Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2   Copyright (C) 2002 Richard Henderson
   3   Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
   4
   5    This program is free software; you can redistribute it and/or modify
   6    it under the terms of the GNU General Public License as published by
   7    the Free Software Foundation; either version 2 of the License, or
   8    (at your option) any later version.
   9
  10    This program is distributed in the hope that it will be useful,
  11    but WITHOUT ANY WARRANTY; without even the implied warranty of
  12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13    GNU General Public License for more details.
  14
  15    You should have received a copy of the GNU General Public License
  16    along with this program; if not, write to the Free Software
  17    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  18*/
  19#include <linux/export.h>
  20#include <linux/moduleloader.h>
  21#include <linux/ftrace_event.h>
  22#include <linux/init.h>
  23#include <linux/kallsyms.h>
  24#include <linux/file.h>
  25#include <linux/fs.h>
  26#include <linux/sysfs.h>
  27#include <linux/kernel.h>
  28#include <linux/slab.h>
  29#include <linux/vmalloc.h>
  30#include <linux/elf.h>
  31#include <linux/proc_fs.h>
  32#include <linux/security.h>
  33#include <linux/seq_file.h>
  34#include <linux/syscalls.h>
  35#include <linux/fcntl.h>
  36#include <linux/rcupdate.h>
  37#include <linux/capability.h>
  38#include <linux/cpu.h>
  39#include <linux/moduleparam.h>
  40#include <linux/errno.h>
  41#include <linux/err.h>
  42#include <linux/vermagic.h>
  43#include <linux/notifier.h>
  44#include <linux/sched.h>
  45#include <linux/stop_machine.h>
  46#include <linux/device.h>
  47#include <linux/string.h>
  48#include <linux/mutex.h>
  49#include <linux/rculist.h>
  50#include <asm/uaccess.h>
  51#include <asm/cacheflush.h>
  52#include <asm/mmu_context.h>
  53#include <linux/license.h>
  54#include <asm/sections.h>
  55#include <linux/tracepoint.h>
  56#include <linux/ftrace.h>
  57#include <linux/async.h>
  58#include <linux/percpu.h>
  59#include <linux/kmemleak.h>
  60#include <linux/jump_label.h>
  61#include <linux/pfn.h>
  62#include <linux/bsearch.h>
  63#include <linux/fips.h>
  64#include <uapi/linux/module.h>
  65#include "module-internal.h"
  66
  67#define CREATE_TRACE_POINTS
  68#include <trace/events/module.h>
  69
  70#ifndef ARCH_SHF_SMALL
  71#define ARCH_SHF_SMALL 0
  72#endif
  73
  74/*
  75 * Modules' sections will be aligned on page boundaries
  76 * to ensure complete separation of code and data, but
  77 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
  78 */
  79#ifdef CONFIG_DEBUG_SET_MODULE_RONX
  80# define debug_align(X) ALIGN(X, PAGE_SIZE)
  81#else
  82# define debug_align(X) (X)
  83#endif
  84
  85/*
  86 * Given BASE and SIZE this macro calculates the number of pages the
  87 * memory regions occupies
  88 */
  89#define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ?		\
  90		(PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) -	\
  91			 PFN_DOWN((unsigned long)BASE) + 1)	\
  92		: (0UL))
  93
  94/* If this is set, the section belongs in the init part of the module */
  95#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
  96
  97/*
  98 * Mutex protects:
  99 * 1) List of modules (also safely readable with preempt_disable),
 100 * 2) module_use links,
 101 * 3) module_addr_min/module_addr_max.
 102 * (delete uses stop_machine/add uses RCU list operations). */
 103DEFINE_MUTEX(module_mutex);
 104EXPORT_SYMBOL_GPL(module_mutex);
 105static LIST_HEAD(modules);
 106#ifdef CONFIG_KGDB_KDB
 107struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
 108#endif /* CONFIG_KGDB_KDB */
 109
 110#ifdef CONFIG_MODULE_SIG
 111#ifdef CONFIG_MODULE_SIG_FORCE
 112static bool sig_enforce = true;
 113#else
 114static bool sig_enforce = false;
 115
 116static int param_set_bool_enable_only(const char *val,
 117				      const struct kernel_param *kp)
 118{
 119	int err;
 120	bool test;
 121	struct kernel_param dummy_kp = *kp;
 122
 123	dummy_kp.arg = &test;
 124
 125	err = param_set_bool(val, &dummy_kp);
 126	if (err)
 127		return err;
 128
 129	/* Don't let them unset it once it's set! */
 130	if (!test && sig_enforce)
 131		return -EROFS;
 132
 133	if (test)
 134		sig_enforce = true;
 135	return 0;
 136}
 137
 138static const struct kernel_param_ops param_ops_bool_enable_only = {
 139	.flags = KERNEL_PARAM_FL_NOARG,
 140	.set = param_set_bool_enable_only,
 141	.get = param_get_bool,
 142};
 143#define param_check_bool_enable_only param_check_bool
 144
 145module_param(sig_enforce, bool_enable_only, 0644);
 146#endif /* !CONFIG_MODULE_SIG_FORCE */
 147#endif /* CONFIG_MODULE_SIG */
 148
 149/* Block module loading/unloading? */
 150int modules_disabled = 0;
 151core_param(nomodule, modules_disabled, bint, 0);
 152
 153/* Waiting for a module to finish initializing? */
 154static DECLARE_WAIT_QUEUE_HEAD(module_wq);
 155
 156static BLOCKING_NOTIFIER_HEAD(module_notify_list);
 157
 158/* Bounds of module allocation, for speeding __module_address.
 159 * Protected by module_mutex. */
 160static unsigned long module_addr_min = -1UL, module_addr_max = 0;
 161
 162int register_module_notifier(struct notifier_block * nb)
 163{
 164	return blocking_notifier_chain_register(&module_notify_list, nb);
 165}
 166EXPORT_SYMBOL(register_module_notifier);
 167
 168int unregister_module_notifier(struct notifier_block * nb)
 169{
 170	return blocking_notifier_chain_unregister(&module_notify_list, nb);
 171}
 172EXPORT_SYMBOL(unregister_module_notifier);
 173
 174struct load_info {
 175	Elf_Ehdr *hdr;
 176	unsigned long len;
 177	Elf_Shdr *sechdrs;
 178	char *secstrings, *strtab;
 179	unsigned long symoffs, stroffs;
 180	struct _ddebug *debug;
 181	unsigned int num_debug;
 182	bool sig_ok;
 183	struct {
 184		unsigned int sym, str, mod, vers, info, pcpu;
 185	} index;
 186};
 187
 188/* We require a truly strong try_module_get(): 0 means failure due to
 189   ongoing or failed initialization etc. */
 190static inline int strong_try_module_get(struct module *mod)
 191{
 192	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
 193	if (mod && mod->state == MODULE_STATE_COMING)
 194		return -EBUSY;
 195	if (try_module_get(mod))
 196		return 0;
 197	else
 198		return -ENOENT;
 199}
 200
 201static inline void add_taint_module(struct module *mod, unsigned flag,
 202				    enum lockdep_ok lockdep_ok)
 203{
 204	add_taint(flag, lockdep_ok);
 205	mod->taints |= (1U << flag);
 206}
 207
 208/*
 209 * A thread that wants to hold a reference to a module only while it
 210 * is running can call this to safely exit.  nfsd and lockd use this.
 211 */
 212void __module_put_and_exit(struct module *mod, long code)
 213{
 214	module_put(mod);
 215	do_exit(code);
 216}
 217EXPORT_SYMBOL(__module_put_and_exit);
 218
 219/* Find a module section: 0 means not found. */
 220static unsigned int find_sec(const struct load_info *info, const char *name)
 221{
 222	unsigned int i;
 223
 224	for (i = 1; i < info->hdr->e_shnum; i++) {
 225		Elf_Shdr *shdr = &info->sechdrs[i];
 226		/* Alloc bit cleared means "ignore it." */
 227		if ((shdr->sh_flags & SHF_ALLOC)
 228		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
 229			return i;
 230	}
 231	return 0;
 232}
 233
 234/* Find a module section, or NULL. */
 235static void *section_addr(const struct load_info *info, const char *name)
 236{
 237	/* Section 0 has sh_addr 0. */
 238	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
 239}
 240
 241/* Find a module section, or NULL.  Fill in number of "objects" in section. */
 242static void *section_objs(const struct load_info *info,
 243			  const char *name,
 244			  size_t object_size,
 245			  unsigned int *num)
 246{
 247	unsigned int sec = find_sec(info, name);
 248
 249	/* Section 0 has sh_addr 0 and sh_size 0. */
 250	*num = info->sechdrs[sec].sh_size / object_size;
 251	return (void *)info->sechdrs[sec].sh_addr;
 252}
 253
 254/* Provided by the linker */
 255extern const struct kernel_symbol __start___ksymtab[];
 256extern const struct kernel_symbol __stop___ksymtab[];
 257extern const struct kernel_symbol __start___ksymtab_gpl[];
 258extern const struct kernel_symbol __stop___ksymtab_gpl[];
 259extern const struct kernel_symbol __start___ksymtab_gpl_future[];
 260extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
 261extern const unsigned long __start___kcrctab[];
 262extern const unsigned long __start___kcrctab_gpl[];
 263extern const unsigned long __start___kcrctab_gpl_future[];
 264#ifdef CONFIG_UNUSED_SYMBOLS
 265extern const struct kernel_symbol __start___ksymtab_unused[];
 266extern const struct kernel_symbol __stop___ksymtab_unused[];
 267extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
 268extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
 269extern const unsigned long __start___kcrctab_unused[];
 270extern const unsigned long __start___kcrctab_unused_gpl[];
 271#endif
 272
 273#ifndef CONFIG_MODVERSIONS
 274#define symversion(base, idx) NULL
 275#else
 276#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
 277#endif
 278
 279static bool each_symbol_in_section(const struct symsearch *arr,
 280				   unsigned int arrsize,
 281				   struct module *owner,
 282				   bool (*fn)(const struct symsearch *syms,
 283					      struct module *owner,
 284					      void *data),
 285				   void *data)
 286{
 287	unsigned int j;
 288
 289	for (j = 0; j < arrsize; j++) {
 290		if (fn(&arr[j], owner, data))
 291			return true;
 292	}
 293
 294	return false;
 295}
 296
 297/* Returns true as soon as fn returns true, otherwise false. */
 298bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
 299				    struct module *owner,
 300				    void *data),
 301			 void *data)
 302{
 303	struct module *mod;
 304	static const struct symsearch arr[] = {
 305		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
 306		  NOT_GPL_ONLY, false },
 307		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
 308		  __start___kcrctab_gpl,
 309		  GPL_ONLY, false },
 310		{ __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
 311		  __start___kcrctab_gpl_future,
 312		  WILL_BE_GPL_ONLY, false },
 313#ifdef CONFIG_UNUSED_SYMBOLS
 314		{ __start___ksymtab_unused, __stop___ksymtab_unused,
 315		  __start___kcrctab_unused,
 316		  NOT_GPL_ONLY, true },
 317		{ __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
 318		  __start___kcrctab_unused_gpl,
 319		  GPL_ONLY, true },
 320#endif
 321	};
 322
 323	if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
 324		return true;
 325
 326	list_for_each_entry_rcu(mod, &modules, list) {
 327		struct symsearch arr[] = {
 328			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
 329			  NOT_GPL_ONLY, false },
 330			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
 331			  mod->gpl_crcs,
 332			  GPL_ONLY, false },
 333			{ mod->gpl_future_syms,
 334			  mod->gpl_future_syms + mod->num_gpl_future_syms,
 335			  mod->gpl_future_crcs,
 336			  WILL_BE_GPL_ONLY, false },
 337#ifdef CONFIG_UNUSED_SYMBOLS
 338			{ mod->unused_syms,
 339			  mod->unused_syms + mod->num_unused_syms,
 340			  mod->unused_crcs,
 341			  NOT_GPL_ONLY, true },
 342			{ mod->unused_gpl_syms,
 343			  mod->unused_gpl_syms + mod->num_unused_gpl_syms,
 344			  mod->unused_gpl_crcs,
 345			  GPL_ONLY, true },
 346#endif
 347		};
 348
 349		if (mod->state == MODULE_STATE_UNFORMED)
 350			continue;
 351
 352		if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
 353			return true;
 354	}
 355	return false;
 356}
 357EXPORT_SYMBOL_GPL(each_symbol_section);
 358
 359struct find_symbol_arg {
 360	/* Input */
 361	const char *name;
 362	bool gplok;
 363	bool warn;
 364
 365	/* Output */
 366	struct module *owner;
 367	const unsigned long *crc;
 368	const struct kernel_symbol *sym;
 369};
 370
 371static bool check_symbol(const struct symsearch *syms,
 372				 struct module *owner,
 373				 unsigned int symnum, void *data)
 374{
 375	struct find_symbol_arg *fsa = data;
 376
 377	if (!fsa->gplok) {
 378		if (syms->licence == GPL_ONLY)
 379			return false;
 380		if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
 381			pr_warn("Symbol %s is being used by a non-GPL module, "
 382				"which will not be allowed in the future\n",
 383				fsa->name);
 
 
 
 384		}
 385	}
 386
 387#ifdef CONFIG_UNUSED_SYMBOLS
 388	if (syms->unused && fsa->warn) {
 389		pr_warn("Symbol %s is marked as UNUSED, however this module is "
 390			"using it.\n", fsa->name);
 391		pr_warn("This symbol will go away in the future.\n");
 392		pr_warn("Please evalute if this is the right api to use and if "
 393			"it really is, submit a report the linux kernel "
 394			"mailinglist together with submitting your code for "
 395			"inclusion.\n");
 
 
 396	}
 397#endif
 398
 399	fsa->owner = owner;
 400	fsa->crc = symversion(syms->crcs, symnum);
 401	fsa->sym = &syms->start[symnum];
 402	return true;
 403}
 404
 405static int cmp_name(const void *va, const void *vb)
 406{
 407	const char *a;
 408	const struct kernel_symbol *b;
 409	a = va; b = vb;
 410	return strcmp(a, b->name);
 411}
 412
 413static bool find_symbol_in_section(const struct symsearch *syms,
 414				   struct module *owner,
 415				   void *data)
 416{
 417	struct find_symbol_arg *fsa = data;
 418	struct kernel_symbol *sym;
 419
 420	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
 421			sizeof(struct kernel_symbol), cmp_name);
 422
 423	if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
 424		return true;
 425
 426	return false;
 427}
 428
 429/* Find a symbol and return it, along with, (optional) crc and
 430 * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
 431const struct kernel_symbol *find_symbol(const char *name,
 432					struct module **owner,
 433					const unsigned long **crc,
 434					bool gplok,
 435					bool warn)
 436{
 437	struct find_symbol_arg fsa;
 438
 439	fsa.name = name;
 440	fsa.gplok = gplok;
 441	fsa.warn = warn;
 442
 443	if (each_symbol_section(find_symbol_in_section, &fsa)) {
 444		if (owner)
 445			*owner = fsa.owner;
 446		if (crc)
 447			*crc = fsa.crc;
 448		return fsa.sym;
 449	}
 450
 451	pr_debug("Failed to find symbol %s\n", name);
 452	return NULL;
 453}
 454EXPORT_SYMBOL_GPL(find_symbol);
 455
 456/* Search for module by name: must hold module_mutex. */
 457static struct module *find_module_all(const char *name, size_t len,
 458				      bool even_unformed)
 459{
 460	struct module *mod;
 461
 462	list_for_each_entry(mod, &modules, list) {
 463		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
 464			continue;
 465		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
 466			return mod;
 467	}
 468	return NULL;
 469}
 470
 471struct module *find_module(const char *name)
 472{
 473	return find_module_all(name, strlen(name), false);
 474}
 475EXPORT_SYMBOL_GPL(find_module);
 476
 477#ifdef CONFIG_SMP
 478
 479static inline void __percpu *mod_percpu(struct module *mod)
 480{
 481	return mod->percpu;
 482}
 483
 484static int percpu_modalloc(struct module *mod, struct load_info *info)
 
 485{
 486	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
 487	unsigned long align = pcpusec->sh_addralign;
 488
 489	if (!pcpusec->sh_size)
 490		return 0;
 491
 492	if (align > PAGE_SIZE) {
 493		pr_warn("%s: per-cpu alignment %li > %li\n",
 494			mod->name, align, PAGE_SIZE);
 495		align = PAGE_SIZE;
 496	}
 497
 498	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
 499	if (!mod->percpu) {
 500		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
 501			mod->name, (unsigned long)pcpusec->sh_size);
 
 502		return -ENOMEM;
 503	}
 504	mod->percpu_size = pcpusec->sh_size;
 505	return 0;
 506}
 507
 508static void percpu_modfree(struct module *mod)
 509{
 510	free_percpu(mod->percpu);
 511}
 512
 513static unsigned int find_pcpusec(struct load_info *info)
 514{
 515	return find_sec(info, ".data..percpu");
 516}
 517
 518static void percpu_modcopy(struct module *mod,
 519			   const void *from, unsigned long size)
 520{
 521	int cpu;
 522
 523	for_each_possible_cpu(cpu)
 524		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
 525}
 526
 527/**
 528 * is_module_percpu_address - test whether address is from module static percpu
 529 * @addr: address to test
 530 *
 531 * Test whether @addr belongs to module static percpu area.
 532 *
 533 * RETURNS:
 534 * %true if @addr is from module static percpu area
 535 */
 536bool is_module_percpu_address(unsigned long addr)
 537{
 538	struct module *mod;
 539	unsigned int cpu;
 540
 541	preempt_disable();
 542
 543	list_for_each_entry_rcu(mod, &modules, list) {
 544		if (mod->state == MODULE_STATE_UNFORMED)
 545			continue;
 546		if (!mod->percpu_size)
 547			continue;
 548		for_each_possible_cpu(cpu) {
 549			void *start = per_cpu_ptr(mod->percpu, cpu);
 550
 551			if ((void *)addr >= start &&
 552			    (void *)addr < start + mod->percpu_size) {
 553				preempt_enable();
 554				return true;
 555			}
 556		}
 557	}
 558
 559	preempt_enable();
 560	return false;
 561}
 562
 563#else /* ... !CONFIG_SMP */
 564
 565static inline void __percpu *mod_percpu(struct module *mod)
 566{
 567	return NULL;
 568}
 569static int percpu_modalloc(struct module *mod, struct load_info *info)
 
 570{
 571	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
 572	if (info->sechdrs[info->index.pcpu].sh_size != 0)
 573		return -ENOMEM;
 574	return 0;
 575}
 576static inline void percpu_modfree(struct module *mod)
 577{
 578}
 579static unsigned int find_pcpusec(struct load_info *info)
 580{
 581	return 0;
 582}
 583static inline void percpu_modcopy(struct module *mod,
 584				  const void *from, unsigned long size)
 585{
 586	/* pcpusec should be 0, and size of that section should be 0. */
 587	BUG_ON(size != 0);
 588}
 589bool is_module_percpu_address(unsigned long addr)
 590{
 591	return false;
 592}
 593
 594#endif /* CONFIG_SMP */
 595
 596#define MODINFO_ATTR(field)	\
 597static void setup_modinfo_##field(struct module *mod, const char *s)  \
 598{                                                                     \
 599	mod->field = kstrdup(s, GFP_KERNEL);                          \
 600}                                                                     \
 601static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
 602			struct module_kobject *mk, char *buffer)      \
 603{                                                                     \
 604	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
 605}                                                                     \
 606static int modinfo_##field##_exists(struct module *mod)               \
 607{                                                                     \
 608	return mod->field != NULL;                                    \
 609}                                                                     \
 610static void free_modinfo_##field(struct module *mod)                  \
 611{                                                                     \
 612	kfree(mod->field);                                            \
 613	mod->field = NULL;                                            \
 614}                                                                     \
 615static struct module_attribute modinfo_##field = {                    \
 616	.attr = { .name = __stringify(field), .mode = 0444 },         \
 617	.show = show_modinfo_##field,                                 \
 618	.setup = setup_modinfo_##field,                               \
 619	.test = modinfo_##field##_exists,                             \
 620	.free = free_modinfo_##field,                                 \
 621};
 622
 623MODINFO_ATTR(version);
 624MODINFO_ATTR(srcversion);
 625
 626static char last_unloaded_module[MODULE_NAME_LEN+1];
 627
 628#ifdef CONFIG_MODULE_UNLOAD
 629
 630EXPORT_TRACEPOINT_SYMBOL(module_get);
 631
 632/* Init the unload section of the module. */
 633static int module_unload_init(struct module *mod)
 634{
 635	mod->refptr = alloc_percpu(struct module_ref);
 636	if (!mod->refptr)
 637		return -ENOMEM;
 638
 639	INIT_LIST_HEAD(&mod->source_list);
 640	INIT_LIST_HEAD(&mod->target_list);
 641
 642	/* Hold reference count during initialization. */
 643	raw_cpu_write(mod->refptr->incs, 1);
 
 
 644
 645	return 0;
 646}
 647
 648/* Does a already use b? */
 649static int already_uses(struct module *a, struct module *b)
 650{
 651	struct module_use *use;
 652
 653	list_for_each_entry(use, &b->source_list, source_list) {
 654		if (use->source == a) {
 655			pr_debug("%s uses %s!\n", a->name, b->name);
 656			return 1;
 657		}
 658	}
 659	pr_debug("%s does not use %s!\n", a->name, b->name);
 660	return 0;
 661}
 662
 663/*
 664 * Module a uses b
 665 *  - we add 'a' as a "source", 'b' as a "target" of module use
 666 *  - the module_use is added to the list of 'b' sources (so
 667 *    'b' can walk the list to see who sourced them), and of 'a'
 668 *    targets (so 'a' can see what modules it targets).
 669 */
 670static int add_module_usage(struct module *a, struct module *b)
 671{
 672	struct module_use *use;
 673
 674	pr_debug("Allocating new usage for %s.\n", a->name);
 675	use = kmalloc(sizeof(*use), GFP_ATOMIC);
 676	if (!use) {
 677		pr_warn("%s: out of memory loading\n", a->name);
 678		return -ENOMEM;
 679	}
 680
 681	use->source = a;
 682	use->target = b;
 683	list_add(&use->source_list, &b->source_list);
 684	list_add(&use->target_list, &a->target_list);
 685	return 0;
 686}
 687
 688/* Module a uses b: caller needs module_mutex() */
 689int ref_module(struct module *a, struct module *b)
 690{
 691	int err;
 692
 693	if (b == NULL || already_uses(a, b))
 694		return 0;
 695
 696	/* If module isn't available, we fail. */
 697	err = strong_try_module_get(b);
 698	if (err)
 699		return err;
 700
 701	err = add_module_usage(a, b);
 702	if (err) {
 703		module_put(b);
 704		return err;
 705	}
 706	return 0;
 707}
 708EXPORT_SYMBOL_GPL(ref_module);
 709
 710/* Clear the unload stuff of the module. */
 711static void module_unload_free(struct module *mod)
 712{
 713	struct module_use *use, *tmp;
 714
 715	mutex_lock(&module_mutex);
 716	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
 717		struct module *i = use->target;
 718		pr_debug("%s unusing %s\n", mod->name, i->name);
 719		module_put(i);
 720		list_del(&use->source_list);
 721		list_del(&use->target_list);
 722		kfree(use);
 723	}
 724	mutex_unlock(&module_mutex);
 725
 726	free_percpu(mod->refptr);
 727}
 728
 729#ifdef CONFIG_MODULE_FORCE_UNLOAD
 730static inline int try_force_unload(unsigned int flags)
 731{
 732	int ret = (flags & O_TRUNC);
 733	if (ret)
 734		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
 735	return ret;
 736}
 737#else
 738static inline int try_force_unload(unsigned int flags)
 739{
 740	return 0;
 741}
 742#endif /* CONFIG_MODULE_FORCE_UNLOAD */
 743
 744struct stopref
 745{
 746	struct module *mod;
 747	int flags;
 748	int *forced;
 749};
 750
 751/* Whole machine is stopped with interrupts off when this runs. */
 752static int __try_stop_module(void *_sref)
 753{
 754	struct stopref *sref = _sref;
 755
 756	/* If it's not unused, quit unless we're forcing. */
 757	if (module_refcount(sref->mod) != 0) {
 758		if (!(*sref->forced = try_force_unload(sref->flags)))
 759			return -EWOULDBLOCK;
 760	}
 761
 762	/* Mark it as dying. */
 763	sref->mod->state = MODULE_STATE_GOING;
 764	return 0;
 765}
 766
 767static int try_stop_module(struct module *mod, int flags, int *forced)
 768{
 769	struct stopref sref = { mod, flags, forced };
 
 770
 771	return stop_machine(__try_stop_module, &sref, NULL);
 
 
 
 
 
 
 772}
 773
 774unsigned long module_refcount(struct module *mod)
 775{
 776	unsigned long incs = 0, decs = 0;
 777	int cpu;
 778
 779	for_each_possible_cpu(cpu)
 780		decs += per_cpu_ptr(mod->refptr, cpu)->decs;
 781	/*
 782	 * ensure the incs are added up after the decs.
 783	 * module_put ensures incs are visible before decs with smp_wmb.
 784	 *
 785	 * This 2-count scheme avoids the situation where the refcount
 786	 * for CPU0 is read, then CPU0 increments the module refcount,
 787	 * then CPU1 drops that refcount, then the refcount for CPU1 is
 788	 * read. We would record a decrement but not its corresponding
 789	 * increment so we would see a low count (disaster).
 790	 *
 791	 * Rare situation? But module_refcount can be preempted, and we
 792	 * might be tallying up 4096+ CPUs. So it is not impossible.
 793	 */
 794	smp_rmb();
 795	for_each_possible_cpu(cpu)
 796		incs += per_cpu_ptr(mod->refptr, cpu)->incs;
 797	return incs - decs;
 798}
 799EXPORT_SYMBOL(module_refcount);
 800
 801/* This exists whether we can unload or not */
 802static void free_module(struct module *mod);
 803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 804SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
 805		unsigned int, flags)
 806{
 807	struct module *mod;
 808	char name[MODULE_NAME_LEN];
 809	int ret, forced = 0;
 810
 811	if (!capable(CAP_SYS_MODULE) || modules_disabled)
 812		return -EPERM;
 813
 814	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
 815		return -EFAULT;
 816	name[MODULE_NAME_LEN-1] = '\0';
 817
 818	if (mutex_lock_interruptible(&module_mutex) != 0)
 819		return -EINTR;
 820
 821	mod = find_module(name);
 822	if (!mod) {
 823		ret = -ENOENT;
 824		goto out;
 825	}
 826
 827	if (!list_empty(&mod->source_list)) {
 828		/* Other modules depend on us: get rid of them first. */
 829		ret = -EWOULDBLOCK;
 830		goto out;
 831	}
 832
 833	/* Doing init or already dying? */
 834	if (mod->state != MODULE_STATE_LIVE) {
 835		/* FIXME: if (force), slam module count damn the torpedoes */
 
 836		pr_debug("%s already dying\n", mod->name);
 837		ret = -EBUSY;
 838		goto out;
 839	}
 840
 841	/* If it has an init func, it must have an exit func to unload */
 842	if (mod->init && !mod->exit) {
 843		forced = try_force_unload(flags);
 844		if (!forced) {
 845			/* This module can't be removed */
 846			ret = -EBUSY;
 847			goto out;
 848		}
 849	}
 850
 
 
 
 851	/* Stop the machine so refcounts can't move and disable module. */
 852	ret = try_stop_module(mod, flags, &forced);
 853	if (ret != 0)
 854		goto out;
 855
 
 
 
 
 856	mutex_unlock(&module_mutex);
 857	/* Final destruction now no one is using it. */
 858	if (mod->exit != NULL)
 859		mod->exit();
 860	blocking_notifier_call_chain(&module_notify_list,
 861				     MODULE_STATE_GOING, mod);
 862	async_synchronize_full();
 863
 864	/* Store the name of the last unloaded module for diagnostic purposes */
 865	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
 866
 867	free_module(mod);
 868	return 0;
 869out:
 870	mutex_unlock(&module_mutex);
 871	return ret;
 872}
 873
 874static inline void print_unload_info(struct seq_file *m, struct module *mod)
 875{
 876	struct module_use *use;
 877	int printed_something = 0;
 878
 879	seq_printf(m, " %lu ", module_refcount(mod));
 880
 881	/* Always include a trailing , so userspace can differentiate
 882           between this and the old multi-field proc format. */
 883	list_for_each_entry(use, &mod->source_list, source_list) {
 884		printed_something = 1;
 885		seq_printf(m, "%s,", use->source->name);
 886	}
 887
 888	if (mod->init != NULL && mod->exit == NULL) {
 889		printed_something = 1;
 890		seq_printf(m, "[permanent],");
 891	}
 892
 893	if (!printed_something)
 894		seq_printf(m, "-");
 895}
 896
 897void __symbol_put(const char *symbol)
 898{
 899	struct module *owner;
 900
 901	preempt_disable();
 902	if (!find_symbol(symbol, &owner, NULL, true, false))
 903		BUG();
 904	module_put(owner);
 905	preempt_enable();
 906}
 907EXPORT_SYMBOL(__symbol_put);
 908
 909/* Note this assumes addr is a function, which it currently always is. */
 910void symbol_put_addr(void *addr)
 911{
 912	struct module *modaddr;
 913	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
 914
 915	if (core_kernel_text(a))
 916		return;
 917
 918	/* module_text_address is safe here: we're supposed to have reference
 919	 * to module from symbol_get, so it can't go away. */
 920	modaddr = __module_text_address(a);
 921	BUG_ON(!modaddr);
 922	module_put(modaddr);
 923}
 924EXPORT_SYMBOL_GPL(symbol_put_addr);
 925
 926static ssize_t show_refcnt(struct module_attribute *mattr,
 927			   struct module_kobject *mk, char *buffer)
 928{
 929	return sprintf(buffer, "%lu\n", module_refcount(mk->mod));
 930}
 931
 932static struct module_attribute modinfo_refcnt =
 933	__ATTR(refcnt, 0444, show_refcnt, NULL);
 934
 935void __module_get(struct module *module)
 936{
 937	if (module) {
 938		preempt_disable();
 939		__this_cpu_inc(module->refptr->incs);
 940		trace_module_get(module, _RET_IP_);
 941		preempt_enable();
 942	}
 943}
 944EXPORT_SYMBOL(__module_get);
 945
 946bool try_module_get(struct module *module)
 947{
 948	bool ret = true;
 949
 950	if (module) {
 951		preempt_disable();
 952
 953		if (likely(module_is_live(module))) {
 954			__this_cpu_inc(module->refptr->incs);
 955			trace_module_get(module, _RET_IP_);
 956		} else
 957			ret = false;
 958
 959		preempt_enable();
 960	}
 961	return ret;
 962}
 963EXPORT_SYMBOL(try_module_get);
 964
 965void module_put(struct module *module)
 966{
 967	if (module) {
 968		preempt_disable();
 969		smp_wmb(); /* see comment in module_refcount */
 970		__this_cpu_inc(module->refptr->decs);
 971
 972		trace_module_put(module, _RET_IP_);
 
 
 
 973		preempt_enable();
 974	}
 975}
 976EXPORT_SYMBOL(module_put);
 977
 978#else /* !CONFIG_MODULE_UNLOAD */
 979static inline void print_unload_info(struct seq_file *m, struct module *mod)
 980{
 981	/* We don't know the usage count, or what modules are using. */
 982	seq_printf(m, " - -");
 983}
 984
 985static inline void module_unload_free(struct module *mod)
 986{
 987}
 988
 989int ref_module(struct module *a, struct module *b)
 990{
 991	return strong_try_module_get(b);
 992}
 993EXPORT_SYMBOL_GPL(ref_module);
 994
 995static inline int module_unload_init(struct module *mod)
 996{
 997	return 0;
 998}
 999#endif /* CONFIG_MODULE_UNLOAD */
1000
1001static size_t module_flags_taint(struct module *mod, char *buf)
1002{
1003	size_t l = 0;
1004
1005	if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
1006		buf[l++] = 'P';
1007	if (mod->taints & (1 << TAINT_OOT_MODULE))
1008		buf[l++] = 'O';
1009	if (mod->taints & (1 << TAINT_FORCED_MODULE))
1010		buf[l++] = 'F';
1011	if (mod->taints & (1 << TAINT_CRAP))
1012		buf[l++] = 'C';
1013	if (mod->taints & (1 << TAINT_UNSIGNED_MODULE))
1014		buf[l++] = 'E';
1015	/*
1016	 * TAINT_FORCED_RMMOD: could be added.
1017	 * TAINT_CPU_OUT_OF_SPEC, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
1018	 * apply to modules.
1019	 */
1020	return l;
1021}
1022
1023static ssize_t show_initstate(struct module_attribute *mattr,
1024			      struct module_kobject *mk, char *buffer)
1025{
1026	const char *state = "unknown";
1027
1028	switch (mk->mod->state) {
1029	case MODULE_STATE_LIVE:
1030		state = "live";
1031		break;
1032	case MODULE_STATE_COMING:
1033		state = "coming";
1034		break;
1035	case MODULE_STATE_GOING:
1036		state = "going";
1037		break;
1038	default:
1039		BUG();
1040	}
1041	return sprintf(buffer, "%s\n", state);
1042}
1043
1044static struct module_attribute modinfo_initstate =
1045	__ATTR(initstate, 0444, show_initstate, NULL);
1046
1047static ssize_t store_uevent(struct module_attribute *mattr,
1048			    struct module_kobject *mk,
1049			    const char *buffer, size_t count)
1050{
1051	enum kobject_action action;
1052
1053	if (kobject_action_type(buffer, count, &action) == 0)
1054		kobject_uevent(&mk->kobj, action);
1055	return count;
1056}
1057
1058struct module_attribute module_uevent =
1059	__ATTR(uevent, 0200, NULL, store_uevent);
1060
1061static ssize_t show_coresize(struct module_attribute *mattr,
1062			     struct module_kobject *mk, char *buffer)
1063{
1064	return sprintf(buffer, "%u\n", mk->mod->core_size);
1065}
1066
1067static struct module_attribute modinfo_coresize =
1068	__ATTR(coresize, 0444, show_coresize, NULL);
1069
1070static ssize_t show_initsize(struct module_attribute *mattr,
1071			     struct module_kobject *mk, char *buffer)
1072{
1073	return sprintf(buffer, "%u\n", mk->mod->init_size);
1074}
1075
1076static struct module_attribute modinfo_initsize =
1077	__ATTR(initsize, 0444, show_initsize, NULL);
1078
1079static ssize_t show_taint(struct module_attribute *mattr,
1080			  struct module_kobject *mk, char *buffer)
1081{
1082	size_t l;
1083
1084	l = module_flags_taint(mk->mod, buffer);
1085	buffer[l++] = '\n';
1086	return l;
1087}
1088
1089static struct module_attribute modinfo_taint =
1090	__ATTR(taint, 0444, show_taint, NULL);
1091
1092static struct module_attribute *modinfo_attrs[] = {
1093	&module_uevent,
1094	&modinfo_version,
1095	&modinfo_srcversion,
1096	&modinfo_initstate,
1097	&modinfo_coresize,
1098	&modinfo_initsize,
1099	&modinfo_taint,
1100#ifdef CONFIG_MODULE_UNLOAD
1101	&modinfo_refcnt,
1102#endif
1103	NULL,
1104};
1105
1106static const char vermagic[] = VERMAGIC_STRING;
1107
1108static int try_to_force_load(struct module *mod, const char *reason)
1109{
1110#ifdef CONFIG_MODULE_FORCE_LOAD
1111	if (!test_taint(TAINT_FORCED_MODULE))
1112		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1113	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
 
1114	return 0;
1115#else
1116	return -ENOEXEC;
1117#endif
1118}
1119
1120#ifdef CONFIG_MODVERSIONS
1121/* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1122static unsigned long maybe_relocated(unsigned long crc,
1123				     const struct module *crc_owner)
1124{
1125#ifdef ARCH_RELOCATES_KCRCTAB
1126	if (crc_owner == NULL)
1127		return crc - (unsigned long)reloc_start;
1128#endif
1129	return crc;
1130}
1131
1132static int check_version(Elf_Shdr *sechdrs,
1133			 unsigned int versindex,
1134			 const char *symname,
1135			 struct module *mod, 
1136			 const unsigned long *crc,
1137			 const struct module *crc_owner)
1138{
1139	unsigned int i, num_versions;
1140	struct modversion_info *versions;
1141
1142	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1143	if (!crc)
1144		return 1;
1145
1146	/* No versions at all?  modprobe --force does this. */
1147	if (versindex == 0)
1148		return try_to_force_load(mod, symname) == 0;
1149
1150	versions = (void *) sechdrs[versindex].sh_addr;
1151	num_versions = sechdrs[versindex].sh_size
1152		/ sizeof(struct modversion_info);
1153
1154	for (i = 0; i < num_versions; i++) {
1155		if (strcmp(versions[i].name, symname) != 0)
1156			continue;
1157
1158		if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1159			return 1;
1160		pr_debug("Found checksum %lX vs module %lX\n",
1161		       maybe_relocated(*crc, crc_owner), versions[i].crc);
1162		goto bad_version;
1163	}
1164
1165	pr_warn("%s: no symbol version for %s\n", mod->name, symname);
 
1166	return 0;
1167
1168bad_version:
1169	printk("%s: disagrees about version of symbol %s\n",
1170	       mod->name, symname);
1171	return 0;
1172}
1173
1174static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1175					  unsigned int versindex,
1176					  struct module *mod)
1177{
1178	const unsigned long *crc;
1179
1180	/* Since this should be found in kernel (which can't be removed),
1181	 * no locking is necessary. */
1182	if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1183			 &crc, true, false))
1184		BUG();
1185	return check_version(sechdrs, versindex,
1186			     VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1187			     NULL);
1188}
1189
1190/* First part is kernel version, which we ignore if module has crcs. */
1191static inline int same_magic(const char *amagic, const char *bmagic,
1192			     bool has_crcs)
1193{
1194	if (has_crcs) {
1195		amagic += strcspn(amagic, " ");
1196		bmagic += strcspn(bmagic, " ");
1197	}
1198	return strcmp(amagic, bmagic) == 0;
1199}
1200#else
1201static inline int check_version(Elf_Shdr *sechdrs,
1202				unsigned int versindex,
1203				const char *symname,
1204				struct module *mod, 
1205				const unsigned long *crc,
1206				const struct module *crc_owner)
1207{
1208	return 1;
1209}
1210
1211static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1212					  unsigned int versindex,
1213					  struct module *mod)
1214{
1215	return 1;
1216}
1217
1218static inline int same_magic(const char *amagic, const char *bmagic,
1219			     bool has_crcs)
1220{
1221	return strcmp(amagic, bmagic) == 0;
1222}
1223#endif /* CONFIG_MODVERSIONS */
1224
1225/* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1226static const struct kernel_symbol *resolve_symbol(struct module *mod,
1227						  const struct load_info *info,
1228						  const char *name,
1229						  char ownername[])
1230{
1231	struct module *owner;
1232	const struct kernel_symbol *sym;
1233	const unsigned long *crc;
1234	int err;
1235
1236	mutex_lock(&module_mutex);
1237	sym = find_symbol(name, &owner, &crc,
1238			  !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1239	if (!sym)
1240		goto unlock;
1241
1242	if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1243			   owner)) {
1244		sym = ERR_PTR(-EINVAL);
1245		goto getname;
1246	}
1247
1248	err = ref_module(mod, owner);
1249	if (err) {
1250		sym = ERR_PTR(err);
1251		goto getname;
1252	}
1253
1254getname:
1255	/* We must make copy under the lock if we failed to get ref. */
1256	strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1257unlock:
1258	mutex_unlock(&module_mutex);
1259	return sym;
1260}
1261
1262static const struct kernel_symbol *
1263resolve_symbol_wait(struct module *mod,
1264		    const struct load_info *info,
1265		    const char *name)
1266{
1267	const struct kernel_symbol *ksym;
1268	char owner[MODULE_NAME_LEN];
1269
1270	if (wait_event_interruptible_timeout(module_wq,
1271			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1272			|| PTR_ERR(ksym) != -EBUSY,
1273					     30 * HZ) <= 0) {
1274		pr_warn("%s: gave up waiting for init of module %s.\n",
1275			mod->name, owner);
1276	}
1277	return ksym;
1278}
1279
1280/*
1281 * /sys/module/foo/sections stuff
1282 * J. Corbet <corbet@lwn.net>
1283 */
1284#ifdef CONFIG_SYSFS
1285
1286#ifdef CONFIG_KALLSYMS
1287static inline bool sect_empty(const Elf_Shdr *sect)
1288{
1289	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1290}
1291
1292struct module_sect_attr
1293{
1294	struct module_attribute mattr;
1295	char *name;
1296	unsigned long address;
1297};
1298
1299struct module_sect_attrs
1300{
1301	struct attribute_group grp;
1302	unsigned int nsections;
1303	struct module_sect_attr attrs[0];
1304};
1305
1306static ssize_t module_sect_show(struct module_attribute *mattr,
1307				struct module_kobject *mk, char *buf)
1308{
1309	struct module_sect_attr *sattr =
1310		container_of(mattr, struct module_sect_attr, mattr);
1311	return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1312}
1313
1314static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1315{
1316	unsigned int section;
1317
1318	for (section = 0; section < sect_attrs->nsections; section++)
1319		kfree(sect_attrs->attrs[section].name);
1320	kfree(sect_attrs);
1321}
1322
1323static void add_sect_attrs(struct module *mod, const struct load_info *info)
1324{
1325	unsigned int nloaded = 0, i, size[2];
1326	struct module_sect_attrs *sect_attrs;
1327	struct module_sect_attr *sattr;
1328	struct attribute **gattr;
1329
1330	/* Count loaded sections and allocate structures */
1331	for (i = 0; i < info->hdr->e_shnum; i++)
1332		if (!sect_empty(&info->sechdrs[i]))
1333			nloaded++;
1334	size[0] = ALIGN(sizeof(*sect_attrs)
1335			+ nloaded * sizeof(sect_attrs->attrs[0]),
1336			sizeof(sect_attrs->grp.attrs[0]));
1337	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1338	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1339	if (sect_attrs == NULL)
1340		return;
1341
1342	/* Setup section attributes. */
1343	sect_attrs->grp.name = "sections";
1344	sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1345
1346	sect_attrs->nsections = 0;
1347	sattr = &sect_attrs->attrs[0];
1348	gattr = &sect_attrs->grp.attrs[0];
1349	for (i = 0; i < info->hdr->e_shnum; i++) {
1350		Elf_Shdr *sec = &info->sechdrs[i];
1351		if (sect_empty(sec))
1352			continue;
1353		sattr->address = sec->sh_addr;
1354		sattr->name = kstrdup(info->secstrings + sec->sh_name,
1355					GFP_KERNEL);
1356		if (sattr->name == NULL)
1357			goto out;
1358		sect_attrs->nsections++;
1359		sysfs_attr_init(&sattr->mattr.attr);
1360		sattr->mattr.show = module_sect_show;
1361		sattr->mattr.store = NULL;
1362		sattr->mattr.attr.name = sattr->name;
1363		sattr->mattr.attr.mode = S_IRUGO;
1364		*(gattr++) = &(sattr++)->mattr.attr;
1365	}
1366	*gattr = NULL;
1367
1368	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1369		goto out;
1370
1371	mod->sect_attrs = sect_attrs;
1372	return;
1373  out:
1374	free_sect_attrs(sect_attrs);
1375}
1376
1377static void remove_sect_attrs(struct module *mod)
1378{
1379	if (mod->sect_attrs) {
1380		sysfs_remove_group(&mod->mkobj.kobj,
1381				   &mod->sect_attrs->grp);
1382		/* We are positive that no one is using any sect attrs
1383		 * at this point.  Deallocate immediately. */
1384		free_sect_attrs(mod->sect_attrs);
1385		mod->sect_attrs = NULL;
1386	}
1387}
1388
1389/*
1390 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1391 */
1392
1393struct module_notes_attrs {
1394	struct kobject *dir;
1395	unsigned int notes;
1396	struct bin_attribute attrs[0];
1397};
1398
1399static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1400				 struct bin_attribute *bin_attr,
1401				 char *buf, loff_t pos, size_t count)
1402{
1403	/*
1404	 * The caller checked the pos and count against our size.
1405	 */
1406	memcpy(buf, bin_attr->private + pos, count);
1407	return count;
1408}
1409
1410static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1411			     unsigned int i)
1412{
1413	if (notes_attrs->dir) {
1414		while (i-- > 0)
1415			sysfs_remove_bin_file(notes_attrs->dir,
1416					      &notes_attrs->attrs[i]);
1417		kobject_put(notes_attrs->dir);
1418	}
1419	kfree(notes_attrs);
1420}
1421
1422static void add_notes_attrs(struct module *mod, const struct load_info *info)
1423{
1424	unsigned int notes, loaded, i;
1425	struct module_notes_attrs *notes_attrs;
1426	struct bin_attribute *nattr;
1427
1428	/* failed to create section attributes, so can't create notes */
1429	if (!mod->sect_attrs)
1430		return;
1431
1432	/* Count notes sections and allocate structures.  */
1433	notes = 0;
1434	for (i = 0; i < info->hdr->e_shnum; i++)
1435		if (!sect_empty(&info->sechdrs[i]) &&
1436		    (info->sechdrs[i].sh_type == SHT_NOTE))
1437			++notes;
1438
1439	if (notes == 0)
1440		return;
1441
1442	notes_attrs = kzalloc(sizeof(*notes_attrs)
1443			      + notes * sizeof(notes_attrs->attrs[0]),
1444			      GFP_KERNEL);
1445	if (notes_attrs == NULL)
1446		return;
1447
1448	notes_attrs->notes = notes;
1449	nattr = &notes_attrs->attrs[0];
1450	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1451		if (sect_empty(&info->sechdrs[i]))
1452			continue;
1453		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1454			sysfs_bin_attr_init(nattr);
1455			nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1456			nattr->attr.mode = S_IRUGO;
1457			nattr->size = info->sechdrs[i].sh_size;
1458			nattr->private = (void *) info->sechdrs[i].sh_addr;
1459			nattr->read = module_notes_read;
1460			++nattr;
1461		}
1462		++loaded;
1463	}
1464
1465	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1466	if (!notes_attrs->dir)
1467		goto out;
1468
1469	for (i = 0; i < notes; ++i)
1470		if (sysfs_create_bin_file(notes_attrs->dir,
1471					  &notes_attrs->attrs[i]))
1472			goto out;
1473
1474	mod->notes_attrs = notes_attrs;
1475	return;
1476
1477  out:
1478	free_notes_attrs(notes_attrs, i);
1479}
1480
1481static void remove_notes_attrs(struct module *mod)
1482{
1483	if (mod->notes_attrs)
1484		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1485}
1486
1487#else
1488
1489static inline void add_sect_attrs(struct module *mod,
1490				  const struct load_info *info)
1491{
1492}
1493
1494static inline void remove_sect_attrs(struct module *mod)
1495{
1496}
1497
1498static inline void add_notes_attrs(struct module *mod,
1499				   const struct load_info *info)
1500{
1501}
1502
1503static inline void remove_notes_attrs(struct module *mod)
1504{
1505}
1506#endif /* CONFIG_KALLSYMS */
1507
1508static void add_usage_links(struct module *mod)
1509{
1510#ifdef CONFIG_MODULE_UNLOAD
1511	struct module_use *use;
1512	int nowarn;
1513
1514	mutex_lock(&module_mutex);
1515	list_for_each_entry(use, &mod->target_list, target_list) {
1516		nowarn = sysfs_create_link(use->target->holders_dir,
1517					   &mod->mkobj.kobj, mod->name);
1518	}
1519	mutex_unlock(&module_mutex);
1520#endif
1521}
1522
1523static void del_usage_links(struct module *mod)
1524{
1525#ifdef CONFIG_MODULE_UNLOAD
1526	struct module_use *use;
1527
1528	mutex_lock(&module_mutex);
1529	list_for_each_entry(use, &mod->target_list, target_list)
1530		sysfs_remove_link(use->target->holders_dir, mod->name);
1531	mutex_unlock(&module_mutex);
1532#endif
1533}
1534
1535static int module_add_modinfo_attrs(struct module *mod)
1536{
1537	struct module_attribute *attr;
1538	struct module_attribute *temp_attr;
1539	int error = 0;
1540	int i;
1541
1542	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1543					(ARRAY_SIZE(modinfo_attrs) + 1)),
1544					GFP_KERNEL);
1545	if (!mod->modinfo_attrs)
1546		return -ENOMEM;
1547
1548	temp_attr = mod->modinfo_attrs;
1549	for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1550		if (!attr->test ||
1551		    (attr->test && attr->test(mod))) {
1552			memcpy(temp_attr, attr, sizeof(*temp_attr));
1553			sysfs_attr_init(&temp_attr->attr);
1554			error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
1555			++temp_attr;
1556		}
1557	}
1558	return error;
1559}
1560
1561static void module_remove_modinfo_attrs(struct module *mod)
1562{
1563	struct module_attribute *attr;
1564	int i;
1565
1566	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1567		/* pick a field to test for end of list */
1568		if (!attr->attr.name)
1569			break;
1570		sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
1571		if (attr->free)
1572			attr->free(mod);
1573	}
1574	kfree(mod->modinfo_attrs);
1575}
1576
1577static void mod_kobject_put(struct module *mod)
1578{
1579	DECLARE_COMPLETION_ONSTACK(c);
1580	mod->mkobj.kobj_completion = &c;
1581	kobject_put(&mod->mkobj.kobj);
1582	wait_for_completion(&c);
1583}
1584
1585static int mod_sysfs_init(struct module *mod)
1586{
1587	int err;
1588	struct kobject *kobj;
1589
1590	if (!module_sysfs_initialized) {
1591		pr_err("%s: module sysfs not initialized\n", mod->name);
 
1592		err = -EINVAL;
1593		goto out;
1594	}
1595
1596	kobj = kset_find_obj(module_kset, mod->name);
1597	if (kobj) {
1598		pr_err("%s: module is already loaded\n", mod->name);
1599		kobject_put(kobj);
1600		err = -EINVAL;
1601		goto out;
1602	}
1603
1604	mod->mkobj.mod = mod;
1605
1606	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1607	mod->mkobj.kobj.kset = module_kset;
1608	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1609				   "%s", mod->name);
1610	if (err)
1611		mod_kobject_put(mod);
1612
1613	/* delay uevent until full sysfs population */
1614out:
1615	return err;
1616}
1617
1618static int mod_sysfs_setup(struct module *mod,
1619			   const struct load_info *info,
1620			   struct kernel_param *kparam,
1621			   unsigned int num_params)
1622{
1623	int err;
1624
1625	err = mod_sysfs_init(mod);
1626	if (err)
1627		goto out;
1628
1629	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1630	if (!mod->holders_dir) {
1631		err = -ENOMEM;
1632		goto out_unreg;
1633	}
1634
1635	err = module_param_sysfs_setup(mod, kparam, num_params);
1636	if (err)
1637		goto out_unreg_holders;
1638
1639	err = module_add_modinfo_attrs(mod);
1640	if (err)
1641		goto out_unreg_param;
1642
1643	add_usage_links(mod);
1644	add_sect_attrs(mod, info);
1645	add_notes_attrs(mod, info);
1646
1647	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1648	return 0;
1649
1650out_unreg_param:
1651	module_param_sysfs_remove(mod);
1652out_unreg_holders:
1653	kobject_put(mod->holders_dir);
1654out_unreg:
1655	mod_kobject_put(mod);
1656out:
1657	return err;
1658}
1659
1660static void mod_sysfs_fini(struct module *mod)
1661{
1662	remove_notes_attrs(mod);
1663	remove_sect_attrs(mod);
1664	mod_kobject_put(mod);
1665}
1666
1667#else /* !CONFIG_SYSFS */
1668
1669static int mod_sysfs_setup(struct module *mod,
1670			   const struct load_info *info,
1671			   struct kernel_param *kparam,
1672			   unsigned int num_params)
1673{
1674	return 0;
1675}
1676
1677static void mod_sysfs_fini(struct module *mod)
1678{
1679}
1680
1681static void module_remove_modinfo_attrs(struct module *mod)
1682{
1683}
1684
1685static void del_usage_links(struct module *mod)
1686{
1687}
1688
1689#endif /* CONFIG_SYSFS */
1690
1691static void mod_sysfs_teardown(struct module *mod)
1692{
1693	del_usage_links(mod);
1694	module_remove_modinfo_attrs(mod);
1695	module_param_sysfs_remove(mod);
1696	kobject_put(mod->mkobj.drivers_dir);
1697	kobject_put(mod->holders_dir);
1698	mod_sysfs_fini(mod);
1699}
1700
1701/*
1702 * unlink the module with the whole machine is stopped with interrupts off
1703 * - this defends against kallsyms not taking locks
1704 */
1705static int __unlink_module(void *_mod)
1706{
1707	struct module *mod = _mod;
1708	list_del(&mod->list);
1709	module_bug_cleanup(mod);
1710	return 0;
1711}
1712
1713#ifdef CONFIG_DEBUG_SET_MODULE_RONX
1714/*
1715 * LKM RO/NX protection: protect module's text/ro-data
1716 * from modification and any data from execution.
1717 */
1718void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
1719{
1720	unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1721	unsigned long end_pfn = PFN_DOWN((unsigned long)end);
1722
1723	if (end_pfn > begin_pfn)
1724		set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1725}
1726
1727static void set_section_ro_nx(void *base,
1728			unsigned long text_size,
1729			unsigned long ro_size,
1730			unsigned long total_size)
1731{
1732	/* begin and end PFNs of the current subsection */
1733	unsigned long begin_pfn;
1734	unsigned long end_pfn;
1735
1736	/*
1737	 * Set RO for module text and RO-data:
1738	 * - Always protect first page.
1739	 * - Do not protect last partial page.
1740	 */
1741	if (ro_size > 0)
1742		set_page_attributes(base, base + ro_size, set_memory_ro);
1743
1744	/*
1745	 * Set NX permissions for module data:
1746	 * - Do not protect first partial page.
1747	 * - Always protect last page.
1748	 */
1749	if (total_size > text_size) {
1750		begin_pfn = PFN_UP((unsigned long)base + text_size);
1751		end_pfn = PFN_UP((unsigned long)base + total_size);
1752		if (end_pfn > begin_pfn)
1753			set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1754	}
1755}
1756
1757static void unset_module_core_ro_nx(struct module *mod)
1758{
1759	set_page_attributes(mod->module_core + mod->core_text_size,
1760		mod->module_core + mod->core_size,
1761		set_memory_x);
1762	set_page_attributes(mod->module_core,
1763		mod->module_core + mod->core_ro_size,
1764		set_memory_rw);
1765}
1766
1767static void unset_module_init_ro_nx(struct module *mod)
1768{
1769	set_page_attributes(mod->module_init + mod->init_text_size,
1770		mod->module_init + mod->init_size,
1771		set_memory_x);
1772	set_page_attributes(mod->module_init,
1773		mod->module_init + mod->init_ro_size,
1774		set_memory_rw);
1775}
1776
1777/* Iterate through all modules and set each module's text as RW */
1778void set_all_modules_text_rw(void)
1779{
1780	struct module *mod;
1781
1782	mutex_lock(&module_mutex);
1783	list_for_each_entry_rcu(mod, &modules, list) {
1784		if (mod->state == MODULE_STATE_UNFORMED)
1785			continue;
1786		if ((mod->module_core) && (mod->core_text_size)) {
1787			set_page_attributes(mod->module_core,
1788						mod->module_core + mod->core_text_size,
1789						set_memory_rw);
1790		}
1791		if ((mod->module_init) && (mod->init_text_size)) {
1792			set_page_attributes(mod->module_init,
1793						mod->module_init + mod->init_text_size,
1794						set_memory_rw);
1795		}
1796	}
1797	mutex_unlock(&module_mutex);
1798}
1799
1800/* Iterate through all modules and set each module's text as RO */
1801void set_all_modules_text_ro(void)
1802{
1803	struct module *mod;
1804
1805	mutex_lock(&module_mutex);
1806	list_for_each_entry_rcu(mod, &modules, list) {
1807		if (mod->state == MODULE_STATE_UNFORMED)
1808			continue;
1809		if ((mod->module_core) && (mod->core_text_size)) {
1810			set_page_attributes(mod->module_core,
1811						mod->module_core + mod->core_text_size,
1812						set_memory_ro);
1813		}
1814		if ((mod->module_init) && (mod->init_text_size)) {
1815			set_page_attributes(mod->module_init,
1816						mod->module_init + mod->init_text_size,
1817						set_memory_ro);
1818		}
1819	}
1820	mutex_unlock(&module_mutex);
1821}
1822#else
1823static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
1824static void unset_module_core_ro_nx(struct module *mod) { }
1825static void unset_module_init_ro_nx(struct module *mod) { }
1826#endif
1827
1828void __weak module_free(struct module *mod, void *module_region)
1829{
1830	vfree(module_region);
1831}
1832
1833void __weak module_arch_cleanup(struct module *mod)
1834{
1835}
1836
1837/* Free a module, remove from lists, etc. */
1838static void free_module(struct module *mod)
1839{
1840	trace_module_free(mod);
1841
 
 
 
 
1842	mod_sysfs_teardown(mod);
1843
1844	/* We leave it in list to prevent duplicate loads, but make sure
1845	 * that noone uses it while it's being deconstructed. */
1846	mod->state = MODULE_STATE_UNFORMED;
1847
1848	/* Remove dynamic debug info */
1849	ddebug_remove_module(mod->name);
1850
1851	/* Arch-specific cleanup. */
1852	module_arch_cleanup(mod);
1853
1854	/* Module unload stuff */
1855	module_unload_free(mod);
1856
1857	/* Free any allocated parameters. */
1858	destroy_params(mod->kp, mod->num_kp);
1859
1860	/* Now we can delete it from the lists */
1861	mutex_lock(&module_mutex);
1862	stop_machine(__unlink_module, mod, NULL);
1863	mutex_unlock(&module_mutex);
1864
1865	/* This may be NULL, but that's OK */
1866	unset_module_init_ro_nx(mod);
1867	module_free(mod, mod->module_init);
1868	kfree(mod->args);
1869	percpu_modfree(mod);
1870
1871	/* Free lock-classes: */
1872	lockdep_free_key_range(mod->module_core, mod->core_size);
1873
1874	/* Finally, free the core (containing the module structure) */
1875	unset_module_core_ro_nx(mod);
1876	module_free(mod, mod->module_core);
1877
1878#ifdef CONFIG_MPU
1879	update_protections(current->mm);
1880#endif
1881}
1882
1883void *__symbol_get(const char *symbol)
1884{
1885	struct module *owner;
1886	const struct kernel_symbol *sym;
1887
1888	preempt_disable();
1889	sym = find_symbol(symbol, &owner, NULL, true, true);
1890	if (sym && strong_try_module_get(owner))
1891		sym = NULL;
1892	preempt_enable();
1893
1894	return sym ? (void *)sym->value : NULL;
1895}
1896EXPORT_SYMBOL_GPL(__symbol_get);
1897
1898/*
1899 * Ensure that an exported symbol [global namespace] does not already exist
1900 * in the kernel or in some other module's exported symbol table.
1901 *
1902 * You must hold the module_mutex.
1903 */
1904static int verify_export_symbols(struct module *mod)
1905{
1906	unsigned int i;
1907	struct module *owner;
1908	const struct kernel_symbol *s;
1909	struct {
1910		const struct kernel_symbol *sym;
1911		unsigned int num;
1912	} arr[] = {
1913		{ mod->syms, mod->num_syms },
1914		{ mod->gpl_syms, mod->num_gpl_syms },
1915		{ mod->gpl_future_syms, mod->num_gpl_future_syms },
1916#ifdef CONFIG_UNUSED_SYMBOLS
1917		{ mod->unused_syms, mod->num_unused_syms },
1918		{ mod->unused_gpl_syms, mod->num_unused_gpl_syms },
1919#endif
1920	};
1921
1922	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1923		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1924			if (find_symbol(s->name, &owner, NULL, true, false)) {
1925				pr_err("%s: exports duplicate symbol %s"
 
1926				       " (owned by %s)\n",
1927				       mod->name, s->name, module_name(owner));
1928				return -ENOEXEC;
1929			}
1930		}
1931	}
1932	return 0;
1933}
1934
1935/* Change all symbols so that st_value encodes the pointer directly. */
1936static int simplify_symbols(struct module *mod, const struct load_info *info)
1937{
1938	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1939	Elf_Sym *sym = (void *)symsec->sh_addr;
1940	unsigned long secbase;
1941	unsigned int i;
1942	int ret = 0;
1943	const struct kernel_symbol *ksym;
1944
1945	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1946		const char *name = info->strtab + sym[i].st_name;
1947
1948		switch (sym[i].st_shndx) {
1949		case SHN_COMMON:
1950			/* Ignore common symbols */
1951			if (!strncmp(name, "__gnu_lto", 9))
1952				break;
1953
1954			/* We compiled with -fno-common.  These are not
1955			   supposed to happen.  */
1956			pr_debug("Common symbol: %s\n", name);
1957			printk("%s: please compile with -fno-common\n",
1958			       mod->name);
1959			ret = -ENOEXEC;
1960			break;
1961
1962		case SHN_ABS:
1963			/* Don't need to do anything */
1964			pr_debug("Absolute symbol: 0x%08lx\n",
1965			       (long)sym[i].st_value);
1966			break;
1967
1968		case SHN_UNDEF:
1969			ksym = resolve_symbol_wait(mod, info, name);
1970			/* Ok if resolved.  */
1971			if (ksym && !IS_ERR(ksym)) {
1972				sym[i].st_value = ksym->value;
1973				break;
1974			}
1975
1976			/* Ok if weak.  */
1977			if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
1978				break;
1979
1980			pr_warn("%s: Unknown symbol %s (err %li)\n",
1981				mod->name, name, PTR_ERR(ksym));
1982			ret = PTR_ERR(ksym) ?: -ENOENT;
1983			break;
1984
1985		default:
1986			/* Divert to percpu allocation if a percpu var. */
1987			if (sym[i].st_shndx == info->index.pcpu)
1988				secbase = (unsigned long)mod_percpu(mod);
1989			else
1990				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1991			sym[i].st_value += secbase;
1992			break;
1993		}
1994	}
1995
1996	return ret;
1997}
1998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1999static int apply_relocations(struct module *mod, const struct load_info *info)
2000{
2001	unsigned int i;
2002	int err = 0;
2003
2004	/* Now do relocations. */
2005	for (i = 1; i < info->hdr->e_shnum; i++) {
2006		unsigned int infosec = info->sechdrs[i].sh_info;
2007
2008		/* Not a valid relocation section? */
2009		if (infosec >= info->hdr->e_shnum)
2010			continue;
2011
2012		/* Don't bother with non-allocated sections */
2013		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2014			continue;
2015
2016		if (info->sechdrs[i].sh_type == SHT_REL)
2017			err = apply_relocate(info->sechdrs, info->strtab,
2018					     info->index.sym, i, mod);
2019		else if (info->sechdrs[i].sh_type == SHT_RELA)
2020			err = apply_relocate_add(info->sechdrs, info->strtab,
2021						 info->index.sym, i, mod);
2022		if (err < 0)
2023			break;
2024	}
2025	return err;
2026}
2027
2028/* Additional bytes needed by arch in front of individual sections */
2029unsigned int __weak arch_mod_section_prepend(struct module *mod,
2030					     unsigned int section)
2031{
2032	/* default implementation just returns zero */
2033	return 0;
2034}
2035
2036/* Update size with this section: return offset. */
2037static long get_offset(struct module *mod, unsigned int *size,
2038		       Elf_Shdr *sechdr, unsigned int section)
2039{
2040	long ret;
2041
2042	*size += arch_mod_section_prepend(mod, section);
2043	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2044	*size = ret + sechdr->sh_size;
2045	return ret;
2046}
2047
2048/* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2049   might -- code, read-only data, read-write data, small data.  Tally
2050   sizes, and place the offsets into sh_entsize fields: high bit means it
2051   belongs in init. */
2052static void layout_sections(struct module *mod, struct load_info *info)
2053{
2054	static unsigned long const masks[][2] = {
2055		/* NOTE: all executable code must be the first section
2056		 * in this array; otherwise modify the text_size
2057		 * finder in the two loops below */
2058		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2059		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2060		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2061		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2062	};
2063	unsigned int m, i;
2064
2065	for (i = 0; i < info->hdr->e_shnum; i++)
2066		info->sechdrs[i].sh_entsize = ~0UL;
2067
2068	pr_debug("Core section allocation order:\n");
2069	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2070		for (i = 0; i < info->hdr->e_shnum; ++i) {
2071			Elf_Shdr *s = &info->sechdrs[i];
2072			const char *sname = info->secstrings + s->sh_name;
2073
2074			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2075			    || (s->sh_flags & masks[m][1])
2076			    || s->sh_entsize != ~0UL
2077			    || strstarts(sname, ".init"))
2078				continue;
2079			s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
2080			pr_debug("\t%s\n", sname);
2081		}
2082		switch (m) {
2083		case 0: /* executable */
2084			mod->core_size = debug_align(mod->core_size);
2085			mod->core_text_size = mod->core_size;
2086			break;
2087		case 1: /* RO: text and ro-data */
2088			mod->core_size = debug_align(mod->core_size);
2089			mod->core_ro_size = mod->core_size;
2090			break;
2091		case 3: /* whole core */
2092			mod->core_size = debug_align(mod->core_size);
2093			break;
2094		}
2095	}
2096
2097	pr_debug("Init section allocation order:\n");
2098	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2099		for (i = 0; i < info->hdr->e_shnum; ++i) {
2100			Elf_Shdr *s = &info->sechdrs[i];
2101			const char *sname = info->secstrings + s->sh_name;
2102
2103			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2104			    || (s->sh_flags & masks[m][1])
2105			    || s->sh_entsize != ~0UL
2106			    || !strstarts(sname, ".init"))
2107				continue;
2108			s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
2109					 | INIT_OFFSET_MASK);
2110			pr_debug("\t%s\n", sname);
2111		}
2112		switch (m) {
2113		case 0: /* executable */
2114			mod->init_size = debug_align(mod->init_size);
2115			mod->init_text_size = mod->init_size;
2116			break;
2117		case 1: /* RO: text and ro-data */
2118			mod->init_size = debug_align(mod->init_size);
2119			mod->init_ro_size = mod->init_size;
2120			break;
2121		case 3: /* whole init */
2122			mod->init_size = debug_align(mod->init_size);
2123			break;
2124		}
2125	}
2126}
2127
2128static void set_license(struct module *mod, const char *license)
2129{
2130	if (!license)
2131		license = "unspecified";
2132
2133	if (!license_is_gpl_compatible(license)) {
2134		if (!test_taint(TAINT_PROPRIETARY_MODULE))
2135			pr_warn("%s: module license '%s' taints kernel.\n",
2136				mod->name, license);
2137		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2138				 LOCKDEP_NOW_UNRELIABLE);
2139	}
2140}
2141
2142/* Parse tag=value strings from .modinfo section */
2143static char *next_string(char *string, unsigned long *secsize)
2144{
2145	/* Skip non-zero chars */
2146	while (string[0]) {
2147		string++;
2148		if ((*secsize)-- <= 1)
2149			return NULL;
2150	}
2151
2152	/* Skip any zero padding. */
2153	while (!string[0]) {
2154		string++;
2155		if ((*secsize)-- <= 1)
2156			return NULL;
2157	}
2158	return string;
2159}
2160
2161static char *get_modinfo(struct load_info *info, const char *tag)
2162{
2163	char *p;
2164	unsigned int taglen = strlen(tag);
2165	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2166	unsigned long size = infosec->sh_size;
2167
2168	for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2169		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2170			return p + taglen + 1;
2171	}
2172	return NULL;
2173}
2174
2175static void setup_modinfo(struct module *mod, struct load_info *info)
2176{
2177	struct module_attribute *attr;
2178	int i;
2179
2180	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2181		if (attr->setup)
2182			attr->setup(mod, get_modinfo(info, attr->attr.name));
2183	}
2184}
2185
2186static void free_modinfo(struct module *mod)
2187{
2188	struct module_attribute *attr;
2189	int i;
2190
2191	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2192		if (attr->free)
2193			attr->free(mod);
2194	}
2195}
2196
2197#ifdef CONFIG_KALLSYMS
2198
2199/* lookup symbol in given range of kernel_symbols */
2200static const struct kernel_symbol *lookup_symbol(const char *name,
2201	const struct kernel_symbol *start,
2202	const struct kernel_symbol *stop)
2203{
2204	return bsearch(name, start, stop - start,
2205			sizeof(struct kernel_symbol), cmp_name);
2206}
2207
2208static int is_exported(const char *name, unsigned long value,
2209		       const struct module *mod)
2210{
2211	const struct kernel_symbol *ks;
2212	if (!mod)
2213		ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2214	else
2215		ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2216	return ks != NULL && ks->value == value;
2217}
2218
2219/* As per nm */
2220static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2221{
2222	const Elf_Shdr *sechdrs = info->sechdrs;
2223
2224	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2225		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2226			return 'v';
2227		else
2228			return 'w';
2229	}
2230	if (sym->st_shndx == SHN_UNDEF)
2231		return 'U';
2232	if (sym->st_shndx == SHN_ABS)
2233		return 'a';
2234	if (sym->st_shndx >= SHN_LORESERVE)
2235		return '?';
2236	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2237		return 't';
2238	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2239	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2240		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2241			return 'r';
2242		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2243			return 'g';
2244		else
2245			return 'd';
2246	}
2247	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2248		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2249			return 's';
2250		else
2251			return 'b';
2252	}
2253	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2254		      ".debug")) {
2255		return 'n';
2256	}
2257	return '?';
2258}
2259
2260static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2261                           unsigned int shnum)
2262{
2263	const Elf_Shdr *sec;
2264
2265	if (src->st_shndx == SHN_UNDEF
2266	    || src->st_shndx >= shnum
2267	    || !src->st_name)
2268		return false;
2269
2270	sec = sechdrs + src->st_shndx;
2271	if (!(sec->sh_flags & SHF_ALLOC)
2272#ifndef CONFIG_KALLSYMS_ALL
2273	    || !(sec->sh_flags & SHF_EXECINSTR)
2274#endif
2275	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2276		return false;
2277
2278	return true;
2279}
2280
2281/*
2282 * We only allocate and copy the strings needed by the parts of symtab
2283 * we keep.  This is simple, but has the effect of making multiple
2284 * copies of duplicates.  We could be more sophisticated, see
2285 * linux-kernel thread starting with
2286 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2287 */
2288static void layout_symtab(struct module *mod, struct load_info *info)
2289{
2290	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2291	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2292	const Elf_Sym *src;
2293	unsigned int i, nsrc, ndst, strtab_size = 0;
2294
2295	/* Put symbol section at end of init part of module. */
2296	symsect->sh_flags |= SHF_ALLOC;
2297	symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2298					 info->index.sym) | INIT_OFFSET_MASK;
2299	pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2300
2301	src = (void *)info->hdr + symsect->sh_offset;
2302	nsrc = symsect->sh_size / sizeof(*src);
2303
2304	/* Compute total space required for the core symbols' strtab. */
2305	for (ndst = i = 0; i < nsrc; i++) {
2306		if (i == 0 ||
2307		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2308			strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2309			ndst++;
2310		}
2311	}
2312
2313	/* Append room for core symbols at end of core part. */
2314	info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2315	info->stroffs = mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
2316	mod->core_size += strtab_size;
2317
2318	/* Put string table section at end of init part of module. */
2319	strsect->sh_flags |= SHF_ALLOC;
2320	strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2321					 info->index.str) | INIT_OFFSET_MASK;
2322	pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2323}
2324
2325static void add_kallsyms(struct module *mod, const struct load_info *info)
2326{
2327	unsigned int i, ndst;
2328	const Elf_Sym *src;
2329	Elf_Sym *dst;
2330	char *s;
2331	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2332
2333	mod->symtab = (void *)symsec->sh_addr;
2334	mod->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2335	/* Make sure we get permanent strtab: don't use info->strtab. */
2336	mod->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2337
2338	/* Set types up while we still have access to sections. */
2339	for (i = 0; i < mod->num_symtab; i++)
2340		mod->symtab[i].st_info = elf_type(&mod->symtab[i], info);
2341
2342	mod->core_symtab = dst = mod->module_core + info->symoffs;
2343	mod->core_strtab = s = mod->module_core + info->stroffs;
2344	src = mod->symtab;
2345	for (ndst = i = 0; i < mod->num_symtab; i++) {
2346		if (i == 0 ||
2347		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2348			dst[ndst] = src[i];
2349			dst[ndst++].st_name = s - mod->core_strtab;
2350			s += strlcpy(s, &mod->strtab[src[i].st_name],
2351				     KSYM_NAME_LEN) + 1;
2352		}
 
2353	}
2354	mod->core_num_syms = ndst;
2355}
2356#else
2357static inline void layout_symtab(struct module *mod, struct load_info *info)
2358{
2359}
2360
2361static void add_kallsyms(struct module *mod, const struct load_info *info)
2362{
2363}
2364#endif /* CONFIG_KALLSYMS */
2365
2366static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2367{
2368	if (!debug)
2369		return;
2370#ifdef CONFIG_DYNAMIC_DEBUG
2371	if (ddebug_add_module(debug, num, debug->modname))
2372		pr_err("dynamic debug error adding module: %s\n",
2373			debug->modname);
2374#endif
2375}
2376
2377static void dynamic_debug_remove(struct _ddebug *debug)
2378{
2379	if (debug)
2380		ddebug_remove_module(debug->modname);
2381}
2382
2383void * __weak module_alloc(unsigned long size)
2384{
2385	return vmalloc_exec(size);
2386}
2387
2388static void *module_alloc_update_bounds(unsigned long size)
2389{
2390	void *ret = module_alloc(size);
2391
2392	if (ret) {
2393		mutex_lock(&module_mutex);
2394		/* Update module bounds. */
2395		if ((unsigned long)ret < module_addr_min)
2396			module_addr_min = (unsigned long)ret;
2397		if ((unsigned long)ret + size > module_addr_max)
2398			module_addr_max = (unsigned long)ret + size;
2399		mutex_unlock(&module_mutex);
2400	}
2401	return ret;
2402}
2403
2404#ifdef CONFIG_DEBUG_KMEMLEAK
2405static void kmemleak_load_module(const struct module *mod,
2406				 const struct load_info *info)
2407{
2408	unsigned int i;
2409
2410	/* only scan the sections containing data */
2411	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2412
2413	for (i = 1; i < info->hdr->e_shnum; i++) {
2414		/* Scan all writable sections that's not executable */
2415		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2416		    !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2417		    (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2418			continue;
2419
2420		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2421				   info->sechdrs[i].sh_size, GFP_KERNEL);
2422	}
2423}
2424#else
2425static inline void kmemleak_load_module(const struct module *mod,
2426					const struct load_info *info)
2427{
2428}
2429#endif
2430
2431#ifdef CONFIG_MODULE_SIG
2432static int module_sig_check(struct load_info *info)
2433{
2434	int err = -ENOKEY;
2435	const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2436	const void *mod = info->hdr;
2437
2438	if (info->len > markerlen &&
2439	    memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2440		/* We truncate the module to discard the signature */
2441		info->len -= markerlen;
2442		err = mod_verify_sig(mod, &info->len);
2443	}
2444
2445	if (!err) {
2446		info->sig_ok = true;
2447		return 0;
2448	}
2449
2450	/* Not having a signature is only an error if we're strict. */
2451	if (err < 0 && fips_enabled)
2452		panic("Module verification failed with error %d in FIPS mode\n",
2453		      err);
2454	if (err == -ENOKEY && !sig_enforce)
2455		err = 0;
2456
2457	return err;
2458}
2459#else /* !CONFIG_MODULE_SIG */
2460static int module_sig_check(struct load_info *info)
2461{
2462	return 0;
2463}
2464#endif /* !CONFIG_MODULE_SIG */
2465
2466/* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2467static int elf_header_check(struct load_info *info)
2468{
2469	if (info->len < sizeof(*(info->hdr)))
2470		return -ENOEXEC;
2471
2472	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2473	    || info->hdr->e_type != ET_REL
2474	    || !elf_check_arch(info->hdr)
2475	    || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2476		return -ENOEXEC;
2477
2478	if (info->hdr->e_shoff >= info->len
2479	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2480		info->len - info->hdr->e_shoff))
2481		return -ENOEXEC;
2482
2483	return 0;
2484}
2485
2486/* Sets info->hdr and info->len. */
2487static int copy_module_from_user(const void __user *umod, unsigned long len,
2488				  struct load_info *info)
 
2489{
2490	int err;
 
2491
2492	info->len = len;
2493	if (info->len < sizeof(*(info->hdr)))
2494		return -ENOEXEC;
2495
2496	err = security_kernel_module_from_file(NULL);
2497	if (err)
2498		return err;
2499
2500	/* Suck in entire file: we'll want most of it. */
2501	info->hdr = vmalloc(info->len);
2502	if (!info->hdr)
2503		return -ENOMEM;
2504
2505	if (copy_from_user(info->hdr, umod, info->len) != 0) {
2506		vfree(info->hdr);
2507		return -EFAULT;
2508	}
2509
2510	return 0;
2511}
2512
2513/* Sets info->hdr and info->len. */
2514static int copy_module_from_fd(int fd, struct load_info *info)
2515{
2516	struct fd f = fdget(fd);
2517	int err;
2518	struct kstat stat;
2519	loff_t pos;
2520	ssize_t bytes = 0;
2521
2522	if (!f.file)
2523		return -ENOEXEC;
2524
2525	err = security_kernel_module_from_file(f.file);
2526	if (err)
2527		goto out;
2528
2529	err = vfs_getattr(&f.file->f_path, &stat);
2530	if (err)
2531		goto out;
2532
2533	if (stat.size > INT_MAX) {
2534		err = -EFBIG;
2535		goto out;
2536	}
2537
2538	/* Don't hand 0 to vmalloc, it whines. */
2539	if (stat.size == 0) {
2540		err = -EINVAL;
2541		goto out;
2542	}
2543
2544	info->hdr = vmalloc(stat.size);
2545	if (!info->hdr) {
2546		err = -ENOMEM;
2547		goto out;
2548	}
2549
2550	pos = 0;
2551	while (pos < stat.size) {
2552		bytes = kernel_read(f.file, pos, (char *)(info->hdr) + pos,
2553				    stat.size - pos);
2554		if (bytes < 0) {
2555			vfree(info->hdr);
2556			err = bytes;
2557			goto out;
2558		}
2559		if (bytes == 0)
2560			break;
2561		pos += bytes;
2562	}
2563	info->len = pos;
2564
2565out:
2566	fdput(f);
2567	return err;
2568}
2569
2570static void free_copy(struct load_info *info)
2571{
2572	vfree(info->hdr);
2573}
2574
2575static int rewrite_section_headers(struct load_info *info, int flags)
2576{
2577	unsigned int i;
2578
2579	/* This should always be true, but let's be sure. */
2580	info->sechdrs[0].sh_addr = 0;
2581
2582	for (i = 1; i < info->hdr->e_shnum; i++) {
2583		Elf_Shdr *shdr = &info->sechdrs[i];
2584		if (shdr->sh_type != SHT_NOBITS
2585		    && info->len < shdr->sh_offset + shdr->sh_size) {
2586			pr_err("Module len %lu truncated\n", info->len);
 
2587			return -ENOEXEC;
2588		}
2589
2590		/* Mark all sections sh_addr with their address in the
2591		   temporary image. */
2592		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2593
2594#ifndef CONFIG_MODULE_UNLOAD
2595		/* Don't load .exit sections */
2596		if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2597			shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2598#endif
2599	}
2600
2601	/* Track but don't keep modinfo and version sections. */
2602	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2603		info->index.vers = 0; /* Pretend no __versions section! */
2604	else
2605		info->index.vers = find_sec(info, "__versions");
2606	info->index.info = find_sec(info, ".modinfo");
2607	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2608	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2609	return 0;
2610}
2611
2612/*
2613 * Set up our basic convenience variables (pointers to section headers,
2614 * search for module section index etc), and do some basic section
2615 * verification.
2616 *
2617 * Return the temporary module pointer (we'll replace it with the final
2618 * one when we move the module sections around).
2619 */
2620static struct module *setup_load_info(struct load_info *info, int flags)
2621{
2622	unsigned int i;
2623	int err;
2624	struct module *mod;
2625
2626	/* Set up the convenience variables */
2627	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2628	info->secstrings = (void *)info->hdr
2629		+ info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2630
2631	err = rewrite_section_headers(info, flags);
2632	if (err)
2633		return ERR_PTR(err);
2634
2635	/* Find internal symbols and strings. */
2636	for (i = 1; i < info->hdr->e_shnum; i++) {
2637		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2638			info->index.sym = i;
2639			info->index.str = info->sechdrs[i].sh_link;
2640			info->strtab = (char *)info->hdr
2641				+ info->sechdrs[info->index.str].sh_offset;
2642			break;
2643		}
2644	}
2645
2646	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2647	if (!info->index.mod) {
2648		pr_warn("No module found in object\n");
2649		return ERR_PTR(-ENOEXEC);
2650	}
2651	/* This is temporary: point mod into copy of data. */
2652	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2653
2654	if (info->index.sym == 0) {
2655		pr_warn("%s: module has no symbols (stripped?)\n", mod->name);
 
2656		return ERR_PTR(-ENOEXEC);
2657	}
2658
2659	info->index.pcpu = find_pcpusec(info);
2660
2661	/* Check module struct version now, before we try to use module. */
2662	if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2663		return ERR_PTR(-ENOEXEC);
2664
2665	return mod;
2666}
2667
2668static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2669{
2670	const char *modmagic = get_modinfo(info, "vermagic");
2671	int err;
2672
2673	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2674		modmagic = NULL;
2675
2676	/* This is allowed: modprobe --force will invalidate it. */
2677	if (!modmagic) {
2678		err = try_to_force_load(mod, "bad vermagic");
2679		if (err)
2680			return err;
2681	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2682		pr_err("%s: version magic '%s' should be '%s'\n",
2683		       mod->name, modmagic, vermagic);
2684		return -ENOEXEC;
2685	}
2686
2687	if (!get_modinfo(info, "intree"))
2688		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2689
2690	if (get_modinfo(info, "staging")) {
2691		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2692		pr_warn("%s: module is from the staging directory, the quality "
2693			"is unknown, you have been warned.\n", mod->name);
 
2694	}
2695
2696	/* Set up license info based on the info section */
2697	set_license(mod, get_modinfo(info, "license"));
2698
2699	return 0;
2700}
2701
2702static int find_module_sections(struct module *mod, struct load_info *info)
2703{
2704	mod->kp = section_objs(info, "__param",
2705			       sizeof(*mod->kp), &mod->num_kp);
2706	mod->syms = section_objs(info, "__ksymtab",
2707				 sizeof(*mod->syms), &mod->num_syms);
2708	mod->crcs = section_addr(info, "__kcrctab");
2709	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2710				     sizeof(*mod->gpl_syms),
2711				     &mod->num_gpl_syms);
2712	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2713	mod->gpl_future_syms = section_objs(info,
2714					    "__ksymtab_gpl_future",
2715					    sizeof(*mod->gpl_future_syms),
2716					    &mod->num_gpl_future_syms);
2717	mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2718
2719#ifdef CONFIG_UNUSED_SYMBOLS
2720	mod->unused_syms = section_objs(info, "__ksymtab_unused",
2721					sizeof(*mod->unused_syms),
2722					&mod->num_unused_syms);
2723	mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2724	mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2725					    sizeof(*mod->unused_gpl_syms),
2726					    &mod->num_unused_gpl_syms);
2727	mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2728#endif
2729#ifdef CONFIG_CONSTRUCTORS
2730	mod->ctors = section_objs(info, ".ctors",
2731				  sizeof(*mod->ctors), &mod->num_ctors);
2732	if (!mod->ctors)
2733		mod->ctors = section_objs(info, ".init_array",
2734				sizeof(*mod->ctors), &mod->num_ctors);
2735	else if (find_sec(info, ".init_array")) {
2736		/*
2737		 * This shouldn't happen with same compiler and binutils
2738		 * building all parts of the module.
2739		 */
2740		printk(KERN_WARNING "%s: has both .ctors and .init_array.\n",
2741		       mod->name);
2742		return -EINVAL;
2743	}
2744#endif
2745
2746#ifdef CONFIG_TRACEPOINTS
2747	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2748					     sizeof(*mod->tracepoints_ptrs),
2749					     &mod->num_tracepoints);
2750#endif
2751#ifdef HAVE_JUMP_LABEL
2752	mod->jump_entries = section_objs(info, "__jump_table",
2753					sizeof(*mod->jump_entries),
2754					&mod->num_jump_entries);
2755#endif
2756#ifdef CONFIG_EVENT_TRACING
2757	mod->trace_events = section_objs(info, "_ftrace_events",
2758					 sizeof(*mod->trace_events),
2759					 &mod->num_trace_events);
 
 
 
 
 
 
2760#endif
2761#ifdef CONFIG_TRACING
2762	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2763					 sizeof(*mod->trace_bprintk_fmt_start),
2764					 &mod->num_trace_bprintk_fmt);
 
 
 
 
 
 
 
2765#endif
2766#ifdef CONFIG_FTRACE_MCOUNT_RECORD
2767	/* sechdrs[0].sh_size is always zero */
2768	mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2769					     sizeof(*mod->ftrace_callsites),
2770					     &mod->num_ftrace_callsites);
2771#endif
2772
2773	mod->extable = section_objs(info, "__ex_table",
2774				    sizeof(*mod->extable), &mod->num_exentries);
2775
2776	if (section_addr(info, "__obsparm"))
2777		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
 
2778
2779	info->debug = section_objs(info, "__verbose",
2780				   sizeof(*info->debug), &info->num_debug);
2781
2782	return 0;
2783}
2784
2785static int move_module(struct module *mod, struct load_info *info)
2786{
2787	int i;
2788	void *ptr;
2789
2790	/* Do the allocs. */
2791	ptr = module_alloc_update_bounds(mod->core_size);
2792	/*
2793	 * The pointer to this block is stored in the module structure
2794	 * which is inside the block. Just mark it as not being a
2795	 * leak.
2796	 */
2797	kmemleak_not_leak(ptr);
2798	if (!ptr)
2799		return -ENOMEM;
2800
2801	memset(ptr, 0, mod->core_size);
2802	mod->module_core = ptr;
2803
2804	if (mod->init_size) {
2805		ptr = module_alloc_update_bounds(mod->init_size);
2806		/*
2807		 * The pointer to this block is stored in the module structure
2808		 * which is inside the block. This block doesn't need to be
2809		 * scanned as it contains data and code that will be freed
2810		 * after the module is initialized.
2811		 */
2812		kmemleak_ignore(ptr);
2813		if (!ptr) {
2814			module_free(mod, mod->module_core);
2815			return -ENOMEM;
2816		}
2817		memset(ptr, 0, mod->init_size);
2818		mod->module_init = ptr;
2819	} else
2820		mod->module_init = NULL;
2821
2822	/* Transfer each section which specifies SHF_ALLOC */
2823	pr_debug("final section addresses:\n");
2824	for (i = 0; i < info->hdr->e_shnum; i++) {
2825		void *dest;
2826		Elf_Shdr *shdr = &info->sechdrs[i];
2827
2828		if (!(shdr->sh_flags & SHF_ALLOC))
2829			continue;
2830
2831		if (shdr->sh_entsize & INIT_OFFSET_MASK)
2832			dest = mod->module_init
2833				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2834		else
2835			dest = mod->module_core + shdr->sh_entsize;
2836
2837		if (shdr->sh_type != SHT_NOBITS)
2838			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2839		/* Update sh_addr to point to copy in image. */
2840		shdr->sh_addr = (unsigned long)dest;
2841		pr_debug("\t0x%lx %s\n",
2842			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2843	}
2844
2845	return 0;
2846}
2847
2848static int check_module_license_and_versions(struct module *mod)
2849{
2850	/*
2851	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2852	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2853	 * using GPL-only symbols it needs.
2854	 */
2855	if (strcmp(mod->name, "ndiswrapper") == 0)
2856		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2857
2858	/* driverloader was caught wrongly pretending to be under GPL */
2859	if (strcmp(mod->name, "driverloader") == 0)
2860		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2861				 LOCKDEP_NOW_UNRELIABLE);
2862
2863	/* lve claims to be GPL but upstream won't provide source */
2864	if (strcmp(mod->name, "lve") == 0)
2865		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2866				 LOCKDEP_NOW_UNRELIABLE);
2867
2868#ifdef CONFIG_MODVERSIONS
2869	if ((mod->num_syms && !mod->crcs)
2870	    || (mod->num_gpl_syms && !mod->gpl_crcs)
2871	    || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
2872#ifdef CONFIG_UNUSED_SYMBOLS
2873	    || (mod->num_unused_syms && !mod->unused_crcs)
2874	    || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
2875#endif
2876		) {
2877		return try_to_force_load(mod,
2878					 "no versions for exported symbols");
2879	}
2880#endif
2881	return 0;
2882}
2883
2884static void flush_module_icache(const struct module *mod)
2885{
2886	mm_segment_t old_fs;
2887
2888	/* flush the icache in correct context */
2889	old_fs = get_fs();
2890	set_fs(KERNEL_DS);
2891
2892	/*
2893	 * Flush the instruction cache, since we've played with text.
2894	 * Do it before processing of module parameters, so the module
2895	 * can provide parameter accessor functions of its own.
2896	 */
2897	if (mod->module_init)
2898		flush_icache_range((unsigned long)mod->module_init,
2899				   (unsigned long)mod->module_init
2900				   + mod->init_size);
2901	flush_icache_range((unsigned long)mod->module_core,
2902			   (unsigned long)mod->module_core + mod->core_size);
2903
2904	set_fs(old_fs);
2905}
2906
2907int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2908				     Elf_Shdr *sechdrs,
2909				     char *secstrings,
2910				     struct module *mod)
2911{
2912	return 0;
2913}
2914
2915static struct module *layout_and_allocate(struct load_info *info, int flags)
2916{
2917	/* Module within temporary copy. */
2918	struct module *mod;
 
2919	int err;
2920
2921	mod = setup_load_info(info, flags);
2922	if (IS_ERR(mod))
2923		return mod;
2924
2925	err = check_modinfo(mod, info, flags);
2926	if (err)
2927		return ERR_PTR(err);
2928
2929	/* Allow arches to frob section contents and sizes.  */
2930	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2931					info->secstrings, mod);
2932	if (err < 0)
2933		return ERR_PTR(err);
2934
2935	/* We will do a special allocation for per-cpu sections later. */
2936	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
 
 
 
 
 
 
 
2937
2938	/* Determine total sizes, and put offsets in sh_entsize.  For now
2939	   this is done generically; there doesn't appear to be any
2940	   special cases for the architectures. */
2941	layout_sections(mod, info);
2942	layout_symtab(mod, info);
2943
2944	/* Allocate and move to the final place */
2945	err = move_module(mod, info);
2946	if (err)
2947		return ERR_PTR(err);
2948
2949	/* Module has been copied to its final place now: return it. */
2950	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2951	kmemleak_load_module(mod, info);
2952	return mod;
 
 
 
 
 
2953}
2954
2955/* mod is no longer valid after this! */
2956static void module_deallocate(struct module *mod, struct load_info *info)
2957{
2958	percpu_modfree(mod);
2959	module_free(mod, mod->module_init);
2960	module_free(mod, mod->module_core);
2961}
2962
2963int __weak module_finalize(const Elf_Ehdr *hdr,
2964			   const Elf_Shdr *sechdrs,
2965			   struct module *me)
2966{
2967	return 0;
2968}
2969
2970static int post_relocation(struct module *mod, const struct load_info *info)
2971{
2972	/* Sort exception table now relocations are done. */
2973	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2974
2975	/* Copy relocated percpu area over. */
2976	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2977		       info->sechdrs[info->index.pcpu].sh_size);
2978
2979	/* Setup kallsyms-specific fields. */
2980	add_kallsyms(mod, info);
2981
2982	/* Arch-specific module finalizing. */
2983	return module_finalize(info->hdr, info->sechdrs, mod);
2984}
2985
2986/* Is this module of this name done loading?  No locks held. */
2987static bool finished_loading(const char *name)
2988{
2989	struct module *mod;
2990	bool ret;
2991
2992	mutex_lock(&module_mutex);
2993	mod = find_module_all(name, strlen(name), true);
2994	ret = !mod || mod->state == MODULE_STATE_LIVE
2995		|| mod->state == MODULE_STATE_GOING;
2996	mutex_unlock(&module_mutex);
2997
2998	return ret;
2999}
3000
3001/* Call module constructors. */
3002static void do_mod_ctors(struct module *mod)
3003{
3004#ifdef CONFIG_CONSTRUCTORS
3005	unsigned long i;
3006
3007	for (i = 0; i < mod->num_ctors; i++)
3008		mod->ctors[i]();
3009#endif
3010}
3011
3012/* This is where the real work happens */
3013static int do_init_module(struct module *mod)
3014{
3015	int ret = 0;
3016
3017	/*
3018	 * We want to find out whether @mod uses async during init.  Clear
3019	 * PF_USED_ASYNC.  async_schedule*() will set it.
3020	 */
3021	current->flags &= ~PF_USED_ASYNC;
3022
3023	blocking_notifier_call_chain(&module_notify_list,
3024			MODULE_STATE_COMING, mod);
3025
3026	/* Set RO and NX regions for core */
3027	set_section_ro_nx(mod->module_core,
3028				mod->core_text_size,
3029				mod->core_ro_size,
3030				mod->core_size);
3031
3032	/* Set RO and NX regions for init */
3033	set_section_ro_nx(mod->module_init,
3034				mod->init_text_size,
3035				mod->init_ro_size,
3036				mod->init_size);
3037
3038	do_mod_ctors(mod);
3039	/* Start the module */
3040	if (mod->init != NULL)
3041		ret = do_one_initcall(mod->init);
3042	if (ret < 0) {
3043		/* Init routine failed: abort.  Try to protect us from
3044                   buggy refcounters. */
3045		mod->state = MODULE_STATE_GOING;
3046		synchronize_sched();
3047		module_put(mod);
3048		blocking_notifier_call_chain(&module_notify_list,
3049					     MODULE_STATE_GOING, mod);
3050		free_module(mod);
3051		wake_up_all(&module_wq);
3052		return ret;
3053	}
3054	if (ret > 0) {
3055		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3056			"follow 0/-E convention\n"
3057			"%s: loading module anyway...\n",
3058			__func__, mod->name, ret, __func__);
3059		dump_stack();
3060	}
3061
3062	/* Now it's a first class citizen! */
3063	mod->state = MODULE_STATE_LIVE;
3064	blocking_notifier_call_chain(&module_notify_list,
3065				     MODULE_STATE_LIVE, mod);
3066
3067	/*
3068	 * We need to finish all async code before the module init sequence
3069	 * is done.  This has potential to deadlock.  For example, a newly
3070	 * detected block device can trigger request_module() of the
3071	 * default iosched from async probing task.  Once userland helper
3072	 * reaches here, async_synchronize_full() will wait on the async
3073	 * task waiting on request_module() and deadlock.
3074	 *
3075	 * This deadlock is avoided by perfomring async_synchronize_full()
3076	 * iff module init queued any async jobs.  This isn't a full
3077	 * solution as it will deadlock the same if module loading from
3078	 * async jobs nests more than once; however, due to the various
3079	 * constraints, this hack seems to be the best option for now.
3080	 * Please refer to the following thread for details.
3081	 *
3082	 * http://thread.gmane.org/gmane.linux.kernel/1420814
3083	 */
3084	if (current->flags & PF_USED_ASYNC)
3085		async_synchronize_full();
3086
3087	mutex_lock(&module_mutex);
3088	/* Drop initial reference. */
3089	module_put(mod);
3090	trim_init_extable(mod);
3091#ifdef CONFIG_KALLSYMS
3092	mod->num_symtab = mod->core_num_syms;
3093	mod->symtab = mod->core_symtab;
3094	mod->strtab = mod->core_strtab;
3095#endif
3096	unset_module_init_ro_nx(mod);
3097	module_free(mod, mod->module_init);
3098	mod->module_init = NULL;
3099	mod->init_size = 0;
3100	mod->init_ro_size = 0;
3101	mod->init_text_size = 0;
3102	mutex_unlock(&module_mutex);
3103	wake_up_all(&module_wq);
3104
3105	return 0;
3106}
3107
3108static int may_init_module(void)
3109{
3110	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3111		return -EPERM;
3112
3113	return 0;
3114}
3115
3116/*
3117 * We try to place it in the list now to make sure it's unique before
3118 * we dedicate too many resources.  In particular, temporary percpu
3119 * memory exhaustion.
3120 */
3121static int add_unformed_module(struct module *mod)
3122{
3123	int err;
3124	struct module *old;
3125
3126	mod->state = MODULE_STATE_UNFORMED;
3127
3128again:
3129	mutex_lock(&module_mutex);
3130	old = find_module_all(mod->name, strlen(mod->name), true);
3131	if (old != NULL) {
3132		if (old->state == MODULE_STATE_COMING
3133		    || old->state == MODULE_STATE_UNFORMED) {
3134			/* Wait in case it fails to load. */
3135			mutex_unlock(&module_mutex);
3136			err = wait_event_interruptible(module_wq,
3137					       finished_loading(mod->name));
3138			if (err)
3139				goto out_unlocked;
3140			goto again;
3141		}
3142		err = -EEXIST;
3143		goto out;
3144	}
3145	list_add_rcu(&mod->list, &modules);
3146	err = 0;
3147
3148out:
3149	mutex_unlock(&module_mutex);
3150out_unlocked:
3151	return err;
3152}
3153
3154static int complete_formation(struct module *mod, struct load_info *info)
3155{
3156	int err;
3157
3158	mutex_lock(&module_mutex);
3159
3160	/* Find duplicate symbols (must be called under lock). */
3161	err = verify_export_symbols(mod);
3162	if (err < 0)
3163		goto out;
3164
3165	/* This relies on module_mutex for list integrity. */
3166	module_bug_finalize(info->hdr, info->sechdrs, mod);
3167
3168	/* Mark state as coming so strong_try_module_get() ignores us,
3169	 * but kallsyms etc. can see us. */
3170	mod->state = MODULE_STATE_COMING;
3171
3172out:
3173	mutex_unlock(&module_mutex);
3174	return err;
3175}
3176
3177static int unknown_module_param_cb(char *param, char *val, const char *modname)
3178{
3179	/* Check for magic 'dyndbg' arg */ 
3180	int ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3181	if (ret != 0)
3182		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3183	return 0;
3184}
3185
3186/* Allocate and load the module: note that size of section 0 is always
3187   zero, and we rely on this for optional sections. */
3188static int load_module(struct load_info *info, const char __user *uargs,
3189		       int flags)
 
3190{
 
3191	struct module *mod;
3192	long err;
3193
3194	err = module_sig_check(info);
3195	if (err)
3196		goto free_copy;
3197
3198	err = elf_header_check(info);
 
3199	if (err)
3200		goto free_copy;
3201
3202	/* Figure out module layout, and allocate all the memory. */
3203	mod = layout_and_allocate(info, flags);
3204	if (IS_ERR(mod)) {
3205		err = PTR_ERR(mod);
3206		goto free_copy;
3207	}
3208
3209	/* Reserve our place in the list. */
3210	err = add_unformed_module(mod);
3211	if (err)
3212		goto free_module;
3213
3214#ifdef CONFIG_MODULE_SIG
3215	mod->sig_ok = info->sig_ok;
3216	if (!mod->sig_ok) {
3217		pr_notice_once("%s: module verification failed: signature "
3218			       "and/or  required key missing - tainting "
3219			       "kernel\n", mod->name);
3220		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3221	}
3222#endif
3223
3224	/* To avoid stressing percpu allocator, do this once we're unique. */
3225	err = percpu_modalloc(mod, info);
3226	if (err)
3227		goto unlink_mod;
3228
3229	/* Now module is in final location, initialize linked lists, etc. */
3230	err = module_unload_init(mod);
3231	if (err)
3232		goto unlink_mod;
3233
3234	/* Now we've got everything in the final locations, we can
3235	 * find optional sections. */
3236	err = find_module_sections(mod, info);
3237	if (err)
3238		goto free_unload;
3239
3240	err = check_module_license_and_versions(mod);
3241	if (err)
3242		goto free_unload;
3243
3244	/* Set up MODINFO_ATTR fields */
3245	setup_modinfo(mod, info);
3246
3247	/* Fix up syms, so that st_value is a pointer to location. */
3248	err = simplify_symbols(mod, info);
3249	if (err < 0)
3250		goto free_modinfo;
3251
3252	err = apply_relocations(mod, info);
3253	if (err < 0)
3254		goto free_modinfo;
3255
3256	err = post_relocation(mod, info);
3257	if (err < 0)
3258		goto free_modinfo;
3259
3260	flush_module_icache(mod);
3261
3262	/* Now copy in args */
3263	mod->args = strndup_user(uargs, ~0UL >> 1);
3264	if (IS_ERR(mod->args)) {
3265		err = PTR_ERR(mod->args);
3266		goto free_arch_cleanup;
3267	}
3268
3269	dynamic_debug_setup(info->debug, info->num_debug);
 
3270
3271	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3272	ftrace_module_init(mod);
 
 
 
 
 
 
 
 
 
 
3273
3274	/* Finally it's fully formed, ready to start executing. */
3275	err = complete_formation(mod, info);
3276	if (err)
3277		goto ddebug_cleanup;
 
 
 
 
 
 
 
3278
3279	/* Module is ready to execute: parsing args may do that. */
3280	err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3281			 -32768, 32767, unknown_module_param_cb);
3282	if (err < 0)
3283		goto bug_cleanup;
3284
3285	/* Link in to syfs. */
3286	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3287	if (err < 0)
3288		goto bug_cleanup;
3289
3290	/* Get rid of temporary copy. */
3291	free_copy(info);
3292
3293	/* Done! */
3294	trace_module_load(mod);
 
3295
3296	return do_init_module(mod);
3297
3298 bug_cleanup:
3299	/* module_bug_cleanup needs module_mutex protection */
3300	mutex_lock(&module_mutex);
 
 
3301	module_bug_cleanup(mod);
 
 
 
 
3302	mutex_unlock(&module_mutex);
3303 ddebug_cleanup:
3304	dynamic_debug_remove(info->debug);
3305	synchronize_sched();
3306	kfree(mod->args);
3307 free_arch_cleanup:
3308	module_arch_cleanup(mod);
3309 free_modinfo:
3310	free_modinfo(mod);
3311 free_unload:
3312	module_unload_free(mod);
3313 unlink_mod:
3314	mutex_lock(&module_mutex);
3315	/* Unlink carefully: kallsyms could be walking list. */
3316	list_del_rcu(&mod->list);
3317	wake_up_all(&module_wq);
3318	mutex_unlock(&module_mutex);
3319 free_module:
3320	module_deallocate(mod, info);
3321 free_copy:
3322	free_copy(info);
3323	return err;
 
 
 
 
 
 
 
 
 
 
 
3324}
3325
 
3326SYSCALL_DEFINE3(init_module, void __user *, umod,
3327		unsigned long, len, const char __user *, uargs)
3328{
3329	int err;
3330	struct load_info info = { };
3331
3332	err = may_init_module();
3333	if (err)
3334		return err;
3335
3336	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3337	       umod, len, uargs);
 
 
3338
3339	err = copy_module_from_user(umod, len, &info);
3340	if (err)
3341		return err;
3342
3343	return load_module(&info, uargs, 0);
3344}
 
 
 
3345
3346SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3347{
3348	int err;
3349	struct load_info info = { };
 
3350
3351	err = may_init_module();
3352	if (err)
3353		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3354
3355	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
 
 
 
 
3356
3357	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3358		      |MODULE_INIT_IGNORE_VERMAGIC))
3359		return -EINVAL;
3360
3361	err = copy_module_from_fd(fd, &info);
3362	if (err)
3363		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
3364
3365	return load_module(&info, uargs, flags);
3366}
3367
3368static inline int within(unsigned long addr, void *start, unsigned long size)
3369{
3370	return ((void *)addr >= start && (void *)addr < start + size);
3371}
3372
3373#ifdef CONFIG_KALLSYMS
3374/*
3375 * This ignores the intensely annoying "mapping symbols" found
3376 * in ARM ELF files: $a, $t and $d.
3377 */
3378static inline int is_arm_mapping_symbol(const char *str)
3379{
3380	return str[0] == '$' && strchr("atd", str[1])
3381	       && (str[2] == '\0' || str[2] == '.');
3382}
3383
3384static const char *get_ksymbol(struct module *mod,
3385			       unsigned long addr,
3386			       unsigned long *size,
3387			       unsigned long *offset)
3388{
3389	unsigned int i, best = 0;
3390	unsigned long nextval;
3391
3392	/* At worse, next value is at end of module */
3393	if (within_module_init(addr, mod))
3394		nextval = (unsigned long)mod->module_init+mod->init_text_size;
3395	else
3396		nextval = (unsigned long)mod->module_core+mod->core_text_size;
3397
3398	/* Scan for closest preceding symbol, and next symbol. (ELF
3399	   starts real symbols at 1). */
3400	for (i = 1; i < mod->num_symtab; i++) {
3401		if (mod->symtab[i].st_shndx == SHN_UNDEF)
3402			continue;
3403
3404		/* We ignore unnamed symbols: they're uninformative
3405		 * and inserted at a whim. */
3406		if (mod->symtab[i].st_value <= addr
3407		    && mod->symtab[i].st_value > mod->symtab[best].st_value
3408		    && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3409		    && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3410			best = i;
3411		if (mod->symtab[i].st_value > addr
3412		    && mod->symtab[i].st_value < nextval
3413		    && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3414		    && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3415			nextval = mod->symtab[i].st_value;
3416	}
3417
3418	if (!best)
3419		return NULL;
3420
3421	if (size)
3422		*size = nextval - mod->symtab[best].st_value;
3423	if (offset)
3424		*offset = addr - mod->symtab[best].st_value;
3425	return mod->strtab + mod->symtab[best].st_name;
3426}
3427
3428/* For kallsyms to ask for address resolution.  NULL means not found.  Careful
3429 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3430const char *module_address_lookup(unsigned long addr,
3431			    unsigned long *size,
3432			    unsigned long *offset,
3433			    char **modname,
3434			    char *namebuf)
3435{
3436	struct module *mod;
3437	const char *ret = NULL;
3438
3439	preempt_disable();
3440	list_for_each_entry_rcu(mod, &modules, list) {
3441		if (mod->state == MODULE_STATE_UNFORMED)
3442			continue;
3443		if (within_module_init(addr, mod) ||
3444		    within_module_core(addr, mod)) {
3445			if (modname)
3446				*modname = mod->name;
3447			ret = get_ksymbol(mod, addr, size, offset);
3448			break;
3449		}
3450	}
3451	/* Make a copy in here where it's safe */
3452	if (ret) {
3453		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3454		ret = namebuf;
3455	}
3456	preempt_enable();
3457	return ret;
3458}
3459
3460int lookup_module_symbol_name(unsigned long addr, char *symname)
3461{
3462	struct module *mod;
3463
3464	preempt_disable();
3465	list_for_each_entry_rcu(mod, &modules, list) {
3466		if (mod->state == MODULE_STATE_UNFORMED)
3467			continue;
3468		if (within_module_init(addr, mod) ||
3469		    within_module_core(addr, mod)) {
3470			const char *sym;
3471
3472			sym = get_ksymbol(mod, addr, NULL, NULL);
3473			if (!sym)
3474				goto out;
3475			strlcpy(symname, sym, KSYM_NAME_LEN);
3476			preempt_enable();
3477			return 0;
3478		}
3479	}
3480out:
3481	preempt_enable();
3482	return -ERANGE;
3483}
3484
3485int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3486			unsigned long *offset, char *modname, char *name)
3487{
3488	struct module *mod;
3489
3490	preempt_disable();
3491	list_for_each_entry_rcu(mod, &modules, list) {
3492		if (mod->state == MODULE_STATE_UNFORMED)
3493			continue;
3494		if (within_module_init(addr, mod) ||
3495		    within_module_core(addr, mod)) {
3496			const char *sym;
3497
3498			sym = get_ksymbol(mod, addr, size, offset);
3499			if (!sym)
3500				goto out;
3501			if (modname)
3502				strlcpy(modname, mod->name, MODULE_NAME_LEN);
3503			if (name)
3504				strlcpy(name, sym, KSYM_NAME_LEN);
3505			preempt_enable();
3506			return 0;
3507		}
3508	}
3509out:
3510	preempt_enable();
3511	return -ERANGE;
3512}
3513
3514int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3515			char *name, char *module_name, int *exported)
3516{
3517	struct module *mod;
3518
3519	preempt_disable();
3520	list_for_each_entry_rcu(mod, &modules, list) {
3521		if (mod->state == MODULE_STATE_UNFORMED)
3522			continue;
3523		if (symnum < mod->num_symtab) {
3524			*value = mod->symtab[symnum].st_value;
3525			*type = mod->symtab[symnum].st_info;
3526			strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
3527				KSYM_NAME_LEN);
3528			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3529			*exported = is_exported(name, *value, mod);
3530			preempt_enable();
3531			return 0;
3532		}
3533		symnum -= mod->num_symtab;
3534	}
3535	preempt_enable();
3536	return -ERANGE;
3537}
3538
3539static unsigned long mod_find_symname(struct module *mod, const char *name)
3540{
3541	unsigned int i;
3542
3543	for (i = 0; i < mod->num_symtab; i++)
3544		if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
3545		    mod->symtab[i].st_info != 'U')
3546			return mod->symtab[i].st_value;
3547	return 0;
3548}
3549
3550/* Look for this name: can be of form module:name. */
3551unsigned long module_kallsyms_lookup_name(const char *name)
3552{
3553	struct module *mod;
3554	char *colon;
3555	unsigned long ret = 0;
3556
3557	/* Don't lock: we're in enough trouble already. */
3558	preempt_disable();
3559	if ((colon = strchr(name, ':')) != NULL) {
3560		if ((mod = find_module_all(name, colon - name, false)) != NULL)
 
3561			ret = mod_find_symname(mod, colon+1);
 
3562	} else {
3563		list_for_each_entry_rcu(mod, &modules, list) {
3564			if (mod->state == MODULE_STATE_UNFORMED)
3565				continue;
3566			if ((ret = mod_find_symname(mod, name)) != 0)
3567				break;
3568		}
3569	}
3570	preempt_enable();
3571	return ret;
3572}
3573
3574int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3575					     struct module *, unsigned long),
3576				   void *data)
3577{
3578	struct module *mod;
3579	unsigned int i;
3580	int ret;
3581
3582	list_for_each_entry(mod, &modules, list) {
3583		if (mod->state == MODULE_STATE_UNFORMED)
3584			continue;
3585		for (i = 0; i < mod->num_symtab; i++) {
3586			ret = fn(data, mod->strtab + mod->symtab[i].st_name,
3587				 mod, mod->symtab[i].st_value);
3588			if (ret != 0)
3589				return ret;
3590		}
3591	}
3592	return 0;
3593}
3594#endif /* CONFIG_KALLSYMS */
3595
3596static char *module_flags(struct module *mod, char *buf)
3597{
3598	int bx = 0;
3599
3600	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3601	if (mod->taints ||
3602	    mod->state == MODULE_STATE_GOING ||
3603	    mod->state == MODULE_STATE_COMING) {
3604		buf[bx++] = '(';
3605		bx += module_flags_taint(mod, buf + bx);
3606		/* Show a - for module-is-being-unloaded */
3607		if (mod->state == MODULE_STATE_GOING)
3608			buf[bx++] = '-';
3609		/* Show a + for module-is-being-loaded */
3610		if (mod->state == MODULE_STATE_COMING)
3611			buf[bx++] = '+';
3612		buf[bx++] = ')';
3613	}
3614	buf[bx] = '\0';
3615
3616	return buf;
3617}
3618
3619#ifdef CONFIG_PROC_FS
3620/* Called by the /proc file system to return a list of modules. */
3621static void *m_start(struct seq_file *m, loff_t *pos)
3622{
3623	mutex_lock(&module_mutex);
3624	return seq_list_start(&modules, *pos);
3625}
3626
3627static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3628{
3629	return seq_list_next(p, &modules, pos);
3630}
3631
3632static void m_stop(struct seq_file *m, void *p)
3633{
3634	mutex_unlock(&module_mutex);
3635}
3636
3637static int m_show(struct seq_file *m, void *p)
3638{
3639	struct module *mod = list_entry(p, struct module, list);
3640	char buf[8];
3641
3642	/* We always ignore unformed modules. */
3643	if (mod->state == MODULE_STATE_UNFORMED)
3644		return 0;
3645
3646	seq_printf(m, "%s %u",
3647		   mod->name, mod->init_size + mod->core_size);
3648	print_unload_info(m, mod);
3649
3650	/* Informative for users. */
3651	seq_printf(m, " %s",
3652		   mod->state == MODULE_STATE_GOING ? "Unloading":
3653		   mod->state == MODULE_STATE_COMING ? "Loading":
3654		   "Live");
3655	/* Used by oprofile and other similar tools. */
3656	seq_printf(m, " 0x%pK", mod->module_core);
3657
3658	/* Taints info */
3659	if (mod->taints)
3660		seq_printf(m, " %s", module_flags(mod, buf));
3661
3662	seq_printf(m, "\n");
3663	return 0;
3664}
3665
3666/* Format: modulename size refcount deps address
3667
3668   Where refcount is a number or -, and deps is a comma-separated list
3669   of depends or -.
3670*/
3671static const struct seq_operations modules_op = {
3672	.start	= m_start,
3673	.next	= m_next,
3674	.stop	= m_stop,
3675	.show	= m_show
3676};
3677
3678static int modules_open(struct inode *inode, struct file *file)
3679{
3680	return seq_open(file, &modules_op);
3681}
3682
3683static const struct file_operations proc_modules_operations = {
3684	.open		= modules_open,
3685	.read		= seq_read,
3686	.llseek		= seq_lseek,
3687	.release	= seq_release,
3688};
3689
3690static int __init proc_modules_init(void)
3691{
3692	proc_create("modules", 0, NULL, &proc_modules_operations);
3693	return 0;
3694}
3695module_init(proc_modules_init);
3696#endif
3697
3698/* Given an address, look for it in the module exception tables. */
3699const struct exception_table_entry *search_module_extables(unsigned long addr)
3700{
3701	const struct exception_table_entry *e = NULL;
3702	struct module *mod;
3703
3704	preempt_disable();
3705	list_for_each_entry_rcu(mod, &modules, list) {
3706		if (mod->state == MODULE_STATE_UNFORMED)
3707			continue;
3708		if (mod->num_exentries == 0)
3709			continue;
3710
3711		e = search_extable(mod->extable,
3712				   mod->extable + mod->num_exentries - 1,
3713				   addr);
3714		if (e)
3715			break;
3716	}
3717	preempt_enable();
3718
3719	/* Now, if we found one, we are running inside it now, hence
3720	   we cannot unload the module, hence no refcnt needed. */
3721	return e;
3722}
3723
3724/*
3725 * is_module_address - is this address inside a module?
3726 * @addr: the address to check.
3727 *
3728 * See is_module_text_address() if you simply want to see if the address
3729 * is code (not data).
3730 */
3731bool is_module_address(unsigned long addr)
3732{
3733	bool ret;
3734
3735	preempt_disable();
3736	ret = __module_address(addr) != NULL;
3737	preempt_enable();
3738
3739	return ret;
3740}
3741
3742/*
3743 * __module_address - get the module which contains an address.
3744 * @addr: the address.
3745 *
3746 * Must be called with preempt disabled or module mutex held so that
3747 * module doesn't get freed during this.
3748 */
3749struct module *__module_address(unsigned long addr)
3750{
3751	struct module *mod;
3752
3753	if (addr < module_addr_min || addr > module_addr_max)
3754		return NULL;
3755
3756	list_for_each_entry_rcu(mod, &modules, list) {
3757		if (mod->state == MODULE_STATE_UNFORMED)
3758			continue;
3759		if (within_module_core(addr, mod)
3760		    || within_module_init(addr, mod))
3761			return mod;
3762	}
3763	return NULL;
3764}
3765EXPORT_SYMBOL_GPL(__module_address);
3766
3767/*
3768 * is_module_text_address - is this address inside module code?
3769 * @addr: the address to check.
3770 *
3771 * See is_module_address() if you simply want to see if the address is
3772 * anywhere in a module.  See kernel_text_address() for testing if an
3773 * address corresponds to kernel or module code.
3774 */
3775bool is_module_text_address(unsigned long addr)
3776{
3777	bool ret;
3778
3779	preempt_disable();
3780	ret = __module_text_address(addr) != NULL;
3781	preempt_enable();
3782
3783	return ret;
3784}
3785
3786/*
3787 * __module_text_address - get the module whose code contains an address.
3788 * @addr: the address.
3789 *
3790 * Must be called with preempt disabled or module mutex held so that
3791 * module doesn't get freed during this.
3792 */
3793struct module *__module_text_address(unsigned long addr)
3794{
3795	struct module *mod = __module_address(addr);
3796	if (mod) {
3797		/* Make sure it's within the text section. */
3798		if (!within(addr, mod->module_init, mod->init_text_size)
3799		    && !within(addr, mod->module_core, mod->core_text_size))
3800			mod = NULL;
3801	}
3802	return mod;
3803}
3804EXPORT_SYMBOL_GPL(__module_text_address);
3805
3806/* Don't grab lock, we're oopsing. */
3807void print_modules(void)
3808{
3809	struct module *mod;
3810	char buf[8];
3811
3812	printk(KERN_DEFAULT "Modules linked in:");
3813	/* Most callers should already have preempt disabled, but make sure */
3814	preempt_disable();
3815	list_for_each_entry_rcu(mod, &modules, list) {
3816		if (mod->state == MODULE_STATE_UNFORMED)
3817			continue;
3818		pr_cont(" %s%s", mod->name, module_flags(mod, buf));
3819	}
3820	preempt_enable();
3821	if (last_unloaded_module[0])
3822		pr_cont(" [last unloaded: %s]", last_unloaded_module);
3823	pr_cont("\n");
3824}
3825
3826#ifdef CONFIG_MODVERSIONS
3827/* Generate the signature for all relevant module structures here.
3828 * If these change, we don't want to try to parse the module. */
3829void module_layout(struct module *mod,
3830		   struct modversion_info *ver,
3831		   struct kernel_param *kp,
3832		   struct kernel_symbol *ks,
3833		   struct tracepoint * const *tp)
3834{
3835}
3836EXPORT_SYMBOL(module_layout);
3837#endif
v3.5.6
   1/*
   2   Copyright (C) 2002 Richard Henderson
   3   Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
   4
   5    This program is free software; you can redistribute it and/or modify
   6    it under the terms of the GNU General Public License as published by
   7    the Free Software Foundation; either version 2 of the License, or
   8    (at your option) any later version.
   9
  10    This program is distributed in the hope that it will be useful,
  11    but WITHOUT ANY WARRANTY; without even the implied warranty of
  12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13    GNU General Public License for more details.
  14
  15    You should have received a copy of the GNU General Public License
  16    along with this program; if not, write to the Free Software
  17    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  18*/
  19#include <linux/export.h>
  20#include <linux/moduleloader.h>
  21#include <linux/ftrace_event.h>
  22#include <linux/init.h>
  23#include <linux/kallsyms.h>
 
  24#include <linux/fs.h>
  25#include <linux/sysfs.h>
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/vmalloc.h>
  29#include <linux/elf.h>
  30#include <linux/proc_fs.h>
 
  31#include <linux/seq_file.h>
  32#include <linux/syscalls.h>
  33#include <linux/fcntl.h>
  34#include <linux/rcupdate.h>
  35#include <linux/capability.h>
  36#include <linux/cpu.h>
  37#include <linux/moduleparam.h>
  38#include <linux/errno.h>
  39#include <linux/err.h>
  40#include <linux/vermagic.h>
  41#include <linux/notifier.h>
  42#include <linux/sched.h>
  43#include <linux/stop_machine.h>
  44#include <linux/device.h>
  45#include <linux/string.h>
  46#include <linux/mutex.h>
  47#include <linux/rculist.h>
  48#include <asm/uaccess.h>
  49#include <asm/cacheflush.h>
  50#include <asm/mmu_context.h>
  51#include <linux/license.h>
  52#include <asm/sections.h>
  53#include <linux/tracepoint.h>
  54#include <linux/ftrace.h>
  55#include <linux/async.h>
  56#include <linux/percpu.h>
  57#include <linux/kmemleak.h>
  58#include <linux/jump_label.h>
  59#include <linux/pfn.h>
  60#include <linux/bsearch.h>
 
 
 
  61
  62#define CREATE_TRACE_POINTS
  63#include <trace/events/module.h>
  64
  65#ifndef ARCH_SHF_SMALL
  66#define ARCH_SHF_SMALL 0
  67#endif
  68
  69/*
  70 * Modules' sections will be aligned on page boundaries
  71 * to ensure complete separation of code and data, but
  72 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
  73 */
  74#ifdef CONFIG_DEBUG_SET_MODULE_RONX
  75# define debug_align(X) ALIGN(X, PAGE_SIZE)
  76#else
  77# define debug_align(X) (X)
  78#endif
  79
  80/*
  81 * Given BASE and SIZE this macro calculates the number of pages the
  82 * memory regions occupies
  83 */
  84#define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ?		\
  85		(PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) -	\
  86			 PFN_DOWN((unsigned long)BASE) + 1)	\
  87		: (0UL))
  88
  89/* If this is set, the section belongs in the init part of the module */
  90#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
  91
  92/*
  93 * Mutex protects:
  94 * 1) List of modules (also safely readable with preempt_disable),
  95 * 2) module_use links,
  96 * 3) module_addr_min/module_addr_max.
  97 * (delete uses stop_machine/add uses RCU list operations). */
  98DEFINE_MUTEX(module_mutex);
  99EXPORT_SYMBOL_GPL(module_mutex);
 100static LIST_HEAD(modules);
 101#ifdef CONFIG_KGDB_KDB
 102struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
 103#endif /* CONFIG_KGDB_KDB */
 104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 105
 106/* Block module loading/unloading? */
 107int modules_disabled = 0;
 108core_param(nomodule, modules_disabled, bint, 0);
 109
 110/* Waiting for a module to finish initializing? */
 111static DECLARE_WAIT_QUEUE_HEAD(module_wq);
 112
 113static BLOCKING_NOTIFIER_HEAD(module_notify_list);
 114
 115/* Bounds of module allocation, for speeding __module_address.
 116 * Protected by module_mutex. */
 117static unsigned long module_addr_min = -1UL, module_addr_max = 0;
 118
 119int register_module_notifier(struct notifier_block * nb)
 120{
 121	return blocking_notifier_chain_register(&module_notify_list, nb);
 122}
 123EXPORT_SYMBOL(register_module_notifier);
 124
 125int unregister_module_notifier(struct notifier_block * nb)
 126{
 127	return blocking_notifier_chain_unregister(&module_notify_list, nb);
 128}
 129EXPORT_SYMBOL(unregister_module_notifier);
 130
 131struct load_info {
 132	Elf_Ehdr *hdr;
 133	unsigned long len;
 134	Elf_Shdr *sechdrs;
 135	char *secstrings, *strtab;
 136	unsigned long symoffs, stroffs;
 137	struct _ddebug *debug;
 138	unsigned int num_debug;
 
 139	struct {
 140		unsigned int sym, str, mod, vers, info, pcpu;
 141	} index;
 142};
 143
 144/* We require a truly strong try_module_get(): 0 means failure due to
 145   ongoing or failed initialization etc. */
 146static inline int strong_try_module_get(struct module *mod)
 147{
 
 148	if (mod && mod->state == MODULE_STATE_COMING)
 149		return -EBUSY;
 150	if (try_module_get(mod))
 151		return 0;
 152	else
 153		return -ENOENT;
 154}
 155
 156static inline void add_taint_module(struct module *mod, unsigned flag)
 
 157{
 158	add_taint(flag);
 159	mod->taints |= (1U << flag);
 160}
 161
 162/*
 163 * A thread that wants to hold a reference to a module only while it
 164 * is running can call this to safely exit.  nfsd and lockd use this.
 165 */
 166void __module_put_and_exit(struct module *mod, long code)
 167{
 168	module_put(mod);
 169	do_exit(code);
 170}
 171EXPORT_SYMBOL(__module_put_and_exit);
 172
 173/* Find a module section: 0 means not found. */
 174static unsigned int find_sec(const struct load_info *info, const char *name)
 175{
 176	unsigned int i;
 177
 178	for (i = 1; i < info->hdr->e_shnum; i++) {
 179		Elf_Shdr *shdr = &info->sechdrs[i];
 180		/* Alloc bit cleared means "ignore it." */
 181		if ((shdr->sh_flags & SHF_ALLOC)
 182		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
 183			return i;
 184	}
 185	return 0;
 186}
 187
 188/* Find a module section, or NULL. */
 189static void *section_addr(const struct load_info *info, const char *name)
 190{
 191	/* Section 0 has sh_addr 0. */
 192	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
 193}
 194
 195/* Find a module section, or NULL.  Fill in number of "objects" in section. */
 196static void *section_objs(const struct load_info *info,
 197			  const char *name,
 198			  size_t object_size,
 199			  unsigned int *num)
 200{
 201	unsigned int sec = find_sec(info, name);
 202
 203	/* Section 0 has sh_addr 0 and sh_size 0. */
 204	*num = info->sechdrs[sec].sh_size / object_size;
 205	return (void *)info->sechdrs[sec].sh_addr;
 206}
 207
 208/* Provided by the linker */
 209extern const struct kernel_symbol __start___ksymtab[];
 210extern const struct kernel_symbol __stop___ksymtab[];
 211extern const struct kernel_symbol __start___ksymtab_gpl[];
 212extern const struct kernel_symbol __stop___ksymtab_gpl[];
 213extern const struct kernel_symbol __start___ksymtab_gpl_future[];
 214extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
 215extern const unsigned long __start___kcrctab[];
 216extern const unsigned long __start___kcrctab_gpl[];
 217extern const unsigned long __start___kcrctab_gpl_future[];
 218#ifdef CONFIG_UNUSED_SYMBOLS
 219extern const struct kernel_symbol __start___ksymtab_unused[];
 220extern const struct kernel_symbol __stop___ksymtab_unused[];
 221extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
 222extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
 223extern const unsigned long __start___kcrctab_unused[];
 224extern const unsigned long __start___kcrctab_unused_gpl[];
 225#endif
 226
 227#ifndef CONFIG_MODVERSIONS
 228#define symversion(base, idx) NULL
 229#else
 230#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
 231#endif
 232
 233static bool each_symbol_in_section(const struct symsearch *arr,
 234				   unsigned int arrsize,
 235				   struct module *owner,
 236				   bool (*fn)(const struct symsearch *syms,
 237					      struct module *owner,
 238					      void *data),
 239				   void *data)
 240{
 241	unsigned int j;
 242
 243	for (j = 0; j < arrsize; j++) {
 244		if (fn(&arr[j], owner, data))
 245			return true;
 246	}
 247
 248	return false;
 249}
 250
 251/* Returns true as soon as fn returns true, otherwise false. */
 252bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
 253				    struct module *owner,
 254				    void *data),
 255			 void *data)
 256{
 257	struct module *mod;
 258	static const struct symsearch arr[] = {
 259		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
 260		  NOT_GPL_ONLY, false },
 261		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
 262		  __start___kcrctab_gpl,
 263		  GPL_ONLY, false },
 264		{ __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
 265		  __start___kcrctab_gpl_future,
 266		  WILL_BE_GPL_ONLY, false },
 267#ifdef CONFIG_UNUSED_SYMBOLS
 268		{ __start___ksymtab_unused, __stop___ksymtab_unused,
 269		  __start___kcrctab_unused,
 270		  NOT_GPL_ONLY, true },
 271		{ __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
 272		  __start___kcrctab_unused_gpl,
 273		  GPL_ONLY, true },
 274#endif
 275	};
 276
 277	if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
 278		return true;
 279
 280	list_for_each_entry_rcu(mod, &modules, list) {
 281		struct symsearch arr[] = {
 282			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
 283			  NOT_GPL_ONLY, false },
 284			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
 285			  mod->gpl_crcs,
 286			  GPL_ONLY, false },
 287			{ mod->gpl_future_syms,
 288			  mod->gpl_future_syms + mod->num_gpl_future_syms,
 289			  mod->gpl_future_crcs,
 290			  WILL_BE_GPL_ONLY, false },
 291#ifdef CONFIG_UNUSED_SYMBOLS
 292			{ mod->unused_syms,
 293			  mod->unused_syms + mod->num_unused_syms,
 294			  mod->unused_crcs,
 295			  NOT_GPL_ONLY, true },
 296			{ mod->unused_gpl_syms,
 297			  mod->unused_gpl_syms + mod->num_unused_gpl_syms,
 298			  mod->unused_gpl_crcs,
 299			  GPL_ONLY, true },
 300#endif
 301		};
 302
 
 
 
 303		if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
 304			return true;
 305	}
 306	return false;
 307}
 308EXPORT_SYMBOL_GPL(each_symbol_section);
 309
 310struct find_symbol_arg {
 311	/* Input */
 312	const char *name;
 313	bool gplok;
 314	bool warn;
 315
 316	/* Output */
 317	struct module *owner;
 318	const unsigned long *crc;
 319	const struct kernel_symbol *sym;
 320};
 321
 322static bool check_symbol(const struct symsearch *syms,
 323				 struct module *owner,
 324				 unsigned int symnum, void *data)
 325{
 326	struct find_symbol_arg *fsa = data;
 327
 328	if (!fsa->gplok) {
 329		if (syms->licence == GPL_ONLY)
 330			return false;
 331		if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
 332			printk(KERN_WARNING "Symbol %s is being used "
 333			       "by a non-GPL module, which will not "
 334			       "be allowed in the future\n", fsa->name);
 335			printk(KERN_WARNING "Please see the file "
 336			       "Documentation/feature-removal-schedule.txt "
 337			       "in the kernel source tree for more details.\n");
 338		}
 339	}
 340
 341#ifdef CONFIG_UNUSED_SYMBOLS
 342	if (syms->unused && fsa->warn) {
 343		printk(KERN_WARNING "Symbol %s is marked as UNUSED, "
 344		       "however this module is using it.\n", fsa->name);
 345		printk(KERN_WARNING
 346		       "This symbol will go away in the future.\n");
 347		printk(KERN_WARNING
 348		       "Please evalute if this is the right api to use and if "
 349		       "it really is, submit a report the linux kernel "
 350		       "mailinglist together with submitting your code for "
 351		       "inclusion.\n");
 352	}
 353#endif
 354
 355	fsa->owner = owner;
 356	fsa->crc = symversion(syms->crcs, symnum);
 357	fsa->sym = &syms->start[symnum];
 358	return true;
 359}
 360
 361static int cmp_name(const void *va, const void *vb)
 362{
 363	const char *a;
 364	const struct kernel_symbol *b;
 365	a = va; b = vb;
 366	return strcmp(a, b->name);
 367}
 368
 369static bool find_symbol_in_section(const struct symsearch *syms,
 370				   struct module *owner,
 371				   void *data)
 372{
 373	struct find_symbol_arg *fsa = data;
 374	struct kernel_symbol *sym;
 375
 376	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
 377			sizeof(struct kernel_symbol), cmp_name);
 378
 379	if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
 380		return true;
 381
 382	return false;
 383}
 384
 385/* Find a symbol and return it, along with, (optional) crc and
 386 * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
 387const struct kernel_symbol *find_symbol(const char *name,
 388					struct module **owner,
 389					const unsigned long **crc,
 390					bool gplok,
 391					bool warn)
 392{
 393	struct find_symbol_arg fsa;
 394
 395	fsa.name = name;
 396	fsa.gplok = gplok;
 397	fsa.warn = warn;
 398
 399	if (each_symbol_section(find_symbol_in_section, &fsa)) {
 400		if (owner)
 401			*owner = fsa.owner;
 402		if (crc)
 403			*crc = fsa.crc;
 404		return fsa.sym;
 405	}
 406
 407	pr_debug("Failed to find symbol %s\n", name);
 408	return NULL;
 409}
 410EXPORT_SYMBOL_GPL(find_symbol);
 411
 412/* Search for module by name: must hold module_mutex. */
 413struct module *find_module(const char *name)
 
 414{
 415	struct module *mod;
 416
 417	list_for_each_entry(mod, &modules, list) {
 418		if (strcmp(mod->name, name) == 0)
 
 
 419			return mod;
 420	}
 421	return NULL;
 422}
 
 
 
 
 
 423EXPORT_SYMBOL_GPL(find_module);
 424
 425#ifdef CONFIG_SMP
 426
 427static inline void __percpu *mod_percpu(struct module *mod)
 428{
 429	return mod->percpu;
 430}
 431
 432static int percpu_modalloc(struct module *mod,
 433			   unsigned long size, unsigned long align)
 434{
 
 
 
 
 
 
 435	if (align > PAGE_SIZE) {
 436		printk(KERN_WARNING "%s: per-cpu alignment %li > %li\n",
 437		       mod->name, align, PAGE_SIZE);
 438		align = PAGE_SIZE;
 439	}
 440
 441	mod->percpu = __alloc_reserved_percpu(size, align);
 442	if (!mod->percpu) {
 443		printk(KERN_WARNING
 444		       "%s: Could not allocate %lu bytes percpu data\n",
 445		       mod->name, size);
 446		return -ENOMEM;
 447	}
 448	mod->percpu_size = size;
 449	return 0;
 450}
 451
 452static void percpu_modfree(struct module *mod)
 453{
 454	free_percpu(mod->percpu);
 455}
 456
 457static unsigned int find_pcpusec(struct load_info *info)
 458{
 459	return find_sec(info, ".data..percpu");
 460}
 461
 462static void percpu_modcopy(struct module *mod,
 463			   const void *from, unsigned long size)
 464{
 465	int cpu;
 466
 467	for_each_possible_cpu(cpu)
 468		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
 469}
 470
 471/**
 472 * is_module_percpu_address - test whether address is from module static percpu
 473 * @addr: address to test
 474 *
 475 * Test whether @addr belongs to module static percpu area.
 476 *
 477 * RETURNS:
 478 * %true if @addr is from module static percpu area
 479 */
 480bool is_module_percpu_address(unsigned long addr)
 481{
 482	struct module *mod;
 483	unsigned int cpu;
 484
 485	preempt_disable();
 486
 487	list_for_each_entry_rcu(mod, &modules, list) {
 
 
 488		if (!mod->percpu_size)
 489			continue;
 490		for_each_possible_cpu(cpu) {
 491			void *start = per_cpu_ptr(mod->percpu, cpu);
 492
 493			if ((void *)addr >= start &&
 494			    (void *)addr < start + mod->percpu_size) {
 495				preempt_enable();
 496				return true;
 497			}
 498		}
 499	}
 500
 501	preempt_enable();
 502	return false;
 503}
 504
 505#else /* ... !CONFIG_SMP */
 506
 507static inline void __percpu *mod_percpu(struct module *mod)
 508{
 509	return NULL;
 510}
 511static inline int percpu_modalloc(struct module *mod,
 512				  unsigned long size, unsigned long align)
 513{
 514	return -ENOMEM;
 
 
 
 515}
 516static inline void percpu_modfree(struct module *mod)
 517{
 518}
 519static unsigned int find_pcpusec(struct load_info *info)
 520{
 521	return 0;
 522}
 523static inline void percpu_modcopy(struct module *mod,
 524				  const void *from, unsigned long size)
 525{
 526	/* pcpusec should be 0, and size of that section should be 0. */
 527	BUG_ON(size != 0);
 528}
 529bool is_module_percpu_address(unsigned long addr)
 530{
 531	return false;
 532}
 533
 534#endif /* CONFIG_SMP */
 535
 536#define MODINFO_ATTR(field)	\
 537static void setup_modinfo_##field(struct module *mod, const char *s)  \
 538{                                                                     \
 539	mod->field = kstrdup(s, GFP_KERNEL);                          \
 540}                                                                     \
 541static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
 542			struct module_kobject *mk, char *buffer)      \
 543{                                                                     \
 544	return sprintf(buffer, "%s\n", mk->mod->field);               \
 545}                                                                     \
 546static int modinfo_##field##_exists(struct module *mod)               \
 547{                                                                     \
 548	return mod->field != NULL;                                    \
 549}                                                                     \
 550static void free_modinfo_##field(struct module *mod)                  \
 551{                                                                     \
 552	kfree(mod->field);                                            \
 553	mod->field = NULL;                                            \
 554}                                                                     \
 555static struct module_attribute modinfo_##field = {                    \
 556	.attr = { .name = __stringify(field), .mode = 0444 },         \
 557	.show = show_modinfo_##field,                                 \
 558	.setup = setup_modinfo_##field,                               \
 559	.test = modinfo_##field##_exists,                             \
 560	.free = free_modinfo_##field,                                 \
 561};
 562
 563MODINFO_ATTR(version);
 564MODINFO_ATTR(srcversion);
 565
 566static char last_unloaded_module[MODULE_NAME_LEN+1];
 567
 568#ifdef CONFIG_MODULE_UNLOAD
 569
 570EXPORT_TRACEPOINT_SYMBOL(module_get);
 571
 572/* Init the unload section of the module. */
 573static int module_unload_init(struct module *mod)
 574{
 575	mod->refptr = alloc_percpu(struct module_ref);
 576	if (!mod->refptr)
 577		return -ENOMEM;
 578
 579	INIT_LIST_HEAD(&mod->source_list);
 580	INIT_LIST_HEAD(&mod->target_list);
 581
 582	/* Hold reference count during initialization. */
 583	__this_cpu_write(mod->refptr->incs, 1);
 584	/* Backwards compatibility macros put refcount during init. */
 585	mod->waiter = current;
 586
 587	return 0;
 588}
 589
 590/* Does a already use b? */
 591static int already_uses(struct module *a, struct module *b)
 592{
 593	struct module_use *use;
 594
 595	list_for_each_entry(use, &b->source_list, source_list) {
 596		if (use->source == a) {
 597			pr_debug("%s uses %s!\n", a->name, b->name);
 598			return 1;
 599		}
 600	}
 601	pr_debug("%s does not use %s!\n", a->name, b->name);
 602	return 0;
 603}
 604
 605/*
 606 * Module a uses b
 607 *  - we add 'a' as a "source", 'b' as a "target" of module use
 608 *  - the module_use is added to the list of 'b' sources (so
 609 *    'b' can walk the list to see who sourced them), and of 'a'
 610 *    targets (so 'a' can see what modules it targets).
 611 */
 612static int add_module_usage(struct module *a, struct module *b)
 613{
 614	struct module_use *use;
 615
 616	pr_debug("Allocating new usage for %s.\n", a->name);
 617	use = kmalloc(sizeof(*use), GFP_ATOMIC);
 618	if (!use) {
 619		printk(KERN_WARNING "%s: out of memory loading\n", a->name);
 620		return -ENOMEM;
 621	}
 622
 623	use->source = a;
 624	use->target = b;
 625	list_add(&use->source_list, &b->source_list);
 626	list_add(&use->target_list, &a->target_list);
 627	return 0;
 628}
 629
 630/* Module a uses b: caller needs module_mutex() */
 631int ref_module(struct module *a, struct module *b)
 632{
 633	int err;
 634
 635	if (b == NULL || already_uses(a, b))
 636		return 0;
 637
 638	/* If module isn't available, we fail. */
 639	err = strong_try_module_get(b);
 640	if (err)
 641		return err;
 642
 643	err = add_module_usage(a, b);
 644	if (err) {
 645		module_put(b);
 646		return err;
 647	}
 648	return 0;
 649}
 650EXPORT_SYMBOL_GPL(ref_module);
 651
 652/* Clear the unload stuff of the module. */
 653static void module_unload_free(struct module *mod)
 654{
 655	struct module_use *use, *tmp;
 656
 657	mutex_lock(&module_mutex);
 658	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
 659		struct module *i = use->target;
 660		pr_debug("%s unusing %s\n", mod->name, i->name);
 661		module_put(i);
 662		list_del(&use->source_list);
 663		list_del(&use->target_list);
 664		kfree(use);
 665	}
 666	mutex_unlock(&module_mutex);
 667
 668	free_percpu(mod->refptr);
 669}
 670
 671#ifdef CONFIG_MODULE_FORCE_UNLOAD
 672static inline int try_force_unload(unsigned int flags)
 673{
 674	int ret = (flags & O_TRUNC);
 675	if (ret)
 676		add_taint(TAINT_FORCED_RMMOD);
 677	return ret;
 678}
 679#else
 680static inline int try_force_unload(unsigned int flags)
 681{
 682	return 0;
 683}
 684#endif /* CONFIG_MODULE_FORCE_UNLOAD */
 685
 686struct stopref
 687{
 688	struct module *mod;
 689	int flags;
 690	int *forced;
 691};
 692
 693/* Whole machine is stopped with interrupts off when this runs. */
 694static int __try_stop_module(void *_sref)
 695{
 696	struct stopref *sref = _sref;
 697
 698	/* If it's not unused, quit unless we're forcing. */
 699	if (module_refcount(sref->mod) != 0) {
 700		if (!(*sref->forced = try_force_unload(sref->flags)))
 701			return -EWOULDBLOCK;
 702	}
 703
 704	/* Mark it as dying. */
 705	sref->mod->state = MODULE_STATE_GOING;
 706	return 0;
 707}
 708
 709static int try_stop_module(struct module *mod, int flags, int *forced)
 710{
 711	if (flags & O_NONBLOCK) {
 712		struct stopref sref = { mod, flags, forced };
 713
 714		return stop_machine(__try_stop_module, &sref, NULL);
 715	} else {
 716		/* We don't need to stop the machine for this. */
 717		mod->state = MODULE_STATE_GOING;
 718		synchronize_sched();
 719		return 0;
 720	}
 721}
 722
 723unsigned long module_refcount(struct module *mod)
 724{
 725	unsigned long incs = 0, decs = 0;
 726	int cpu;
 727
 728	for_each_possible_cpu(cpu)
 729		decs += per_cpu_ptr(mod->refptr, cpu)->decs;
 730	/*
 731	 * ensure the incs are added up after the decs.
 732	 * module_put ensures incs are visible before decs with smp_wmb.
 733	 *
 734	 * This 2-count scheme avoids the situation where the refcount
 735	 * for CPU0 is read, then CPU0 increments the module refcount,
 736	 * then CPU1 drops that refcount, then the refcount for CPU1 is
 737	 * read. We would record a decrement but not its corresponding
 738	 * increment so we would see a low count (disaster).
 739	 *
 740	 * Rare situation? But module_refcount can be preempted, and we
 741	 * might be tallying up 4096+ CPUs. So it is not impossible.
 742	 */
 743	smp_rmb();
 744	for_each_possible_cpu(cpu)
 745		incs += per_cpu_ptr(mod->refptr, cpu)->incs;
 746	return incs - decs;
 747}
 748EXPORT_SYMBOL(module_refcount);
 749
 750/* This exists whether we can unload or not */
 751static void free_module(struct module *mod);
 752
 753static void wait_for_zero_refcount(struct module *mod)
 754{
 755	/* Since we might sleep for some time, release the mutex first */
 756	mutex_unlock(&module_mutex);
 757	for (;;) {
 758		pr_debug("Looking at refcount...\n");
 759		set_current_state(TASK_UNINTERRUPTIBLE);
 760		if (module_refcount(mod) == 0)
 761			break;
 762		schedule();
 763	}
 764	current->state = TASK_RUNNING;
 765	mutex_lock(&module_mutex);
 766}
 767
 768SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
 769		unsigned int, flags)
 770{
 771	struct module *mod;
 772	char name[MODULE_NAME_LEN];
 773	int ret, forced = 0;
 774
 775	if (!capable(CAP_SYS_MODULE) || modules_disabled)
 776		return -EPERM;
 777
 778	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
 779		return -EFAULT;
 780	name[MODULE_NAME_LEN-1] = '\0';
 781
 782	if (mutex_lock_interruptible(&module_mutex) != 0)
 783		return -EINTR;
 784
 785	mod = find_module(name);
 786	if (!mod) {
 787		ret = -ENOENT;
 788		goto out;
 789	}
 790
 791	if (!list_empty(&mod->source_list)) {
 792		/* Other modules depend on us: get rid of them first. */
 793		ret = -EWOULDBLOCK;
 794		goto out;
 795	}
 796
 797	/* Doing init or already dying? */
 798	if (mod->state != MODULE_STATE_LIVE) {
 799		/* FIXME: if (force), slam module count and wake up
 800                   waiter --RR */
 801		pr_debug("%s already dying\n", mod->name);
 802		ret = -EBUSY;
 803		goto out;
 804	}
 805
 806	/* If it has an init func, it must have an exit func to unload */
 807	if (mod->init && !mod->exit) {
 808		forced = try_force_unload(flags);
 809		if (!forced) {
 810			/* This module can't be removed */
 811			ret = -EBUSY;
 812			goto out;
 813		}
 814	}
 815
 816	/* Set this up before setting mod->state */
 817	mod->waiter = current;
 818
 819	/* Stop the machine so refcounts can't move and disable module. */
 820	ret = try_stop_module(mod, flags, &forced);
 821	if (ret != 0)
 822		goto out;
 823
 824	/* Never wait if forced. */
 825	if (!forced && module_refcount(mod) != 0)
 826		wait_for_zero_refcount(mod);
 827
 828	mutex_unlock(&module_mutex);
 829	/* Final destruction now no one is using it. */
 830	if (mod->exit != NULL)
 831		mod->exit();
 832	blocking_notifier_call_chain(&module_notify_list,
 833				     MODULE_STATE_GOING, mod);
 834	async_synchronize_full();
 835
 836	/* Store the name of the last unloaded module for diagnostic purposes */
 837	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
 838
 839	free_module(mod);
 840	return 0;
 841out:
 842	mutex_unlock(&module_mutex);
 843	return ret;
 844}
 845
 846static inline void print_unload_info(struct seq_file *m, struct module *mod)
 847{
 848	struct module_use *use;
 849	int printed_something = 0;
 850
 851	seq_printf(m, " %lu ", module_refcount(mod));
 852
 853	/* Always include a trailing , so userspace can differentiate
 854           between this and the old multi-field proc format. */
 855	list_for_each_entry(use, &mod->source_list, source_list) {
 856		printed_something = 1;
 857		seq_printf(m, "%s,", use->source->name);
 858	}
 859
 860	if (mod->init != NULL && mod->exit == NULL) {
 861		printed_something = 1;
 862		seq_printf(m, "[permanent],");
 863	}
 864
 865	if (!printed_something)
 866		seq_printf(m, "-");
 867}
 868
 869void __symbol_put(const char *symbol)
 870{
 871	struct module *owner;
 872
 873	preempt_disable();
 874	if (!find_symbol(symbol, &owner, NULL, true, false))
 875		BUG();
 876	module_put(owner);
 877	preempt_enable();
 878}
 879EXPORT_SYMBOL(__symbol_put);
 880
 881/* Note this assumes addr is a function, which it currently always is. */
 882void symbol_put_addr(void *addr)
 883{
 884	struct module *modaddr;
 885	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
 886
 887	if (core_kernel_text(a))
 888		return;
 889
 890	/* module_text_address is safe here: we're supposed to have reference
 891	 * to module from symbol_get, so it can't go away. */
 892	modaddr = __module_text_address(a);
 893	BUG_ON(!modaddr);
 894	module_put(modaddr);
 895}
 896EXPORT_SYMBOL_GPL(symbol_put_addr);
 897
 898static ssize_t show_refcnt(struct module_attribute *mattr,
 899			   struct module_kobject *mk, char *buffer)
 900{
 901	return sprintf(buffer, "%lu\n", module_refcount(mk->mod));
 902}
 903
 904static struct module_attribute modinfo_refcnt =
 905	__ATTR(refcnt, 0444, show_refcnt, NULL);
 906
 907void __module_get(struct module *module)
 908{
 909	if (module) {
 910		preempt_disable();
 911		__this_cpu_inc(module->refptr->incs);
 912		trace_module_get(module, _RET_IP_);
 913		preempt_enable();
 914	}
 915}
 916EXPORT_SYMBOL(__module_get);
 917
 918bool try_module_get(struct module *module)
 919{
 920	bool ret = true;
 921
 922	if (module) {
 923		preempt_disable();
 924
 925		if (likely(module_is_live(module))) {
 926			__this_cpu_inc(module->refptr->incs);
 927			trace_module_get(module, _RET_IP_);
 928		} else
 929			ret = false;
 930
 931		preempt_enable();
 932	}
 933	return ret;
 934}
 935EXPORT_SYMBOL(try_module_get);
 936
 937void module_put(struct module *module)
 938{
 939	if (module) {
 940		preempt_disable();
 941		smp_wmb(); /* see comment in module_refcount */
 942		__this_cpu_inc(module->refptr->decs);
 943
 944		trace_module_put(module, _RET_IP_);
 945		/* Maybe they're waiting for us to drop reference? */
 946		if (unlikely(!module_is_live(module)))
 947			wake_up_process(module->waiter);
 948		preempt_enable();
 949	}
 950}
 951EXPORT_SYMBOL(module_put);
 952
 953#else /* !CONFIG_MODULE_UNLOAD */
 954static inline void print_unload_info(struct seq_file *m, struct module *mod)
 955{
 956	/* We don't know the usage count, or what modules are using. */
 957	seq_printf(m, " - -");
 958}
 959
 960static inline void module_unload_free(struct module *mod)
 961{
 962}
 963
 964int ref_module(struct module *a, struct module *b)
 965{
 966	return strong_try_module_get(b);
 967}
 968EXPORT_SYMBOL_GPL(ref_module);
 969
 970static inline int module_unload_init(struct module *mod)
 971{
 972	return 0;
 973}
 974#endif /* CONFIG_MODULE_UNLOAD */
 975
 976static size_t module_flags_taint(struct module *mod, char *buf)
 977{
 978	size_t l = 0;
 979
 980	if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
 981		buf[l++] = 'P';
 982	if (mod->taints & (1 << TAINT_OOT_MODULE))
 983		buf[l++] = 'O';
 984	if (mod->taints & (1 << TAINT_FORCED_MODULE))
 985		buf[l++] = 'F';
 986	if (mod->taints & (1 << TAINT_CRAP))
 987		buf[l++] = 'C';
 
 
 988	/*
 989	 * TAINT_FORCED_RMMOD: could be added.
 990	 * TAINT_UNSAFE_SMP, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
 991	 * apply to modules.
 992	 */
 993	return l;
 994}
 995
 996static ssize_t show_initstate(struct module_attribute *mattr,
 997			      struct module_kobject *mk, char *buffer)
 998{
 999	const char *state = "unknown";
1000
1001	switch (mk->mod->state) {
1002	case MODULE_STATE_LIVE:
1003		state = "live";
1004		break;
1005	case MODULE_STATE_COMING:
1006		state = "coming";
1007		break;
1008	case MODULE_STATE_GOING:
1009		state = "going";
1010		break;
 
 
1011	}
1012	return sprintf(buffer, "%s\n", state);
1013}
1014
1015static struct module_attribute modinfo_initstate =
1016	__ATTR(initstate, 0444, show_initstate, NULL);
1017
1018static ssize_t store_uevent(struct module_attribute *mattr,
1019			    struct module_kobject *mk,
1020			    const char *buffer, size_t count)
1021{
1022	enum kobject_action action;
1023
1024	if (kobject_action_type(buffer, count, &action) == 0)
1025		kobject_uevent(&mk->kobj, action);
1026	return count;
1027}
1028
1029struct module_attribute module_uevent =
1030	__ATTR(uevent, 0200, NULL, store_uevent);
1031
1032static ssize_t show_coresize(struct module_attribute *mattr,
1033			     struct module_kobject *mk, char *buffer)
1034{
1035	return sprintf(buffer, "%u\n", mk->mod->core_size);
1036}
1037
1038static struct module_attribute modinfo_coresize =
1039	__ATTR(coresize, 0444, show_coresize, NULL);
1040
1041static ssize_t show_initsize(struct module_attribute *mattr,
1042			     struct module_kobject *mk, char *buffer)
1043{
1044	return sprintf(buffer, "%u\n", mk->mod->init_size);
1045}
1046
1047static struct module_attribute modinfo_initsize =
1048	__ATTR(initsize, 0444, show_initsize, NULL);
1049
1050static ssize_t show_taint(struct module_attribute *mattr,
1051			  struct module_kobject *mk, char *buffer)
1052{
1053	size_t l;
1054
1055	l = module_flags_taint(mk->mod, buffer);
1056	buffer[l++] = '\n';
1057	return l;
1058}
1059
1060static struct module_attribute modinfo_taint =
1061	__ATTR(taint, 0444, show_taint, NULL);
1062
1063static struct module_attribute *modinfo_attrs[] = {
1064	&module_uevent,
1065	&modinfo_version,
1066	&modinfo_srcversion,
1067	&modinfo_initstate,
1068	&modinfo_coresize,
1069	&modinfo_initsize,
1070	&modinfo_taint,
1071#ifdef CONFIG_MODULE_UNLOAD
1072	&modinfo_refcnt,
1073#endif
1074	NULL,
1075};
1076
1077static const char vermagic[] = VERMAGIC_STRING;
1078
1079static int try_to_force_load(struct module *mod, const char *reason)
1080{
1081#ifdef CONFIG_MODULE_FORCE_LOAD
1082	if (!test_taint(TAINT_FORCED_MODULE))
1083		printk(KERN_WARNING "%s: %s: kernel tainted.\n",
1084		       mod->name, reason);
1085	add_taint_module(mod, TAINT_FORCED_MODULE);
1086	return 0;
1087#else
1088	return -ENOEXEC;
1089#endif
1090}
1091
1092#ifdef CONFIG_MODVERSIONS
1093/* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1094static unsigned long maybe_relocated(unsigned long crc,
1095				     const struct module *crc_owner)
1096{
1097#ifdef ARCH_RELOCATES_KCRCTAB
1098	if (crc_owner == NULL)
1099		return crc - (unsigned long)reloc_start;
1100#endif
1101	return crc;
1102}
1103
1104static int check_version(Elf_Shdr *sechdrs,
1105			 unsigned int versindex,
1106			 const char *symname,
1107			 struct module *mod, 
1108			 const unsigned long *crc,
1109			 const struct module *crc_owner)
1110{
1111	unsigned int i, num_versions;
1112	struct modversion_info *versions;
1113
1114	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1115	if (!crc)
1116		return 1;
1117
1118	/* No versions at all?  modprobe --force does this. */
1119	if (versindex == 0)
1120		return try_to_force_load(mod, symname) == 0;
1121
1122	versions = (void *) sechdrs[versindex].sh_addr;
1123	num_versions = sechdrs[versindex].sh_size
1124		/ sizeof(struct modversion_info);
1125
1126	for (i = 0; i < num_versions; i++) {
1127		if (strcmp(versions[i].name, symname) != 0)
1128			continue;
1129
1130		if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1131			return 1;
1132		pr_debug("Found checksum %lX vs module %lX\n",
1133		       maybe_relocated(*crc, crc_owner), versions[i].crc);
1134		goto bad_version;
1135	}
1136
1137	printk(KERN_WARNING "%s: no symbol version for %s\n",
1138	       mod->name, symname);
1139	return 0;
1140
1141bad_version:
1142	printk("%s: disagrees about version of symbol %s\n",
1143	       mod->name, symname);
1144	return 0;
1145}
1146
1147static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1148					  unsigned int versindex,
1149					  struct module *mod)
1150{
1151	const unsigned long *crc;
1152
1153	/* Since this should be found in kernel (which can't be removed),
1154	 * no locking is necessary. */
1155	if (!find_symbol(MODULE_SYMBOL_PREFIX "module_layout", NULL,
1156			 &crc, true, false))
1157		BUG();
1158	return check_version(sechdrs, versindex, "module_layout", mod, crc,
 
1159			     NULL);
1160}
1161
1162/* First part is kernel version, which we ignore if module has crcs. */
1163static inline int same_magic(const char *amagic, const char *bmagic,
1164			     bool has_crcs)
1165{
1166	if (has_crcs) {
1167		amagic += strcspn(amagic, " ");
1168		bmagic += strcspn(bmagic, " ");
1169	}
1170	return strcmp(amagic, bmagic) == 0;
1171}
1172#else
1173static inline int check_version(Elf_Shdr *sechdrs,
1174				unsigned int versindex,
1175				const char *symname,
1176				struct module *mod, 
1177				const unsigned long *crc,
1178				const struct module *crc_owner)
1179{
1180	return 1;
1181}
1182
1183static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1184					  unsigned int versindex,
1185					  struct module *mod)
1186{
1187	return 1;
1188}
1189
1190static inline int same_magic(const char *amagic, const char *bmagic,
1191			     bool has_crcs)
1192{
1193	return strcmp(amagic, bmagic) == 0;
1194}
1195#endif /* CONFIG_MODVERSIONS */
1196
1197/* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1198static const struct kernel_symbol *resolve_symbol(struct module *mod,
1199						  const struct load_info *info,
1200						  const char *name,
1201						  char ownername[])
1202{
1203	struct module *owner;
1204	const struct kernel_symbol *sym;
1205	const unsigned long *crc;
1206	int err;
1207
1208	mutex_lock(&module_mutex);
1209	sym = find_symbol(name, &owner, &crc,
1210			  !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1211	if (!sym)
1212		goto unlock;
1213
1214	if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1215			   owner)) {
1216		sym = ERR_PTR(-EINVAL);
1217		goto getname;
1218	}
1219
1220	err = ref_module(mod, owner);
1221	if (err) {
1222		sym = ERR_PTR(err);
1223		goto getname;
1224	}
1225
1226getname:
1227	/* We must make copy under the lock if we failed to get ref. */
1228	strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1229unlock:
1230	mutex_unlock(&module_mutex);
1231	return sym;
1232}
1233
1234static const struct kernel_symbol *
1235resolve_symbol_wait(struct module *mod,
1236		    const struct load_info *info,
1237		    const char *name)
1238{
1239	const struct kernel_symbol *ksym;
1240	char owner[MODULE_NAME_LEN];
1241
1242	if (wait_event_interruptible_timeout(module_wq,
1243			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1244			|| PTR_ERR(ksym) != -EBUSY,
1245					     30 * HZ) <= 0) {
1246		printk(KERN_WARNING "%s: gave up waiting for init of module %s.\n",
1247		       mod->name, owner);
1248	}
1249	return ksym;
1250}
1251
1252/*
1253 * /sys/module/foo/sections stuff
1254 * J. Corbet <corbet@lwn.net>
1255 */
1256#ifdef CONFIG_SYSFS
1257
1258#ifdef CONFIG_KALLSYMS
1259static inline bool sect_empty(const Elf_Shdr *sect)
1260{
1261	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1262}
1263
1264struct module_sect_attr
1265{
1266	struct module_attribute mattr;
1267	char *name;
1268	unsigned long address;
1269};
1270
1271struct module_sect_attrs
1272{
1273	struct attribute_group grp;
1274	unsigned int nsections;
1275	struct module_sect_attr attrs[0];
1276};
1277
1278static ssize_t module_sect_show(struct module_attribute *mattr,
1279				struct module_kobject *mk, char *buf)
1280{
1281	struct module_sect_attr *sattr =
1282		container_of(mattr, struct module_sect_attr, mattr);
1283	return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1284}
1285
1286static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1287{
1288	unsigned int section;
1289
1290	for (section = 0; section < sect_attrs->nsections; section++)
1291		kfree(sect_attrs->attrs[section].name);
1292	kfree(sect_attrs);
1293}
1294
1295static void add_sect_attrs(struct module *mod, const struct load_info *info)
1296{
1297	unsigned int nloaded = 0, i, size[2];
1298	struct module_sect_attrs *sect_attrs;
1299	struct module_sect_attr *sattr;
1300	struct attribute **gattr;
1301
1302	/* Count loaded sections and allocate structures */
1303	for (i = 0; i < info->hdr->e_shnum; i++)
1304		if (!sect_empty(&info->sechdrs[i]))
1305			nloaded++;
1306	size[0] = ALIGN(sizeof(*sect_attrs)
1307			+ nloaded * sizeof(sect_attrs->attrs[0]),
1308			sizeof(sect_attrs->grp.attrs[0]));
1309	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1310	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1311	if (sect_attrs == NULL)
1312		return;
1313
1314	/* Setup section attributes. */
1315	sect_attrs->grp.name = "sections";
1316	sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1317
1318	sect_attrs->nsections = 0;
1319	sattr = &sect_attrs->attrs[0];
1320	gattr = &sect_attrs->grp.attrs[0];
1321	for (i = 0; i < info->hdr->e_shnum; i++) {
1322		Elf_Shdr *sec = &info->sechdrs[i];
1323		if (sect_empty(sec))
1324			continue;
1325		sattr->address = sec->sh_addr;
1326		sattr->name = kstrdup(info->secstrings + sec->sh_name,
1327					GFP_KERNEL);
1328		if (sattr->name == NULL)
1329			goto out;
1330		sect_attrs->nsections++;
1331		sysfs_attr_init(&sattr->mattr.attr);
1332		sattr->mattr.show = module_sect_show;
1333		sattr->mattr.store = NULL;
1334		sattr->mattr.attr.name = sattr->name;
1335		sattr->mattr.attr.mode = S_IRUGO;
1336		*(gattr++) = &(sattr++)->mattr.attr;
1337	}
1338	*gattr = NULL;
1339
1340	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1341		goto out;
1342
1343	mod->sect_attrs = sect_attrs;
1344	return;
1345  out:
1346	free_sect_attrs(sect_attrs);
1347}
1348
1349static void remove_sect_attrs(struct module *mod)
1350{
1351	if (mod->sect_attrs) {
1352		sysfs_remove_group(&mod->mkobj.kobj,
1353				   &mod->sect_attrs->grp);
1354		/* We are positive that no one is using any sect attrs
1355		 * at this point.  Deallocate immediately. */
1356		free_sect_attrs(mod->sect_attrs);
1357		mod->sect_attrs = NULL;
1358	}
1359}
1360
1361/*
1362 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1363 */
1364
1365struct module_notes_attrs {
1366	struct kobject *dir;
1367	unsigned int notes;
1368	struct bin_attribute attrs[0];
1369};
1370
1371static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1372				 struct bin_attribute *bin_attr,
1373				 char *buf, loff_t pos, size_t count)
1374{
1375	/*
1376	 * The caller checked the pos and count against our size.
1377	 */
1378	memcpy(buf, bin_attr->private + pos, count);
1379	return count;
1380}
1381
1382static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1383			     unsigned int i)
1384{
1385	if (notes_attrs->dir) {
1386		while (i-- > 0)
1387			sysfs_remove_bin_file(notes_attrs->dir,
1388					      &notes_attrs->attrs[i]);
1389		kobject_put(notes_attrs->dir);
1390	}
1391	kfree(notes_attrs);
1392}
1393
1394static void add_notes_attrs(struct module *mod, const struct load_info *info)
1395{
1396	unsigned int notes, loaded, i;
1397	struct module_notes_attrs *notes_attrs;
1398	struct bin_attribute *nattr;
1399
1400	/* failed to create section attributes, so can't create notes */
1401	if (!mod->sect_attrs)
1402		return;
1403
1404	/* Count notes sections and allocate structures.  */
1405	notes = 0;
1406	for (i = 0; i < info->hdr->e_shnum; i++)
1407		if (!sect_empty(&info->sechdrs[i]) &&
1408		    (info->sechdrs[i].sh_type == SHT_NOTE))
1409			++notes;
1410
1411	if (notes == 0)
1412		return;
1413
1414	notes_attrs = kzalloc(sizeof(*notes_attrs)
1415			      + notes * sizeof(notes_attrs->attrs[0]),
1416			      GFP_KERNEL);
1417	if (notes_attrs == NULL)
1418		return;
1419
1420	notes_attrs->notes = notes;
1421	nattr = &notes_attrs->attrs[0];
1422	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1423		if (sect_empty(&info->sechdrs[i]))
1424			continue;
1425		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1426			sysfs_bin_attr_init(nattr);
1427			nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1428			nattr->attr.mode = S_IRUGO;
1429			nattr->size = info->sechdrs[i].sh_size;
1430			nattr->private = (void *) info->sechdrs[i].sh_addr;
1431			nattr->read = module_notes_read;
1432			++nattr;
1433		}
1434		++loaded;
1435	}
1436
1437	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1438	if (!notes_attrs->dir)
1439		goto out;
1440
1441	for (i = 0; i < notes; ++i)
1442		if (sysfs_create_bin_file(notes_attrs->dir,
1443					  &notes_attrs->attrs[i]))
1444			goto out;
1445
1446	mod->notes_attrs = notes_attrs;
1447	return;
1448
1449  out:
1450	free_notes_attrs(notes_attrs, i);
1451}
1452
1453static void remove_notes_attrs(struct module *mod)
1454{
1455	if (mod->notes_attrs)
1456		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1457}
1458
1459#else
1460
1461static inline void add_sect_attrs(struct module *mod,
1462				  const struct load_info *info)
1463{
1464}
1465
1466static inline void remove_sect_attrs(struct module *mod)
1467{
1468}
1469
1470static inline void add_notes_attrs(struct module *mod,
1471				   const struct load_info *info)
1472{
1473}
1474
1475static inline void remove_notes_attrs(struct module *mod)
1476{
1477}
1478#endif /* CONFIG_KALLSYMS */
1479
1480static void add_usage_links(struct module *mod)
1481{
1482#ifdef CONFIG_MODULE_UNLOAD
1483	struct module_use *use;
1484	int nowarn;
1485
1486	mutex_lock(&module_mutex);
1487	list_for_each_entry(use, &mod->target_list, target_list) {
1488		nowarn = sysfs_create_link(use->target->holders_dir,
1489					   &mod->mkobj.kobj, mod->name);
1490	}
1491	mutex_unlock(&module_mutex);
1492#endif
1493}
1494
1495static void del_usage_links(struct module *mod)
1496{
1497#ifdef CONFIG_MODULE_UNLOAD
1498	struct module_use *use;
1499
1500	mutex_lock(&module_mutex);
1501	list_for_each_entry(use, &mod->target_list, target_list)
1502		sysfs_remove_link(use->target->holders_dir, mod->name);
1503	mutex_unlock(&module_mutex);
1504#endif
1505}
1506
1507static int module_add_modinfo_attrs(struct module *mod)
1508{
1509	struct module_attribute *attr;
1510	struct module_attribute *temp_attr;
1511	int error = 0;
1512	int i;
1513
1514	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1515					(ARRAY_SIZE(modinfo_attrs) + 1)),
1516					GFP_KERNEL);
1517	if (!mod->modinfo_attrs)
1518		return -ENOMEM;
1519
1520	temp_attr = mod->modinfo_attrs;
1521	for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1522		if (!attr->test ||
1523		    (attr->test && attr->test(mod))) {
1524			memcpy(temp_attr, attr, sizeof(*temp_attr));
1525			sysfs_attr_init(&temp_attr->attr);
1526			error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
1527			++temp_attr;
1528		}
1529	}
1530	return error;
1531}
1532
1533static void module_remove_modinfo_attrs(struct module *mod)
1534{
1535	struct module_attribute *attr;
1536	int i;
1537
1538	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1539		/* pick a field to test for end of list */
1540		if (!attr->attr.name)
1541			break;
1542		sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
1543		if (attr->free)
1544			attr->free(mod);
1545	}
1546	kfree(mod->modinfo_attrs);
1547}
1548
 
 
 
 
 
 
 
 
1549static int mod_sysfs_init(struct module *mod)
1550{
1551	int err;
1552	struct kobject *kobj;
1553
1554	if (!module_sysfs_initialized) {
1555		printk(KERN_ERR "%s: module sysfs not initialized\n",
1556		       mod->name);
1557		err = -EINVAL;
1558		goto out;
1559	}
1560
1561	kobj = kset_find_obj(module_kset, mod->name);
1562	if (kobj) {
1563		printk(KERN_ERR "%s: module is already loaded\n", mod->name);
1564		kobject_put(kobj);
1565		err = -EINVAL;
1566		goto out;
1567	}
1568
1569	mod->mkobj.mod = mod;
1570
1571	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1572	mod->mkobj.kobj.kset = module_kset;
1573	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1574				   "%s", mod->name);
1575	if (err)
1576		kobject_put(&mod->mkobj.kobj);
1577
1578	/* delay uevent until full sysfs population */
1579out:
1580	return err;
1581}
1582
1583static int mod_sysfs_setup(struct module *mod,
1584			   const struct load_info *info,
1585			   struct kernel_param *kparam,
1586			   unsigned int num_params)
1587{
1588	int err;
1589
1590	err = mod_sysfs_init(mod);
1591	if (err)
1592		goto out;
1593
1594	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1595	if (!mod->holders_dir) {
1596		err = -ENOMEM;
1597		goto out_unreg;
1598	}
1599
1600	err = module_param_sysfs_setup(mod, kparam, num_params);
1601	if (err)
1602		goto out_unreg_holders;
1603
1604	err = module_add_modinfo_attrs(mod);
1605	if (err)
1606		goto out_unreg_param;
1607
1608	add_usage_links(mod);
1609	add_sect_attrs(mod, info);
1610	add_notes_attrs(mod, info);
1611
1612	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1613	return 0;
1614
1615out_unreg_param:
1616	module_param_sysfs_remove(mod);
1617out_unreg_holders:
1618	kobject_put(mod->holders_dir);
1619out_unreg:
1620	kobject_put(&mod->mkobj.kobj);
1621out:
1622	return err;
1623}
1624
1625static void mod_sysfs_fini(struct module *mod)
1626{
1627	remove_notes_attrs(mod);
1628	remove_sect_attrs(mod);
1629	kobject_put(&mod->mkobj.kobj);
1630}
1631
1632#else /* !CONFIG_SYSFS */
1633
1634static int mod_sysfs_setup(struct module *mod,
1635			   const struct load_info *info,
1636			   struct kernel_param *kparam,
1637			   unsigned int num_params)
1638{
1639	return 0;
1640}
1641
1642static void mod_sysfs_fini(struct module *mod)
1643{
1644}
1645
1646static void module_remove_modinfo_attrs(struct module *mod)
1647{
1648}
1649
1650static void del_usage_links(struct module *mod)
1651{
1652}
1653
1654#endif /* CONFIG_SYSFS */
1655
1656static void mod_sysfs_teardown(struct module *mod)
1657{
1658	del_usage_links(mod);
1659	module_remove_modinfo_attrs(mod);
1660	module_param_sysfs_remove(mod);
1661	kobject_put(mod->mkobj.drivers_dir);
1662	kobject_put(mod->holders_dir);
1663	mod_sysfs_fini(mod);
1664}
1665
1666/*
1667 * unlink the module with the whole machine is stopped with interrupts off
1668 * - this defends against kallsyms not taking locks
1669 */
1670static int __unlink_module(void *_mod)
1671{
1672	struct module *mod = _mod;
1673	list_del(&mod->list);
1674	module_bug_cleanup(mod);
1675	return 0;
1676}
1677
1678#ifdef CONFIG_DEBUG_SET_MODULE_RONX
1679/*
1680 * LKM RO/NX protection: protect module's text/ro-data
1681 * from modification and any data from execution.
1682 */
1683void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
1684{
1685	unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1686	unsigned long end_pfn = PFN_DOWN((unsigned long)end);
1687
1688	if (end_pfn > begin_pfn)
1689		set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1690}
1691
1692static void set_section_ro_nx(void *base,
1693			unsigned long text_size,
1694			unsigned long ro_size,
1695			unsigned long total_size)
1696{
1697	/* begin and end PFNs of the current subsection */
1698	unsigned long begin_pfn;
1699	unsigned long end_pfn;
1700
1701	/*
1702	 * Set RO for module text and RO-data:
1703	 * - Always protect first page.
1704	 * - Do not protect last partial page.
1705	 */
1706	if (ro_size > 0)
1707		set_page_attributes(base, base + ro_size, set_memory_ro);
1708
1709	/*
1710	 * Set NX permissions for module data:
1711	 * - Do not protect first partial page.
1712	 * - Always protect last page.
1713	 */
1714	if (total_size > text_size) {
1715		begin_pfn = PFN_UP((unsigned long)base + text_size);
1716		end_pfn = PFN_UP((unsigned long)base + total_size);
1717		if (end_pfn > begin_pfn)
1718			set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1719	}
1720}
1721
1722static void unset_module_core_ro_nx(struct module *mod)
1723{
1724	set_page_attributes(mod->module_core + mod->core_text_size,
1725		mod->module_core + mod->core_size,
1726		set_memory_x);
1727	set_page_attributes(mod->module_core,
1728		mod->module_core + mod->core_ro_size,
1729		set_memory_rw);
1730}
1731
1732static void unset_module_init_ro_nx(struct module *mod)
1733{
1734	set_page_attributes(mod->module_init + mod->init_text_size,
1735		mod->module_init + mod->init_size,
1736		set_memory_x);
1737	set_page_attributes(mod->module_init,
1738		mod->module_init + mod->init_ro_size,
1739		set_memory_rw);
1740}
1741
1742/* Iterate through all modules and set each module's text as RW */
1743void set_all_modules_text_rw(void)
1744{
1745	struct module *mod;
1746
1747	mutex_lock(&module_mutex);
1748	list_for_each_entry_rcu(mod, &modules, list) {
 
 
1749		if ((mod->module_core) && (mod->core_text_size)) {
1750			set_page_attributes(mod->module_core,
1751						mod->module_core + mod->core_text_size,
1752						set_memory_rw);
1753		}
1754		if ((mod->module_init) && (mod->init_text_size)) {
1755			set_page_attributes(mod->module_init,
1756						mod->module_init + mod->init_text_size,
1757						set_memory_rw);
1758		}
1759	}
1760	mutex_unlock(&module_mutex);
1761}
1762
1763/* Iterate through all modules and set each module's text as RO */
1764void set_all_modules_text_ro(void)
1765{
1766	struct module *mod;
1767
1768	mutex_lock(&module_mutex);
1769	list_for_each_entry_rcu(mod, &modules, list) {
 
 
1770		if ((mod->module_core) && (mod->core_text_size)) {
1771			set_page_attributes(mod->module_core,
1772						mod->module_core + mod->core_text_size,
1773						set_memory_ro);
1774		}
1775		if ((mod->module_init) && (mod->init_text_size)) {
1776			set_page_attributes(mod->module_init,
1777						mod->module_init + mod->init_text_size,
1778						set_memory_ro);
1779		}
1780	}
1781	mutex_unlock(&module_mutex);
1782}
1783#else
1784static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
1785static void unset_module_core_ro_nx(struct module *mod) { }
1786static void unset_module_init_ro_nx(struct module *mod) { }
1787#endif
1788
1789void __weak module_free(struct module *mod, void *module_region)
1790{
1791	vfree(module_region);
1792}
1793
1794void __weak module_arch_cleanup(struct module *mod)
1795{
1796}
1797
1798/* Free a module, remove from lists, etc. */
1799static void free_module(struct module *mod)
1800{
1801	trace_module_free(mod);
1802
1803	/* Delete from various lists */
1804	mutex_lock(&module_mutex);
1805	stop_machine(__unlink_module, mod, NULL);
1806	mutex_unlock(&module_mutex);
1807	mod_sysfs_teardown(mod);
1808
 
 
 
 
1809	/* Remove dynamic debug info */
1810	ddebug_remove_module(mod->name);
1811
1812	/* Arch-specific cleanup. */
1813	module_arch_cleanup(mod);
1814
1815	/* Module unload stuff */
1816	module_unload_free(mod);
1817
1818	/* Free any allocated parameters. */
1819	destroy_params(mod->kp, mod->num_kp);
1820
 
 
 
 
 
1821	/* This may be NULL, but that's OK */
1822	unset_module_init_ro_nx(mod);
1823	module_free(mod, mod->module_init);
1824	kfree(mod->args);
1825	percpu_modfree(mod);
1826
1827	/* Free lock-classes: */
1828	lockdep_free_key_range(mod->module_core, mod->core_size);
1829
1830	/* Finally, free the core (containing the module structure) */
1831	unset_module_core_ro_nx(mod);
1832	module_free(mod, mod->module_core);
1833
1834#ifdef CONFIG_MPU
1835	update_protections(current->mm);
1836#endif
1837}
1838
1839void *__symbol_get(const char *symbol)
1840{
1841	struct module *owner;
1842	const struct kernel_symbol *sym;
1843
1844	preempt_disable();
1845	sym = find_symbol(symbol, &owner, NULL, true, true);
1846	if (sym && strong_try_module_get(owner))
1847		sym = NULL;
1848	preempt_enable();
1849
1850	return sym ? (void *)sym->value : NULL;
1851}
1852EXPORT_SYMBOL_GPL(__symbol_get);
1853
1854/*
1855 * Ensure that an exported symbol [global namespace] does not already exist
1856 * in the kernel or in some other module's exported symbol table.
1857 *
1858 * You must hold the module_mutex.
1859 */
1860static int verify_export_symbols(struct module *mod)
1861{
1862	unsigned int i;
1863	struct module *owner;
1864	const struct kernel_symbol *s;
1865	struct {
1866		const struct kernel_symbol *sym;
1867		unsigned int num;
1868	} arr[] = {
1869		{ mod->syms, mod->num_syms },
1870		{ mod->gpl_syms, mod->num_gpl_syms },
1871		{ mod->gpl_future_syms, mod->num_gpl_future_syms },
1872#ifdef CONFIG_UNUSED_SYMBOLS
1873		{ mod->unused_syms, mod->num_unused_syms },
1874		{ mod->unused_gpl_syms, mod->num_unused_gpl_syms },
1875#endif
1876	};
1877
1878	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1879		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1880			if (find_symbol(s->name, &owner, NULL, true, false)) {
1881				printk(KERN_ERR
1882				       "%s: exports duplicate symbol %s"
1883				       " (owned by %s)\n",
1884				       mod->name, s->name, module_name(owner));
1885				return -ENOEXEC;
1886			}
1887		}
1888	}
1889	return 0;
1890}
1891
1892/* Change all symbols so that st_value encodes the pointer directly. */
1893static int simplify_symbols(struct module *mod, const struct load_info *info)
1894{
1895	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1896	Elf_Sym *sym = (void *)symsec->sh_addr;
1897	unsigned long secbase;
1898	unsigned int i;
1899	int ret = 0;
1900	const struct kernel_symbol *ksym;
1901
1902	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1903		const char *name = info->strtab + sym[i].st_name;
1904
1905		switch (sym[i].st_shndx) {
1906		case SHN_COMMON:
 
 
 
 
1907			/* We compiled with -fno-common.  These are not
1908			   supposed to happen.  */
1909			pr_debug("Common symbol: %s\n", name);
1910			printk("%s: please compile with -fno-common\n",
1911			       mod->name);
1912			ret = -ENOEXEC;
1913			break;
1914
1915		case SHN_ABS:
1916			/* Don't need to do anything */
1917			pr_debug("Absolute symbol: 0x%08lx\n",
1918			       (long)sym[i].st_value);
1919			break;
1920
1921		case SHN_UNDEF:
1922			ksym = resolve_symbol_wait(mod, info, name);
1923			/* Ok if resolved.  */
1924			if (ksym && !IS_ERR(ksym)) {
1925				sym[i].st_value = ksym->value;
1926				break;
1927			}
1928
1929			/* Ok if weak.  */
1930			if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
1931				break;
1932
1933			printk(KERN_WARNING "%s: Unknown symbol %s (err %li)\n",
1934			       mod->name, name, PTR_ERR(ksym));
1935			ret = PTR_ERR(ksym) ?: -ENOENT;
1936			break;
1937
1938		default:
1939			/* Divert to percpu allocation if a percpu var. */
1940			if (sym[i].st_shndx == info->index.pcpu)
1941				secbase = (unsigned long)mod_percpu(mod);
1942			else
1943				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1944			sym[i].st_value += secbase;
1945			break;
1946		}
1947	}
1948
1949	return ret;
1950}
1951
1952int __weak apply_relocate(Elf_Shdr *sechdrs,
1953			  const char *strtab,
1954			  unsigned int symindex,
1955			  unsigned int relsec,
1956			  struct module *me)
1957{
1958	pr_err("module %s: REL relocation unsupported\n", me->name);
1959	return -ENOEXEC;
1960}
1961
1962int __weak apply_relocate_add(Elf_Shdr *sechdrs,
1963			      const char *strtab,
1964			      unsigned int symindex,
1965			      unsigned int relsec,
1966			      struct module *me)
1967{
1968	pr_err("module %s: RELA relocation unsupported\n", me->name);
1969	return -ENOEXEC;
1970}
1971
1972static int apply_relocations(struct module *mod, const struct load_info *info)
1973{
1974	unsigned int i;
1975	int err = 0;
1976
1977	/* Now do relocations. */
1978	for (i = 1; i < info->hdr->e_shnum; i++) {
1979		unsigned int infosec = info->sechdrs[i].sh_info;
1980
1981		/* Not a valid relocation section? */
1982		if (infosec >= info->hdr->e_shnum)
1983			continue;
1984
1985		/* Don't bother with non-allocated sections */
1986		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1987			continue;
1988
1989		if (info->sechdrs[i].sh_type == SHT_REL)
1990			err = apply_relocate(info->sechdrs, info->strtab,
1991					     info->index.sym, i, mod);
1992		else if (info->sechdrs[i].sh_type == SHT_RELA)
1993			err = apply_relocate_add(info->sechdrs, info->strtab,
1994						 info->index.sym, i, mod);
1995		if (err < 0)
1996			break;
1997	}
1998	return err;
1999}
2000
2001/* Additional bytes needed by arch in front of individual sections */
2002unsigned int __weak arch_mod_section_prepend(struct module *mod,
2003					     unsigned int section)
2004{
2005	/* default implementation just returns zero */
2006	return 0;
2007}
2008
2009/* Update size with this section: return offset. */
2010static long get_offset(struct module *mod, unsigned int *size,
2011		       Elf_Shdr *sechdr, unsigned int section)
2012{
2013	long ret;
2014
2015	*size += arch_mod_section_prepend(mod, section);
2016	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2017	*size = ret + sechdr->sh_size;
2018	return ret;
2019}
2020
2021/* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2022   might -- code, read-only data, read-write data, small data.  Tally
2023   sizes, and place the offsets into sh_entsize fields: high bit means it
2024   belongs in init. */
2025static void layout_sections(struct module *mod, struct load_info *info)
2026{
2027	static unsigned long const masks[][2] = {
2028		/* NOTE: all executable code must be the first section
2029		 * in this array; otherwise modify the text_size
2030		 * finder in the two loops below */
2031		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2032		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2033		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2034		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2035	};
2036	unsigned int m, i;
2037
2038	for (i = 0; i < info->hdr->e_shnum; i++)
2039		info->sechdrs[i].sh_entsize = ~0UL;
2040
2041	pr_debug("Core section allocation order:\n");
2042	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2043		for (i = 0; i < info->hdr->e_shnum; ++i) {
2044			Elf_Shdr *s = &info->sechdrs[i];
2045			const char *sname = info->secstrings + s->sh_name;
2046
2047			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2048			    || (s->sh_flags & masks[m][1])
2049			    || s->sh_entsize != ~0UL
2050			    || strstarts(sname, ".init"))
2051				continue;
2052			s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
2053			pr_debug("\t%s\n", sname);
2054		}
2055		switch (m) {
2056		case 0: /* executable */
2057			mod->core_size = debug_align(mod->core_size);
2058			mod->core_text_size = mod->core_size;
2059			break;
2060		case 1: /* RO: text and ro-data */
2061			mod->core_size = debug_align(mod->core_size);
2062			mod->core_ro_size = mod->core_size;
2063			break;
2064		case 3: /* whole core */
2065			mod->core_size = debug_align(mod->core_size);
2066			break;
2067		}
2068	}
2069
2070	pr_debug("Init section allocation order:\n");
2071	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2072		for (i = 0; i < info->hdr->e_shnum; ++i) {
2073			Elf_Shdr *s = &info->sechdrs[i];
2074			const char *sname = info->secstrings + s->sh_name;
2075
2076			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2077			    || (s->sh_flags & masks[m][1])
2078			    || s->sh_entsize != ~0UL
2079			    || !strstarts(sname, ".init"))
2080				continue;
2081			s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
2082					 | INIT_OFFSET_MASK);
2083			pr_debug("\t%s\n", sname);
2084		}
2085		switch (m) {
2086		case 0: /* executable */
2087			mod->init_size = debug_align(mod->init_size);
2088			mod->init_text_size = mod->init_size;
2089			break;
2090		case 1: /* RO: text and ro-data */
2091			mod->init_size = debug_align(mod->init_size);
2092			mod->init_ro_size = mod->init_size;
2093			break;
2094		case 3: /* whole init */
2095			mod->init_size = debug_align(mod->init_size);
2096			break;
2097		}
2098	}
2099}
2100
2101static void set_license(struct module *mod, const char *license)
2102{
2103	if (!license)
2104		license = "unspecified";
2105
2106	if (!license_is_gpl_compatible(license)) {
2107		if (!test_taint(TAINT_PROPRIETARY_MODULE))
2108			printk(KERN_WARNING "%s: module license '%s' taints "
2109				"kernel.\n", mod->name, license);
2110		add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
 
2111	}
2112}
2113
2114/* Parse tag=value strings from .modinfo section */
2115static char *next_string(char *string, unsigned long *secsize)
2116{
2117	/* Skip non-zero chars */
2118	while (string[0]) {
2119		string++;
2120		if ((*secsize)-- <= 1)
2121			return NULL;
2122	}
2123
2124	/* Skip any zero padding. */
2125	while (!string[0]) {
2126		string++;
2127		if ((*secsize)-- <= 1)
2128			return NULL;
2129	}
2130	return string;
2131}
2132
2133static char *get_modinfo(struct load_info *info, const char *tag)
2134{
2135	char *p;
2136	unsigned int taglen = strlen(tag);
2137	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2138	unsigned long size = infosec->sh_size;
2139
2140	for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2141		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2142			return p + taglen + 1;
2143	}
2144	return NULL;
2145}
2146
2147static void setup_modinfo(struct module *mod, struct load_info *info)
2148{
2149	struct module_attribute *attr;
2150	int i;
2151
2152	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2153		if (attr->setup)
2154			attr->setup(mod, get_modinfo(info, attr->attr.name));
2155	}
2156}
2157
2158static void free_modinfo(struct module *mod)
2159{
2160	struct module_attribute *attr;
2161	int i;
2162
2163	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2164		if (attr->free)
2165			attr->free(mod);
2166	}
2167}
2168
2169#ifdef CONFIG_KALLSYMS
2170
2171/* lookup symbol in given range of kernel_symbols */
2172static const struct kernel_symbol *lookup_symbol(const char *name,
2173	const struct kernel_symbol *start,
2174	const struct kernel_symbol *stop)
2175{
2176	return bsearch(name, start, stop - start,
2177			sizeof(struct kernel_symbol), cmp_name);
2178}
2179
2180static int is_exported(const char *name, unsigned long value,
2181		       const struct module *mod)
2182{
2183	const struct kernel_symbol *ks;
2184	if (!mod)
2185		ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2186	else
2187		ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2188	return ks != NULL && ks->value == value;
2189}
2190
2191/* As per nm */
2192static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2193{
2194	const Elf_Shdr *sechdrs = info->sechdrs;
2195
2196	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2197		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2198			return 'v';
2199		else
2200			return 'w';
2201	}
2202	if (sym->st_shndx == SHN_UNDEF)
2203		return 'U';
2204	if (sym->st_shndx == SHN_ABS)
2205		return 'a';
2206	if (sym->st_shndx >= SHN_LORESERVE)
2207		return '?';
2208	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2209		return 't';
2210	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2211	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2212		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2213			return 'r';
2214		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2215			return 'g';
2216		else
2217			return 'd';
2218	}
2219	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2220		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2221			return 's';
2222		else
2223			return 'b';
2224	}
2225	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2226		      ".debug")) {
2227		return 'n';
2228	}
2229	return '?';
2230}
2231
2232static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2233                           unsigned int shnum)
2234{
2235	const Elf_Shdr *sec;
2236
2237	if (src->st_shndx == SHN_UNDEF
2238	    || src->st_shndx >= shnum
2239	    || !src->st_name)
2240		return false;
2241
2242	sec = sechdrs + src->st_shndx;
2243	if (!(sec->sh_flags & SHF_ALLOC)
2244#ifndef CONFIG_KALLSYMS_ALL
2245	    || !(sec->sh_flags & SHF_EXECINSTR)
2246#endif
2247	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2248		return false;
2249
2250	return true;
2251}
2252
2253/*
2254 * We only allocate and copy the strings needed by the parts of symtab
2255 * we keep.  This is simple, but has the effect of making multiple
2256 * copies of duplicates.  We could be more sophisticated, see
2257 * linux-kernel thread starting with
2258 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2259 */
2260static void layout_symtab(struct module *mod, struct load_info *info)
2261{
2262	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2263	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2264	const Elf_Sym *src;
2265	unsigned int i, nsrc, ndst, strtab_size;
2266
2267	/* Put symbol section at end of init part of module. */
2268	symsect->sh_flags |= SHF_ALLOC;
2269	symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2270					 info->index.sym) | INIT_OFFSET_MASK;
2271	pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2272
2273	src = (void *)info->hdr + symsect->sh_offset;
2274	nsrc = symsect->sh_size / sizeof(*src);
2275
2276	/* Compute total space required for the core symbols' strtab. */
2277	for (ndst = i = strtab_size = 1; i < nsrc; ++i, ++src)
2278		if (is_core_symbol(src, info->sechdrs, info->hdr->e_shnum)) {
2279			strtab_size += strlen(&info->strtab[src->st_name]) + 1;
 
2280			ndst++;
2281		}
 
2282
2283	/* Append room for core symbols at end of core part. */
2284	info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2285	info->stroffs = mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
2286	mod->core_size += strtab_size;
2287
2288	/* Put string table section at end of init part of module. */
2289	strsect->sh_flags |= SHF_ALLOC;
2290	strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2291					 info->index.str) | INIT_OFFSET_MASK;
2292	pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2293}
2294
2295static void add_kallsyms(struct module *mod, const struct load_info *info)
2296{
2297	unsigned int i, ndst;
2298	const Elf_Sym *src;
2299	Elf_Sym *dst;
2300	char *s;
2301	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2302
2303	mod->symtab = (void *)symsec->sh_addr;
2304	mod->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2305	/* Make sure we get permanent strtab: don't use info->strtab. */
2306	mod->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2307
2308	/* Set types up while we still have access to sections. */
2309	for (i = 0; i < mod->num_symtab; i++)
2310		mod->symtab[i].st_info = elf_type(&mod->symtab[i], info);
2311
2312	mod->core_symtab = dst = mod->module_core + info->symoffs;
2313	mod->core_strtab = s = mod->module_core + info->stroffs;
2314	src = mod->symtab;
2315	*dst = *src;
2316	*s++ = 0;
2317	for (ndst = i = 1; i < mod->num_symtab; ++i, ++src) {
2318		if (!is_core_symbol(src, info->sechdrs, info->hdr->e_shnum))
2319			continue;
2320
2321		dst[ndst] = *src;
2322		dst[ndst++].st_name = s - mod->core_strtab;
2323		s += strlcpy(s, &mod->strtab[src->st_name], KSYM_NAME_LEN) + 1;
2324	}
2325	mod->core_num_syms = ndst;
2326}
2327#else
2328static inline void layout_symtab(struct module *mod, struct load_info *info)
2329{
2330}
2331
2332static void add_kallsyms(struct module *mod, const struct load_info *info)
2333{
2334}
2335#endif /* CONFIG_KALLSYMS */
2336
2337static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2338{
2339	if (!debug)
2340		return;
2341#ifdef CONFIG_DYNAMIC_DEBUG
2342	if (ddebug_add_module(debug, num, debug->modname))
2343		printk(KERN_ERR "dynamic debug error adding module: %s\n",
2344					debug->modname);
2345#endif
2346}
2347
2348static void dynamic_debug_remove(struct _ddebug *debug)
2349{
2350	if (debug)
2351		ddebug_remove_module(debug->modname);
2352}
2353
2354void * __weak module_alloc(unsigned long size)
2355{
2356	return size == 0 ? NULL : vmalloc_exec(size);
2357}
2358
2359static void *module_alloc_update_bounds(unsigned long size)
2360{
2361	void *ret = module_alloc(size);
2362
2363	if (ret) {
2364		mutex_lock(&module_mutex);
2365		/* Update module bounds. */
2366		if ((unsigned long)ret < module_addr_min)
2367			module_addr_min = (unsigned long)ret;
2368		if ((unsigned long)ret + size > module_addr_max)
2369			module_addr_max = (unsigned long)ret + size;
2370		mutex_unlock(&module_mutex);
2371	}
2372	return ret;
2373}
2374
2375#ifdef CONFIG_DEBUG_KMEMLEAK
2376static void kmemleak_load_module(const struct module *mod,
2377				 const struct load_info *info)
2378{
2379	unsigned int i;
2380
2381	/* only scan the sections containing data */
2382	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2383
2384	for (i = 1; i < info->hdr->e_shnum; i++) {
2385		const char *name = info->secstrings + info->sechdrs[i].sh_name;
2386		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC))
2387			continue;
2388		if (!strstarts(name, ".data") && !strstarts(name, ".bss"))
2389			continue;
2390
2391		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2392				   info->sechdrs[i].sh_size, GFP_KERNEL);
2393	}
2394}
2395#else
2396static inline void kmemleak_load_module(const struct module *mod,
2397					const struct load_info *info)
2398{
2399}
2400#endif
2401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2402/* Sets info->hdr and info->len. */
2403static int copy_and_check(struct load_info *info,
2404			  const void __user *umod, unsigned long len,
2405			  const char __user *uargs)
2406{
2407	int err;
2408	Elf_Ehdr *hdr;
2409
2410	if (len < sizeof(*hdr))
 
2411		return -ENOEXEC;
2412
 
 
 
 
2413	/* Suck in entire file: we'll want most of it. */
2414	if ((hdr = vmalloc(len)) == NULL)
 
2415		return -ENOMEM;
2416
2417	if (copy_from_user(hdr, umod, len) != 0) {
2418		err = -EFAULT;
2419		goto free_hdr;
2420	}
2421
2422	/* Sanity checks against insmoding binaries or wrong arch,
2423	   weird elf version */
2424	if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0
2425	    || hdr->e_type != ET_REL
2426	    || !elf_check_arch(hdr)
2427	    || hdr->e_shentsize != sizeof(Elf_Shdr)) {
2428		err = -ENOEXEC;
2429		goto free_hdr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2430	}
2431
2432	if (hdr->e_shoff >= len ||
2433	    hdr->e_shnum * sizeof(Elf_Shdr) > len - hdr->e_shoff) {
2434		err = -ENOEXEC;
2435		goto free_hdr;
2436	}
2437
2438	info->hdr = hdr;
2439	info->len = len;
2440	return 0;
 
 
 
 
 
 
 
 
 
 
 
2441
2442free_hdr:
2443	vfree(hdr);
2444	return err;
2445}
2446
2447static void free_copy(struct load_info *info)
2448{
2449	vfree(info->hdr);
2450}
2451
2452static int rewrite_section_headers(struct load_info *info)
2453{
2454	unsigned int i;
2455
2456	/* This should always be true, but let's be sure. */
2457	info->sechdrs[0].sh_addr = 0;
2458
2459	for (i = 1; i < info->hdr->e_shnum; i++) {
2460		Elf_Shdr *shdr = &info->sechdrs[i];
2461		if (shdr->sh_type != SHT_NOBITS
2462		    && info->len < shdr->sh_offset + shdr->sh_size) {
2463			printk(KERN_ERR "Module len %lu truncated\n",
2464			       info->len);
2465			return -ENOEXEC;
2466		}
2467
2468		/* Mark all sections sh_addr with their address in the
2469		   temporary image. */
2470		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2471
2472#ifndef CONFIG_MODULE_UNLOAD
2473		/* Don't load .exit sections */
2474		if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2475			shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2476#endif
2477	}
2478
2479	/* Track but don't keep modinfo and version sections. */
2480	info->index.vers = find_sec(info, "__versions");
 
 
 
2481	info->index.info = find_sec(info, ".modinfo");
2482	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2483	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2484	return 0;
2485}
2486
2487/*
2488 * Set up our basic convenience variables (pointers to section headers,
2489 * search for module section index etc), and do some basic section
2490 * verification.
2491 *
2492 * Return the temporary module pointer (we'll replace it with the final
2493 * one when we move the module sections around).
2494 */
2495static struct module *setup_load_info(struct load_info *info)
2496{
2497	unsigned int i;
2498	int err;
2499	struct module *mod;
2500
2501	/* Set up the convenience variables */
2502	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2503	info->secstrings = (void *)info->hdr
2504		+ info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2505
2506	err = rewrite_section_headers(info);
2507	if (err)
2508		return ERR_PTR(err);
2509
2510	/* Find internal symbols and strings. */
2511	for (i = 1; i < info->hdr->e_shnum; i++) {
2512		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2513			info->index.sym = i;
2514			info->index.str = info->sechdrs[i].sh_link;
2515			info->strtab = (char *)info->hdr
2516				+ info->sechdrs[info->index.str].sh_offset;
2517			break;
2518		}
2519	}
2520
2521	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2522	if (!info->index.mod) {
2523		printk(KERN_WARNING "No module found in object\n");
2524		return ERR_PTR(-ENOEXEC);
2525	}
2526	/* This is temporary: point mod into copy of data. */
2527	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2528
2529	if (info->index.sym == 0) {
2530		printk(KERN_WARNING "%s: module has no symbols (stripped?)\n",
2531		       mod->name);
2532		return ERR_PTR(-ENOEXEC);
2533	}
2534
2535	info->index.pcpu = find_pcpusec(info);
2536
2537	/* Check module struct version now, before we try to use module. */
2538	if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2539		return ERR_PTR(-ENOEXEC);
2540
2541	return mod;
2542}
2543
2544static int check_modinfo(struct module *mod, struct load_info *info)
2545{
2546	const char *modmagic = get_modinfo(info, "vermagic");
2547	int err;
2548
 
 
 
2549	/* This is allowed: modprobe --force will invalidate it. */
2550	if (!modmagic) {
2551		err = try_to_force_load(mod, "bad vermagic");
2552		if (err)
2553			return err;
2554	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2555		printk(KERN_ERR "%s: version magic '%s' should be '%s'\n",
2556		       mod->name, modmagic, vermagic);
2557		return -ENOEXEC;
2558	}
2559
2560	if (!get_modinfo(info, "intree"))
2561		add_taint_module(mod, TAINT_OOT_MODULE);
2562
2563	if (get_modinfo(info, "staging")) {
2564		add_taint_module(mod, TAINT_CRAP);
2565		printk(KERN_WARNING "%s: module is from the staging directory,"
2566		       " the quality is unknown, you have been warned.\n",
2567		       mod->name);
2568	}
2569
2570	/* Set up license info based on the info section */
2571	set_license(mod, get_modinfo(info, "license"));
2572
2573	return 0;
2574}
2575
2576static void find_module_sections(struct module *mod, struct load_info *info)
2577{
2578	mod->kp = section_objs(info, "__param",
2579			       sizeof(*mod->kp), &mod->num_kp);
2580	mod->syms = section_objs(info, "__ksymtab",
2581				 sizeof(*mod->syms), &mod->num_syms);
2582	mod->crcs = section_addr(info, "__kcrctab");
2583	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2584				     sizeof(*mod->gpl_syms),
2585				     &mod->num_gpl_syms);
2586	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2587	mod->gpl_future_syms = section_objs(info,
2588					    "__ksymtab_gpl_future",
2589					    sizeof(*mod->gpl_future_syms),
2590					    &mod->num_gpl_future_syms);
2591	mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2592
2593#ifdef CONFIG_UNUSED_SYMBOLS
2594	mod->unused_syms = section_objs(info, "__ksymtab_unused",
2595					sizeof(*mod->unused_syms),
2596					&mod->num_unused_syms);
2597	mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2598	mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2599					    sizeof(*mod->unused_gpl_syms),
2600					    &mod->num_unused_gpl_syms);
2601	mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2602#endif
2603#ifdef CONFIG_CONSTRUCTORS
2604	mod->ctors = section_objs(info, ".ctors",
2605				  sizeof(*mod->ctors), &mod->num_ctors);
 
 
 
 
 
 
 
 
 
 
 
 
2606#endif
2607
2608#ifdef CONFIG_TRACEPOINTS
2609	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2610					     sizeof(*mod->tracepoints_ptrs),
2611					     &mod->num_tracepoints);
2612#endif
2613#ifdef HAVE_JUMP_LABEL
2614	mod->jump_entries = section_objs(info, "__jump_table",
2615					sizeof(*mod->jump_entries),
2616					&mod->num_jump_entries);
2617#endif
2618#ifdef CONFIG_EVENT_TRACING
2619	mod->trace_events = section_objs(info, "_ftrace_events",
2620					 sizeof(*mod->trace_events),
2621					 &mod->num_trace_events);
2622	/*
2623	 * This section contains pointers to allocated objects in the trace
2624	 * code and not scanning it leads to false positives.
2625	 */
2626	kmemleak_scan_area(mod->trace_events, sizeof(*mod->trace_events) *
2627			   mod->num_trace_events, GFP_KERNEL);
2628#endif
2629#ifdef CONFIG_TRACING
2630	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2631					 sizeof(*mod->trace_bprintk_fmt_start),
2632					 &mod->num_trace_bprintk_fmt);
2633	/*
2634	 * This section contains pointers to allocated objects in the trace
2635	 * code and not scanning it leads to false positives.
2636	 */
2637	kmemleak_scan_area(mod->trace_bprintk_fmt_start,
2638			   sizeof(*mod->trace_bprintk_fmt_start) *
2639			   mod->num_trace_bprintk_fmt, GFP_KERNEL);
2640#endif
2641#ifdef CONFIG_FTRACE_MCOUNT_RECORD
2642	/* sechdrs[0].sh_size is always zero */
2643	mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2644					     sizeof(*mod->ftrace_callsites),
2645					     &mod->num_ftrace_callsites);
2646#endif
2647
2648	mod->extable = section_objs(info, "__ex_table",
2649				    sizeof(*mod->extable), &mod->num_exentries);
2650
2651	if (section_addr(info, "__obsparm"))
2652		printk(KERN_WARNING "%s: Ignoring obsolete parameters\n",
2653		       mod->name);
2654
2655	info->debug = section_objs(info, "__verbose",
2656				   sizeof(*info->debug), &info->num_debug);
 
 
2657}
2658
2659static int move_module(struct module *mod, struct load_info *info)
2660{
2661	int i;
2662	void *ptr;
2663
2664	/* Do the allocs. */
2665	ptr = module_alloc_update_bounds(mod->core_size);
2666	/*
2667	 * The pointer to this block is stored in the module structure
2668	 * which is inside the block. Just mark it as not being a
2669	 * leak.
2670	 */
2671	kmemleak_not_leak(ptr);
2672	if (!ptr)
2673		return -ENOMEM;
2674
2675	memset(ptr, 0, mod->core_size);
2676	mod->module_core = ptr;
2677
2678	ptr = module_alloc_update_bounds(mod->init_size);
2679	/*
2680	 * The pointer to this block is stored in the module structure
2681	 * which is inside the block. This block doesn't need to be
2682	 * scanned as it contains data and code that will be freed
2683	 * after the module is initialized.
2684	 */
2685	kmemleak_ignore(ptr);
2686	if (!ptr && mod->init_size) {
2687		module_free(mod, mod->module_core);
2688		return -ENOMEM;
2689	}
2690	memset(ptr, 0, mod->init_size);
2691	mod->module_init = ptr;
 
 
 
2692
2693	/* Transfer each section which specifies SHF_ALLOC */
2694	pr_debug("final section addresses:\n");
2695	for (i = 0; i < info->hdr->e_shnum; i++) {
2696		void *dest;
2697		Elf_Shdr *shdr = &info->sechdrs[i];
2698
2699		if (!(shdr->sh_flags & SHF_ALLOC))
2700			continue;
2701
2702		if (shdr->sh_entsize & INIT_OFFSET_MASK)
2703			dest = mod->module_init
2704				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2705		else
2706			dest = mod->module_core + shdr->sh_entsize;
2707
2708		if (shdr->sh_type != SHT_NOBITS)
2709			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2710		/* Update sh_addr to point to copy in image. */
2711		shdr->sh_addr = (unsigned long)dest;
2712		pr_debug("\t0x%lx %s\n",
2713			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2714	}
2715
2716	return 0;
2717}
2718
2719static int check_module_license_and_versions(struct module *mod)
2720{
2721	/*
2722	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2723	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2724	 * using GPL-only symbols it needs.
2725	 */
2726	if (strcmp(mod->name, "ndiswrapper") == 0)
2727		add_taint(TAINT_PROPRIETARY_MODULE);
2728
2729	/* driverloader was caught wrongly pretending to be under GPL */
2730	if (strcmp(mod->name, "driverloader") == 0)
2731		add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
 
 
 
 
 
 
2732
2733#ifdef CONFIG_MODVERSIONS
2734	if ((mod->num_syms && !mod->crcs)
2735	    || (mod->num_gpl_syms && !mod->gpl_crcs)
2736	    || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
2737#ifdef CONFIG_UNUSED_SYMBOLS
2738	    || (mod->num_unused_syms && !mod->unused_crcs)
2739	    || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
2740#endif
2741		) {
2742		return try_to_force_load(mod,
2743					 "no versions for exported symbols");
2744	}
2745#endif
2746	return 0;
2747}
2748
2749static void flush_module_icache(const struct module *mod)
2750{
2751	mm_segment_t old_fs;
2752
2753	/* flush the icache in correct context */
2754	old_fs = get_fs();
2755	set_fs(KERNEL_DS);
2756
2757	/*
2758	 * Flush the instruction cache, since we've played with text.
2759	 * Do it before processing of module parameters, so the module
2760	 * can provide parameter accessor functions of its own.
2761	 */
2762	if (mod->module_init)
2763		flush_icache_range((unsigned long)mod->module_init,
2764				   (unsigned long)mod->module_init
2765				   + mod->init_size);
2766	flush_icache_range((unsigned long)mod->module_core,
2767			   (unsigned long)mod->module_core + mod->core_size);
2768
2769	set_fs(old_fs);
2770}
2771
2772int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2773				     Elf_Shdr *sechdrs,
2774				     char *secstrings,
2775				     struct module *mod)
2776{
2777	return 0;
2778}
2779
2780static struct module *layout_and_allocate(struct load_info *info)
2781{
2782	/* Module within temporary copy. */
2783	struct module *mod;
2784	Elf_Shdr *pcpusec;
2785	int err;
2786
2787	mod = setup_load_info(info);
2788	if (IS_ERR(mod))
2789		return mod;
2790
2791	err = check_modinfo(mod, info);
2792	if (err)
2793		return ERR_PTR(err);
2794
2795	/* Allow arches to frob section contents and sizes.  */
2796	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2797					info->secstrings, mod);
2798	if (err < 0)
2799		goto out;
2800
2801	pcpusec = &info->sechdrs[info->index.pcpu];
2802	if (pcpusec->sh_size) {
2803		/* We have a special allocation for this section. */
2804		err = percpu_modalloc(mod,
2805				      pcpusec->sh_size, pcpusec->sh_addralign);
2806		if (err)
2807			goto out;
2808		pcpusec->sh_flags &= ~(unsigned long)SHF_ALLOC;
2809	}
2810
2811	/* Determine total sizes, and put offsets in sh_entsize.  For now
2812	   this is done generically; there doesn't appear to be any
2813	   special cases for the architectures. */
2814	layout_sections(mod, info);
2815	layout_symtab(mod, info);
2816
2817	/* Allocate and move to the final place */
2818	err = move_module(mod, info);
2819	if (err)
2820		goto free_percpu;
2821
2822	/* Module has been copied to its final place now: return it. */
2823	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2824	kmemleak_load_module(mod, info);
2825	return mod;
2826
2827free_percpu:
2828	percpu_modfree(mod);
2829out:
2830	return ERR_PTR(err);
2831}
2832
2833/* mod is no longer valid after this! */
2834static void module_deallocate(struct module *mod, struct load_info *info)
2835{
2836	percpu_modfree(mod);
2837	module_free(mod, mod->module_init);
2838	module_free(mod, mod->module_core);
2839}
2840
2841int __weak module_finalize(const Elf_Ehdr *hdr,
2842			   const Elf_Shdr *sechdrs,
2843			   struct module *me)
2844{
2845	return 0;
2846}
2847
2848static int post_relocation(struct module *mod, const struct load_info *info)
2849{
2850	/* Sort exception table now relocations are done. */
2851	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2852
2853	/* Copy relocated percpu area over. */
2854	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2855		       info->sechdrs[info->index.pcpu].sh_size);
2856
2857	/* Setup kallsyms-specific fields. */
2858	add_kallsyms(mod, info);
2859
2860	/* Arch-specific module finalizing. */
2861	return module_finalize(info->hdr, info->sechdrs, mod);
2862}
2863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2864/* Allocate and load the module: note that size of section 0 is always
2865   zero, and we rely on this for optional sections. */
2866static struct module *load_module(void __user *umod,
2867				  unsigned long len,
2868				  const char __user *uargs)
2869{
2870	struct load_info info = { NULL, };
2871	struct module *mod;
2872	long err;
2873
2874	pr_debug("load_module: umod=%p, len=%lu, uargs=%p\n",
2875	       umod, len, uargs);
 
2876
2877	/* Copy in the blobs from userspace, check they are vaguely sane. */
2878	err = copy_and_check(&info, umod, len, uargs);
2879	if (err)
2880		return ERR_PTR(err);
2881
2882	/* Figure out module layout, and allocate all the memory. */
2883	mod = layout_and_allocate(&info);
2884	if (IS_ERR(mod)) {
2885		err = PTR_ERR(mod);
2886		goto free_copy;
2887	}
2888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2889	/* Now module is in final location, initialize linked lists, etc. */
2890	err = module_unload_init(mod);
2891	if (err)
2892		goto free_module;
2893
2894	/* Now we've got everything in the final locations, we can
2895	 * find optional sections. */
2896	find_module_sections(mod, &info);
 
 
2897
2898	err = check_module_license_and_versions(mod);
2899	if (err)
2900		goto free_unload;
2901
2902	/* Set up MODINFO_ATTR fields */
2903	setup_modinfo(mod, &info);
2904
2905	/* Fix up syms, so that st_value is a pointer to location. */
2906	err = simplify_symbols(mod, &info);
2907	if (err < 0)
2908		goto free_modinfo;
2909
2910	err = apply_relocations(mod, &info);
2911	if (err < 0)
2912		goto free_modinfo;
2913
2914	err = post_relocation(mod, &info);
2915	if (err < 0)
2916		goto free_modinfo;
2917
2918	flush_module_icache(mod);
2919
2920	/* Now copy in args */
2921	mod->args = strndup_user(uargs, ~0UL >> 1);
2922	if (IS_ERR(mod->args)) {
2923		err = PTR_ERR(mod->args);
2924		goto free_arch_cleanup;
2925	}
2926
2927	/* Mark state as coming so strong_try_module_get() ignores us. */
2928	mod->state = MODULE_STATE_COMING;
2929
2930	/* Now sew it into the lists so we can get lockdep and oops
2931	 * info during argument parsing.  No one should access us, since
2932	 * strong_try_module_get() will fail.
2933	 * lockdep/oops can run asynchronous, so use the RCU list insertion
2934	 * function to insert in a way safe to concurrent readers.
2935	 * The mutex protects against concurrent writers.
2936	 */
2937	mutex_lock(&module_mutex);
2938	if (find_module(mod->name)) {
2939		err = -EEXIST;
2940		goto unlock;
2941	}
2942
2943	/* This has to be done once we're sure module name is unique. */
2944	dynamic_debug_setup(info.debug, info.num_debug);
2945
2946	/* Find duplicate symbols */
2947	err = verify_export_symbols(mod);
2948	if (err < 0)
2949		goto ddebug;
2950
2951	module_bug_finalize(info.hdr, info.sechdrs, mod);
2952	list_add_rcu(&mod->list, &modules);
2953	mutex_unlock(&module_mutex);
2954
2955	/* Module is ready to execute: parsing args may do that. */
2956	err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
2957			 -32768, 32767, &ddebug_dyndbg_module_param_cb);
2958	if (err < 0)
2959		goto unlink;
2960
2961	/* Link in to syfs. */
2962	err = mod_sysfs_setup(mod, &info, mod->kp, mod->num_kp);
2963	if (err < 0)
2964		goto unlink;
2965
2966	/* Get rid of temporary copy. */
2967	free_copy(&info);
2968
2969	/* Done! */
2970	trace_module_load(mod);
2971	return mod;
2972
2973 unlink:
 
 
 
2974	mutex_lock(&module_mutex);
2975	/* Unlink carefully: kallsyms could be walking list. */
2976	list_del_rcu(&mod->list);
2977	module_bug_cleanup(mod);
2978
2979 ddebug:
2980	dynamic_debug_remove(info.debug);
2981 unlock:
2982	mutex_unlock(&module_mutex);
 
 
2983	synchronize_sched();
2984	kfree(mod->args);
2985 free_arch_cleanup:
2986	module_arch_cleanup(mod);
2987 free_modinfo:
2988	free_modinfo(mod);
2989 free_unload:
2990	module_unload_free(mod);
 
 
 
 
 
 
2991 free_module:
2992	module_deallocate(mod, &info);
2993 free_copy:
2994	free_copy(&info);
2995	return ERR_PTR(err);
2996}
2997
2998/* Call module constructors. */
2999static void do_mod_ctors(struct module *mod)
3000{
3001#ifdef CONFIG_CONSTRUCTORS
3002	unsigned long i;
3003
3004	for (i = 0; i < mod->num_ctors; i++)
3005		mod->ctors[i]();
3006#endif
3007}
3008
3009/* This is where the real work happens */
3010SYSCALL_DEFINE3(init_module, void __user *, umod,
3011		unsigned long, len, const char __user *, uargs)
3012{
3013	struct module *mod;
3014	int ret = 0;
3015
3016	/* Must have permission */
3017	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3018		return -EPERM;
3019
3020	/* Do all the hard work */
3021	mod = load_module(umod, len, uargs);
3022	if (IS_ERR(mod))
3023		return PTR_ERR(mod);
3024
3025	blocking_notifier_call_chain(&module_notify_list,
3026			MODULE_STATE_COMING, mod);
 
3027
3028	/* Set RO and NX regions for core */
3029	set_section_ro_nx(mod->module_core,
3030				mod->core_text_size,
3031				mod->core_ro_size,
3032				mod->core_size);
3033
3034	/* Set RO and NX regions for init */
3035	set_section_ro_nx(mod->module_init,
3036				mod->init_text_size,
3037				mod->init_ro_size,
3038				mod->init_size);
3039
3040	do_mod_ctors(mod);
3041	/* Start the module */
3042	if (mod->init != NULL)
3043		ret = do_one_initcall(mod->init);
3044	if (ret < 0) {
3045		/* Init routine failed: abort.  Try to protect us from
3046                   buggy refcounters. */
3047		mod->state = MODULE_STATE_GOING;
3048		synchronize_sched();
3049		module_put(mod);
3050		blocking_notifier_call_chain(&module_notify_list,
3051					     MODULE_STATE_GOING, mod);
3052		free_module(mod);
3053		wake_up(&module_wq);
3054		return ret;
3055	}
3056	if (ret > 0) {
3057		printk(KERN_WARNING
3058"%s: '%s'->init suspiciously returned %d, it should follow 0/-E convention\n"
3059"%s: loading module anyway...\n",
3060		       __func__, mod->name, ret,
3061		       __func__);
3062		dump_stack();
3063	}
3064
3065	/* Now it's a first class citizen!  Wake up anyone waiting for it. */
3066	mod->state = MODULE_STATE_LIVE;
3067	wake_up(&module_wq);
3068	blocking_notifier_call_chain(&module_notify_list,
3069				     MODULE_STATE_LIVE, mod);
3070
3071	/* We need to finish all async code before the module init sequence is done */
3072	async_synchronize_full();
 
3073
3074	mutex_lock(&module_mutex);
3075	/* Drop initial reference. */
3076	module_put(mod);
3077	trim_init_extable(mod);
3078#ifdef CONFIG_KALLSYMS
3079	mod->num_symtab = mod->core_num_syms;
3080	mod->symtab = mod->core_symtab;
3081	mod->strtab = mod->core_strtab;
3082#endif
3083	unset_module_init_ro_nx(mod);
3084	module_free(mod, mod->module_init);
3085	mod->module_init = NULL;
3086	mod->init_size = 0;
3087	mod->init_ro_size = 0;
3088	mod->init_text_size = 0;
3089	mutex_unlock(&module_mutex);
3090
3091	return 0;
3092}
3093
3094static inline int within(unsigned long addr, void *start, unsigned long size)
3095{
3096	return ((void *)addr >= start && (void *)addr < start + size);
3097}
3098
3099#ifdef CONFIG_KALLSYMS
3100/*
3101 * This ignores the intensely annoying "mapping symbols" found
3102 * in ARM ELF files: $a, $t and $d.
3103 */
3104static inline int is_arm_mapping_symbol(const char *str)
3105{
3106	return str[0] == '$' && strchr("atd", str[1])
3107	       && (str[2] == '\0' || str[2] == '.');
3108}
3109
3110static const char *get_ksymbol(struct module *mod,
3111			       unsigned long addr,
3112			       unsigned long *size,
3113			       unsigned long *offset)
3114{
3115	unsigned int i, best = 0;
3116	unsigned long nextval;
3117
3118	/* At worse, next value is at end of module */
3119	if (within_module_init(addr, mod))
3120		nextval = (unsigned long)mod->module_init+mod->init_text_size;
3121	else
3122		nextval = (unsigned long)mod->module_core+mod->core_text_size;
3123
3124	/* Scan for closest preceding symbol, and next symbol. (ELF
3125	   starts real symbols at 1). */
3126	for (i = 1; i < mod->num_symtab; i++) {
3127		if (mod->symtab[i].st_shndx == SHN_UNDEF)
3128			continue;
3129
3130		/* We ignore unnamed symbols: they're uninformative
3131		 * and inserted at a whim. */
3132		if (mod->symtab[i].st_value <= addr
3133		    && mod->symtab[i].st_value > mod->symtab[best].st_value
3134		    && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3135		    && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3136			best = i;
3137		if (mod->symtab[i].st_value > addr
3138		    && mod->symtab[i].st_value < nextval
3139		    && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3140		    && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3141			nextval = mod->symtab[i].st_value;
3142	}
3143
3144	if (!best)
3145		return NULL;
3146
3147	if (size)
3148		*size = nextval - mod->symtab[best].st_value;
3149	if (offset)
3150		*offset = addr - mod->symtab[best].st_value;
3151	return mod->strtab + mod->symtab[best].st_name;
3152}
3153
3154/* For kallsyms to ask for address resolution.  NULL means not found.  Careful
3155 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3156const char *module_address_lookup(unsigned long addr,
3157			    unsigned long *size,
3158			    unsigned long *offset,
3159			    char **modname,
3160			    char *namebuf)
3161{
3162	struct module *mod;
3163	const char *ret = NULL;
3164
3165	preempt_disable();
3166	list_for_each_entry_rcu(mod, &modules, list) {
 
 
3167		if (within_module_init(addr, mod) ||
3168		    within_module_core(addr, mod)) {
3169			if (modname)
3170				*modname = mod->name;
3171			ret = get_ksymbol(mod, addr, size, offset);
3172			break;
3173		}
3174	}
3175	/* Make a copy in here where it's safe */
3176	if (ret) {
3177		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3178		ret = namebuf;
3179	}
3180	preempt_enable();
3181	return ret;
3182}
3183
3184int lookup_module_symbol_name(unsigned long addr, char *symname)
3185{
3186	struct module *mod;
3187
3188	preempt_disable();
3189	list_for_each_entry_rcu(mod, &modules, list) {
 
 
3190		if (within_module_init(addr, mod) ||
3191		    within_module_core(addr, mod)) {
3192			const char *sym;
3193
3194			sym = get_ksymbol(mod, addr, NULL, NULL);
3195			if (!sym)
3196				goto out;
3197			strlcpy(symname, sym, KSYM_NAME_LEN);
3198			preempt_enable();
3199			return 0;
3200		}
3201	}
3202out:
3203	preempt_enable();
3204	return -ERANGE;
3205}
3206
3207int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3208			unsigned long *offset, char *modname, char *name)
3209{
3210	struct module *mod;
3211
3212	preempt_disable();
3213	list_for_each_entry_rcu(mod, &modules, list) {
 
 
3214		if (within_module_init(addr, mod) ||
3215		    within_module_core(addr, mod)) {
3216			const char *sym;
3217
3218			sym = get_ksymbol(mod, addr, size, offset);
3219			if (!sym)
3220				goto out;
3221			if (modname)
3222				strlcpy(modname, mod->name, MODULE_NAME_LEN);
3223			if (name)
3224				strlcpy(name, sym, KSYM_NAME_LEN);
3225			preempt_enable();
3226			return 0;
3227		}
3228	}
3229out:
3230	preempt_enable();
3231	return -ERANGE;
3232}
3233
3234int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3235			char *name, char *module_name, int *exported)
3236{
3237	struct module *mod;
3238
3239	preempt_disable();
3240	list_for_each_entry_rcu(mod, &modules, list) {
 
 
3241		if (symnum < mod->num_symtab) {
3242			*value = mod->symtab[symnum].st_value;
3243			*type = mod->symtab[symnum].st_info;
3244			strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
3245				KSYM_NAME_LEN);
3246			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3247			*exported = is_exported(name, *value, mod);
3248			preempt_enable();
3249			return 0;
3250		}
3251		symnum -= mod->num_symtab;
3252	}
3253	preempt_enable();
3254	return -ERANGE;
3255}
3256
3257static unsigned long mod_find_symname(struct module *mod, const char *name)
3258{
3259	unsigned int i;
3260
3261	for (i = 0; i < mod->num_symtab; i++)
3262		if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
3263		    mod->symtab[i].st_info != 'U')
3264			return mod->symtab[i].st_value;
3265	return 0;
3266}
3267
3268/* Look for this name: can be of form module:name. */
3269unsigned long module_kallsyms_lookup_name(const char *name)
3270{
3271	struct module *mod;
3272	char *colon;
3273	unsigned long ret = 0;
3274
3275	/* Don't lock: we're in enough trouble already. */
3276	preempt_disable();
3277	if ((colon = strchr(name, ':')) != NULL) {
3278		*colon = '\0';
3279		if ((mod = find_module(name)) != NULL)
3280			ret = mod_find_symname(mod, colon+1);
3281		*colon = ':';
3282	} else {
3283		list_for_each_entry_rcu(mod, &modules, list)
 
 
3284			if ((ret = mod_find_symname(mod, name)) != 0)
3285				break;
 
3286	}
3287	preempt_enable();
3288	return ret;
3289}
3290
3291int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3292					     struct module *, unsigned long),
3293				   void *data)
3294{
3295	struct module *mod;
3296	unsigned int i;
3297	int ret;
3298
3299	list_for_each_entry(mod, &modules, list) {
 
 
3300		for (i = 0; i < mod->num_symtab; i++) {
3301			ret = fn(data, mod->strtab + mod->symtab[i].st_name,
3302				 mod, mod->symtab[i].st_value);
3303			if (ret != 0)
3304				return ret;
3305		}
3306	}
3307	return 0;
3308}
3309#endif /* CONFIG_KALLSYMS */
3310
3311static char *module_flags(struct module *mod, char *buf)
3312{
3313	int bx = 0;
3314
 
3315	if (mod->taints ||
3316	    mod->state == MODULE_STATE_GOING ||
3317	    mod->state == MODULE_STATE_COMING) {
3318		buf[bx++] = '(';
3319		bx += module_flags_taint(mod, buf + bx);
3320		/* Show a - for module-is-being-unloaded */
3321		if (mod->state == MODULE_STATE_GOING)
3322			buf[bx++] = '-';
3323		/* Show a + for module-is-being-loaded */
3324		if (mod->state == MODULE_STATE_COMING)
3325			buf[bx++] = '+';
3326		buf[bx++] = ')';
3327	}
3328	buf[bx] = '\0';
3329
3330	return buf;
3331}
3332
3333#ifdef CONFIG_PROC_FS
3334/* Called by the /proc file system to return a list of modules. */
3335static void *m_start(struct seq_file *m, loff_t *pos)
3336{
3337	mutex_lock(&module_mutex);
3338	return seq_list_start(&modules, *pos);
3339}
3340
3341static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3342{
3343	return seq_list_next(p, &modules, pos);
3344}
3345
3346static void m_stop(struct seq_file *m, void *p)
3347{
3348	mutex_unlock(&module_mutex);
3349}
3350
3351static int m_show(struct seq_file *m, void *p)
3352{
3353	struct module *mod = list_entry(p, struct module, list);
3354	char buf[8];
3355
 
 
 
 
3356	seq_printf(m, "%s %u",
3357		   mod->name, mod->init_size + mod->core_size);
3358	print_unload_info(m, mod);
3359
3360	/* Informative for users. */
3361	seq_printf(m, " %s",
3362		   mod->state == MODULE_STATE_GOING ? "Unloading":
3363		   mod->state == MODULE_STATE_COMING ? "Loading":
3364		   "Live");
3365	/* Used by oprofile and other similar tools. */
3366	seq_printf(m, " 0x%pK", mod->module_core);
3367
3368	/* Taints info */
3369	if (mod->taints)
3370		seq_printf(m, " %s", module_flags(mod, buf));
3371
3372	seq_printf(m, "\n");
3373	return 0;
3374}
3375
3376/* Format: modulename size refcount deps address
3377
3378   Where refcount is a number or -, and deps is a comma-separated list
3379   of depends or -.
3380*/
3381static const struct seq_operations modules_op = {
3382	.start	= m_start,
3383	.next	= m_next,
3384	.stop	= m_stop,
3385	.show	= m_show
3386};
3387
3388static int modules_open(struct inode *inode, struct file *file)
3389{
3390	return seq_open(file, &modules_op);
3391}
3392
3393static const struct file_operations proc_modules_operations = {
3394	.open		= modules_open,
3395	.read		= seq_read,
3396	.llseek		= seq_lseek,
3397	.release	= seq_release,
3398};
3399
3400static int __init proc_modules_init(void)
3401{
3402	proc_create("modules", 0, NULL, &proc_modules_operations);
3403	return 0;
3404}
3405module_init(proc_modules_init);
3406#endif
3407
3408/* Given an address, look for it in the module exception tables. */
3409const struct exception_table_entry *search_module_extables(unsigned long addr)
3410{
3411	const struct exception_table_entry *e = NULL;
3412	struct module *mod;
3413
3414	preempt_disable();
3415	list_for_each_entry_rcu(mod, &modules, list) {
 
 
3416		if (mod->num_exentries == 0)
3417			continue;
3418
3419		e = search_extable(mod->extable,
3420				   mod->extable + mod->num_exentries - 1,
3421				   addr);
3422		if (e)
3423			break;
3424	}
3425	preempt_enable();
3426
3427	/* Now, if we found one, we are running inside it now, hence
3428	   we cannot unload the module, hence no refcnt needed. */
3429	return e;
3430}
3431
3432/*
3433 * is_module_address - is this address inside a module?
3434 * @addr: the address to check.
3435 *
3436 * See is_module_text_address() if you simply want to see if the address
3437 * is code (not data).
3438 */
3439bool is_module_address(unsigned long addr)
3440{
3441	bool ret;
3442
3443	preempt_disable();
3444	ret = __module_address(addr) != NULL;
3445	preempt_enable();
3446
3447	return ret;
3448}
3449
3450/*
3451 * __module_address - get the module which contains an address.
3452 * @addr: the address.
3453 *
3454 * Must be called with preempt disabled or module mutex held so that
3455 * module doesn't get freed during this.
3456 */
3457struct module *__module_address(unsigned long addr)
3458{
3459	struct module *mod;
3460
3461	if (addr < module_addr_min || addr > module_addr_max)
3462		return NULL;
3463
3464	list_for_each_entry_rcu(mod, &modules, list)
 
 
3465		if (within_module_core(addr, mod)
3466		    || within_module_init(addr, mod))
3467			return mod;
 
3468	return NULL;
3469}
3470EXPORT_SYMBOL_GPL(__module_address);
3471
3472/*
3473 * is_module_text_address - is this address inside module code?
3474 * @addr: the address to check.
3475 *
3476 * See is_module_address() if you simply want to see if the address is
3477 * anywhere in a module.  See kernel_text_address() for testing if an
3478 * address corresponds to kernel or module code.
3479 */
3480bool is_module_text_address(unsigned long addr)
3481{
3482	bool ret;
3483
3484	preempt_disable();
3485	ret = __module_text_address(addr) != NULL;
3486	preempt_enable();
3487
3488	return ret;
3489}
3490
3491/*
3492 * __module_text_address - get the module whose code contains an address.
3493 * @addr: the address.
3494 *
3495 * Must be called with preempt disabled or module mutex held so that
3496 * module doesn't get freed during this.
3497 */
3498struct module *__module_text_address(unsigned long addr)
3499{
3500	struct module *mod = __module_address(addr);
3501	if (mod) {
3502		/* Make sure it's within the text section. */
3503		if (!within(addr, mod->module_init, mod->init_text_size)
3504		    && !within(addr, mod->module_core, mod->core_text_size))
3505			mod = NULL;
3506	}
3507	return mod;
3508}
3509EXPORT_SYMBOL_GPL(__module_text_address);
3510
3511/* Don't grab lock, we're oopsing. */
3512void print_modules(void)
3513{
3514	struct module *mod;
3515	char buf[8];
3516
3517	printk(KERN_DEFAULT "Modules linked in:");
3518	/* Most callers should already have preempt disabled, but make sure */
3519	preempt_disable();
3520	list_for_each_entry_rcu(mod, &modules, list)
3521		printk(" %s%s", mod->name, module_flags(mod, buf));
 
 
 
3522	preempt_enable();
3523	if (last_unloaded_module[0])
3524		printk(" [last unloaded: %s]", last_unloaded_module);
3525	printk("\n");
3526}
3527
3528#ifdef CONFIG_MODVERSIONS
3529/* Generate the signature for all relevant module structures here.
3530 * If these change, we don't want to try to parse the module. */
3531void module_layout(struct module *mod,
3532		   struct modversion_info *ver,
3533		   struct kernel_param *kp,
3534		   struct kernel_symbol *ks,
3535		   struct tracepoint * const *tp)
3536{
3537}
3538EXPORT_SYMBOL(module_layout);
3539#endif