*
180 * caller must hold RTNL
181 */
182static inline struct tnode *node_parent(const struct rt_trie_node *node)
183{
184 unsigned long parent;
185
186 parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held());
187
188 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
189}
190
191/*
192 * caller must hold RCU read lock or RTNL
193 */
194static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node)
195{
196 unsigned long parent;
197
198 parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() ||
199 lockdep_rtnl_is_held());
200
201 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
202}
203
204/* Same as rcu_assign_pointer
205 * but that macro() assumes that value is a pointer.
206 */
207static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
208{
209 smp_wmb();
210 node->parent = (unsigned long)ptr | NODE_TYPE(node);
211}
212
213/*
214 * caller must hold RTNL
215 */
216static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i)
217{
218 BUG_ON(i >= 1U << tn->bits);
219
220 return rtnl_dereference(tn->child[i]);
221}
222
223/*
224 * caller must hold RCU read lock or RTNL
225 */
226static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i)
227{
228 BUG_ON(i >= 1U << tn->bits);
229
230 return rcu_dereference_rtnl(tn->child[i]);
231}
232
233static inline int tnode_child_length(const struct tnode *tn)
234{
235 return 1 << tn->bits;
236}
237
238static inline t_key mask_pfx(t_key k, unsigned int l)
239{
240 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
241}
242
243static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
244{
245 if (offset < KEYLENGTH)
246 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
247 else
248 return 0;
249}
250
251static inline int tkey_equals(t_key a, t_key b)
252{
253 return a == b;
254}
255
256static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
257{
258 if (bits == 0 || offset >= KEYLENGTH)
259 return 1;
260 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
261 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
262}
263
264static inline int tkey_mismatch(t_key a, int offset, t_key b)
265{
266 t_key diff = a ^ b;
267 int i = offset;
268
269 if (!diff)
270 return 0;
271 while ((diff << i) >> (KEYLENGTH-1) == 0)
272 i++;
273 return i;
274}
275
276/*
277 To understand this stuff, an understanding of keys and all their bits is
278 necessary. Every node in the trie has a key associated with it, but not
279 all of the bits in that key are significant.
280
281 Consider a node 'n' and its parent 'tp'.
282
283 If n is a leaf, every bit in its key is significant. Its presence is
284 necessitated by path compression, since during a tree traversal (when
285 searching for a leaf - unless we are doing an insertion) we will completely
286 ignore all skipped bits we encounter. Thus we need to verify, at the end of
287 a potentially successful search, that we have indeed been walking the
288 correct key path.
289
290 Note that we can never "miss" the correct key in the tree if present by
291 following the wrong path. Path compression ensures that segments of the key
292 that are the same for all keys with a given prefix are skipped, but the
293 skipped part *is* identical for each node in the subtrie below the skipped
294 bit! trie_insert() in this implementation takes care of that - note the
295 call to tkey_sub_equals() in trie_insert().
296
297 if n is an internal node - a 'tnode' here, the various parts of its key
298 have many different meanings.
299
300 Example:
301 _________________________________________________________________
302 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
303 -----------------------------------------------------------------
304 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
305
306 _________________________________________________________________
307 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
308 -----------------------------------------------------------------
309 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
310
311 tp->pos = 7
312 tp->bits = 3
313 n->pos = 15
314 n->bits = 4
315
316 First, let's just ignore the bits that come before the parent tp, that is
317 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
318 not use them for anything.
319
320 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
321 index into the parent's child array. That is, they will be used to find
322 'n' among tp's children.
323
324 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
325 for the node n.
326
327 All the bits we have seen so far are significant to the node n. The rest
328 of the bits are really not needed or indeed known in n->key.
329
330 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
331 n's child array, and will of course be different for each child.
332
333
334 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
335 at this point.
336
337*/
338
339static inline void check_tnode(const struct tnode *tn)
340{
341 WARN_ON(tn && tn->pos+tn->bits > 32);
342}
343
344static const int halve_threshold = 25;
345static const int inflate_threshold = 50;
346static const int halve_threshold_root = 15;
347static const int inflate_threshold_root = 30;
348
349static void __alias_free_mem(struct rcu_head *head)
350{
351 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
352 kmem_cache_free(fn_alias_kmem, fa);
353}
354
355static inline void alias_free_mem_rcu(struct fib_alias *fa)
356{
357 call_rcu(&fa->rcu, __alias_free_mem);
358}
359
360static void __leaf_free_rcu(struct rcu_head *head)
361{
362 struct leaf *l = container_of(head, struct leaf, rcu);
363 kmem_cache_free(trie_leaf_kmem, l);
364}
365
366static inline void free_leaf(struct leaf *l)
367{
368 call_rcu(&l->rcu, __leaf_free_rcu);
369}
370
371static inline void free_leaf_info(struct leaf_info *leaf)
372{
373 kfree_rcu(leaf, rcu);
374}
375
376static struct tnode *tnode_alloc(size_t size)
377{
378 if (size <= PAGE_SIZE)
379 return kzalloc(size, GFP_KERNEL);
380 else
381 return vzalloc(size);
382}
383
384static void __tnode_free_rcu(struct rcu_head *head)
385{
386 struct tnode *tn = container_of(head, struct tnode, rcu);
387 size_t size = sizeof(struct tnode) +
388 (sizeof(struct rt_trie_node *) << tn->bits);
389
390 if (size <= PAGE_SIZE)
391 kfree(tn);
392 else
393 vfree(tn);
394}
395
396static inline void tnode_free(struct tnode *tn)
397{
398 if (IS_LEAF(tn))
399 free_leaf((struct leaf *) tn);
400 else
401 call_rcu(&tn->rcu, __tnode_free_rcu);
402}
403
404static void tnode_free_safe(struct tnode *tn)
405{
406 BUG_ON(IS_LEAF(tn));
407 tn->tnode_free = tnode_free_head;
408 tnode_free_head = tn;
409 tnode_free_size += sizeof(struct tnode) +
410 (sizeof(struct rt_trie_node *) << tn->bits);
411}
412
413static void tnode_free_flush(void)
414{
415 struct tnode *tn;
416
417 while ((tn = tnode_free_head)) {
418 tnode_free_head = tn->tnode_free;
419 tn->tnode_free = NULL;
420 tnode_free(tn);
421 }
422
423 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
424 tnode_free_size = 0;
425 synchronize_rcu();
426 }
427}
428
429static struct leaf *leaf_new(void)
430{
431 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
432 if (l) {
433 l->parent = T_LEAF;
434 INIT_HLIST_HEAD(&l->list);
435 }
436 return l;
437}
438
439static struct leaf_info *leaf_info_new(int plen)
440{
441 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
442 if (li) {
443 li->plen = plen;
444 li->mask_plen = ntohl(inet_make_mask(plen));
445 INIT_LIST_HEAD(&li->falh);
446 }
447 return li;
448}
449
450static struct tnode *tnode_new(t_key key, int pos, int bits)
451{
452 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
453 struct tnode *tn = tnode_alloc(sz);
454
455 if (tn) {
456 tn->parent = T_TNODE;
457 tn->pos = pos;
458 tn->bits = bits;
459 tn->key = key;
460 tn->full_children = 0;
461 tn->empty_children = 1<<bits;
462 }
463
464 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
465 sizeof(struct rt_trie_node *) << bits);
466 return tn;
467}
468
469/*
470 * Check whether a tnode 'n' is "full", i.e. it is an internal node
471 * and no bits are skipped. See discussion in dyntree paper p. 6
472 */
473
474static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
475{
476 if (n == NULL || IS_LEAF(n))
477 return 0;
478
479 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
480}
481
482static inline void put_child(struct tnode *tn, int i,
483 struct rt_trie_node *n)
484{
485 tnode_put_child_reorg(tn, i, n, -1);
486}
487
488 /*
489 * Add a child at position i overwriting the old value.
490 * Update the value of full_children and empty_children.
491 */
492
493static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
494 int wasfull)
495{
496 struct rt_trie_node *chi = rtnl_dereference(tn->child[i]);
497 int isfull;
498
499 BUG_ON(i >= 1<<tn->bits);
500
501 /* update emptyChildren */
502 if (n == NULL && chi != NULL)
503 tn->empty_children++;
504 else if (n != NULL && chi == NULL)
505 tn->empty_children--;
506
507 /* update fullChildren */
508 if (wasfull == -1)
509 wasfull = tnode_full(tn, chi);
510
511 isfull = tnode_full(tn, n);
512 if (wasfull && !isfull)
513 tn->full_children--;
514 else if (!wasfull && isfull)
515 tn->full_children++;
516
517 if (n)
518 node_set_parent(n, tn);
519
520 rcu_assign_pointer(tn->child[i], n);
521}
522
523#define MAX_WORK 10
524static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
525{
526 int i;
527 struct tnode *old_tn;
528 int inflate_threshold_use;
529 int halve_threshold_use;
530 int max_work;
531
532 if (!tn)
533 return NULL;
534
535 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
536 tn, inflate_threshold, halve_threshold);
537
538 /* No children */
539 if (tn->empty_children == tnode_child_length(tn)) {
540 tnode_free_safe(tn);
541 return NULL;
542 }
543 /* One child */
544 if (tn->empty_children == tnode_child_length(tn) - 1)
545 goto one_child;
546 /*
547 * Double as long as the resulting node has a number of
548 * nonempty nodes that are above the threshold.
549 */
550
551 /*
552 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
553 * the Helsinki University of Technology and Matti Tikkanen of Nokia
554 * Telecommunications, page 6:
555 * "A node is doubled if the ratio of non-empty children to all
556 * children in the *doubled* node is at least 'high'."
557 *
558 * 'high' in this instance is the variable 'inflate_threshold'. It
559 * is expressed as a percentage, so we multiply it with
560 * tnode_child_length() and instead of multiplying by 2 (since the
561 * child array will be doubled by inflate()) and multiplying
562 * the left-hand side by 100 (to handle the percentage thing) we
563 * multiply the left-hand side by 50.
564 *
565 * The left-hand side may look a bit weird: tnode_child_length(tn)
566 * - tn->empty_children is of course the number of non-null children
567 * in the current node. tn->full_children is the number of "full"
568 * children, that is non-null tnodes with a skip value of 0.
569 * All of those will be doubled in the resulting inflated tnode, so
570 * we just count them one extra time here.
571 *
572 * A clearer way to write this would be:
573 *
574 * to_be_doubled = tn->full_children;
575 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
576 * tn->full_children;
577 *
578 * new_child_length = tnode_child_length(tn) * 2;
579 *
580 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
581 * new_child_length;
582 * if (new_fill_factor >= inflate_threshold)
583 *
584 * ...and so on, tho it would mess up the while () loop.
585 *
586 * anyway,
587 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
588 * inflate_threshold
589 *
590 * avoid a division:
591 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
592 * inflate_threshold * new_child_length
593 *
594 * expand not_to_be_doubled and to_be_doubled, and shorten:
595 * 100 * (tnode_child_length(tn) - tn->empty_children +
596 * tn->full_children) >= inflate_threshold * new_child_length
597 *
598 * expand new_child_length:
599 * 100 * (tnode_child_length(tn) - tn->empty_children +
600 * tn->full_children) >=
601 * inflate_threshold * tnode_child_length(tn) * 2
602 *
603 * shorten again:
604 * 50 * (tn->full_children + tnode_child_length(tn) -
605 * tn->empty_children) >= inflate_threshold *
606 * tnode_child_length(tn)
607 *
608 */
609
610 check_tnode(tn);
611
612 /* Keep root node larger */
613
614 if (!node_parent((struct rt_trie_node *)tn)) {
615 inflate_threshold_use = inflate_threshold_root;
616 halve_threshold_use = halve_threshold_root;
617 } else {
618 inflate_threshold_use = inflate_threshold;
619 halve_threshold_use = halve_threshold;
620 }
621
622 max_work = MAX_WORK;
623 while ((tn->full_children > 0 && max_work-- &&
624 50 * (tn->full_children + tnode_child_length(tn)
625 - tn->empty_children)
626 >= inflate_threshold_use * tnode_child_length(tn))) {
627
628 old_tn = tn;
629 tn = inflate(t, tn);
630
631 if (IS_ERR(tn)) {
632 tn = old_tn;
633#ifdef CONFIG_IP_FIB_TRIE_STATS
634 t->stats.resize_node_skipped++;
635#endif
636 break;
637 }
638 }
639
640 check_tnode(tn);
641
642 /* Return if at least one inflate is run */
643 if (max_work != MAX_WORK)
644 return (struct rt_trie_node *) tn;
645
646 /*
647 * Halve as long as the number of empty children in this
648 * node is above threshold.
649 */
650
651 max_work = MAX_WORK;
652 while (tn->bits > 1 && max_work-- &&
653 100 * (tnode_child_length(tn) - tn->empty_children) <
654 halve_threshold_use * tnode_child_length(tn)) {
655
656 old_tn = tn;
657 tn = halve(t, tn);
658 if (IS_ERR(tn)) {
659 tn = old_tn;
660#ifdef CONFIG_IP_FIB_TRIE_STATS
661 t->stats.resize_node_skipped++;
662#endif
663 break;
664 }
665 }
666
667
668 /* Only one child remains */
669 if (tn->empty_children == tnode_child_length(tn) - 1) {
670one_child:
671 for (i = 0; i < tnode_child_length(tn); i++) {
672 struct rt_trie_node *n;
673
674 n = rtnl_dereference(tn->child[i]);
675 if (!n)
676 continue;
677
678 /* compress one level */
679
680 node_set_parent(n, NULL);
681 tnode_free_safe(tn);
682 return n;
683 }
684 }
685 return (struct rt_trie_node *) tn;
686}
687
688
689static void tnode_clean_free(struct tnode *tn)
690{
691 int i;
692 struct tnode *tofree;
693
694 for (i = 0; i < tnode_child_length(tn); i++) {
695 tofree = (struct tnode *)rtnl_dereference(tn->child[i]);
696 if (tofree)
697 tnode_free(tofree);
698 }
699 tnode_free(tn);
700}
701
702static struct tnode *inflate(struct trie *t, struct tnode *tn)
703{
704 struct tnode *oldtnode = tn;
705 int olen = tnode_child_length(tn);
706 int i;
707
708 pr_debug("In inflate\n");
709
710 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
711
712 if (!tn)
713 return ERR_PTR(-ENOMEM);
714
715 /*
716 * Preallocate and store tnodes before the actual work so we
717 * don't get into an inconsistent state if memory allocation
718 * fails. In case of failure we return the oldnode and inflate
719 * of tnode is ignored.
720 */
721
722 for (i = 0; i < olen; i++) {
723 struct tnode *inode;
724
725 inode = (struct tnode *) tnode_get_child(oldtnode, i);
726 if (inode &&
727 IS_TNODE(inode) &&
728 inode->pos == oldtnode->pos + oldtnode->bits &&
729 inode->bits > 1) {
730 struct tnode *left, *right;
731 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
732
733 left = tnode_new(inode->key&(~m), inode->pos + 1,
734 inode->bits - 1);
735 if (!left)
736 goto nomem;
737
738 right = tnode_new(inode->key|m, inode->pos + 1,
739 inode->bits - 1);
740
741 if (!right) {
742 tnode_free(left);
743 goto nomem;
744 }
745
746 put_child(tn, 2*i, (struct rt_trie_node *) left);
747 put_child(tn, 2*i+1, (struct rt_trie_node *) right);
748 }
749 }
750
751 for (i = 0; i < olen; i++) {
752 struct tnode *inode;
753 struct rt_trie_node *node = tnode_get_child(oldtnode, i);
754 struct tnode *left, *right;
755 int size, j;
756
757 /* An empty child */
758 if (node == NULL)
759 continue;
760
761 /* A leaf or an internal node with skipped bits */
762
763 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
764 tn->pos + tn->bits - 1) {
765 put_child(tn,
766 tkey_extract_bits(node->key, oldtnode->pos, oldtnode->bits + 1),
767 node);
768 continue;
769 }
770
771 /* An internal node with two children */
772 inode = (struct tnode *) node;
773
774 if (inode->bits == 1) {
775 put_child(tn, 2*i, rtnl_dereference(inode->child[0]));
776 put_child(tn, 2*i+1, rtnl_dereference(inode->child[1]));
777
778 tnode_free_safe(inode);
779 continue;
780 }
781
782 /* An internal node with more than two children */
783
784 /* We will replace this node 'inode' with two new
785 * ones, 'left' and 'right', each with half of the
786 * original children. The two new nodes will have
787 * a position one bit further down the key and this
788 * means that the "significant" part of their keys
789 * (see the discussion near the top of this file)
790 * will differ by one bit, which will be "0" in
791 * left's key and "1" in right's key. Since we are
792 * moving the key position by one step, the bit that
793 * we are moving away from - the bit at position
794 * (inode->pos) - is the one that will differ between
795 * left and right. So... we synthesize that bit in the
796 * two new keys.
797 * The mask 'm' below will be a single "one" bit at
798 * the position (inode->pos)
799 */
800
801 /* Use the old key, but set the new significant
802 * bit to zero.
803 */
804
805 left = (struct tnode *) tnode_get_child(tn, 2*i);
806 put_child(tn, 2*i, NULL);
807
808 BUG_ON(!left);
809
810 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
811 put_child(tn, 2*i+1, NULL);
812
813 BUG_ON(!right);
814
815 size = tnode_child_length(left);
816 for (j = 0; j < size; j++) {
817 put_child(left, j, rtnl_dereference(inode->child[j]));
818 put_child(right, j, rtnl_dereference(inode->child[j + size]));
819 }
820 put_child(tn, 2*i, resize(t, left));
821 put_child(tn, 2*i+1, resize(t, right));
822
823 tnode_free_safe(inode);
824 }
825 tnode_free_safe(oldtnode);
826 return tn;
827nomem:
828 tnode_clean_free(tn);
829 return ERR_PTR(-ENOMEM);
830}
831
832static struct tnode *halve(struct trie *t, struct tnode *tn)
833{
834 struct tnode *oldtnode = tn;
835 struct rt_trie_node *left, *right;
836 int i;
837 int olen = tnode_child_length(tn);
838
839 pr_debug("In halve\n");
840
841 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
842
843 if (!tn)
844 return ERR_PTR(-ENOMEM);
845
846 /*
847 * Preallocate and store tnodes before the actual work so we
848 * don't get into an inconsistent state if memory allocation
849 * fails. In case of failure we return the oldnode and halve
850 * of tnode is ignored.
851 */
852
853 for (i = 0; i < olen; i += 2) {
854 left = tnode_get_child(oldtnode, i);
855 right = tnode_get_child(oldtnode, i+1);
856
857 /* Two nonempty children */
858 if (left && right) {
859 struct tnode *newn;
860
861 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
862
863 if (!newn)
864 goto nomem;
865
866 put_child(tn, i/2, (struct rt_trie_node *)newn);
867 }
868
869 }
870
871 for (i = 0; i < olen; i += 2) {
872 struct tnode *newBinNode;
873
874 left = tnode_get_child(oldtnode, i);
875 right = tnode_get_child(oldtnode, i+1);
876
877 /* At least one of the children is empty */
878 if (left == NULL) {
879 if (right == NULL) /* Both are empty */
880 continue;
881 put_child(tn, i/2, right);
882 continue;
883 }
884
885 if (right == NULL) {
886 put_child(tn, i/2, left);
887 continue;
888 }
889
890 /* Two nonempty children */
891 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
892 put_child(tn, i/2, NULL);
893 put_child(newBinNode, 0, left);
894 put_child(newBinNode, 1, right);
895 put_child(tn, i/2, resize(t, newBinNode));
896 }
897 tnode_free_safe(oldtnode);
898 return tn;
899nomem:
900 tnode_clean_free(tn);
901 return ERR_PTR(-ENOMEM);
902}
903
904/* readside must use rcu_read_lock currently dump routines
905 via get_fa_head and dump */
906
907static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
908{
909 struct hlist_head *head = &l->list;
910 struct leaf_info *li;
911
912 hlist_for_each_entry_rcu(li, head, hlist)
913 if (li->plen == plen)
914 return li;
915
916 return NULL;
917}
918
919static inline struct list_head *get_fa_head(struct leaf *l, int plen)
920{
921 struct leaf_info *li = find_leaf_info(l, plen);
922
923 if (!li)
924 return NULL;
925
926 return &li->falh;
927}
928
929static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
930{
931 struct leaf_info *li = NULL, *last = NULL;
932
933 if (hlist_empty(head)) {
934 hlist_add_head_rcu(&new->hlist, head);
935 } else {
936 hlist_for_each_entry(li, head, hlist) {
937 if (new->plen > li->plen)
938 break;
939
940 last = li;
941 }
942 if (last)
943 hlist_add_after_rcu(&last->hlist, &new->hlist);
944 else
945 hlist_add_before_rcu(&new->hlist, &li->hlist);
946 }
947}
948
949/* rcu_read_lock needs to be hold by caller from readside */
950
951static struct leaf *
952fib_find_node(struct trie *t, u32 key)
953{
954 int pos;
955 struct tnode *tn;
956 struct rt_trie_node *n;
957
958 pos = 0;
959 n = rcu_dereference_rtnl(t->trie);
960
961 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
962 tn = (struct tnode *) n;
963
964 check_tnode(tn);
965
966 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
967 pos = tn->pos + tn->bits;
968 n = tnode_get_child_rcu(tn,
969 tkey_extract_bits(key,
970 tn->pos,
971 tn->bits));
972 } else
973 break;
974 }
975 /* Case we have found a leaf. Compare prefixes */
976
977 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
978 return (struct leaf *)n;
979
980 return NULL;
981}
982
983static void trie_rebalance(struct trie *t, struct tnode *tn)
984{
985 int wasfull;
986 t_key cindex, key;
987 struct tnode *tp;
988
989 key = tn->key;
990
991 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
992 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
993 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
994 tn = (struct tnode *)resize(t, tn);
995
996 tnode_put_child_reorg(tp, cindex,
997 (struct rt_trie_node *)tn, wasfull);
998
999 tp = node_parent((struct rt_trie_node *) tn);
1000 if (!tp)
1001 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1002
1003 tnode_free_flush();
1004 if (!tp)
1005 break;
1006 tn = tp;
1007 }
1008
1009 /* Handle last (top) tnode */
1010 if (IS_TNODE(tn))
1011 tn = (struct tnode *)resize(t, tn);
1012
1013 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1014 tnode_free_flush();
1015}
1016
1017/* only used from updater-side */
1018
1019static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1020{
1021 int pos, newpos;
1022 struct tnode *tp = NULL, *tn = NULL;
1023 struct rt_trie_node *n;
1024 struct leaf *l;
1025 int missbit;
1026 struct list_head *fa_head = NULL;
1027 struct leaf_info *li;
1028 t_key cindex;
1029
1030 pos = 0;
1031 n = rtnl_dereference(t->trie);
1032
1033 /* If we point to NULL, stop. Either the tree is empty and we should
1034 * just put a new leaf in if, or we have reached an empty child slot,
1035 * and we should just put our new leaf in that.
1036 * If we point to a T_TNODE, check if it matches our key. Note that
1037 * a T_TNODE might be skipping any number of bits - its 'pos' need
1038 * not be the parent's 'pos'+'bits'!
1039 *
1040 * If it does match the current key, get pos/bits from it, extract
1041 * the index from our key, push the T_TNODE and walk the tree.
1042 *
1043 * If it doesn't, we have to replace it with a new T_TNODE.
1044 *
1045 * If we point to a T_LEAF, it might or might not have the same key
1046 * as we do. If it does, just change the value, update the T_LEAF's
1047 * value, and return it.
1048 * If it doesn't, we need to replace it with a T_TNODE.
1049 */
1050
1051 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1052 tn = (struct tnode *) n;
1053
1054 check_tnode(tn);
1055
1056 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1057 tp = tn;
1058 pos = tn->pos + tn->bits;
1059 n = tnode_get_child(tn,
1060 tkey_extract_bits(key,
1061 tn->pos,
1062 tn->bits));
1063
1064 BUG_ON(n && node_parent(n) != tn);
1065 } else
1066 break;
1067 }
1068
1069 /*
1070 * n ----> NULL, LEAF or TNODE
1071 *
1072 * tp is n's (parent) ----> NULL or TNODE
1073 */
1074
1075 BUG_ON(tp && IS_LEAF(tp));
1076
1077 /* Case 1: n is a leaf. Compare prefixes */
1078
1079 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1080 l = (struct leaf *) n;
1081 li = leaf_info_new(plen);
1082
1083 if (!li)
1084 return NULL;
1085
1086 fa_head = &li->falh;
1087 insert_leaf_info(&l->list, li);
1088 goto done;
1089 }
1090 l = leaf_new();
1091
1092 if (!l)
1093 return NULL;
1094
1095 l->key = key;
1096 li = leaf_info_new(plen);
1097
1098 if (!li) {
1099 free_leaf(l);
1100 return NULL;
1101 }
1102
1103 fa_head = &li->falh;
1104 insert_leaf_info(&l->list, li);
1105
1106 if (t->trie && n == NULL) {
1107 /* Case 2: n is NULL, and will just insert a new leaf */
1108
1109 node_set_parent((struct rt_trie_node *)l, tp);
1110
1111 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1112 put_child(tp, cindex, (struct rt_trie_node *)l);
1113 } else {
1114 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1115 /*
1116 * Add a new tnode here
1117 * first tnode need some special handling
1118 */
1119
1120 if (n) {
1121 pos = tp ? tp->pos+tp->bits : 0;
1122 newpos = tkey_mismatch(key, pos, n->key);
1123 tn = tnode_new(n->key, newpos, 1);
1124 } else {
1125 newpos = 0;
1126 tn = tnode_new(key, newpos, 1); /* First tnode */
1127 }
1128
1129 if (!tn) {
1130 free_leaf_info(li);
1131 free_leaf(l);
1132 return NULL;
1133 }
1134
1135 node_set_parent((struct rt_trie_node *)tn, tp);
1136
1137 missbit = tkey_extract_bits(key, newpos, 1);
1138 put_child(tn, missbit, (struct rt_trie_node *)l);
1139 put_child(tn, 1-missbit, n);
1140
1141 if (tp) {
1142 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1143 put_child(tp, cindex, (struct rt_trie_node *)tn);
1144 } else {
1145 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1146 tp = tn;
1147 }
1148 }
1149
1150 if (tp && tp->pos + tp->bits > 32)
1151 pr_warn("fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1152 tp, tp->pos, tp->bits, key, plen);
1153
1154 /* Rebalance the trie */
1155
1156 trie_rebalance(t, tp);
1157done:
1158 return fa_head;
1159}
1160
1161/*
1162 * Caller must hold RTNL.
1163 */
1164int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1165{
1166 struct trie *t = (struct trie *) tb->tb_data;
1167 struct fib_alias *fa, *new_fa;
1168 struct list_head *fa_head = NULL;
1169 struct fib_info *fi;
1170 int plen = cfg->fc_dst_len;
1171 u8 tos = cfg->fc_tos;
1172 u32 key, mask;
1173 int err;
1174 struct leaf *l;
1175
1176 if (plen > 32)
1177 return -EINVAL;
1178
1179 key = ntohl(cfg->fc_dst);
1180
1181 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1182
1183 mask = ntohl(inet_make_mask(plen));
1184
1185 if (key & ~mask)
1186 return -EINVAL;
1187
1188 key = key & mask;
1189
1190 fi = fib_create_info(cfg);
1191 if (IS_ERR(fi)) {
1192 err = PTR_ERR(fi);
1193 goto err;
1194 }
1195
1196 l = fib_find_node(t, key);
1197 fa = NULL;
1198
1199 if (l) {
1200 fa_head = get_fa_head(l, plen);
1201 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1202 }
1203
1204 /* Now fa, if non-NULL, points to the first fib alias
1205 * with the same keys [prefix,tos,priority], if such key already
1206 * exists or to the node before which we will insert new one.
1207 *
1208 * If fa is NULL, we will need to allocate a new one and
1209 * insert to the head of f.
1210 *
1211 * If f is NULL, no fib node matched the destination key
1212 * and we need to allocate a new one of those as well.
1213 */
1214
1215 if (fa && fa->fa_tos == tos &&
1216 fa->fa_info->fib_priority == fi->fib_priority) {
1217 struct fib_alias *fa_first, *fa_match;
1218
1219 err = -EEXIST;
1220 if (cfg->fc_nlflags & NLM_F_EXCL)
1221 goto out;
1222
1223 /* We have 2 goals:
1224 * 1. Find exact match for type, scope, fib_info to avoid
1225 * duplicate routes
1226 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1227 */
1228 fa_match = NULL;
1229 fa_first = fa;
1230 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1231 list_for_each_entry_continue(fa, fa_head, fa_list) {
1232 if (fa->fa_tos != tos)
1233 break;
1234 if (fa->fa_info->fib_priority != fi->fib_priority)
1235 break;
1236 if (fa->fa_type == cfg->fc_type &&
1237 fa->fa_info == fi) {
1238 fa_match = fa;
1239 break;
1240 }
1241 }
1242
1243 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1244 struct fib_info *fi_drop;
1245 u8 state;
1246
1247 fa = fa_first;
1248 if (fa_match) {
1249 if (fa == fa_match)
1250 err = 0;
1251 goto out;
1252 }
1253 err = -ENOBUFS;
1254 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1255 if (new_fa == NULL)
1256 goto out;
1257
1258 fi_drop = fa->fa_info;
1259 new_fa->fa_tos = fa->fa_tos;
1260 new_fa->fa_info = fi;
1261 new_fa->fa_type = cfg->fc_type;
1262 state = fa->fa_state;
1263 new_fa->fa_state = state & ~FA_S_ACCESSED;
1264
1265 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1266 alias_free_mem_rcu(fa);
1267
1268 fib_release_info(fi_drop);
1269 if (state & FA_S_ACCESSED)
1270 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1271 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1272 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1273
1274 goto succeeded;
1275 }
1276 /* Error if we find a perfect match which
1277 * uses the same scope, type, and nexthop
1278 * information.
1279 */
1280 if (fa_match)
1281 goto out;
1282
1283 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1284 fa = fa_first;
1285 }
1286 err = -ENOENT;
1287 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1288 goto out;
1289
1290 err = -ENOBUFS;
1291 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1292 if (new_fa == NULL)
1293 goto out;
1294
1295 new_fa->fa_info = fi;
1296 new_fa->fa_tos = tos;
1297 new_fa->fa_type = cfg->fc_type;
1298 new_fa->fa_state = 0;
1299 /*
1300 * Insert new entry to the list.
1301 */
1302
1303 if (!fa_head) {
1304 fa_head = fib_insert_node(t, key, plen);
1305 if (unlikely(!fa_head)) {
1306 err = -ENOMEM;
1307 goto out_free_new_fa;
1308 }
1309 }
1310
1311 if (!plen)
1312 tb->tb_num_default++;
1313
1314 list_add_tail_rcu(&new_fa->fa_list,
1315 (fa ? &fa->fa_list : fa_head));
1316
1317 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1318 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1319 &cfg->fc_nlinfo, 0);
1320succeeded:
1321 return 0;
1322
1323out_free_new_fa:
1324 kmem_cache_free(fn_alias_kmem, new_fa);
1325out:
1326 fib_release_info(fi);
1327err:
1328 return err;
1329}
1330
1331/* should be called with rcu_read_lock */
1332static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
1333 t_key key, const struct flowi4 *flp,
1334 struct fib_result *res, int fib_flags)
1335{
1336 struct leaf_info *li;
1337 struct hlist_head *hhead = &l->list;
1338
1339 hlist_for_each_entry_rcu(li, hhead, hlist) {
1340 struct fib_alias *fa;
1341
1342 if (l->key != (key & li->mask_plen))
1343 continue;
1344
1345 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1346 struct fib_info *fi = fa->fa_info;
1347 int nhsel, err;
1348
1349 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1350 continue;
1351 if (fi->fib_dead)
1352 continue;
1353 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1354 continue;
1355 fib_alias_accessed(fa);
1356 err = fib_props[fa->fa_type].error;
1357 if (err) {
1358#ifdef CONFIG_IP_FIB_TRIE_STATS
1359 t->stats.semantic_match_passed++;
1360#endif
1361 return err;
1362 }
1363 if (fi->fib_flags & RTNH_F_DEAD)
1364 continue;
1365 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1366 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1367
1368 if (nh->nh_flags & RTNH_F_DEAD)
1369 continue;
1370 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1371 continue;
1372
1373#ifdef CONFIG_IP_FIB_TRIE_STATS
1374 t->stats.semantic_match_passed++;
1375#endif
1376 res->prefixlen = li->plen;
1377 res->nh_sel = nhsel;
1378 res->type = fa->fa_type;
1379 res->scope = fa->fa_info->fib_scope;
1380 res->fi = fi;
1381 res->table = tb;
1382 res->fa_head = &li->falh;
1383 if (!(fib_flags & FIB_LOOKUP_NOREF))
1384 atomic_inc(&fi->fib_clntref);
1385 return 0;
1386 }
1387 }
1388
1389#ifdef CONFIG_IP_FIB_TRIE_STATS
1390 t->stats.semantic_match_miss++;
1391#endif
1392 }
1393
1394 return 1;
1395}
1396
1397int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1398 struct fib_result *res, int fib_flags)
1399{
1400 struct trie *t = (struct trie *) tb->tb_data;
1401 int ret;
1402 struct rt_trie_node *n;
1403 struct tnode *pn;
1404 unsigned int pos, bits;
1405 t_key key = ntohl(flp->daddr);
1406 unsigned int chopped_off;
1407 t_key cindex = 0;
1408 unsigned int current_prefix_length = KEYLENGTH;
1409 struct tnode *cn;
1410 t_key pref_mismatch;
1411
1412 rcu_read_lock();
1413
1414 n = rcu_dereference(t->trie);
1415 if (!n)
1416 goto failed;
1417
1418#ifdef CONFIG_IP_FIB_TRIE_STATS
1419 t->stats.gets++;
1420#endif
1421
1422 /* Just a leaf? */
1423 if (IS_LEAF(n)) {
1424 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1425 goto found;
1426 }
1427
1428 pn = (struct tnode *) n;
1429 chopped_off = 0;
1430
1431 while (pn) {
1432 pos = pn->pos;
1433 bits = pn->bits;
1434
1435 if (!chopped_off)
1436 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1437 pos, bits);
1438
1439 n = tnode_get_child_rcu(pn, cindex);
1440
1441 if (n == NULL) {
1442#ifdef CONFIG_IP_FIB_TRIE_STATS
1443 t->stats.null_node_hit++;
1444#endif
1445 goto backtrace;
1446 }
1447
1448 if (IS_LEAF(n)) {
1449 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1450 if (ret > 0)
1451 goto backtrace;
1452 goto found;
1453 }
1454
1455 cn = (struct tnode *)n;
1456
1457 /*
1458 * It's a tnode, and we can do some extra checks here if we
1459 * like, to avoid descending into a dead-end branch.
1460 * This tnode is in the parent's child array at index
1461 * key[p_pos..p_pos+p_bits] but potentially with some bits
1462 * chopped off, so in reality the index may be just a
1463 * subprefix, padded with zero at the end.
1464 * We can also take a look at any skipped bits in this
1465 * tnode - everything up to p_pos is supposed to be ok,
1466 * and the non-chopped bits of the index (se previous
1467 * paragraph) are also guaranteed ok, but the rest is
1468 * considered unknown.
1469 *
1470 * The skipped bits are key[pos+bits..cn->pos].
1471 */
1472
1473 /* If current_prefix_length < pos+bits, we are already doing
1474 * actual prefix matching, which means everything from
1475 * pos+(bits-chopped_off) onward must be zero along some
1476 * branch of this subtree - otherwise there is *no* valid
1477 * prefix present. Here we can only check the skipped
1478 * bits. Remember, since we have already indexed into the
1479 * parent's child array, we know that the bits we chopped of
1480 * *are* zero.
1481 */
1482
1483 /* NOTA BENE: Checking only skipped bits
1484 for the new node here */
1485
1486 if (current_prefix_length < pos+bits) {
1487 if (tkey_extract_bits(cn->key, current_prefix_length,
1488 cn->pos - current_prefix_length)
1489 || !(cn->child[0]))
1490 goto backtrace;
1491 }
1492
1493 /*
1494 * If chopped_off=0, the index is fully validated and we
1495 * only need to look at the skipped bits for this, the new,
1496 * tnode. What we actually want to do is to find out if
1497 * these skipped bits match our key perfectly, or if we will
1498 * have to count on finding a matching prefix further down,
1499 * because if we do, we would like to have some way of
1500 * verifying the existence of such a prefix at this point.
1501 */
1502
1503 /* The only thing we can do at this point is to verify that
1504 * any such matching prefix can indeed be a prefix to our
1505 * key, and if the bits in the node we are inspecting that
1506 * do not match our key are not ZERO, this cannot be true.
1507 * Thus, find out where there is a mismatch (before cn->pos)
1508 * and verify that all the mismatching bits are zero in the
1509 * new tnode's key.
1510 */
1511
1512 /*
1513 * Note: We aren't very concerned about the piece of
1514 * the key that precede pn->pos+pn->bits, since these
1515 * have already been checked. The bits after cn->pos
1516 * aren't checked since these are by definition
1517 * "unknown" at this point. Thus, what we want to see
1518 * is if we are about to enter the "prefix matching"
1519 * state, and in that case verify that the skipped
1520 * bits that will prevail throughout this subtree are
1521 * zero, as they have to be if we are to find a
1522 * matching prefix.
1523 */
1524
1525 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
1526
1527 /*
1528 * In short: If skipped bits in this node do not match
1529 * the search key, enter the "prefix matching"
1530 * state.directly.
1531 */
1532 if (pref_mismatch) {
1533 /* fls(x) = __fls(x) + 1 */
1534 int mp = KEYLENGTH - __fls(pref_mismatch) - 1;
1535
1536 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
1537 goto backtrace;
1538
1539 if (current_prefix_length >= cn->pos)
1540 current_prefix_length = mp;
1541 }
1542
1543 pn = (struct tnode *)n; /* Descend */
1544 chopped_off = 0;
1545 continue;
1546
1547backtrace:
1548 chopped_off++;
1549
1550 /* As zero don't change the child key (cindex) */
1551 while ((chopped_off <= pn->bits)
1552 && !(cindex & (1<<(chopped_off-1))))
1553 chopped_off++;
1554
1555 /* Decrease current_... with bits chopped off */
1556 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1557 current_prefix_length = pn->pos + pn->bits
1558 - chopped_off;
1559
1560 /*
1561 * Either we do the actual chop off according or if we have
1562 * chopped off all bits in this tnode walk up to our parent.
1563 */
1564
1565 if (chopped_off <= pn->bits) {
1566 cindex &= ~(1 << (chopped_off-1));
1567 } else {
1568 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
1569 if (!parent)
1570 goto failed;
1571
1572 /* Get Child's index */
1573 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1574 pn = parent;
1575 chopped_off = 0;
1576
1577#ifdef CONFIG_IP_FIB_TRIE_STATS
1578 t->stats.backtrack++;
1579#endif
1580 goto backtrace;
1581 }
1582 }
1583failed:
1584 ret = 1;
1585found:
1586 rcu_read_unlock();
1587 return ret;
1588}
1589EXPORT_SYMBOL_GPL(fib_table_lookup);
1590
1591/*
1592 * Remove the leaf and return parent.
1593 */
1594static void trie_leaf_remove(struct trie *t, struct leaf *l)
1595{
1596 struct tnode *tp = node_parent((struct rt_trie_node *) l);
1597
1598 pr_debug("entering trie_leaf_remove(%p)\n", l);
1599
1600 if (tp) {
1601 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1602 put_child(tp, cindex, NULL);
1603 trie_rebalance(t, tp);
1604 } else
1605 RCU_INIT_POINTER(t->trie, NULL);
1606
1607 free_leaf(l);
1608}
1609
1610/*
1611 * Caller must hold RTNL.
1612 */
1613int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1614{
1615 struct trie *t = (struct trie *) tb->tb_data;
1616 u32 key, mask;
1617 int plen = cfg->fc_dst_len;
1618 u8 tos = cfg->fc_tos;
1619 struct fib_alias *fa, *fa_to_delete;
1620 struct list_head *fa_head;
1621 struct leaf *l;
1622 struct leaf_info *li;
1623
1624 if (plen > 32)
1625 return -EINVAL;
1626
1627 key = ntohl(cfg->fc_dst);
1628 mask = ntohl(inet_make_mask(plen));
1629
1630 if (key & ~mask)
1631 return -EINVAL;
1632
1633 key = key & mask;
1634 l = fib_find_node(t, key);
1635
1636 if (!l)
1637 return -ESRCH;
1638
1639 li = find_leaf_info(l, plen);
1640
1641 if (!li)
1642 return -ESRCH;
1643
1644 fa_head = &li->falh;
1645 fa = fib_find_alias(fa_head, tos, 0);
1646
1647 if (!fa)
1648 return -ESRCH;
1649
1650 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1651
1652 fa_to_delete = NULL;
1653 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1654 list_for_each_entry_continue(fa, fa_head, fa_list) {
1655 struct fib_info *fi = fa->fa_info;
1656
1657 if (fa->fa_tos != tos)
1658 break;
1659
1660 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1661 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1662 fa->fa_info->fib_scope == cfg->fc_scope) &&
1663 (!cfg->fc_prefsrc ||
1664 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1665 (!cfg->fc_protocol ||
1666 fi->fib_protocol == cfg->fc_protocol) &&
1667 fib_nh_match(cfg, fi) == 0) {
1668 fa_to_delete = fa;
1669 break;
1670 }
1671 }
1672
1673 if (!fa_to_delete)
1674 return -ESRCH;
1675
1676 fa = fa_to_delete;
1677 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1678 &cfg->fc_nlinfo, 0);
1679
1680 list_del_rcu(&fa->fa_list);
1681
1682 if (!plen)
1683 tb->tb_num_default--;
1684
1685 if (list_empty(fa_head)) {
1686 hlist_del_rcu(&li->hlist);
1687 free_leaf_info(li);
1688 }
1689
1690 if (hlist_empty(&l->list))
1691 trie_leaf_remove(t, l);
1692
1693 if (fa->fa_state & FA_S_ACCESSED)
1694 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1695
1696 fib_release_info(fa->fa_info);
1697 alias_free_mem_rcu(fa);
1698 return 0;
1699}
1700
1701static int trie_flush_list(struct list_head *head)
1702{
1703 struct fib_alias *fa, *fa_node;
1704 int found = 0;
1705
1706 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1707 struct fib_info *fi = fa->fa_info;
1708
1709 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1710 list_del_rcu(&fa->fa_list);
1711 fib_release_info(fa->fa_info);
1712 alias_free_mem_rcu(fa);
1713 found++;
1714 }
1715 }
1716 return found;
1717}
1718
1719static int trie_flush_leaf(struct leaf *l)
1720{
1721 int found = 0;
1722 struct hlist_head *lih = &l->list;
1723 struct hlist_node *tmp;
1724 struct leaf_info *li = NULL;
1725
1726 hlist_for_each_entry_safe(li, tmp, lih, hlist) {
1727 found += trie_flush_list(&li->falh);
1728
1729 if (list_empty(&li->falh)) {
1730 hlist_del_rcu(&li->hlist);
1731 free_leaf_info(li);
1732 }
1733 }
1734 return found;
1735}
1736
1737/*
1738 * Scan for the next right leaf starting at node p->child[idx]
1739 * Since we have back pointer, no recursion necessary.
1740 */
1741static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
1742{
1743 do {
1744 t_key idx;
1745
1746 if (c)
1747 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1748 else
1749 idx = 0;
1750
1751 while (idx < 1u << p->bits) {
1752 c = tnode_get_child_rcu(p, idx++);
1753 if (!c)
1754 continue;
1755
1756 if (IS_LEAF(c))
1757 return (struct leaf *) c;
1758
1759 /* Rescan start scanning in new node */
1760 p = (struct tnode *) c;
1761 idx = 0;
1762 }
1763
1764 /* Node empty, walk back up to parent */
1765 c = (struct rt_trie_node *) p;
1766 } while ((p = node_parent_rcu(c)) != NULL);
1767
1768 return NULL; /* Root of trie */
1769}
1770
1771static struct leaf *trie_firstleaf(struct trie *t)
1772{
1773 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
1774
1775 if (!n)
1776 return NULL;
1777
1778 if (IS_LEAF(n)) /* trie is just a leaf */
1779 return (struct leaf *) n;
1780
1781 return leaf_walk_rcu(n, NULL);
1782}
1783
1784static struct leaf *trie_nextleaf(struct leaf *l)
1785{
1786 struct rt_trie_node *c = (struct rt_trie_node *) l;
1787 struct tnode *p = node_parent_rcu(c);
1788
1789 if (!p)
1790 return NULL; /* trie with just one leaf */
1791
1792 return leaf_walk_rcu(p, c);
1793}
1794
1795static struct leaf *trie_leafindex(struct trie *t, int index)
1796{
1797 struct leaf *l = trie_firstleaf(t);
1798
1799 while (l && index-- > 0)
1800 l = trie_nextleaf(l);
1801
1802 return l;
1803}
1804
1805
1806/*
1807 * Caller must hold RTNL.
1808 */
1809int fib_table_flush(struct fib_table *tb)
1810{
1811 struct trie *t = (struct trie *) tb->tb_data;
1812 struct leaf *l, *ll = NULL;
1813 int found = 0;
1814
1815 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1816 found += trie_flush_leaf(l);
1817
1818 if (ll && hlist_empty(&ll->list))
1819 trie_leaf_remove(t, ll);
1820 ll = l;
1821 }
1822
1823 if (ll && hlist_empty(&ll->list))
1824 trie_leaf_remove(t, ll);
1825
1826 pr_debug("trie_flush found=%d\n", found);
1827 return found;
1828}
1829
1830void fib_free_table(struct fib_table *tb)
1831{
1832 kfree(tb);
1833}
1834
1835static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1836 struct fib_table *tb,
1837 struct sk_buff *skb, struct netlink_callback *cb)
1838{
1839 int i, s_i;
1840 struct fib_alias *fa;
1841 __be32 xkey = htonl(key);
1842
1843 s_i = cb->args[5];
1844 i = 0;
1845
1846 /* rcu_read_lock is hold by caller */
1847
1848 list_for_each_entry_rcu(fa, fah, fa_list) {
1849 if (i < s_i) {
1850 i++;
1851 continue;
1852 }
1853
1854 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1855 cb->nlh->nlmsg_seq,
1856 RTM_NEWROUTE,
1857 tb->tb_id,
1858 fa->fa_type,
1859 xkey,
1860 plen,
1861 fa->fa_tos,
1862 fa->fa_info, NLM_F_MULTI) < 0) {
1863 cb->args[5] = i;
1864 return -1;
1865 }
1866 i++;
1867 }
1868 cb->args[5] = i;
1869 return skb->len;
1870}
1871
1872static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1873 struct sk_buff *skb, struct netlink_callback *cb)
1874{
1875 struct leaf_info *li;
1876 int i, s_i;
1877
1878 s_i = cb->args[4];
1879 i = 0;
1880
1881 /* rcu_read_lock is hold by caller */
1882 hlist_for_each_entry_rcu(li, &l->list, hlist) {
1883 if (i < s_i) {
1884 i++;
1885 continue;
1886 }
1887
1888 if (i > s_i)
1889 cb->args[5] = 0;
1890
1891 if (list_empty(&li->falh))
1892 continue;
1893
1894 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1895 cb->args[4] = i;
1896 return -1;
1897 }
1898 i++;
1899 }
1900
1901 cb->args[4] = i;
1902 return skb->len;
1903}
1904
1905int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1906 struct netlink_callback *cb)
1907{
1908 struct leaf *l;
1909 struct trie *t = (struct trie *) tb->tb_data;
1910 t_key key = cb->args[2];
1911 int count = cb->args[3];
1912
1913 rcu_read_lock();
1914 /* Dump starting at last key.
1915 * Note: 0.0.0.0/0 (ie default) is first key.
1916 */
1917 if (count == 0)
1918 l = trie_firstleaf(t);
1919 else {
1920 /* Normally, continue from last key, but if that is missing
1921 * fallback to using slow rescan
1922 */
1923 l = fib_find_node(t, key);
1924 if (!l)
1925 l = trie_leafindex(t, count);
1926 }
1927
1928 while (l) {
1929 cb->args[2] = l->key;
1930 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1931 cb->args[3] = count;
1932 rcu_read_unlock();
1933 return -1;
1934 }
1935
1936 ++count;
1937 l = trie_nextleaf(l);
1938 memset(&cb->args[4], 0,
1939 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1940 }
1941 cb->args[3] = count;
1942 rcu_read_unlock();
1943
1944 return skb->len;
1945}
1946
1947void __init fib_trie_init(void)
1948{
1949 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1950 sizeof(struct fib_alias),
1951 0, SLAB_PANIC, NULL);
1952
1953 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1954 max(sizeof(struct leaf),
1955 sizeof(struct leaf_info)),
1956 0, SLAB_PANIC, NULL);
1957}
1958
1959
1960struct fib_table *fib_trie_table(u32 id)
1961{
1962 struct fib_table *tb;
1963 struct trie *t;
1964
1965 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1966 GFP_KERNEL);
1967 if (tb == NULL)
1968 return NULL;
1969
1970 tb->tb_id = id;
1971 tb->tb_default = -1;
1972 tb->tb_num_default = 0;
1973
1974 t = (struct trie *) tb->tb_data;
1975 memset(t, 0, sizeof(*t));
1976
1977 return tb;
1978}
1979
1980#ifdef CONFIG_PROC_FS
1981/* Depth first Trie walk iterator */
1982struct fib_trie_iter {
1983 struct seq_net_private p;
1984 struct fib_table *tb;
1985 struct tnode *tnode;
1986 unsigned int index;
1987 unsigned int depth;
1988};
1989
1990static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
1991{
1992 struct tnode *tn = iter->tnode;
1993 unsigned int cindex = iter->index;
1994 struct tnode *p;
1995
1996 /* A single entry routing table */
1997 if (!tn)
1998 return NULL;
1999
2000 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2001 iter->tnode, iter->index, iter->depth);
2002rescan:
2003 while (cindex < (1<<tn->bits)) {
2004 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
2005
2006 if (n) {
2007 if (IS_LEAF(n)) {
2008 iter->tnode = tn;
2009 iter->index = cindex + 1;
2010 } else {
2011 /* push down one level */
2012 iter->tnode = (struct tnode *) n;
2013 iter->index = 0;
2014 ++iter->depth;
2015 }
2016 return n;
2017 }
2018
2019 ++cindex;
2020 }
2021
2022 /* Current node exhausted, pop back up */
2023 p = node_parent_rcu((struct rt_trie_node *)tn);
2024 if (p) {
2025 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2026 tn = p;
2027 --iter->depth;
2028 goto rescan;
2029 }
2030
2031 /* got root? */
2032 return NULL;
2033}
2034
2035static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
2036 struct trie *t)
2037{
2038 struct rt_trie_node *n;
2039
2040 if (!t)
2041 return NULL;
2042
2043 n = rcu_dereference(t->trie);
2044 if (!n)
2045 return NULL;
2046
2047 if (IS_TNODE(n)) {
2048 iter->tnode = (struct tnode *) n;
2049 iter->index = 0;
2050 iter->depth = 1;
2051 } else {
2052 iter->tnode = NULL;
2053 iter->index = 0;
2054 iter->depth = 0;
2055 }
2056
2057 return n;
2058}
2059
2060static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2061{
2062 struct rt_trie_node *n;
2063 struct fib_trie_iter iter;
2064
2065 memset(s, 0, sizeof(*s));
2066
2067 rcu_read_lock();
2068 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2069 if (IS_LEAF(n)) {
2070 struct leaf *l = (struct leaf *)n;
2071 struct leaf_info *li;
2072
2073 s->leaves++;
2074 s->totdepth += iter.depth;
2075 if (iter.depth > s->maxdepth)
2076 s->maxdepth = iter.depth;
2077
2078 hlist_for_each_entry_rcu(li, &l->list, hlist)
2079 ++s->prefixes;
2080 } else {
2081 const struct tnode *tn = (const struct tnode *) n;
2082 int i;
2083
2084 s->tnodes++;
2085 if (tn->bits < MAX_STAT_DEPTH)
2086 s->nodesizes[tn->bits]++;
2087
2088 for (i = 0; i < (1<<tn->bits); i++)
2089 if (!tn->child[i])
2090 s->nullpointers++;
2091 }
2092 }
2093 rcu_read_unlock();
2094}
2095
2096/*
2097 * This outputs /proc/net/fib_triestats
2098 */
2099static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2100{
2101 unsigned int i, max, pointers, bytes, avdepth;
2102
2103 if (stat->leaves)
2104 avdepth = stat->totdepth*100 / stat->leaves;
2105 else
2106 avdepth = 0;
2107
2108 seq_printf(seq, "\tAver depth: %u.%02d\n",
2109 avdepth / 100, avdepth % 100);
2110 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2111
2112 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2113 bytes = sizeof(struct leaf) * stat->leaves;
2114
2115 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2116 bytes += sizeof(struct leaf_info) * stat->prefixes;
2117
2118 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2119 bytes += sizeof(struct tnode) * stat->tnodes;
2120
2121 max = MAX_STAT_DEPTH;
2122 while (max > 0 && stat->nodesizes[max-1] == 0)
2123 max--;
2124
2125 pointers = 0;
2126 for (i = 1; i < max; i++)
2127 if (stat->nodesizes[i] != 0) {
2128 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2129 pointers += (1<<i) * stat->nodesizes[i];
2130 }
2131 seq_putc(seq, '\n');
2132 seq_printf(seq, "\tPointers: %u\n", pointers);
2133
2134 bytes += sizeof(struct rt_trie_node *) * pointers;
2135 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2136 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2137}
2138
2139#ifdef CONFIG_IP_FIB_TRIE_STATS
2140static void trie_show_usage(struct seq_file *seq,
2141 const struct trie_use_stats *stats)
2142{
2143 seq_printf(seq, "\nCounters:\n---------\n");
2144 seq_printf(seq, "gets = %u\n", stats->gets);
2145 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2146 seq_printf(seq, "semantic match passed = %u\n",
2147 stats->semantic_match_passed);
2148 seq_printf(seq, "semantic match miss = %u\n",
2149 stats->semantic_match_miss);
2150 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2151 seq_printf(seq, "skipped node resize = %u\n\n",
2152 stats->resize_node_skipped);
2153}
2154#endif /* CONFIG_IP_FIB_TRIE_STATS */
2155
2156static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2157{
2158 if (tb->tb_id == RT_TABLE_LOCAL)
2159 seq_puts(seq, "Local:\n");
2160 else if (tb->tb_id == RT_TABLE_MAIN)
2161 seq_puts(seq, "Main:\n");
2162 else
2163 seq_printf(seq, "Id %d:\n", tb->tb_id);
2164}
2165
2166
2167static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2168{
2169 struct net *net = (struct net *)seq->private;
2170 unsigned int h;
2171
2172 seq_printf(seq,
2173 "Basic info: size of leaf:"
2174 " %Zd bytes, size of tnode: %Zd bytes.\n",
2175 sizeof(struct leaf), sizeof(struct tnode));
2176
2177 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2178 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2179 struct fib_table *tb;
2180
2181 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2182 struct trie *t = (struct trie *) tb->tb_data;
2183 struct trie_stat stat;
2184
2185 if (!t)
2186 continue;
2187
2188 fib_table_print(seq, tb);
2189
2190 trie_collect_stats(t, &stat);
2191 trie_show_stats(seq, &stat);
2192#ifdef CONFIG_IP_FIB_TRIE_STATS
2193 trie_show_usage(seq, &t->stats);
2194#endif
2195 }
2196 }
2197
2198 return 0;
2199}
2200
2201static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2202{
2203 return single_open_net(inode, file, fib_triestat_seq_show);
2204}
2205
2206static const struct file_operations fib_triestat_fops = {
2207 .owner = THIS_MODULE,
2208 .open = fib_triestat_seq_open,
2209 .read = seq_read,
2210 .llseek = seq_lseek,
2211 .release = single_release_net,
2212};
2213
2214static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2215{
2216 struct fib_trie_iter *iter = seq->private;
2217 struct net *net = seq_file_net(seq);
2218 loff_t idx = 0;
2219 unsigned int h;
2220
2221 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2222 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2223 struct fib_table *tb;
2224
2225 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2226 struct rt_trie_node *n;
2227
2228 for (n = fib_trie_get_first(iter,
2229 (struct trie *) tb->tb_data);
2230 n; n = fib_trie_get_next(iter))
2231 if (pos == idx++) {
2232 iter->tb = tb;
2233 return n;
2234 }
2235 }
2236 }
2237
2238 return NULL;
2239}
2240
2241static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2242 __acquires(RCU)
2243{
2244 rcu_read_lock();
2245 return fib_trie_get_idx(seq, *pos);
2246}
2247
2248static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2249{
2250 struct fib_trie_iter *iter = seq->private;
2251 struct net *net = seq_file_net(seq);
2252 struct fib_table *tb = iter->tb;
2253 struct hlist_node *tb_node;
2254 unsigned int h;
2255 struct rt_trie_node *n;
2256
2257 ++*pos;
2258 /* next node in same table */
2259 n = fib_trie_get_next(iter);
2260 if (n)
2261 return n;
2262
2263 /* walk rest of this hash chain */
2264 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2265 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2266 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2267 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2268 if (n)
2269 goto found;
2270 }
2271
2272 /* new hash chain */
2273 while (++h < FIB_TABLE_HASHSZ) {
2274 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2275 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2276 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2277 if (n)
2278 goto found;
2279 }
2280 }
2281 return NULL;
2282
2283found:
2284 iter->tb = tb;
2285 return n;
2286}
2287
2288static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2289 __releases(RCU)
2290{
2291 rcu_read_unlock();
2292}
2293
2294static void seq_indent(struct seq_file *seq, int n)
2295{
2296 while (n-- > 0)
2297 seq_puts(seq, " ");
2298}
2299
2300static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2301{
2302 switch (s) {
2303 case RT_SCOPE_UNIVERSE: return "universe";
2304 case RT_SCOPE_SITE: return "site";
2305 case RT_SCOPE_LINK: return "link";
2306 case RT_SCOPE_HOST: return "host";
2307 case RT_SCOPE_NOWHERE: return "nowhere";
2308 default:
2309 snprintf(buf, len, "scope=%d", s);
2310 return buf;
2311 }
2312}
2313
2314static const char *const rtn_type_names[__RTN_MAX] = {
2315 [RTN_UNSPEC] = "UNSPEC",
2316 [RTN_UNICAST] = "UNICAST",
2317 [RTN_LOCAL] = "LOCAL",
2318 [RTN_BROADCAST] = "BROADCAST",
2319 [RTN_ANYCAST] = "ANYCAST",
2320 [RTN_MULTICAST] = "MULTICAST",
2321 [RTN_BLACKHOLE] = "BLACKHOLE",
2322 [RTN_UNREACHABLE] = "UNREACHABLE",
2323 [RTN_PROHIBIT] = "PROHIBIT",
2324 [RTN_THROW] = "THROW",
2325 [RTN_NAT] = "NAT",
2326 [RTN_XRESOLVE] = "XRESOLVE",
2327};
2328
2329static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2330{
2331 if (t < __RTN_MAX && rtn_type_names[t])
2332 return rtn_type_names[t];
2333 snprintf(buf, len, "type %u", t);
2334 return buf;
2335}
2336
2337/* Pretty print the trie */
2338static int fib_trie_seq_show(struct seq_file *seq, void *v)
2339{
2340 const struct fib_trie_iter *iter = seq->private;
2341 struct rt_trie_node *n = v;
2342
2343 if (!node_parent_rcu(n))
2344 fib_table_print(seq, iter->tb);
2345
2346 if (IS_TNODE(n)) {
2347 struct tnode *tn = (struct tnode *) n;
2348 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2349
2350 seq_indent(seq, iter->depth-1);
2351 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2352 &prf, tn->pos, tn->bits, tn->full_children,
2353 tn->empty_children);
2354
2355 } else {
2356 struct leaf *l = (struct leaf *) n;
2357 struct leaf_info *li;
2358 __be32 val = htonl(l->key);
2359
2360 seq_indent(seq, iter->depth);
2361 seq_printf(seq, " |-- %pI4\n", &val);
2362
2363 hlist_for_each_entry_rcu(li, &l->list, hlist) {
2364 struct fib_alias *fa;
2365
2366 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2367 char buf1[32], buf2[32];
2368
2369 seq_indent(seq, iter->depth+1);
2370 seq_printf(seq, " /%d %s %s", li->plen,
2371 rtn_scope(buf1, sizeof(buf1),
2372 fa->fa_info->fib_scope),
2373 rtn_type(buf2, sizeof(buf2),
2374 fa->fa_type));
2375 if (fa->fa_tos)
2376 seq_printf(seq, " tos=%d", fa->fa_tos);
2377 seq_putc(seq, '\n');
2378 }
2379 }
2380 }
2381
2382 return 0;
2383}
2384
2385static const struct seq_operations fib_trie_seq_ops = {
2386 .start = fib_trie_seq_start,
2387 .next = fib_trie_seq_next,
2388 .stop = fib_trie_seq_stop,
2389 .show = fib_trie_seq_show,
2390};
2391
2392static int fib_trie_seq_open(struct inode *inode, struct file *file)
2393{
2394 return seq_open_net(inode, file, &fib_trie_seq_ops,
2395 sizeof(struct fib_trie_iter));
2396}
2397
2398static const struct file_operations fib_trie_fops = {
2399 .owner = THIS_MODULE,
2400 .open = fib_trie_seq_open,
2401 .read = seq_read,
2402 .llseek = seq_lseek,
2403 .release = seq_release_net,
2404};
2405
2406struct fib_route_iter {
2407 struct seq_net_private p;
2408 struct trie *main_trie;
2409 loff_t pos;
2410 t_key key;
2411};
2412
2413static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2414{
2415 struct leaf *l = NULL;
2416 struct trie *t = iter->main_trie;
2417
2418 /* use cache location of last found key */
2419 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2420 pos -= iter->pos;
2421 else {
2422 iter->pos = 0;
2423 l = trie_firstleaf(t);
2424 }
2425
2426 while (l && pos-- > 0) {
2427 iter->pos++;
2428 l = trie_nextleaf(l);
2429 }
2430
2431 if (l)
2432 iter->key = pos; /* remember it */
2433 else
2434 iter->pos = 0; /* forget it */
2435
2436 return l;
2437}
2438
2439static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2440 __acquires(RCU)
2441{
2442 struct fib_route_iter *iter = seq->private;
2443 struct fib_table *tb;
2444
2445 rcu_read_lock();
2446 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2447 if (!tb)
2448 return NULL;
2449
2450 iter->main_trie = (struct trie *) tb->tb_data;
2451 if (*pos == 0)
2452 return SEQ_START_TOKEN;
2453 else
2454 return fib_route_get_idx(iter, *pos - 1);
2455}
2456
2457static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2458{
2459 struct fib_route_iter *iter = seq->private;
2460 struct leaf *l = v;
2461
2462 ++*pos;
2463 if (v == SEQ_START_TOKEN) {
2464 iter->pos = 0;
2465 l = trie_firstleaf(iter->main_trie);
2466 } else {
2467 iter->pos++;
2468 l = trie_nextleaf(l);
2469 }
2470
2471 if (l)
2472 iter->key = l->key;
2473 else
2474 iter->pos = 0;
2475 return l;
2476}
2477
2478static void fib_route_seq_stop(struct seq_file *seq, void *v)
2479 __releases(RCU)
2480{
2481 rcu_read_unlock();
2482}
2483
2484static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2485{
2486 unsigned int flags = 0;
2487
2488 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2489 flags = RTF_REJECT;
2490 if (fi && fi->fib_nh->nh_gw)
2491 flags |= RTF_GATEWAY;
2492 if (mask == htonl(0xFFFFFFFF))
2493 flags |= RTF_HOST;
2494 flags |= RTF_UP;
2495 return flags;
2496}
2497
2498/*
2499 * This outputs /proc/net/route.
2500 * The format of the file is not supposed to be changed
2501 * and needs to be same as fib_hash output to avoid breaking
2502 * legacy utilities
2503 */
2504static int fib_route_seq_show(struct seq_file *seq, void *v)
2505{
2506 struct leaf *l = v;
2507 struct leaf_info *li;
2508
2509 if (v == SEQ_START_TOKEN) {
2510 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2511 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2512 "\tWindow\tIRTT");
2513 return 0;
2514 }
2515
2516 hlist_for_each_entry_rcu(li, &l->list, hlist) {
2517 struct fib_alias *fa;
2518 __be32 mask, prefix;
2519
2520 mask = inet_make_mask(li->plen);
2521 prefix = htonl(l->key);
2522
2523 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2524 const struct fib_info *fi = fa->fa_info;
2525 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2526
2527 if (fa->fa_type == RTN_BROADCAST
2528 || fa->fa_type == RTN_MULTICAST)
2529 continue;
2530
2531 seq_setwidth(seq, 127);
2532
2533 if (fi)
2534 seq_printf(seq,
2535 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2536 "%d\t%08X\t%d\t%u\t%u",
2537 fi->fib_dev ? fi->fib_dev->name : "*",
2538 prefix,
2539 fi->fib_nh->nh_gw, flags, 0, 0,
2540 fi->fib_priority,
2541 mask,
2542 (fi->fib_advmss ?
2543 fi->fib_advmss + 40 : 0),
2544 fi->fib_window,
2545 fi->fib_rtt >> 3);
2546 else
2547 seq_printf(seq,
2548 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2549 "%d\t%08X\t%d\t%u\t%u",
2550 prefix, 0, flags, 0, 0, 0,
2551 mask, 0, 0, 0);
2552
2553 seq_pad(seq, '\n');
2554 }
2555 }
2556
2557 return 0;
2558}
2559
2560static const struct seq_operations fib_route_seq_ops = {
2561 .start = fib_route_seq_start,
2562 .next = fib_route_seq_next,
2563 .stop = fib_route_seq_stop,
2564 .show = fib_route_seq_show,
2565};
2566
2567static int fib_route_seq_open(struct inode *inode, struct file *file)
2568{
2569 return seq_open_net(inode, file, &fib_route_seq_ops,
2570 sizeof(struct fib_route_iter));
2571}
2572
2573static const struct file_operations fib_route_fops = {
2574 .owner = THIS_MODULE,
2575 .open = fib_route_seq_open,
2576 .read = seq_read,
2577 .llseek = seq_lseek,
2578 .release = seq_release_net,
2579};
2580
2581int __net_init fib_proc_init(struct net *net)
2582{
2583 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2584 goto out1;
2585
2586 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2587 &fib_triestat_fops))
2588 goto out2;
2589
2590 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2591 goto out3;
2592
2593 return 0;
2594
2595out3:
2596 remove_proc_entry("fib_triestat", net->proc_net);
2597out2:
2598 remove_proc_entry("fib_trie", net->proc_net);
2599out1:
2600 return -ENOMEM;
2601}
2602
2603void __net_exit fib_proc_exit(struct net *net)
2604{
2605 remove_proc_entry("fib_trie", net->proc_net);
2606 remove_proc_entry("fib_triestat", net->proc_net);
2607 remove_proc_entry("route", net->proc_net);
2608}
2609
2610#endif /* CONFIG_PROC_FS */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *
4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5 * & Swedish University of Agricultural Sciences.
6 *
7 * Jens Laas <jens.laas@data.slu.se> Swedish University of
8 * Agricultural Sciences.
9 *
10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
11 *
12 * This work is based on the LPC-trie which is originally described in:
13 *
14 * An experimental study of compression methods for dynamic tries
15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/
17 *
18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
20 *
21 * Code from fib_hash has been reused which includes the following header:
22 *
23 * INET An implementation of the TCP/IP protocol suite for the LINUX
24 * operating system. INET is implemented using the BSD Socket
25 * interface as the means of communication with the user level.
26 *
27 * IPv4 FIB: lookup engine and maintenance routines.
28 *
29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
30 *
31 * Substantial contributions to this work comes from:
32 *
33 * David S. Miller, <davem@davemloft.net>
34 * Stephen Hemminger <shemminger@osdl.org>
35 * Paul E. McKenney <paulmck@us.ibm.com>
36 * Patrick McHardy <kaber@trash.net>
37 */
38#include <linux/cache.h>
39#include <linux/uaccess.h>
40#include <linux/bitops.h>
41#include <linux/types.h>
42#include <linux/kernel.h>
43#include <linux/mm.h>
44#include <linux/string.h>
45#include <linux/socket.h>
46#include <linux/sockios.h>
47#include <linux/errno.h>
48#include <linux/in.h>
49#include <linux/inet.h>
50#include <linux/inetdevice.h>
51#include <linux/netdevice.h>
52#include <linux/if_arp.h>
53#include <linux/proc_fs.h>
54#include <linux/rcupdate.h>
55#include <linux/rcupdate_wait.h>
56#include <linux/skbuff.h>
57#include <linux/netlink.h>
58#include <linux/init.h>
59#include <linux/list.h>
60#include <linux/slab.h>
61#include <linux/export.h>
62#include <linux/vmalloc.h>
63#include <linux/notifier.h>
64#include <net/net_namespace.h>
65#include <net/inet_dscp.h>
66#include <net/ip.h>
67#include <net/protocol.h>
68#include <net/route.h>
69#include <net/tcp.h>
70#include <net/sock.h>
71#include <net/ip_fib.h>
72#include <net/fib_notifier.h>
73#include <trace/events/fib.h>
74#include "fib_lookup.h"
75
76static int call_fib_entry_notifier(struct notifier_block *nb,
77 enum fib_event_type event_type, u32 dst,
78 int dst_len, struct fib_alias *fa,
79 struct netlink_ext_ack *extack)
80{
81 struct fib_entry_notifier_info info = {
82 .info.extack = extack,
83 .dst = dst,
84 .dst_len = dst_len,
85 .fi = fa->fa_info,
86 .dscp = fa->fa_dscp,
87 .type = fa->fa_type,
88 .tb_id = fa->tb_id,
89 };
90 return call_fib4_notifier(nb, event_type, &info.info);
91}
92
93static int call_fib_entry_notifiers(struct net *net,
94 enum fib_event_type event_type, u32 dst,
95 int dst_len, struct fib_alias *fa,
96 struct netlink_ext_ack *extack)
97{
98 struct fib_entry_notifier_info info = {
99 .info.extack = extack,
100 .dst = dst,
101 .dst_len = dst_len,
102 .fi = fa->fa_info,
103 .dscp = fa->fa_dscp,
104 .type = fa->fa_type,
105 .tb_id = fa->tb_id,
106 };
107 return call_fib4_notifiers(net, event_type, &info.info);
108}
109
110#define MAX_STAT_DEPTH 32
111
112#define KEYLENGTH (8*sizeof(t_key))
113#define KEY_MAX ((t_key)~0)
114
115typedef unsigned int t_key;
116
117#define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
118#define IS_TNODE(n) ((n)->bits)
119#define IS_LEAF(n) (!(n)->bits)
120
121struct key_vector {
122 t_key key;
123 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
124 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
125 unsigned char slen;
126 union {
127 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
128 struct hlist_head leaf;
129 /* This array is valid if (pos | bits) > 0 (TNODE) */
130 DECLARE_FLEX_ARRAY(struct key_vector __rcu *, tnode);
131 };
132};
133
134struct tnode {
135 struct rcu_head rcu;
136 t_key empty_children; /* KEYLENGTH bits needed */
137 t_key full_children; /* KEYLENGTH bits needed */
138 struct key_vector __rcu *parent;
139 struct key_vector kv[1];
140#define tn_bits kv[0].bits
141};
142
143#define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
144#define LEAF_SIZE TNODE_SIZE(1)
145
146#ifdef CONFIG_IP_FIB_TRIE_STATS
147struct trie_use_stats {
148 unsigned int gets;
149 unsigned int backtrack;
150 unsigned int semantic_match_passed;
151 unsigned int semantic_match_miss;
152 unsigned int null_node_hit;
153 unsigned int resize_node_skipped;
154};
155#endif
156
157struct trie_stat {
158 unsigned int totdepth;
159 unsigned int maxdepth;
160 unsigned int tnodes;
161 unsigned int leaves;
162 unsigned int nullpointers;
163 unsigned int prefixes;
164 unsigned int nodesizes[MAX_STAT_DEPTH];
165};
166
167struct trie {
168 struct key_vector kv[1];
169#ifdef CONFIG_IP_FIB_TRIE_STATS
170 struct trie_use_stats __percpu *stats;
171#endif
172};
173
174static struct key_vector *resize(struct trie *t, struct key_vector *tn);
175static unsigned int tnode_free_size;
176
177/*
178 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
179 * especially useful before resizing the root node with PREEMPT_NONE configs;
180 * the value was obtained experimentally, aiming to avoid visible slowdown.
181 */
182unsigned int sysctl_fib_sync_mem = 512 * 1024;
183unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
184unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
185
186static struct kmem_cache *fn_alias_kmem __ro_after_init;
187static struct kmem_cache *trie_leaf_kmem __ro_after_init;
188
189static inline struct tnode *tn_info(struct key_vector *kv)
190{
191 return container_of(kv, struct tnode, kv[0]);
192}
193
194/* caller must hold RTNL */
195#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
196#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
197
198/* caller must hold RCU read lock or RTNL */
199#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
200#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
201
202/* wrapper for rcu_assign_pointer */
203static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
204{
205 if (n)
206 rcu_assign_pointer(tn_info(n)->parent, tp);
207}
208
209#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
210
211/* This provides us with the number of children in this node, in the case of a
212 * leaf this will return 0 meaning none of the children are accessible.
213 */
214static inline unsigned long child_length(const struct key_vector *tn)
215{
216 return (1ul << tn->bits) & ~(1ul);
217}
218
219#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
220
221static inline unsigned long get_index(t_key key, struct key_vector *kv)
222{
223 unsigned long index = key ^ kv->key;
224
225 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
226 return 0;
227
228 return index >> kv->pos;
229}
230
231/* To understand this stuff, an understanding of keys and all their bits is
232 * necessary. Every node in the trie has a key associated with it, but not
233 * all of the bits in that key are significant.
234 *
235 * Consider a node 'n' and its parent 'tp'.
236 *
237 * If n is a leaf, every bit in its key is significant. Its presence is
238 * necessitated by path compression, since during a tree traversal (when
239 * searching for a leaf - unless we are doing an insertion) we will completely
240 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
241 * a potentially successful search, that we have indeed been walking the
242 * correct key path.
243 *
244 * Note that we can never "miss" the correct key in the tree if present by
245 * following the wrong path. Path compression ensures that segments of the key
246 * that are the same for all keys with a given prefix are skipped, but the
247 * skipped part *is* identical for each node in the subtrie below the skipped
248 * bit! trie_insert() in this implementation takes care of that.
249 *
250 * if n is an internal node - a 'tnode' here, the various parts of its key
251 * have many different meanings.
252 *
253 * Example:
254 * _________________________________________________________________
255 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
256 * -----------------------------------------------------------------
257 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
258 *
259 * _________________________________________________________________
260 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
261 * -----------------------------------------------------------------
262 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
263 *
264 * tp->pos = 22
265 * tp->bits = 3
266 * n->pos = 13
267 * n->bits = 4
268 *
269 * First, let's just ignore the bits that come before the parent tp, that is
270 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
271 * point we do not use them for anything.
272 *
273 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
274 * index into the parent's child array. That is, they will be used to find
275 * 'n' among tp's children.
276 *
277 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
278 * for the node n.
279 *
280 * All the bits we have seen so far are significant to the node n. The rest
281 * of the bits are really not needed or indeed known in n->key.
282 *
283 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
284 * n's child array, and will of course be different for each child.
285 *
286 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
287 * at this point.
288 */
289
290static const int halve_threshold = 25;
291static const int inflate_threshold = 50;
292static const int halve_threshold_root = 15;
293static const int inflate_threshold_root = 30;
294
295static inline void alias_free_mem_rcu(struct fib_alias *fa)
296{
297 kfree_rcu(fa, rcu);
298}
299
300#define TNODE_VMALLOC_MAX \
301 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
302
303static void __node_free_rcu(struct rcu_head *head)
304{
305 struct tnode *n = container_of(head, struct tnode, rcu);
306
307 if (!n->tn_bits)
308 kmem_cache_free(trie_leaf_kmem, n);
309 else
310 kvfree(n);
311}
312
313#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
314
315static struct tnode *tnode_alloc(int bits)
316{
317 size_t size;
318
319 /* verify bits is within bounds */
320 if (bits > TNODE_VMALLOC_MAX)
321 return NULL;
322
323 /* determine size and verify it is non-zero and didn't overflow */
324 size = TNODE_SIZE(1ul << bits);
325
326 if (size <= PAGE_SIZE)
327 return kzalloc(size, GFP_KERNEL);
328 else
329 return vzalloc(size);
330}
331
332static inline void empty_child_inc(struct key_vector *n)
333{
334 tn_info(n)->empty_children++;
335
336 if (!tn_info(n)->empty_children)
337 tn_info(n)->full_children++;
338}
339
340static inline void empty_child_dec(struct key_vector *n)
341{
342 if (!tn_info(n)->empty_children)
343 tn_info(n)->full_children--;
344
345 tn_info(n)->empty_children--;
346}
347
348static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
349{
350 struct key_vector *l;
351 struct tnode *kv;
352
353 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
354 if (!kv)
355 return NULL;
356
357 /* initialize key vector */
358 l = kv->kv;
359 l->key = key;
360 l->pos = 0;
361 l->bits = 0;
362 l->slen = fa->fa_slen;
363
364 /* link leaf to fib alias */
365 INIT_HLIST_HEAD(&l->leaf);
366 hlist_add_head(&fa->fa_list, &l->leaf);
367
368 return l;
369}
370
371static struct key_vector *tnode_new(t_key key, int pos, int bits)
372{
373 unsigned int shift = pos + bits;
374 struct key_vector *tn;
375 struct tnode *tnode;
376
377 /* verify bits and pos their msb bits clear and values are valid */
378 BUG_ON(!bits || (shift > KEYLENGTH));
379
380 tnode = tnode_alloc(bits);
381 if (!tnode)
382 return NULL;
383
384 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
385 sizeof(struct key_vector *) << bits);
386
387 if (bits == KEYLENGTH)
388 tnode->full_children = 1;
389 else
390 tnode->empty_children = 1ul << bits;
391
392 tn = tnode->kv;
393 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
394 tn->pos = pos;
395 tn->bits = bits;
396 tn->slen = pos;
397
398 return tn;
399}
400
401/* Check whether a tnode 'n' is "full", i.e. it is an internal node
402 * and no bits are skipped. See discussion in dyntree paper p. 6
403 */
404static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
405{
406 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
407}
408
409/* Add a child at position i overwriting the old value.
410 * Update the value of full_children and empty_children.
411 */
412static void put_child(struct key_vector *tn, unsigned long i,
413 struct key_vector *n)
414{
415 struct key_vector *chi = get_child(tn, i);
416 int isfull, wasfull;
417
418 BUG_ON(i >= child_length(tn));
419
420 /* update emptyChildren, overflow into fullChildren */
421 if (!n && chi)
422 empty_child_inc(tn);
423 if (n && !chi)
424 empty_child_dec(tn);
425
426 /* update fullChildren */
427 wasfull = tnode_full(tn, chi);
428 isfull = tnode_full(tn, n);
429
430 if (wasfull && !isfull)
431 tn_info(tn)->full_children--;
432 else if (!wasfull && isfull)
433 tn_info(tn)->full_children++;
434
435 if (n && (tn->slen < n->slen))
436 tn->slen = n->slen;
437
438 rcu_assign_pointer(tn->tnode[i], n);
439}
440
441static void update_children(struct key_vector *tn)
442{
443 unsigned long i;
444
445 /* update all of the child parent pointers */
446 for (i = child_length(tn); i;) {
447 struct key_vector *inode = get_child(tn, --i);
448
449 if (!inode)
450 continue;
451
452 /* Either update the children of a tnode that
453 * already belongs to us or update the child
454 * to point to ourselves.
455 */
456 if (node_parent(inode) == tn)
457 update_children(inode);
458 else
459 node_set_parent(inode, tn);
460 }
461}
462
463static inline void put_child_root(struct key_vector *tp, t_key key,
464 struct key_vector *n)
465{
466 if (IS_TRIE(tp))
467 rcu_assign_pointer(tp->tnode[0], n);
468 else
469 put_child(tp, get_index(key, tp), n);
470}
471
472static inline void tnode_free_init(struct key_vector *tn)
473{
474 tn_info(tn)->rcu.next = NULL;
475}
476
477static inline void tnode_free_append(struct key_vector *tn,
478 struct key_vector *n)
479{
480 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
481 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
482}
483
484static void tnode_free(struct key_vector *tn)
485{
486 struct callback_head *head = &tn_info(tn)->rcu;
487
488 while (head) {
489 head = head->next;
490 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
491 node_free(tn);
492
493 tn = container_of(head, struct tnode, rcu)->kv;
494 }
495
496 if (tnode_free_size >= READ_ONCE(sysctl_fib_sync_mem)) {
497 tnode_free_size = 0;
498 synchronize_net();
499 }
500}
501
502static struct key_vector *replace(struct trie *t,
503 struct key_vector *oldtnode,
504 struct key_vector *tn)
505{
506 struct key_vector *tp = node_parent(oldtnode);
507 unsigned long i;
508
509 /* setup the parent pointer out of and back into this node */
510 NODE_INIT_PARENT(tn, tp);
511 put_child_root(tp, tn->key, tn);
512
513 /* update all of the child parent pointers */
514 update_children(tn);
515
516 /* all pointers should be clean so we are done */
517 tnode_free(oldtnode);
518
519 /* resize children now that oldtnode is freed */
520 for (i = child_length(tn); i;) {
521 struct key_vector *inode = get_child(tn, --i);
522
523 /* resize child node */
524 if (tnode_full(tn, inode))
525 tn = resize(t, inode);
526 }
527
528 return tp;
529}
530
531static struct key_vector *inflate(struct trie *t,
532 struct key_vector *oldtnode)
533{
534 struct key_vector *tn;
535 unsigned long i;
536 t_key m;
537
538 pr_debug("In inflate\n");
539
540 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
541 if (!tn)
542 goto notnode;
543
544 /* prepare oldtnode to be freed */
545 tnode_free_init(oldtnode);
546
547 /* Assemble all of the pointers in our cluster, in this case that
548 * represents all of the pointers out of our allocated nodes that
549 * point to existing tnodes and the links between our allocated
550 * nodes.
551 */
552 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
553 struct key_vector *inode = get_child(oldtnode, --i);
554 struct key_vector *node0, *node1;
555 unsigned long j, k;
556
557 /* An empty child */
558 if (!inode)
559 continue;
560
561 /* A leaf or an internal node with skipped bits */
562 if (!tnode_full(oldtnode, inode)) {
563 put_child(tn, get_index(inode->key, tn), inode);
564 continue;
565 }
566
567 /* drop the node in the old tnode free list */
568 tnode_free_append(oldtnode, inode);
569
570 /* An internal node with two children */
571 if (inode->bits == 1) {
572 put_child(tn, 2 * i + 1, get_child(inode, 1));
573 put_child(tn, 2 * i, get_child(inode, 0));
574 continue;
575 }
576
577 /* We will replace this node 'inode' with two new
578 * ones, 'node0' and 'node1', each with half of the
579 * original children. The two new nodes will have
580 * a position one bit further down the key and this
581 * means that the "significant" part of their keys
582 * (see the discussion near the top of this file)
583 * will differ by one bit, which will be "0" in
584 * node0's key and "1" in node1's key. Since we are
585 * moving the key position by one step, the bit that
586 * we are moving away from - the bit at position
587 * (tn->pos) - is the one that will differ between
588 * node0 and node1. So... we synthesize that bit in the
589 * two new keys.
590 */
591 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
592 if (!node1)
593 goto nomem;
594 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
595
596 tnode_free_append(tn, node1);
597 if (!node0)
598 goto nomem;
599 tnode_free_append(tn, node0);
600
601 /* populate child pointers in new nodes */
602 for (k = child_length(inode), j = k / 2; j;) {
603 put_child(node1, --j, get_child(inode, --k));
604 put_child(node0, j, get_child(inode, j));
605 put_child(node1, --j, get_child(inode, --k));
606 put_child(node0, j, get_child(inode, j));
607 }
608
609 /* link new nodes to parent */
610 NODE_INIT_PARENT(node1, tn);
611 NODE_INIT_PARENT(node0, tn);
612
613 /* link parent to nodes */
614 put_child(tn, 2 * i + 1, node1);
615 put_child(tn, 2 * i, node0);
616 }
617
618 /* setup the parent pointers into and out of this node */
619 return replace(t, oldtnode, tn);
620nomem:
621 /* all pointers should be clean so we are done */
622 tnode_free(tn);
623notnode:
624 return NULL;
625}
626
627static struct key_vector *halve(struct trie *t,
628 struct key_vector *oldtnode)
629{
630 struct key_vector *tn;
631 unsigned long i;
632
633 pr_debug("In halve\n");
634
635 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
636 if (!tn)
637 goto notnode;
638
639 /* prepare oldtnode to be freed */
640 tnode_free_init(oldtnode);
641
642 /* Assemble all of the pointers in our cluster, in this case that
643 * represents all of the pointers out of our allocated nodes that
644 * point to existing tnodes and the links between our allocated
645 * nodes.
646 */
647 for (i = child_length(oldtnode); i;) {
648 struct key_vector *node1 = get_child(oldtnode, --i);
649 struct key_vector *node0 = get_child(oldtnode, --i);
650 struct key_vector *inode;
651
652 /* At least one of the children is empty */
653 if (!node1 || !node0) {
654 put_child(tn, i / 2, node1 ? : node0);
655 continue;
656 }
657
658 /* Two nonempty children */
659 inode = tnode_new(node0->key, oldtnode->pos, 1);
660 if (!inode)
661 goto nomem;
662 tnode_free_append(tn, inode);
663
664 /* initialize pointers out of node */
665 put_child(inode, 1, node1);
666 put_child(inode, 0, node0);
667 NODE_INIT_PARENT(inode, tn);
668
669 /* link parent to node */
670 put_child(tn, i / 2, inode);
671 }
672
673 /* setup the parent pointers into and out of this node */
674 return replace(t, oldtnode, tn);
675nomem:
676 /* all pointers should be clean so we are done */
677 tnode_free(tn);
678notnode:
679 return NULL;
680}
681
682static struct key_vector *collapse(struct trie *t,
683 struct key_vector *oldtnode)
684{
685 struct key_vector *n, *tp;
686 unsigned long i;
687
688 /* scan the tnode looking for that one child that might still exist */
689 for (n = NULL, i = child_length(oldtnode); !n && i;)
690 n = get_child(oldtnode, --i);
691
692 /* compress one level */
693 tp = node_parent(oldtnode);
694 put_child_root(tp, oldtnode->key, n);
695 node_set_parent(n, tp);
696
697 /* drop dead node */
698 node_free(oldtnode);
699
700 return tp;
701}
702
703static unsigned char update_suffix(struct key_vector *tn)
704{
705 unsigned char slen = tn->pos;
706 unsigned long stride, i;
707 unsigned char slen_max;
708
709 /* only vector 0 can have a suffix length greater than or equal to
710 * tn->pos + tn->bits, the second highest node will have a suffix
711 * length at most of tn->pos + tn->bits - 1
712 */
713 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
714
715 /* search though the list of children looking for nodes that might
716 * have a suffix greater than the one we currently have. This is
717 * why we start with a stride of 2 since a stride of 1 would
718 * represent the nodes with suffix length equal to tn->pos
719 */
720 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
721 struct key_vector *n = get_child(tn, i);
722
723 if (!n || (n->slen <= slen))
724 continue;
725
726 /* update stride and slen based on new value */
727 stride <<= (n->slen - slen);
728 slen = n->slen;
729 i &= ~(stride - 1);
730
731 /* stop searching if we have hit the maximum possible value */
732 if (slen >= slen_max)
733 break;
734 }
735
736 tn->slen = slen;
737
738 return slen;
739}
740
741/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
742 * the Helsinki University of Technology and Matti Tikkanen of Nokia
743 * Telecommunications, page 6:
744 * "A node is doubled if the ratio of non-empty children to all
745 * children in the *doubled* node is at least 'high'."
746 *
747 * 'high' in this instance is the variable 'inflate_threshold'. It
748 * is expressed as a percentage, so we multiply it with
749 * child_length() and instead of multiplying by 2 (since the
750 * child array will be doubled by inflate()) and multiplying
751 * the left-hand side by 100 (to handle the percentage thing) we
752 * multiply the left-hand side by 50.
753 *
754 * The left-hand side may look a bit weird: child_length(tn)
755 * - tn->empty_children is of course the number of non-null children
756 * in the current node. tn->full_children is the number of "full"
757 * children, that is non-null tnodes with a skip value of 0.
758 * All of those will be doubled in the resulting inflated tnode, so
759 * we just count them one extra time here.
760 *
761 * A clearer way to write this would be:
762 *
763 * to_be_doubled = tn->full_children;
764 * not_to_be_doubled = child_length(tn) - tn->empty_children -
765 * tn->full_children;
766 *
767 * new_child_length = child_length(tn) * 2;
768 *
769 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
770 * new_child_length;
771 * if (new_fill_factor >= inflate_threshold)
772 *
773 * ...and so on, tho it would mess up the while () loop.
774 *
775 * anyway,
776 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
777 * inflate_threshold
778 *
779 * avoid a division:
780 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
781 * inflate_threshold * new_child_length
782 *
783 * expand not_to_be_doubled and to_be_doubled, and shorten:
784 * 100 * (child_length(tn) - tn->empty_children +
785 * tn->full_children) >= inflate_threshold * new_child_length
786 *
787 * expand new_child_length:
788 * 100 * (child_length(tn) - tn->empty_children +
789 * tn->full_children) >=
790 * inflate_threshold * child_length(tn) * 2
791 *
792 * shorten again:
793 * 50 * (tn->full_children + child_length(tn) -
794 * tn->empty_children) >= inflate_threshold *
795 * child_length(tn)
796 *
797 */
798static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
799{
800 unsigned long used = child_length(tn);
801 unsigned long threshold = used;
802
803 /* Keep root node larger */
804 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
805 used -= tn_info(tn)->empty_children;
806 used += tn_info(tn)->full_children;
807
808 /* if bits == KEYLENGTH then pos = 0, and will fail below */
809
810 return (used > 1) && tn->pos && ((50 * used) >= threshold);
811}
812
813static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
814{
815 unsigned long used = child_length(tn);
816 unsigned long threshold = used;
817
818 /* Keep root node larger */
819 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
820 used -= tn_info(tn)->empty_children;
821
822 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
823
824 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
825}
826
827static inline bool should_collapse(struct key_vector *tn)
828{
829 unsigned long used = child_length(tn);
830
831 used -= tn_info(tn)->empty_children;
832
833 /* account for bits == KEYLENGTH case */
834 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
835 used -= KEY_MAX;
836
837 /* One child or none, time to drop us from the trie */
838 return used < 2;
839}
840
841#define MAX_WORK 10
842static struct key_vector *resize(struct trie *t, struct key_vector *tn)
843{
844#ifdef CONFIG_IP_FIB_TRIE_STATS
845 struct trie_use_stats __percpu *stats = t->stats;
846#endif
847 struct key_vector *tp = node_parent(tn);
848 unsigned long cindex = get_index(tn->key, tp);
849 int max_work = MAX_WORK;
850
851 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
852 tn, inflate_threshold, halve_threshold);
853
854 /* track the tnode via the pointer from the parent instead of
855 * doing it ourselves. This way we can let RCU fully do its
856 * thing without us interfering
857 */
858 BUG_ON(tn != get_child(tp, cindex));
859
860 /* Double as long as the resulting node has a number of
861 * nonempty nodes that are above the threshold.
862 */
863 while (should_inflate(tp, tn) && max_work) {
864 tp = inflate(t, tn);
865 if (!tp) {
866#ifdef CONFIG_IP_FIB_TRIE_STATS
867 this_cpu_inc(stats->resize_node_skipped);
868#endif
869 break;
870 }
871
872 max_work--;
873 tn = get_child(tp, cindex);
874 }
875
876 /* update parent in case inflate failed */
877 tp = node_parent(tn);
878
879 /* Return if at least one inflate is run */
880 if (max_work != MAX_WORK)
881 return tp;
882
883 /* Halve as long as the number of empty children in this
884 * node is above threshold.
885 */
886 while (should_halve(tp, tn) && max_work) {
887 tp = halve(t, tn);
888 if (!tp) {
889#ifdef CONFIG_IP_FIB_TRIE_STATS
890 this_cpu_inc(stats->resize_node_skipped);
891#endif
892 break;
893 }
894
895 max_work--;
896 tn = get_child(tp, cindex);
897 }
898
899 /* Only one child remains */
900 if (should_collapse(tn))
901 return collapse(t, tn);
902
903 /* update parent in case halve failed */
904 return node_parent(tn);
905}
906
907static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
908{
909 unsigned char node_slen = tn->slen;
910
911 while ((node_slen > tn->pos) && (node_slen > slen)) {
912 slen = update_suffix(tn);
913 if (node_slen == slen)
914 break;
915
916 tn = node_parent(tn);
917 node_slen = tn->slen;
918 }
919}
920
921static void node_push_suffix(struct key_vector *tn, unsigned char slen)
922{
923 while (tn->slen < slen) {
924 tn->slen = slen;
925 tn = node_parent(tn);
926 }
927}
928
929/* rcu_read_lock needs to be hold by caller from readside */
930static struct key_vector *fib_find_node(struct trie *t,
931 struct key_vector **tp, u32 key)
932{
933 struct key_vector *pn, *n = t->kv;
934 unsigned long index = 0;
935
936 do {
937 pn = n;
938 n = get_child_rcu(n, index);
939
940 if (!n)
941 break;
942
943 index = get_cindex(key, n);
944
945 /* This bit of code is a bit tricky but it combines multiple
946 * checks into a single check. The prefix consists of the
947 * prefix plus zeros for the bits in the cindex. The index
948 * is the difference between the key and this value. From
949 * this we can actually derive several pieces of data.
950 * if (index >= (1ul << bits))
951 * we have a mismatch in skip bits and failed
952 * else
953 * we know the value is cindex
954 *
955 * This check is safe even if bits == KEYLENGTH due to the
956 * fact that we can only allocate a node with 32 bits if a
957 * long is greater than 32 bits.
958 */
959 if (index >= (1ul << n->bits)) {
960 n = NULL;
961 break;
962 }
963
964 /* keep searching until we find a perfect match leaf or NULL */
965 } while (IS_TNODE(n));
966
967 *tp = pn;
968
969 return n;
970}
971
972/* Return the first fib alias matching DSCP with
973 * priority less than or equal to PRIO.
974 * If 'find_first' is set, return the first matching
975 * fib alias, regardless of DSCP and priority.
976 */
977static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
978 dscp_t dscp, u32 prio, u32 tb_id,
979 bool find_first)
980{
981 struct fib_alias *fa;
982
983 if (!fah)
984 return NULL;
985
986 hlist_for_each_entry(fa, fah, fa_list) {
987 /* Avoid Sparse warning when using dscp_t in inequalities */
988 u8 __fa_dscp = inet_dscp_to_dsfield(fa->fa_dscp);
989 u8 __dscp = inet_dscp_to_dsfield(dscp);
990
991 if (fa->fa_slen < slen)
992 continue;
993 if (fa->fa_slen != slen)
994 break;
995 if (fa->tb_id > tb_id)
996 continue;
997 if (fa->tb_id != tb_id)
998 break;
999 if (find_first)
1000 return fa;
1001 if (__fa_dscp > __dscp)
1002 continue;
1003 if (fa->fa_info->fib_priority >= prio || __fa_dscp < __dscp)
1004 return fa;
1005 }
1006
1007 return NULL;
1008}
1009
1010static struct fib_alias *
1011fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1012{
1013 u8 slen = KEYLENGTH - fri->dst_len;
1014 struct key_vector *l, *tp;
1015 struct fib_table *tb;
1016 struct fib_alias *fa;
1017 struct trie *t;
1018
1019 tb = fib_get_table(net, fri->tb_id);
1020 if (!tb)
1021 return NULL;
1022
1023 t = (struct trie *)tb->tb_data;
1024 l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1025 if (!l)
1026 return NULL;
1027
1028 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1029 if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1030 fa->fa_dscp == fri->dscp && fa->fa_info == fri->fi &&
1031 fa->fa_type == fri->type)
1032 return fa;
1033 }
1034
1035 return NULL;
1036}
1037
1038void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1039{
1040 u8 fib_notify_on_flag_change;
1041 struct fib_alias *fa_match;
1042 struct sk_buff *skb;
1043 int err;
1044
1045 rcu_read_lock();
1046
1047 fa_match = fib_find_matching_alias(net, fri);
1048 if (!fa_match)
1049 goto out;
1050
1051 /* These are paired with the WRITE_ONCE() happening in this function.
1052 * The reason is that we are only protected by RCU at this point.
1053 */
1054 if (READ_ONCE(fa_match->offload) == fri->offload &&
1055 READ_ONCE(fa_match->trap) == fri->trap &&
1056 READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1057 goto out;
1058
1059 WRITE_ONCE(fa_match->offload, fri->offload);
1060 WRITE_ONCE(fa_match->trap, fri->trap);
1061
1062 fib_notify_on_flag_change = READ_ONCE(net->ipv4.sysctl_fib_notify_on_flag_change);
1063
1064 /* 2 means send notifications only if offload_failed was changed. */
1065 if (fib_notify_on_flag_change == 2 &&
1066 READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1067 goto out;
1068
1069 WRITE_ONCE(fa_match->offload_failed, fri->offload_failed);
1070
1071 if (!fib_notify_on_flag_change)
1072 goto out;
1073
1074 skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC);
1075 if (!skb) {
1076 err = -ENOBUFS;
1077 goto errout;
1078 }
1079
1080 err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0);
1081 if (err < 0) {
1082 /* -EMSGSIZE implies BUG in fib_nlmsg_size() */
1083 WARN_ON(err == -EMSGSIZE);
1084 kfree_skb(skb);
1085 goto errout;
1086 }
1087
1088 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC);
1089 goto out;
1090
1091errout:
1092 rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err);
1093out:
1094 rcu_read_unlock();
1095}
1096EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1097
1098static void trie_rebalance(struct trie *t, struct key_vector *tn)
1099{
1100 while (!IS_TRIE(tn))
1101 tn = resize(t, tn);
1102}
1103
1104static int fib_insert_node(struct trie *t, struct key_vector *tp,
1105 struct fib_alias *new, t_key key)
1106{
1107 struct key_vector *n, *l;
1108
1109 l = leaf_new(key, new);
1110 if (!l)
1111 goto noleaf;
1112
1113 /* retrieve child from parent node */
1114 n = get_child(tp, get_index(key, tp));
1115
1116 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1117 *
1118 * Add a new tnode here
1119 * first tnode need some special handling
1120 * leaves us in position for handling as case 3
1121 */
1122 if (n) {
1123 struct key_vector *tn;
1124
1125 tn = tnode_new(key, __fls(key ^ n->key), 1);
1126 if (!tn)
1127 goto notnode;
1128
1129 /* initialize routes out of node */
1130 NODE_INIT_PARENT(tn, tp);
1131 put_child(tn, get_index(key, tn) ^ 1, n);
1132
1133 /* start adding routes into the node */
1134 put_child_root(tp, key, tn);
1135 node_set_parent(n, tn);
1136
1137 /* parent now has a NULL spot where the leaf can go */
1138 tp = tn;
1139 }
1140
1141 /* Case 3: n is NULL, and will just insert a new leaf */
1142 node_push_suffix(tp, new->fa_slen);
1143 NODE_INIT_PARENT(l, tp);
1144 put_child_root(tp, key, l);
1145 trie_rebalance(t, tp);
1146
1147 return 0;
1148notnode:
1149 node_free(l);
1150noleaf:
1151 return -ENOMEM;
1152}
1153
1154static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1155 struct key_vector *l, struct fib_alias *new,
1156 struct fib_alias *fa, t_key key)
1157{
1158 if (!l)
1159 return fib_insert_node(t, tp, new, key);
1160
1161 if (fa) {
1162 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1163 } else {
1164 struct fib_alias *last;
1165
1166 hlist_for_each_entry(last, &l->leaf, fa_list) {
1167 if (new->fa_slen < last->fa_slen)
1168 break;
1169 if ((new->fa_slen == last->fa_slen) &&
1170 (new->tb_id > last->tb_id))
1171 break;
1172 fa = last;
1173 }
1174
1175 if (fa)
1176 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1177 else
1178 hlist_add_head_rcu(&new->fa_list, &l->leaf);
1179 }
1180
1181 /* if we added to the tail node then we need to update slen */
1182 if (l->slen < new->fa_slen) {
1183 l->slen = new->fa_slen;
1184 node_push_suffix(tp, new->fa_slen);
1185 }
1186
1187 return 0;
1188}
1189
1190static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1191{
1192 if (plen > KEYLENGTH) {
1193 NL_SET_ERR_MSG(extack, "Invalid prefix length");
1194 return false;
1195 }
1196
1197 if ((plen < KEYLENGTH) && (key << plen)) {
1198 NL_SET_ERR_MSG(extack,
1199 "Invalid prefix for given prefix length");
1200 return false;
1201 }
1202
1203 return true;
1204}
1205
1206static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1207 struct key_vector *l, struct fib_alias *old);
1208
1209/* Caller must hold RTNL. */
1210int fib_table_insert(struct net *net, struct fib_table *tb,
1211 struct fib_config *cfg, struct netlink_ext_ack *extack)
1212{
1213 struct trie *t = (struct trie *)tb->tb_data;
1214 struct fib_alias *fa, *new_fa;
1215 struct key_vector *l, *tp;
1216 u16 nlflags = NLM_F_EXCL;
1217 struct fib_info *fi;
1218 u8 plen = cfg->fc_dst_len;
1219 u8 slen = KEYLENGTH - plen;
1220 dscp_t dscp;
1221 u32 key;
1222 int err;
1223
1224 key = ntohl(cfg->fc_dst);
1225
1226 if (!fib_valid_key_len(key, plen, extack))
1227 return -EINVAL;
1228
1229 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1230
1231 fi = fib_create_info(cfg, extack);
1232 if (IS_ERR(fi)) {
1233 err = PTR_ERR(fi);
1234 goto err;
1235 }
1236
1237 dscp = cfg->fc_dscp;
1238 l = fib_find_node(t, &tp, key);
1239 fa = l ? fib_find_alias(&l->leaf, slen, dscp, fi->fib_priority,
1240 tb->tb_id, false) : NULL;
1241
1242 /* Now fa, if non-NULL, points to the first fib alias
1243 * with the same keys [prefix,dscp,priority], if such key already
1244 * exists or to the node before which we will insert new one.
1245 *
1246 * If fa is NULL, we will need to allocate a new one and
1247 * insert to the tail of the section matching the suffix length
1248 * of the new alias.
1249 */
1250
1251 if (fa && fa->fa_dscp == dscp &&
1252 fa->fa_info->fib_priority == fi->fib_priority) {
1253 struct fib_alias *fa_first, *fa_match;
1254
1255 err = -EEXIST;
1256 if (cfg->fc_nlflags & NLM_F_EXCL)
1257 goto out;
1258
1259 nlflags &= ~NLM_F_EXCL;
1260
1261 /* We have 2 goals:
1262 * 1. Find exact match for type, scope, fib_info to avoid
1263 * duplicate routes
1264 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1265 */
1266 fa_match = NULL;
1267 fa_first = fa;
1268 hlist_for_each_entry_from(fa, fa_list) {
1269 if ((fa->fa_slen != slen) ||
1270 (fa->tb_id != tb->tb_id) ||
1271 (fa->fa_dscp != dscp))
1272 break;
1273 if (fa->fa_info->fib_priority != fi->fib_priority)
1274 break;
1275 if (fa->fa_type == cfg->fc_type &&
1276 fa->fa_info == fi) {
1277 fa_match = fa;
1278 break;
1279 }
1280 }
1281
1282 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1283 struct fib_info *fi_drop;
1284 u8 state;
1285
1286 nlflags |= NLM_F_REPLACE;
1287 fa = fa_first;
1288 if (fa_match) {
1289 if (fa == fa_match)
1290 err = 0;
1291 goto out;
1292 }
1293 err = -ENOBUFS;
1294 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1295 if (!new_fa)
1296 goto out;
1297
1298 fi_drop = fa->fa_info;
1299 new_fa->fa_dscp = fa->fa_dscp;
1300 new_fa->fa_info = fi;
1301 new_fa->fa_type = cfg->fc_type;
1302 state = fa->fa_state;
1303 new_fa->fa_state = state & ~FA_S_ACCESSED;
1304 new_fa->fa_slen = fa->fa_slen;
1305 new_fa->tb_id = tb->tb_id;
1306 new_fa->fa_default = -1;
1307 new_fa->offload = 0;
1308 new_fa->trap = 0;
1309 new_fa->offload_failed = 0;
1310
1311 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1312
1313 if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1314 tb->tb_id, true) == new_fa) {
1315 enum fib_event_type fib_event;
1316
1317 fib_event = FIB_EVENT_ENTRY_REPLACE;
1318 err = call_fib_entry_notifiers(net, fib_event,
1319 key, plen,
1320 new_fa, extack);
1321 if (err) {
1322 hlist_replace_rcu(&new_fa->fa_list,
1323 &fa->fa_list);
1324 goto out_free_new_fa;
1325 }
1326 }
1327
1328 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1329 tb->tb_id, &cfg->fc_nlinfo, nlflags);
1330
1331 alias_free_mem_rcu(fa);
1332
1333 fib_release_info(fi_drop);
1334 if (state & FA_S_ACCESSED)
1335 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1336
1337 goto succeeded;
1338 }
1339 /* Error if we find a perfect match which
1340 * uses the same scope, type, and nexthop
1341 * information.
1342 */
1343 if (fa_match)
1344 goto out;
1345
1346 if (cfg->fc_nlflags & NLM_F_APPEND)
1347 nlflags |= NLM_F_APPEND;
1348 else
1349 fa = fa_first;
1350 }
1351 err = -ENOENT;
1352 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1353 goto out;
1354
1355 nlflags |= NLM_F_CREATE;
1356 err = -ENOBUFS;
1357 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1358 if (!new_fa)
1359 goto out;
1360
1361 new_fa->fa_info = fi;
1362 new_fa->fa_dscp = dscp;
1363 new_fa->fa_type = cfg->fc_type;
1364 new_fa->fa_state = 0;
1365 new_fa->fa_slen = slen;
1366 new_fa->tb_id = tb->tb_id;
1367 new_fa->fa_default = -1;
1368 new_fa->offload = 0;
1369 new_fa->trap = 0;
1370 new_fa->offload_failed = 0;
1371
1372 /* Insert new entry to the list. */
1373 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1374 if (err)
1375 goto out_free_new_fa;
1376
1377 /* The alias was already inserted, so the node must exist. */
1378 l = l ? l : fib_find_node(t, &tp, key);
1379 if (WARN_ON_ONCE(!l)) {
1380 err = -ENOENT;
1381 goto out_free_new_fa;
1382 }
1383
1384 if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1385 new_fa) {
1386 enum fib_event_type fib_event;
1387
1388 fib_event = FIB_EVENT_ENTRY_REPLACE;
1389 err = call_fib_entry_notifiers(net, fib_event, key, plen,
1390 new_fa, extack);
1391 if (err)
1392 goto out_remove_new_fa;
1393 }
1394
1395 if (!plen)
1396 tb->tb_num_default++;
1397
1398 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1399 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1400 &cfg->fc_nlinfo, nlflags);
1401succeeded:
1402 return 0;
1403
1404out_remove_new_fa:
1405 fib_remove_alias(t, tp, l, new_fa);
1406out_free_new_fa:
1407 kmem_cache_free(fn_alias_kmem, new_fa);
1408out:
1409 fib_release_info(fi);
1410err:
1411 return err;
1412}
1413
1414static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1415{
1416 t_key prefix = n->key;
1417
1418 return (key ^ prefix) & (prefix | -prefix);
1419}
1420
1421bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1422 const struct flowi4 *flp)
1423{
1424 if (nhc->nhc_flags & RTNH_F_DEAD)
1425 return false;
1426
1427 if (ip_ignore_linkdown(nhc->nhc_dev) &&
1428 nhc->nhc_flags & RTNH_F_LINKDOWN &&
1429 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1430 return false;
1431
1432 if (flp->flowi4_oif && flp->flowi4_oif != nhc->nhc_oif)
1433 return false;
1434
1435 return true;
1436}
1437
1438/* should be called with rcu_read_lock */
1439int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1440 struct fib_result *res, int fib_flags)
1441{
1442 struct trie *t = (struct trie *) tb->tb_data;
1443#ifdef CONFIG_IP_FIB_TRIE_STATS
1444 struct trie_use_stats __percpu *stats = t->stats;
1445#endif
1446 const t_key key = ntohl(flp->daddr);
1447 struct key_vector *n, *pn;
1448 struct fib_alias *fa;
1449 unsigned long index;
1450 t_key cindex;
1451
1452 pn = t->kv;
1453 cindex = 0;
1454
1455 n = get_child_rcu(pn, cindex);
1456 if (!n) {
1457 trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1458 return -EAGAIN;
1459 }
1460
1461#ifdef CONFIG_IP_FIB_TRIE_STATS
1462 this_cpu_inc(stats->gets);
1463#endif
1464
1465 /* Step 1: Travel to the longest prefix match in the trie */
1466 for (;;) {
1467 index = get_cindex(key, n);
1468
1469 /* This bit of code is a bit tricky but it combines multiple
1470 * checks into a single check. The prefix consists of the
1471 * prefix plus zeros for the "bits" in the prefix. The index
1472 * is the difference between the key and this value. From
1473 * this we can actually derive several pieces of data.
1474 * if (index >= (1ul << bits))
1475 * we have a mismatch in skip bits and failed
1476 * else
1477 * we know the value is cindex
1478 *
1479 * This check is safe even if bits == KEYLENGTH due to the
1480 * fact that we can only allocate a node with 32 bits if a
1481 * long is greater than 32 bits.
1482 */
1483 if (index >= (1ul << n->bits))
1484 break;
1485
1486 /* we have found a leaf. Prefixes have already been compared */
1487 if (IS_LEAF(n))
1488 goto found;
1489
1490 /* only record pn and cindex if we are going to be chopping
1491 * bits later. Otherwise we are just wasting cycles.
1492 */
1493 if (n->slen > n->pos) {
1494 pn = n;
1495 cindex = index;
1496 }
1497
1498 n = get_child_rcu(n, index);
1499 if (unlikely(!n))
1500 goto backtrace;
1501 }
1502
1503 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1504 for (;;) {
1505 /* record the pointer where our next node pointer is stored */
1506 struct key_vector __rcu **cptr = n->tnode;
1507
1508 /* This test verifies that none of the bits that differ
1509 * between the key and the prefix exist in the region of
1510 * the lsb and higher in the prefix.
1511 */
1512 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1513 goto backtrace;
1514
1515 /* exit out and process leaf */
1516 if (unlikely(IS_LEAF(n)))
1517 break;
1518
1519 /* Don't bother recording parent info. Since we are in
1520 * prefix match mode we will have to come back to wherever
1521 * we started this traversal anyway
1522 */
1523
1524 while ((n = rcu_dereference(*cptr)) == NULL) {
1525backtrace:
1526#ifdef CONFIG_IP_FIB_TRIE_STATS
1527 if (!n)
1528 this_cpu_inc(stats->null_node_hit);
1529#endif
1530 /* If we are at cindex 0 there are no more bits for
1531 * us to strip at this level so we must ascend back
1532 * up one level to see if there are any more bits to
1533 * be stripped there.
1534 */
1535 while (!cindex) {
1536 t_key pkey = pn->key;
1537
1538 /* If we don't have a parent then there is
1539 * nothing for us to do as we do not have any
1540 * further nodes to parse.
1541 */
1542 if (IS_TRIE(pn)) {
1543 trace_fib_table_lookup(tb->tb_id, flp,
1544 NULL, -EAGAIN);
1545 return -EAGAIN;
1546 }
1547#ifdef CONFIG_IP_FIB_TRIE_STATS
1548 this_cpu_inc(stats->backtrack);
1549#endif
1550 /* Get Child's index */
1551 pn = node_parent_rcu(pn);
1552 cindex = get_index(pkey, pn);
1553 }
1554
1555 /* strip the least significant bit from the cindex */
1556 cindex &= cindex - 1;
1557
1558 /* grab pointer for next child node */
1559 cptr = &pn->tnode[cindex];
1560 }
1561 }
1562
1563found:
1564 /* this line carries forward the xor from earlier in the function */
1565 index = key ^ n->key;
1566
1567 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1568 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1569 struct fib_info *fi = fa->fa_info;
1570 struct fib_nh_common *nhc;
1571 int nhsel, err;
1572
1573 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1574 if (index >= (1ul << fa->fa_slen))
1575 continue;
1576 }
1577 if (fa->fa_dscp && !fib_dscp_masked_match(fa->fa_dscp, flp))
1578 continue;
1579 /* Paired with WRITE_ONCE() in fib_release_info() */
1580 if (READ_ONCE(fi->fib_dead))
1581 continue;
1582 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1583 continue;
1584 fib_alias_accessed(fa);
1585 err = fib_props[fa->fa_type].error;
1586 if (unlikely(err < 0)) {
1587out_reject:
1588#ifdef CONFIG_IP_FIB_TRIE_STATS
1589 this_cpu_inc(stats->semantic_match_passed);
1590#endif
1591 trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1592 return err;
1593 }
1594 if (fi->fib_flags & RTNH_F_DEAD)
1595 continue;
1596
1597 if (unlikely(fi->nh)) {
1598 if (nexthop_is_blackhole(fi->nh)) {
1599 err = fib_props[RTN_BLACKHOLE].error;
1600 goto out_reject;
1601 }
1602
1603 nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1604 &nhsel);
1605 if (nhc)
1606 goto set_result;
1607 goto miss;
1608 }
1609
1610 for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1611 nhc = fib_info_nhc(fi, nhsel);
1612
1613 if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1614 continue;
1615set_result:
1616 if (!(fib_flags & FIB_LOOKUP_NOREF))
1617 refcount_inc(&fi->fib_clntref);
1618
1619 res->prefix = htonl(n->key);
1620 res->prefixlen = KEYLENGTH - fa->fa_slen;
1621 res->nh_sel = nhsel;
1622 res->nhc = nhc;
1623 res->type = fa->fa_type;
1624 res->scope = fi->fib_scope;
1625 res->dscp = fa->fa_dscp;
1626 res->fi = fi;
1627 res->table = tb;
1628 res->fa_head = &n->leaf;
1629#ifdef CONFIG_IP_FIB_TRIE_STATS
1630 this_cpu_inc(stats->semantic_match_passed);
1631#endif
1632 trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1633
1634 return err;
1635 }
1636 }
1637miss:
1638#ifdef CONFIG_IP_FIB_TRIE_STATS
1639 this_cpu_inc(stats->semantic_match_miss);
1640#endif
1641 goto backtrace;
1642}
1643EXPORT_SYMBOL_GPL(fib_table_lookup);
1644
1645static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1646 struct key_vector *l, struct fib_alias *old)
1647{
1648 /* record the location of the previous list_info entry */
1649 struct hlist_node **pprev = old->fa_list.pprev;
1650 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1651
1652 /* remove the fib_alias from the list */
1653 hlist_del_rcu(&old->fa_list);
1654
1655 /* if we emptied the list this leaf will be freed and we can sort
1656 * out parent suffix lengths as a part of trie_rebalance
1657 */
1658 if (hlist_empty(&l->leaf)) {
1659 if (tp->slen == l->slen)
1660 node_pull_suffix(tp, tp->pos);
1661 put_child_root(tp, l->key, NULL);
1662 node_free(l);
1663 trie_rebalance(t, tp);
1664 return;
1665 }
1666
1667 /* only access fa if it is pointing at the last valid hlist_node */
1668 if (*pprev)
1669 return;
1670
1671 /* update the trie with the latest suffix length */
1672 l->slen = fa->fa_slen;
1673 node_pull_suffix(tp, fa->fa_slen);
1674}
1675
1676static void fib_notify_alias_delete(struct net *net, u32 key,
1677 struct hlist_head *fah,
1678 struct fib_alias *fa_to_delete,
1679 struct netlink_ext_ack *extack)
1680{
1681 struct fib_alias *fa_next, *fa_to_notify;
1682 u32 tb_id = fa_to_delete->tb_id;
1683 u8 slen = fa_to_delete->fa_slen;
1684 enum fib_event_type fib_event;
1685
1686 /* Do not notify if we do not care about the route. */
1687 if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1688 return;
1689
1690 /* Determine if the route should be replaced by the next route in the
1691 * list.
1692 */
1693 fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1694 struct fib_alias, fa_list);
1695 if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1696 fib_event = FIB_EVENT_ENTRY_REPLACE;
1697 fa_to_notify = fa_next;
1698 } else {
1699 fib_event = FIB_EVENT_ENTRY_DEL;
1700 fa_to_notify = fa_to_delete;
1701 }
1702 call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1703 fa_to_notify, extack);
1704}
1705
1706/* Caller must hold RTNL. */
1707int fib_table_delete(struct net *net, struct fib_table *tb,
1708 struct fib_config *cfg, struct netlink_ext_ack *extack)
1709{
1710 struct trie *t = (struct trie *) tb->tb_data;
1711 struct fib_alias *fa, *fa_to_delete;
1712 struct key_vector *l, *tp;
1713 u8 plen = cfg->fc_dst_len;
1714 u8 slen = KEYLENGTH - plen;
1715 dscp_t dscp;
1716 u32 key;
1717
1718 key = ntohl(cfg->fc_dst);
1719
1720 if (!fib_valid_key_len(key, plen, extack))
1721 return -EINVAL;
1722
1723 l = fib_find_node(t, &tp, key);
1724 if (!l)
1725 return -ESRCH;
1726
1727 dscp = cfg->fc_dscp;
1728 fa = fib_find_alias(&l->leaf, slen, dscp, 0, tb->tb_id, false);
1729 if (!fa)
1730 return -ESRCH;
1731
1732 pr_debug("Deleting %08x/%d dsfield=0x%02x t=%p\n", key, plen,
1733 inet_dscp_to_dsfield(dscp), t);
1734
1735 fa_to_delete = NULL;
1736 hlist_for_each_entry_from(fa, fa_list) {
1737 struct fib_info *fi = fa->fa_info;
1738
1739 if ((fa->fa_slen != slen) ||
1740 (fa->tb_id != tb->tb_id) ||
1741 (fa->fa_dscp != dscp))
1742 break;
1743
1744 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1745 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1746 fa->fa_info->fib_scope == cfg->fc_scope) &&
1747 (!cfg->fc_prefsrc ||
1748 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1749 (!cfg->fc_protocol ||
1750 fi->fib_protocol == cfg->fc_protocol) &&
1751 fib_nh_match(net, cfg, fi, extack) == 0 &&
1752 fib_metrics_match(cfg, fi)) {
1753 fa_to_delete = fa;
1754 break;
1755 }
1756 }
1757
1758 if (!fa_to_delete)
1759 return -ESRCH;
1760
1761 fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1762 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1763 &cfg->fc_nlinfo, 0);
1764
1765 if (!plen)
1766 tb->tb_num_default--;
1767
1768 fib_remove_alias(t, tp, l, fa_to_delete);
1769
1770 if (fa_to_delete->fa_state & FA_S_ACCESSED)
1771 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1772
1773 fib_release_info(fa_to_delete->fa_info);
1774 alias_free_mem_rcu(fa_to_delete);
1775 return 0;
1776}
1777
1778/* Scan for the next leaf starting at the provided key value */
1779static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1780{
1781 struct key_vector *pn, *n = *tn;
1782 unsigned long cindex;
1783
1784 /* this loop is meant to try and find the key in the trie */
1785 do {
1786 /* record parent and next child index */
1787 pn = n;
1788 cindex = (key > pn->key) ? get_index(key, pn) : 0;
1789
1790 if (cindex >> pn->bits)
1791 break;
1792
1793 /* descend into the next child */
1794 n = get_child_rcu(pn, cindex++);
1795 if (!n)
1796 break;
1797
1798 /* guarantee forward progress on the keys */
1799 if (IS_LEAF(n) && (n->key >= key))
1800 goto found;
1801 } while (IS_TNODE(n));
1802
1803 /* this loop will search for the next leaf with a greater key */
1804 while (!IS_TRIE(pn)) {
1805 /* if we exhausted the parent node we will need to climb */
1806 if (cindex >= (1ul << pn->bits)) {
1807 t_key pkey = pn->key;
1808
1809 pn = node_parent_rcu(pn);
1810 cindex = get_index(pkey, pn) + 1;
1811 continue;
1812 }
1813
1814 /* grab the next available node */
1815 n = get_child_rcu(pn, cindex++);
1816 if (!n)
1817 continue;
1818
1819 /* no need to compare keys since we bumped the index */
1820 if (IS_LEAF(n))
1821 goto found;
1822
1823 /* Rescan start scanning in new node */
1824 pn = n;
1825 cindex = 0;
1826 }
1827
1828 *tn = pn;
1829 return NULL; /* Root of trie */
1830found:
1831 /* if we are at the limit for keys just return NULL for the tnode */
1832 *tn = pn;
1833 return n;
1834}
1835
1836static void fib_trie_free(struct fib_table *tb)
1837{
1838 struct trie *t = (struct trie *)tb->tb_data;
1839 struct key_vector *pn = t->kv;
1840 unsigned long cindex = 1;
1841 struct hlist_node *tmp;
1842 struct fib_alias *fa;
1843
1844 /* walk trie in reverse order and free everything */
1845 for (;;) {
1846 struct key_vector *n;
1847
1848 if (!(cindex--)) {
1849 t_key pkey = pn->key;
1850
1851 if (IS_TRIE(pn))
1852 break;
1853
1854 n = pn;
1855 pn = node_parent(pn);
1856
1857 /* drop emptied tnode */
1858 put_child_root(pn, n->key, NULL);
1859 node_free(n);
1860
1861 cindex = get_index(pkey, pn);
1862
1863 continue;
1864 }
1865
1866 /* grab the next available node */
1867 n = get_child(pn, cindex);
1868 if (!n)
1869 continue;
1870
1871 if (IS_TNODE(n)) {
1872 /* record pn and cindex for leaf walking */
1873 pn = n;
1874 cindex = 1ul << n->bits;
1875
1876 continue;
1877 }
1878
1879 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1880 hlist_del_rcu(&fa->fa_list);
1881 alias_free_mem_rcu(fa);
1882 }
1883
1884 put_child_root(pn, n->key, NULL);
1885 node_free(n);
1886 }
1887
1888#ifdef CONFIG_IP_FIB_TRIE_STATS
1889 free_percpu(t->stats);
1890#endif
1891 kfree(tb);
1892}
1893
1894struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1895{
1896 struct trie *ot = (struct trie *)oldtb->tb_data;
1897 struct key_vector *l, *tp = ot->kv;
1898 struct fib_table *local_tb;
1899 struct fib_alias *fa;
1900 struct trie *lt;
1901 t_key key = 0;
1902
1903 if (oldtb->tb_data == oldtb->__data)
1904 return oldtb;
1905
1906 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1907 if (!local_tb)
1908 return NULL;
1909
1910 lt = (struct trie *)local_tb->tb_data;
1911
1912 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1913 struct key_vector *local_l = NULL, *local_tp;
1914
1915 hlist_for_each_entry(fa, &l->leaf, fa_list) {
1916 struct fib_alias *new_fa;
1917
1918 if (local_tb->tb_id != fa->tb_id)
1919 continue;
1920
1921 /* clone fa for new local table */
1922 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1923 if (!new_fa)
1924 goto out;
1925
1926 memcpy(new_fa, fa, sizeof(*fa));
1927
1928 /* insert clone into table */
1929 if (!local_l)
1930 local_l = fib_find_node(lt, &local_tp, l->key);
1931
1932 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1933 NULL, l->key)) {
1934 kmem_cache_free(fn_alias_kmem, new_fa);
1935 goto out;
1936 }
1937 }
1938
1939 /* stop loop if key wrapped back to 0 */
1940 key = l->key + 1;
1941 if (key < l->key)
1942 break;
1943 }
1944
1945 return local_tb;
1946out:
1947 fib_trie_free(local_tb);
1948
1949 return NULL;
1950}
1951
1952/* Caller must hold RTNL */
1953void fib_table_flush_external(struct fib_table *tb)
1954{
1955 struct trie *t = (struct trie *)tb->tb_data;
1956 struct key_vector *pn = t->kv;
1957 unsigned long cindex = 1;
1958 struct hlist_node *tmp;
1959 struct fib_alias *fa;
1960
1961 /* walk trie in reverse order */
1962 for (;;) {
1963 unsigned char slen = 0;
1964 struct key_vector *n;
1965
1966 if (!(cindex--)) {
1967 t_key pkey = pn->key;
1968
1969 /* cannot resize the trie vector */
1970 if (IS_TRIE(pn))
1971 break;
1972
1973 /* update the suffix to address pulled leaves */
1974 if (pn->slen > pn->pos)
1975 update_suffix(pn);
1976
1977 /* resize completed node */
1978 pn = resize(t, pn);
1979 cindex = get_index(pkey, pn);
1980
1981 continue;
1982 }
1983
1984 /* grab the next available node */
1985 n = get_child(pn, cindex);
1986 if (!n)
1987 continue;
1988
1989 if (IS_TNODE(n)) {
1990 /* record pn and cindex for leaf walking */
1991 pn = n;
1992 cindex = 1ul << n->bits;
1993
1994 continue;
1995 }
1996
1997 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1998 /* if alias was cloned to local then we just
1999 * need to remove the local copy from main
2000 */
2001 if (tb->tb_id != fa->tb_id) {
2002 hlist_del_rcu(&fa->fa_list);
2003 alias_free_mem_rcu(fa);
2004 continue;
2005 }
2006
2007 /* record local slen */
2008 slen = fa->fa_slen;
2009 }
2010
2011 /* update leaf slen */
2012 n->slen = slen;
2013
2014 if (hlist_empty(&n->leaf)) {
2015 put_child_root(pn, n->key, NULL);
2016 node_free(n);
2017 }
2018 }
2019}
2020
2021/* Caller must hold RTNL. */
2022int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
2023{
2024 struct trie *t = (struct trie *)tb->tb_data;
2025 struct nl_info info = { .nl_net = net };
2026 struct key_vector *pn = t->kv;
2027 unsigned long cindex = 1;
2028 struct hlist_node *tmp;
2029 struct fib_alias *fa;
2030 int found = 0;
2031
2032 /* walk trie in reverse order */
2033 for (;;) {
2034 unsigned char slen = 0;
2035 struct key_vector *n;
2036
2037 if (!(cindex--)) {
2038 t_key pkey = pn->key;
2039
2040 /* cannot resize the trie vector */
2041 if (IS_TRIE(pn))
2042 break;
2043
2044 /* update the suffix to address pulled leaves */
2045 if (pn->slen > pn->pos)
2046 update_suffix(pn);
2047
2048 /* resize completed node */
2049 pn = resize(t, pn);
2050 cindex = get_index(pkey, pn);
2051
2052 continue;
2053 }
2054
2055 /* grab the next available node */
2056 n = get_child(pn, cindex);
2057 if (!n)
2058 continue;
2059
2060 if (IS_TNODE(n)) {
2061 /* record pn and cindex for leaf walking */
2062 pn = n;
2063 cindex = 1ul << n->bits;
2064
2065 continue;
2066 }
2067
2068 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2069 struct fib_info *fi = fa->fa_info;
2070
2071 if (!fi || tb->tb_id != fa->tb_id ||
2072 (!(fi->fib_flags & RTNH_F_DEAD) &&
2073 !fib_props[fa->fa_type].error)) {
2074 slen = fa->fa_slen;
2075 continue;
2076 }
2077
2078 /* Do not flush error routes if network namespace is
2079 * not being dismantled
2080 */
2081 if (!flush_all && fib_props[fa->fa_type].error) {
2082 slen = fa->fa_slen;
2083 continue;
2084 }
2085
2086 fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2087 NULL);
2088 if (fi->pfsrc_removed)
2089 rtmsg_fib(RTM_DELROUTE, htonl(n->key), fa,
2090 KEYLENGTH - fa->fa_slen, tb->tb_id, &info, 0);
2091 hlist_del_rcu(&fa->fa_list);
2092 fib_release_info(fa->fa_info);
2093 alias_free_mem_rcu(fa);
2094 found++;
2095 }
2096
2097 /* update leaf slen */
2098 n->slen = slen;
2099
2100 if (hlist_empty(&n->leaf)) {
2101 put_child_root(pn, n->key, NULL);
2102 node_free(n);
2103 }
2104 }
2105
2106 pr_debug("trie_flush found=%d\n", found);
2107 return found;
2108}
2109
2110/* derived from fib_trie_free */
2111static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2112 struct nl_info *info)
2113{
2114 struct trie *t = (struct trie *)tb->tb_data;
2115 struct key_vector *pn = t->kv;
2116 unsigned long cindex = 1;
2117 struct fib_alias *fa;
2118
2119 for (;;) {
2120 struct key_vector *n;
2121
2122 if (!(cindex--)) {
2123 t_key pkey = pn->key;
2124
2125 if (IS_TRIE(pn))
2126 break;
2127
2128 pn = node_parent(pn);
2129 cindex = get_index(pkey, pn);
2130 continue;
2131 }
2132
2133 /* grab the next available node */
2134 n = get_child(pn, cindex);
2135 if (!n)
2136 continue;
2137
2138 if (IS_TNODE(n)) {
2139 /* record pn and cindex for leaf walking */
2140 pn = n;
2141 cindex = 1ul << n->bits;
2142
2143 continue;
2144 }
2145
2146 hlist_for_each_entry(fa, &n->leaf, fa_list) {
2147 struct fib_info *fi = fa->fa_info;
2148
2149 if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2150 continue;
2151
2152 rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2153 KEYLENGTH - fa->fa_slen, tb->tb_id,
2154 info, NLM_F_REPLACE);
2155 }
2156 }
2157}
2158
2159void fib_info_notify_update(struct net *net, struct nl_info *info)
2160{
2161 unsigned int h;
2162
2163 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2164 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2165 struct fib_table *tb;
2166
2167 hlist_for_each_entry_rcu(tb, head, tb_hlist,
2168 lockdep_rtnl_is_held())
2169 __fib_info_notify_update(net, tb, info);
2170 }
2171}
2172
2173static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2174 struct notifier_block *nb,
2175 struct netlink_ext_ack *extack)
2176{
2177 struct fib_alias *fa;
2178 int last_slen = -1;
2179 int err;
2180
2181 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2182 struct fib_info *fi = fa->fa_info;
2183
2184 if (!fi)
2185 continue;
2186
2187 /* local and main table can share the same trie,
2188 * so don't notify twice for the same entry.
2189 */
2190 if (tb->tb_id != fa->tb_id)
2191 continue;
2192
2193 if (fa->fa_slen == last_slen)
2194 continue;
2195
2196 last_slen = fa->fa_slen;
2197 err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2198 l->key, KEYLENGTH - fa->fa_slen,
2199 fa, extack);
2200 if (err)
2201 return err;
2202 }
2203 return 0;
2204}
2205
2206static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2207 struct netlink_ext_ack *extack)
2208{
2209 struct trie *t = (struct trie *)tb->tb_data;
2210 struct key_vector *l, *tp = t->kv;
2211 t_key key = 0;
2212 int err;
2213
2214 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2215 err = fib_leaf_notify(l, tb, nb, extack);
2216 if (err)
2217 return err;
2218
2219 key = l->key + 1;
2220 /* stop in case of wrap around */
2221 if (key < l->key)
2222 break;
2223 }
2224 return 0;
2225}
2226
2227int fib_notify(struct net *net, struct notifier_block *nb,
2228 struct netlink_ext_ack *extack)
2229{
2230 unsigned int h;
2231 int err;
2232
2233 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2234 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2235 struct fib_table *tb;
2236
2237 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2238 err = fib_table_notify(tb, nb, extack);
2239 if (err)
2240 return err;
2241 }
2242 }
2243 return 0;
2244}
2245
2246static void __trie_free_rcu(struct rcu_head *head)
2247{
2248 struct fib_table *tb = container_of(head, struct fib_table, rcu);
2249#ifdef CONFIG_IP_FIB_TRIE_STATS
2250 struct trie *t = (struct trie *)tb->tb_data;
2251
2252 if (tb->tb_data == tb->__data)
2253 free_percpu(t->stats);
2254#endif /* CONFIG_IP_FIB_TRIE_STATS */
2255 kfree(tb);
2256}
2257
2258void fib_free_table(struct fib_table *tb)
2259{
2260 call_rcu(&tb->rcu, __trie_free_rcu);
2261}
2262
2263static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2264 struct sk_buff *skb, struct netlink_callback *cb,
2265 struct fib_dump_filter *filter)
2266{
2267 unsigned int flags = NLM_F_MULTI;
2268 __be32 xkey = htonl(l->key);
2269 int i, s_i, i_fa, s_fa, err;
2270 struct fib_alias *fa;
2271
2272 if (filter->filter_set ||
2273 !filter->dump_exceptions || !filter->dump_routes)
2274 flags |= NLM_F_DUMP_FILTERED;
2275
2276 s_i = cb->args[4];
2277 s_fa = cb->args[5];
2278 i = 0;
2279
2280 /* rcu_read_lock is hold by caller */
2281 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2282 struct fib_info *fi = fa->fa_info;
2283
2284 if (i < s_i)
2285 goto next;
2286
2287 i_fa = 0;
2288
2289 if (tb->tb_id != fa->tb_id)
2290 goto next;
2291
2292 if (filter->filter_set) {
2293 if (filter->rt_type && fa->fa_type != filter->rt_type)
2294 goto next;
2295
2296 if ((filter->protocol &&
2297 fi->fib_protocol != filter->protocol))
2298 goto next;
2299
2300 if (filter->dev &&
2301 !fib_info_nh_uses_dev(fi, filter->dev))
2302 goto next;
2303 }
2304
2305 if (filter->dump_routes) {
2306 if (!s_fa) {
2307 struct fib_rt_info fri;
2308
2309 fri.fi = fi;
2310 fri.tb_id = tb->tb_id;
2311 fri.dst = xkey;
2312 fri.dst_len = KEYLENGTH - fa->fa_slen;
2313 fri.dscp = fa->fa_dscp;
2314 fri.type = fa->fa_type;
2315 fri.offload = READ_ONCE(fa->offload);
2316 fri.trap = READ_ONCE(fa->trap);
2317 fri.offload_failed = READ_ONCE(fa->offload_failed);
2318 err = fib_dump_info(skb,
2319 NETLINK_CB(cb->skb).portid,
2320 cb->nlh->nlmsg_seq,
2321 RTM_NEWROUTE, &fri, flags);
2322 if (err < 0)
2323 goto stop;
2324 }
2325
2326 i_fa++;
2327 }
2328
2329 if (filter->dump_exceptions) {
2330 err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2331 &i_fa, s_fa, flags);
2332 if (err < 0)
2333 goto stop;
2334 }
2335
2336next:
2337 i++;
2338 }
2339
2340 cb->args[4] = i;
2341 return skb->len;
2342
2343stop:
2344 cb->args[4] = i;
2345 cb->args[5] = i_fa;
2346 return err;
2347}
2348
2349/* rcu_read_lock needs to be hold by caller from readside */
2350int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2351 struct netlink_callback *cb, struct fib_dump_filter *filter)
2352{
2353 struct trie *t = (struct trie *)tb->tb_data;
2354 struct key_vector *l, *tp = t->kv;
2355 /* Dump starting at last key.
2356 * Note: 0.0.0.0/0 (ie default) is first key.
2357 */
2358 int count = cb->args[2];
2359 t_key key = cb->args[3];
2360
2361 /* First time here, count and key are both always 0. Count > 0
2362 * and key == 0 means the dump has wrapped around and we are done.
2363 */
2364 if (count && !key)
2365 return 0;
2366
2367 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2368 int err;
2369
2370 err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2371 if (err < 0) {
2372 cb->args[3] = key;
2373 cb->args[2] = count;
2374 return err;
2375 }
2376
2377 ++count;
2378 key = l->key + 1;
2379
2380 memset(&cb->args[4], 0,
2381 sizeof(cb->args) - 4*sizeof(cb->args[0]));
2382
2383 /* stop loop if key wrapped back to 0 */
2384 if (key < l->key)
2385 break;
2386 }
2387
2388 cb->args[3] = key;
2389 cb->args[2] = count;
2390
2391 return 0;
2392}
2393
2394void __init fib_trie_init(void)
2395{
2396 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2397 sizeof(struct fib_alias),
2398 0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2399
2400 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2401 LEAF_SIZE,
2402 0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2403}
2404
2405struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2406{
2407 struct fib_table *tb;
2408 struct trie *t;
2409 size_t sz = sizeof(*tb);
2410
2411 if (!alias)
2412 sz += sizeof(struct trie);
2413
2414 tb = kzalloc(sz, GFP_KERNEL);
2415 if (!tb)
2416 return NULL;
2417
2418 tb->tb_id = id;
2419 tb->tb_num_default = 0;
2420 tb->tb_data = (alias ? alias->__data : tb->__data);
2421
2422 if (alias)
2423 return tb;
2424
2425 t = (struct trie *) tb->tb_data;
2426 t->kv[0].pos = KEYLENGTH;
2427 t->kv[0].slen = KEYLENGTH;
2428#ifdef CONFIG_IP_FIB_TRIE_STATS
2429 t->stats = alloc_percpu(struct trie_use_stats);
2430 if (!t->stats) {
2431 kfree(tb);
2432 tb = NULL;
2433 }
2434#endif
2435
2436 return tb;
2437}
2438
2439#ifdef CONFIG_PROC_FS
2440/* Depth first Trie walk iterator */
2441struct fib_trie_iter {
2442 struct seq_net_private p;
2443 struct fib_table *tb;
2444 struct key_vector *tnode;
2445 unsigned int index;
2446 unsigned int depth;
2447};
2448
2449static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2450{
2451 unsigned long cindex = iter->index;
2452 struct key_vector *pn = iter->tnode;
2453 t_key pkey;
2454
2455 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2456 iter->tnode, iter->index, iter->depth);
2457
2458 while (!IS_TRIE(pn)) {
2459 while (cindex < child_length(pn)) {
2460 struct key_vector *n = get_child_rcu(pn, cindex++);
2461
2462 if (!n)
2463 continue;
2464
2465 if (IS_LEAF(n)) {
2466 iter->tnode = pn;
2467 iter->index = cindex;
2468 } else {
2469 /* push down one level */
2470 iter->tnode = n;
2471 iter->index = 0;
2472 ++iter->depth;
2473 }
2474
2475 return n;
2476 }
2477
2478 /* Current node exhausted, pop back up */
2479 pkey = pn->key;
2480 pn = node_parent_rcu(pn);
2481 cindex = get_index(pkey, pn) + 1;
2482 --iter->depth;
2483 }
2484
2485 /* record root node so further searches know we are done */
2486 iter->tnode = pn;
2487 iter->index = 0;
2488
2489 return NULL;
2490}
2491
2492static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2493 struct trie *t)
2494{
2495 struct key_vector *n, *pn;
2496
2497 if (!t)
2498 return NULL;
2499
2500 pn = t->kv;
2501 n = rcu_dereference(pn->tnode[0]);
2502 if (!n)
2503 return NULL;
2504
2505 if (IS_TNODE(n)) {
2506 iter->tnode = n;
2507 iter->index = 0;
2508 iter->depth = 1;
2509 } else {
2510 iter->tnode = pn;
2511 iter->index = 0;
2512 iter->depth = 0;
2513 }
2514
2515 return n;
2516}
2517
2518static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2519{
2520 struct key_vector *n;
2521 struct fib_trie_iter iter;
2522
2523 memset(s, 0, sizeof(*s));
2524
2525 rcu_read_lock();
2526 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2527 if (IS_LEAF(n)) {
2528 struct fib_alias *fa;
2529
2530 s->leaves++;
2531 s->totdepth += iter.depth;
2532 if (iter.depth > s->maxdepth)
2533 s->maxdepth = iter.depth;
2534
2535 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2536 ++s->prefixes;
2537 } else {
2538 s->tnodes++;
2539 if (n->bits < MAX_STAT_DEPTH)
2540 s->nodesizes[n->bits]++;
2541 s->nullpointers += tn_info(n)->empty_children;
2542 }
2543 }
2544 rcu_read_unlock();
2545}
2546
2547/*
2548 * This outputs /proc/net/fib_triestats
2549 */
2550static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2551{
2552 unsigned int i, max, pointers, bytes, avdepth;
2553
2554 if (stat->leaves)
2555 avdepth = stat->totdepth*100 / stat->leaves;
2556 else
2557 avdepth = 0;
2558
2559 seq_printf(seq, "\tAver depth: %u.%02d\n",
2560 avdepth / 100, avdepth % 100);
2561 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2562
2563 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2564 bytes = LEAF_SIZE * stat->leaves;
2565
2566 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2567 bytes += sizeof(struct fib_alias) * stat->prefixes;
2568
2569 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2570 bytes += TNODE_SIZE(0) * stat->tnodes;
2571
2572 max = MAX_STAT_DEPTH;
2573 while (max > 0 && stat->nodesizes[max-1] == 0)
2574 max--;
2575
2576 pointers = 0;
2577 for (i = 1; i < max; i++)
2578 if (stat->nodesizes[i] != 0) {
2579 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2580 pointers += (1<<i) * stat->nodesizes[i];
2581 }
2582 seq_putc(seq, '\n');
2583 seq_printf(seq, "\tPointers: %u\n", pointers);
2584
2585 bytes += sizeof(struct key_vector *) * pointers;
2586 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2587 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2588}
2589
2590#ifdef CONFIG_IP_FIB_TRIE_STATS
2591static void trie_show_usage(struct seq_file *seq,
2592 const struct trie_use_stats __percpu *stats)
2593{
2594 struct trie_use_stats s = { 0 };
2595 int cpu;
2596
2597 /* loop through all of the CPUs and gather up the stats */
2598 for_each_possible_cpu(cpu) {
2599 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2600
2601 s.gets += pcpu->gets;
2602 s.backtrack += pcpu->backtrack;
2603 s.semantic_match_passed += pcpu->semantic_match_passed;
2604 s.semantic_match_miss += pcpu->semantic_match_miss;
2605 s.null_node_hit += pcpu->null_node_hit;
2606 s.resize_node_skipped += pcpu->resize_node_skipped;
2607 }
2608
2609 seq_printf(seq, "\nCounters:\n---------\n");
2610 seq_printf(seq, "gets = %u\n", s.gets);
2611 seq_printf(seq, "backtracks = %u\n", s.backtrack);
2612 seq_printf(seq, "semantic match passed = %u\n",
2613 s.semantic_match_passed);
2614 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2615 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2616 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2617}
2618#endif /* CONFIG_IP_FIB_TRIE_STATS */
2619
2620static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2621{
2622 if (tb->tb_id == RT_TABLE_LOCAL)
2623 seq_puts(seq, "Local:\n");
2624 else if (tb->tb_id == RT_TABLE_MAIN)
2625 seq_puts(seq, "Main:\n");
2626 else
2627 seq_printf(seq, "Id %d:\n", tb->tb_id);
2628}
2629
2630
2631static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2632{
2633 struct net *net = seq->private;
2634 unsigned int h;
2635
2636 seq_printf(seq,
2637 "Basic info: size of leaf:"
2638 " %zd bytes, size of tnode: %zd bytes.\n",
2639 LEAF_SIZE, TNODE_SIZE(0));
2640
2641 rcu_read_lock();
2642 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2643 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2644 struct fib_table *tb;
2645
2646 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2647 struct trie *t = (struct trie *) tb->tb_data;
2648 struct trie_stat stat;
2649
2650 if (!t)
2651 continue;
2652
2653 fib_table_print(seq, tb);
2654
2655 trie_collect_stats(t, &stat);
2656 trie_show_stats(seq, &stat);
2657#ifdef CONFIG_IP_FIB_TRIE_STATS
2658 trie_show_usage(seq, t->stats);
2659#endif
2660 }
2661 cond_resched_rcu();
2662 }
2663 rcu_read_unlock();
2664
2665 return 0;
2666}
2667
2668static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2669{
2670 struct fib_trie_iter *iter = seq->private;
2671 struct net *net = seq_file_net(seq);
2672 loff_t idx = 0;
2673 unsigned int h;
2674
2675 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2676 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2677 struct fib_table *tb;
2678
2679 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2680 struct key_vector *n;
2681
2682 for (n = fib_trie_get_first(iter,
2683 (struct trie *) tb->tb_data);
2684 n; n = fib_trie_get_next(iter))
2685 if (pos == idx++) {
2686 iter->tb = tb;
2687 return n;
2688 }
2689 }
2690 }
2691
2692 return NULL;
2693}
2694
2695static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2696 __acquires(RCU)
2697{
2698 rcu_read_lock();
2699 return fib_trie_get_idx(seq, *pos);
2700}
2701
2702static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2703{
2704 struct fib_trie_iter *iter = seq->private;
2705 struct net *net = seq_file_net(seq);
2706 struct fib_table *tb = iter->tb;
2707 struct hlist_node *tb_node;
2708 unsigned int h;
2709 struct key_vector *n;
2710
2711 ++*pos;
2712 /* next node in same table */
2713 n = fib_trie_get_next(iter);
2714 if (n)
2715 return n;
2716
2717 /* walk rest of this hash chain */
2718 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2719 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2720 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2721 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2722 if (n)
2723 goto found;
2724 }
2725
2726 /* new hash chain */
2727 while (++h < FIB_TABLE_HASHSZ) {
2728 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2729 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2730 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2731 if (n)
2732 goto found;
2733 }
2734 }
2735 return NULL;
2736
2737found:
2738 iter->tb = tb;
2739 return n;
2740}
2741
2742static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2743 __releases(RCU)
2744{
2745 rcu_read_unlock();
2746}
2747
2748static void seq_indent(struct seq_file *seq, int n)
2749{
2750 while (n-- > 0)
2751 seq_puts(seq, " ");
2752}
2753
2754static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2755{
2756 switch (s) {
2757 case RT_SCOPE_UNIVERSE: return "universe";
2758 case RT_SCOPE_SITE: return "site";
2759 case RT_SCOPE_LINK: return "link";
2760 case RT_SCOPE_HOST: return "host";
2761 case RT_SCOPE_NOWHERE: return "nowhere";
2762 default:
2763 snprintf(buf, len, "scope=%d", s);
2764 return buf;
2765 }
2766}
2767
2768static const char *const rtn_type_names[__RTN_MAX] = {
2769 [RTN_UNSPEC] = "UNSPEC",
2770 [RTN_UNICAST] = "UNICAST",
2771 [RTN_LOCAL] = "LOCAL",
2772 [RTN_BROADCAST] = "BROADCAST",
2773 [RTN_ANYCAST] = "ANYCAST",
2774 [RTN_MULTICAST] = "MULTICAST",
2775 [RTN_BLACKHOLE] = "BLACKHOLE",
2776 [RTN_UNREACHABLE] = "UNREACHABLE",
2777 [RTN_PROHIBIT] = "PROHIBIT",
2778 [RTN_THROW] = "THROW",
2779 [RTN_NAT] = "NAT",
2780 [RTN_XRESOLVE] = "XRESOLVE",
2781};
2782
2783static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2784{
2785 if (t < __RTN_MAX && rtn_type_names[t])
2786 return rtn_type_names[t];
2787 snprintf(buf, len, "type %u", t);
2788 return buf;
2789}
2790
2791/* Pretty print the trie */
2792static int fib_trie_seq_show(struct seq_file *seq, void *v)
2793{
2794 const struct fib_trie_iter *iter = seq->private;
2795 struct key_vector *n = v;
2796
2797 if (IS_TRIE(node_parent_rcu(n)))
2798 fib_table_print(seq, iter->tb);
2799
2800 if (IS_TNODE(n)) {
2801 __be32 prf = htonl(n->key);
2802
2803 seq_indent(seq, iter->depth-1);
2804 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2805 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2806 tn_info(n)->full_children,
2807 tn_info(n)->empty_children);
2808 } else {
2809 __be32 val = htonl(n->key);
2810 struct fib_alias *fa;
2811
2812 seq_indent(seq, iter->depth);
2813 seq_printf(seq, " |-- %pI4\n", &val);
2814
2815 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2816 char buf1[32], buf2[32];
2817
2818 seq_indent(seq, iter->depth + 1);
2819 seq_printf(seq, " /%zu %s %s",
2820 KEYLENGTH - fa->fa_slen,
2821 rtn_scope(buf1, sizeof(buf1),
2822 fa->fa_info->fib_scope),
2823 rtn_type(buf2, sizeof(buf2),
2824 fa->fa_type));
2825 if (fa->fa_dscp)
2826 seq_printf(seq, " tos=%d",
2827 inet_dscp_to_dsfield(fa->fa_dscp));
2828 seq_putc(seq, '\n');
2829 }
2830 }
2831
2832 return 0;
2833}
2834
2835static const struct seq_operations fib_trie_seq_ops = {
2836 .start = fib_trie_seq_start,
2837 .next = fib_trie_seq_next,
2838 .stop = fib_trie_seq_stop,
2839 .show = fib_trie_seq_show,
2840};
2841
2842struct fib_route_iter {
2843 struct seq_net_private p;
2844 struct fib_table *main_tb;
2845 struct key_vector *tnode;
2846 loff_t pos;
2847 t_key key;
2848};
2849
2850static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2851 loff_t pos)
2852{
2853 struct key_vector *l, **tp = &iter->tnode;
2854 t_key key;
2855
2856 /* use cached location of previously found key */
2857 if (iter->pos > 0 && pos >= iter->pos) {
2858 key = iter->key;
2859 } else {
2860 iter->pos = 1;
2861 key = 0;
2862 }
2863
2864 pos -= iter->pos;
2865
2866 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2867 key = l->key + 1;
2868 iter->pos++;
2869 l = NULL;
2870
2871 /* handle unlikely case of a key wrap */
2872 if (!key)
2873 break;
2874 }
2875
2876 if (l)
2877 iter->key = l->key; /* remember it */
2878 else
2879 iter->pos = 0; /* forget it */
2880
2881 return l;
2882}
2883
2884static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2885 __acquires(RCU)
2886{
2887 struct fib_route_iter *iter = seq->private;
2888 struct fib_table *tb;
2889 struct trie *t;
2890
2891 rcu_read_lock();
2892
2893 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2894 if (!tb)
2895 return NULL;
2896
2897 iter->main_tb = tb;
2898 t = (struct trie *)tb->tb_data;
2899 iter->tnode = t->kv;
2900
2901 if (*pos != 0)
2902 return fib_route_get_idx(iter, *pos);
2903
2904 iter->pos = 0;
2905 iter->key = KEY_MAX;
2906
2907 return SEQ_START_TOKEN;
2908}
2909
2910static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2911{
2912 struct fib_route_iter *iter = seq->private;
2913 struct key_vector *l = NULL;
2914 t_key key = iter->key + 1;
2915
2916 ++*pos;
2917
2918 /* only allow key of 0 for start of sequence */
2919 if ((v == SEQ_START_TOKEN) || key)
2920 l = leaf_walk_rcu(&iter->tnode, key);
2921
2922 if (l) {
2923 iter->key = l->key;
2924 iter->pos++;
2925 } else {
2926 iter->pos = 0;
2927 }
2928
2929 return l;
2930}
2931
2932static void fib_route_seq_stop(struct seq_file *seq, void *v)
2933 __releases(RCU)
2934{
2935 rcu_read_unlock();
2936}
2937
2938static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2939{
2940 unsigned int flags = 0;
2941
2942 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2943 flags = RTF_REJECT;
2944 if (fi) {
2945 const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2946
2947 if (nhc->nhc_gw.ipv4)
2948 flags |= RTF_GATEWAY;
2949 }
2950 if (mask == htonl(0xFFFFFFFF))
2951 flags |= RTF_HOST;
2952 flags |= RTF_UP;
2953 return flags;
2954}
2955
2956/*
2957 * This outputs /proc/net/route.
2958 * The format of the file is not supposed to be changed
2959 * and needs to be same as fib_hash output to avoid breaking
2960 * legacy utilities
2961 */
2962static int fib_route_seq_show(struct seq_file *seq, void *v)
2963{
2964 struct fib_route_iter *iter = seq->private;
2965 struct fib_table *tb = iter->main_tb;
2966 struct fib_alias *fa;
2967 struct key_vector *l = v;
2968 __be32 prefix;
2969
2970 if (v == SEQ_START_TOKEN) {
2971 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2972 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2973 "\tWindow\tIRTT");
2974 return 0;
2975 }
2976
2977 prefix = htonl(l->key);
2978
2979 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2980 struct fib_info *fi = fa->fa_info;
2981 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2982 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2983
2984 if ((fa->fa_type == RTN_BROADCAST) ||
2985 (fa->fa_type == RTN_MULTICAST))
2986 continue;
2987
2988 if (fa->tb_id != tb->tb_id)
2989 continue;
2990
2991 seq_setwidth(seq, 127);
2992
2993 if (fi) {
2994 struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2995 __be32 gw = 0;
2996
2997 if (nhc->nhc_gw_family == AF_INET)
2998 gw = nhc->nhc_gw.ipv4;
2999
3000 seq_printf(seq,
3001 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
3002 "%d\t%08X\t%d\t%u\t%u",
3003 nhc->nhc_dev ? nhc->nhc_dev->name : "*",
3004 prefix, gw, flags, 0, 0,
3005 fi->fib_priority,
3006 mask,
3007 (fi->fib_advmss ?
3008 fi->fib_advmss + 40 : 0),
3009 fi->fib_window,
3010 fi->fib_rtt >> 3);
3011 } else {
3012 seq_printf(seq,
3013 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
3014 "%d\t%08X\t%d\t%u\t%u",
3015 prefix, 0, flags, 0, 0, 0,
3016 mask, 0, 0, 0);
3017 }
3018 seq_pad(seq, '\n');
3019 }
3020
3021 return 0;
3022}
3023
3024static const struct seq_operations fib_route_seq_ops = {
3025 .start = fib_route_seq_start,
3026 .next = fib_route_seq_next,
3027 .stop = fib_route_seq_stop,
3028 .show = fib_route_seq_show,
3029};
3030
3031int __net_init fib_proc_init(struct net *net)
3032{
3033 if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
3034 sizeof(struct fib_trie_iter)))
3035 goto out1;
3036
3037 if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
3038 fib_triestat_seq_show, NULL))
3039 goto out2;
3040
3041 if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
3042 sizeof(struct fib_route_iter)))
3043 goto out3;
3044
3045 return 0;
3046
3047out3:
3048 remove_proc_entry("fib_triestat", net->proc_net);
3049out2:
3050 remove_proc_entry("fib_trie", net->proc_net);
3051out1:
3052 return -ENOMEM;
3053}
3054
3055void __net_exit fib_proc_exit(struct net *net)
3056{
3057 remove_proc_entry("fib_trie", net->proc_net);
3058 remove_proc_entry("fib_triestat", net->proc_net);
3059 remove_proc_entry("route", net->proc_net);
3060}
3061
3062#endif /* CONFIG_PROC_FS */