Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/blkdev.h>
  21#include <linux/scatterlist.h>
  22#include <linux/swap.h>
  23#include <linux/radix-tree.h>
  24#include <linux/writeback.h>
  25#include <linux/buffer_head.h>
  26#include <linux/workqueue.h>
  27#include <linux/kthread.h>
  28#include <linux/freezer.h>
 
  29#include <linux/slab.h>
  30#include <linux/migrate.h>
  31#include <linux/ratelimit.h>
  32#include <linux/uuid.h>
  33#include <linux/semaphore.h>
  34#include <asm/unaligned.h>
 
  35#include "ctree.h"
  36#include "disk-io.h"
  37#include "hash.h"
  38#include "transaction.h"
  39#include "btrfs_inode.h"
  40#include "volumes.h"
  41#include "print-tree.h"
  42#include "async-thread.h"
  43#include "locking.h"
  44#include "tree-log.h"
  45#include "free-space-cache.h"
  46#include "inode-map.h"
  47#include "check-integrity.h"
  48#include "rcu-string.h"
  49#include "dev-replace.h"
  50#include "raid56.h"
  51#include "sysfs.h"
  52
  53#ifdef CONFIG_X86
  54#include <asm/cpufeature.h>
  55#endif
  56
  57static struct extent_io_ops btree_extent_io_ops;
  58static void end_workqueue_fn(struct btrfs_work *work);
  59static void free_fs_root(struct btrfs_root *root);
  60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  61				    int read_only);
  62static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  63					     struct btrfs_root *root);
  64static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  65static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  66				      struct btrfs_root *root);
 
  67static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  68static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  69					struct extent_io_tree *dirty_pages,
  70					int mark);
  71static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  72				       struct extent_io_tree *pinned_extents);
  73static int btrfs_cleanup_transaction(struct btrfs_root *root);
  74static void btrfs_error_commit_super(struct btrfs_root *root);
  75
  76/*
  77 * end_io_wq structs are used to do processing in task context when an IO is
  78 * complete.  This is used during reads to verify checksums, and it is used
  79 * by writes to insert metadata for new file extents after IO is complete.
  80 */
  81struct end_io_wq {
  82	struct bio *bio;
  83	bio_end_io_t *end_io;
  84	void *private;
  85	struct btrfs_fs_info *info;
  86	int error;
  87	int metadata;
  88	struct list_head list;
  89	struct btrfs_work work;
  90};
  91
  92/*
  93 * async submit bios are used to offload expensive checksumming
  94 * onto the worker threads.  They checksum file and metadata bios
  95 * just before they are sent down the IO stack.
  96 */
  97struct async_submit_bio {
  98	struct inode *inode;
  99	struct bio *bio;
 100	struct list_head list;
 101	extent_submit_bio_hook_t *submit_bio_start;
 102	extent_submit_bio_hook_t *submit_bio_done;
 103	int rw;
 104	int mirror_num;
 105	unsigned long bio_flags;
 106	/*
 107	 * bio_offset is optional, can be used if the pages in the bio
 108	 * can't tell us where in the file the bio should go
 109	 */
 110	u64 bio_offset;
 111	struct btrfs_work work;
 112	int error;
 113};
 114
 115/*
 116 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 118 * the level the eb occupies in the tree.
 119 *
 120 * Different roots are used for different purposes and may nest inside each
 121 * other and they require separate keysets.  As lockdep keys should be
 122 * static, assign keysets according to the purpose of the root as indicated
 123 * by btrfs_root->objectid.  This ensures that all special purpose roots
 124 * have separate keysets.
 125 *
 126 * Lock-nesting across peer nodes is always done with the immediate parent
 127 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 128 * subclass to avoid triggering lockdep warning in such cases.
 129 *
 130 * The key is set by the readpage_end_io_hook after the buffer has passed
 131 * csum validation but before the pages are unlocked.  It is also set by
 132 * btrfs_init_new_buffer on freshly allocated blocks.
 133 *
 134 * We also add a check to make sure the highest level of the tree is the
 135 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 136 * needs update as well.
 137 */
 138#ifdef CONFIG_DEBUG_LOCK_ALLOC
 139# if BTRFS_MAX_LEVEL != 8
 140#  error
 141# endif
 142
 143static struct btrfs_lockdep_keyset {
 144	u64			id;		/* root objectid */
 145	const char		*name_stem;	/* lock name stem */
 146	char			names[BTRFS_MAX_LEVEL + 1][20];
 147	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
 148} btrfs_lockdep_keysets[] = {
 149	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
 150	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
 151	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
 152	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
 153	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
 154	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
 155	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
 156	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
 157	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
 158	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
 159	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
 160	{ .id = 0,				.name_stem = "tree"	},
 161};
 162
 163void __init btrfs_init_lockdep(void)
 164{
 165	int i, j;
 166
 167	/* initialize lockdep class names */
 168	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 169		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 170
 171		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 172			snprintf(ks->names[j], sizeof(ks->names[j]),
 173				 "btrfs-%s-%02d", ks->name_stem, j);
 174	}
 175}
 176
 177void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 178				    int level)
 179{
 180	struct btrfs_lockdep_keyset *ks;
 181
 182	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 183
 184	/* find the matching keyset, id 0 is the default entry */
 185	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 186		if (ks->id == objectid)
 187			break;
 188
 189	lockdep_set_class_and_name(&eb->lock,
 190				   &ks->keys[level], ks->names[level]);
 191}
 192
 193#endif
 194
 195/*
 196 * extents on the btree inode are pretty simple, there's one extent
 197 * that covers the entire device
 198 */
 199static struct extent_map *btree_get_extent(struct inode *inode,
 200		struct page *page, size_t pg_offset, u64 start, u64 len,
 201		int create)
 202{
 203	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 204	struct extent_map *em;
 205	int ret;
 206
 207	read_lock(&em_tree->lock);
 208	em = lookup_extent_mapping(em_tree, start, len);
 209	if (em) {
 210		em->bdev =
 211			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 212		read_unlock(&em_tree->lock);
 213		goto out;
 214	}
 215	read_unlock(&em_tree->lock);
 216
 217	em = alloc_extent_map();
 218	if (!em) {
 219		em = ERR_PTR(-ENOMEM);
 220		goto out;
 221	}
 222	em->start = 0;
 223	em->len = (u64)-1;
 224	em->block_len = (u64)-1;
 225	em->block_start = 0;
 226	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 227
 228	write_lock(&em_tree->lock);
 229	ret = add_extent_mapping(em_tree, em, 0);
 230	if (ret == -EEXIST) {
 
 
 
 231		free_extent_map(em);
 232		em = lookup_extent_mapping(em_tree, start, len);
 233		if (!em)
 234			em = ERR_PTR(-EIO);
 
 
 
 
 
 235	} else if (ret) {
 236		free_extent_map(em);
 237		em = ERR_PTR(ret);
 238	}
 239	write_unlock(&em_tree->lock);
 240
 
 
 241out:
 242	return em;
 243}
 244
 245u32 btrfs_csum_data(char *data, u32 seed, size_t len)
 246{
 247	return btrfs_crc32c(seed, data, len);
 248}
 249
 250void btrfs_csum_final(u32 crc, char *result)
 251{
 252	put_unaligned_le32(~crc, result);
 253}
 254
 255/*
 256 * compute the csum for a btree block, and either verify it or write it
 257 * into the csum field of the block.
 258 */
 259static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
 260			   int verify)
 261{
 262	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
 263	char *result = NULL;
 264	unsigned long len;
 265	unsigned long cur_len;
 266	unsigned long offset = BTRFS_CSUM_SIZE;
 267	char *kaddr;
 268	unsigned long map_start;
 269	unsigned long map_len;
 270	int err;
 271	u32 crc = ~(u32)0;
 272	unsigned long inline_result;
 273
 274	len = buf->len - offset;
 275	while (len > 0) {
 276		err = map_private_extent_buffer(buf, offset, 32,
 277					&kaddr, &map_start, &map_len);
 278		if (err)
 279			return 1;
 280		cur_len = min(len, map_len - (offset - map_start));
 281		crc = btrfs_csum_data(kaddr + offset - map_start,
 282				      crc, cur_len);
 283		len -= cur_len;
 284		offset += cur_len;
 285	}
 286	if (csum_size > sizeof(inline_result)) {
 287		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
 288		if (!result)
 289			return 1;
 290	} else {
 291		result = (char *)&inline_result;
 292	}
 293
 294	btrfs_csum_final(crc, result);
 295
 296	if (verify) {
 297		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
 298			u32 val;
 299			u32 found = 0;
 300			memcpy(&found, result, csum_size);
 301
 302			read_extent_buffer(buf, &val, 0, csum_size);
 303			printk_ratelimited(KERN_INFO
 304				"BTRFS: %s checksum verify failed on %llu wanted %X found %X "
 305				"level %d\n",
 306				root->fs_info->sb->s_id, buf->start,
 307				val, found, btrfs_header_level(buf));
 
 308			if (result != (char *)&inline_result)
 309				kfree(result);
 310			return 1;
 311		}
 312	} else {
 313		write_extent_buffer(buf, result, 0, csum_size);
 314	}
 315	if (result != (char *)&inline_result)
 316		kfree(result);
 317	return 0;
 318}
 319
 320/*
 321 * we can't consider a given block up to date unless the transid of the
 322 * block matches the transid in the parent node's pointer.  This is how we
 323 * detect blocks that either didn't get written at all or got written
 324 * in the wrong place.
 325 */
 326static int verify_parent_transid(struct extent_io_tree *io_tree,
 327				 struct extent_buffer *eb, u64 parent_transid,
 328				 int atomic)
 329{
 330	struct extent_state *cached_state = NULL;
 331	int ret;
 332	bool need_lock = (current->journal_info ==
 333			  (void *)BTRFS_SEND_TRANS_STUB);
 334
 335	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 336		return 0;
 337
 338	if (atomic)
 339		return -EAGAIN;
 340
 341	if (need_lock) {
 342		btrfs_tree_read_lock(eb);
 343		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
 344	}
 345
 346	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 347			 0, &cached_state);
 348	if (extent_buffer_uptodate(eb) &&
 349	    btrfs_header_generation(eb) == parent_transid) {
 350		ret = 0;
 351		goto out;
 352	}
 353	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
 354		       "found %llu\n",
 355		       eb->start, parent_transid, btrfs_header_generation(eb));
 
 
 356	ret = 1;
 357
 358	/*
 359	 * Things reading via commit roots that don't have normal protection,
 360	 * like send, can have a really old block in cache that may point at a
 361	 * block that has been free'd and re-allocated.  So don't clear uptodate
 362	 * if we find an eb that is under IO (dirty/writeback) because we could
 363	 * end up reading in the stale data and then writing it back out and
 364	 * making everybody very sad.
 365	 */
 366	if (!extent_buffer_under_io(eb))
 367		clear_extent_buffer_uptodate(eb);
 368out:
 369	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 370			     &cached_state, GFP_NOFS);
 371	btrfs_tree_read_unlock_blocking(eb);
 372	return ret;
 373}
 374
 375/*
 376 * Return 0 if the superblock checksum type matches the checksum value of that
 377 * algorithm. Pass the raw disk superblock data.
 378 */
 379static int btrfs_check_super_csum(char *raw_disk_sb)
 380{
 381	struct btrfs_super_block *disk_sb =
 382		(struct btrfs_super_block *)raw_disk_sb;
 383	u16 csum_type = btrfs_super_csum_type(disk_sb);
 384	int ret = 0;
 385
 386	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
 387		u32 crc = ~(u32)0;
 388		const int csum_size = sizeof(crc);
 389		char result[csum_size];
 390
 391		/*
 392		 * The super_block structure does not span the whole
 393		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
 394		 * is filled with zeros and is included in the checkum.
 395		 */
 396		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
 397				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
 398		btrfs_csum_final(crc, result);
 399
 400		if (memcmp(raw_disk_sb, result, csum_size))
 401			ret = 1;
 402
 403		if (ret && btrfs_super_generation(disk_sb) < 10) {
 404			printk(KERN_WARNING
 405				"BTRFS: super block crcs don't match, older mkfs detected\n");
 406			ret = 0;
 407		}
 408	}
 409
 410	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
 411		printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
 412				csum_type);
 413		ret = 1;
 414	}
 415
 416	return ret;
 417}
 418
 419/*
 420 * helper to read a given tree block, doing retries as required when
 421 * the checksums don't match and we have alternate mirrors to try.
 422 */
 423static int btree_read_extent_buffer_pages(struct btrfs_root *root,
 424					  struct extent_buffer *eb,
 425					  u64 start, u64 parent_transid)
 426{
 427	struct extent_io_tree *io_tree;
 428	int failed = 0;
 429	int ret;
 430	int num_copies = 0;
 431	int mirror_num = 0;
 432	int failed_mirror = 0;
 433
 434	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 435	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
 436	while (1) {
 437		ret = read_extent_buffer_pages(io_tree, eb, start,
 438					       WAIT_COMPLETE,
 439					       btree_get_extent, mirror_num);
 440		if (!ret) {
 441			if (!verify_parent_transid(io_tree, eb,
 442						   parent_transid, 0))
 443				break;
 444			else
 445				ret = -EIO;
 446		}
 447
 448		/*
 449		 * This buffer's crc is fine, but its contents are corrupted, so
 450		 * there is no reason to read the other copies, they won't be
 451		 * any less wrong.
 452		 */
 453		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
 454			break;
 455
 456		num_copies = btrfs_num_copies(root->fs_info,
 457					      eb->start, eb->len);
 458		if (num_copies == 1)
 459			break;
 460
 461		if (!failed_mirror) {
 462			failed = 1;
 463			failed_mirror = eb->read_mirror;
 464		}
 465
 466		mirror_num++;
 467		if (mirror_num == failed_mirror)
 468			mirror_num++;
 469
 470		if (mirror_num > num_copies)
 471			break;
 472	}
 473
 474	if (failed && !ret && failed_mirror)
 475		repair_eb_io_failure(root, eb, failed_mirror);
 476
 477	return ret;
 478}
 479
 480/*
 481 * checksum a dirty tree block before IO.  This has extra checks to make sure
 482 * we only fill in the checksum field in the first page of a multi-page block
 483 */
 484
 485static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
 486{
 487	u64 start = page_offset(page);
 
 488	u64 found_start;
 489	struct extent_buffer *eb;
 490
 
 
 491	eb = (struct extent_buffer *)page->private;
 492	if (page != eb->pages[0])
 493		return 0;
 494	found_start = btrfs_header_bytenr(eb);
 495	if (WARN_ON(found_start != start || !PageUptodate(page)))
 
 
 
 
 
 
 
 
 
 496		return 0;
 
 497	csum_tree_block(root, eb, 0);
 498	return 0;
 499}
 500
 501static int check_tree_block_fsid(struct btrfs_root *root,
 502				 struct extent_buffer *eb)
 503{
 504	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
 505	u8 fsid[BTRFS_UUID_SIZE];
 506	int ret = 1;
 507
 508	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
 
 509	while (fs_devices) {
 510		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
 511			ret = 0;
 512			break;
 513		}
 514		fs_devices = fs_devices->seed;
 515	}
 516	return ret;
 517}
 518
 519#define CORRUPT(reason, eb, root, slot)				\
 520	btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"	\
 521		   "root=%llu, slot=%d", reason,			\
 522	       btrfs_header_bytenr(eb),	root->objectid, slot)
 
 523
 524static noinline int check_leaf(struct btrfs_root *root,
 525			       struct extent_buffer *leaf)
 526{
 527	struct btrfs_key key;
 528	struct btrfs_key leaf_key;
 529	u32 nritems = btrfs_header_nritems(leaf);
 530	int slot;
 531
 532	if (nritems == 0)
 533		return 0;
 534
 535	/* Check the 0 item */
 536	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
 537	    BTRFS_LEAF_DATA_SIZE(root)) {
 538		CORRUPT("invalid item offset size pair", leaf, root, 0);
 539		return -EIO;
 540	}
 541
 542	/*
 543	 * Check to make sure each items keys are in the correct order and their
 544	 * offsets make sense.  We only have to loop through nritems-1 because
 545	 * we check the current slot against the next slot, which verifies the
 546	 * next slot's offset+size makes sense and that the current's slot
 547	 * offset is correct.
 548	 */
 549	for (slot = 0; slot < nritems - 1; slot++) {
 550		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
 551		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
 552
 553		/* Make sure the keys are in the right order */
 554		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
 555			CORRUPT("bad key order", leaf, root, slot);
 556			return -EIO;
 557		}
 558
 559		/*
 560		 * Make sure the offset and ends are right, remember that the
 561		 * item data starts at the end of the leaf and grows towards the
 562		 * front.
 563		 */
 564		if (btrfs_item_offset_nr(leaf, slot) !=
 565			btrfs_item_end_nr(leaf, slot + 1)) {
 566			CORRUPT("slot offset bad", leaf, root, slot);
 567			return -EIO;
 568		}
 569
 570		/*
 571		 * Check to make sure that we don't point outside of the leaf,
 572		 * just incase all the items are consistent to eachother, but
 573		 * all point outside of the leaf.
 574		 */
 575		if (btrfs_item_end_nr(leaf, slot) >
 576		    BTRFS_LEAF_DATA_SIZE(root)) {
 577			CORRUPT("slot end outside of leaf", leaf, root, slot);
 578			return -EIO;
 579		}
 580	}
 581
 582	return 0;
 583}
 584
 585static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
 586				      u64 phy_offset, struct page *page,
 587				      u64 start, u64 end, int mirror)
 588{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 589	u64 found_start;
 590	int found_level;
 591	struct extent_buffer *eb;
 592	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 593	int ret = 0;
 594	int reads_done;
 595
 596	if (!page->private)
 597		goto out;
 598
 
 599	eb = (struct extent_buffer *)page->private;
 600
 601	/* the pending IO might have been the only thing that kept this buffer
 602	 * in memory.  Make sure we have a ref for all this other checks
 603	 */
 604	extent_buffer_get(eb);
 605
 606	reads_done = atomic_dec_and_test(&eb->io_pages);
 607	if (!reads_done)
 608		goto err;
 609
 610	eb->read_mirror = mirror;
 611	if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
 612		ret = -EIO;
 613		goto err;
 614	}
 615
 616	found_start = btrfs_header_bytenr(eb);
 617	if (found_start != eb->start) {
 618		printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
 619			       "%llu %llu\n",
 620			       found_start, eb->start);
 
 621		ret = -EIO;
 622		goto err;
 623	}
 624	if (check_tree_block_fsid(root, eb)) {
 625		printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
 626			       eb->start);
 627		ret = -EIO;
 628		goto err;
 629	}
 630	found_level = btrfs_header_level(eb);
 631	if (found_level >= BTRFS_MAX_LEVEL) {
 632		btrfs_info(root->fs_info, "bad tree block level %d",
 633			   (int)btrfs_header_level(eb));
 634		ret = -EIO;
 635		goto err;
 636	}
 637
 638	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 639				       eb, found_level);
 640
 641	ret = csum_tree_block(root, eb, 1);
 642	if (ret) {
 643		ret = -EIO;
 644		goto err;
 645	}
 646
 647	/*
 648	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 649	 * that we don't try and read the other copies of this block, just
 650	 * return -EIO.
 651	 */
 652	if (found_level == 0 && check_leaf(root, eb)) {
 653		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 654		ret = -EIO;
 655	}
 656
 657	if (!ret)
 658		set_extent_buffer_uptodate(eb);
 659err:
 660	if (reads_done &&
 661	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 662		btree_readahead_hook(root, eb, eb->start, ret);
 
 663
 664	if (ret) {
 665		/*
 666		 * our io error hook is going to dec the io pages
 667		 * again, we have to make sure it has something
 668		 * to decrement
 669		 */
 670		atomic_inc(&eb->io_pages);
 671		clear_extent_buffer_uptodate(eb);
 672	}
 673	free_extent_buffer(eb);
 674out:
 675	return ret;
 676}
 677
 678static int btree_io_failed_hook(struct page *page, int failed_mirror)
 679{
 680	struct extent_buffer *eb;
 681	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 682
 683	eb = (struct extent_buffer *)page->private;
 684	set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
 685	eb->read_mirror = failed_mirror;
 686	atomic_dec(&eb->io_pages);
 687	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 688		btree_readahead_hook(root, eb, eb->start, -EIO);
 689	return -EIO;	/* we fixed nothing */
 690}
 691
 692static void end_workqueue_bio(struct bio *bio, int err)
 693{
 694	struct end_io_wq *end_io_wq = bio->bi_private;
 695	struct btrfs_fs_info *fs_info;
 696
 697	fs_info = end_io_wq->info;
 698	end_io_wq->error = err;
 699	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
 
 700
 701	if (bio->bi_rw & REQ_WRITE) {
 702		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
 703			btrfs_queue_work(fs_info->endio_meta_write_workers,
 704					 &end_io_wq->work);
 705		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
 706			btrfs_queue_work(fs_info->endio_freespace_worker,
 707					 &end_io_wq->work);
 708		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
 709			btrfs_queue_work(fs_info->endio_raid56_workers,
 710					 &end_io_wq->work);
 711		else
 712			btrfs_queue_work(fs_info->endio_write_workers,
 713					 &end_io_wq->work);
 714	} else {
 715		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
 716			btrfs_queue_work(fs_info->endio_raid56_workers,
 717					 &end_io_wq->work);
 718		else if (end_io_wq->metadata)
 719			btrfs_queue_work(fs_info->endio_meta_workers,
 720					 &end_io_wq->work);
 721		else
 722			btrfs_queue_work(fs_info->endio_workers,
 723					 &end_io_wq->work);
 724	}
 725}
 726
 727/*
 728 * For the metadata arg you want
 729 *
 730 * 0 - if data
 731 * 1 - if normal metadta
 732 * 2 - if writing to the free space cache area
 733 * 3 - raid parity work
 734 */
 735int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 736			int metadata)
 737{
 738	struct end_io_wq *end_io_wq;
 739	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
 740	if (!end_io_wq)
 741		return -ENOMEM;
 742
 743	end_io_wq->private = bio->bi_private;
 744	end_io_wq->end_io = bio->bi_end_io;
 745	end_io_wq->info = info;
 746	end_io_wq->error = 0;
 747	end_io_wq->bio = bio;
 748	end_io_wq->metadata = metadata;
 749
 750	bio->bi_private = end_io_wq;
 751	bio->bi_end_io = end_workqueue_bio;
 752	return 0;
 753}
 754
 755unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
 756{
 757	unsigned long limit = min_t(unsigned long,
 758				    info->thread_pool_size,
 759				    info->fs_devices->open_devices);
 760	return 256 * limit;
 761}
 762
 763static void run_one_async_start(struct btrfs_work *work)
 764{
 765	struct async_submit_bio *async;
 766	int ret;
 767
 768	async = container_of(work, struct  async_submit_bio, work);
 769	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
 770				      async->mirror_num, async->bio_flags,
 771				      async->bio_offset);
 772	if (ret)
 773		async->error = ret;
 774}
 775
 776static void run_one_async_done(struct btrfs_work *work)
 777{
 778	struct btrfs_fs_info *fs_info;
 779	struct async_submit_bio *async;
 780	int limit;
 781
 782	async = container_of(work, struct  async_submit_bio, work);
 783	fs_info = BTRFS_I(async->inode)->root->fs_info;
 784
 785	limit = btrfs_async_submit_limit(fs_info);
 786	limit = limit * 2 / 3;
 787
 788	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
 
 
 789	    waitqueue_active(&fs_info->async_submit_wait))
 790		wake_up(&fs_info->async_submit_wait);
 791
 792	/* If an error occured we just want to clean up the bio and move on */
 793	if (async->error) {
 794		bio_endio(async->bio, async->error);
 795		return;
 796	}
 797
 798	async->submit_bio_done(async->inode, async->rw, async->bio,
 799			       async->mirror_num, async->bio_flags,
 800			       async->bio_offset);
 801}
 802
 803static void run_one_async_free(struct btrfs_work *work)
 804{
 805	struct async_submit_bio *async;
 806
 807	async = container_of(work, struct  async_submit_bio, work);
 808	kfree(async);
 809}
 810
 811int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
 812			int rw, struct bio *bio, int mirror_num,
 813			unsigned long bio_flags,
 814			u64 bio_offset,
 815			extent_submit_bio_hook_t *submit_bio_start,
 816			extent_submit_bio_hook_t *submit_bio_done)
 817{
 818	struct async_submit_bio *async;
 819
 820	async = kmalloc(sizeof(*async), GFP_NOFS);
 821	if (!async)
 822		return -ENOMEM;
 823
 824	async->inode = inode;
 825	async->rw = rw;
 826	async->bio = bio;
 827	async->mirror_num = mirror_num;
 828	async->submit_bio_start = submit_bio_start;
 829	async->submit_bio_done = submit_bio_done;
 830
 831	btrfs_init_work(&async->work, run_one_async_start,
 832			run_one_async_done, run_one_async_free);
 
 833
 
 834	async->bio_flags = bio_flags;
 835	async->bio_offset = bio_offset;
 836
 837	async->error = 0;
 838
 839	atomic_inc(&fs_info->nr_async_submits);
 840
 841	if (rw & REQ_SYNC)
 842		btrfs_set_work_high_priority(&async->work);
 843
 844	btrfs_queue_work(fs_info->workers, &async->work);
 845
 846	while (atomic_read(&fs_info->async_submit_draining) &&
 847	      atomic_read(&fs_info->nr_async_submits)) {
 848		wait_event(fs_info->async_submit_wait,
 849			   (atomic_read(&fs_info->nr_async_submits) == 0));
 850	}
 851
 852	return 0;
 853}
 854
 855static int btree_csum_one_bio(struct bio *bio)
 856{
 857	struct bio_vec *bvec;
 
 858	struct btrfs_root *root;
 859	int i, ret = 0;
 860
 861	bio_for_each_segment_all(bvec, bio, i) {
 
 862		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 863		ret = csum_dirty_buffer(root, bvec->bv_page);
 864		if (ret)
 865			break;
 
 
 866	}
 867
 868	return ret;
 869}
 870
 871static int __btree_submit_bio_start(struct inode *inode, int rw,
 872				    struct bio *bio, int mirror_num,
 873				    unsigned long bio_flags,
 874				    u64 bio_offset)
 875{
 876	/*
 877	 * when we're called for a write, we're already in the async
 878	 * submission context.  Just jump into btrfs_map_bio
 879	 */
 880	return btree_csum_one_bio(bio);
 881}
 882
 883static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
 884				 int mirror_num, unsigned long bio_flags,
 885				 u64 bio_offset)
 886{
 887	int ret;
 888
 889	/*
 890	 * when we're called for a write, we're already in the async
 891	 * submission context.  Just jump into btrfs_map_bio
 892	 */
 893	ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
 894	if (ret)
 895		bio_endio(bio, ret);
 896	return ret;
 897}
 898
 899static int check_async_write(struct inode *inode, unsigned long bio_flags)
 900{
 901	if (bio_flags & EXTENT_BIO_TREE_LOG)
 902		return 0;
 903#ifdef CONFIG_X86
 904	if (cpu_has_xmm4_2)
 905		return 0;
 906#endif
 907	return 1;
 908}
 909
 910static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
 911				 int mirror_num, unsigned long bio_flags,
 912				 u64 bio_offset)
 913{
 914	int async = check_async_write(inode, bio_flags);
 915	int ret;
 916
 917	if (!(rw & REQ_WRITE)) {
 
 918		/*
 919		 * called for a read, do the setup so that checksum validation
 920		 * can happen in the async kernel threads
 921		 */
 922		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
 923					  bio, 1);
 924		if (ret)
 925			goto out_w_error;
 926		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
 927				    mirror_num, 0);
 928	} else if (!async) {
 929		ret = btree_csum_one_bio(bio);
 930		if (ret)
 931			goto out_w_error;
 932		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
 933				    mirror_num, 0);
 934	} else {
 935		/*
 936		 * kthread helpers are used to submit writes so that
 937		 * checksumming can happen in parallel across all CPUs
 938		 */
 939		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
 940					  inode, rw, bio, mirror_num, 0,
 941					  bio_offset,
 942					  __btree_submit_bio_start,
 943					  __btree_submit_bio_done);
 944	}
 945
 946	if (ret) {
 947out_w_error:
 948		bio_endio(bio, ret);
 949	}
 950	return ret;
 
 
 
 
 951}
 952
 953#ifdef CONFIG_MIGRATION
 954static int btree_migratepage(struct address_space *mapping,
 955			struct page *newpage, struct page *page,
 956			enum migrate_mode mode)
 957{
 958	/*
 959	 * we can't safely write a btree page from here,
 960	 * we haven't done the locking hook
 961	 */
 962	if (PageDirty(page))
 963		return -EAGAIN;
 964	/*
 965	 * Buffers may be managed in a filesystem specific way.
 966	 * We must have no buffers or drop them.
 967	 */
 968	if (page_has_private(page) &&
 969	    !try_to_release_page(page, GFP_KERNEL))
 970		return -EAGAIN;
 971	return migrate_page(mapping, newpage, page, mode);
 972}
 973#endif
 974
 975
 976static int btree_writepages(struct address_space *mapping,
 977			    struct writeback_control *wbc)
 978{
 979	struct btrfs_fs_info *fs_info;
 980	int ret;
 981
 982	if (wbc->sync_mode == WB_SYNC_NONE) {
 
 
 
 983
 984		if (wbc->for_kupdate)
 985			return 0;
 986
 987		fs_info = BTRFS_I(mapping->host)->root->fs_info;
 988		/* this is a bit racy, but that's ok */
 989		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 990					     BTRFS_DIRTY_METADATA_THRESH);
 991		if (ret < 0)
 992			return 0;
 993	}
 994	return btree_write_cache_pages(mapping, wbc);
 995}
 996
 997static int btree_readpage(struct file *file, struct page *page)
 998{
 999	struct extent_io_tree *tree;
1000	tree = &BTRFS_I(page->mapping->host)->io_tree;
1001	return extent_read_full_page(tree, page, btree_get_extent, 0);
1002}
1003
1004static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1005{
1006	if (PageWriteback(page) || PageDirty(page))
1007		return 0;
 
 
 
 
 
 
1008
1009	return try_release_extent_buffer(page);
1010}
1011
1012static void btree_invalidatepage(struct page *page, unsigned int offset,
1013				 unsigned int length)
1014{
1015	struct extent_io_tree *tree;
1016	tree = &BTRFS_I(page->mapping->host)->io_tree;
1017	extent_invalidatepage(tree, page, offset);
1018	btree_releasepage(page, GFP_NOFS);
1019	if (PagePrivate(page)) {
1020		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1021			   "page private not zero on page %llu",
1022			   (unsigned long long)page_offset(page));
1023		ClearPagePrivate(page);
1024		set_page_private(page, 0);
1025		page_cache_release(page);
1026	}
1027}
1028
1029static int btree_set_page_dirty(struct page *page)
1030{
1031#ifdef DEBUG
1032	struct extent_buffer *eb;
1033
1034	BUG_ON(!PagePrivate(page));
1035	eb = (struct extent_buffer *)page->private;
1036	BUG_ON(!eb);
1037	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1038	BUG_ON(!atomic_read(&eb->refs));
1039	btrfs_assert_tree_locked(eb);
1040#endif
1041	return __set_page_dirty_nobuffers(page);
1042}
1043
1044static const struct address_space_operations btree_aops = {
1045	.readpage	= btree_readpage,
1046	.writepages	= btree_writepages,
1047	.releasepage	= btree_releasepage,
1048	.invalidatepage = btree_invalidatepage,
1049#ifdef CONFIG_MIGRATION
1050	.migratepage	= btree_migratepage,
1051#endif
1052	.set_page_dirty = btree_set_page_dirty,
1053};
1054
1055int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1056			 u64 parent_transid)
1057{
1058	struct extent_buffer *buf = NULL;
1059	struct inode *btree_inode = root->fs_info->btree_inode;
1060	int ret = 0;
1061
1062	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1063	if (!buf)
1064		return 0;
1065	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1066				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1067	free_extent_buffer(buf);
1068	return ret;
1069}
1070
1071int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1072			 int mirror_num, struct extent_buffer **eb)
1073{
1074	struct extent_buffer *buf = NULL;
1075	struct inode *btree_inode = root->fs_info->btree_inode;
1076	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1077	int ret;
1078
1079	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1080	if (!buf)
1081		return 0;
1082
1083	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1084
1085	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1086				       btree_get_extent, mirror_num);
1087	if (ret) {
1088		free_extent_buffer(buf);
1089		return ret;
1090	}
1091
1092	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1093		free_extent_buffer(buf);
1094		return -EIO;
1095	} else if (extent_buffer_uptodate(buf)) {
1096		*eb = buf;
1097	} else {
1098		free_extent_buffer(buf);
1099	}
1100	return 0;
1101}
1102
1103struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1104					    u64 bytenr, u32 blocksize)
1105{
1106	return find_extent_buffer(root->fs_info, bytenr);
 
 
 
 
1107}
1108
1109struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1110						 u64 bytenr, u32 blocksize)
1111{
1112	return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
 
 
 
 
 
1113}
1114
1115
1116int btrfs_write_tree_block(struct extent_buffer *buf)
1117{
1118	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1119					buf->start + buf->len - 1);
1120}
1121
1122int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1123{
1124	return filemap_fdatawait_range(buf->pages[0]->mapping,
1125				       buf->start, buf->start + buf->len - 1);
1126}
1127
1128struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1129				      u32 blocksize, u64 parent_transid)
1130{
1131	struct extent_buffer *buf = NULL;
1132	int ret;
1133
1134	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1135	if (!buf)
1136		return NULL;
1137
1138	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1139	if (ret) {
1140		free_extent_buffer(buf);
1141		return NULL;
1142	}
1143	return buf;
1144
1145}
1146
1147void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1148		      struct extent_buffer *buf)
1149{
1150	struct btrfs_fs_info *fs_info = root->fs_info;
1151
1152	if (btrfs_header_generation(buf) ==
1153	    fs_info->running_transaction->transid) {
1154		btrfs_assert_tree_locked(buf);
1155
1156		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1157			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1158					     -buf->len,
1159					     fs_info->dirty_metadata_batch);
1160			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1161			btrfs_set_lock_blocking(buf);
1162			clear_extent_buffer_dirty(buf);
 
 
 
 
 
 
1163		}
1164	}
1165}
1166
1167static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1168{
1169	struct btrfs_subvolume_writers *writers;
1170	int ret;
1171
1172	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1173	if (!writers)
1174		return ERR_PTR(-ENOMEM);
1175
1176	ret = percpu_counter_init(&writers->counter, 0);
1177	if (ret < 0) {
1178		kfree(writers);
1179		return ERR_PTR(ret);
1180	}
1181
1182	init_waitqueue_head(&writers->wait);
1183	return writers;
1184}
1185
1186static void
1187btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1188{
1189	percpu_counter_destroy(&writers->counter);
1190	kfree(writers);
1191}
1192
1193static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1194			 u32 stripesize, struct btrfs_root *root,
1195			 struct btrfs_fs_info *fs_info,
1196			 u64 objectid)
1197{
1198	root->node = NULL;
1199	root->commit_root = NULL;
1200	root->sectorsize = sectorsize;
1201	root->nodesize = nodesize;
1202	root->leafsize = leafsize;
1203	root->stripesize = stripesize;
1204	root->ref_cows = 0;
1205	root->track_dirty = 0;
1206	root->in_radix = 0;
1207	root->orphan_item_inserted = 0;
1208	root->orphan_cleanup_state = 0;
1209
1210	root->objectid = objectid;
1211	root->last_trans = 0;
1212	root->highest_objectid = 0;
1213	root->nr_delalloc_inodes = 0;
1214	root->nr_ordered_extents = 0;
1215	root->name = NULL;
1216	root->inode_tree = RB_ROOT;
1217	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1218	root->block_rsv = NULL;
1219	root->orphan_block_rsv = NULL;
1220
1221	INIT_LIST_HEAD(&root->dirty_list);
1222	INIT_LIST_HEAD(&root->root_list);
1223	INIT_LIST_HEAD(&root->delalloc_inodes);
1224	INIT_LIST_HEAD(&root->delalloc_root);
1225	INIT_LIST_HEAD(&root->ordered_extents);
1226	INIT_LIST_HEAD(&root->ordered_root);
1227	INIT_LIST_HEAD(&root->logged_list[0]);
1228	INIT_LIST_HEAD(&root->logged_list[1]);
1229	spin_lock_init(&root->orphan_lock);
1230	spin_lock_init(&root->inode_lock);
1231	spin_lock_init(&root->delalloc_lock);
1232	spin_lock_init(&root->ordered_extent_lock);
1233	spin_lock_init(&root->accounting_lock);
1234	spin_lock_init(&root->log_extents_lock[0]);
1235	spin_lock_init(&root->log_extents_lock[1]);
1236	mutex_init(&root->objectid_mutex);
1237	mutex_init(&root->log_mutex);
1238	mutex_init(&root->ordered_extent_mutex);
1239	mutex_init(&root->delalloc_mutex);
1240	init_waitqueue_head(&root->log_writer_wait);
1241	init_waitqueue_head(&root->log_commit_wait[0]);
1242	init_waitqueue_head(&root->log_commit_wait[1]);
1243	INIT_LIST_HEAD(&root->log_ctxs[0]);
1244	INIT_LIST_HEAD(&root->log_ctxs[1]);
1245	atomic_set(&root->log_commit[0], 0);
1246	atomic_set(&root->log_commit[1], 0);
1247	atomic_set(&root->log_writers, 0);
1248	atomic_set(&root->log_batch, 0);
1249	atomic_set(&root->orphan_inodes, 0);
1250	atomic_set(&root->refs, 1);
1251	atomic_set(&root->will_be_snapshoted, 0);
1252	root->log_transid = 0;
1253	root->log_transid_committed = -1;
1254	root->last_log_commit = 0;
1255	if (fs_info)
1256		extent_io_tree_init(&root->dirty_log_pages,
1257				     fs_info->btree_inode->i_mapping);
1258
1259	memset(&root->root_key, 0, sizeof(root->root_key));
1260	memset(&root->root_item, 0, sizeof(root->root_item));
1261	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1262	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1263	if (fs_info)
1264		root->defrag_trans_start = fs_info->generation;
1265	else
1266		root->defrag_trans_start = 0;
1267	init_completion(&root->kobj_unregister);
1268	root->defrag_running = 0;
1269	root->root_key.objectid = objectid;
1270	root->anon_dev = 0;
1271
1272	spin_lock_init(&root->root_item_lock);
1273}
1274
1275static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1276{
1277	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1278	if (root)
1279		root->fs_info = fs_info;
1280	return root;
1281}
1282
1283#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1284/* Should only be used by the testing infrastructure */
1285struct btrfs_root *btrfs_alloc_dummy_root(void)
1286{
1287	struct btrfs_root *root;
1288
1289	root = btrfs_alloc_root(NULL);
1290	if (!root)
1291		return ERR_PTR(-ENOMEM);
1292	__setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1293	root->dummy_root = 1;
1294
1295	return root;
1296}
1297#endif
1298
1299struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1300				     struct btrfs_fs_info *fs_info,
1301				     u64 objectid)
 
1302{
1303	struct extent_buffer *leaf;
1304	struct btrfs_root *tree_root = fs_info->tree_root;
1305	struct btrfs_root *root;
1306	struct btrfs_key key;
1307	int ret = 0;
1308	uuid_le uuid;
1309
1310	root = btrfs_alloc_root(fs_info);
1311	if (!root)
1312		return ERR_PTR(-ENOMEM);
1313
1314	__setup_root(tree_root->nodesize, tree_root->leafsize,
1315		     tree_root->sectorsize, tree_root->stripesize,
1316		     root, fs_info, objectid);
1317	root->root_key.objectid = objectid;
1318	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1319	root->root_key.offset = 0;
 
 
 
1320
1321	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1322				      0, objectid, NULL, 0, 0, 0);
1323	if (IS_ERR(leaf)) {
1324		ret = PTR_ERR(leaf);
1325		leaf = NULL;
1326		goto fail;
 
 
 
1327	}
1328
1329	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1330	btrfs_set_header_bytenr(leaf, leaf->start);
1331	btrfs_set_header_generation(leaf, trans->transid);
1332	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1333	btrfs_set_header_owner(leaf, objectid);
1334	root->node = leaf;
1335
1336	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1337			    BTRFS_FSID_SIZE);
1338	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1339			    btrfs_header_chunk_tree_uuid(leaf),
1340			    BTRFS_UUID_SIZE);
1341	btrfs_mark_buffer_dirty(leaf);
1342
1343	root->commit_root = btrfs_root_node(root);
1344	root->track_dirty = 1;
1345
1346
1347	root->root_item.flags = 0;
1348	root->root_item.byte_limit = 0;
1349	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1350	btrfs_set_root_generation(&root->root_item, trans->transid);
1351	btrfs_set_root_level(&root->root_item, 0);
1352	btrfs_set_root_refs(&root->root_item, 1);
1353	btrfs_set_root_used(&root->root_item, leaf->len);
1354	btrfs_set_root_last_snapshot(&root->root_item, 0);
1355	btrfs_set_root_dirid(&root->root_item, 0);
1356	uuid_le_gen(&uuid);
1357	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1358	root->root_item.drop_level = 0;
1359
1360	key.objectid = objectid;
1361	key.type = BTRFS_ROOT_ITEM_KEY;
1362	key.offset = 0;
1363	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1364	if (ret)
1365		goto fail;
1366
1367	btrfs_tree_unlock(leaf);
1368
 
 
 
 
 
1369	return root;
1370
1371fail:
1372	if (leaf) {
1373		btrfs_tree_unlock(leaf);
1374		free_extent_buffer(leaf);
1375	}
1376	kfree(root);
1377
1378	return ERR_PTR(ret);
1379}
1380
1381static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1382					 struct btrfs_fs_info *fs_info)
1383{
1384	struct btrfs_root *root;
1385	struct btrfs_root *tree_root = fs_info->tree_root;
1386	struct extent_buffer *leaf;
1387
1388	root = btrfs_alloc_root(fs_info);
1389	if (!root)
1390		return ERR_PTR(-ENOMEM);
1391
1392	__setup_root(tree_root->nodesize, tree_root->leafsize,
1393		     tree_root->sectorsize, tree_root->stripesize,
1394		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1395
1396	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1397	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1398	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1399	/*
1400	 * log trees do not get reference counted because they go away
1401	 * before a real commit is actually done.  They do store pointers
1402	 * to file data extents, and those reference counts still get
1403	 * updated (along with back refs to the log tree).
1404	 */
1405	root->ref_cows = 0;
1406
1407	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1408				      BTRFS_TREE_LOG_OBJECTID, NULL,
1409				      0, 0, 0);
1410	if (IS_ERR(leaf)) {
1411		kfree(root);
1412		return ERR_CAST(leaf);
1413	}
1414
1415	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1416	btrfs_set_header_bytenr(leaf, leaf->start);
1417	btrfs_set_header_generation(leaf, trans->transid);
1418	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1419	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1420	root->node = leaf;
1421
1422	write_extent_buffer(root->node, root->fs_info->fsid,
1423			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
 
1424	btrfs_mark_buffer_dirty(root->node);
1425	btrfs_tree_unlock(root->node);
1426	return root;
1427}
1428
1429int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1430			     struct btrfs_fs_info *fs_info)
1431{
1432	struct btrfs_root *log_root;
1433
1434	log_root = alloc_log_tree(trans, fs_info);
1435	if (IS_ERR(log_root))
1436		return PTR_ERR(log_root);
1437	WARN_ON(fs_info->log_root_tree);
1438	fs_info->log_root_tree = log_root;
1439	return 0;
1440}
1441
1442int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1443		       struct btrfs_root *root)
1444{
1445	struct btrfs_root *log_root;
1446	struct btrfs_inode_item *inode_item;
1447
1448	log_root = alloc_log_tree(trans, root->fs_info);
1449	if (IS_ERR(log_root))
1450		return PTR_ERR(log_root);
1451
1452	log_root->last_trans = trans->transid;
1453	log_root->root_key.offset = root->root_key.objectid;
1454
1455	inode_item = &log_root->root_item.inode;
1456	btrfs_set_stack_inode_generation(inode_item, 1);
1457	btrfs_set_stack_inode_size(inode_item, 3);
1458	btrfs_set_stack_inode_nlink(inode_item, 1);
1459	btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1460	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1461
1462	btrfs_set_root_node(&log_root->root_item, log_root->node);
1463
1464	WARN_ON(root->log_root);
1465	root->log_root = log_root;
1466	root->log_transid = 0;
1467	root->log_transid_committed = -1;
1468	root->last_log_commit = 0;
1469	return 0;
1470}
1471
1472static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1473					       struct btrfs_key *key)
1474{
1475	struct btrfs_root *root;
1476	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1477	struct btrfs_path *path;
 
1478	u64 generation;
1479	u32 blocksize;
1480	int ret;
1481
1482	path = btrfs_alloc_path();
1483	if (!path)
1484		return ERR_PTR(-ENOMEM);
1485
1486	root = btrfs_alloc_root(fs_info);
1487	if (!root) {
1488		ret = -ENOMEM;
1489		goto alloc_fail;
 
 
 
 
 
 
 
1490	}
1491
1492	__setup_root(tree_root->nodesize, tree_root->leafsize,
1493		     tree_root->sectorsize, tree_root->stripesize,
1494		     root, fs_info, key->objectid);
1495
1496	ret = btrfs_find_root(tree_root, key, path,
1497			      &root->root_item, &root->root_key);
 
 
 
 
 
 
 
 
 
 
 
 
1498	if (ret) {
 
1499		if (ret > 0)
1500			ret = -ENOENT;
1501		goto find_fail;
1502	}
1503
1504	generation = btrfs_root_generation(&root->root_item);
1505	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1506	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1507				     blocksize, generation);
1508	if (!root->node) {
1509		ret = -ENOMEM;
1510		goto find_fail;
1511	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1512		ret = -EIO;
1513		goto read_fail;
1514	}
1515	root->commit_root = btrfs_root_node(root);
 
1516out:
1517	btrfs_free_path(path);
1518	return root;
1519
1520read_fail:
1521	free_extent_buffer(root->node);
1522find_fail:
1523	kfree(root);
1524alloc_fail:
1525	root = ERR_PTR(ret);
1526	goto out;
1527}
1528
1529struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1530				      struct btrfs_key *location)
1531{
1532	struct btrfs_root *root;
1533
1534	root = btrfs_read_tree_root(tree_root, location);
1535	if (IS_ERR(root))
1536		return root;
1537
1538	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1539		root->ref_cows = 1;
1540		btrfs_check_and_init_root_item(&root->root_item);
1541	}
1542
1543	return root;
1544}
1545
1546int btrfs_init_fs_root(struct btrfs_root *root)
1547{
1548	int ret;
1549	struct btrfs_subvolume_writers *writers;
1550
1551	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1552	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1553					GFP_NOFS);
1554	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1555		ret = -ENOMEM;
1556		goto fail;
1557	}
1558
1559	writers = btrfs_alloc_subvolume_writers();
1560	if (IS_ERR(writers)) {
1561		ret = PTR_ERR(writers);
1562		goto fail;
1563	}
1564	root->subv_writers = writers;
1565
1566	btrfs_init_free_ino_ctl(root);
1567	spin_lock_init(&root->cache_lock);
1568	init_waitqueue_head(&root->cache_wait);
1569
1570	ret = get_anon_bdev(&root->anon_dev);
1571	if (ret)
1572		goto free_writers;
1573	return 0;
1574
1575free_writers:
1576	btrfs_free_subvolume_writers(root->subv_writers);
1577fail:
1578	kfree(root->free_ino_ctl);
1579	kfree(root->free_ino_pinned);
1580	return ret;
1581}
1582
1583static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1584					       u64 root_id)
1585{
1586	struct btrfs_root *root;
1587
1588	spin_lock(&fs_info->fs_roots_radix_lock);
1589	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1590				 (unsigned long)root_id);
1591	spin_unlock(&fs_info->fs_roots_radix_lock);
1592	return root;
1593}
1594
1595int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1596			 struct btrfs_root *root)
1597{
1598	int ret;
1599
1600	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1601	if (ret)
1602		return ret;
1603
1604	spin_lock(&fs_info->fs_roots_radix_lock);
1605	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1606				(unsigned long)root->root_key.objectid,
1607				root);
1608	if (ret == 0)
1609		root->in_radix = 1;
1610	spin_unlock(&fs_info->fs_roots_radix_lock);
1611	radix_tree_preload_end();
1612
1613	return ret;
1614}
1615
1616struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1617				     struct btrfs_key *location,
1618				     bool check_ref)
1619{
1620	struct btrfs_root *root;
1621	int ret;
1622
1623	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1624		return fs_info->tree_root;
1625	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1626		return fs_info->extent_root;
1627	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1628		return fs_info->chunk_root;
1629	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1630		return fs_info->dev_root;
1631	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1632		return fs_info->csum_root;
1633	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1634		return fs_info->quota_root ? fs_info->quota_root :
1635					     ERR_PTR(-ENOENT);
1636	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1637		return fs_info->uuid_root ? fs_info->uuid_root :
1638					    ERR_PTR(-ENOENT);
1639again:
1640	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1641	if (root) {
1642		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1643			return ERR_PTR(-ENOENT);
 
1644		return root;
1645	}
1646
1647	root = btrfs_read_fs_root(fs_info->tree_root, location);
1648	if (IS_ERR(root))
1649		return root;
1650
1651	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1652		ret = -ENOENT;
 
 
 
1653		goto fail;
1654	}
1655
1656	ret = btrfs_init_fs_root(root);
 
 
 
 
 
1657	if (ret)
1658		goto fail;
1659
1660	ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1661			location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
 
 
 
 
1662	if (ret < 0)
1663		goto fail;
1664	if (ret == 0)
1665		root->orphan_item_inserted = 1;
1666
1667	ret = btrfs_insert_fs_root(fs_info, root);
 
 
 
 
 
 
 
 
 
 
 
 
1668	if (ret) {
1669		if (ret == -EEXIST) {
1670			free_fs_root(root);
1671			goto again;
1672		}
1673		goto fail;
1674	}
 
 
 
 
1675	return root;
1676fail:
1677	free_fs_root(root);
1678	return ERR_PTR(ret);
1679}
1680
1681static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1682{
1683	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1684	int ret = 0;
1685	struct btrfs_device *device;
1686	struct backing_dev_info *bdi;
1687
1688	rcu_read_lock();
1689	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1690		if (!device->bdev)
1691			continue;
1692		bdi = blk_get_backing_dev_info(device->bdev);
1693		if (bdi && bdi_congested(bdi, bdi_bits)) {
1694			ret = 1;
1695			break;
1696		}
1697	}
1698	rcu_read_unlock();
1699	return ret;
1700}
1701
1702/*
1703 * If this fails, caller must call bdi_destroy() to get rid of the
1704 * bdi again.
1705 */
1706static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1707{
1708	int err;
1709
1710	bdi->capabilities = BDI_CAP_MAP_COPY;
1711	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1712	if (err)
1713		return err;
1714
1715	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1716	bdi->congested_fn	= btrfs_congested_fn;
1717	bdi->congested_data	= info;
1718	return 0;
1719}
1720
1721/*
1722 * called by the kthread helper functions to finally call the bio end_io
1723 * functions.  This is where read checksum verification actually happens
1724 */
1725static void end_workqueue_fn(struct btrfs_work *work)
1726{
1727	struct bio *bio;
1728	struct end_io_wq *end_io_wq;
 
1729	int error;
1730
1731	end_io_wq = container_of(work, struct end_io_wq, work);
1732	bio = end_io_wq->bio;
 
1733
1734	error = end_io_wq->error;
1735	bio->bi_private = end_io_wq->private;
1736	bio->bi_end_io = end_io_wq->end_io;
1737	kfree(end_io_wq);
1738	bio_endio_nodec(bio, error);
1739}
1740
1741static int cleaner_kthread(void *arg)
1742{
1743	struct btrfs_root *root = arg;
1744	int again;
1745
1746	do {
1747		again = 0;
1748
1749		/* Make the cleaner go to sleep early. */
1750		if (btrfs_need_cleaner_sleep(root))
1751			goto sleep;
1752
1753		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1754			goto sleep;
1755
1756		/*
1757		 * Avoid the problem that we change the status of the fs
1758		 * during the above check and trylock.
1759		 */
1760		if (btrfs_need_cleaner_sleep(root)) {
1761			mutex_unlock(&root->fs_info->cleaner_mutex);
1762			goto sleep;
1763		}
1764
1765		btrfs_run_delayed_iputs(root);
1766		again = btrfs_clean_one_deleted_snapshot(root);
1767		mutex_unlock(&root->fs_info->cleaner_mutex);
1768
1769		/*
1770		 * The defragger has dealt with the R/O remount and umount,
1771		 * needn't do anything special here.
1772		 */
1773		btrfs_run_defrag_inodes(root->fs_info);
1774sleep:
1775		if (!try_to_freeze() && !again) {
1776			set_current_state(TASK_INTERRUPTIBLE);
1777			if (!kthread_should_stop())
1778				schedule();
1779			__set_current_state(TASK_RUNNING);
1780		}
1781	} while (!kthread_should_stop());
1782	return 0;
1783}
1784
1785static int transaction_kthread(void *arg)
1786{
1787	struct btrfs_root *root = arg;
1788	struct btrfs_trans_handle *trans;
1789	struct btrfs_transaction *cur;
1790	u64 transid;
1791	unsigned long now;
1792	unsigned long delay;
1793	bool cannot_commit;
1794
1795	do {
1796		cannot_commit = false;
1797		delay = HZ * root->fs_info->commit_interval;
 
1798		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1799
1800		spin_lock(&root->fs_info->trans_lock);
1801		cur = root->fs_info->running_transaction;
1802		if (!cur) {
1803			spin_unlock(&root->fs_info->trans_lock);
1804			goto sleep;
1805		}
1806
1807		now = get_seconds();
1808		if (cur->state < TRANS_STATE_BLOCKED &&
1809		    (now < cur->start_time ||
1810		     now - cur->start_time < root->fs_info->commit_interval)) {
1811			spin_unlock(&root->fs_info->trans_lock);
1812			delay = HZ * 5;
1813			goto sleep;
1814		}
1815		transid = cur->transid;
1816		spin_unlock(&root->fs_info->trans_lock);
1817
1818		/* If the file system is aborted, this will always fail. */
1819		trans = btrfs_attach_transaction(root);
1820		if (IS_ERR(trans)) {
1821			if (PTR_ERR(trans) != -ENOENT)
1822				cannot_commit = true;
1823			goto sleep;
1824		}
1825		if (transid == trans->transid) {
1826			btrfs_commit_transaction(trans, root);
1827		} else {
1828			btrfs_end_transaction(trans, root);
1829		}
1830sleep:
1831		wake_up_process(root->fs_info->cleaner_kthread);
1832		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1833
1834		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1835				      &root->fs_info->fs_state)))
1836			btrfs_cleanup_transaction(root);
1837		if (!try_to_freeze()) {
1838			set_current_state(TASK_INTERRUPTIBLE);
1839			if (!kthread_should_stop() &&
1840			    (!btrfs_transaction_blocked(root->fs_info) ||
1841			     cannot_commit))
1842				schedule_timeout(delay);
1843			__set_current_state(TASK_RUNNING);
1844		}
1845	} while (!kthread_should_stop());
1846	return 0;
1847}
1848
1849/*
1850 * this will find the highest generation in the array of
1851 * root backups.  The index of the highest array is returned,
1852 * or -1 if we can't find anything.
1853 *
1854 * We check to make sure the array is valid by comparing the
1855 * generation of the latest  root in the array with the generation
1856 * in the super block.  If they don't match we pitch it.
1857 */
1858static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1859{
1860	u64 cur;
1861	int newest_index = -1;
1862	struct btrfs_root_backup *root_backup;
1863	int i;
1864
1865	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1866		root_backup = info->super_copy->super_roots + i;
1867		cur = btrfs_backup_tree_root_gen(root_backup);
1868		if (cur == newest_gen)
1869			newest_index = i;
1870	}
1871
1872	/* check to see if we actually wrapped around */
1873	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1874		root_backup = info->super_copy->super_roots;
1875		cur = btrfs_backup_tree_root_gen(root_backup);
1876		if (cur == newest_gen)
1877			newest_index = 0;
1878	}
1879	return newest_index;
1880}
1881
1882
1883/*
1884 * find the oldest backup so we know where to store new entries
1885 * in the backup array.  This will set the backup_root_index
1886 * field in the fs_info struct
1887 */
1888static void find_oldest_super_backup(struct btrfs_fs_info *info,
1889				     u64 newest_gen)
1890{
1891	int newest_index = -1;
1892
1893	newest_index = find_newest_super_backup(info, newest_gen);
1894	/* if there was garbage in there, just move along */
1895	if (newest_index == -1) {
1896		info->backup_root_index = 0;
1897	} else {
1898		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1899	}
1900}
1901
1902/*
1903 * copy all the root pointers into the super backup array.
1904 * this will bump the backup pointer by one when it is
1905 * done
1906 */
1907static void backup_super_roots(struct btrfs_fs_info *info)
1908{
1909	int next_backup;
1910	struct btrfs_root_backup *root_backup;
1911	int last_backup;
1912
1913	next_backup = info->backup_root_index;
1914	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1915		BTRFS_NUM_BACKUP_ROOTS;
1916
1917	/*
1918	 * just overwrite the last backup if we're at the same generation
1919	 * this happens only at umount
1920	 */
1921	root_backup = info->super_for_commit->super_roots + last_backup;
1922	if (btrfs_backup_tree_root_gen(root_backup) ==
1923	    btrfs_header_generation(info->tree_root->node))
1924		next_backup = last_backup;
1925
1926	root_backup = info->super_for_commit->super_roots + next_backup;
1927
1928	/*
1929	 * make sure all of our padding and empty slots get zero filled
1930	 * regardless of which ones we use today
1931	 */
1932	memset(root_backup, 0, sizeof(*root_backup));
1933
1934	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1935
1936	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1937	btrfs_set_backup_tree_root_gen(root_backup,
1938			       btrfs_header_generation(info->tree_root->node));
1939
1940	btrfs_set_backup_tree_root_level(root_backup,
1941			       btrfs_header_level(info->tree_root->node));
1942
1943	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1944	btrfs_set_backup_chunk_root_gen(root_backup,
1945			       btrfs_header_generation(info->chunk_root->node));
1946	btrfs_set_backup_chunk_root_level(root_backup,
1947			       btrfs_header_level(info->chunk_root->node));
1948
1949	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1950	btrfs_set_backup_extent_root_gen(root_backup,
1951			       btrfs_header_generation(info->extent_root->node));
1952	btrfs_set_backup_extent_root_level(root_backup,
1953			       btrfs_header_level(info->extent_root->node));
1954
1955	/*
1956	 * we might commit during log recovery, which happens before we set
1957	 * the fs_root.  Make sure it is valid before we fill it in.
1958	 */
1959	if (info->fs_root && info->fs_root->node) {
1960		btrfs_set_backup_fs_root(root_backup,
1961					 info->fs_root->node->start);
1962		btrfs_set_backup_fs_root_gen(root_backup,
1963			       btrfs_header_generation(info->fs_root->node));
1964		btrfs_set_backup_fs_root_level(root_backup,
1965			       btrfs_header_level(info->fs_root->node));
1966	}
1967
1968	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1969	btrfs_set_backup_dev_root_gen(root_backup,
1970			       btrfs_header_generation(info->dev_root->node));
1971	btrfs_set_backup_dev_root_level(root_backup,
1972				       btrfs_header_level(info->dev_root->node));
1973
1974	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1975	btrfs_set_backup_csum_root_gen(root_backup,
1976			       btrfs_header_generation(info->csum_root->node));
1977	btrfs_set_backup_csum_root_level(root_backup,
1978			       btrfs_header_level(info->csum_root->node));
1979
1980	btrfs_set_backup_total_bytes(root_backup,
1981			     btrfs_super_total_bytes(info->super_copy));
1982	btrfs_set_backup_bytes_used(root_backup,
1983			     btrfs_super_bytes_used(info->super_copy));
1984	btrfs_set_backup_num_devices(root_backup,
1985			     btrfs_super_num_devices(info->super_copy));
1986
1987	/*
1988	 * if we don't copy this out to the super_copy, it won't get remembered
1989	 * for the next commit
1990	 */
1991	memcpy(&info->super_copy->super_roots,
1992	       &info->super_for_commit->super_roots,
1993	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1994}
1995
1996/*
1997 * this copies info out of the root backup array and back into
1998 * the in-memory super block.  It is meant to help iterate through
1999 * the array, so you send it the number of backups you've already
2000 * tried and the last backup index you used.
2001 *
2002 * this returns -1 when it has tried all the backups
2003 */
2004static noinline int next_root_backup(struct btrfs_fs_info *info,
2005				     struct btrfs_super_block *super,
2006				     int *num_backups_tried, int *backup_index)
2007{
2008	struct btrfs_root_backup *root_backup;
2009	int newest = *backup_index;
2010
2011	if (*num_backups_tried == 0) {
2012		u64 gen = btrfs_super_generation(super);
2013
2014		newest = find_newest_super_backup(info, gen);
2015		if (newest == -1)
2016			return -1;
2017
2018		*backup_index = newest;
2019		*num_backups_tried = 1;
2020	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2021		/* we've tried all the backups, all done */
2022		return -1;
2023	} else {
2024		/* jump to the next oldest backup */
2025		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2026			BTRFS_NUM_BACKUP_ROOTS;
2027		*backup_index = newest;
2028		*num_backups_tried += 1;
2029	}
2030	root_backup = super->super_roots + newest;
2031
2032	btrfs_set_super_generation(super,
2033				   btrfs_backup_tree_root_gen(root_backup));
2034	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2035	btrfs_set_super_root_level(super,
2036				   btrfs_backup_tree_root_level(root_backup));
2037	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2038
2039	/*
2040	 * fixme: the total bytes and num_devices need to match or we should
2041	 * need a fsck
2042	 */
2043	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2044	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2045	return 0;
2046}
2047
2048/* helper to cleanup workers */
2049static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2050{
2051	btrfs_destroy_workqueue(fs_info->fixup_workers);
2052	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2053	btrfs_destroy_workqueue(fs_info->workers);
2054	btrfs_destroy_workqueue(fs_info->endio_workers);
2055	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2056	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2057	btrfs_destroy_workqueue(fs_info->rmw_workers);
2058	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2059	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2060	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2061	btrfs_destroy_workqueue(fs_info->submit_workers);
2062	btrfs_destroy_workqueue(fs_info->delayed_workers);
2063	btrfs_destroy_workqueue(fs_info->caching_workers);
2064	btrfs_destroy_workqueue(fs_info->readahead_workers);
2065	btrfs_destroy_workqueue(fs_info->flush_workers);
2066	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2067}
2068
2069static void free_root_extent_buffers(struct btrfs_root *root)
2070{
2071	if (root) {
2072		free_extent_buffer(root->node);
2073		free_extent_buffer(root->commit_root);
2074		root->node = NULL;
2075		root->commit_root = NULL;
2076	}
2077}
2078
2079/* helper to cleanup tree roots */
2080static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2081{
2082	free_root_extent_buffers(info->tree_root);
2083
2084	free_root_extent_buffers(info->dev_root);
2085	free_root_extent_buffers(info->extent_root);
2086	free_root_extent_buffers(info->csum_root);
2087	free_root_extent_buffers(info->quota_root);
2088	free_root_extent_buffers(info->uuid_root);
2089	if (chunk_root)
2090		free_root_extent_buffers(info->chunk_root);
2091}
2092
2093static void del_fs_roots(struct btrfs_fs_info *fs_info)
2094{
2095	int ret;
2096	struct btrfs_root *gang[8];
2097	int i;
2098
2099	while (!list_empty(&fs_info->dead_roots)) {
2100		gang[0] = list_entry(fs_info->dead_roots.next,
2101				     struct btrfs_root, root_list);
2102		list_del(&gang[0]->root_list);
2103
2104		if (gang[0]->in_radix) {
2105			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2106		} else {
2107			free_extent_buffer(gang[0]->node);
2108			free_extent_buffer(gang[0]->commit_root);
2109			btrfs_put_fs_root(gang[0]);
2110		}
2111	}
2112
2113	while (1) {
2114		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2115					     (void **)gang, 0,
2116					     ARRAY_SIZE(gang));
2117		if (!ret)
2118			break;
2119		for (i = 0; i < ret; i++)
2120			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2121	}
2122
2123	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2124		btrfs_free_log_root_tree(NULL, fs_info);
2125		btrfs_destroy_pinned_extent(fs_info->tree_root,
2126					    fs_info->pinned_extents);
2127	}
2128}
2129
 
2130int open_ctree(struct super_block *sb,
2131	       struct btrfs_fs_devices *fs_devices,
2132	       char *options)
2133{
2134	u32 sectorsize;
2135	u32 nodesize;
2136	u32 leafsize;
2137	u32 blocksize;
2138	u32 stripesize;
2139	u64 generation;
2140	u64 features;
2141	struct btrfs_key location;
2142	struct buffer_head *bh;
2143	struct btrfs_super_block *disk_super;
2144	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2145	struct btrfs_root *tree_root;
2146	struct btrfs_root *extent_root;
2147	struct btrfs_root *csum_root;
2148	struct btrfs_root *chunk_root;
2149	struct btrfs_root *dev_root;
2150	struct btrfs_root *quota_root;
2151	struct btrfs_root *uuid_root;
2152	struct btrfs_root *log_tree_root;
2153	int ret;
2154	int err = -EINVAL;
2155	int num_backups_tried = 0;
2156	int backup_index = 0;
2157	int max_active;
2158	int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2159	bool create_uuid_tree;
2160	bool check_uuid_tree;
2161
2162	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
 
 
2163	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2164	if (!tree_root || !chunk_root) {
 
 
 
2165		err = -ENOMEM;
2166		goto fail;
2167	}
2168
2169	ret = init_srcu_struct(&fs_info->subvol_srcu);
2170	if (ret) {
2171		err = ret;
2172		goto fail;
2173	}
2174
2175	ret = setup_bdi(fs_info, &fs_info->bdi);
2176	if (ret) {
2177		err = ret;
2178		goto fail_srcu;
2179	}
2180
2181	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2182	if (ret) {
2183		err = ret;
2184		goto fail_bdi;
2185	}
2186	fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2187					(1 + ilog2(nr_cpu_ids));
2188
2189	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2190	if (ret) {
2191		err = ret;
2192		goto fail_dirty_metadata_bytes;
2193	}
2194
2195	ret = percpu_counter_init(&fs_info->bio_counter, 0);
2196	if (ret) {
2197		err = ret;
2198		goto fail_delalloc_bytes;
2199	}
2200
2201	fs_info->btree_inode = new_inode(sb);
2202	if (!fs_info->btree_inode) {
2203		err = -ENOMEM;
2204		goto fail_bio_counter;
2205	}
2206
2207	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2208
2209	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2210	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2211	INIT_LIST_HEAD(&fs_info->trans_list);
2212	INIT_LIST_HEAD(&fs_info->dead_roots);
2213	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2214	INIT_LIST_HEAD(&fs_info->delalloc_roots);
 
 
2215	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2216	spin_lock_init(&fs_info->delalloc_root_lock);
2217	spin_lock_init(&fs_info->trans_lock);
 
2218	spin_lock_init(&fs_info->fs_roots_radix_lock);
2219	spin_lock_init(&fs_info->delayed_iput_lock);
2220	spin_lock_init(&fs_info->defrag_inodes_lock);
2221	spin_lock_init(&fs_info->free_chunk_lock);
2222	spin_lock_init(&fs_info->tree_mod_seq_lock);
2223	spin_lock_init(&fs_info->super_lock);
2224	spin_lock_init(&fs_info->buffer_lock);
2225	rwlock_init(&fs_info->tree_mod_log_lock);
2226	mutex_init(&fs_info->reloc_mutex);
2227	mutex_init(&fs_info->delalloc_root_mutex);
2228	seqlock_init(&fs_info->profiles_lock);
2229
2230	init_completion(&fs_info->kobj_unregister);
2231	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2232	INIT_LIST_HEAD(&fs_info->space_info);
2233	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2234	btrfs_mapping_init(&fs_info->mapping_tree);
2235	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2236			     BTRFS_BLOCK_RSV_GLOBAL);
2237	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2238			     BTRFS_BLOCK_RSV_DELALLOC);
2239	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2240	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2241	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2242	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2243			     BTRFS_BLOCK_RSV_DELOPS);
2244	atomic_set(&fs_info->nr_async_submits, 0);
2245	atomic_set(&fs_info->async_delalloc_pages, 0);
2246	atomic_set(&fs_info->async_submit_draining, 0);
2247	atomic_set(&fs_info->nr_async_bios, 0);
2248	atomic_set(&fs_info->defrag_running, 0);
2249	atomic64_set(&fs_info->tree_mod_seq, 0);
2250	fs_info->sb = sb;
2251	fs_info->max_inline = 8192 * 1024;
2252	fs_info->metadata_ratio = 0;
2253	fs_info->defrag_inodes = RB_ROOT;
 
2254	fs_info->free_chunk_space = 0;
2255	fs_info->tree_mod_log = RB_ROOT;
2256	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2257	fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2258	/* readahead state */
2259	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2260	spin_lock_init(&fs_info->reada_lock);
2261
2262	fs_info->thread_pool_size = min_t(unsigned long,
2263					  num_online_cpus() + 2, 8);
2264
2265	INIT_LIST_HEAD(&fs_info->ordered_roots);
2266	spin_lock_init(&fs_info->ordered_root_lock);
2267	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2268					GFP_NOFS);
2269	if (!fs_info->delayed_root) {
2270		err = -ENOMEM;
2271		goto fail_iput;
2272	}
2273	btrfs_init_delayed_root(fs_info->delayed_root);
2274
2275	mutex_init(&fs_info->scrub_lock);
2276	atomic_set(&fs_info->scrubs_running, 0);
2277	atomic_set(&fs_info->scrub_pause_req, 0);
2278	atomic_set(&fs_info->scrubs_paused, 0);
2279	atomic_set(&fs_info->scrub_cancel_req, 0);
2280	init_waitqueue_head(&fs_info->replace_wait);
2281	init_waitqueue_head(&fs_info->scrub_pause_wait);
 
2282	fs_info->scrub_workers_refcnt = 0;
2283#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2284	fs_info->check_integrity_print_mask = 0;
2285#endif
2286
2287	spin_lock_init(&fs_info->balance_lock);
2288	mutex_init(&fs_info->balance_mutex);
2289	atomic_set(&fs_info->balance_running, 0);
2290	atomic_set(&fs_info->balance_pause_req, 0);
2291	atomic_set(&fs_info->balance_cancel_req, 0);
2292	fs_info->balance_ctl = NULL;
2293	init_waitqueue_head(&fs_info->balance_wait_q);
2294
2295	sb->s_blocksize = 4096;
2296	sb->s_blocksize_bits = blksize_bits(4096);
2297	sb->s_bdi = &fs_info->bdi;
2298
2299	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2300	set_nlink(fs_info->btree_inode, 1);
2301	/*
2302	 * we set the i_size on the btree inode to the max possible int.
2303	 * the real end of the address space is determined by all of
2304	 * the devices in the system
2305	 */
2306	fs_info->btree_inode->i_size = OFFSET_MAX;
2307	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2308	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2309
2310	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2311	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2312			     fs_info->btree_inode->i_mapping);
2313	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2314	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2315
2316	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2317
2318	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2319	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2320	       sizeof(struct btrfs_key));
2321	set_bit(BTRFS_INODE_DUMMY,
2322		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2323	btrfs_insert_inode_hash(fs_info->btree_inode);
2324
2325	spin_lock_init(&fs_info->block_group_cache_lock);
2326	fs_info->block_group_cache_tree = RB_ROOT;
2327	fs_info->first_logical_byte = (u64)-1;
2328
2329	extent_io_tree_init(&fs_info->freed_extents[0],
2330			     fs_info->btree_inode->i_mapping);
2331	extent_io_tree_init(&fs_info->freed_extents[1],
2332			     fs_info->btree_inode->i_mapping);
2333	fs_info->pinned_extents = &fs_info->freed_extents[0];
2334	fs_info->do_barriers = 1;
2335
2336
2337	mutex_init(&fs_info->ordered_operations_mutex);
2338	mutex_init(&fs_info->ordered_extent_flush_mutex);
2339	mutex_init(&fs_info->tree_log_mutex);
2340	mutex_init(&fs_info->chunk_mutex);
2341	mutex_init(&fs_info->transaction_kthread_mutex);
2342	mutex_init(&fs_info->cleaner_mutex);
2343	mutex_init(&fs_info->volume_mutex);
2344	init_rwsem(&fs_info->commit_root_sem);
2345	init_rwsem(&fs_info->cleanup_work_sem);
2346	init_rwsem(&fs_info->subvol_sem);
2347	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2348	fs_info->dev_replace.lock_owner = 0;
2349	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2350	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2351	mutex_init(&fs_info->dev_replace.lock_management_lock);
2352	mutex_init(&fs_info->dev_replace.lock);
2353
2354	spin_lock_init(&fs_info->qgroup_lock);
2355	mutex_init(&fs_info->qgroup_ioctl_lock);
2356	fs_info->qgroup_tree = RB_ROOT;
2357	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2358	fs_info->qgroup_seq = 1;
2359	fs_info->quota_enabled = 0;
2360	fs_info->pending_quota_state = 0;
2361	fs_info->qgroup_ulist = NULL;
2362	mutex_init(&fs_info->qgroup_rescan_lock);
2363
2364	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2365	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2366
2367	init_waitqueue_head(&fs_info->transaction_throttle);
2368	init_waitqueue_head(&fs_info->transaction_wait);
2369	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2370	init_waitqueue_head(&fs_info->async_submit_wait);
2371
2372	ret = btrfs_alloc_stripe_hash_table(fs_info);
2373	if (ret) {
2374		err = ret;
2375		goto fail_alloc;
2376	}
2377
2378	__setup_root(4096, 4096, 4096, 4096, tree_root,
2379		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2380
2381	invalidate_bdev(fs_devices->latest_bdev);
2382
2383	/*
2384	 * Read super block and check the signature bytes only
2385	 */
2386	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2387	if (!bh) {
2388		err = -EINVAL;
2389		goto fail_alloc;
2390	}
2391
2392	/*
2393	 * We want to check superblock checksum, the type is stored inside.
2394	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2395	 */
2396	if (btrfs_check_super_csum(bh->b_data)) {
2397		printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2398		err = -EINVAL;
2399		goto fail_alloc;
2400	}
2401
2402	/*
2403	 * super_copy is zeroed at allocation time and we never touch the
2404	 * following bytes up to INFO_SIZE, the checksum is calculated from
2405	 * the whole block of INFO_SIZE
2406	 */
2407	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2408	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2409	       sizeof(*fs_info->super_for_commit));
2410	brelse(bh);
2411
2412	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2413
2414	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2415	if (ret) {
2416		printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2417		err = -EINVAL;
2418		goto fail_alloc;
2419	}
2420
2421	disk_super = fs_info->super_copy;
2422	if (!btrfs_super_root(disk_super))
2423		goto fail_alloc;
2424
2425	/* check FS state, whether FS is broken. */
2426	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2427		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
 
 
 
 
 
 
2428
2429	/*
2430	 * run through our array of backup supers and setup
2431	 * our ring pointer to the oldest one
2432	 */
2433	generation = btrfs_super_generation(disk_super);
2434	find_oldest_super_backup(fs_info, generation);
2435
2436	/*
2437	 * In the long term, we'll store the compression type in the super
2438	 * block, and it'll be used for per file compression control.
2439	 */
2440	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2441
2442	ret = btrfs_parse_options(tree_root, options);
2443	if (ret) {
2444		err = ret;
2445		goto fail_alloc;
2446	}
2447
2448	features = btrfs_super_incompat_flags(disk_super) &
2449		~BTRFS_FEATURE_INCOMPAT_SUPP;
2450	if (features) {
2451		printk(KERN_ERR "BTRFS: couldn't mount because of "
2452		       "unsupported optional features (%Lx).\n",
2453		       features);
2454		err = -EINVAL;
2455		goto fail_alloc;
2456	}
2457
2458	if (btrfs_super_leafsize(disk_super) !=
2459	    btrfs_super_nodesize(disk_super)) {
2460		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2461		       "blocksizes don't match.  node %d leaf %d\n",
2462		       btrfs_super_nodesize(disk_super),
2463		       btrfs_super_leafsize(disk_super));
2464		err = -EINVAL;
2465		goto fail_alloc;
2466	}
2467	if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2468		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2469		       "blocksize (%d) was too large\n",
2470		       btrfs_super_leafsize(disk_super));
2471		err = -EINVAL;
2472		goto fail_alloc;
2473	}
2474
2475	features = btrfs_super_incompat_flags(disk_super);
2476	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2477	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2478		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2479
2480	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2481		printk(KERN_ERR "BTRFS: has skinny extents\n");
2482
2483	/*
2484	 * flag our filesystem as having big metadata blocks if
2485	 * they are bigger than the page size
2486	 */
2487	if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2488		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2489			printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2490		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2491	}
2492
2493	nodesize = btrfs_super_nodesize(disk_super);
2494	leafsize = btrfs_super_leafsize(disk_super);
2495	sectorsize = btrfs_super_sectorsize(disk_super);
2496	stripesize = btrfs_super_stripesize(disk_super);
2497	fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2498	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2499
2500	/*
2501	 * mixed block groups end up with duplicate but slightly offset
2502	 * extent buffers for the same range.  It leads to corruptions
2503	 */
2504	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2505	    (sectorsize != leafsize)) {
2506		printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2507				"are not allowed for mixed block groups on %s\n",
2508				sb->s_id);
2509		goto fail_alloc;
2510	}
2511
2512	/*
2513	 * Needn't use the lock because there is no other task which will
2514	 * update the flag.
2515	 */
2516	btrfs_set_super_incompat_flags(disk_super, features);
2517
2518	features = btrfs_super_compat_ro_flags(disk_super) &
2519		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2520	if (!(sb->s_flags & MS_RDONLY) && features) {
2521		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2522		       "unsupported option features (%Lx).\n",
2523		       features);
2524		err = -EINVAL;
2525		goto fail_alloc;
2526	}
2527
2528	max_active = fs_info->thread_pool_size;
 
2529
2530	fs_info->workers =
2531		btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2532				      max_active, 16);
 
 
 
 
 
 
 
 
 
2533
2534	fs_info->delalloc_workers =
2535		btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2536
2537	fs_info->flush_workers =
2538		btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2539
2540	fs_info->caching_workers =
2541		btrfs_alloc_workqueue("cache", flags, max_active, 0);
2542
2543	/*
2544	 * a higher idle thresh on the submit workers makes it much more
2545	 * likely that bios will be send down in a sane order to the
2546	 * devices
2547	 */
2548	fs_info->submit_workers =
2549		btrfs_alloc_workqueue("submit", flags,
2550				      min_t(u64, fs_devices->num_devices,
2551					    max_active), 64);
2552
2553	fs_info->fixup_workers =
2554		btrfs_alloc_workqueue("fixup", flags, 1, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2555
2556	/*
2557	 * endios are largely parallel and should have a very
2558	 * low idle thresh
2559	 */
2560	fs_info->endio_workers =
2561		btrfs_alloc_workqueue("endio", flags, max_active, 4);
2562	fs_info->endio_meta_workers =
2563		btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2564	fs_info->endio_meta_write_workers =
2565		btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2566	fs_info->endio_raid56_workers =
2567		btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2568	fs_info->rmw_workers =
2569		btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2570	fs_info->endio_write_workers =
2571		btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2572	fs_info->endio_freespace_worker =
2573		btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2574	fs_info->delayed_workers =
2575		btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2576	fs_info->readahead_workers =
2577		btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2578	fs_info->qgroup_rescan_workers =
2579		btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2580
2581	if (!(fs_info->workers && fs_info->delalloc_workers &&
2582	      fs_info->submit_workers && fs_info->flush_workers &&
2583	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2584	      fs_info->endio_meta_write_workers &&
2585	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2586	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2587	      fs_info->caching_workers && fs_info->readahead_workers &&
2588	      fs_info->fixup_workers && fs_info->delayed_workers &&
2589	      fs_info->qgroup_rescan_workers)) {
2590		err = -ENOMEM;
2591		goto fail_sb_buffer;
2592	}
2593
2594	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2595	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2596				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2597
2598	tree_root->nodesize = nodesize;
2599	tree_root->leafsize = leafsize;
2600	tree_root->sectorsize = sectorsize;
2601	tree_root->stripesize = stripesize;
2602
2603	sb->s_blocksize = sectorsize;
2604	sb->s_blocksize_bits = blksize_bits(sectorsize);
2605
2606	if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2607		printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
 
2608		goto fail_sb_buffer;
2609	}
2610
2611	if (sectorsize != PAGE_SIZE) {
2612		printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2613		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2614		goto fail_sb_buffer;
2615	}
2616
2617	mutex_lock(&fs_info->chunk_mutex);
2618	ret = btrfs_read_sys_array(tree_root);
2619	mutex_unlock(&fs_info->chunk_mutex);
2620	if (ret) {
2621		printk(KERN_WARNING "BTRFS: failed to read the system "
2622		       "array on %s\n", sb->s_id);
2623		goto fail_sb_buffer;
2624	}
2625
2626	blocksize = btrfs_level_size(tree_root,
2627				     btrfs_super_chunk_root_level(disk_super));
2628	generation = btrfs_super_chunk_root_generation(disk_super);
2629
2630	__setup_root(nodesize, leafsize, sectorsize, stripesize,
2631		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2632
2633	chunk_root->node = read_tree_block(chunk_root,
2634					   btrfs_super_chunk_root(disk_super),
2635					   blocksize, generation);
2636	if (!chunk_root->node ||
2637	    !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2638		printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2639		       sb->s_id);
2640		goto fail_tree_roots;
2641	}
2642	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2643	chunk_root->commit_root = btrfs_root_node(chunk_root);
2644
2645	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2646	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
 
2647
2648	ret = btrfs_read_chunk_tree(chunk_root);
2649	if (ret) {
2650		printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2651		       sb->s_id);
2652		goto fail_tree_roots;
2653	}
2654
2655	/*
2656	 * keep the device that is marked to be the target device for the
2657	 * dev_replace procedure
2658	 */
2659	btrfs_close_extra_devices(fs_info, fs_devices, 0);
2660
2661	if (!fs_devices->latest_bdev) {
2662		printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2663		       sb->s_id);
2664		goto fail_tree_roots;
2665	}
2666
2667retry_root_backup:
2668	blocksize = btrfs_level_size(tree_root,
2669				     btrfs_super_root_level(disk_super));
2670	generation = btrfs_super_generation(disk_super);
2671
2672	tree_root->node = read_tree_block(tree_root,
2673					  btrfs_super_root(disk_super),
2674					  blocksize, generation);
2675	if (!tree_root->node ||
2676	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2677		printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2678		       sb->s_id);
2679
2680		goto recovery_tree_root;
2681	}
2682
2683	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2684	tree_root->commit_root = btrfs_root_node(tree_root);
2685	btrfs_set_root_refs(&tree_root->root_item, 1);
2686
2687	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2688	location.type = BTRFS_ROOT_ITEM_KEY;
2689	location.offset = 0;
2690
2691	extent_root = btrfs_read_tree_root(tree_root, &location);
2692	if (IS_ERR(extent_root)) {
2693		ret = PTR_ERR(extent_root);
2694		goto recovery_tree_root;
2695	}
2696	extent_root->track_dirty = 1;
2697	fs_info->extent_root = extent_root;
2698
2699	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2700	dev_root = btrfs_read_tree_root(tree_root, &location);
2701	if (IS_ERR(dev_root)) {
2702		ret = PTR_ERR(dev_root);
2703		goto recovery_tree_root;
2704	}
2705	dev_root->track_dirty = 1;
2706	fs_info->dev_root = dev_root;
2707	btrfs_init_devices_late(fs_info);
2708
2709	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2710	csum_root = btrfs_read_tree_root(tree_root, &location);
2711	if (IS_ERR(csum_root)) {
2712		ret = PTR_ERR(csum_root);
2713		goto recovery_tree_root;
2714	}
2715	csum_root->track_dirty = 1;
2716	fs_info->csum_root = csum_root;
2717
2718	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2719	quota_root = btrfs_read_tree_root(tree_root, &location);
2720	if (!IS_ERR(quota_root)) {
2721		quota_root->track_dirty = 1;
2722		fs_info->quota_enabled = 1;
2723		fs_info->pending_quota_state = 1;
2724		fs_info->quota_root = quota_root;
2725	}
2726
2727	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2728	uuid_root = btrfs_read_tree_root(tree_root, &location);
2729	if (IS_ERR(uuid_root)) {
2730		ret = PTR_ERR(uuid_root);
2731		if (ret != -ENOENT)
2732			goto recovery_tree_root;
2733		create_uuid_tree = true;
2734		check_uuid_tree = false;
2735	} else {
2736		uuid_root->track_dirty = 1;
2737		fs_info->uuid_root = uuid_root;
2738		create_uuid_tree = false;
2739		check_uuid_tree =
2740		    generation != btrfs_super_uuid_tree_generation(disk_super);
2741	}
2742
2743	fs_info->generation = generation;
2744	fs_info->last_trans_committed = generation;
2745
2746	ret = btrfs_recover_balance(fs_info);
2747	if (ret) {
2748		printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2749		goto fail_block_groups;
2750	}
2751
2752	ret = btrfs_init_dev_stats(fs_info);
2753	if (ret) {
2754		printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2755		       ret);
2756		goto fail_block_groups;
2757	}
2758
2759	ret = btrfs_init_dev_replace(fs_info);
2760	if (ret) {
2761		pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2762		goto fail_block_groups;
2763	}
2764
2765	btrfs_close_extra_devices(fs_info, fs_devices, 1);
2766
2767	ret = btrfs_sysfs_add_one(fs_info);
2768	if (ret) {
2769		pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2770		goto fail_block_groups;
2771	}
2772
2773	ret = btrfs_init_space_info(fs_info);
2774	if (ret) {
2775		printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2776		goto fail_sysfs;
2777	}
2778
2779	ret = btrfs_read_block_groups(extent_root);
2780	if (ret) {
2781		printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2782		goto fail_sysfs;
2783	}
2784	fs_info->num_tolerated_disk_barrier_failures =
2785		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2786	if (fs_info->fs_devices->missing_devices >
2787	     fs_info->num_tolerated_disk_barrier_failures &&
2788	    !(sb->s_flags & MS_RDONLY)) {
2789		printk(KERN_WARNING "BTRFS: "
2790			"too many missing devices, writeable mount is not allowed\n");
2791		goto fail_sysfs;
2792	}
2793
2794	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2795					       "btrfs-cleaner");
2796	if (IS_ERR(fs_info->cleaner_kthread))
2797		goto fail_sysfs;
2798
2799	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2800						   tree_root,
2801						   "btrfs-transaction");
2802	if (IS_ERR(fs_info->transaction_kthread))
2803		goto fail_cleaner;
2804
2805	if (!btrfs_test_opt(tree_root, SSD) &&
2806	    !btrfs_test_opt(tree_root, NOSSD) &&
2807	    !fs_info->fs_devices->rotating) {
2808		printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2809		       "mode\n");
2810		btrfs_set_opt(fs_info->mount_opt, SSD);
2811	}
2812
2813	/* Set the real inode map cache flag */
2814	if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2815		btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2816
2817#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2818	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2819		ret = btrfsic_mount(tree_root, fs_devices,
2820				    btrfs_test_opt(tree_root,
2821					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2822				    1 : 0,
2823				    fs_info->check_integrity_print_mask);
2824		if (ret)
2825			printk(KERN_WARNING "BTRFS: failed to initialize"
2826			       " integrity check module %s\n", sb->s_id);
2827	}
2828#endif
2829	ret = btrfs_read_qgroup_config(fs_info);
2830	if (ret)
2831		goto fail_trans_kthread;
2832
2833	/* do not make disk changes in broken FS */
2834	if (btrfs_super_log_root(disk_super) != 0) {
 
2835		u64 bytenr = btrfs_super_log_root(disk_super);
2836
2837		if (fs_devices->rw_devices == 0) {
2838			printk(KERN_WARNING "BTRFS: log replay required "
2839			       "on RO media\n");
2840			err = -EIO;
2841			goto fail_qgroup;
2842		}
2843		blocksize =
2844		     btrfs_level_size(tree_root,
2845				      btrfs_super_log_root_level(disk_super));
2846
2847		log_tree_root = btrfs_alloc_root(fs_info);
2848		if (!log_tree_root) {
2849			err = -ENOMEM;
2850			goto fail_qgroup;
2851		}
2852
2853		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2854			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2855
2856		log_tree_root->node = read_tree_block(tree_root, bytenr,
2857						      blocksize,
2858						      generation + 1);
2859		if (!log_tree_root->node ||
2860		    !extent_buffer_uptodate(log_tree_root->node)) {
2861			printk(KERN_ERR "BTRFS: failed to read log tree\n");
2862			free_extent_buffer(log_tree_root->node);
2863			kfree(log_tree_root);
2864			goto fail_qgroup;
2865		}
2866		/* returns with log_tree_root freed on success */
2867		ret = btrfs_recover_log_trees(log_tree_root);
2868		if (ret) {
2869			btrfs_error(tree_root->fs_info, ret,
2870				    "Failed to recover log tree");
2871			free_extent_buffer(log_tree_root->node);
2872			kfree(log_tree_root);
2873			goto fail_qgroup;
2874		}
2875
2876		if (sb->s_flags & MS_RDONLY) {
2877			ret = btrfs_commit_super(tree_root);
2878			if (ret)
2879				goto fail_qgroup;
2880		}
2881	}
2882
2883	ret = btrfs_find_orphan_roots(tree_root);
2884	if (ret)
2885		goto fail_qgroup;
2886
2887	if (!(sb->s_flags & MS_RDONLY)) {
2888		ret = btrfs_cleanup_fs_roots(fs_info);
2889		if (ret)
2890			goto fail_qgroup;
2891
2892		ret = btrfs_recover_relocation(tree_root);
2893		if (ret < 0) {
2894			printk(KERN_WARNING
2895			       "BTRFS: failed to recover relocation\n");
2896			err = -EINVAL;
2897			goto fail_qgroup;
2898		}
2899	}
2900
2901	location.objectid = BTRFS_FS_TREE_OBJECTID;
2902	location.type = BTRFS_ROOT_ITEM_KEY;
2903	location.offset = 0;
2904
2905	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
 
 
2906	if (IS_ERR(fs_info->fs_root)) {
2907		err = PTR_ERR(fs_info->fs_root);
2908		goto fail_qgroup;
2909	}
2910
2911	if (sb->s_flags & MS_RDONLY)
2912		return 0;
2913
2914	down_read(&fs_info->cleanup_work_sem);
2915	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2916	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2917		up_read(&fs_info->cleanup_work_sem);
2918		close_ctree(tree_root);
2919		return ret;
2920	}
2921	up_read(&fs_info->cleanup_work_sem);
2922
2923	ret = btrfs_resume_balance_async(fs_info);
2924	if (ret) {
2925		printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2926		close_ctree(tree_root);
2927		return ret;
2928	}
2929
2930	ret = btrfs_resume_dev_replace_async(fs_info);
2931	if (ret) {
2932		pr_warn("BTRFS: failed to resume dev_replace\n");
2933		close_ctree(tree_root);
2934		return ret;
2935	}
2936
2937	btrfs_qgroup_rescan_resume(fs_info);
2938
2939	if (create_uuid_tree) {
2940		pr_info("BTRFS: creating UUID tree\n");
2941		ret = btrfs_create_uuid_tree(fs_info);
2942		if (ret) {
2943			pr_warn("BTRFS: failed to create the UUID tree %d\n",
2944				ret);
2945			close_ctree(tree_root);
2946			return ret;
2947		}
2948	} else if (check_uuid_tree ||
2949		   btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2950		pr_info("BTRFS: checking UUID tree\n");
2951		ret = btrfs_check_uuid_tree(fs_info);
2952		if (ret) {
2953			pr_warn("BTRFS: failed to check the UUID tree %d\n",
2954				ret);
2955			close_ctree(tree_root);
2956			return ret;
2957		}
2958	} else {
2959		fs_info->update_uuid_tree_gen = 1;
2960	}
2961
2962	return 0;
2963
2964fail_qgroup:
2965	btrfs_free_qgroup_config(fs_info);
2966fail_trans_kthread:
2967	kthread_stop(fs_info->transaction_kthread);
2968	btrfs_cleanup_transaction(fs_info->tree_root);
2969	del_fs_roots(fs_info);
2970fail_cleaner:
2971	kthread_stop(fs_info->cleaner_kthread);
2972
2973	/*
2974	 * make sure we're done with the btree inode before we stop our
2975	 * kthreads
2976	 */
2977	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2978
2979fail_sysfs:
2980	btrfs_sysfs_remove_one(fs_info);
2981
2982fail_block_groups:
2983	btrfs_put_block_group_cache(fs_info);
2984	btrfs_free_block_groups(fs_info);
2985
2986fail_tree_roots:
2987	free_root_pointers(fs_info, 1);
2988	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2989
2990fail_sb_buffer:
2991	btrfs_stop_all_workers(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
2992fail_alloc:
2993fail_iput:
2994	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2995
 
2996	iput(fs_info->btree_inode);
2997fail_bio_counter:
2998	percpu_counter_destroy(&fs_info->bio_counter);
2999fail_delalloc_bytes:
3000	percpu_counter_destroy(&fs_info->delalloc_bytes);
3001fail_dirty_metadata_bytes:
3002	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3003fail_bdi:
3004	bdi_destroy(&fs_info->bdi);
3005fail_srcu:
3006	cleanup_srcu_struct(&fs_info->subvol_srcu);
3007fail:
3008	btrfs_free_stripe_hash_table(fs_info);
3009	btrfs_close_devices(fs_info->fs_devices);
3010	return err;
3011
3012recovery_tree_root:
3013	if (!btrfs_test_opt(tree_root, RECOVERY))
3014		goto fail_tree_roots;
3015
3016	free_root_pointers(fs_info, 0);
3017
3018	/* don't use the log in recovery mode, it won't be valid */
3019	btrfs_set_super_log_root(disk_super, 0);
3020
3021	/* we can't trust the free space cache either */
3022	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3023
3024	ret = next_root_backup(fs_info, fs_info->super_copy,
3025			       &num_backups_tried, &backup_index);
3026	if (ret == -1)
3027		goto fail_block_groups;
3028	goto retry_root_backup;
3029}
3030
3031static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3032{
3033	if (uptodate) {
3034		set_buffer_uptodate(bh);
3035	} else {
3036		struct btrfs_device *device = (struct btrfs_device *)
3037			bh->b_private;
3038
3039		printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3040					  "I/O error on %s\n",
3041					  rcu_str_deref(device->name));
3042		/* note, we dont' set_buffer_write_io_error because we have
3043		 * our own ways of dealing with the IO errors
3044		 */
3045		clear_buffer_uptodate(bh);
3046		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3047	}
3048	unlock_buffer(bh);
3049	put_bh(bh);
3050}
3051
3052struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3053{
3054	struct buffer_head *bh;
3055	struct buffer_head *latest = NULL;
3056	struct btrfs_super_block *super;
3057	int i;
3058	u64 transid = 0;
3059	u64 bytenr;
3060
3061	/* we would like to check all the supers, but that would make
3062	 * a btrfs mount succeed after a mkfs from a different FS.
3063	 * So, we need to add a special mount option to scan for
3064	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3065	 */
3066	for (i = 0; i < 1; i++) {
3067		bytenr = btrfs_sb_offset(i);
3068		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3069					i_size_read(bdev->bd_inode))
3070			break;
3071		bh = __bread(bdev, bytenr / 4096,
3072					BTRFS_SUPER_INFO_SIZE);
3073		if (!bh)
3074			continue;
3075
3076		super = (struct btrfs_super_block *)bh->b_data;
3077		if (btrfs_super_bytenr(super) != bytenr ||
3078		    btrfs_super_magic(super) != BTRFS_MAGIC) {
 
3079			brelse(bh);
3080			continue;
3081		}
3082
3083		if (!latest || btrfs_super_generation(super) > transid) {
3084			brelse(latest);
3085			latest = bh;
3086			transid = btrfs_super_generation(super);
3087		} else {
3088			brelse(bh);
3089		}
3090	}
3091	return latest;
3092}
3093
3094/*
3095 * this should be called twice, once with wait == 0 and
3096 * once with wait == 1.  When wait == 0 is done, all the buffer heads
3097 * we write are pinned.
3098 *
3099 * They are released when wait == 1 is done.
3100 * max_mirrors must be the same for both runs, and it indicates how
3101 * many supers on this one device should be written.
3102 *
3103 * max_mirrors == 0 means to write them all.
3104 */
3105static int write_dev_supers(struct btrfs_device *device,
3106			    struct btrfs_super_block *sb,
3107			    int do_barriers, int wait, int max_mirrors)
3108{
3109	struct buffer_head *bh;
3110	int i;
3111	int ret;
3112	int errors = 0;
3113	u32 crc;
3114	u64 bytenr;
3115
3116	if (max_mirrors == 0)
3117		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3118
3119	for (i = 0; i < max_mirrors; i++) {
3120		bytenr = btrfs_sb_offset(i);
3121		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3122			break;
3123
3124		if (wait) {
3125			bh = __find_get_block(device->bdev, bytenr / 4096,
3126					      BTRFS_SUPER_INFO_SIZE);
3127			if (!bh) {
3128				errors++;
3129				continue;
3130			}
3131			wait_on_buffer(bh);
3132			if (!buffer_uptodate(bh))
3133				errors++;
3134
3135			/* drop our reference */
3136			brelse(bh);
3137
3138			/* drop the reference from the wait == 0 run */
3139			brelse(bh);
3140			continue;
3141		} else {
3142			btrfs_set_super_bytenr(sb, bytenr);
3143
3144			crc = ~(u32)0;
3145			crc = btrfs_csum_data((char *)sb +
3146					      BTRFS_CSUM_SIZE, crc,
3147					      BTRFS_SUPER_INFO_SIZE -
3148					      BTRFS_CSUM_SIZE);
3149			btrfs_csum_final(crc, sb->csum);
3150
3151			/*
3152			 * one reference for us, and we leave it for the
3153			 * caller
3154			 */
3155			bh = __getblk(device->bdev, bytenr / 4096,
3156				      BTRFS_SUPER_INFO_SIZE);
3157			if (!bh) {
3158				printk(KERN_ERR "BTRFS: couldn't get super "
3159				       "buffer head for bytenr %Lu\n", bytenr);
3160				errors++;
3161				continue;
3162			}
3163
3164			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3165
3166			/* one reference for submit_bh */
3167			get_bh(bh);
3168
3169			set_buffer_uptodate(bh);
3170			lock_buffer(bh);
3171			bh->b_end_io = btrfs_end_buffer_write_sync;
3172			bh->b_private = device;
3173		}
3174
3175		/*
3176		 * we fua the first super.  The others we allow
3177		 * to go down lazy.
3178		 */
3179		if (i == 0)
3180			ret = btrfsic_submit_bh(WRITE_FUA, bh);
3181		else
3182			ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3183		if (ret)
3184			errors++;
3185	}
3186	return errors < i ? 0 : -1;
3187}
3188
3189/*
3190 * endio for the write_dev_flush, this will wake anyone waiting
3191 * for the barrier when it is done
3192 */
3193static void btrfs_end_empty_barrier(struct bio *bio, int err)
3194{
3195	if (err) {
3196		if (err == -EOPNOTSUPP)
3197			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3198		clear_bit(BIO_UPTODATE, &bio->bi_flags);
3199	}
3200	if (bio->bi_private)
3201		complete(bio->bi_private);
3202	bio_put(bio);
3203}
3204
3205/*
3206 * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3207 * sent down.  With wait == 1, it waits for the previous flush.
3208 *
3209 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3210 * capable
3211 */
3212static int write_dev_flush(struct btrfs_device *device, int wait)
3213{
3214	struct bio *bio;
3215	int ret = 0;
3216
3217	if (device->nobarriers)
3218		return 0;
3219
3220	if (wait) {
3221		bio = device->flush_bio;
3222		if (!bio)
3223			return 0;
3224
3225		wait_for_completion(&device->flush_wait);
3226
3227		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3228			printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3229				      rcu_str_deref(device->name));
3230			device->nobarriers = 1;
3231		} else if (!bio_flagged(bio, BIO_UPTODATE)) {
 
3232			ret = -EIO;
3233			btrfs_dev_stat_inc_and_print(device,
3234				BTRFS_DEV_STAT_FLUSH_ERRS);
 
3235		}
3236
3237		/* drop the reference from the wait == 0 run */
3238		bio_put(bio);
3239		device->flush_bio = NULL;
3240
3241		return ret;
3242	}
3243
3244	/*
3245	 * one reference for us, and we leave it for the
3246	 * caller
3247	 */
3248	device->flush_bio = NULL;
3249	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3250	if (!bio)
3251		return -ENOMEM;
3252
3253	bio->bi_end_io = btrfs_end_empty_barrier;
3254	bio->bi_bdev = device->bdev;
3255	init_completion(&device->flush_wait);
3256	bio->bi_private = &device->flush_wait;
3257	device->flush_bio = bio;
3258
3259	bio_get(bio);
3260	btrfsic_submit_bio(WRITE_FLUSH, bio);
3261
3262	return 0;
3263}
3264
3265/*
3266 * send an empty flush down to each device in parallel,
3267 * then wait for them
3268 */
3269static int barrier_all_devices(struct btrfs_fs_info *info)
3270{
3271	struct list_head *head;
3272	struct btrfs_device *dev;
3273	int errors_send = 0;
3274	int errors_wait = 0;
3275	int ret;
3276
3277	/* send down all the barriers */
3278	head = &info->fs_devices->devices;
3279	list_for_each_entry_rcu(dev, head, dev_list) {
3280		if (dev->missing)
3281			continue;
3282		if (!dev->bdev) {
3283			errors_send++;
3284			continue;
3285		}
3286		if (!dev->in_fs_metadata || !dev->writeable)
3287			continue;
3288
3289		ret = write_dev_flush(dev, 0);
3290		if (ret)
3291			errors_send++;
3292	}
3293
3294	/* wait for all the barriers */
3295	list_for_each_entry_rcu(dev, head, dev_list) {
3296		if (dev->missing)
3297			continue;
3298		if (!dev->bdev) {
3299			errors_wait++;
3300			continue;
3301		}
3302		if (!dev->in_fs_metadata || !dev->writeable)
3303			continue;
3304
3305		ret = write_dev_flush(dev, 1);
3306		if (ret)
3307			errors_wait++;
3308	}
3309	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3310	    errors_wait > info->num_tolerated_disk_barrier_failures)
3311		return -EIO;
3312	return 0;
3313}
3314
3315int btrfs_calc_num_tolerated_disk_barrier_failures(
3316	struct btrfs_fs_info *fs_info)
3317{
3318	struct btrfs_ioctl_space_info space;
3319	struct btrfs_space_info *sinfo;
3320	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3321		       BTRFS_BLOCK_GROUP_SYSTEM,
3322		       BTRFS_BLOCK_GROUP_METADATA,
3323		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3324	int num_types = 4;
3325	int i;
3326	int c;
3327	int num_tolerated_disk_barrier_failures =
3328		(int)fs_info->fs_devices->num_devices;
3329
3330	for (i = 0; i < num_types; i++) {
3331		struct btrfs_space_info *tmp;
3332
3333		sinfo = NULL;
3334		rcu_read_lock();
3335		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3336			if (tmp->flags == types[i]) {
3337				sinfo = tmp;
3338				break;
3339			}
3340		}
3341		rcu_read_unlock();
3342
3343		if (!sinfo)
3344			continue;
3345
3346		down_read(&sinfo->groups_sem);
3347		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3348			if (!list_empty(&sinfo->block_groups[c])) {
3349				u64 flags;
3350
3351				btrfs_get_block_group_info(
3352					&sinfo->block_groups[c], &space);
3353				if (space.total_bytes == 0 ||
3354				    space.used_bytes == 0)
3355					continue;
3356				flags = space.flags;
3357				/*
3358				 * return
3359				 * 0: if dup, single or RAID0 is configured for
3360				 *    any of metadata, system or data, else
3361				 * 1: if RAID5 is configured, or if RAID1 or
3362				 *    RAID10 is configured and only two mirrors
3363				 *    are used, else
3364				 * 2: if RAID6 is configured, else
3365				 * num_mirrors - 1: if RAID1 or RAID10 is
3366				 *                  configured and more than
3367				 *                  2 mirrors are used.
3368				 */
3369				if (num_tolerated_disk_barrier_failures > 0 &&
3370				    ((flags & (BTRFS_BLOCK_GROUP_DUP |
3371					       BTRFS_BLOCK_GROUP_RAID0)) ||
3372				     ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3373				      == 0)))
3374					num_tolerated_disk_barrier_failures = 0;
3375				else if (num_tolerated_disk_barrier_failures > 1) {
3376					if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3377					    BTRFS_BLOCK_GROUP_RAID5 |
3378					    BTRFS_BLOCK_GROUP_RAID10)) {
3379						num_tolerated_disk_barrier_failures = 1;
3380					} else if (flags &
3381						   BTRFS_BLOCK_GROUP_RAID6) {
3382						num_tolerated_disk_barrier_failures = 2;
3383					}
3384				}
3385			}
3386		}
3387		up_read(&sinfo->groups_sem);
3388	}
3389
3390	return num_tolerated_disk_barrier_failures;
3391}
3392
3393static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3394{
3395	struct list_head *head;
3396	struct btrfs_device *dev;
3397	struct btrfs_super_block *sb;
3398	struct btrfs_dev_item *dev_item;
3399	int ret;
3400	int do_barriers;
3401	int max_errors;
3402	int total_errors = 0;
3403	u64 flags;
3404
 
3405	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3406	backup_super_roots(root->fs_info);
3407
3408	sb = root->fs_info->super_for_commit;
3409	dev_item = &sb->dev_item;
3410
3411	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3412	head = &root->fs_info->fs_devices->devices;
3413	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3414
3415	if (do_barriers) {
3416		ret = barrier_all_devices(root->fs_info);
3417		if (ret) {
3418			mutex_unlock(
3419				&root->fs_info->fs_devices->device_list_mutex);
3420			btrfs_error(root->fs_info, ret,
3421				    "errors while submitting device barriers.");
3422			return ret;
3423		}
3424	}
3425
3426	list_for_each_entry_rcu(dev, head, dev_list) {
3427		if (!dev->bdev) {
3428			total_errors++;
3429			continue;
3430		}
3431		if (!dev->in_fs_metadata || !dev->writeable)
3432			continue;
3433
3434		btrfs_set_stack_device_generation(dev_item, 0);
3435		btrfs_set_stack_device_type(dev_item, dev->type);
3436		btrfs_set_stack_device_id(dev_item, dev->devid);
3437		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3438		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3439		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3440		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3441		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3442		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3443		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3444
3445		flags = btrfs_super_flags(sb);
3446		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3447
3448		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3449		if (ret)
3450			total_errors++;
3451	}
3452	if (total_errors > max_errors) {
3453		btrfs_err(root->fs_info, "%d errors while writing supers",
3454		       total_errors);
3455		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3456
3457		/* FUA is masked off if unsupported and can't be the reason */
3458		btrfs_error(root->fs_info, -EIO,
3459			    "%d errors while writing supers", total_errors);
3460		return -EIO;
3461	}
3462
3463	total_errors = 0;
3464	list_for_each_entry_rcu(dev, head, dev_list) {
3465		if (!dev->bdev)
3466			continue;
3467		if (!dev->in_fs_metadata || !dev->writeable)
3468			continue;
3469
3470		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3471		if (ret)
3472			total_errors++;
3473	}
3474	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3475	if (total_errors > max_errors) {
3476		btrfs_error(root->fs_info, -EIO,
3477			    "%d errors while writing supers", total_errors);
3478		return -EIO;
3479	}
3480	return 0;
3481}
3482
3483int write_ctree_super(struct btrfs_trans_handle *trans,
3484		      struct btrfs_root *root, int max_mirrors)
3485{
3486	return write_all_supers(root, max_mirrors);
 
 
 
3487}
3488
3489/* Drop a fs root from the radix tree and free it. */
3490void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3491				  struct btrfs_root *root)
3492{
3493	spin_lock(&fs_info->fs_roots_radix_lock);
3494	radix_tree_delete(&fs_info->fs_roots_radix,
3495			  (unsigned long)root->root_key.objectid);
3496	spin_unlock(&fs_info->fs_roots_radix_lock);
3497
3498	if (btrfs_root_refs(&root->root_item) == 0)
3499		synchronize_srcu(&fs_info->subvol_srcu);
3500
3501	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3502		btrfs_free_log(NULL, root);
3503
3504	__btrfs_remove_free_space_cache(root->free_ino_pinned);
3505	__btrfs_remove_free_space_cache(root->free_ino_ctl);
3506	free_fs_root(root);
3507}
3508
3509static void free_fs_root(struct btrfs_root *root)
3510{
3511	iput(root->cache_inode);
3512	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3513	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3514	root->orphan_block_rsv = NULL;
3515	if (root->anon_dev)
3516		free_anon_bdev(root->anon_dev);
3517	if (root->subv_writers)
3518		btrfs_free_subvolume_writers(root->subv_writers);
3519	free_extent_buffer(root->node);
3520	free_extent_buffer(root->commit_root);
3521	kfree(root->free_ino_ctl);
3522	kfree(root->free_ino_pinned);
3523	kfree(root->name);
3524	btrfs_put_fs_root(root);
3525}
3526
3527void btrfs_free_fs_root(struct btrfs_root *root)
3528{
3529	free_fs_root(root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3530}
3531
3532int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3533{
3534	u64 root_objectid = 0;
3535	struct btrfs_root *gang[8];
3536	int i;
3537	int ret;
3538
3539	while (1) {
3540		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3541					     (void **)gang, root_objectid,
3542					     ARRAY_SIZE(gang));
3543		if (!ret)
3544			break;
3545
3546		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3547		for (i = 0; i < ret; i++) {
3548			int err;
3549
3550			root_objectid = gang[i]->root_key.objectid;
3551			err = btrfs_orphan_cleanup(gang[i]);
3552			if (err)
3553				return err;
3554		}
3555		root_objectid++;
3556	}
3557	return 0;
3558}
3559
3560int btrfs_commit_super(struct btrfs_root *root)
3561{
3562	struct btrfs_trans_handle *trans;
 
3563
3564	mutex_lock(&root->fs_info->cleaner_mutex);
3565	btrfs_run_delayed_iputs(root);
 
3566	mutex_unlock(&root->fs_info->cleaner_mutex);
3567	wake_up_process(root->fs_info->cleaner_kthread);
3568
3569	/* wait until ongoing cleanup work done */
3570	down_write(&root->fs_info->cleanup_work_sem);
3571	up_write(&root->fs_info->cleanup_work_sem);
3572
3573	trans = btrfs_join_transaction(root);
3574	if (IS_ERR(trans))
3575		return PTR_ERR(trans);
3576	return btrfs_commit_transaction(trans, root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3577}
3578
3579int close_ctree(struct btrfs_root *root)
3580{
3581	struct btrfs_fs_info *fs_info = root->fs_info;
3582	int ret;
3583
3584	fs_info->closing = 1;
3585	smp_mb();
3586
3587	/* wait for the uuid_scan task to finish */
3588	down(&fs_info->uuid_tree_rescan_sem);
3589	/* avoid complains from lockdep et al., set sem back to initial state */
3590	up(&fs_info->uuid_tree_rescan_sem);
3591
3592	/* pause restriper - we want to resume on mount */
3593	btrfs_pause_balance(fs_info);
3594
3595	btrfs_dev_replace_suspend_for_unmount(fs_info);
3596
3597	btrfs_scrub_cancel(fs_info);
3598
3599	/* wait for any defraggers to finish */
3600	wait_event(fs_info->transaction_wait,
3601		   (atomic_read(&fs_info->defrag_running) == 0));
3602
3603	/* clear out the rbtree of defraggable inodes */
3604	btrfs_cleanup_defrag_inodes(fs_info);
3605
 
 
 
 
 
 
 
 
 
 
 
 
 
3606	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3607		ret = btrfs_commit_super(root);
3608		if (ret)
3609			btrfs_err(root->fs_info, "commit super ret %d", ret);
3610	}
3611
3612	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3613		btrfs_error_commit_super(root);
 
 
 
 
 
3614
3615	kthread_stop(fs_info->transaction_kthread);
3616	kthread_stop(fs_info->cleaner_kthread);
3617
3618	fs_info->closing = 2;
3619	smp_mb();
3620
3621	btrfs_free_qgroup_config(root->fs_info);
3622
3623	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3624		btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3625		       percpu_counter_sum(&fs_info->delalloc_bytes));
3626	}
3627
3628	btrfs_sysfs_remove_one(fs_info);
3629
3630	del_fs_roots(fs_info);
3631
3632	btrfs_put_block_group_cache(fs_info);
 
 
 
 
 
 
 
3633
3634	btrfs_free_block_groups(fs_info);
3635
3636	btrfs_stop_all_workers(fs_info);
3637
3638	free_root_pointers(fs_info, 1);
3639
3640	iput(fs_info->btree_inode);
3641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3642#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3643	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3644		btrfsic_unmount(root, fs_info->fs_devices);
3645#endif
3646
3647	btrfs_close_devices(fs_info->fs_devices);
3648	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3649
3650	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3651	percpu_counter_destroy(&fs_info->delalloc_bytes);
3652	percpu_counter_destroy(&fs_info->bio_counter);
3653	bdi_destroy(&fs_info->bdi);
3654	cleanup_srcu_struct(&fs_info->subvol_srcu);
3655
3656	btrfs_free_stripe_hash_table(fs_info);
3657
3658	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3659	root->orphan_block_rsv = NULL;
3660
3661	return 0;
3662}
3663
3664int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3665			  int atomic)
3666{
3667	int ret;
3668	struct inode *btree_inode = buf->pages[0]->mapping->host;
3669
3670	ret = extent_buffer_uptodate(buf);
3671	if (!ret)
3672		return ret;
3673
3674	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3675				    parent_transid, atomic);
3676	if (ret == -EAGAIN)
3677		return ret;
3678	return !ret;
3679}
3680
3681int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3682{
3683	return set_extent_buffer_uptodate(buf);
3684}
3685
3686void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3687{
3688	struct btrfs_root *root;
3689	u64 transid = btrfs_header_generation(buf);
3690	int was_dirty;
3691
3692#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3693	/*
3694	 * This is a fast path so only do this check if we have sanity tests
3695	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3696	 * outside of the sanity tests.
3697	 */
3698	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3699		return;
3700#endif
3701	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3702	btrfs_assert_tree_locked(buf);
3703	if (transid != root->fs_info->generation)
3704		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3705		       "found %llu running %llu\n",
3706			buf->start, transid, root->fs_info->generation);
 
 
 
 
3707	was_dirty = set_extent_buffer_dirty(buf);
3708	if (!was_dirty)
3709		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3710				     buf->len,
3711				     root->fs_info->dirty_metadata_batch);
 
3712}
3713
3714static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3715					int flush_delayed)
3716{
3717	/*
3718	 * looks as though older kernels can get into trouble with
3719	 * this code, they end up stuck in balance_dirty_pages forever
3720	 */
3721	int ret;
 
3722
3723	if (current->flags & PF_MEMALLOC)
3724		return;
3725
3726	if (flush_delayed)
3727		btrfs_balance_delayed_items(root);
 
3728
3729	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3730				     BTRFS_DIRTY_METADATA_THRESH);
3731	if (ret > 0) {
3732		balance_dirty_pages_ratelimited(
3733				   root->fs_info->btree_inode->i_mapping);
3734	}
3735	return;
3736}
3737
3738void btrfs_btree_balance_dirty(struct btrfs_root *root)
3739{
3740	__btrfs_btree_balance_dirty(root, 1);
3741}
 
 
 
 
3742
3743void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3744{
3745	__btrfs_btree_balance_dirty(root, 0);
 
 
 
 
 
 
 
3746}
3747
3748int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3749{
3750	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3751	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3752}
3753
3754static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3755			      int read_only)
3756{
 
 
 
 
3757	/*
3758	 * Placeholder for checks
 
3759	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3760	return 0;
3761}
3762
3763static void btrfs_error_commit_super(struct btrfs_root *root)
3764{
 
 
3765	mutex_lock(&root->fs_info->cleaner_mutex);
3766	btrfs_run_delayed_iputs(root);
3767	mutex_unlock(&root->fs_info->cleaner_mutex);
3768
3769	down_write(&root->fs_info->cleanup_work_sem);
3770	up_write(&root->fs_info->cleanup_work_sem);
3771
3772	/* cleanup FS via transaction */
3773	btrfs_cleanup_transaction(root);
 
 
 
 
3774}
3775
3776static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3777					     struct btrfs_root *root)
3778{
3779	struct btrfs_inode *btrfs_inode;
3780	struct list_head splice;
3781
3782	INIT_LIST_HEAD(&splice);
3783
3784	mutex_lock(&root->fs_info->ordered_operations_mutex);
3785	spin_lock(&root->fs_info->ordered_root_lock);
3786
3787	list_splice_init(&t->ordered_operations, &splice);
3788	while (!list_empty(&splice)) {
3789		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3790					 ordered_operations);
3791
3792		list_del_init(&btrfs_inode->ordered_operations);
3793		spin_unlock(&root->fs_info->ordered_root_lock);
3794
3795		btrfs_invalidate_inodes(btrfs_inode->root);
3796
3797		spin_lock(&root->fs_info->ordered_root_lock);
3798	}
3799
3800	spin_unlock(&root->fs_info->ordered_root_lock);
3801	mutex_unlock(&root->fs_info->ordered_operations_mutex);
3802}
3803
3804static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3805{
3806	struct btrfs_ordered_extent *ordered;
3807
3808	spin_lock(&root->ordered_extent_lock);
3809	/*
3810	 * This will just short circuit the ordered completion stuff which will
3811	 * make sure the ordered extent gets properly cleaned up.
3812	 */
3813	list_for_each_entry(ordered, &root->ordered_extents,
3814			    root_extent_list)
3815		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3816	spin_unlock(&root->ordered_extent_lock);
3817}
3818
3819static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3820{
3821	struct btrfs_root *root;
3822	struct list_head splice;
 
 
3823
3824	INIT_LIST_HEAD(&splice);
3825
3826	spin_lock(&fs_info->ordered_root_lock);
3827	list_splice_init(&fs_info->ordered_roots, &splice);
 
3828	while (!list_empty(&splice)) {
3829		root = list_first_entry(&splice, struct btrfs_root,
3830					ordered_root);
3831		list_move_tail(&root->ordered_root,
3832			       &fs_info->ordered_roots);
3833
3834		spin_unlock(&fs_info->ordered_root_lock);
3835		btrfs_destroy_ordered_extents(root);
3836
3837		cond_resched();
3838		spin_lock(&fs_info->ordered_root_lock);
 
 
 
 
 
 
 
 
 
3839	}
3840	spin_unlock(&fs_info->ordered_root_lock);
 
3841}
3842
3843static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3844				      struct btrfs_root *root)
3845{
3846	struct rb_node *node;
3847	struct btrfs_delayed_ref_root *delayed_refs;
3848	struct btrfs_delayed_ref_node *ref;
3849	int ret = 0;
3850
3851	delayed_refs = &trans->delayed_refs;
3852
3853	spin_lock(&delayed_refs->lock);
3854	if (atomic_read(&delayed_refs->num_entries) == 0) {
3855		spin_unlock(&delayed_refs->lock);
3856		btrfs_info(root->fs_info, "delayed_refs has NO entry");
3857		return ret;
3858	}
3859
3860	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3861		struct btrfs_delayed_ref_head *head;
3862		bool pin_bytes = false;
3863
3864		head = rb_entry(node, struct btrfs_delayed_ref_head,
3865				href_node);
3866		if (!mutex_trylock(&head->mutex)) {
3867			atomic_inc(&head->node.refs);
3868			spin_unlock(&delayed_refs->lock);
3869
3870			mutex_lock(&head->mutex);
3871			mutex_unlock(&head->mutex);
3872			btrfs_put_delayed_ref(&head->node);
3873			spin_lock(&delayed_refs->lock);
3874			continue;
3875		}
3876		spin_lock(&head->lock);
3877		while ((node = rb_first(&head->ref_root)) != NULL) {
3878			ref = rb_entry(node, struct btrfs_delayed_ref_node,
3879				       rb_node);
3880			ref->in_tree = 0;
3881			rb_erase(&ref->rb_node, &head->ref_root);
3882			atomic_dec(&delayed_refs->num_entries);
3883			btrfs_put_delayed_ref(ref);
3884		}
3885		if (head->must_insert_reserved)
3886			pin_bytes = true;
3887		btrfs_free_delayed_extent_op(head->extent_op);
3888		delayed_refs->num_heads--;
3889		if (head->processing == 0)
3890			delayed_refs->num_heads_ready--;
3891		atomic_dec(&delayed_refs->num_entries);
3892		head->node.in_tree = 0;
3893		rb_erase(&head->href_node, &delayed_refs->href_root);
3894		spin_unlock(&head->lock);
3895		spin_unlock(&delayed_refs->lock);
3896		mutex_unlock(&head->mutex);
3897
3898		if (pin_bytes)
3899			btrfs_pin_extent(root, head->node.bytenr,
3900					 head->node.num_bytes, 1);
3901		btrfs_put_delayed_ref(&head->node);
3902		cond_resched();
3903		spin_lock(&delayed_refs->lock);
3904	}
3905
3906	spin_unlock(&delayed_refs->lock);
3907
3908	return ret;
3909}
3910
3911static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3912{
3913	struct btrfs_inode *btrfs_inode;
3914	struct list_head splice;
3915
3916	INIT_LIST_HEAD(&splice);
3917
3918	spin_lock(&root->delalloc_lock);
3919	list_splice_init(&root->delalloc_inodes, &splice);
3920
3921	while (!list_empty(&splice)) {
3922		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3923					       delalloc_inodes);
 
3924
3925		list_del_init(&btrfs_inode->delalloc_inodes);
3926		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3927			  &btrfs_inode->runtime_flags);
3928		spin_unlock(&root->delalloc_lock);
3929
3930		btrfs_invalidate_inodes(btrfs_inode->root);
3931
3932		spin_lock(&root->delalloc_lock);
3933	}
3934
3935	spin_unlock(&root->delalloc_lock);
3936}
3937
3938static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3939{
3940	struct btrfs_root *root;
3941	struct list_head splice;
3942
3943	INIT_LIST_HEAD(&splice);
3944
3945	spin_lock(&fs_info->delalloc_root_lock);
3946	list_splice_init(&fs_info->delalloc_roots, &splice);
 
3947	while (!list_empty(&splice)) {
3948		root = list_first_entry(&splice, struct btrfs_root,
3949					 delalloc_root);
3950		list_del_init(&root->delalloc_root);
3951		root = btrfs_grab_fs_root(root);
3952		BUG_ON(!root);
3953		spin_unlock(&fs_info->delalloc_root_lock);
3954
3955		btrfs_destroy_delalloc_inodes(root);
3956		btrfs_put_fs_root(root);
3957
3958		spin_lock(&fs_info->delalloc_root_lock);
3959	}
3960	spin_unlock(&fs_info->delalloc_root_lock);
 
3961}
3962
3963static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3964					struct extent_io_tree *dirty_pages,
3965					int mark)
3966{
3967	int ret;
 
 
3968	struct extent_buffer *eb;
3969	u64 start = 0;
3970	u64 end;
 
 
3971
3972	while (1) {
3973		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3974					    mark, NULL);
3975		if (ret)
3976			break;
3977
3978		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3979		while (start <= end) {
3980			eb = btrfs_find_tree_block(root, start,
3981						   root->leafsize);
3982			start += root->leafsize;
3983			if (!eb)
3984				continue;
3985			wait_on_extent_buffer_writeback(eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3986
3987			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3988					       &eb->bflags))
3989				clear_extent_buffer_dirty(eb);
3990			free_extent_buffer_stale(eb);
3991		}
3992	}
3993
3994	return ret;
3995}
3996
3997static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3998				       struct extent_io_tree *pinned_extents)
3999{
4000	struct extent_io_tree *unpin;
4001	u64 start;
4002	u64 end;
4003	int ret;
4004	bool loop = true;
4005
4006	unpin = pinned_extents;
4007again:
4008	while (1) {
4009		ret = find_first_extent_bit(unpin, 0, &start, &end,
4010					    EXTENT_DIRTY, NULL);
4011		if (ret)
4012			break;
4013
4014		/* opt_discard */
4015		if (btrfs_test_opt(root, DISCARD))
4016			ret = btrfs_error_discard_extent(root, start,
4017							 end + 1 - start,
4018							 NULL);
4019
4020		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4021		btrfs_error_unpin_extent_range(root, start, end);
4022		cond_resched();
4023	}
4024
4025	if (loop) {
4026		if (unpin == &root->fs_info->freed_extents[0])
4027			unpin = &root->fs_info->freed_extents[1];
4028		else
4029			unpin = &root->fs_info->freed_extents[0];
4030		loop = false;
4031		goto again;
4032	}
4033
4034	return 0;
4035}
4036
4037void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4038				   struct btrfs_root *root)
4039{
4040	btrfs_destroy_ordered_operations(cur_trans, root);
4041
4042	btrfs_destroy_delayed_refs(cur_trans, root);
 
 
4043
4044	cur_trans->state = TRANS_STATE_COMMIT_START;
 
 
4045	wake_up(&root->fs_info->transaction_blocked_wait);
4046
4047	cur_trans->state = TRANS_STATE_UNBLOCKED;
4048	wake_up(&root->fs_info->transaction_wait);
4049
 
 
 
4050	btrfs_destroy_delayed_inodes(root);
4051	btrfs_assert_delayed_root_empty(root);
4052
 
 
4053	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4054				     EXTENT_DIRTY);
4055	btrfs_destroy_pinned_extent(root,
4056				    root->fs_info->pinned_extents);
4057
4058	cur_trans->state =TRANS_STATE_COMPLETED;
4059	wake_up(&cur_trans->commit_wait);
4060
4061	/*
4062	memset(cur_trans, 0, sizeof(*cur_trans));
4063	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4064	*/
4065}
4066
4067static int btrfs_cleanup_transaction(struct btrfs_root *root)
4068{
4069	struct btrfs_transaction *t;
 
4070
4071	mutex_lock(&root->fs_info->transaction_kthread_mutex);
4072
4073	spin_lock(&root->fs_info->trans_lock);
4074	while (!list_empty(&root->fs_info->trans_list)) {
4075		t = list_first_entry(&root->fs_info->trans_list,
4076				     struct btrfs_transaction, list);
4077		if (t->state >= TRANS_STATE_COMMIT_START) {
4078			atomic_inc(&t->use_count);
4079			spin_unlock(&root->fs_info->trans_lock);
4080			btrfs_wait_for_commit(root, t->transid);
4081			btrfs_put_transaction(t);
4082			spin_lock(&root->fs_info->trans_lock);
4083			continue;
4084		}
4085		if (t == root->fs_info->running_transaction) {
4086			t->state = TRANS_STATE_COMMIT_DOING;
4087			spin_unlock(&root->fs_info->trans_lock);
4088			/*
4089			 * We wait for 0 num_writers since we don't hold a trans
4090			 * handle open currently for this transaction.
4091			 */
4092			wait_event(t->writer_wait,
4093				   atomic_read(&t->num_writers) == 0);
4094		} else {
4095			spin_unlock(&root->fs_info->trans_lock);
4096		}
4097		btrfs_cleanup_one_transaction(t, root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4098
4099		spin_lock(&root->fs_info->trans_lock);
4100		if (t == root->fs_info->running_transaction)
4101			root->fs_info->running_transaction = NULL;
4102		list_del_init(&t->list);
4103		spin_unlock(&root->fs_info->trans_lock);
4104
4105		btrfs_put_transaction(t);
4106		trace_btrfs_transaction_commit(root);
4107		spin_lock(&root->fs_info->trans_lock);
 
 
 
 
 
 
 
4108	}
 
 
 
4109	spin_unlock(&root->fs_info->trans_lock);
4110	btrfs_destroy_all_ordered_extents(root->fs_info);
4111	btrfs_destroy_delayed_inodes(root);
4112	btrfs_assert_delayed_root_empty(root);
4113	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4114	btrfs_destroy_all_delalloc_inodes(root->fs_info);
4115	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4116
4117	return 0;
4118}
4119
4120static struct extent_io_ops btree_extent_io_ops = {
 
4121	.readpage_end_io_hook = btree_readpage_end_io_hook,
4122	.readpage_io_failed_hook = btree_io_failed_hook,
4123	.submit_bio_hook = btree_submit_bio_hook,
4124	/* note we're sharing with inode.c for the merge bio hook */
4125	.merge_bio_hook = btrfs_merge_bio_hook,
4126};
v3.5.6
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/blkdev.h>
  21#include <linux/scatterlist.h>
  22#include <linux/swap.h>
  23#include <linux/radix-tree.h>
  24#include <linux/writeback.h>
  25#include <linux/buffer_head.h>
  26#include <linux/workqueue.h>
  27#include <linux/kthread.h>
  28#include <linux/freezer.h>
  29#include <linux/crc32c.h>
  30#include <linux/slab.h>
  31#include <linux/migrate.h>
  32#include <linux/ratelimit.h>
 
 
  33#include <asm/unaligned.h>
  34#include "compat.h"
  35#include "ctree.h"
  36#include "disk-io.h"
 
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "volumes.h"
  40#include "print-tree.h"
  41#include "async-thread.h"
  42#include "locking.h"
  43#include "tree-log.h"
  44#include "free-space-cache.h"
  45#include "inode-map.h"
  46#include "check-integrity.h"
  47#include "rcu-string.h"
 
 
 
 
 
 
 
  48
  49static struct extent_io_ops btree_extent_io_ops;
  50static void end_workqueue_fn(struct btrfs_work *work);
  51static void free_fs_root(struct btrfs_root *root);
  52static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  53				    int read_only);
  54static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
 
  55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  57				      struct btrfs_root *root);
  58static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  59static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  60static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  61					struct extent_io_tree *dirty_pages,
  62					int mark);
  63static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  64				       struct extent_io_tree *pinned_extents);
 
 
  65
  66/*
  67 * end_io_wq structs are used to do processing in task context when an IO is
  68 * complete.  This is used during reads to verify checksums, and it is used
  69 * by writes to insert metadata for new file extents after IO is complete.
  70 */
  71struct end_io_wq {
  72	struct bio *bio;
  73	bio_end_io_t *end_io;
  74	void *private;
  75	struct btrfs_fs_info *info;
  76	int error;
  77	int metadata;
  78	struct list_head list;
  79	struct btrfs_work work;
  80};
  81
  82/*
  83 * async submit bios are used to offload expensive checksumming
  84 * onto the worker threads.  They checksum file and metadata bios
  85 * just before they are sent down the IO stack.
  86 */
  87struct async_submit_bio {
  88	struct inode *inode;
  89	struct bio *bio;
  90	struct list_head list;
  91	extent_submit_bio_hook_t *submit_bio_start;
  92	extent_submit_bio_hook_t *submit_bio_done;
  93	int rw;
  94	int mirror_num;
  95	unsigned long bio_flags;
  96	/*
  97	 * bio_offset is optional, can be used if the pages in the bio
  98	 * can't tell us where in the file the bio should go
  99	 */
 100	u64 bio_offset;
 101	struct btrfs_work work;
 102	int error;
 103};
 104
 105/*
 106 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 107 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 108 * the level the eb occupies in the tree.
 109 *
 110 * Different roots are used for different purposes and may nest inside each
 111 * other and they require separate keysets.  As lockdep keys should be
 112 * static, assign keysets according to the purpose of the root as indicated
 113 * by btrfs_root->objectid.  This ensures that all special purpose roots
 114 * have separate keysets.
 115 *
 116 * Lock-nesting across peer nodes is always done with the immediate parent
 117 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 118 * subclass to avoid triggering lockdep warning in such cases.
 119 *
 120 * The key is set by the readpage_end_io_hook after the buffer has passed
 121 * csum validation but before the pages are unlocked.  It is also set by
 122 * btrfs_init_new_buffer on freshly allocated blocks.
 123 *
 124 * We also add a check to make sure the highest level of the tree is the
 125 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 126 * needs update as well.
 127 */
 128#ifdef CONFIG_DEBUG_LOCK_ALLOC
 129# if BTRFS_MAX_LEVEL != 8
 130#  error
 131# endif
 132
 133static struct btrfs_lockdep_keyset {
 134	u64			id;		/* root objectid */
 135	const char		*name_stem;	/* lock name stem */
 136	char			names[BTRFS_MAX_LEVEL + 1][20];
 137	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
 138} btrfs_lockdep_keysets[] = {
 139	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
 140	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
 141	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
 142	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
 143	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
 144	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
 145	{ .id = BTRFS_ORPHAN_OBJECTID,		.name_stem = "orphan"	},
 146	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
 147	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
 148	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
 
 149	{ .id = 0,				.name_stem = "tree"	},
 150};
 151
 152void __init btrfs_init_lockdep(void)
 153{
 154	int i, j;
 155
 156	/* initialize lockdep class names */
 157	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 158		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 159
 160		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 161			snprintf(ks->names[j], sizeof(ks->names[j]),
 162				 "btrfs-%s-%02d", ks->name_stem, j);
 163	}
 164}
 165
 166void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 167				    int level)
 168{
 169	struct btrfs_lockdep_keyset *ks;
 170
 171	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 172
 173	/* find the matching keyset, id 0 is the default entry */
 174	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 175		if (ks->id == objectid)
 176			break;
 177
 178	lockdep_set_class_and_name(&eb->lock,
 179				   &ks->keys[level], ks->names[level]);
 180}
 181
 182#endif
 183
 184/*
 185 * extents on the btree inode are pretty simple, there's one extent
 186 * that covers the entire device
 187 */
 188static struct extent_map *btree_get_extent(struct inode *inode,
 189		struct page *page, size_t pg_offset, u64 start, u64 len,
 190		int create)
 191{
 192	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 193	struct extent_map *em;
 194	int ret;
 195
 196	read_lock(&em_tree->lock);
 197	em = lookup_extent_mapping(em_tree, start, len);
 198	if (em) {
 199		em->bdev =
 200			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 201		read_unlock(&em_tree->lock);
 202		goto out;
 203	}
 204	read_unlock(&em_tree->lock);
 205
 206	em = alloc_extent_map();
 207	if (!em) {
 208		em = ERR_PTR(-ENOMEM);
 209		goto out;
 210	}
 211	em->start = 0;
 212	em->len = (u64)-1;
 213	em->block_len = (u64)-1;
 214	em->block_start = 0;
 215	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 216
 217	write_lock(&em_tree->lock);
 218	ret = add_extent_mapping(em_tree, em);
 219	if (ret == -EEXIST) {
 220		u64 failed_start = em->start;
 221		u64 failed_len = em->len;
 222
 223		free_extent_map(em);
 224		em = lookup_extent_mapping(em_tree, start, len);
 225		if (em) {
 226			ret = 0;
 227		} else {
 228			em = lookup_extent_mapping(em_tree, failed_start,
 229						   failed_len);
 230			ret = -EIO;
 231		}
 232	} else if (ret) {
 233		free_extent_map(em);
 234		em = NULL;
 235	}
 236	write_unlock(&em_tree->lock);
 237
 238	if (ret)
 239		em = ERR_PTR(ret);
 240out:
 241	return em;
 242}
 243
 244u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
 245{
 246	return crc32c(seed, data, len);
 247}
 248
 249void btrfs_csum_final(u32 crc, char *result)
 250{
 251	put_unaligned_le32(~crc, result);
 252}
 253
 254/*
 255 * compute the csum for a btree block, and either verify it or write it
 256 * into the csum field of the block.
 257 */
 258static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
 259			   int verify)
 260{
 261	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
 262	char *result = NULL;
 263	unsigned long len;
 264	unsigned long cur_len;
 265	unsigned long offset = BTRFS_CSUM_SIZE;
 266	char *kaddr;
 267	unsigned long map_start;
 268	unsigned long map_len;
 269	int err;
 270	u32 crc = ~(u32)0;
 271	unsigned long inline_result;
 272
 273	len = buf->len - offset;
 274	while (len > 0) {
 275		err = map_private_extent_buffer(buf, offset, 32,
 276					&kaddr, &map_start, &map_len);
 277		if (err)
 278			return 1;
 279		cur_len = min(len, map_len - (offset - map_start));
 280		crc = btrfs_csum_data(root, kaddr + offset - map_start,
 281				      crc, cur_len);
 282		len -= cur_len;
 283		offset += cur_len;
 284	}
 285	if (csum_size > sizeof(inline_result)) {
 286		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
 287		if (!result)
 288			return 1;
 289	} else {
 290		result = (char *)&inline_result;
 291	}
 292
 293	btrfs_csum_final(crc, result);
 294
 295	if (verify) {
 296		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
 297			u32 val;
 298			u32 found = 0;
 299			memcpy(&found, result, csum_size);
 300
 301			read_extent_buffer(buf, &val, 0, csum_size);
 302			printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
 303				       "failed on %llu wanted %X found %X "
 304				       "level %d\n",
 305				       root->fs_info->sb->s_id,
 306				       (unsigned long long)buf->start, val, found,
 307				       btrfs_header_level(buf));
 308			if (result != (char *)&inline_result)
 309				kfree(result);
 310			return 1;
 311		}
 312	} else {
 313		write_extent_buffer(buf, result, 0, csum_size);
 314	}
 315	if (result != (char *)&inline_result)
 316		kfree(result);
 317	return 0;
 318}
 319
 320/*
 321 * we can't consider a given block up to date unless the transid of the
 322 * block matches the transid in the parent node's pointer.  This is how we
 323 * detect blocks that either didn't get written at all or got written
 324 * in the wrong place.
 325 */
 326static int verify_parent_transid(struct extent_io_tree *io_tree,
 327				 struct extent_buffer *eb, u64 parent_transid,
 328				 int atomic)
 329{
 330	struct extent_state *cached_state = NULL;
 331	int ret;
 
 
 332
 333	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 334		return 0;
 335
 336	if (atomic)
 337		return -EAGAIN;
 338
 
 
 
 
 
 339	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 340			 0, &cached_state);
 341	if (extent_buffer_uptodate(eb) &&
 342	    btrfs_header_generation(eb) == parent_transid) {
 343		ret = 0;
 344		goto out;
 345	}
 346	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
 347		       "found %llu\n",
 348		       (unsigned long long)eb->start,
 349		       (unsigned long long)parent_transid,
 350		       (unsigned long long)btrfs_header_generation(eb));
 351	ret = 1;
 352	clear_extent_buffer_uptodate(eb);
 
 
 
 
 
 
 
 
 
 
 353out:
 354	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 355			     &cached_state, GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 356	return ret;
 357}
 358
 359/*
 360 * helper to read a given tree block, doing retries as required when
 361 * the checksums don't match and we have alternate mirrors to try.
 362 */
 363static int btree_read_extent_buffer_pages(struct btrfs_root *root,
 364					  struct extent_buffer *eb,
 365					  u64 start, u64 parent_transid)
 366{
 367	struct extent_io_tree *io_tree;
 368	int failed = 0;
 369	int ret;
 370	int num_copies = 0;
 371	int mirror_num = 0;
 372	int failed_mirror = 0;
 373
 374	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 375	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
 376	while (1) {
 377		ret = read_extent_buffer_pages(io_tree, eb, start,
 378					       WAIT_COMPLETE,
 379					       btree_get_extent, mirror_num);
 380		if (!ret && !verify_parent_transid(io_tree, eb,
 
 381						   parent_transid, 0))
 382			break;
 
 
 
 383
 384		/*
 385		 * This buffer's crc is fine, but its contents are corrupted, so
 386		 * there is no reason to read the other copies, they won't be
 387		 * any less wrong.
 388		 */
 389		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
 390			break;
 391
 392		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
 393					      eb->start, eb->len);
 394		if (num_copies == 1)
 395			break;
 396
 397		if (!failed_mirror) {
 398			failed = 1;
 399			failed_mirror = eb->read_mirror;
 400		}
 401
 402		mirror_num++;
 403		if (mirror_num == failed_mirror)
 404			mirror_num++;
 405
 406		if (mirror_num > num_copies)
 407			break;
 408	}
 409
 410	if (failed && !ret)
 411		repair_eb_io_failure(root, eb, failed_mirror);
 412
 413	return ret;
 414}
 415
 416/*
 417 * checksum a dirty tree block before IO.  This has extra checks to make sure
 418 * we only fill in the checksum field in the first page of a multi-page block
 419 */
 420
 421static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
 422{
 423	struct extent_io_tree *tree;
 424	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
 425	u64 found_start;
 426	struct extent_buffer *eb;
 427
 428	tree = &BTRFS_I(page->mapping->host)->io_tree;
 429
 430	eb = (struct extent_buffer *)page->private;
 431	if (page != eb->pages[0])
 432		return 0;
 433	found_start = btrfs_header_bytenr(eb);
 434	if (found_start != start) {
 435		WARN_ON(1);
 436		return 0;
 437	}
 438	if (eb->pages[0] != page) {
 439		WARN_ON(1);
 440		return 0;
 441	}
 442	if (!PageUptodate(page)) {
 443		WARN_ON(1);
 444		return 0;
 445	}
 446	csum_tree_block(root, eb, 0);
 447	return 0;
 448}
 449
 450static int check_tree_block_fsid(struct btrfs_root *root,
 451				 struct extent_buffer *eb)
 452{
 453	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
 454	u8 fsid[BTRFS_UUID_SIZE];
 455	int ret = 1;
 456
 457	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
 458			   BTRFS_FSID_SIZE);
 459	while (fs_devices) {
 460		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
 461			ret = 0;
 462			break;
 463		}
 464		fs_devices = fs_devices->seed;
 465	}
 466	return ret;
 467}
 468
 469#define CORRUPT(reason, eb, root, slot)				\
 470	printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu,"	\
 471	       "root=%llu, slot=%d\n", reason,			\
 472	       (unsigned long long)btrfs_header_bytenr(eb),	\
 473	       (unsigned long long)root->objectid, slot)
 474
 475static noinline int check_leaf(struct btrfs_root *root,
 476			       struct extent_buffer *leaf)
 477{
 478	struct btrfs_key key;
 479	struct btrfs_key leaf_key;
 480	u32 nritems = btrfs_header_nritems(leaf);
 481	int slot;
 482
 483	if (nritems == 0)
 484		return 0;
 485
 486	/* Check the 0 item */
 487	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
 488	    BTRFS_LEAF_DATA_SIZE(root)) {
 489		CORRUPT("invalid item offset size pair", leaf, root, 0);
 490		return -EIO;
 491	}
 492
 493	/*
 494	 * Check to make sure each items keys are in the correct order and their
 495	 * offsets make sense.  We only have to loop through nritems-1 because
 496	 * we check the current slot against the next slot, which verifies the
 497	 * next slot's offset+size makes sense and that the current's slot
 498	 * offset is correct.
 499	 */
 500	for (slot = 0; slot < nritems - 1; slot++) {
 501		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
 502		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
 503
 504		/* Make sure the keys are in the right order */
 505		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
 506			CORRUPT("bad key order", leaf, root, slot);
 507			return -EIO;
 508		}
 509
 510		/*
 511		 * Make sure the offset and ends are right, remember that the
 512		 * item data starts at the end of the leaf and grows towards the
 513		 * front.
 514		 */
 515		if (btrfs_item_offset_nr(leaf, slot) !=
 516			btrfs_item_end_nr(leaf, slot + 1)) {
 517			CORRUPT("slot offset bad", leaf, root, slot);
 518			return -EIO;
 519		}
 520
 521		/*
 522		 * Check to make sure that we don't point outside of the leaf,
 523		 * just incase all the items are consistent to eachother, but
 524		 * all point outside of the leaf.
 525		 */
 526		if (btrfs_item_end_nr(leaf, slot) >
 527		    BTRFS_LEAF_DATA_SIZE(root)) {
 528			CORRUPT("slot end outside of leaf", leaf, root, slot);
 529			return -EIO;
 530		}
 531	}
 532
 533	return 0;
 534}
 535
 536struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
 537				       struct page *page, int max_walk)
 
 538{
 539	struct extent_buffer *eb;
 540	u64 start = page_offset(page);
 541	u64 target = start;
 542	u64 min_start;
 543
 544	if (start < max_walk)
 545		min_start = 0;
 546	else
 547		min_start = start - max_walk;
 548
 549	while (start >= min_start) {
 550		eb = find_extent_buffer(tree, start, 0);
 551		if (eb) {
 552			/*
 553			 * we found an extent buffer and it contains our page
 554			 * horray!
 555			 */
 556			if (eb->start <= target &&
 557			    eb->start + eb->len > target)
 558				return eb;
 559
 560			/* we found an extent buffer that wasn't for us */
 561			free_extent_buffer(eb);
 562			return NULL;
 563		}
 564		if (start == 0)
 565			break;
 566		start -= PAGE_CACHE_SIZE;
 567	}
 568	return NULL;
 569}
 570
 571static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
 572			       struct extent_state *state, int mirror)
 573{
 574	struct extent_io_tree *tree;
 575	u64 found_start;
 576	int found_level;
 577	struct extent_buffer *eb;
 578	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 579	int ret = 0;
 580	int reads_done;
 581
 582	if (!page->private)
 583		goto out;
 584
 585	tree = &BTRFS_I(page->mapping->host)->io_tree;
 586	eb = (struct extent_buffer *)page->private;
 587
 588	/* the pending IO might have been the only thing that kept this buffer
 589	 * in memory.  Make sure we have a ref for all this other checks
 590	 */
 591	extent_buffer_get(eb);
 592
 593	reads_done = atomic_dec_and_test(&eb->io_pages);
 594	if (!reads_done)
 595		goto err;
 596
 597	eb->read_mirror = mirror;
 598	if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
 599		ret = -EIO;
 600		goto err;
 601	}
 602
 603	found_start = btrfs_header_bytenr(eb);
 604	if (found_start != eb->start) {
 605		printk_ratelimited(KERN_INFO "btrfs bad tree block start "
 606			       "%llu %llu\n",
 607			       (unsigned long long)found_start,
 608			       (unsigned long long)eb->start);
 609		ret = -EIO;
 610		goto err;
 611	}
 612	if (check_tree_block_fsid(root, eb)) {
 613		printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
 614			       (unsigned long long)eb->start);
 615		ret = -EIO;
 616		goto err;
 617	}
 618	found_level = btrfs_header_level(eb);
 
 
 
 
 
 
 619
 620	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 621				       eb, found_level);
 622
 623	ret = csum_tree_block(root, eb, 1);
 624	if (ret) {
 625		ret = -EIO;
 626		goto err;
 627	}
 628
 629	/*
 630	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 631	 * that we don't try and read the other copies of this block, just
 632	 * return -EIO.
 633	 */
 634	if (found_level == 0 && check_leaf(root, eb)) {
 635		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 636		ret = -EIO;
 637	}
 638
 639	if (!ret)
 640		set_extent_buffer_uptodate(eb);
 641err:
 642	if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
 643		clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
 644		btree_readahead_hook(root, eb, eb->start, ret);
 645	}
 646
 647	if (ret)
 
 
 
 
 
 
 648		clear_extent_buffer_uptodate(eb);
 
 649	free_extent_buffer(eb);
 650out:
 651	return ret;
 652}
 653
 654static int btree_io_failed_hook(struct page *page, int failed_mirror)
 655{
 656	struct extent_buffer *eb;
 657	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 658
 659	eb = (struct extent_buffer *)page->private;
 660	set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
 661	eb->read_mirror = failed_mirror;
 
 662	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 663		btree_readahead_hook(root, eb, eb->start, -EIO);
 664	return -EIO;	/* we fixed nothing */
 665}
 666
 667static void end_workqueue_bio(struct bio *bio, int err)
 668{
 669	struct end_io_wq *end_io_wq = bio->bi_private;
 670	struct btrfs_fs_info *fs_info;
 671
 672	fs_info = end_io_wq->info;
 673	end_io_wq->error = err;
 674	end_io_wq->work.func = end_workqueue_fn;
 675	end_io_wq->work.flags = 0;
 676
 677	if (bio->bi_rw & REQ_WRITE) {
 678		if (end_io_wq->metadata == 1)
 679			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
 680					   &end_io_wq->work);
 681		else if (end_io_wq->metadata == 2)
 682			btrfs_queue_worker(&fs_info->endio_freespace_worker,
 683					   &end_io_wq->work);
 
 
 
 684		else
 685			btrfs_queue_worker(&fs_info->endio_write_workers,
 686					   &end_io_wq->work);
 687	} else {
 688		if (end_io_wq->metadata)
 689			btrfs_queue_worker(&fs_info->endio_meta_workers,
 690					   &end_io_wq->work);
 
 
 
 691		else
 692			btrfs_queue_worker(&fs_info->endio_workers,
 693					   &end_io_wq->work);
 694	}
 695}
 696
 697/*
 698 * For the metadata arg you want
 699 *
 700 * 0 - if data
 701 * 1 - if normal metadta
 702 * 2 - if writing to the free space cache area
 
 703 */
 704int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 705			int metadata)
 706{
 707	struct end_io_wq *end_io_wq;
 708	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
 709	if (!end_io_wq)
 710		return -ENOMEM;
 711
 712	end_io_wq->private = bio->bi_private;
 713	end_io_wq->end_io = bio->bi_end_io;
 714	end_io_wq->info = info;
 715	end_io_wq->error = 0;
 716	end_io_wq->bio = bio;
 717	end_io_wq->metadata = metadata;
 718
 719	bio->bi_private = end_io_wq;
 720	bio->bi_end_io = end_workqueue_bio;
 721	return 0;
 722}
 723
 724unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
 725{
 726	unsigned long limit = min_t(unsigned long,
 727				    info->workers.max_workers,
 728				    info->fs_devices->open_devices);
 729	return 256 * limit;
 730}
 731
 732static void run_one_async_start(struct btrfs_work *work)
 733{
 734	struct async_submit_bio *async;
 735	int ret;
 736
 737	async = container_of(work, struct  async_submit_bio, work);
 738	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
 739				      async->mirror_num, async->bio_flags,
 740				      async->bio_offset);
 741	if (ret)
 742		async->error = ret;
 743}
 744
 745static void run_one_async_done(struct btrfs_work *work)
 746{
 747	struct btrfs_fs_info *fs_info;
 748	struct async_submit_bio *async;
 749	int limit;
 750
 751	async = container_of(work, struct  async_submit_bio, work);
 752	fs_info = BTRFS_I(async->inode)->root->fs_info;
 753
 754	limit = btrfs_async_submit_limit(fs_info);
 755	limit = limit * 2 / 3;
 756
 757	atomic_dec(&fs_info->nr_async_submits);
 758
 759	if (atomic_read(&fs_info->nr_async_submits) < limit &&
 760	    waitqueue_active(&fs_info->async_submit_wait))
 761		wake_up(&fs_info->async_submit_wait);
 762
 763	/* If an error occured we just want to clean up the bio and move on */
 764	if (async->error) {
 765		bio_endio(async->bio, async->error);
 766		return;
 767	}
 768
 769	async->submit_bio_done(async->inode, async->rw, async->bio,
 770			       async->mirror_num, async->bio_flags,
 771			       async->bio_offset);
 772}
 773
 774static void run_one_async_free(struct btrfs_work *work)
 775{
 776	struct async_submit_bio *async;
 777
 778	async = container_of(work, struct  async_submit_bio, work);
 779	kfree(async);
 780}
 781
 782int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
 783			int rw, struct bio *bio, int mirror_num,
 784			unsigned long bio_flags,
 785			u64 bio_offset,
 786			extent_submit_bio_hook_t *submit_bio_start,
 787			extent_submit_bio_hook_t *submit_bio_done)
 788{
 789	struct async_submit_bio *async;
 790
 791	async = kmalloc(sizeof(*async), GFP_NOFS);
 792	if (!async)
 793		return -ENOMEM;
 794
 795	async->inode = inode;
 796	async->rw = rw;
 797	async->bio = bio;
 798	async->mirror_num = mirror_num;
 799	async->submit_bio_start = submit_bio_start;
 800	async->submit_bio_done = submit_bio_done;
 801
 802	async->work.func = run_one_async_start;
 803	async->work.ordered_func = run_one_async_done;
 804	async->work.ordered_free = run_one_async_free;
 805
 806	async->work.flags = 0;
 807	async->bio_flags = bio_flags;
 808	async->bio_offset = bio_offset;
 809
 810	async->error = 0;
 811
 812	atomic_inc(&fs_info->nr_async_submits);
 813
 814	if (rw & REQ_SYNC)
 815		btrfs_set_work_high_prio(&async->work);
 816
 817	btrfs_queue_worker(&fs_info->workers, &async->work);
 818
 819	while (atomic_read(&fs_info->async_submit_draining) &&
 820	      atomic_read(&fs_info->nr_async_submits)) {
 821		wait_event(fs_info->async_submit_wait,
 822			   (atomic_read(&fs_info->nr_async_submits) == 0));
 823	}
 824
 825	return 0;
 826}
 827
 828static int btree_csum_one_bio(struct bio *bio)
 829{
 830	struct bio_vec *bvec = bio->bi_io_vec;
 831	int bio_index = 0;
 832	struct btrfs_root *root;
 833	int ret = 0;
 834
 835	WARN_ON(bio->bi_vcnt <= 0);
 836	while (bio_index < bio->bi_vcnt) {
 837		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 838		ret = csum_dirty_buffer(root, bvec->bv_page);
 839		if (ret)
 840			break;
 841		bio_index++;
 842		bvec++;
 843	}
 
 844	return ret;
 845}
 846
 847static int __btree_submit_bio_start(struct inode *inode, int rw,
 848				    struct bio *bio, int mirror_num,
 849				    unsigned long bio_flags,
 850				    u64 bio_offset)
 851{
 852	/*
 853	 * when we're called for a write, we're already in the async
 854	 * submission context.  Just jump into btrfs_map_bio
 855	 */
 856	return btree_csum_one_bio(bio);
 857}
 858
 859static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
 860				 int mirror_num, unsigned long bio_flags,
 861				 u64 bio_offset)
 862{
 
 
 863	/*
 864	 * when we're called for a write, we're already in the async
 865	 * submission context.  Just jump into btrfs_map_bio
 866	 */
 867	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868}
 869
 870static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
 871				 int mirror_num, unsigned long bio_flags,
 872				 u64 bio_offset)
 873{
 
 874	int ret;
 875
 876	if (!(rw & REQ_WRITE)) {
 877
 878		/*
 879		 * called for a read, do the setup so that checksum validation
 880		 * can happen in the async kernel threads
 881		 */
 882		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
 883					  bio, 1);
 884		if (ret)
 885			return ret;
 886		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
 887				     mirror_num, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 888	}
 889
 890	/*
 891	 * kthread helpers are used to submit writes so that checksumming
 892	 * can happen in parallel across all CPUs
 893	 */
 894	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
 895				   inode, rw, bio, mirror_num, 0,
 896				   bio_offset,
 897				   __btree_submit_bio_start,
 898				   __btree_submit_bio_done);
 899}
 900
 901#ifdef CONFIG_MIGRATION
 902static int btree_migratepage(struct address_space *mapping,
 903			struct page *newpage, struct page *page,
 904			enum migrate_mode mode)
 905{
 906	/*
 907	 * we can't safely write a btree page from here,
 908	 * we haven't done the locking hook
 909	 */
 910	if (PageDirty(page))
 911		return -EAGAIN;
 912	/*
 913	 * Buffers may be managed in a filesystem specific way.
 914	 * We must have no buffers or drop them.
 915	 */
 916	if (page_has_private(page) &&
 917	    !try_to_release_page(page, GFP_KERNEL))
 918		return -EAGAIN;
 919	return migrate_page(mapping, newpage, page, mode);
 920}
 921#endif
 922
 923
 924static int btree_writepages(struct address_space *mapping,
 925			    struct writeback_control *wbc)
 926{
 927	struct extent_io_tree *tree;
 928	tree = &BTRFS_I(mapping->host)->io_tree;
 
 929	if (wbc->sync_mode == WB_SYNC_NONE) {
 930		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
 931		u64 num_dirty;
 932		unsigned long thresh = 32 * 1024 * 1024;
 933
 934		if (wbc->for_kupdate)
 935			return 0;
 936
 
 937		/* this is a bit racy, but that's ok */
 938		num_dirty = root->fs_info->dirty_metadata_bytes;
 939		if (num_dirty < thresh)
 
 940			return 0;
 941	}
 942	return btree_write_cache_pages(mapping, wbc);
 943}
 944
 945static int btree_readpage(struct file *file, struct page *page)
 946{
 947	struct extent_io_tree *tree;
 948	tree = &BTRFS_I(page->mapping->host)->io_tree;
 949	return extent_read_full_page(tree, page, btree_get_extent, 0);
 950}
 951
 952static int btree_releasepage(struct page *page, gfp_t gfp_flags)
 953{
 954	if (PageWriteback(page) || PageDirty(page))
 955		return 0;
 956	/*
 957	 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
 958	 * slab allocation from alloc_extent_state down the callchain where
 959	 * it'd hit a BUG_ON as those flags are not allowed.
 960	 */
 961	gfp_flags &= ~GFP_SLAB_BUG_MASK;
 962
 963	return try_release_extent_buffer(page, gfp_flags);
 964}
 965
 966static void btree_invalidatepage(struct page *page, unsigned long offset)
 
 967{
 968	struct extent_io_tree *tree;
 969	tree = &BTRFS_I(page->mapping->host)->io_tree;
 970	extent_invalidatepage(tree, page, offset);
 971	btree_releasepage(page, GFP_NOFS);
 972	if (PagePrivate(page)) {
 973		printk(KERN_WARNING "btrfs warning page private not zero "
 974		       "on page %llu\n", (unsigned long long)page_offset(page));
 
 975		ClearPagePrivate(page);
 976		set_page_private(page, 0);
 977		page_cache_release(page);
 978	}
 979}
 980
 981static int btree_set_page_dirty(struct page *page)
 982{
 
 983	struct extent_buffer *eb;
 984
 985	BUG_ON(!PagePrivate(page));
 986	eb = (struct extent_buffer *)page->private;
 987	BUG_ON(!eb);
 988	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 989	BUG_ON(!atomic_read(&eb->refs));
 990	btrfs_assert_tree_locked(eb);
 
 991	return __set_page_dirty_nobuffers(page);
 992}
 993
 994static const struct address_space_operations btree_aops = {
 995	.readpage	= btree_readpage,
 996	.writepages	= btree_writepages,
 997	.releasepage	= btree_releasepage,
 998	.invalidatepage = btree_invalidatepage,
 999#ifdef CONFIG_MIGRATION
1000	.migratepage	= btree_migratepage,
1001#endif
1002	.set_page_dirty = btree_set_page_dirty,
1003};
1004
1005int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1006			 u64 parent_transid)
1007{
1008	struct extent_buffer *buf = NULL;
1009	struct inode *btree_inode = root->fs_info->btree_inode;
1010	int ret = 0;
1011
1012	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1013	if (!buf)
1014		return 0;
1015	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1016				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1017	free_extent_buffer(buf);
1018	return ret;
1019}
1020
1021int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1022			 int mirror_num, struct extent_buffer **eb)
1023{
1024	struct extent_buffer *buf = NULL;
1025	struct inode *btree_inode = root->fs_info->btree_inode;
1026	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1027	int ret;
1028
1029	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1030	if (!buf)
1031		return 0;
1032
1033	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1034
1035	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1036				       btree_get_extent, mirror_num);
1037	if (ret) {
1038		free_extent_buffer(buf);
1039		return ret;
1040	}
1041
1042	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1043		free_extent_buffer(buf);
1044		return -EIO;
1045	} else if (extent_buffer_uptodate(buf)) {
1046		*eb = buf;
1047	} else {
1048		free_extent_buffer(buf);
1049	}
1050	return 0;
1051}
1052
1053struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1054					    u64 bytenr, u32 blocksize)
1055{
1056	struct inode *btree_inode = root->fs_info->btree_inode;
1057	struct extent_buffer *eb;
1058	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1059				bytenr, blocksize);
1060	return eb;
1061}
1062
1063struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1064						 u64 bytenr, u32 blocksize)
1065{
1066	struct inode *btree_inode = root->fs_info->btree_inode;
1067	struct extent_buffer *eb;
1068
1069	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1070				 bytenr, blocksize);
1071	return eb;
1072}
1073
1074
1075int btrfs_write_tree_block(struct extent_buffer *buf)
1076{
1077	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1078					buf->start + buf->len - 1);
1079}
1080
1081int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1082{
1083	return filemap_fdatawait_range(buf->pages[0]->mapping,
1084				       buf->start, buf->start + buf->len - 1);
1085}
1086
1087struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1088				      u32 blocksize, u64 parent_transid)
1089{
1090	struct extent_buffer *buf = NULL;
1091	int ret;
1092
1093	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1094	if (!buf)
1095		return NULL;
1096
1097	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
 
 
 
 
1098	return buf;
1099
1100}
1101
1102void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1103		      struct extent_buffer *buf)
1104{
 
 
1105	if (btrfs_header_generation(buf) ==
1106	    root->fs_info->running_transaction->transid) {
1107		btrfs_assert_tree_locked(buf);
1108
1109		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1110			spin_lock(&root->fs_info->delalloc_lock);
1111			if (root->fs_info->dirty_metadata_bytes >= buf->len)
1112				root->fs_info->dirty_metadata_bytes -= buf->len;
1113			else {
1114				spin_unlock(&root->fs_info->delalloc_lock);
1115				btrfs_panic(root->fs_info, -EOVERFLOW,
1116					  "Can't clear %lu bytes from "
1117					  " dirty_mdatadata_bytes (%lu)",
1118					  buf->len,
1119					  root->fs_info->dirty_metadata_bytes);
1120			}
1121			spin_unlock(&root->fs_info->delalloc_lock);
1122		}
 
 
 
 
 
 
 
 
 
 
 
1123
1124		/* ugh, clear_extent_buffer_dirty needs to lock the page */
1125		btrfs_set_lock_blocking(buf);
1126		clear_extent_buffer_dirty(buf);
 
1127	}
 
 
 
 
 
 
 
 
 
 
1128}
1129
1130static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1131			 u32 stripesize, struct btrfs_root *root,
1132			 struct btrfs_fs_info *fs_info,
1133			 u64 objectid)
1134{
1135	root->node = NULL;
1136	root->commit_root = NULL;
1137	root->sectorsize = sectorsize;
1138	root->nodesize = nodesize;
1139	root->leafsize = leafsize;
1140	root->stripesize = stripesize;
1141	root->ref_cows = 0;
1142	root->track_dirty = 0;
1143	root->in_radix = 0;
1144	root->orphan_item_inserted = 0;
1145	root->orphan_cleanup_state = 0;
1146
1147	root->objectid = objectid;
1148	root->last_trans = 0;
1149	root->highest_objectid = 0;
 
 
1150	root->name = NULL;
1151	root->inode_tree = RB_ROOT;
1152	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1153	root->block_rsv = NULL;
1154	root->orphan_block_rsv = NULL;
1155
1156	INIT_LIST_HEAD(&root->dirty_list);
1157	INIT_LIST_HEAD(&root->root_list);
 
 
 
 
 
 
1158	spin_lock_init(&root->orphan_lock);
1159	spin_lock_init(&root->inode_lock);
 
 
1160	spin_lock_init(&root->accounting_lock);
 
 
1161	mutex_init(&root->objectid_mutex);
1162	mutex_init(&root->log_mutex);
 
 
1163	init_waitqueue_head(&root->log_writer_wait);
1164	init_waitqueue_head(&root->log_commit_wait[0]);
1165	init_waitqueue_head(&root->log_commit_wait[1]);
 
 
1166	atomic_set(&root->log_commit[0], 0);
1167	atomic_set(&root->log_commit[1], 0);
1168	atomic_set(&root->log_writers, 0);
 
1169	atomic_set(&root->orphan_inodes, 0);
1170	root->log_batch = 0;
 
1171	root->log_transid = 0;
 
1172	root->last_log_commit = 0;
1173	extent_io_tree_init(&root->dirty_log_pages,
1174			     fs_info->btree_inode->i_mapping);
 
1175
1176	memset(&root->root_key, 0, sizeof(root->root_key));
1177	memset(&root->root_item, 0, sizeof(root->root_item));
1178	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1179	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1180	root->defrag_trans_start = fs_info->generation;
 
 
 
1181	init_completion(&root->kobj_unregister);
1182	root->defrag_running = 0;
1183	root->root_key.objectid = objectid;
1184	root->anon_dev = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185}
 
1186
1187static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1188					    struct btrfs_fs_info *fs_info,
1189					    u64 objectid,
1190					    struct btrfs_root *root)
1191{
1192	int ret;
1193	u32 blocksize;
1194	u64 generation;
 
 
 
 
 
 
 
1195
1196	__setup_root(tree_root->nodesize, tree_root->leafsize,
1197		     tree_root->sectorsize, tree_root->stripesize,
1198		     root, fs_info, objectid);
1199	ret = btrfs_find_last_root(tree_root, objectid,
1200				   &root->root_item, &root->root_key);
1201	if (ret > 0)
1202		return -ENOENT;
1203	else if (ret < 0)
1204		return ret;
1205
1206	generation = btrfs_root_generation(&root->root_item);
1207	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1208	root->commit_root = NULL;
1209	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1210				     blocksize, generation);
1211	if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1212		free_extent_buffer(root->node);
1213		root->node = NULL;
1214		return -EIO;
1215	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1216	root->commit_root = btrfs_root_node(root);
1217	return 0;
1218}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1219
1220static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1221{
1222	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1223	if (root)
1224		root->fs_info = fs_info;
1225	return root;
 
 
 
 
 
 
 
 
 
1226}
1227
1228static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1229					 struct btrfs_fs_info *fs_info)
1230{
1231	struct btrfs_root *root;
1232	struct btrfs_root *tree_root = fs_info->tree_root;
1233	struct extent_buffer *leaf;
1234
1235	root = btrfs_alloc_root(fs_info);
1236	if (!root)
1237		return ERR_PTR(-ENOMEM);
1238
1239	__setup_root(tree_root->nodesize, tree_root->leafsize,
1240		     tree_root->sectorsize, tree_root->stripesize,
1241		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1242
1243	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1244	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1245	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1246	/*
1247	 * log trees do not get reference counted because they go away
1248	 * before a real commit is actually done.  They do store pointers
1249	 * to file data extents, and those reference counts still get
1250	 * updated (along with back refs to the log tree).
1251	 */
1252	root->ref_cows = 0;
1253
1254	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1255				      BTRFS_TREE_LOG_OBJECTID, NULL,
1256				      0, 0, 0);
1257	if (IS_ERR(leaf)) {
1258		kfree(root);
1259		return ERR_CAST(leaf);
1260	}
1261
1262	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1263	btrfs_set_header_bytenr(leaf, leaf->start);
1264	btrfs_set_header_generation(leaf, trans->transid);
1265	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1266	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1267	root->node = leaf;
1268
1269	write_extent_buffer(root->node, root->fs_info->fsid,
1270			    (unsigned long)btrfs_header_fsid(root->node),
1271			    BTRFS_FSID_SIZE);
1272	btrfs_mark_buffer_dirty(root->node);
1273	btrfs_tree_unlock(root->node);
1274	return root;
1275}
1276
1277int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1278			     struct btrfs_fs_info *fs_info)
1279{
1280	struct btrfs_root *log_root;
1281
1282	log_root = alloc_log_tree(trans, fs_info);
1283	if (IS_ERR(log_root))
1284		return PTR_ERR(log_root);
1285	WARN_ON(fs_info->log_root_tree);
1286	fs_info->log_root_tree = log_root;
1287	return 0;
1288}
1289
1290int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1291		       struct btrfs_root *root)
1292{
1293	struct btrfs_root *log_root;
1294	struct btrfs_inode_item *inode_item;
1295
1296	log_root = alloc_log_tree(trans, root->fs_info);
1297	if (IS_ERR(log_root))
1298		return PTR_ERR(log_root);
1299
1300	log_root->last_trans = trans->transid;
1301	log_root->root_key.offset = root->root_key.objectid;
1302
1303	inode_item = &log_root->root_item.inode;
1304	inode_item->generation = cpu_to_le64(1);
1305	inode_item->size = cpu_to_le64(3);
1306	inode_item->nlink = cpu_to_le32(1);
1307	inode_item->nbytes = cpu_to_le64(root->leafsize);
1308	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1309
1310	btrfs_set_root_node(&log_root->root_item, log_root->node);
1311
1312	WARN_ON(root->log_root);
1313	root->log_root = log_root;
1314	root->log_transid = 0;
 
1315	root->last_log_commit = 0;
1316	return 0;
1317}
1318
1319struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1320					       struct btrfs_key *location)
1321{
1322	struct btrfs_root *root;
1323	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1324	struct btrfs_path *path;
1325	struct extent_buffer *l;
1326	u64 generation;
1327	u32 blocksize;
1328	int ret = 0;
 
 
 
 
1329
1330	root = btrfs_alloc_root(fs_info);
1331	if (!root)
1332		return ERR_PTR(-ENOMEM);
1333	if (location->offset == (u64)-1) {
1334		ret = find_and_setup_root(tree_root, fs_info,
1335					  location->objectid, root);
1336		if (ret) {
1337			kfree(root);
1338			return ERR_PTR(ret);
1339		}
1340		goto out;
1341	}
1342
1343	__setup_root(tree_root->nodesize, tree_root->leafsize,
1344		     tree_root->sectorsize, tree_root->stripesize,
1345		     root, fs_info, location->objectid);
1346
1347	path = btrfs_alloc_path();
1348	if (!path) {
1349		kfree(root);
1350		return ERR_PTR(-ENOMEM);
1351	}
1352	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1353	if (ret == 0) {
1354		l = path->nodes[0];
1355		read_extent_buffer(l, &root->root_item,
1356				btrfs_item_ptr_offset(l, path->slots[0]),
1357				sizeof(root->root_item));
1358		memcpy(&root->root_key, location, sizeof(*location));
1359	}
1360	btrfs_free_path(path);
1361	if (ret) {
1362		kfree(root);
1363		if (ret > 0)
1364			ret = -ENOENT;
1365		return ERR_PTR(ret);
1366	}
1367
1368	generation = btrfs_root_generation(&root->root_item);
1369	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1370	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1371				     blocksize, generation);
 
 
 
 
 
 
 
1372	root->commit_root = btrfs_root_node(root);
1373	BUG_ON(!root->node); /* -ENOMEM */
1374out:
1375	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1376		root->ref_cows = 1;
1377		btrfs_check_and_init_root_item(&root->root_item);
1378	}
1379
1380	return root;
1381}
1382
1383struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1384					      struct btrfs_key *location)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1385{
1386	struct btrfs_root *root;
1387	int ret;
1388
1389	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1390		return fs_info->tree_root;
1391	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1392		return fs_info->extent_root;
1393	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1394		return fs_info->chunk_root;
1395	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1396		return fs_info->dev_root;
1397	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1398		return fs_info->csum_root;
 
 
 
 
 
 
1399again:
1400	spin_lock(&fs_info->fs_roots_radix_lock);
1401	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1402				 (unsigned long)location->objectid);
1403	spin_unlock(&fs_info->fs_roots_radix_lock);
1404	if (root)
1405		return root;
 
1406
1407	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1408	if (IS_ERR(root))
1409		return root;
1410
1411	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1412	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1413					GFP_NOFS);
1414	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1415		ret = -ENOMEM;
1416		goto fail;
1417	}
1418
1419	btrfs_init_free_ino_ctl(root);
1420	mutex_init(&root->fs_commit_mutex);
1421	spin_lock_init(&root->cache_lock);
1422	init_waitqueue_head(&root->cache_wait);
1423
1424	ret = get_anon_bdev(&root->anon_dev);
1425	if (ret)
1426		goto fail;
1427
1428	if (btrfs_root_refs(&root->root_item) == 0) {
1429		ret = -ENOENT;
1430		goto fail;
1431	}
1432
1433	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1434	if (ret < 0)
1435		goto fail;
1436	if (ret == 0)
1437		root->orphan_item_inserted = 1;
1438
1439	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1440	if (ret)
1441		goto fail;
1442
1443	spin_lock(&fs_info->fs_roots_radix_lock);
1444	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1445				(unsigned long)root->root_key.objectid,
1446				root);
1447	if (ret == 0)
1448		root->in_radix = 1;
1449
1450	spin_unlock(&fs_info->fs_roots_radix_lock);
1451	radix_tree_preload_end();
1452	if (ret) {
1453		if (ret == -EEXIST) {
1454			free_fs_root(root);
1455			goto again;
1456		}
1457		goto fail;
1458	}
1459
1460	ret = btrfs_find_dead_roots(fs_info->tree_root,
1461				    root->root_key.objectid);
1462	WARN_ON(ret);
1463	return root;
1464fail:
1465	free_fs_root(root);
1466	return ERR_PTR(ret);
1467}
1468
1469static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1470{
1471	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1472	int ret = 0;
1473	struct btrfs_device *device;
1474	struct backing_dev_info *bdi;
1475
1476	rcu_read_lock();
1477	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1478		if (!device->bdev)
1479			continue;
1480		bdi = blk_get_backing_dev_info(device->bdev);
1481		if (bdi && bdi_congested(bdi, bdi_bits)) {
1482			ret = 1;
1483			break;
1484		}
1485	}
1486	rcu_read_unlock();
1487	return ret;
1488}
1489
1490/*
1491 * If this fails, caller must call bdi_destroy() to get rid of the
1492 * bdi again.
1493 */
1494static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1495{
1496	int err;
1497
1498	bdi->capabilities = BDI_CAP_MAP_COPY;
1499	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1500	if (err)
1501		return err;
1502
1503	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1504	bdi->congested_fn	= btrfs_congested_fn;
1505	bdi->congested_data	= info;
1506	return 0;
1507}
1508
1509/*
1510 * called by the kthread helper functions to finally call the bio end_io
1511 * functions.  This is where read checksum verification actually happens
1512 */
1513static void end_workqueue_fn(struct btrfs_work *work)
1514{
1515	struct bio *bio;
1516	struct end_io_wq *end_io_wq;
1517	struct btrfs_fs_info *fs_info;
1518	int error;
1519
1520	end_io_wq = container_of(work, struct end_io_wq, work);
1521	bio = end_io_wq->bio;
1522	fs_info = end_io_wq->info;
1523
1524	error = end_io_wq->error;
1525	bio->bi_private = end_io_wq->private;
1526	bio->bi_end_io = end_io_wq->end_io;
1527	kfree(end_io_wq);
1528	bio_endio(bio, error);
1529}
1530
1531static int cleaner_kthread(void *arg)
1532{
1533	struct btrfs_root *root = arg;
 
1534
1535	do {
1536		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
 
 
 
 
 
 
 
1537
1538		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1539		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1540			btrfs_run_delayed_iputs(root);
1541			btrfs_clean_old_snapshots(root);
 
1542			mutex_unlock(&root->fs_info->cleaner_mutex);
1543			btrfs_run_defrag_inodes(root->fs_info);
1544		}
1545
1546		if (!try_to_freeze()) {
 
 
 
 
 
 
 
 
 
 
1547			set_current_state(TASK_INTERRUPTIBLE);
1548			if (!kthread_should_stop())
1549				schedule();
1550			__set_current_state(TASK_RUNNING);
1551		}
1552	} while (!kthread_should_stop());
1553	return 0;
1554}
1555
1556static int transaction_kthread(void *arg)
1557{
1558	struct btrfs_root *root = arg;
1559	struct btrfs_trans_handle *trans;
1560	struct btrfs_transaction *cur;
1561	u64 transid;
1562	unsigned long now;
1563	unsigned long delay;
1564	bool cannot_commit;
1565
1566	do {
1567		cannot_commit = false;
1568		delay = HZ * 30;
1569		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1570		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1571
1572		spin_lock(&root->fs_info->trans_lock);
1573		cur = root->fs_info->running_transaction;
1574		if (!cur) {
1575			spin_unlock(&root->fs_info->trans_lock);
1576			goto sleep;
1577		}
1578
1579		now = get_seconds();
1580		if (!cur->blocked &&
1581		    (now < cur->start_time || now - cur->start_time < 30)) {
 
1582			spin_unlock(&root->fs_info->trans_lock);
1583			delay = HZ * 5;
1584			goto sleep;
1585		}
1586		transid = cur->transid;
1587		spin_unlock(&root->fs_info->trans_lock);
1588
1589		/* If the file system is aborted, this will always fail. */
1590		trans = btrfs_join_transaction(root);
1591		if (IS_ERR(trans)) {
1592			cannot_commit = true;
 
1593			goto sleep;
1594		}
1595		if (transid == trans->transid) {
1596			btrfs_commit_transaction(trans, root);
1597		} else {
1598			btrfs_end_transaction(trans, root);
1599		}
1600sleep:
1601		wake_up_process(root->fs_info->cleaner_kthread);
1602		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1603
 
 
 
1604		if (!try_to_freeze()) {
1605			set_current_state(TASK_INTERRUPTIBLE);
1606			if (!kthread_should_stop() &&
1607			    (!btrfs_transaction_blocked(root->fs_info) ||
1608			     cannot_commit))
1609				schedule_timeout(delay);
1610			__set_current_state(TASK_RUNNING);
1611		}
1612	} while (!kthread_should_stop());
1613	return 0;
1614}
1615
1616/*
1617 * this will find the highest generation in the array of
1618 * root backups.  The index of the highest array is returned,
1619 * or -1 if we can't find anything.
1620 *
1621 * We check to make sure the array is valid by comparing the
1622 * generation of the latest  root in the array with the generation
1623 * in the super block.  If they don't match we pitch it.
1624 */
1625static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1626{
1627	u64 cur;
1628	int newest_index = -1;
1629	struct btrfs_root_backup *root_backup;
1630	int i;
1631
1632	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1633		root_backup = info->super_copy->super_roots + i;
1634		cur = btrfs_backup_tree_root_gen(root_backup);
1635		if (cur == newest_gen)
1636			newest_index = i;
1637	}
1638
1639	/* check to see if we actually wrapped around */
1640	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1641		root_backup = info->super_copy->super_roots;
1642		cur = btrfs_backup_tree_root_gen(root_backup);
1643		if (cur == newest_gen)
1644			newest_index = 0;
1645	}
1646	return newest_index;
1647}
1648
1649
1650/*
1651 * find the oldest backup so we know where to store new entries
1652 * in the backup array.  This will set the backup_root_index
1653 * field in the fs_info struct
1654 */
1655static void find_oldest_super_backup(struct btrfs_fs_info *info,
1656				     u64 newest_gen)
1657{
1658	int newest_index = -1;
1659
1660	newest_index = find_newest_super_backup(info, newest_gen);
1661	/* if there was garbage in there, just move along */
1662	if (newest_index == -1) {
1663		info->backup_root_index = 0;
1664	} else {
1665		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1666	}
1667}
1668
1669/*
1670 * copy all the root pointers into the super backup array.
1671 * this will bump the backup pointer by one when it is
1672 * done
1673 */
1674static void backup_super_roots(struct btrfs_fs_info *info)
1675{
1676	int next_backup;
1677	struct btrfs_root_backup *root_backup;
1678	int last_backup;
1679
1680	next_backup = info->backup_root_index;
1681	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1682		BTRFS_NUM_BACKUP_ROOTS;
1683
1684	/*
1685	 * just overwrite the last backup if we're at the same generation
1686	 * this happens only at umount
1687	 */
1688	root_backup = info->super_for_commit->super_roots + last_backup;
1689	if (btrfs_backup_tree_root_gen(root_backup) ==
1690	    btrfs_header_generation(info->tree_root->node))
1691		next_backup = last_backup;
1692
1693	root_backup = info->super_for_commit->super_roots + next_backup;
1694
1695	/*
1696	 * make sure all of our padding and empty slots get zero filled
1697	 * regardless of which ones we use today
1698	 */
1699	memset(root_backup, 0, sizeof(*root_backup));
1700
1701	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1702
1703	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1704	btrfs_set_backup_tree_root_gen(root_backup,
1705			       btrfs_header_generation(info->tree_root->node));
1706
1707	btrfs_set_backup_tree_root_level(root_backup,
1708			       btrfs_header_level(info->tree_root->node));
1709
1710	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1711	btrfs_set_backup_chunk_root_gen(root_backup,
1712			       btrfs_header_generation(info->chunk_root->node));
1713	btrfs_set_backup_chunk_root_level(root_backup,
1714			       btrfs_header_level(info->chunk_root->node));
1715
1716	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1717	btrfs_set_backup_extent_root_gen(root_backup,
1718			       btrfs_header_generation(info->extent_root->node));
1719	btrfs_set_backup_extent_root_level(root_backup,
1720			       btrfs_header_level(info->extent_root->node));
1721
1722	/*
1723	 * we might commit during log recovery, which happens before we set
1724	 * the fs_root.  Make sure it is valid before we fill it in.
1725	 */
1726	if (info->fs_root && info->fs_root->node) {
1727		btrfs_set_backup_fs_root(root_backup,
1728					 info->fs_root->node->start);
1729		btrfs_set_backup_fs_root_gen(root_backup,
1730			       btrfs_header_generation(info->fs_root->node));
1731		btrfs_set_backup_fs_root_level(root_backup,
1732			       btrfs_header_level(info->fs_root->node));
1733	}
1734
1735	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1736	btrfs_set_backup_dev_root_gen(root_backup,
1737			       btrfs_header_generation(info->dev_root->node));
1738	btrfs_set_backup_dev_root_level(root_backup,
1739				       btrfs_header_level(info->dev_root->node));
1740
1741	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1742	btrfs_set_backup_csum_root_gen(root_backup,
1743			       btrfs_header_generation(info->csum_root->node));
1744	btrfs_set_backup_csum_root_level(root_backup,
1745			       btrfs_header_level(info->csum_root->node));
1746
1747	btrfs_set_backup_total_bytes(root_backup,
1748			     btrfs_super_total_bytes(info->super_copy));
1749	btrfs_set_backup_bytes_used(root_backup,
1750			     btrfs_super_bytes_used(info->super_copy));
1751	btrfs_set_backup_num_devices(root_backup,
1752			     btrfs_super_num_devices(info->super_copy));
1753
1754	/*
1755	 * if we don't copy this out to the super_copy, it won't get remembered
1756	 * for the next commit
1757	 */
1758	memcpy(&info->super_copy->super_roots,
1759	       &info->super_for_commit->super_roots,
1760	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1761}
1762
1763/*
1764 * this copies info out of the root backup array and back into
1765 * the in-memory super block.  It is meant to help iterate through
1766 * the array, so you send it the number of backups you've already
1767 * tried and the last backup index you used.
1768 *
1769 * this returns -1 when it has tried all the backups
1770 */
1771static noinline int next_root_backup(struct btrfs_fs_info *info,
1772				     struct btrfs_super_block *super,
1773				     int *num_backups_tried, int *backup_index)
1774{
1775	struct btrfs_root_backup *root_backup;
1776	int newest = *backup_index;
1777
1778	if (*num_backups_tried == 0) {
1779		u64 gen = btrfs_super_generation(super);
1780
1781		newest = find_newest_super_backup(info, gen);
1782		if (newest == -1)
1783			return -1;
1784
1785		*backup_index = newest;
1786		*num_backups_tried = 1;
1787	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1788		/* we've tried all the backups, all done */
1789		return -1;
1790	} else {
1791		/* jump to the next oldest backup */
1792		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1793			BTRFS_NUM_BACKUP_ROOTS;
1794		*backup_index = newest;
1795		*num_backups_tried += 1;
1796	}
1797	root_backup = super->super_roots + newest;
1798
1799	btrfs_set_super_generation(super,
1800				   btrfs_backup_tree_root_gen(root_backup));
1801	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1802	btrfs_set_super_root_level(super,
1803				   btrfs_backup_tree_root_level(root_backup));
1804	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1805
1806	/*
1807	 * fixme: the total bytes and num_devices need to match or we should
1808	 * need a fsck
1809	 */
1810	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1811	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1812	return 0;
1813}
1814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1815/* helper to cleanup tree roots */
1816static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1817{
1818	free_extent_buffer(info->tree_root->node);
1819	free_extent_buffer(info->tree_root->commit_root);
1820	free_extent_buffer(info->dev_root->node);
1821	free_extent_buffer(info->dev_root->commit_root);
1822	free_extent_buffer(info->extent_root->node);
1823	free_extent_buffer(info->extent_root->commit_root);
1824	free_extent_buffer(info->csum_root->node);
1825	free_extent_buffer(info->csum_root->commit_root);
1826
1827	info->tree_root->node = NULL;
1828	info->tree_root->commit_root = NULL;
1829	info->dev_root->node = NULL;
1830	info->dev_root->commit_root = NULL;
1831	info->extent_root->node = NULL;
1832	info->extent_root->commit_root = NULL;
1833	info->csum_root->node = NULL;
1834	info->csum_root->commit_root = NULL;
1835
1836	if (chunk_root) {
1837		free_extent_buffer(info->chunk_root->node);
1838		free_extent_buffer(info->chunk_root->commit_root);
1839		info->chunk_root->node = NULL;
1840		info->chunk_root->commit_root = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1841	}
1842}
1843
1844
1845int open_ctree(struct super_block *sb,
1846	       struct btrfs_fs_devices *fs_devices,
1847	       char *options)
1848{
1849	u32 sectorsize;
1850	u32 nodesize;
1851	u32 leafsize;
1852	u32 blocksize;
1853	u32 stripesize;
1854	u64 generation;
1855	u64 features;
1856	struct btrfs_key location;
1857	struct buffer_head *bh;
1858	struct btrfs_super_block *disk_super;
1859	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1860	struct btrfs_root *tree_root;
1861	struct btrfs_root *extent_root;
1862	struct btrfs_root *csum_root;
1863	struct btrfs_root *chunk_root;
1864	struct btrfs_root *dev_root;
 
 
1865	struct btrfs_root *log_tree_root;
1866	int ret;
1867	int err = -EINVAL;
1868	int num_backups_tried = 0;
1869	int backup_index = 0;
 
 
 
 
1870
1871	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1872	extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1873	csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1874	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1875	dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1876
1877	if (!tree_root || !extent_root || !csum_root ||
1878	    !chunk_root || !dev_root) {
1879		err = -ENOMEM;
1880		goto fail;
1881	}
1882
1883	ret = init_srcu_struct(&fs_info->subvol_srcu);
1884	if (ret) {
1885		err = ret;
1886		goto fail;
1887	}
1888
1889	ret = setup_bdi(fs_info, &fs_info->bdi);
1890	if (ret) {
1891		err = ret;
1892		goto fail_srcu;
1893	}
1894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1895	fs_info->btree_inode = new_inode(sb);
1896	if (!fs_info->btree_inode) {
1897		err = -ENOMEM;
1898		goto fail_bdi;
1899	}
1900
1901	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1902
1903	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
 
1904	INIT_LIST_HEAD(&fs_info->trans_list);
1905	INIT_LIST_HEAD(&fs_info->dead_roots);
1906	INIT_LIST_HEAD(&fs_info->delayed_iputs);
1907	INIT_LIST_HEAD(&fs_info->hashers);
1908	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1909	INIT_LIST_HEAD(&fs_info->ordered_operations);
1910	INIT_LIST_HEAD(&fs_info->caching_block_groups);
1911	spin_lock_init(&fs_info->delalloc_lock);
1912	spin_lock_init(&fs_info->trans_lock);
1913	spin_lock_init(&fs_info->ref_cache_lock);
1914	spin_lock_init(&fs_info->fs_roots_radix_lock);
1915	spin_lock_init(&fs_info->delayed_iput_lock);
1916	spin_lock_init(&fs_info->defrag_inodes_lock);
1917	spin_lock_init(&fs_info->free_chunk_lock);
1918	spin_lock_init(&fs_info->tree_mod_seq_lock);
 
 
1919	rwlock_init(&fs_info->tree_mod_log_lock);
1920	mutex_init(&fs_info->reloc_mutex);
 
 
1921
1922	init_completion(&fs_info->kobj_unregister);
1923	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1924	INIT_LIST_HEAD(&fs_info->space_info);
1925	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
1926	btrfs_mapping_init(&fs_info->mapping_tree);
1927	btrfs_init_block_rsv(&fs_info->global_block_rsv);
1928	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1929	btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1930	btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1931	btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1932	btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
 
 
 
1933	atomic_set(&fs_info->nr_async_submits, 0);
1934	atomic_set(&fs_info->async_delalloc_pages, 0);
1935	atomic_set(&fs_info->async_submit_draining, 0);
1936	atomic_set(&fs_info->nr_async_bios, 0);
1937	atomic_set(&fs_info->defrag_running, 0);
1938	atomic_set(&fs_info->tree_mod_seq, 0);
1939	fs_info->sb = sb;
1940	fs_info->max_inline = 8192 * 1024;
1941	fs_info->metadata_ratio = 0;
1942	fs_info->defrag_inodes = RB_ROOT;
1943	fs_info->trans_no_join = 0;
1944	fs_info->free_chunk_space = 0;
1945	fs_info->tree_mod_log = RB_ROOT;
1946
 
1947	/* readahead state */
1948	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1949	spin_lock_init(&fs_info->reada_lock);
1950
1951	fs_info->thread_pool_size = min_t(unsigned long,
1952					  num_online_cpus() + 2, 8);
1953
1954	INIT_LIST_HEAD(&fs_info->ordered_extents);
1955	spin_lock_init(&fs_info->ordered_extent_lock);
1956	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1957					GFP_NOFS);
1958	if (!fs_info->delayed_root) {
1959		err = -ENOMEM;
1960		goto fail_iput;
1961	}
1962	btrfs_init_delayed_root(fs_info->delayed_root);
1963
1964	mutex_init(&fs_info->scrub_lock);
1965	atomic_set(&fs_info->scrubs_running, 0);
1966	atomic_set(&fs_info->scrub_pause_req, 0);
1967	atomic_set(&fs_info->scrubs_paused, 0);
1968	atomic_set(&fs_info->scrub_cancel_req, 0);
 
1969	init_waitqueue_head(&fs_info->scrub_pause_wait);
1970	init_rwsem(&fs_info->scrub_super_lock);
1971	fs_info->scrub_workers_refcnt = 0;
1972#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1973	fs_info->check_integrity_print_mask = 0;
1974#endif
1975
1976	spin_lock_init(&fs_info->balance_lock);
1977	mutex_init(&fs_info->balance_mutex);
1978	atomic_set(&fs_info->balance_running, 0);
1979	atomic_set(&fs_info->balance_pause_req, 0);
1980	atomic_set(&fs_info->balance_cancel_req, 0);
1981	fs_info->balance_ctl = NULL;
1982	init_waitqueue_head(&fs_info->balance_wait_q);
1983
1984	sb->s_blocksize = 4096;
1985	sb->s_blocksize_bits = blksize_bits(4096);
1986	sb->s_bdi = &fs_info->bdi;
1987
1988	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1989	set_nlink(fs_info->btree_inode, 1);
1990	/*
1991	 * we set the i_size on the btree inode to the max possible int.
1992	 * the real end of the address space is determined by all of
1993	 * the devices in the system
1994	 */
1995	fs_info->btree_inode->i_size = OFFSET_MAX;
1996	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1997	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1998
1999	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2000	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2001			     fs_info->btree_inode->i_mapping);
2002	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2003	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2004
2005	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2006
2007	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2008	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2009	       sizeof(struct btrfs_key));
2010	set_bit(BTRFS_INODE_DUMMY,
2011		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2012	insert_inode_hash(fs_info->btree_inode);
2013
2014	spin_lock_init(&fs_info->block_group_cache_lock);
2015	fs_info->block_group_cache_tree = RB_ROOT;
 
2016
2017	extent_io_tree_init(&fs_info->freed_extents[0],
2018			     fs_info->btree_inode->i_mapping);
2019	extent_io_tree_init(&fs_info->freed_extents[1],
2020			     fs_info->btree_inode->i_mapping);
2021	fs_info->pinned_extents = &fs_info->freed_extents[0];
2022	fs_info->do_barriers = 1;
2023
2024
2025	mutex_init(&fs_info->ordered_operations_mutex);
 
2026	mutex_init(&fs_info->tree_log_mutex);
2027	mutex_init(&fs_info->chunk_mutex);
2028	mutex_init(&fs_info->transaction_kthread_mutex);
2029	mutex_init(&fs_info->cleaner_mutex);
2030	mutex_init(&fs_info->volume_mutex);
2031	init_rwsem(&fs_info->extent_commit_sem);
2032	init_rwsem(&fs_info->cleanup_work_sem);
2033	init_rwsem(&fs_info->subvol_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2034
2035	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2036	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2037
2038	init_waitqueue_head(&fs_info->transaction_throttle);
2039	init_waitqueue_head(&fs_info->transaction_wait);
2040	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2041	init_waitqueue_head(&fs_info->async_submit_wait);
2042
 
 
 
 
 
 
2043	__setup_root(4096, 4096, 4096, 4096, tree_root,
2044		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2045
2046	invalidate_bdev(fs_devices->latest_bdev);
 
 
 
 
2047	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2048	if (!bh) {
2049		err = -EINVAL;
2050		goto fail_alloc;
2051	}
2052
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2053	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2054	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2055	       sizeof(*fs_info->super_for_commit));
2056	brelse(bh);
2057
2058	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2059
 
 
 
 
 
 
 
2060	disk_super = fs_info->super_copy;
2061	if (!btrfs_super_root(disk_super))
2062		goto fail_alloc;
2063
2064	/* check FS state, whether FS is broken. */
2065	fs_info->fs_state |= btrfs_super_flags(disk_super);
2066
2067	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2068	if (ret) {
2069		printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2070		err = ret;
2071		goto fail_alloc;
2072	}
2073
2074	/*
2075	 * run through our array of backup supers and setup
2076	 * our ring pointer to the oldest one
2077	 */
2078	generation = btrfs_super_generation(disk_super);
2079	find_oldest_super_backup(fs_info, generation);
2080
2081	/*
2082	 * In the long term, we'll store the compression type in the super
2083	 * block, and it'll be used for per file compression control.
2084	 */
2085	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2086
2087	ret = btrfs_parse_options(tree_root, options);
2088	if (ret) {
2089		err = ret;
2090		goto fail_alloc;
2091	}
2092
2093	features = btrfs_super_incompat_flags(disk_super) &
2094		~BTRFS_FEATURE_INCOMPAT_SUPP;
2095	if (features) {
2096		printk(KERN_ERR "BTRFS: couldn't mount because of "
2097		       "unsupported optional features (%Lx).\n",
2098		       (unsigned long long)features);
2099		err = -EINVAL;
2100		goto fail_alloc;
2101	}
2102
2103	if (btrfs_super_leafsize(disk_super) !=
2104	    btrfs_super_nodesize(disk_super)) {
2105		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2106		       "blocksizes don't match.  node %d leaf %d\n",
2107		       btrfs_super_nodesize(disk_super),
2108		       btrfs_super_leafsize(disk_super));
2109		err = -EINVAL;
2110		goto fail_alloc;
2111	}
2112	if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2113		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2114		       "blocksize (%d) was too large\n",
2115		       btrfs_super_leafsize(disk_super));
2116		err = -EINVAL;
2117		goto fail_alloc;
2118	}
2119
2120	features = btrfs_super_incompat_flags(disk_super);
2121	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2122	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2123		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2124
 
 
 
2125	/*
2126	 * flag our filesystem as having big metadata blocks if
2127	 * they are bigger than the page size
2128	 */
2129	if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2130		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2131			printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2132		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2133	}
2134
2135	nodesize = btrfs_super_nodesize(disk_super);
2136	leafsize = btrfs_super_leafsize(disk_super);
2137	sectorsize = btrfs_super_sectorsize(disk_super);
2138	stripesize = btrfs_super_stripesize(disk_super);
 
 
2139
2140	/*
2141	 * mixed block groups end up with duplicate but slightly offset
2142	 * extent buffers for the same range.  It leads to corruptions
2143	 */
2144	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2145	    (sectorsize != leafsize)) {
2146		printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2147				"are not allowed for mixed block groups on %s\n",
2148				sb->s_id);
2149		goto fail_alloc;
2150	}
2151
 
 
 
 
2152	btrfs_set_super_incompat_flags(disk_super, features);
2153
2154	features = btrfs_super_compat_ro_flags(disk_super) &
2155		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2156	if (!(sb->s_flags & MS_RDONLY) && features) {
2157		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2158		       "unsupported option features (%Lx).\n",
2159		       (unsigned long long)features);
2160		err = -EINVAL;
2161		goto fail_alloc;
2162	}
2163
2164	btrfs_init_workers(&fs_info->generic_worker,
2165			   "genwork", 1, NULL);
2166
2167	btrfs_init_workers(&fs_info->workers, "worker",
2168			   fs_info->thread_pool_size,
2169			   &fs_info->generic_worker);
2170
2171	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2172			   fs_info->thread_pool_size,
2173			   &fs_info->generic_worker);
2174
2175	btrfs_init_workers(&fs_info->submit_workers, "submit",
2176			   min_t(u64, fs_devices->num_devices,
2177			   fs_info->thread_pool_size),
2178			   &fs_info->generic_worker);
2179
2180	btrfs_init_workers(&fs_info->caching_workers, "cache",
2181			   2, &fs_info->generic_worker);
2182
2183	/* a higher idle thresh on the submit workers makes it much more
 
 
 
 
 
 
 
2184	 * likely that bios will be send down in a sane order to the
2185	 * devices
2186	 */
2187	fs_info->submit_workers.idle_thresh = 64;
 
 
 
2188
2189	fs_info->workers.idle_thresh = 16;
2190	fs_info->workers.ordered = 1;
2191
2192	fs_info->delalloc_workers.idle_thresh = 2;
2193	fs_info->delalloc_workers.ordered = 1;
2194
2195	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2196			   &fs_info->generic_worker);
2197	btrfs_init_workers(&fs_info->endio_workers, "endio",
2198			   fs_info->thread_pool_size,
2199			   &fs_info->generic_worker);
2200	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2201			   fs_info->thread_pool_size,
2202			   &fs_info->generic_worker);
2203	btrfs_init_workers(&fs_info->endio_meta_write_workers,
2204			   "endio-meta-write", fs_info->thread_pool_size,
2205			   &fs_info->generic_worker);
2206	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2207			   fs_info->thread_pool_size,
2208			   &fs_info->generic_worker);
2209	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2210			   1, &fs_info->generic_worker);
2211	btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2212			   fs_info->thread_pool_size,
2213			   &fs_info->generic_worker);
2214	btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2215			   fs_info->thread_pool_size,
2216			   &fs_info->generic_worker);
2217
2218	/*
2219	 * endios are largely parallel and should have a very
2220	 * low idle thresh
2221	 */
2222	fs_info->endio_workers.idle_thresh = 4;
2223	fs_info->endio_meta_workers.idle_thresh = 4;
2224
2225	fs_info->endio_write_workers.idle_thresh = 2;
2226	fs_info->endio_meta_write_workers.idle_thresh = 2;
2227	fs_info->readahead_workers.idle_thresh = 2;
2228
2229	/*
2230	 * btrfs_start_workers can really only fail because of ENOMEM so just
2231	 * return -ENOMEM if any of these fail.
2232	 */
2233	ret = btrfs_start_workers(&fs_info->workers);
2234	ret |= btrfs_start_workers(&fs_info->generic_worker);
2235	ret |= btrfs_start_workers(&fs_info->submit_workers);
2236	ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2237	ret |= btrfs_start_workers(&fs_info->fixup_workers);
2238	ret |= btrfs_start_workers(&fs_info->endio_workers);
2239	ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2240	ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2241	ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2242	ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2243	ret |= btrfs_start_workers(&fs_info->delayed_workers);
2244	ret |= btrfs_start_workers(&fs_info->caching_workers);
2245	ret |= btrfs_start_workers(&fs_info->readahead_workers);
2246	if (ret) {
2247		ret = -ENOMEM;
 
 
 
 
 
2248		goto fail_sb_buffer;
2249	}
2250
2251	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2252	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2253				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2254
2255	tree_root->nodesize = nodesize;
2256	tree_root->leafsize = leafsize;
2257	tree_root->sectorsize = sectorsize;
2258	tree_root->stripesize = stripesize;
2259
2260	sb->s_blocksize = sectorsize;
2261	sb->s_blocksize_bits = blksize_bits(sectorsize);
2262
2263	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2264		    sizeof(disk_super->magic))) {
2265		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2266		goto fail_sb_buffer;
2267	}
2268
2269	if (sectorsize != PAGE_SIZE) {
2270		printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2271		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2272		goto fail_sb_buffer;
2273	}
2274
2275	mutex_lock(&fs_info->chunk_mutex);
2276	ret = btrfs_read_sys_array(tree_root);
2277	mutex_unlock(&fs_info->chunk_mutex);
2278	if (ret) {
2279		printk(KERN_WARNING "btrfs: failed to read the system "
2280		       "array on %s\n", sb->s_id);
2281		goto fail_sb_buffer;
2282	}
2283
2284	blocksize = btrfs_level_size(tree_root,
2285				     btrfs_super_chunk_root_level(disk_super));
2286	generation = btrfs_super_chunk_root_generation(disk_super);
2287
2288	__setup_root(nodesize, leafsize, sectorsize, stripesize,
2289		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2290
2291	chunk_root->node = read_tree_block(chunk_root,
2292					   btrfs_super_chunk_root(disk_super),
2293					   blocksize, generation);
2294	BUG_ON(!chunk_root->node); /* -ENOMEM */
2295	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2296		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2297		       sb->s_id);
2298		goto fail_tree_roots;
2299	}
2300	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2301	chunk_root->commit_root = btrfs_root_node(chunk_root);
2302
2303	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2304	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2305	   BTRFS_UUID_SIZE);
2306
2307	ret = btrfs_read_chunk_tree(chunk_root);
2308	if (ret) {
2309		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2310		       sb->s_id);
2311		goto fail_tree_roots;
2312	}
2313
2314	btrfs_close_extra_devices(fs_devices);
 
 
 
 
2315
2316	if (!fs_devices->latest_bdev) {
2317		printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2318		       sb->s_id);
2319		goto fail_tree_roots;
2320	}
2321
2322retry_root_backup:
2323	blocksize = btrfs_level_size(tree_root,
2324				     btrfs_super_root_level(disk_super));
2325	generation = btrfs_super_generation(disk_super);
2326
2327	tree_root->node = read_tree_block(tree_root,
2328					  btrfs_super_root(disk_super),
2329					  blocksize, generation);
2330	if (!tree_root->node ||
2331	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2332		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2333		       sb->s_id);
2334
2335		goto recovery_tree_root;
2336	}
2337
2338	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2339	tree_root->commit_root = btrfs_root_node(tree_root);
 
2340
2341	ret = find_and_setup_root(tree_root, fs_info,
2342				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2343	if (ret)
 
 
 
 
2344		goto recovery_tree_root;
 
2345	extent_root->track_dirty = 1;
 
2346
2347	ret = find_and_setup_root(tree_root, fs_info,
2348				  BTRFS_DEV_TREE_OBJECTID, dev_root);
2349	if (ret)
 
2350		goto recovery_tree_root;
 
2351	dev_root->track_dirty = 1;
 
 
2352
2353	ret = find_and_setup_root(tree_root, fs_info,
2354				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
2355	if (ret)
 
2356		goto recovery_tree_root;
 
2357	csum_root->track_dirty = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2358
2359	fs_info->generation = generation;
2360	fs_info->last_trans_committed = generation;
2361
2362	ret = btrfs_recover_balance(fs_info);
2363	if (ret) {
2364		printk(KERN_WARNING "btrfs: failed to recover balance\n");
2365		goto fail_block_groups;
2366	}
2367
2368	ret = btrfs_init_dev_stats(fs_info);
2369	if (ret) {
2370		printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2371		       ret);
2372		goto fail_block_groups;
2373	}
2374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2375	ret = btrfs_init_space_info(fs_info);
2376	if (ret) {
2377		printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2378		goto fail_block_groups;
2379	}
2380
2381	ret = btrfs_read_block_groups(extent_root);
2382	if (ret) {
2383		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2384		goto fail_block_groups;
 
 
 
 
 
 
 
 
 
2385	}
2386
2387	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2388					       "btrfs-cleaner");
2389	if (IS_ERR(fs_info->cleaner_kthread))
2390		goto fail_block_groups;
2391
2392	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2393						   tree_root,
2394						   "btrfs-transaction");
2395	if (IS_ERR(fs_info->transaction_kthread))
2396		goto fail_cleaner;
2397
2398	if (!btrfs_test_opt(tree_root, SSD) &&
2399	    !btrfs_test_opt(tree_root, NOSSD) &&
2400	    !fs_info->fs_devices->rotating) {
2401		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2402		       "mode\n");
2403		btrfs_set_opt(fs_info->mount_opt, SSD);
2404	}
2405
 
 
 
 
2406#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2407	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2408		ret = btrfsic_mount(tree_root, fs_devices,
2409				    btrfs_test_opt(tree_root,
2410					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2411				    1 : 0,
2412				    fs_info->check_integrity_print_mask);
2413		if (ret)
2414			printk(KERN_WARNING "btrfs: failed to initialize"
2415			       " integrity check module %s\n", sb->s_id);
2416	}
2417#endif
 
 
 
2418
2419	/* do not make disk changes in broken FS */
2420	if (btrfs_super_log_root(disk_super) != 0 &&
2421	    !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2422		u64 bytenr = btrfs_super_log_root(disk_super);
2423
2424		if (fs_devices->rw_devices == 0) {
2425			printk(KERN_WARNING "Btrfs log replay required "
2426			       "on RO media\n");
2427			err = -EIO;
2428			goto fail_trans_kthread;
2429		}
2430		blocksize =
2431		     btrfs_level_size(tree_root,
2432				      btrfs_super_log_root_level(disk_super));
2433
2434		log_tree_root = btrfs_alloc_root(fs_info);
2435		if (!log_tree_root) {
2436			err = -ENOMEM;
2437			goto fail_trans_kthread;
2438		}
2439
2440		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2441			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2442
2443		log_tree_root->node = read_tree_block(tree_root, bytenr,
2444						      blocksize,
2445						      generation + 1);
 
 
 
 
 
 
 
2446		/* returns with log_tree_root freed on success */
2447		ret = btrfs_recover_log_trees(log_tree_root);
2448		if (ret) {
2449			btrfs_error(tree_root->fs_info, ret,
2450				    "Failed to recover log tree");
2451			free_extent_buffer(log_tree_root->node);
2452			kfree(log_tree_root);
2453			goto fail_trans_kthread;
2454		}
2455
2456		if (sb->s_flags & MS_RDONLY) {
2457			ret = btrfs_commit_super(tree_root);
2458			if (ret)
2459				goto fail_trans_kthread;
2460		}
2461	}
2462
2463	ret = btrfs_find_orphan_roots(tree_root);
2464	if (ret)
2465		goto fail_trans_kthread;
2466
2467	if (!(sb->s_flags & MS_RDONLY)) {
2468		ret = btrfs_cleanup_fs_roots(fs_info);
2469		if (ret) {
2470			}
2471
2472		ret = btrfs_recover_relocation(tree_root);
2473		if (ret < 0) {
2474			printk(KERN_WARNING
2475			       "btrfs: failed to recover relocation\n");
2476			err = -EINVAL;
2477			goto fail_trans_kthread;
2478		}
2479	}
2480
2481	location.objectid = BTRFS_FS_TREE_OBJECTID;
2482	location.type = BTRFS_ROOT_ITEM_KEY;
2483	location.offset = (u64)-1;
2484
2485	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2486	if (!fs_info->fs_root)
2487		goto fail_trans_kthread;
2488	if (IS_ERR(fs_info->fs_root)) {
2489		err = PTR_ERR(fs_info->fs_root);
2490		goto fail_trans_kthread;
2491	}
2492
2493	if (sb->s_flags & MS_RDONLY)
2494		return 0;
2495
2496	down_read(&fs_info->cleanup_work_sem);
2497	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2498	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2499		up_read(&fs_info->cleanup_work_sem);
2500		close_ctree(tree_root);
2501		return ret;
2502	}
2503	up_read(&fs_info->cleanup_work_sem);
2504
2505	ret = btrfs_resume_balance_async(fs_info);
2506	if (ret) {
2507		printk(KERN_WARNING "btrfs: failed to resume balance\n");
 
 
 
 
 
 
 
2508		close_ctree(tree_root);
2509		return ret;
2510	}
2511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2512	return 0;
2513
 
 
2514fail_trans_kthread:
2515	kthread_stop(fs_info->transaction_kthread);
 
 
2516fail_cleaner:
2517	kthread_stop(fs_info->cleaner_kthread);
2518
2519	/*
2520	 * make sure we're done with the btree inode before we stop our
2521	 * kthreads
2522	 */
2523	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2524	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
 
 
2525
2526fail_block_groups:
 
2527	btrfs_free_block_groups(fs_info);
2528
2529fail_tree_roots:
2530	free_root_pointers(fs_info, 1);
 
2531
2532fail_sb_buffer:
2533	btrfs_stop_workers(&fs_info->generic_worker);
2534	btrfs_stop_workers(&fs_info->readahead_workers);
2535	btrfs_stop_workers(&fs_info->fixup_workers);
2536	btrfs_stop_workers(&fs_info->delalloc_workers);
2537	btrfs_stop_workers(&fs_info->workers);
2538	btrfs_stop_workers(&fs_info->endio_workers);
2539	btrfs_stop_workers(&fs_info->endio_meta_workers);
2540	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2541	btrfs_stop_workers(&fs_info->endio_write_workers);
2542	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2543	btrfs_stop_workers(&fs_info->submit_workers);
2544	btrfs_stop_workers(&fs_info->delayed_workers);
2545	btrfs_stop_workers(&fs_info->caching_workers);
2546fail_alloc:
2547fail_iput:
2548	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2549
2550	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2551	iput(fs_info->btree_inode);
 
 
 
 
 
 
2552fail_bdi:
2553	bdi_destroy(&fs_info->bdi);
2554fail_srcu:
2555	cleanup_srcu_struct(&fs_info->subvol_srcu);
2556fail:
 
2557	btrfs_close_devices(fs_info->fs_devices);
2558	return err;
2559
2560recovery_tree_root:
2561	if (!btrfs_test_opt(tree_root, RECOVERY))
2562		goto fail_tree_roots;
2563
2564	free_root_pointers(fs_info, 0);
2565
2566	/* don't use the log in recovery mode, it won't be valid */
2567	btrfs_set_super_log_root(disk_super, 0);
2568
2569	/* we can't trust the free space cache either */
2570	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2571
2572	ret = next_root_backup(fs_info, fs_info->super_copy,
2573			       &num_backups_tried, &backup_index);
2574	if (ret == -1)
2575		goto fail_block_groups;
2576	goto retry_root_backup;
2577}
2578
2579static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2580{
2581	if (uptodate) {
2582		set_buffer_uptodate(bh);
2583	} else {
2584		struct btrfs_device *device = (struct btrfs_device *)
2585			bh->b_private;
2586
2587		printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2588					  "I/O error on %s\n",
2589					  rcu_str_deref(device->name));
2590		/* note, we dont' set_buffer_write_io_error because we have
2591		 * our own ways of dealing with the IO errors
2592		 */
2593		clear_buffer_uptodate(bh);
2594		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2595	}
2596	unlock_buffer(bh);
2597	put_bh(bh);
2598}
2599
2600struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2601{
2602	struct buffer_head *bh;
2603	struct buffer_head *latest = NULL;
2604	struct btrfs_super_block *super;
2605	int i;
2606	u64 transid = 0;
2607	u64 bytenr;
2608
2609	/* we would like to check all the supers, but that would make
2610	 * a btrfs mount succeed after a mkfs from a different FS.
2611	 * So, we need to add a special mount option to scan for
2612	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2613	 */
2614	for (i = 0; i < 1; i++) {
2615		bytenr = btrfs_sb_offset(i);
2616		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
 
2617			break;
2618		bh = __bread(bdev, bytenr / 4096, 4096);
 
2619		if (!bh)
2620			continue;
2621
2622		super = (struct btrfs_super_block *)bh->b_data;
2623		if (btrfs_super_bytenr(super) != bytenr ||
2624		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2625			    sizeof(super->magic))) {
2626			brelse(bh);
2627			continue;
2628		}
2629
2630		if (!latest || btrfs_super_generation(super) > transid) {
2631			brelse(latest);
2632			latest = bh;
2633			transid = btrfs_super_generation(super);
2634		} else {
2635			brelse(bh);
2636		}
2637	}
2638	return latest;
2639}
2640
2641/*
2642 * this should be called twice, once with wait == 0 and
2643 * once with wait == 1.  When wait == 0 is done, all the buffer heads
2644 * we write are pinned.
2645 *
2646 * They are released when wait == 1 is done.
2647 * max_mirrors must be the same for both runs, and it indicates how
2648 * many supers on this one device should be written.
2649 *
2650 * max_mirrors == 0 means to write them all.
2651 */
2652static int write_dev_supers(struct btrfs_device *device,
2653			    struct btrfs_super_block *sb,
2654			    int do_barriers, int wait, int max_mirrors)
2655{
2656	struct buffer_head *bh;
2657	int i;
2658	int ret;
2659	int errors = 0;
2660	u32 crc;
2661	u64 bytenr;
2662
2663	if (max_mirrors == 0)
2664		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2665
2666	for (i = 0; i < max_mirrors; i++) {
2667		bytenr = btrfs_sb_offset(i);
2668		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2669			break;
2670
2671		if (wait) {
2672			bh = __find_get_block(device->bdev, bytenr / 4096,
2673					      BTRFS_SUPER_INFO_SIZE);
2674			BUG_ON(!bh);
 
 
 
2675			wait_on_buffer(bh);
2676			if (!buffer_uptodate(bh))
2677				errors++;
2678
2679			/* drop our reference */
2680			brelse(bh);
2681
2682			/* drop the reference from the wait == 0 run */
2683			brelse(bh);
2684			continue;
2685		} else {
2686			btrfs_set_super_bytenr(sb, bytenr);
2687
2688			crc = ~(u32)0;
2689			crc = btrfs_csum_data(NULL, (char *)sb +
2690					      BTRFS_CSUM_SIZE, crc,
2691					      BTRFS_SUPER_INFO_SIZE -
2692					      BTRFS_CSUM_SIZE);
2693			btrfs_csum_final(crc, sb->csum);
2694
2695			/*
2696			 * one reference for us, and we leave it for the
2697			 * caller
2698			 */
2699			bh = __getblk(device->bdev, bytenr / 4096,
2700				      BTRFS_SUPER_INFO_SIZE);
 
 
 
 
 
 
 
2701			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2702
2703			/* one reference for submit_bh */
2704			get_bh(bh);
2705
2706			set_buffer_uptodate(bh);
2707			lock_buffer(bh);
2708			bh->b_end_io = btrfs_end_buffer_write_sync;
2709			bh->b_private = device;
2710		}
2711
2712		/*
2713		 * we fua the first super.  The others we allow
2714		 * to go down lazy.
2715		 */
2716		ret = btrfsic_submit_bh(WRITE_FUA, bh);
 
 
 
2717		if (ret)
2718			errors++;
2719	}
2720	return errors < i ? 0 : -1;
2721}
2722
2723/*
2724 * endio for the write_dev_flush, this will wake anyone waiting
2725 * for the barrier when it is done
2726 */
2727static void btrfs_end_empty_barrier(struct bio *bio, int err)
2728{
2729	if (err) {
2730		if (err == -EOPNOTSUPP)
2731			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2732		clear_bit(BIO_UPTODATE, &bio->bi_flags);
2733	}
2734	if (bio->bi_private)
2735		complete(bio->bi_private);
2736	bio_put(bio);
2737}
2738
2739/*
2740 * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2741 * sent down.  With wait == 1, it waits for the previous flush.
2742 *
2743 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2744 * capable
2745 */
2746static int write_dev_flush(struct btrfs_device *device, int wait)
2747{
2748	struct bio *bio;
2749	int ret = 0;
2750
2751	if (device->nobarriers)
2752		return 0;
2753
2754	if (wait) {
2755		bio = device->flush_bio;
2756		if (!bio)
2757			return 0;
2758
2759		wait_for_completion(&device->flush_wait);
2760
2761		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2762			printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2763				      rcu_str_deref(device->name));
2764			device->nobarriers = 1;
2765		}
2766		if (!bio_flagged(bio, BIO_UPTODATE)) {
2767			ret = -EIO;
2768			if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2769				btrfs_dev_stat_inc_and_print(device,
2770					BTRFS_DEV_STAT_FLUSH_ERRS);
2771		}
2772
2773		/* drop the reference from the wait == 0 run */
2774		bio_put(bio);
2775		device->flush_bio = NULL;
2776
2777		return ret;
2778	}
2779
2780	/*
2781	 * one reference for us, and we leave it for the
2782	 * caller
2783	 */
2784	device->flush_bio = NULL;
2785	bio = bio_alloc(GFP_NOFS, 0);
2786	if (!bio)
2787		return -ENOMEM;
2788
2789	bio->bi_end_io = btrfs_end_empty_barrier;
2790	bio->bi_bdev = device->bdev;
2791	init_completion(&device->flush_wait);
2792	bio->bi_private = &device->flush_wait;
2793	device->flush_bio = bio;
2794
2795	bio_get(bio);
2796	btrfsic_submit_bio(WRITE_FLUSH, bio);
2797
2798	return 0;
2799}
2800
2801/*
2802 * send an empty flush down to each device in parallel,
2803 * then wait for them
2804 */
2805static int barrier_all_devices(struct btrfs_fs_info *info)
2806{
2807	struct list_head *head;
2808	struct btrfs_device *dev;
2809	int errors = 0;
 
2810	int ret;
2811
2812	/* send down all the barriers */
2813	head = &info->fs_devices->devices;
2814	list_for_each_entry_rcu(dev, head, dev_list) {
 
 
2815		if (!dev->bdev) {
2816			errors++;
2817			continue;
2818		}
2819		if (!dev->in_fs_metadata || !dev->writeable)
2820			continue;
2821
2822		ret = write_dev_flush(dev, 0);
2823		if (ret)
2824			errors++;
2825	}
2826
2827	/* wait for all the barriers */
2828	list_for_each_entry_rcu(dev, head, dev_list) {
 
 
2829		if (!dev->bdev) {
2830			errors++;
2831			continue;
2832		}
2833		if (!dev->in_fs_metadata || !dev->writeable)
2834			continue;
2835
2836		ret = write_dev_flush(dev, 1);
2837		if (ret)
2838			errors++;
2839	}
2840	if (errors)
 
2841		return -EIO;
2842	return 0;
2843}
2844
2845int write_all_supers(struct btrfs_root *root, int max_mirrors)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2846{
2847	struct list_head *head;
2848	struct btrfs_device *dev;
2849	struct btrfs_super_block *sb;
2850	struct btrfs_dev_item *dev_item;
2851	int ret;
2852	int do_barriers;
2853	int max_errors;
2854	int total_errors = 0;
2855	u64 flags;
2856
2857	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2858	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2859	backup_super_roots(root->fs_info);
2860
2861	sb = root->fs_info->super_for_commit;
2862	dev_item = &sb->dev_item;
2863
2864	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2865	head = &root->fs_info->fs_devices->devices;
 
2866
2867	if (do_barriers)
2868		barrier_all_devices(root->fs_info);
 
 
 
 
 
 
 
 
2869
2870	list_for_each_entry_rcu(dev, head, dev_list) {
2871		if (!dev->bdev) {
2872			total_errors++;
2873			continue;
2874		}
2875		if (!dev->in_fs_metadata || !dev->writeable)
2876			continue;
2877
2878		btrfs_set_stack_device_generation(dev_item, 0);
2879		btrfs_set_stack_device_type(dev_item, dev->type);
2880		btrfs_set_stack_device_id(dev_item, dev->devid);
2881		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2882		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2883		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2884		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2885		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2886		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2887		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2888
2889		flags = btrfs_super_flags(sb);
2890		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2891
2892		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2893		if (ret)
2894			total_errors++;
2895	}
2896	if (total_errors > max_errors) {
2897		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2898		       total_errors);
 
2899
2900		/* This shouldn't happen. FUA is masked off if unsupported */
2901		BUG();
 
 
2902	}
2903
2904	total_errors = 0;
2905	list_for_each_entry_rcu(dev, head, dev_list) {
2906		if (!dev->bdev)
2907			continue;
2908		if (!dev->in_fs_metadata || !dev->writeable)
2909			continue;
2910
2911		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2912		if (ret)
2913			total_errors++;
2914	}
2915	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2916	if (total_errors > max_errors) {
2917		btrfs_error(root->fs_info, -EIO,
2918			    "%d errors while writing supers", total_errors);
2919		return -EIO;
2920	}
2921	return 0;
2922}
2923
2924int write_ctree_super(struct btrfs_trans_handle *trans,
2925		      struct btrfs_root *root, int max_mirrors)
2926{
2927	int ret;
2928
2929	ret = write_all_supers(root, max_mirrors);
2930	return ret;
2931}
2932
2933void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
 
 
2934{
2935	spin_lock(&fs_info->fs_roots_radix_lock);
2936	radix_tree_delete(&fs_info->fs_roots_radix,
2937			  (unsigned long)root->root_key.objectid);
2938	spin_unlock(&fs_info->fs_roots_radix_lock);
2939
2940	if (btrfs_root_refs(&root->root_item) == 0)
2941		synchronize_srcu(&fs_info->subvol_srcu);
2942
 
 
 
2943	__btrfs_remove_free_space_cache(root->free_ino_pinned);
2944	__btrfs_remove_free_space_cache(root->free_ino_ctl);
2945	free_fs_root(root);
2946}
2947
2948static void free_fs_root(struct btrfs_root *root)
2949{
2950	iput(root->cache_inode);
2951	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
 
 
2952	if (root->anon_dev)
2953		free_anon_bdev(root->anon_dev);
 
 
2954	free_extent_buffer(root->node);
2955	free_extent_buffer(root->commit_root);
2956	kfree(root->free_ino_ctl);
2957	kfree(root->free_ino_pinned);
2958	kfree(root->name);
2959	kfree(root);
2960}
2961
2962static void del_fs_roots(struct btrfs_fs_info *fs_info)
2963{
2964	int ret;
2965	struct btrfs_root *gang[8];
2966	int i;
2967
2968	while (!list_empty(&fs_info->dead_roots)) {
2969		gang[0] = list_entry(fs_info->dead_roots.next,
2970				     struct btrfs_root, root_list);
2971		list_del(&gang[0]->root_list);
2972
2973		if (gang[0]->in_radix) {
2974			btrfs_free_fs_root(fs_info, gang[0]);
2975		} else {
2976			free_extent_buffer(gang[0]->node);
2977			free_extent_buffer(gang[0]->commit_root);
2978			kfree(gang[0]);
2979		}
2980	}
2981
2982	while (1) {
2983		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2984					     (void **)gang, 0,
2985					     ARRAY_SIZE(gang));
2986		if (!ret)
2987			break;
2988		for (i = 0; i < ret; i++)
2989			btrfs_free_fs_root(fs_info, gang[i]);
2990	}
2991}
2992
2993int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2994{
2995	u64 root_objectid = 0;
2996	struct btrfs_root *gang[8];
2997	int i;
2998	int ret;
2999
3000	while (1) {
3001		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3002					     (void **)gang, root_objectid,
3003					     ARRAY_SIZE(gang));
3004		if (!ret)
3005			break;
3006
3007		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3008		for (i = 0; i < ret; i++) {
3009			int err;
3010
3011			root_objectid = gang[i]->root_key.objectid;
3012			err = btrfs_orphan_cleanup(gang[i]);
3013			if (err)
3014				return err;
3015		}
3016		root_objectid++;
3017	}
3018	return 0;
3019}
3020
3021int btrfs_commit_super(struct btrfs_root *root)
3022{
3023	struct btrfs_trans_handle *trans;
3024	int ret;
3025
3026	mutex_lock(&root->fs_info->cleaner_mutex);
3027	btrfs_run_delayed_iputs(root);
3028	btrfs_clean_old_snapshots(root);
3029	mutex_unlock(&root->fs_info->cleaner_mutex);
 
3030
3031	/* wait until ongoing cleanup work done */
3032	down_write(&root->fs_info->cleanup_work_sem);
3033	up_write(&root->fs_info->cleanup_work_sem);
3034
3035	trans = btrfs_join_transaction(root);
3036	if (IS_ERR(trans))
3037		return PTR_ERR(trans);
3038	ret = btrfs_commit_transaction(trans, root);
3039	if (ret)
3040		return ret;
3041	/* run commit again to drop the original snapshot */
3042	trans = btrfs_join_transaction(root);
3043	if (IS_ERR(trans))
3044		return PTR_ERR(trans);
3045	ret = btrfs_commit_transaction(trans, root);
3046	if (ret)
3047		return ret;
3048	ret = btrfs_write_and_wait_transaction(NULL, root);
3049	if (ret) {
3050		btrfs_error(root->fs_info, ret,
3051			    "Failed to sync btree inode to disk.");
3052		return ret;
3053	}
3054
3055	ret = write_ctree_super(NULL, root, 0);
3056	return ret;
3057}
3058
3059int close_ctree(struct btrfs_root *root)
3060{
3061	struct btrfs_fs_info *fs_info = root->fs_info;
3062	int ret;
3063
3064	fs_info->closing = 1;
3065	smp_mb();
3066
 
 
 
 
 
3067	/* pause restriper - we want to resume on mount */
3068	btrfs_pause_balance(root->fs_info);
3069
3070	btrfs_scrub_cancel(root);
 
 
3071
3072	/* wait for any defraggers to finish */
3073	wait_event(fs_info->transaction_wait,
3074		   (atomic_read(&fs_info->defrag_running) == 0));
3075
3076	/* clear out the rbtree of defraggable inodes */
3077	btrfs_run_defrag_inodes(fs_info);
3078
3079	/*
3080	 * Here come 2 situations when btrfs is broken to flip readonly:
3081	 *
3082	 * 1. when btrfs flips readonly somewhere else before
3083	 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3084	 * and btrfs will skip to write sb directly to keep
3085	 * ERROR state on disk.
3086	 *
3087	 * 2. when btrfs flips readonly just in btrfs_commit_super,
3088	 * and in such case, btrfs cannot write sb via btrfs_commit_super,
3089	 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3090	 * btrfs will cleanup all FS resources first and write sb then.
3091	 */
3092	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3093		ret = btrfs_commit_super(root);
3094		if (ret)
3095			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3096	}
3097
3098	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3099		ret = btrfs_error_commit_super(root);
3100		if (ret)
3101			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3102	}
3103
3104	btrfs_put_block_group_cache(fs_info);
3105
3106	kthread_stop(fs_info->transaction_kthread);
3107	kthread_stop(fs_info->cleaner_kthread);
3108
3109	fs_info->closing = 2;
3110	smp_mb();
3111
3112	if (fs_info->delalloc_bytes) {
3113		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3114		       (unsigned long long)fs_info->delalloc_bytes);
3115	}
3116	if (fs_info->total_ref_cache_size) {
3117		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3118		       (unsigned long long)fs_info->total_ref_cache_size);
3119	}
3120
3121	free_extent_buffer(fs_info->extent_root->node);
3122	free_extent_buffer(fs_info->extent_root->commit_root);
3123	free_extent_buffer(fs_info->tree_root->node);
3124	free_extent_buffer(fs_info->tree_root->commit_root);
3125	free_extent_buffer(fs_info->chunk_root->node);
3126	free_extent_buffer(fs_info->chunk_root->commit_root);
3127	free_extent_buffer(fs_info->dev_root->node);
3128	free_extent_buffer(fs_info->dev_root->commit_root);
3129	free_extent_buffer(fs_info->csum_root->node);
3130	free_extent_buffer(fs_info->csum_root->commit_root);
3131
3132	btrfs_free_block_groups(fs_info);
3133
3134	del_fs_roots(fs_info);
 
 
3135
3136	iput(fs_info->btree_inode);
3137
3138	btrfs_stop_workers(&fs_info->generic_worker);
3139	btrfs_stop_workers(&fs_info->fixup_workers);
3140	btrfs_stop_workers(&fs_info->delalloc_workers);
3141	btrfs_stop_workers(&fs_info->workers);
3142	btrfs_stop_workers(&fs_info->endio_workers);
3143	btrfs_stop_workers(&fs_info->endio_meta_workers);
3144	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3145	btrfs_stop_workers(&fs_info->endio_write_workers);
3146	btrfs_stop_workers(&fs_info->endio_freespace_worker);
3147	btrfs_stop_workers(&fs_info->submit_workers);
3148	btrfs_stop_workers(&fs_info->delayed_workers);
3149	btrfs_stop_workers(&fs_info->caching_workers);
3150	btrfs_stop_workers(&fs_info->readahead_workers);
3151
3152#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3153	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3154		btrfsic_unmount(root, fs_info->fs_devices);
3155#endif
3156
3157	btrfs_close_devices(fs_info->fs_devices);
3158	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3159
 
 
 
3160	bdi_destroy(&fs_info->bdi);
3161	cleanup_srcu_struct(&fs_info->subvol_srcu);
3162
 
 
 
 
 
3163	return 0;
3164}
3165
3166int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3167			  int atomic)
3168{
3169	int ret;
3170	struct inode *btree_inode = buf->pages[0]->mapping->host;
3171
3172	ret = extent_buffer_uptodate(buf);
3173	if (!ret)
3174		return ret;
3175
3176	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3177				    parent_transid, atomic);
3178	if (ret == -EAGAIN)
3179		return ret;
3180	return !ret;
3181}
3182
3183int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3184{
3185	return set_extent_buffer_uptodate(buf);
3186}
3187
3188void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3189{
3190	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3191	u64 transid = btrfs_header_generation(buf);
3192	int was_dirty;
3193
 
 
 
 
 
 
 
 
 
 
3194	btrfs_assert_tree_locked(buf);
3195	if (transid != root->fs_info->generation) {
3196		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3197		       "found %llu running %llu\n",
3198			(unsigned long long)buf->start,
3199			(unsigned long long)transid,
3200			(unsigned long long)root->fs_info->generation);
3201		WARN_ON(1);
3202	}
3203	was_dirty = set_extent_buffer_dirty(buf);
3204	if (!was_dirty) {
3205		spin_lock(&root->fs_info->delalloc_lock);
3206		root->fs_info->dirty_metadata_bytes += buf->len;
3207		spin_unlock(&root->fs_info->delalloc_lock);
3208	}
3209}
3210
3211void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
 
3212{
3213	/*
3214	 * looks as though older kernels can get into trouble with
3215	 * this code, they end up stuck in balance_dirty_pages forever
3216	 */
3217	u64 num_dirty;
3218	unsigned long thresh = 32 * 1024 * 1024;
3219
3220	if (current->flags & PF_MEMALLOC)
3221		return;
3222
3223	btrfs_balance_delayed_items(root);
3224
3225	num_dirty = root->fs_info->dirty_metadata_bytes;
3226
3227	if (num_dirty > thresh) {
3228		balance_dirty_pages_ratelimited_nr(
3229				   root->fs_info->btree_inode->i_mapping, 1);
 
 
3230	}
3231	return;
3232}
3233
3234void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3235{
3236	/*
3237	 * looks as though older kernels can get into trouble with
3238	 * this code, they end up stuck in balance_dirty_pages forever
3239	 */
3240	u64 num_dirty;
3241	unsigned long thresh = 32 * 1024 * 1024;
3242
3243	if (current->flags & PF_MEMALLOC)
3244		return;
3245
3246	num_dirty = root->fs_info->dirty_metadata_bytes;
3247
3248	if (num_dirty > thresh) {
3249		balance_dirty_pages_ratelimited_nr(
3250				   root->fs_info->btree_inode->i_mapping, 1);
3251	}
3252	return;
3253}
3254
3255int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3256{
3257	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3258	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3259}
3260
3261static int btree_lock_page_hook(struct page *page, void *data,
3262				void (*flush_fn)(void *))
3263{
3264	struct inode *inode = page->mapping->host;
3265	struct btrfs_root *root = BTRFS_I(inode)->root;
3266	struct extent_buffer *eb;
3267
3268	/*
3269	 * We culled this eb but the page is still hanging out on the mapping,
3270	 * carry on.
3271	 */
3272	if (!PagePrivate(page))
3273		goto out;
3274
3275	eb = (struct extent_buffer *)page->private;
3276	if (!eb) {
3277		WARN_ON(1);
3278		goto out;
3279	}
3280	if (page != eb->pages[0])
3281		goto out;
3282
3283	if (!btrfs_try_tree_write_lock(eb)) {
3284		flush_fn(data);
3285		btrfs_tree_lock(eb);
3286	}
3287	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3288
3289	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3290		spin_lock(&root->fs_info->delalloc_lock);
3291		if (root->fs_info->dirty_metadata_bytes >= eb->len)
3292			root->fs_info->dirty_metadata_bytes -= eb->len;
3293		else
3294			WARN_ON(1);
3295		spin_unlock(&root->fs_info->delalloc_lock);
3296	}
3297
3298	btrfs_tree_unlock(eb);
3299out:
3300	if (!trylock_page(page)) {
3301		flush_fn(data);
3302		lock_page(page);
3303	}
3304	return 0;
3305}
3306
3307static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3308			      int read_only)
3309{
3310	if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3311		printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3312		return -EINVAL;
3313	}
3314
3315	if (read_only)
3316		return 0;
3317
3318	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3319		printk(KERN_WARNING "warning: mount fs with errors, "
3320		       "running btrfsck is recommended\n");
3321	}
3322
3323	return 0;
3324}
3325
3326int btrfs_error_commit_super(struct btrfs_root *root)
3327{
3328	int ret;
3329
3330	mutex_lock(&root->fs_info->cleaner_mutex);
3331	btrfs_run_delayed_iputs(root);
3332	mutex_unlock(&root->fs_info->cleaner_mutex);
3333
3334	down_write(&root->fs_info->cleanup_work_sem);
3335	up_write(&root->fs_info->cleanup_work_sem);
3336
3337	/* cleanup FS via transaction */
3338	btrfs_cleanup_transaction(root);
3339
3340	ret = write_ctree_super(NULL, root, 0);
3341
3342	return ret;
3343}
3344
3345static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
 
3346{
3347	struct btrfs_inode *btrfs_inode;
3348	struct list_head splice;
3349
3350	INIT_LIST_HEAD(&splice);
3351
3352	mutex_lock(&root->fs_info->ordered_operations_mutex);
3353	spin_lock(&root->fs_info->ordered_extent_lock);
3354
3355	list_splice_init(&root->fs_info->ordered_operations, &splice);
3356	while (!list_empty(&splice)) {
3357		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3358					 ordered_operations);
3359
3360		list_del_init(&btrfs_inode->ordered_operations);
 
3361
3362		btrfs_invalidate_inodes(btrfs_inode->root);
 
 
3363	}
3364
3365	spin_unlock(&root->fs_info->ordered_extent_lock);
3366	mutex_unlock(&root->fs_info->ordered_operations_mutex);
3367}
3368
3369static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3370{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3371	struct list_head splice;
3372	struct btrfs_ordered_extent *ordered;
3373	struct inode *inode;
3374
3375	INIT_LIST_HEAD(&splice);
3376
3377	spin_lock(&root->fs_info->ordered_extent_lock);
3378
3379	list_splice_init(&root->fs_info->ordered_extents, &splice);
3380	while (!list_empty(&splice)) {
3381		ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3382				     root_extent_list);
 
 
3383
3384		list_del_init(&ordered->root_extent_list);
3385		atomic_inc(&ordered->refs);
3386
3387		/* the inode may be getting freed (in sys_unlink path). */
3388		inode = igrab(ordered->inode);
3389
3390		spin_unlock(&root->fs_info->ordered_extent_lock);
3391		if (inode)
3392			iput(inode);
3393
3394		atomic_set(&ordered->refs, 1);
3395		btrfs_put_ordered_extent(ordered);
3396
3397		spin_lock(&root->fs_info->ordered_extent_lock);
3398	}
3399
3400	spin_unlock(&root->fs_info->ordered_extent_lock);
3401}
3402
3403int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3404			       struct btrfs_root *root)
3405{
3406	struct rb_node *node;
3407	struct btrfs_delayed_ref_root *delayed_refs;
3408	struct btrfs_delayed_ref_node *ref;
3409	int ret = 0;
3410
3411	delayed_refs = &trans->delayed_refs;
3412
3413	spin_lock(&delayed_refs->lock);
3414	if (delayed_refs->num_entries == 0) {
3415		spin_unlock(&delayed_refs->lock);
3416		printk(KERN_INFO "delayed_refs has NO entry\n");
3417		return ret;
3418	}
3419
3420	while ((node = rb_first(&delayed_refs->root)) != NULL) {
3421		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3422
3423		atomic_set(&ref->refs, 1);
3424		if (btrfs_delayed_ref_is_head(ref)) {
3425			struct btrfs_delayed_ref_head *head;
3426
3427			head = btrfs_delayed_node_to_head(ref);
3428			if (!mutex_trylock(&head->mutex)) {
3429				atomic_inc(&ref->refs);
3430				spin_unlock(&delayed_refs->lock);
3431
3432				/* Need to wait for the delayed ref to run */
3433				mutex_lock(&head->mutex);
3434				mutex_unlock(&head->mutex);
3435				btrfs_put_delayed_ref(ref);
3436
3437				spin_lock(&delayed_refs->lock);
3438				continue;
3439			}
3440
3441			kfree(head->extent_op);
3442			delayed_refs->num_heads--;
3443			if (list_empty(&head->cluster))
3444				delayed_refs->num_heads_ready--;
3445			list_del_init(&head->cluster);
3446		}
3447		ref->in_tree = 0;
3448		rb_erase(&ref->rb_node, &delayed_refs->root);
3449		delayed_refs->num_entries--;
3450
 
 
 
 
3451		spin_unlock(&delayed_refs->lock);
3452		btrfs_put_delayed_ref(ref);
3453
 
 
 
 
3454		cond_resched();
3455		spin_lock(&delayed_refs->lock);
3456	}
3457
3458	spin_unlock(&delayed_refs->lock);
3459
3460	return ret;
3461}
3462
3463static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3464{
3465	struct btrfs_pending_snapshot *snapshot;
3466	struct list_head splice;
3467
3468	INIT_LIST_HEAD(&splice);
3469
3470	list_splice_init(&t->pending_snapshots, &splice);
 
3471
3472	while (!list_empty(&splice)) {
3473		snapshot = list_entry(splice.next,
3474				      struct btrfs_pending_snapshot,
3475				      list);
3476
3477		list_del_init(&snapshot->list);
 
 
 
3478
3479		kfree(snapshot);
 
 
3480	}
 
 
3481}
3482
3483static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3484{
3485	struct btrfs_inode *btrfs_inode;
3486	struct list_head splice;
3487
3488	INIT_LIST_HEAD(&splice);
3489
3490	spin_lock(&root->fs_info->delalloc_lock);
3491	list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3492
3493	while (!list_empty(&splice)) {
3494		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3495				    delalloc_inodes);
 
 
 
 
3496
3497		list_del_init(&btrfs_inode->delalloc_inodes);
 
3498
3499		btrfs_invalidate_inodes(btrfs_inode->root);
3500	}
3501
3502	spin_unlock(&root->fs_info->delalloc_lock);
3503}
3504
3505static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3506					struct extent_io_tree *dirty_pages,
3507					int mark)
3508{
3509	int ret;
3510	struct page *page;
3511	struct inode *btree_inode = root->fs_info->btree_inode;
3512	struct extent_buffer *eb;
3513	u64 start = 0;
3514	u64 end;
3515	u64 offset;
3516	unsigned long index;
3517
3518	while (1) {
3519		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3520					    mark);
3521		if (ret)
3522			break;
3523
3524		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3525		while (start <= end) {
3526			index = start >> PAGE_CACHE_SHIFT;
3527			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3528			page = find_get_page(btree_inode->i_mapping, index);
3529			if (!page)
3530				continue;
3531			offset = page_offset(page);
3532
3533			spin_lock(&dirty_pages->buffer_lock);
3534			eb = radix_tree_lookup(
3535			     &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3536					       offset >> PAGE_CACHE_SHIFT);
3537			spin_unlock(&dirty_pages->buffer_lock);
3538			if (eb)
3539				ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3540							 &eb->bflags);
3541			if (PageWriteback(page))
3542				end_page_writeback(page);
3543
3544			lock_page(page);
3545			if (PageDirty(page)) {
3546				clear_page_dirty_for_io(page);
3547				spin_lock_irq(&page->mapping->tree_lock);
3548				radix_tree_tag_clear(&page->mapping->page_tree,
3549							page_index(page),
3550							PAGECACHE_TAG_DIRTY);
3551				spin_unlock_irq(&page->mapping->tree_lock);
3552			}
3553
3554			unlock_page(page);
3555			page_cache_release(page);
 
 
3556		}
3557	}
3558
3559	return ret;
3560}
3561
3562static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3563				       struct extent_io_tree *pinned_extents)
3564{
3565	struct extent_io_tree *unpin;
3566	u64 start;
3567	u64 end;
3568	int ret;
3569	bool loop = true;
3570
3571	unpin = pinned_extents;
3572again:
3573	while (1) {
3574		ret = find_first_extent_bit(unpin, 0, &start, &end,
3575					    EXTENT_DIRTY);
3576		if (ret)
3577			break;
3578
3579		/* opt_discard */
3580		if (btrfs_test_opt(root, DISCARD))
3581			ret = btrfs_error_discard_extent(root, start,
3582							 end + 1 - start,
3583							 NULL);
3584
3585		clear_extent_dirty(unpin, start, end, GFP_NOFS);
3586		btrfs_error_unpin_extent_range(root, start, end);
3587		cond_resched();
3588	}
3589
3590	if (loop) {
3591		if (unpin == &root->fs_info->freed_extents[0])
3592			unpin = &root->fs_info->freed_extents[1];
3593		else
3594			unpin = &root->fs_info->freed_extents[0];
3595		loop = false;
3596		goto again;
3597	}
3598
3599	return 0;
3600}
3601
3602void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3603				   struct btrfs_root *root)
3604{
 
 
3605	btrfs_destroy_delayed_refs(cur_trans, root);
3606	btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3607				cur_trans->dirty_pages.dirty_bytes);
3608
3609	/* FIXME: cleanup wait for commit */
3610	cur_trans->in_commit = 1;
3611	cur_trans->blocked = 1;
3612	wake_up(&root->fs_info->transaction_blocked_wait);
3613
3614	cur_trans->blocked = 0;
3615	wake_up(&root->fs_info->transaction_wait);
3616
3617	cur_trans->commit_done = 1;
3618	wake_up(&cur_trans->commit_wait);
3619
3620	btrfs_destroy_delayed_inodes(root);
3621	btrfs_assert_delayed_root_empty(root);
3622
3623	btrfs_destroy_pending_snapshots(cur_trans);
3624
3625	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3626				     EXTENT_DIRTY);
3627	btrfs_destroy_pinned_extent(root,
3628				    root->fs_info->pinned_extents);
3629
 
 
 
3630	/*
3631	memset(cur_trans, 0, sizeof(*cur_trans));
3632	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3633	*/
3634}
3635
3636int btrfs_cleanup_transaction(struct btrfs_root *root)
3637{
3638	struct btrfs_transaction *t;
3639	LIST_HEAD(list);
3640
3641	mutex_lock(&root->fs_info->transaction_kthread_mutex);
3642
3643	spin_lock(&root->fs_info->trans_lock);
3644	list_splice_init(&root->fs_info->trans_list, &list);
3645	root->fs_info->trans_no_join = 1;
3646	spin_unlock(&root->fs_info->trans_lock);
3647
3648	while (!list_empty(&list)) {
3649		t = list_entry(list.next, struct btrfs_transaction, list);
3650		if (!t)
3651			break;
3652
3653		btrfs_destroy_ordered_operations(root);
3654
3655		btrfs_destroy_ordered_extents(root);
3656
3657		btrfs_destroy_delayed_refs(t, root);
3658
3659		btrfs_block_rsv_release(root,
3660					&root->fs_info->trans_block_rsv,
3661					t->dirty_pages.dirty_bytes);
3662
3663		/* FIXME: cleanup wait for commit */
3664		t->in_commit = 1;
3665		t->blocked = 1;
3666		if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3667			wake_up(&root->fs_info->transaction_blocked_wait);
3668
3669		t->blocked = 0;
3670		if (waitqueue_active(&root->fs_info->transaction_wait))
3671			wake_up(&root->fs_info->transaction_wait);
3672
3673		t->commit_done = 1;
3674		if (waitqueue_active(&t->commit_wait))
3675			wake_up(&t->commit_wait);
3676
3677		btrfs_destroy_delayed_inodes(root);
3678		btrfs_assert_delayed_root_empty(root);
3679
3680		btrfs_destroy_pending_snapshots(t);
3681
3682		btrfs_destroy_delalloc_inodes(root);
3683
3684		spin_lock(&root->fs_info->trans_lock);
3685		root->fs_info->running_transaction = NULL;
 
 
3686		spin_unlock(&root->fs_info->trans_lock);
3687
3688		btrfs_destroy_marked_extents(root, &t->dirty_pages,
3689					     EXTENT_DIRTY);
3690
3691		btrfs_destroy_pinned_extent(root,
3692					    root->fs_info->pinned_extents);
3693
3694		atomic_set(&t->use_count, 0);
3695		list_del_init(&t->list);
3696		memset(t, 0, sizeof(*t));
3697		kmem_cache_free(btrfs_transaction_cachep, t);
3698	}
3699
3700	spin_lock(&root->fs_info->trans_lock);
3701	root->fs_info->trans_no_join = 0;
3702	spin_unlock(&root->fs_info->trans_lock);
 
 
 
 
 
3703	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3704
3705	return 0;
3706}
3707
3708static struct extent_io_ops btree_extent_io_ops = {
3709	.write_cache_pages_lock_hook = btree_lock_page_hook,
3710	.readpage_end_io_hook = btree_readpage_end_io_hook,
3711	.readpage_io_failed_hook = btree_io_failed_hook,
3712	.submit_bio_hook = btree_submit_bio_hook,
3713	/* note we're sharing with inode.c for the merge bio hook */
3714	.merge_bio_hook = btrfs_merge_bio_hook,
3715};