Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * Copyright (C) Ericsson AB 2007-2008
   3 * Copyright (C) ST-Ericsson SA 2008-2010
   4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
   5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
   6 * License terms: GNU General Public License (GPL) version 2
   7 */
   8
   9#include <linux/dma-mapping.h>
  10#include <linux/kernel.h>
  11#include <linux/slab.h>
  12#include <linux/export.h>
  13#include <linux/dmaengine.h>
  14#include <linux/platform_device.h>
  15#include <linux/clk.h>
  16#include <linux/delay.h>
  17#include <linux/log2.h>
  18#include <linux/pm.h>
  19#include <linux/pm_runtime.h>
  20#include <linux/err.h>
  21#include <linux/of.h>
  22#include <linux/of_dma.h>
  23#include <linux/amba/bus.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/platform_data/dma-ste-dma40.h>
 
  26
  27#include "dmaengine.h"
  28#include "ste_dma40_ll.h"
  29
  30#define D40_NAME "dma40"
  31
  32#define D40_PHY_CHAN -1
  33
  34/* For masking out/in 2 bit channel positions */
  35#define D40_CHAN_POS(chan)  (2 * (chan / 2))
  36#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  37
  38/* Maximum iterations taken before giving up suspending a channel */
  39#define D40_SUSPEND_MAX_IT 500
  40
  41/* Milliseconds */
  42#define DMA40_AUTOSUSPEND_DELAY	100
  43
  44/* Hardware requirement on LCLA alignment */
  45#define LCLA_ALIGNMENT 0x40000
  46
  47/* Max number of links per event group */
  48#define D40_LCLA_LINK_PER_EVENT_GRP 128
  49#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  50
  51/* Max number of logical channels per physical channel */
  52#define D40_MAX_LOG_CHAN_PER_PHY 32
  53
  54/* Attempts before giving up to trying to get pages that are aligned */
  55#define MAX_LCLA_ALLOC_ATTEMPTS 256
  56
  57/* Bit markings for allocation map */
  58#define D40_ALLOC_FREE		BIT(31)
  59#define D40_ALLOC_PHY		BIT(30)
  60#define D40_ALLOC_LOG_FREE	0
  61
  62#define D40_MEMCPY_MAX_CHANS	8
  63
  64/* Reserved event lines for memcpy only. */
  65#define DB8500_DMA_MEMCPY_EV_0	51
  66#define DB8500_DMA_MEMCPY_EV_1	56
  67#define DB8500_DMA_MEMCPY_EV_2	57
  68#define DB8500_DMA_MEMCPY_EV_3	58
  69#define DB8500_DMA_MEMCPY_EV_4	59
  70#define DB8500_DMA_MEMCPY_EV_5	60
  71
  72static int dma40_memcpy_channels[] = {
  73	DB8500_DMA_MEMCPY_EV_0,
  74	DB8500_DMA_MEMCPY_EV_1,
  75	DB8500_DMA_MEMCPY_EV_2,
  76	DB8500_DMA_MEMCPY_EV_3,
  77	DB8500_DMA_MEMCPY_EV_4,
  78	DB8500_DMA_MEMCPY_EV_5,
  79};
  80
  81/* Default configuration for physcial memcpy */
  82static struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
  83	.mode = STEDMA40_MODE_PHYSICAL,
  84	.dir = DMA_MEM_TO_MEM,
  85
  86	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  87	.src_info.psize = STEDMA40_PSIZE_PHY_1,
  88	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  89
  90	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  91	.dst_info.psize = STEDMA40_PSIZE_PHY_1,
  92	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  93};
  94
  95/* Default configuration for logical memcpy */
  96static struct stedma40_chan_cfg dma40_memcpy_conf_log = {
  97	.mode = STEDMA40_MODE_LOGICAL,
  98	.dir = DMA_MEM_TO_MEM,
  99
 100	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 101	.src_info.psize = STEDMA40_PSIZE_LOG_1,
 102	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 103
 104	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 105	.dst_info.psize = STEDMA40_PSIZE_LOG_1,
 106	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 107};
 108
 109/**
 110 * enum 40_command - The different commands and/or statuses.
 111 *
 112 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 113 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 114 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 115 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 116 */
 117enum d40_command {
 118	D40_DMA_STOP		= 0,
 119	D40_DMA_RUN		= 1,
 120	D40_DMA_SUSPEND_REQ	= 2,
 121	D40_DMA_SUSPENDED	= 3
 122};
 123
 124/*
 125 * enum d40_events - The different Event Enables for the event lines.
 126 *
 127 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
 128 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
 129 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
 130 * @D40_ROUND_EVENTLINE: Status check for event line.
 131 */
 132
 133enum d40_events {
 134	D40_DEACTIVATE_EVENTLINE	= 0,
 135	D40_ACTIVATE_EVENTLINE		= 1,
 136	D40_SUSPEND_REQ_EVENTLINE	= 2,
 137	D40_ROUND_EVENTLINE		= 3
 138};
 139
 140/*
 141 * These are the registers that has to be saved and later restored
 142 * when the DMA hw is powered off.
 143 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
 144 */
 145static u32 d40_backup_regs[] = {
 146	D40_DREG_LCPA,
 147	D40_DREG_LCLA,
 148	D40_DREG_PRMSE,
 149	D40_DREG_PRMSO,
 150	D40_DREG_PRMOE,
 151	D40_DREG_PRMOO,
 152};
 153
 154#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
 155
 156/*
 157 * since 9540 and 8540 has the same HW revision
 158 * use v4a for 9540 or ealier
 159 * use v4b for 8540 or later
 160 * HW revision:
 161 * DB8500ed has revision 0
 162 * DB8500v1 has revision 2
 163 * DB8500v2 has revision 3
 164 * AP9540v1 has revision 4
 165 * DB8540v1 has revision 4
 166 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
 167 */
 168static u32 d40_backup_regs_v4a[] = {
 169	D40_DREG_PSEG1,
 170	D40_DREG_PSEG2,
 171	D40_DREG_PSEG3,
 172	D40_DREG_PSEG4,
 173	D40_DREG_PCEG1,
 174	D40_DREG_PCEG2,
 175	D40_DREG_PCEG3,
 176	D40_DREG_PCEG4,
 177	D40_DREG_RSEG1,
 178	D40_DREG_RSEG2,
 179	D40_DREG_RSEG3,
 180	D40_DREG_RSEG4,
 181	D40_DREG_RCEG1,
 182	D40_DREG_RCEG2,
 183	D40_DREG_RCEG3,
 184	D40_DREG_RCEG4,
 185};
 186
 187#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
 188
 189static u32 d40_backup_regs_v4b[] = {
 190	D40_DREG_CPSEG1,
 191	D40_DREG_CPSEG2,
 192	D40_DREG_CPSEG3,
 193	D40_DREG_CPSEG4,
 194	D40_DREG_CPSEG5,
 195	D40_DREG_CPCEG1,
 196	D40_DREG_CPCEG2,
 197	D40_DREG_CPCEG3,
 198	D40_DREG_CPCEG4,
 199	D40_DREG_CPCEG5,
 200	D40_DREG_CRSEG1,
 201	D40_DREG_CRSEG2,
 202	D40_DREG_CRSEG3,
 203	D40_DREG_CRSEG4,
 204	D40_DREG_CRSEG5,
 205	D40_DREG_CRCEG1,
 206	D40_DREG_CRCEG2,
 207	D40_DREG_CRCEG3,
 208	D40_DREG_CRCEG4,
 209	D40_DREG_CRCEG5,
 210};
 211
 212#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
 213
 214static u32 d40_backup_regs_chan[] = {
 215	D40_CHAN_REG_SSCFG,
 216	D40_CHAN_REG_SSELT,
 217	D40_CHAN_REG_SSPTR,
 218	D40_CHAN_REG_SSLNK,
 219	D40_CHAN_REG_SDCFG,
 220	D40_CHAN_REG_SDELT,
 221	D40_CHAN_REG_SDPTR,
 222	D40_CHAN_REG_SDLNK,
 223};
 224
 225#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
 226			     BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
 227
 228/**
 229 * struct d40_interrupt_lookup - lookup table for interrupt handler
 230 *
 231 * @src: Interrupt mask register.
 232 * @clr: Interrupt clear register.
 233 * @is_error: true if this is an error interrupt.
 234 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 235 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 236 */
 237struct d40_interrupt_lookup {
 238	u32 src;
 239	u32 clr;
 240	bool is_error;
 241	int offset;
 242};
 243
 244
 245static struct d40_interrupt_lookup il_v4a[] = {
 246	{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
 247	{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
 248	{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
 249	{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
 250	{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
 251	{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
 252	{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
 253	{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
 254	{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
 255	{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
 256};
 257
 258static struct d40_interrupt_lookup il_v4b[] = {
 259	{D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
 260	{D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
 261	{D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
 262	{D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
 263	{D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
 264	{D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
 265	{D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
 266	{D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
 267	{D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
 268	{D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
 269	{D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
 270	{D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
 271};
 272
 273/**
 274 * struct d40_reg_val - simple lookup struct
 275 *
 276 * @reg: The register.
 277 * @val: The value that belongs to the register in reg.
 278 */
 279struct d40_reg_val {
 280	unsigned int reg;
 281	unsigned int val;
 282};
 283
 284static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
 285	/* Clock every part of the DMA block from start */
 286	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 287
 288	/* Interrupts on all logical channels */
 289	{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
 290	{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
 291	{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
 292	{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
 293	{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
 294	{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
 295	{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
 296	{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
 297	{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
 298	{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
 299	{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
 300	{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
 301};
 302static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
 303	/* Clock every part of the DMA block from start */
 304	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 305
 306	/* Interrupts on all logical channels */
 307	{ .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
 308	{ .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
 309	{ .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
 310	{ .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
 311	{ .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
 312	{ .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
 313	{ .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
 314	{ .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
 315	{ .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
 316	{ .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
 317	{ .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
 318	{ .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
 319	{ .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
 320	{ .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
 321	{ .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
 322};
 323
 324/**
 325 * struct d40_lli_pool - Structure for keeping LLIs in memory
 326 *
 327 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 328 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 329 * pre_alloc_lli is used.
 330 * @dma_addr: DMA address, if mapped
 331 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 332 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 333 * one buffer to one buffer.
 334 */
 335struct d40_lli_pool {
 336	void	*base;
 337	int	 size;
 338	dma_addr_t	dma_addr;
 339	/* Space for dst and src, plus an extra for padding */
 340	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
 341};
 342
 343/**
 344 * struct d40_desc - A descriptor is one DMA job.
 345 *
 346 * @lli_phy: LLI settings for physical channel. Both src and dst=
 347 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 348 * lli_len equals one.
 349 * @lli_log: Same as above but for logical channels.
 350 * @lli_pool: The pool with two entries pre-allocated.
 351 * @lli_len: Number of llis of current descriptor.
 352 * @lli_current: Number of transferred llis.
 353 * @lcla_alloc: Number of LCLA entries allocated.
 354 * @txd: DMA engine struct. Used for among other things for communication
 355 * during a transfer.
 356 * @node: List entry.
 357 * @is_in_client_list: true if the client owns this descriptor.
 358 * @cyclic: true if this is a cyclic job
 359 *
 360 * This descriptor is used for both logical and physical transfers.
 361 */
 362struct d40_desc {
 363	/* LLI physical */
 364	struct d40_phy_lli_bidir	 lli_phy;
 365	/* LLI logical */
 366	struct d40_log_lli_bidir	 lli_log;
 367
 368	struct d40_lli_pool		 lli_pool;
 369	int				 lli_len;
 370	int				 lli_current;
 371	int				 lcla_alloc;
 372
 373	struct dma_async_tx_descriptor	 txd;
 374	struct list_head		 node;
 375
 376	bool				 is_in_client_list;
 377	bool				 cyclic;
 378};
 379
 380/**
 381 * struct d40_lcla_pool - LCLA pool settings and data.
 382 *
 383 * @base: The virtual address of LCLA. 18 bit aligned.
 384 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 385 * This pointer is only there for clean-up on error.
 386 * @pages: The number of pages needed for all physical channels.
 387 * Only used later for clean-up on error
 388 * @lock: Lock to protect the content in this struct.
 389 * @alloc_map: big map over which LCLA entry is own by which job.
 390 */
 391struct d40_lcla_pool {
 392	void		*base;
 393	dma_addr_t	dma_addr;
 394	void		*base_unaligned;
 395	int		 pages;
 396	spinlock_t	 lock;
 397	struct d40_desc	**alloc_map;
 398};
 399
 400/**
 401 * struct d40_phy_res - struct for handling eventlines mapped to physical
 402 * channels.
 403 *
 404 * @lock: A lock protection this entity.
 405 * @reserved: True if used by secure world or otherwise.
 406 * @num: The physical channel number of this entity.
 407 * @allocated_src: Bit mapped to show which src event line's are mapped to
 408 * this physical channel. Can also be free or physically allocated.
 409 * @allocated_dst: Same as for src but is dst.
 410 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
 411 * event line number.
 412 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
 413 */
 414struct d40_phy_res {
 415	spinlock_t lock;
 416	bool	   reserved;
 417	int	   num;
 418	u32	   allocated_src;
 419	u32	   allocated_dst;
 420	bool	   use_soft_lli;
 421};
 422
 423struct d40_base;
 424
 425/**
 426 * struct d40_chan - Struct that describes a channel.
 427 *
 428 * @lock: A spinlock to protect this struct.
 429 * @log_num: The logical number, if any of this channel.
 430 * @pending_tx: The number of pending transfers. Used between interrupt handler
 431 * and tasklet.
 432 * @busy: Set to true when transfer is ongoing on this channel.
 433 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 434 * point is NULL, then the channel is not allocated.
 435 * @chan: DMA engine handle.
 436 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 437 * transfer and call client callback.
 438 * @client: Cliented owned descriptor list.
 439 * @pending_queue: Submitted jobs, to be issued by issue_pending()
 440 * @active: Active descriptor.
 441 * @done: Completed jobs
 442 * @queue: Queued jobs.
 443 * @prepare_queue: Prepared jobs.
 444 * @dma_cfg: The client configuration of this dma channel.
 445 * @configured: whether the dma_cfg configuration is valid
 446 * @base: Pointer to the device instance struct.
 447 * @src_def_cfg: Default cfg register setting for src.
 448 * @dst_def_cfg: Default cfg register setting for dst.
 449 * @log_def: Default logical channel settings.
 450 * @lcpa: Pointer to dst and src lcpa settings.
 451 * @runtime_addr: runtime configured address.
 452 * @runtime_direction: runtime configured direction.
 453 *
 454 * This struct can either "be" a logical or a physical channel.
 455 */
 456struct d40_chan {
 457	spinlock_t			 lock;
 458	int				 log_num;
 459	int				 pending_tx;
 460	bool				 busy;
 461	struct d40_phy_res		*phy_chan;
 462	struct dma_chan			 chan;
 463	struct tasklet_struct		 tasklet;
 464	struct list_head		 client;
 465	struct list_head		 pending_queue;
 466	struct list_head		 active;
 467	struct list_head		 done;
 468	struct list_head		 queue;
 469	struct list_head		 prepare_queue;
 470	struct stedma40_chan_cfg	 dma_cfg;
 471	bool				 configured;
 472	struct d40_base			*base;
 473	/* Default register configurations */
 474	u32				 src_def_cfg;
 475	u32				 dst_def_cfg;
 476	struct d40_def_lcsp		 log_def;
 477	struct d40_log_lli_full		*lcpa;
 478	/* Runtime reconfiguration */
 479	dma_addr_t			runtime_addr;
 480	enum dma_transfer_direction	runtime_direction;
 481};
 482
 483/**
 484 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
 485 * controller
 486 *
 487 * @backup: the pointer to the registers address array for backup
 488 * @backup_size: the size of the registers address array for backup
 489 * @realtime_en: the realtime enable register
 490 * @realtime_clear: the realtime clear register
 491 * @high_prio_en: the high priority enable register
 492 * @high_prio_clear: the high priority clear register
 493 * @interrupt_en: the interrupt enable register
 494 * @interrupt_clear: the interrupt clear register
 495 * @il: the pointer to struct d40_interrupt_lookup
 496 * @il_size: the size of d40_interrupt_lookup array
 497 * @init_reg: the pointer to the struct d40_reg_val
 498 * @init_reg_size: the size of d40_reg_val array
 499 */
 500struct d40_gen_dmac {
 501	u32				*backup;
 502	u32				 backup_size;
 503	u32				 realtime_en;
 504	u32				 realtime_clear;
 505	u32				 high_prio_en;
 506	u32				 high_prio_clear;
 507	u32				 interrupt_en;
 508	u32				 interrupt_clear;
 509	struct d40_interrupt_lookup	*il;
 510	u32				 il_size;
 511	struct d40_reg_val		*init_reg;
 512	u32				 init_reg_size;
 513};
 514
 515/**
 516 * struct d40_base - The big global struct, one for each probe'd instance.
 517 *
 518 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 519 * @execmd_lock: Lock for execute command usage since several channels share
 520 * the same physical register.
 521 * @dev: The device structure.
 522 * @virtbase: The virtual base address of the DMA's register.
 523 * @rev: silicon revision detected.
 524 * @clk: Pointer to the DMA clock structure.
 525 * @phy_start: Physical memory start of the DMA registers.
 526 * @phy_size: Size of the DMA register map.
 527 * @irq: The IRQ number.
 528 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
 529 * transfers).
 530 * @num_phy_chans: The number of physical channels. Read from HW. This
 531 * is the number of available channels for this driver, not counting "Secure
 532 * mode" allocated physical channels.
 533 * @num_log_chans: The number of logical channels. Calculated from
 534 * num_phy_chans.
 535 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 536 * @dma_slave: dma_device channels that can do only do slave transfers.
 537 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
 538 * @phy_chans: Room for all possible physical channels in system.
 539 * @log_chans: Room for all possible logical channels in system.
 540 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 541 * to log_chans entries.
 542 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 543 * to phy_chans entries.
 544 * @plat_data: Pointer to provided platform_data which is the driver
 545 * configuration.
 546 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
 547 * @phy_res: Vector containing all physical channels.
 548 * @lcla_pool: lcla pool settings and data.
 549 * @lcpa_base: The virtual mapped address of LCPA.
 550 * @phy_lcpa: The physical address of the LCPA.
 551 * @lcpa_size: The size of the LCPA area.
 552 * @desc_slab: cache for descriptors.
 553 * @reg_val_backup: Here the values of some hardware registers are stored
 554 * before the DMA is powered off. They are restored when the power is back on.
 555 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
 556 * later
 557 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
 558 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
 559 * @initialized: true if the dma has been initialized
 560 * @gen_dmac: the struct for generic registers values to represent u8500/8540
 561 * DMA controller
 562 */
 563struct d40_base {
 564	spinlock_t			 interrupt_lock;
 565	spinlock_t			 execmd_lock;
 566	struct device			 *dev;
 567	void __iomem			 *virtbase;
 568	u8				  rev:4;
 569	struct clk			 *clk;
 570	phys_addr_t			  phy_start;
 571	resource_size_t			  phy_size;
 572	int				  irq;
 573	int				  num_memcpy_chans;
 574	int				  num_phy_chans;
 575	int				  num_log_chans;
 576	struct device_dma_parameters	  dma_parms;
 577	struct dma_device		  dma_both;
 578	struct dma_device		  dma_slave;
 579	struct dma_device		  dma_memcpy;
 580	struct d40_chan			 *phy_chans;
 581	struct d40_chan			 *log_chans;
 582	struct d40_chan			**lookup_log_chans;
 583	struct d40_chan			**lookup_phy_chans;
 584	struct stedma40_platform_data	 *plat_data;
 585	struct regulator		 *lcpa_regulator;
 586	/* Physical half channels */
 587	struct d40_phy_res		 *phy_res;
 588	struct d40_lcla_pool		  lcla_pool;
 589	void				 *lcpa_base;
 590	dma_addr_t			  phy_lcpa;
 591	resource_size_t			  lcpa_size;
 592	struct kmem_cache		 *desc_slab;
 593	u32				  reg_val_backup[BACKUP_REGS_SZ];
 594	u32				  reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
 595	u32				 *reg_val_backup_chan;
 596	u16				  gcc_pwr_off_mask;
 597	bool				  initialized;
 598	struct d40_gen_dmac		  gen_dmac;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 599};
 600
 601static struct device *chan2dev(struct d40_chan *d40c)
 602{
 603	return &d40c->chan.dev->device;
 604}
 605
 606static bool chan_is_physical(struct d40_chan *chan)
 607{
 608	return chan->log_num == D40_PHY_CHAN;
 609}
 610
 611static bool chan_is_logical(struct d40_chan *chan)
 612{
 613	return !chan_is_physical(chan);
 614}
 615
 616static void __iomem *chan_base(struct d40_chan *chan)
 617{
 618	return chan->base->virtbase + D40_DREG_PCBASE +
 619	       chan->phy_chan->num * D40_DREG_PCDELTA;
 620}
 621
 622#define d40_err(dev, format, arg...)		\
 623	dev_err(dev, "[%s] " format, __func__, ## arg)
 624
 625#define chan_err(d40c, format, arg...)		\
 626	d40_err(chan2dev(d40c), format, ## arg)
 627
 628static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
 629			      int lli_len)
 630{
 631	bool is_log = chan_is_logical(d40c);
 632	u32 align;
 633	void *base;
 634
 635	if (is_log)
 636		align = sizeof(struct d40_log_lli);
 637	else
 638		align = sizeof(struct d40_phy_lli);
 639
 640	if (lli_len == 1) {
 641		base = d40d->lli_pool.pre_alloc_lli;
 642		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
 643		d40d->lli_pool.base = NULL;
 644	} else {
 645		d40d->lli_pool.size = lli_len * 2 * align;
 646
 647		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
 648		d40d->lli_pool.base = base;
 649
 650		if (d40d->lli_pool.base == NULL)
 651			return -ENOMEM;
 652	}
 653
 654	if (is_log) {
 655		d40d->lli_log.src = PTR_ALIGN(base, align);
 656		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
 657
 658		d40d->lli_pool.dma_addr = 0;
 659	} else {
 660		d40d->lli_phy.src = PTR_ALIGN(base, align);
 661		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
 662
 663		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
 664							 d40d->lli_phy.src,
 665							 d40d->lli_pool.size,
 666							 DMA_TO_DEVICE);
 667
 668		if (dma_mapping_error(d40c->base->dev,
 669				      d40d->lli_pool.dma_addr)) {
 670			kfree(d40d->lli_pool.base);
 671			d40d->lli_pool.base = NULL;
 672			d40d->lli_pool.dma_addr = 0;
 673			return -ENOMEM;
 674		}
 675	}
 676
 677	return 0;
 678}
 679
 680static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
 681{
 682	if (d40d->lli_pool.dma_addr)
 683		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
 684				 d40d->lli_pool.size, DMA_TO_DEVICE);
 685
 686	kfree(d40d->lli_pool.base);
 687	d40d->lli_pool.base = NULL;
 688	d40d->lli_pool.size = 0;
 689	d40d->lli_log.src = NULL;
 690	d40d->lli_log.dst = NULL;
 691	d40d->lli_phy.src = NULL;
 692	d40d->lli_phy.dst = NULL;
 693}
 694
 695static int d40_lcla_alloc_one(struct d40_chan *d40c,
 696			      struct d40_desc *d40d)
 697{
 698	unsigned long flags;
 699	int i;
 700	int ret = -EINVAL;
 
 701
 702	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 703
 
 
 704	/*
 705	 * Allocate both src and dst at the same time, therefore the half
 706	 * start on 1 since 0 can't be used since zero is used as end marker.
 707	 */
 708	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 709		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
 710
 711		if (!d40c->base->lcla_pool.alloc_map[idx]) {
 712			d40c->base->lcla_pool.alloc_map[idx] = d40d;
 713			d40d->lcla_alloc++;
 714			ret = i;
 715			break;
 716		}
 717	}
 718
 719	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 720
 721	return ret;
 722}
 723
 724static int d40_lcla_free_all(struct d40_chan *d40c,
 725			     struct d40_desc *d40d)
 726{
 727	unsigned long flags;
 728	int i;
 729	int ret = -EINVAL;
 730
 731	if (chan_is_physical(d40c))
 732		return 0;
 733
 734	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 735
 736	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 737		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
 738
 739		if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
 740			d40c->base->lcla_pool.alloc_map[idx] = NULL;
 741			d40d->lcla_alloc--;
 742			if (d40d->lcla_alloc == 0) {
 743				ret = 0;
 744				break;
 745			}
 746		}
 747	}
 748
 749	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 750
 751	return ret;
 752
 753}
 754
 755static void d40_desc_remove(struct d40_desc *d40d)
 756{
 757	list_del(&d40d->node);
 758}
 759
 760static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
 761{
 762	struct d40_desc *desc = NULL;
 763
 764	if (!list_empty(&d40c->client)) {
 765		struct d40_desc *d;
 766		struct d40_desc *_d;
 767
 768		list_for_each_entry_safe(d, _d, &d40c->client, node) {
 769			if (async_tx_test_ack(&d->txd)) {
 770				d40_desc_remove(d);
 771				desc = d;
 772				memset(desc, 0, sizeof(*desc));
 773				break;
 774			}
 775		}
 776	}
 777
 778	if (!desc)
 779		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
 780
 781	if (desc)
 782		INIT_LIST_HEAD(&desc->node);
 783
 784	return desc;
 785}
 786
 787static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
 788{
 789
 790	d40_pool_lli_free(d40c, d40d);
 791	d40_lcla_free_all(d40c, d40d);
 792	kmem_cache_free(d40c->base->desc_slab, d40d);
 793}
 794
 795static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
 796{
 797	list_add_tail(&desc->node, &d40c->active);
 798}
 799
 800static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
 801{
 802	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
 803	struct d40_phy_lli *lli_src = desc->lli_phy.src;
 804	void __iomem *base = chan_base(chan);
 805
 806	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
 807	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
 808	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
 809	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
 810
 811	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
 812	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
 813	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
 814	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
 815}
 816
 817static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
 818{
 819	list_add_tail(&desc->node, &d40c->done);
 820}
 821
 822static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
 823{
 824	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
 825	struct d40_log_lli_bidir *lli = &desc->lli_log;
 826	int lli_current = desc->lli_current;
 827	int lli_len = desc->lli_len;
 828	bool cyclic = desc->cyclic;
 829	int curr_lcla = -EINVAL;
 830	int first_lcla = 0;
 831	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
 832	bool linkback;
 833
 834	/*
 835	 * We may have partially running cyclic transfers, in case we did't get
 836	 * enough LCLA entries.
 837	 */
 838	linkback = cyclic && lli_current == 0;
 839
 840	/*
 841	 * For linkback, we need one LCLA even with only one link, because we
 842	 * can't link back to the one in LCPA space
 843	 */
 844	if (linkback || (lli_len - lli_current > 1)) {
 845		/*
 846		 * If the channel is expected to use only soft_lli don't
 847		 * allocate a lcla. This is to avoid a HW issue that exists
 848		 * in some controller during a peripheral to memory transfer
 849		 * that uses linked lists.
 850		 */
 851		if (!(chan->phy_chan->use_soft_lli &&
 852			chan->dma_cfg.dir == DMA_DEV_TO_MEM))
 853			curr_lcla = d40_lcla_alloc_one(chan, desc);
 854
 855		first_lcla = curr_lcla;
 856	}
 857
 858	/*
 859	 * For linkback, we normally load the LCPA in the loop since we need to
 860	 * link it to the second LCLA and not the first.  However, if we
 861	 * couldn't even get a first LCLA, then we have to run in LCPA and
 862	 * reload manually.
 863	 */
 864	if (!linkback || curr_lcla == -EINVAL) {
 865		unsigned int flags = 0;
 866
 867		if (curr_lcla == -EINVAL)
 868			flags |= LLI_TERM_INT;
 869
 870		d40_log_lli_lcpa_write(chan->lcpa,
 871				       &lli->dst[lli_current],
 872				       &lli->src[lli_current],
 873				       curr_lcla,
 874				       flags);
 875		lli_current++;
 876	}
 877
 878	if (curr_lcla < 0)
 879		goto out;
 880
 881	for (; lli_current < lli_len; lli_current++) {
 882		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
 883					   8 * curr_lcla * 2;
 884		struct d40_log_lli *lcla = pool->base + lcla_offset;
 885		unsigned int flags = 0;
 886		int next_lcla;
 887
 888		if (lli_current + 1 < lli_len)
 889			next_lcla = d40_lcla_alloc_one(chan, desc);
 890		else
 891			next_lcla = linkback ? first_lcla : -EINVAL;
 892
 893		if (cyclic || next_lcla == -EINVAL)
 894			flags |= LLI_TERM_INT;
 895
 896		if (linkback && curr_lcla == first_lcla) {
 897			/* First link goes in both LCPA and LCLA */
 898			d40_log_lli_lcpa_write(chan->lcpa,
 899					       &lli->dst[lli_current],
 900					       &lli->src[lli_current],
 901					       next_lcla, flags);
 902		}
 903
 904		/*
 905		 * One unused LCLA in the cyclic case if the very first
 906		 * next_lcla fails...
 907		 */
 908		d40_log_lli_lcla_write(lcla,
 909				       &lli->dst[lli_current],
 910				       &lli->src[lli_current],
 911				       next_lcla, flags);
 912
 913		/*
 914		 * Cache maintenance is not needed if lcla is
 915		 * mapped in esram
 916		 */
 917		if (!use_esram_lcla) {
 918			dma_sync_single_range_for_device(chan->base->dev,
 919						pool->dma_addr, lcla_offset,
 920						2 * sizeof(struct d40_log_lli),
 921						DMA_TO_DEVICE);
 922		}
 923		curr_lcla = next_lcla;
 924
 925		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
 926			lli_current++;
 927			break;
 928		}
 929	}
 930
 931out:
 932	desc->lli_current = lli_current;
 933}
 934
 935static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
 936{
 937	if (chan_is_physical(d40c)) {
 938		d40_phy_lli_load(d40c, d40d);
 939		d40d->lli_current = d40d->lli_len;
 940	} else
 941		d40_log_lli_to_lcxa(d40c, d40d);
 942}
 943
 944static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
 945{
 946	struct d40_desc *d;
 947
 948	if (list_empty(&d40c->active))
 949		return NULL;
 950
 951	d = list_first_entry(&d40c->active,
 952			     struct d40_desc,
 953			     node);
 954	return d;
 955}
 956
 957/* remove desc from current queue and add it to the pending_queue */
 958static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
 959{
 960	d40_desc_remove(desc);
 961	desc->is_in_client_list = false;
 962	list_add_tail(&desc->node, &d40c->pending_queue);
 963}
 964
 965static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
 966{
 967	struct d40_desc *d;
 968
 969	if (list_empty(&d40c->pending_queue))
 970		return NULL;
 971
 972	d = list_first_entry(&d40c->pending_queue,
 973			     struct d40_desc,
 974			     node);
 975	return d;
 976}
 977
 978static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
 979{
 980	struct d40_desc *d;
 981
 982	if (list_empty(&d40c->queue))
 983		return NULL;
 984
 985	d = list_first_entry(&d40c->queue,
 986			     struct d40_desc,
 987			     node);
 988	return d;
 989}
 990
 991static struct d40_desc *d40_first_done(struct d40_chan *d40c)
 992{
 993	if (list_empty(&d40c->done))
 994		return NULL;
 995
 996	return list_first_entry(&d40c->done, struct d40_desc, node);
 997}
 998
 999static int d40_psize_2_burst_size(bool is_log, int psize)
1000{
1001	if (is_log) {
1002		if (psize == STEDMA40_PSIZE_LOG_1)
1003			return 1;
1004	} else {
1005		if (psize == STEDMA40_PSIZE_PHY_1)
1006			return 1;
1007	}
1008
1009	return 2 << psize;
1010}
1011
1012/*
1013 * The dma only supports transmitting packages up to
1014 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
1015 *
1016 * Calculate the total number of dma elements required to send the entire sg list.
1017 */
1018static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
1019{
1020	int dmalen;
1021	u32 max_w = max(data_width1, data_width2);
1022	u32 min_w = min(data_width1, data_width2);
1023	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1024
1025	if (seg_max > STEDMA40_MAX_SEG_SIZE)
1026		seg_max -= max_w;
1027
1028	if (!IS_ALIGNED(size, max_w))
1029		return -EINVAL;
1030
1031	if (size <= seg_max)
1032		dmalen = 1;
1033	else {
1034		dmalen = size / seg_max;
1035		if (dmalen * seg_max < size)
1036			dmalen++;
1037	}
1038	return dmalen;
1039}
1040
1041static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1042			   u32 data_width1, u32 data_width2)
1043{
1044	struct scatterlist *sg;
1045	int i;
1046	int len = 0;
1047	int ret;
1048
1049	for_each_sg(sgl, sg, sg_len, i) {
1050		ret = d40_size_2_dmalen(sg_dma_len(sg),
1051					data_width1, data_width2);
1052		if (ret < 0)
1053			return ret;
1054		len += ret;
1055	}
1056	return len;
1057}
1058
1059
1060#ifdef CONFIG_PM
1061static void dma40_backup(void __iomem *baseaddr, u32 *backup,
1062			 u32 *regaddr, int num, bool save)
1063{
1064	int i;
1065
1066	for (i = 0; i < num; i++) {
1067		void __iomem *addr = baseaddr + regaddr[i];
1068
1069		if (save)
1070			backup[i] = readl_relaxed(addr);
1071		else
1072			writel_relaxed(backup[i], addr);
1073	}
1074}
1075
1076static void d40_save_restore_registers(struct d40_base *base, bool save)
1077{
1078	int i;
1079
1080	/* Save/Restore channel specific registers */
1081	for (i = 0; i < base->num_phy_chans; i++) {
1082		void __iomem *addr;
1083		int idx;
1084
1085		if (base->phy_res[i].reserved)
1086			continue;
1087
1088		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
1089		idx = i * ARRAY_SIZE(d40_backup_regs_chan);
1090
1091		dma40_backup(addr, &base->reg_val_backup_chan[idx],
1092			     d40_backup_regs_chan,
1093			     ARRAY_SIZE(d40_backup_regs_chan),
1094			     save);
1095	}
1096
1097	/* Save/Restore global registers */
1098	dma40_backup(base->virtbase, base->reg_val_backup,
1099		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
1100		     save);
1101
1102	/* Save/Restore registers only existing on dma40 v3 and later */
1103	if (base->gen_dmac.backup)
1104		dma40_backup(base->virtbase, base->reg_val_backup_v4,
1105			     base->gen_dmac.backup,
1106			base->gen_dmac.backup_size,
1107			save);
1108}
1109#else
1110static void d40_save_restore_registers(struct d40_base *base, bool save)
1111{
1112}
1113#endif
1114
1115static int __d40_execute_command_phy(struct d40_chan *d40c,
1116				     enum d40_command command)
1117{
1118	u32 status;
1119	int i;
1120	void __iomem *active_reg;
1121	int ret = 0;
1122	unsigned long flags;
1123	u32 wmask;
1124
1125	if (command == D40_DMA_STOP) {
1126		ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1127		if (ret)
1128			return ret;
1129	}
1130
1131	spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1132
1133	if (d40c->phy_chan->num % 2 == 0)
1134		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1135	else
1136		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1137
1138	if (command == D40_DMA_SUSPEND_REQ) {
1139		status = (readl(active_reg) &
1140			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1141			D40_CHAN_POS(d40c->phy_chan->num);
1142
1143		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1144			goto done;
1145	}
1146
1147	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1148	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1149	       active_reg);
1150
1151	if (command == D40_DMA_SUSPEND_REQ) {
1152
1153		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1154			status = (readl(active_reg) &
1155				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1156				D40_CHAN_POS(d40c->phy_chan->num);
1157
1158			cpu_relax();
1159			/*
1160			 * Reduce the number of bus accesses while
1161			 * waiting for the DMA to suspend.
1162			 */
1163			udelay(3);
1164
1165			if (status == D40_DMA_STOP ||
1166			    status == D40_DMA_SUSPENDED)
1167				break;
1168		}
1169
1170		if (i == D40_SUSPEND_MAX_IT) {
1171			chan_err(d40c,
1172				"unable to suspend the chl %d (log: %d) status %x\n",
1173				d40c->phy_chan->num, d40c->log_num,
1174				status);
1175			dump_stack();
1176			ret = -EBUSY;
1177		}
1178
1179	}
1180done:
1181	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1182	return ret;
1183}
1184
1185static void d40_term_all(struct d40_chan *d40c)
1186{
1187	struct d40_desc *d40d;
1188	struct d40_desc *_d;
1189
1190	/* Release completed descriptors */
1191	while ((d40d = d40_first_done(d40c))) {
1192		d40_desc_remove(d40d);
1193		d40_desc_free(d40c, d40d);
1194	}
1195
1196	/* Release active descriptors */
1197	while ((d40d = d40_first_active_get(d40c))) {
1198		d40_desc_remove(d40d);
1199		d40_desc_free(d40c, d40d);
1200	}
1201
1202	/* Release queued descriptors waiting for transfer */
1203	while ((d40d = d40_first_queued(d40c))) {
1204		d40_desc_remove(d40d);
1205		d40_desc_free(d40c, d40d);
1206	}
1207
1208	/* Release pending descriptors */
1209	while ((d40d = d40_first_pending(d40c))) {
1210		d40_desc_remove(d40d);
1211		d40_desc_free(d40c, d40d);
1212	}
1213
1214	/* Release client owned descriptors */
1215	if (!list_empty(&d40c->client))
1216		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1217			d40_desc_remove(d40d);
1218			d40_desc_free(d40c, d40d);
1219		}
1220
1221	/* Release descriptors in prepare queue */
1222	if (!list_empty(&d40c->prepare_queue))
1223		list_for_each_entry_safe(d40d, _d,
1224					 &d40c->prepare_queue, node) {
1225			d40_desc_remove(d40d);
1226			d40_desc_free(d40c, d40d);
1227		}
1228
1229	d40c->pending_tx = 0;
1230}
1231
1232static void __d40_config_set_event(struct d40_chan *d40c,
1233				   enum d40_events event_type, u32 event,
1234				   int reg)
1235{
1236	void __iomem *addr = chan_base(d40c) + reg;
1237	int tries;
1238	u32 status;
1239
1240	switch (event_type) {
1241
1242	case D40_DEACTIVATE_EVENTLINE:
1243
1244		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1245		       | ~D40_EVENTLINE_MASK(event), addr);
1246		break;
1247
1248	case D40_SUSPEND_REQ_EVENTLINE:
1249		status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1250			  D40_EVENTLINE_POS(event);
1251
1252		if (status == D40_DEACTIVATE_EVENTLINE ||
1253		    status == D40_SUSPEND_REQ_EVENTLINE)
1254			break;
1255
1256		writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1257		       | ~D40_EVENTLINE_MASK(event), addr);
1258
1259		for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1260
1261			status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1262				  D40_EVENTLINE_POS(event);
1263
1264			cpu_relax();
1265			/*
1266			 * Reduce the number of bus accesses while
1267			 * waiting for the DMA to suspend.
1268			 */
1269			udelay(3);
1270
1271			if (status == D40_DEACTIVATE_EVENTLINE)
1272				break;
1273		}
1274
1275		if (tries == D40_SUSPEND_MAX_IT) {
1276			chan_err(d40c,
1277				"unable to stop the event_line chl %d (log: %d)"
1278				"status %x\n", d40c->phy_chan->num,
1279				 d40c->log_num, status);
1280		}
1281		break;
1282
1283	case D40_ACTIVATE_EVENTLINE:
1284	/*
1285	 * The hardware sometimes doesn't register the enable when src and dst
1286	 * event lines are active on the same logical channel.  Retry to ensure
1287	 * it does.  Usually only one retry is sufficient.
1288	 */
1289		tries = 100;
1290		while (--tries) {
1291			writel((D40_ACTIVATE_EVENTLINE <<
1292				D40_EVENTLINE_POS(event)) |
1293				~D40_EVENTLINE_MASK(event), addr);
1294
1295			if (readl(addr) & D40_EVENTLINE_MASK(event))
1296				break;
1297		}
1298
1299		if (tries != 99)
1300			dev_dbg(chan2dev(d40c),
1301				"[%s] workaround enable S%cLNK (%d tries)\n",
1302				__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1303				100 - tries);
1304
1305		WARN_ON(!tries);
1306		break;
1307
1308	case D40_ROUND_EVENTLINE:
1309		BUG();
1310		break;
1311
1312	}
1313}
1314
1315static void d40_config_set_event(struct d40_chan *d40c,
1316				 enum d40_events event_type)
1317{
1318	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1319
1320	/* Enable event line connected to device (or memcpy) */
1321	if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1322	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
 
 
1323		__d40_config_set_event(d40c, event_type, event,
1324				       D40_CHAN_REG_SSLNK);
 
 
 
 
1325
1326	if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1327		__d40_config_set_event(d40c, event_type, event,
1328				       D40_CHAN_REG_SDLNK);
 
1329}
1330
1331static u32 d40_chan_has_events(struct d40_chan *d40c)
1332{
1333	void __iomem *chanbase = chan_base(d40c);
1334	u32 val;
1335
1336	val = readl(chanbase + D40_CHAN_REG_SSLNK);
1337	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1338
1339	return val;
1340}
1341
1342static int
1343__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1344{
1345	unsigned long flags;
1346	int ret = 0;
1347	u32 active_status;
1348	void __iomem *active_reg;
1349
1350	if (d40c->phy_chan->num % 2 == 0)
1351		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1352	else
1353		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1354
1355
1356	spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1357
1358	switch (command) {
1359	case D40_DMA_STOP:
1360	case D40_DMA_SUSPEND_REQ:
1361
1362		active_status = (readl(active_reg) &
1363				 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1364				 D40_CHAN_POS(d40c->phy_chan->num);
1365
1366		if (active_status == D40_DMA_RUN)
1367			d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1368		else
1369			d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1370
1371		if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1372			ret = __d40_execute_command_phy(d40c, command);
1373
1374		break;
1375
1376	case D40_DMA_RUN:
1377
1378		d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1379		ret = __d40_execute_command_phy(d40c, command);
1380		break;
1381
1382	case D40_DMA_SUSPENDED:
1383		BUG();
1384		break;
1385	}
1386
1387	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1388	return ret;
1389}
1390
1391static int d40_channel_execute_command(struct d40_chan *d40c,
1392				       enum d40_command command)
1393{
1394	if (chan_is_logical(d40c))
1395		return __d40_execute_command_log(d40c, command);
1396	else
1397		return __d40_execute_command_phy(d40c, command);
1398}
1399
1400static u32 d40_get_prmo(struct d40_chan *d40c)
1401{
1402	static const unsigned int phy_map[] = {
1403		[STEDMA40_PCHAN_BASIC_MODE]
1404			= D40_DREG_PRMO_PCHAN_BASIC,
1405		[STEDMA40_PCHAN_MODULO_MODE]
1406			= D40_DREG_PRMO_PCHAN_MODULO,
1407		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
1408			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1409	};
1410	static const unsigned int log_map[] = {
1411		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1412			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1413		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1414			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1415		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1416			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1417	};
1418
1419	if (chan_is_physical(d40c))
1420		return phy_map[d40c->dma_cfg.mode_opt];
1421	else
1422		return log_map[d40c->dma_cfg.mode_opt];
1423}
1424
1425static void d40_config_write(struct d40_chan *d40c)
1426{
1427	u32 addr_base;
1428	u32 var;
1429
1430	/* Odd addresses are even addresses + 4 */
1431	addr_base = (d40c->phy_chan->num % 2) * 4;
1432	/* Setup channel mode to logical or physical */
1433	var = ((u32)(chan_is_logical(d40c)) + 1) <<
1434		D40_CHAN_POS(d40c->phy_chan->num);
1435	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1436
1437	/* Setup operational mode option register */
1438	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1439
1440	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1441
1442	if (chan_is_logical(d40c)) {
1443		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1444			   & D40_SREG_ELEM_LOG_LIDX_MASK;
1445		void __iomem *chanbase = chan_base(d40c);
1446
1447		/* Set default config for CFG reg */
1448		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1449		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1450
1451		/* Set LIDX for lcla */
1452		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1453		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1454
1455		/* Clear LNK which will be used by d40_chan_has_events() */
1456		writel(0, chanbase + D40_CHAN_REG_SSLNK);
1457		writel(0, chanbase + D40_CHAN_REG_SDLNK);
1458	}
1459}
1460
1461static u32 d40_residue(struct d40_chan *d40c)
1462{
1463	u32 num_elt;
1464
1465	if (chan_is_logical(d40c))
1466		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1467			>> D40_MEM_LCSP2_ECNT_POS;
1468	else {
1469		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1470		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1471			  >> D40_SREG_ELEM_PHY_ECNT_POS;
1472	}
1473
1474	return num_elt * d40c->dma_cfg.dst_info.data_width;
1475}
1476
1477static bool d40_tx_is_linked(struct d40_chan *d40c)
1478{
1479	bool is_link;
1480
1481	if (chan_is_logical(d40c))
1482		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1483	else
1484		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1485			  & D40_SREG_LNK_PHYS_LNK_MASK;
1486
1487	return is_link;
1488}
1489
1490static int d40_pause(struct d40_chan *d40c)
1491{
1492	int res = 0;
1493	unsigned long flags;
1494
1495	if (!d40c->busy)
1496		return 0;
1497
1498	pm_runtime_get_sync(d40c->base->dev);
1499	spin_lock_irqsave(&d40c->lock, flags);
1500
1501	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1502
1503	pm_runtime_mark_last_busy(d40c->base->dev);
1504	pm_runtime_put_autosuspend(d40c->base->dev);
1505	spin_unlock_irqrestore(&d40c->lock, flags);
1506	return res;
1507}
1508
1509static int d40_resume(struct d40_chan *d40c)
1510{
1511	int res = 0;
1512	unsigned long flags;
1513
1514	if (!d40c->busy)
1515		return 0;
1516
1517	spin_lock_irqsave(&d40c->lock, flags);
1518	pm_runtime_get_sync(d40c->base->dev);
1519
1520	/* If bytes left to transfer or linked tx resume job */
1521	if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1522		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1523
1524	pm_runtime_mark_last_busy(d40c->base->dev);
1525	pm_runtime_put_autosuspend(d40c->base->dev);
1526	spin_unlock_irqrestore(&d40c->lock, flags);
1527	return res;
1528}
1529
1530static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1531{
1532	struct d40_chan *d40c = container_of(tx->chan,
1533					     struct d40_chan,
1534					     chan);
1535	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1536	unsigned long flags;
1537	dma_cookie_t cookie;
1538
1539	spin_lock_irqsave(&d40c->lock, flags);
1540	cookie = dma_cookie_assign(tx);
1541	d40_desc_queue(d40c, d40d);
1542	spin_unlock_irqrestore(&d40c->lock, flags);
1543
1544	return cookie;
1545}
1546
1547static int d40_start(struct d40_chan *d40c)
1548{
1549	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1550}
1551
1552static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1553{
1554	struct d40_desc *d40d;
1555	int err;
1556
1557	/* Start queued jobs, if any */
1558	d40d = d40_first_queued(d40c);
1559
1560	if (d40d != NULL) {
1561		if (!d40c->busy) {
1562			d40c->busy = true;
1563			pm_runtime_get_sync(d40c->base->dev);
1564		}
1565
1566		/* Remove from queue */
1567		d40_desc_remove(d40d);
1568
1569		/* Add to active queue */
1570		d40_desc_submit(d40c, d40d);
1571
1572		/* Initiate DMA job */
1573		d40_desc_load(d40c, d40d);
1574
1575		/* Start dma job */
1576		err = d40_start(d40c);
1577
1578		if (err)
1579			return NULL;
1580	}
1581
1582	return d40d;
1583}
1584
1585/* called from interrupt context */
1586static void dma_tc_handle(struct d40_chan *d40c)
1587{
1588	struct d40_desc *d40d;
1589
1590	/* Get first active entry from list */
1591	d40d = d40_first_active_get(d40c);
1592
1593	if (d40d == NULL)
1594		return;
1595
1596	if (d40d->cyclic) {
1597		/*
1598		 * If this was a paritially loaded list, we need to reloaded
1599		 * it, and only when the list is completed.  We need to check
1600		 * for done because the interrupt will hit for every link, and
1601		 * not just the last one.
1602		 */
1603		if (d40d->lli_current < d40d->lli_len
1604		    && !d40_tx_is_linked(d40c)
1605		    && !d40_residue(d40c)) {
1606			d40_lcla_free_all(d40c, d40d);
1607			d40_desc_load(d40c, d40d);
1608			(void) d40_start(d40c);
1609
1610			if (d40d->lli_current == d40d->lli_len)
1611				d40d->lli_current = 0;
1612		}
1613	} else {
1614		d40_lcla_free_all(d40c, d40d);
1615
1616		if (d40d->lli_current < d40d->lli_len) {
1617			d40_desc_load(d40c, d40d);
1618			/* Start dma job */
1619			(void) d40_start(d40c);
1620			return;
1621		}
1622
1623		if (d40_queue_start(d40c) == NULL) {
1624			d40c->busy = false;
1625
1626			pm_runtime_mark_last_busy(d40c->base->dev);
1627			pm_runtime_put_autosuspend(d40c->base->dev);
1628		}
1629
1630		d40_desc_remove(d40d);
1631		d40_desc_done(d40c, d40d);
1632	}
1633
1634	d40c->pending_tx++;
1635	tasklet_schedule(&d40c->tasklet);
1636
1637}
1638
1639static void dma_tasklet(unsigned long data)
1640{
1641	struct d40_chan *d40c = (struct d40_chan *) data;
1642	struct d40_desc *d40d;
1643	unsigned long flags;
1644	bool callback_active;
1645	dma_async_tx_callback callback;
1646	void *callback_param;
1647
1648	spin_lock_irqsave(&d40c->lock, flags);
1649
1650	/* Get first entry from the done list */
1651	d40d = d40_first_done(d40c);
1652	if (d40d == NULL) {
1653		/* Check if we have reached here for cyclic job */
1654		d40d = d40_first_active_get(d40c);
1655		if (d40d == NULL || !d40d->cyclic)
1656			goto err;
1657	}
1658
1659	if (!d40d->cyclic)
1660		dma_cookie_complete(&d40d->txd);
1661
1662	/*
1663	 * If terminating a channel pending_tx is set to zero.
1664	 * This prevents any finished active jobs to return to the client.
1665	 */
1666	if (d40c->pending_tx == 0) {
1667		spin_unlock_irqrestore(&d40c->lock, flags);
1668		return;
1669	}
1670
1671	/* Callback to client */
1672	callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1673	callback = d40d->txd.callback;
1674	callback_param = d40d->txd.callback_param;
1675
1676	if (!d40d->cyclic) {
1677		if (async_tx_test_ack(&d40d->txd)) {
1678			d40_desc_remove(d40d);
1679			d40_desc_free(d40c, d40d);
1680		} else if (!d40d->is_in_client_list) {
1681			d40_desc_remove(d40d);
1682			d40_lcla_free_all(d40c, d40d);
1683			list_add_tail(&d40d->node, &d40c->client);
1684			d40d->is_in_client_list = true;
 
 
1685		}
1686	}
1687
1688	d40c->pending_tx--;
1689
1690	if (d40c->pending_tx)
1691		tasklet_schedule(&d40c->tasklet);
1692
1693	spin_unlock_irqrestore(&d40c->lock, flags);
1694
1695	if (callback_active && callback)
1696		callback(callback_param);
1697
1698	return;
1699
1700err:
1701	/* Rescue manouver if receiving double interrupts */
1702	if (d40c->pending_tx > 0)
1703		d40c->pending_tx--;
1704	spin_unlock_irqrestore(&d40c->lock, flags);
1705}
1706
1707static irqreturn_t d40_handle_interrupt(int irq, void *data)
1708{
 
 
 
 
 
 
 
 
 
 
 
 
 
1709	int i;
 
1710	u32 idx;
1711	u32 row;
1712	long chan = -1;
1713	struct d40_chan *d40c;
1714	unsigned long flags;
1715	struct d40_base *base = data;
1716	u32 regs[base->gen_dmac.il_size];
1717	struct d40_interrupt_lookup *il = base->gen_dmac.il;
1718	u32 il_size = base->gen_dmac.il_size;
1719
1720	spin_lock_irqsave(&base->interrupt_lock, flags);
1721
1722	/* Read interrupt status of both logical and physical channels */
1723	for (i = 0; i < il_size; i++)
1724		regs[i] = readl(base->virtbase + il[i].src);
1725
1726	for (;;) {
1727
1728		chan = find_next_bit((unsigned long *)regs,
1729				     BITS_PER_LONG * il_size, chan + 1);
1730
1731		/* No more set bits found? */
1732		if (chan == BITS_PER_LONG * il_size)
1733			break;
1734
1735		row = chan / BITS_PER_LONG;
1736		idx = chan & (BITS_PER_LONG - 1);
1737
 
 
 
1738		if (il[row].offset == D40_PHY_CHAN)
1739			d40c = base->lookup_phy_chans[idx];
1740		else
1741			d40c = base->lookup_log_chans[il[row].offset + idx];
1742
1743		if (!d40c) {
1744			/*
1745			 * No error because this can happen if something else
1746			 * in the system is using the channel.
1747			 */
1748			continue;
1749		}
1750
1751		/* ACK interrupt */
1752		writel(BIT(idx), base->virtbase + il[row].clr);
1753
1754		spin_lock(&d40c->lock);
1755
1756		if (!il[row].is_error)
1757			dma_tc_handle(d40c);
1758		else
1759			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1760				chan, il[row].offset, idx);
1761
1762		spin_unlock(&d40c->lock);
1763	}
1764
1765	spin_unlock_irqrestore(&base->interrupt_lock, flags);
1766
1767	return IRQ_HANDLED;
1768}
1769
1770static int d40_validate_conf(struct d40_chan *d40c,
1771			     struct stedma40_chan_cfg *conf)
1772{
1773	int res = 0;
 
 
1774	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1775
1776	if (!conf->dir) {
1777		chan_err(d40c, "Invalid direction.\n");
1778		res = -EINVAL;
1779	}
1780
1781	if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
1782	    (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1783	    (conf->dev_type < 0)) {
1784		chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1785		res = -EINVAL;
1786	}
1787
1788	if (conf->dir == DMA_DEV_TO_DEV) {
1789		/*
1790		 * DMAC HW supports it. Will be added to this driver,
1791		 * in case any dma client requires it.
1792		 */
1793		chan_err(d40c, "periph to periph not supported\n");
1794		res = -EINVAL;
1795	}
1796
1797	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1798	    conf->src_info.data_width !=
1799	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1800	    conf->dst_info.data_width) {
1801		/*
1802		 * The DMAC hardware only supports
1803		 * src (burst x width) == dst (burst x width)
1804		 */
1805
1806		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1807		res = -EINVAL;
1808	}
1809
1810	return res;
1811}
1812
1813static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1814			       bool is_src, int log_event_line, bool is_log,
1815			       bool *first_user)
1816{
1817	unsigned long flags;
1818	spin_lock_irqsave(&phy->lock, flags);
1819
1820	*first_user = ((phy->allocated_src | phy->allocated_dst)
1821			== D40_ALLOC_FREE);
1822
1823	if (!is_log) {
1824		/* Physical interrupts are masked per physical full channel */
1825		if (phy->allocated_src == D40_ALLOC_FREE &&
1826		    phy->allocated_dst == D40_ALLOC_FREE) {
1827			phy->allocated_dst = D40_ALLOC_PHY;
1828			phy->allocated_src = D40_ALLOC_PHY;
1829			goto found;
1830		} else
1831			goto not_found;
1832	}
1833
1834	/* Logical channel */
1835	if (is_src) {
1836		if (phy->allocated_src == D40_ALLOC_PHY)
1837			goto not_found;
1838
1839		if (phy->allocated_src == D40_ALLOC_FREE)
1840			phy->allocated_src = D40_ALLOC_LOG_FREE;
1841
1842		if (!(phy->allocated_src & BIT(log_event_line))) {
1843			phy->allocated_src |= BIT(log_event_line);
1844			goto found;
1845		} else
1846			goto not_found;
1847	} else {
1848		if (phy->allocated_dst == D40_ALLOC_PHY)
1849			goto not_found;
1850
1851		if (phy->allocated_dst == D40_ALLOC_FREE)
1852			phy->allocated_dst = D40_ALLOC_LOG_FREE;
1853
1854		if (!(phy->allocated_dst & BIT(log_event_line))) {
1855			phy->allocated_dst |= BIT(log_event_line);
1856			goto found;
1857		} else
1858			goto not_found;
1859	}
1860
1861not_found:
1862	spin_unlock_irqrestore(&phy->lock, flags);
1863	return false;
1864found:
1865	spin_unlock_irqrestore(&phy->lock, flags);
1866	return true;
1867}
1868
1869static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1870			       int log_event_line)
1871{
1872	unsigned long flags;
1873	bool is_free = false;
1874
1875	spin_lock_irqsave(&phy->lock, flags);
1876	if (!log_event_line) {
1877		phy->allocated_dst = D40_ALLOC_FREE;
1878		phy->allocated_src = D40_ALLOC_FREE;
1879		is_free = true;
1880		goto out;
1881	}
1882
1883	/* Logical channel */
1884	if (is_src) {
1885		phy->allocated_src &= ~BIT(log_event_line);
1886		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1887			phy->allocated_src = D40_ALLOC_FREE;
1888	} else {
1889		phy->allocated_dst &= ~BIT(log_event_line);
1890		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1891			phy->allocated_dst = D40_ALLOC_FREE;
1892	}
1893
1894	is_free = ((phy->allocated_src | phy->allocated_dst) ==
1895		   D40_ALLOC_FREE);
1896
1897out:
1898	spin_unlock_irqrestore(&phy->lock, flags);
1899
1900	return is_free;
1901}
1902
1903static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1904{
1905	int dev_type = d40c->dma_cfg.dev_type;
1906	int event_group;
1907	int event_line;
1908	struct d40_phy_res *phys;
1909	int i;
1910	int j;
1911	int log_num;
1912	int num_phy_chans;
1913	bool is_src;
1914	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1915
1916	phys = d40c->base->phy_res;
1917	num_phy_chans = d40c->base->num_phy_chans;
1918
1919	if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
 
1920		log_num = 2 * dev_type;
1921		is_src = true;
1922	} else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1923		   d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1924		/* dst event lines are used for logical memcpy */
 
1925		log_num = 2 * dev_type + 1;
1926		is_src = false;
1927	} else
1928		return -EINVAL;
1929
1930	event_group = D40_TYPE_TO_GROUP(dev_type);
1931	event_line = D40_TYPE_TO_EVENT(dev_type);
1932
1933	if (!is_log) {
1934		if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1935			/* Find physical half channel */
1936			if (d40c->dma_cfg.use_fixed_channel) {
1937				i = d40c->dma_cfg.phy_channel;
1938				if (d40_alloc_mask_set(&phys[i], is_src,
1939						       0, is_log,
1940						       first_phy_user))
1941					goto found_phy;
1942			} else {
1943				for (i = 0; i < num_phy_chans; i++) {
1944					if (d40_alloc_mask_set(&phys[i], is_src,
1945						       0, is_log,
1946						       first_phy_user))
1947						goto found_phy;
1948				}
1949			}
1950		} else
1951			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1952				int phy_num = j  + event_group * 2;
1953				for (i = phy_num; i < phy_num + 2; i++) {
1954					if (d40_alloc_mask_set(&phys[i],
1955							       is_src,
1956							       0,
1957							       is_log,
1958							       first_phy_user))
1959						goto found_phy;
1960				}
1961			}
1962		return -EINVAL;
1963found_phy:
1964		d40c->phy_chan = &phys[i];
1965		d40c->log_num = D40_PHY_CHAN;
1966		goto out;
1967	}
1968	if (dev_type == -1)
1969		return -EINVAL;
1970
1971	/* Find logical channel */
1972	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1973		int phy_num = j + event_group * 2;
1974
1975		if (d40c->dma_cfg.use_fixed_channel) {
1976			i = d40c->dma_cfg.phy_channel;
1977
1978			if ((i != phy_num) && (i != phy_num + 1)) {
1979				dev_err(chan2dev(d40c),
1980					"invalid fixed phy channel %d\n", i);
1981				return -EINVAL;
1982			}
1983
1984			if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1985					       is_log, first_phy_user))
1986				goto found_log;
1987
1988			dev_err(chan2dev(d40c),
1989				"could not allocate fixed phy channel %d\n", i);
1990			return -EINVAL;
1991		}
1992
1993		/*
1994		 * Spread logical channels across all available physical rather
1995		 * than pack every logical channel at the first available phy
1996		 * channels.
1997		 */
1998		if (is_src) {
1999			for (i = phy_num; i < phy_num + 2; i++) {
2000				if (d40_alloc_mask_set(&phys[i], is_src,
2001						       event_line, is_log,
2002						       first_phy_user))
2003					goto found_log;
2004			}
2005		} else {
2006			for (i = phy_num + 1; i >= phy_num; i--) {
2007				if (d40_alloc_mask_set(&phys[i], is_src,
2008						       event_line, is_log,
2009						       first_phy_user))
2010					goto found_log;
2011			}
2012		}
2013	}
2014	return -EINVAL;
2015
2016found_log:
2017	d40c->phy_chan = &phys[i];
2018	d40c->log_num = log_num;
2019out:
2020
2021	if (is_log)
2022		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
2023	else
2024		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
2025
2026	return 0;
2027
2028}
2029
2030static int d40_config_memcpy(struct d40_chan *d40c)
2031{
2032	dma_cap_mask_t cap = d40c->chan.device->cap_mask;
2033
2034	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
2035		d40c->dma_cfg = dma40_memcpy_conf_log;
2036		d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
2037
2038		d40_log_cfg(&d40c->dma_cfg,
2039			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2040
2041	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
2042		   dma_has_cap(DMA_SLAVE, cap)) {
2043		d40c->dma_cfg = dma40_memcpy_conf_phy;
2044
2045		/* Generate interrrupt at end of transfer or relink. */
2046		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
2047
2048		/* Generate interrupt on error. */
2049		d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2050		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2051
2052	} else {
2053		chan_err(d40c, "No memcpy\n");
2054		return -EINVAL;
2055	}
2056
2057	return 0;
2058}
2059
2060static int d40_free_dma(struct d40_chan *d40c)
2061{
2062
2063	int res = 0;
2064	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2065	struct d40_phy_res *phy = d40c->phy_chan;
2066	bool is_src;
2067
2068	/* Terminate all queued and active transfers */
2069	d40_term_all(d40c);
2070
2071	if (phy == NULL) {
2072		chan_err(d40c, "phy == null\n");
2073		return -EINVAL;
2074	}
2075
2076	if (phy->allocated_src == D40_ALLOC_FREE &&
2077	    phy->allocated_dst == D40_ALLOC_FREE) {
2078		chan_err(d40c, "channel already free\n");
2079		return -EINVAL;
2080	}
2081
2082	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2083	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
 
2084		is_src = false;
2085	else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
 
2086		is_src = true;
2087	else {
2088		chan_err(d40c, "Unknown direction\n");
2089		return -EINVAL;
2090	}
2091
2092	pm_runtime_get_sync(d40c->base->dev);
2093	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2094	if (res) {
2095		chan_err(d40c, "stop failed\n");
2096		goto out;
2097	}
2098
2099	d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2100
2101	if (chan_is_logical(d40c))
2102		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2103	else
2104		d40c->base->lookup_phy_chans[phy->num] = NULL;
2105
2106	if (d40c->busy) {
2107		pm_runtime_mark_last_busy(d40c->base->dev);
2108		pm_runtime_put_autosuspend(d40c->base->dev);
2109	}
2110
2111	d40c->busy = false;
2112	d40c->phy_chan = NULL;
2113	d40c->configured = false;
2114out:
2115
2116	pm_runtime_mark_last_busy(d40c->base->dev);
2117	pm_runtime_put_autosuspend(d40c->base->dev);
2118	return res;
2119}
2120
2121static bool d40_is_paused(struct d40_chan *d40c)
2122{
2123	void __iomem *chanbase = chan_base(d40c);
2124	bool is_paused = false;
2125	unsigned long flags;
2126	void __iomem *active_reg;
2127	u32 status;
2128	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2129
2130	spin_lock_irqsave(&d40c->lock, flags);
2131
2132	if (chan_is_physical(d40c)) {
2133		if (d40c->phy_chan->num % 2 == 0)
2134			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2135		else
2136			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2137
2138		status = (readl(active_reg) &
2139			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2140			D40_CHAN_POS(d40c->phy_chan->num);
2141		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2142			is_paused = true;
2143
2144		goto _exit;
2145	}
2146
2147	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2148	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
 
2149		status = readl(chanbase + D40_CHAN_REG_SDLNK);
2150	} else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
 
2151		status = readl(chanbase + D40_CHAN_REG_SSLNK);
2152	} else {
2153		chan_err(d40c, "Unknown direction\n");
2154		goto _exit;
2155	}
2156
2157	status = (status & D40_EVENTLINE_MASK(event)) >>
2158		D40_EVENTLINE_POS(event);
2159
2160	if (status != D40_DMA_RUN)
2161		is_paused = true;
2162_exit:
2163	spin_unlock_irqrestore(&d40c->lock, flags);
2164	return is_paused;
2165
2166}
2167
 
2168static u32 stedma40_residue(struct dma_chan *chan)
2169{
2170	struct d40_chan *d40c =
2171		container_of(chan, struct d40_chan, chan);
2172	u32 bytes_left;
2173	unsigned long flags;
2174
2175	spin_lock_irqsave(&d40c->lock, flags);
2176	bytes_left = d40_residue(d40c);
2177	spin_unlock_irqrestore(&d40c->lock, flags);
2178
2179	return bytes_left;
2180}
2181
2182static int
2183d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2184		struct scatterlist *sg_src, struct scatterlist *sg_dst,
2185		unsigned int sg_len, dma_addr_t src_dev_addr,
2186		dma_addr_t dst_dev_addr)
2187{
2188	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2189	struct stedma40_half_channel_info *src_info = &cfg->src_info;
2190	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2191	int ret;
2192
2193	ret = d40_log_sg_to_lli(sg_src, sg_len,
2194				src_dev_addr,
2195				desc->lli_log.src,
2196				chan->log_def.lcsp1,
2197				src_info->data_width,
2198				dst_info->data_width);
2199
2200	ret = d40_log_sg_to_lli(sg_dst, sg_len,
2201				dst_dev_addr,
2202				desc->lli_log.dst,
2203				chan->log_def.lcsp3,
2204				dst_info->data_width,
2205				src_info->data_width);
2206
2207	return ret < 0 ? ret : 0;
2208}
2209
2210static int
2211d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2212		struct scatterlist *sg_src, struct scatterlist *sg_dst,
2213		unsigned int sg_len, dma_addr_t src_dev_addr,
2214		dma_addr_t dst_dev_addr)
2215{
2216	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2217	struct stedma40_half_channel_info *src_info = &cfg->src_info;
2218	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2219	unsigned long flags = 0;
2220	int ret;
2221
2222	if (desc->cyclic)
2223		flags |= LLI_CYCLIC | LLI_TERM_INT;
2224
2225	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2226				desc->lli_phy.src,
2227				virt_to_phys(desc->lli_phy.src),
2228				chan->src_def_cfg,
2229				src_info, dst_info, flags);
2230
2231	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2232				desc->lli_phy.dst,
2233				virt_to_phys(desc->lli_phy.dst),
2234				chan->dst_def_cfg,
2235				dst_info, src_info, flags);
2236
2237	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2238				   desc->lli_pool.size, DMA_TO_DEVICE);
2239
2240	return ret < 0 ? ret : 0;
2241}
2242
 
2243static struct d40_desc *
2244d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2245	      unsigned int sg_len, unsigned long dma_flags)
2246{
2247	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2248	struct d40_desc *desc;
2249	int ret;
2250
2251	desc = d40_desc_get(chan);
2252	if (!desc)
2253		return NULL;
2254
2255	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2256					cfg->dst_info.data_width);
2257	if (desc->lli_len < 0) {
2258		chan_err(chan, "Unaligned size\n");
2259		goto err;
2260	}
2261
2262	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2263	if (ret < 0) {
2264		chan_err(chan, "Could not allocate lli\n");
2265		goto err;
2266	}
2267
 
2268	desc->lli_current = 0;
2269	desc->txd.flags = dma_flags;
2270	desc->txd.tx_submit = d40_tx_submit;
2271
2272	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2273
2274	return desc;
2275
2276err:
2277	d40_desc_free(chan, desc);
2278	return NULL;
2279}
2280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2281static struct dma_async_tx_descriptor *
2282d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2283	    struct scatterlist *sg_dst, unsigned int sg_len,
2284	    enum dma_transfer_direction direction, unsigned long dma_flags)
2285{
2286	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2287	dma_addr_t src_dev_addr = 0;
2288	dma_addr_t dst_dev_addr = 0;
2289	struct d40_desc *desc;
2290	unsigned long flags;
2291	int ret;
2292
2293	if (!chan->phy_chan) {
2294		chan_err(chan, "Cannot prepare unallocated channel\n");
2295		return NULL;
2296	}
2297
 
2298	spin_lock_irqsave(&chan->lock, flags);
2299
2300	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2301	if (desc == NULL)
2302		goto err;
2303
2304	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2305		desc->cyclic = true;
2306
2307	if (direction == DMA_DEV_TO_MEM)
2308		src_dev_addr = chan->runtime_addr;
2309	else if (direction == DMA_MEM_TO_DEV)
2310		dst_dev_addr = chan->runtime_addr;
 
 
 
 
2311
2312	if (chan_is_logical(chan))
2313		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2314				      sg_len, src_dev_addr, dst_dev_addr);
2315	else
2316		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2317				      sg_len, src_dev_addr, dst_dev_addr);
2318
2319	if (ret) {
2320		chan_err(chan, "Failed to prepare %s sg job: %d\n",
2321			 chan_is_logical(chan) ? "log" : "phy", ret);
2322		goto err;
2323	}
2324
2325	/*
2326	 * add descriptor to the prepare queue in order to be able
2327	 * to free them later in terminate_all
2328	 */
2329	list_add_tail(&desc->node, &chan->prepare_queue);
2330
2331	spin_unlock_irqrestore(&chan->lock, flags);
2332
2333	return &desc->txd;
2334
2335err:
2336	if (desc)
2337		d40_desc_free(chan, desc);
2338	spin_unlock_irqrestore(&chan->lock, flags);
2339	return NULL;
2340}
2341
2342bool stedma40_filter(struct dma_chan *chan, void *data)
2343{
2344	struct stedma40_chan_cfg *info = data;
2345	struct d40_chan *d40c =
2346		container_of(chan, struct d40_chan, chan);
2347	int err;
2348
2349	if (data) {
2350		err = d40_validate_conf(d40c, info);
2351		if (!err)
2352			d40c->dma_cfg = *info;
2353	} else
2354		err = d40_config_memcpy(d40c);
2355
2356	if (!err)
2357		d40c->configured = true;
2358
2359	return err == 0;
2360}
2361EXPORT_SYMBOL(stedma40_filter);
2362
2363static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2364{
2365	bool realtime = d40c->dma_cfg.realtime;
2366	bool highprio = d40c->dma_cfg.high_priority;
2367	u32 rtreg;
 
2368	u32 event = D40_TYPE_TO_EVENT(dev_type);
2369	u32 group = D40_TYPE_TO_GROUP(dev_type);
2370	u32 bit = BIT(event);
2371	u32 prioreg;
2372	struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2373
2374	rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2375	/*
2376	 * Due to a hardware bug, in some cases a logical channel triggered by
2377	 * a high priority destination event line can generate extra packet
2378	 * transactions.
2379	 *
2380	 * The workaround is to not set the high priority level for the
2381	 * destination event lines that trigger logical channels.
2382	 */
2383	if (!src && chan_is_logical(d40c))
2384		highprio = false;
2385
2386	prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2387
2388	/* Destination event lines are stored in the upper halfword */
2389	if (!src)
2390		bit <<= 16;
2391
2392	writel(bit, d40c->base->virtbase + prioreg + group * 4);
2393	writel(bit, d40c->base->virtbase + rtreg + group * 4);
2394}
2395
2396static void d40_set_prio_realtime(struct d40_chan *d40c)
2397{
2398	if (d40c->base->rev < 3)
2399		return;
2400
2401	if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
2402	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2403		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2404
2405	if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
2406	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2407		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2408}
2409
2410#define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
2411#define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
2412#define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2413#define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2414#define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2415
2416static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2417				  struct of_dma *ofdma)
2418{
2419	struct stedma40_chan_cfg cfg;
2420	dma_cap_mask_t cap;
2421	u32 flags;
2422
2423	memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2424
2425	dma_cap_zero(cap);
2426	dma_cap_set(DMA_SLAVE, cap);
2427
2428	cfg.dev_type = dma_spec->args[0];
2429	flags = dma_spec->args[2];
2430
2431	switch (D40_DT_FLAGS_MODE(flags)) {
2432	case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2433	case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2434	}
2435
2436	switch (D40_DT_FLAGS_DIR(flags)) {
2437	case 0:
2438		cfg.dir = DMA_MEM_TO_DEV;
2439		cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2440		break;
2441	case 1:
2442		cfg.dir = DMA_DEV_TO_MEM;
2443		cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2444		break;
2445	}
2446
2447	if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2448		cfg.phy_channel = dma_spec->args[1];
2449		cfg.use_fixed_channel = true;
2450	}
2451
2452	if (D40_DT_FLAGS_HIGH_PRIO(flags))
2453		cfg.high_priority = true;
2454
2455	return dma_request_channel(cap, stedma40_filter, &cfg);
2456}
2457
2458/* DMA ENGINE functions */
2459static int d40_alloc_chan_resources(struct dma_chan *chan)
2460{
2461	int err;
2462	unsigned long flags;
2463	struct d40_chan *d40c =
2464		container_of(chan, struct d40_chan, chan);
2465	bool is_free_phy;
2466	spin_lock_irqsave(&d40c->lock, flags);
2467
2468	dma_cookie_init(chan);
2469
2470	/* If no dma configuration is set use default configuration (memcpy) */
2471	if (!d40c->configured) {
2472		err = d40_config_memcpy(d40c);
2473		if (err) {
2474			chan_err(d40c, "Failed to configure memcpy channel\n");
2475			goto fail;
2476		}
2477	}
2478
2479	err = d40_allocate_channel(d40c, &is_free_phy);
2480	if (err) {
2481		chan_err(d40c, "Failed to allocate channel\n");
2482		d40c->configured = false;
2483		goto fail;
2484	}
2485
2486	pm_runtime_get_sync(d40c->base->dev);
 
 
 
2487
2488	d40_set_prio_realtime(d40c);
2489
2490	if (chan_is_logical(d40c)) {
2491		if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
 
 
 
2492			d40c->lcpa = d40c->base->lcpa_base +
2493				d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2494		else
2495			d40c->lcpa = d40c->base->lcpa_base +
2496				d40c->dma_cfg.dev_type *
2497				D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2498
2499		/* Unmask the Global Interrupt Mask. */
2500		d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2501		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2502	}
2503
2504	dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2505		 chan_is_logical(d40c) ? "logical" : "physical",
2506		 d40c->phy_chan->num,
2507		 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2508
2509
2510	/*
2511	 * Only write channel configuration to the DMA if the physical
2512	 * resource is free. In case of multiple logical channels
2513	 * on the same physical resource, only the first write is necessary.
2514	 */
2515	if (is_free_phy)
2516		d40_config_write(d40c);
2517fail:
2518	pm_runtime_mark_last_busy(d40c->base->dev);
2519	pm_runtime_put_autosuspend(d40c->base->dev);
2520	spin_unlock_irqrestore(&d40c->lock, flags);
2521	return err;
2522}
2523
2524static void d40_free_chan_resources(struct dma_chan *chan)
2525{
2526	struct d40_chan *d40c =
2527		container_of(chan, struct d40_chan, chan);
2528	int err;
2529	unsigned long flags;
2530
2531	if (d40c->phy_chan == NULL) {
2532		chan_err(d40c, "Cannot free unallocated channel\n");
2533		return;
2534	}
2535
 
2536	spin_lock_irqsave(&d40c->lock, flags);
2537
2538	err = d40_free_dma(d40c);
2539
2540	if (err)
2541		chan_err(d40c, "Failed to free channel\n");
2542	spin_unlock_irqrestore(&d40c->lock, flags);
2543}
2544
2545static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2546						       dma_addr_t dst,
2547						       dma_addr_t src,
2548						       size_t size,
2549						       unsigned long dma_flags)
2550{
2551	struct scatterlist dst_sg;
2552	struct scatterlist src_sg;
2553
2554	sg_init_table(&dst_sg, 1);
2555	sg_init_table(&src_sg, 1);
2556
2557	sg_dma_address(&dst_sg) = dst;
2558	sg_dma_address(&src_sg) = src;
2559
2560	sg_dma_len(&dst_sg) = size;
2561	sg_dma_len(&src_sg) = size;
2562
2563	return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2564}
2565
2566static struct dma_async_tx_descriptor *
2567d40_prep_memcpy_sg(struct dma_chan *chan,
2568		   struct scatterlist *dst_sg, unsigned int dst_nents,
2569		   struct scatterlist *src_sg, unsigned int src_nents,
2570		   unsigned long dma_flags)
2571{
2572	if (dst_nents != src_nents)
2573		return NULL;
2574
2575	return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2576}
2577
2578static struct dma_async_tx_descriptor *
2579d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2580		  unsigned int sg_len, enum dma_transfer_direction direction,
2581		  unsigned long dma_flags, void *context)
 
 
2582{
2583	if (!is_slave_direction(direction))
2584		return NULL;
2585
2586	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2587}
2588
2589static struct dma_async_tx_descriptor *
2590dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2591		     size_t buf_len, size_t period_len,
2592		     enum dma_transfer_direction direction, unsigned long flags,
2593		     void *context)
2594{
2595	unsigned int periods = buf_len / period_len;
2596	struct dma_async_tx_descriptor *txd;
2597	struct scatterlist *sg;
2598	int i;
2599
2600	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2601	if (!sg)
2602		return NULL;
2603
2604	for (i = 0; i < periods; i++) {
2605		sg_dma_address(&sg[i]) = dma_addr;
2606		sg_dma_len(&sg[i]) = period_len;
2607		dma_addr += period_len;
2608	}
2609
2610	sg[periods].offset = 0;
2611	sg_dma_len(&sg[periods]) = 0;
2612	sg[periods].page_link =
2613		((unsigned long)sg | 0x01) & ~0x02;
2614
2615	txd = d40_prep_sg(chan, sg, sg, periods, direction,
2616			  DMA_PREP_INTERRUPT);
2617
2618	kfree(sg);
2619
2620	return txd;
2621}
2622
2623static enum dma_status d40_tx_status(struct dma_chan *chan,
2624				     dma_cookie_t cookie,
2625				     struct dma_tx_state *txstate)
2626{
2627	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2628	enum dma_status ret;
2629
2630	if (d40c->phy_chan == NULL) {
2631		chan_err(d40c, "Cannot read status of unallocated channel\n");
2632		return -EINVAL;
2633	}
2634
2635	ret = dma_cookie_status(chan, cookie, txstate);
2636	if (ret != DMA_COMPLETE)
2637		dma_set_residue(txstate, stedma40_residue(chan));
2638
2639	if (d40_is_paused(d40c))
2640		ret = DMA_PAUSED;
2641
2642	return ret;
2643}
2644
2645static void d40_issue_pending(struct dma_chan *chan)
2646{
2647	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2648	unsigned long flags;
2649
2650	if (d40c->phy_chan == NULL) {
2651		chan_err(d40c, "Channel is not allocated!\n");
2652		return;
2653	}
2654
2655	spin_lock_irqsave(&d40c->lock, flags);
2656
2657	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2658
2659	/* Busy means that queued jobs are already being processed */
2660	if (!d40c->busy)
2661		(void) d40_queue_start(d40c);
2662
2663	spin_unlock_irqrestore(&d40c->lock, flags);
2664}
2665
2666static void d40_terminate_all(struct dma_chan *chan)
2667{
2668	unsigned long flags;
2669	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2670	int ret;
2671
2672	spin_lock_irqsave(&d40c->lock, flags);
2673
2674	pm_runtime_get_sync(d40c->base->dev);
2675	ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2676	if (ret)
2677		chan_err(d40c, "Failed to stop channel\n");
2678
2679	d40_term_all(d40c);
2680	pm_runtime_mark_last_busy(d40c->base->dev);
2681	pm_runtime_put_autosuspend(d40c->base->dev);
2682	if (d40c->busy) {
2683		pm_runtime_mark_last_busy(d40c->base->dev);
2684		pm_runtime_put_autosuspend(d40c->base->dev);
2685	}
2686	d40c->busy = false;
2687
2688	spin_unlock_irqrestore(&d40c->lock, flags);
2689}
2690
2691static int
2692dma40_config_to_halfchannel(struct d40_chan *d40c,
2693			    struct stedma40_half_channel_info *info,
 
2694			    u32 maxburst)
2695{
 
2696	int psize;
2697
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2698	if (chan_is_logical(d40c)) {
2699		if (maxburst >= 16)
2700			psize = STEDMA40_PSIZE_LOG_16;
2701		else if (maxburst >= 8)
2702			psize = STEDMA40_PSIZE_LOG_8;
2703		else if (maxburst >= 4)
2704			psize = STEDMA40_PSIZE_LOG_4;
2705		else
2706			psize = STEDMA40_PSIZE_LOG_1;
2707	} else {
2708		if (maxburst >= 16)
2709			psize = STEDMA40_PSIZE_PHY_16;
2710		else if (maxburst >= 8)
2711			psize = STEDMA40_PSIZE_PHY_8;
2712		else if (maxburst >= 4)
2713			psize = STEDMA40_PSIZE_PHY_4;
2714		else
2715			psize = STEDMA40_PSIZE_PHY_1;
2716	}
2717
 
2718	info->psize = psize;
2719	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2720
2721	return 0;
2722}
2723
2724/* Runtime reconfiguration extension */
2725static int d40_set_runtime_config(struct dma_chan *chan,
2726				  struct dma_slave_config *config)
2727{
2728	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2729	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2730	enum dma_slave_buswidth src_addr_width, dst_addr_width;
2731	dma_addr_t config_addr;
2732	u32 src_maxburst, dst_maxburst;
2733	int ret;
2734
2735	src_addr_width = config->src_addr_width;
2736	src_maxburst = config->src_maxburst;
2737	dst_addr_width = config->dst_addr_width;
2738	dst_maxburst = config->dst_maxburst;
2739
2740	if (config->direction == DMA_DEV_TO_MEM) {
2741		config_addr = config->src_addr;
 
2742
2743		if (cfg->dir != DMA_DEV_TO_MEM)
 
 
 
 
 
 
2744			dev_dbg(d40c->base->dev,
2745				"channel was not configured for peripheral "
2746				"to memory transfer (%d) overriding\n",
2747				cfg->dir);
2748		cfg->dir = DMA_DEV_TO_MEM;
2749
2750		/* Configure the memory side */
2751		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2752			dst_addr_width = src_addr_width;
2753		if (dst_maxburst == 0)
2754			dst_maxburst = src_maxburst;
2755
2756	} else if (config->direction == DMA_MEM_TO_DEV) {
2757		config_addr = config->dst_addr;
 
2758
2759		if (cfg->dir != DMA_MEM_TO_DEV)
 
 
 
 
 
 
2760			dev_dbg(d40c->base->dev,
2761				"channel was not configured for memory "
2762				"to peripheral transfer (%d) overriding\n",
2763				cfg->dir);
2764		cfg->dir = DMA_MEM_TO_DEV;
2765
2766		/* Configure the memory side */
2767		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2768			src_addr_width = dst_addr_width;
2769		if (src_maxburst == 0)
2770			src_maxburst = dst_maxburst;
2771	} else {
2772		dev_err(d40c->base->dev,
2773			"unrecognized channel direction %d\n",
2774			config->direction);
2775		return -EINVAL;
2776	}
2777
2778	if (config_addr <= 0) {
2779		dev_err(d40c->base->dev, "no address supplied\n");
2780		return -EINVAL;
2781	}
2782
2783	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2784		dev_err(d40c->base->dev,
2785			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2786			src_maxburst,
2787			src_addr_width,
2788			dst_maxburst,
2789			dst_addr_width);
2790		return -EINVAL;
2791	}
2792
2793	if (src_maxburst > 16) {
2794		src_maxburst = 16;
2795		dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2796	} else if (dst_maxburst > 16) {
2797		dst_maxburst = 16;
2798		src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2799	}
2800
2801	/* Only valid widths are; 1, 2, 4 and 8. */
2802	if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2803	    src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2804	    dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2805	    dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2806	    !is_power_of_2(src_addr_width) ||
2807	    !is_power_of_2(dst_addr_width))
2808		return -EINVAL;
2809
2810	cfg->src_info.data_width = src_addr_width;
2811	cfg->dst_info.data_width = dst_addr_width;
2812
2813	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
 
2814					  src_maxburst);
2815	if (ret)
2816		return ret;
2817
2818	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
 
2819					  dst_maxburst);
2820	if (ret)
2821		return ret;
2822
2823	/* Fill in register values */
2824	if (chan_is_logical(d40c))
2825		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2826	else
2827		d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
 
2828
2829	/* These settings will take precedence later */
2830	d40c->runtime_addr = config_addr;
2831	d40c->runtime_direction = config->direction;
2832	dev_dbg(d40c->base->dev,
2833		"configured channel %s for %s, data width %d/%d, "
2834		"maxburst %d/%d elements, LE, no flow control\n",
2835		dma_chan_name(chan),
2836		(config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2837		src_addr_width, dst_addr_width,
2838		src_maxburst, dst_maxburst);
2839
2840	return 0;
2841}
2842
2843static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2844		       unsigned long arg)
2845{
2846	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2847
2848	if (d40c->phy_chan == NULL) {
2849		chan_err(d40c, "Channel is not allocated!\n");
2850		return -EINVAL;
2851	}
2852
2853	switch (cmd) {
2854	case DMA_TERMINATE_ALL:
2855		d40_terminate_all(chan);
2856		return 0;
2857	case DMA_PAUSE:
2858		return d40_pause(d40c);
2859	case DMA_RESUME:
2860		return d40_resume(d40c);
2861	case DMA_SLAVE_CONFIG:
2862		return d40_set_runtime_config(chan,
2863			(struct dma_slave_config *) arg);
2864	default:
2865		break;
2866	}
2867
2868	/* Other commands are unimplemented */
2869	return -ENXIO;
2870}
2871
2872/* Initialization functions */
2873
2874static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2875				 struct d40_chan *chans, int offset,
2876				 int num_chans)
2877{
2878	int i = 0;
2879	struct d40_chan *d40c;
2880
2881	INIT_LIST_HEAD(&dma->channels);
2882
2883	for (i = offset; i < offset + num_chans; i++) {
2884		d40c = &chans[i];
2885		d40c->base = base;
2886		d40c->chan.device = dma;
2887
2888		spin_lock_init(&d40c->lock);
2889
2890		d40c->log_num = D40_PHY_CHAN;
2891
2892		INIT_LIST_HEAD(&d40c->done);
2893		INIT_LIST_HEAD(&d40c->active);
2894		INIT_LIST_HEAD(&d40c->queue);
2895		INIT_LIST_HEAD(&d40c->pending_queue);
2896		INIT_LIST_HEAD(&d40c->client);
2897		INIT_LIST_HEAD(&d40c->prepare_queue);
2898
2899		tasklet_init(&d40c->tasklet, dma_tasklet,
2900			     (unsigned long) d40c);
2901
2902		list_add_tail(&d40c->chan.device_node,
2903			      &dma->channels);
2904	}
2905}
2906
2907static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2908{
2909	if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2910		dev->device_prep_slave_sg = d40_prep_slave_sg;
2911
2912	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2913		dev->device_prep_dma_memcpy = d40_prep_memcpy;
2914
2915		/*
2916		 * This controller can only access address at even
2917		 * 32bit boundaries, i.e. 2^2
2918		 */
2919		dev->copy_align = 2;
2920	}
2921
2922	if (dma_has_cap(DMA_SG, dev->cap_mask))
2923		dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2924
2925	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2926		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2927
2928	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2929	dev->device_free_chan_resources = d40_free_chan_resources;
2930	dev->device_issue_pending = d40_issue_pending;
2931	dev->device_tx_status = d40_tx_status;
2932	dev->device_control = d40_control;
2933	dev->dev = base->dev;
2934}
2935
2936static int __init d40_dmaengine_init(struct d40_base *base,
2937				     int num_reserved_chans)
2938{
2939	int err ;
2940
2941	d40_chan_init(base, &base->dma_slave, base->log_chans,
2942		      0, base->num_log_chans);
2943
2944	dma_cap_zero(base->dma_slave.cap_mask);
2945	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2946	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2947
2948	d40_ops_init(base, &base->dma_slave);
2949
2950	err = dma_async_device_register(&base->dma_slave);
2951
2952	if (err) {
2953		d40_err(base->dev, "Failed to register slave channels\n");
2954		goto failure1;
2955	}
2956
2957	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2958		      base->num_log_chans, base->num_memcpy_chans);
2959
2960	dma_cap_zero(base->dma_memcpy.cap_mask);
2961	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2962	dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2963
2964	d40_ops_init(base, &base->dma_memcpy);
2965
2966	err = dma_async_device_register(&base->dma_memcpy);
2967
2968	if (err) {
2969		d40_err(base->dev,
2970			"Failed to regsiter memcpy only channels\n");
2971		goto failure2;
2972	}
2973
2974	d40_chan_init(base, &base->dma_both, base->phy_chans,
2975		      0, num_reserved_chans);
2976
2977	dma_cap_zero(base->dma_both.cap_mask);
2978	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2979	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2980	dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2981	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2982
2983	d40_ops_init(base, &base->dma_both);
2984	err = dma_async_device_register(&base->dma_both);
2985
2986	if (err) {
2987		d40_err(base->dev,
2988			"Failed to register logical and physical capable channels\n");
2989		goto failure3;
2990	}
2991	return 0;
2992failure3:
2993	dma_async_device_unregister(&base->dma_memcpy);
2994failure2:
2995	dma_async_device_unregister(&base->dma_slave);
2996failure1:
2997	return err;
2998}
2999
3000/* Suspend resume functionality */
3001#ifdef CONFIG_PM
3002static int dma40_pm_suspend(struct device *dev)
3003{
3004	struct platform_device *pdev = to_platform_device(dev);
3005	struct d40_base *base = platform_get_drvdata(pdev);
3006	int ret = 0;
 
 
3007
3008	if (base->lcpa_regulator)
3009		ret = regulator_disable(base->lcpa_regulator);
3010	return ret;
3011}
3012
3013static int dma40_runtime_suspend(struct device *dev)
3014{
3015	struct platform_device *pdev = to_platform_device(dev);
3016	struct d40_base *base = platform_get_drvdata(pdev);
3017
3018	d40_save_restore_registers(base, true);
3019
3020	/* Don't disable/enable clocks for v1 due to HW bugs */
3021	if (base->rev != 1)
3022		writel_relaxed(base->gcc_pwr_off_mask,
3023			       base->virtbase + D40_DREG_GCC);
3024
3025	return 0;
3026}
3027
3028static int dma40_runtime_resume(struct device *dev)
3029{
3030	struct platform_device *pdev = to_platform_device(dev);
3031	struct d40_base *base = platform_get_drvdata(pdev);
3032
3033	if (base->initialized)
3034		d40_save_restore_registers(base, false);
3035
3036	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3037		       base->virtbase + D40_DREG_GCC);
3038	return 0;
3039}
3040
3041static int dma40_resume(struct device *dev)
3042{
3043	struct platform_device *pdev = to_platform_device(dev);
3044	struct d40_base *base = platform_get_drvdata(pdev);
3045	int ret = 0;
3046
3047	if (base->lcpa_regulator)
3048		ret = regulator_enable(base->lcpa_regulator);
3049
3050	return ret;
3051}
3052
3053static const struct dev_pm_ops dma40_pm_ops = {
3054	.suspend		= dma40_pm_suspend,
3055	.runtime_suspend	= dma40_runtime_suspend,
3056	.runtime_resume		= dma40_runtime_resume,
3057	.resume			= dma40_resume,
3058};
3059#define DMA40_PM_OPS	(&dma40_pm_ops)
3060#else
3061#define DMA40_PM_OPS	NULL
3062#endif
3063
3064/* Initialization functions. */
3065
3066static int __init d40_phy_res_init(struct d40_base *base)
3067{
3068	int i;
3069	int num_phy_chans_avail = 0;
3070	u32 val[2];
3071	int odd_even_bit = -2;
3072	int gcc = D40_DREG_GCC_ENA;
3073
3074	val[0] = readl(base->virtbase + D40_DREG_PRSME);
3075	val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3076
3077	for (i = 0; i < base->num_phy_chans; i++) {
3078		base->phy_res[i].num = i;
3079		odd_even_bit += 2 * ((i % 2) == 0);
3080		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3081			/* Mark security only channels as occupied */
3082			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3083			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3084			base->phy_res[i].reserved = true;
3085			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3086						       D40_DREG_GCC_SRC);
3087			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3088						       D40_DREG_GCC_DST);
3089
3090
3091		} else {
3092			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3093			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3094			base->phy_res[i].reserved = false;
3095			num_phy_chans_avail++;
3096		}
3097		spin_lock_init(&base->phy_res[i].lock);
3098	}
3099
3100	/* Mark disabled channels as occupied */
3101	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3102		int chan = base->plat_data->disabled_channels[i];
3103
3104		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3105		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3106		base->phy_res[chan].reserved = true;
3107		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3108					       D40_DREG_GCC_SRC);
3109		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3110					       D40_DREG_GCC_DST);
3111		num_phy_chans_avail--;
3112	}
3113
3114	/* Mark soft_lli channels */
3115	for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3116		int chan = base->plat_data->soft_lli_chans[i];
3117
3118		base->phy_res[chan].use_soft_lli = true;
3119	}
3120
3121	dev_info(base->dev, "%d of %d physical DMA channels available\n",
3122		 num_phy_chans_avail, base->num_phy_chans);
3123
3124	/* Verify settings extended vs standard */
3125	val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3126
3127	for (i = 0; i < base->num_phy_chans; i++) {
3128
3129		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3130		    (val[0] & 0x3) != 1)
3131			dev_info(base->dev,
3132				 "[%s] INFO: channel %d is misconfigured (%d)\n",
3133				 __func__, i, val[0] & 0x3);
3134
3135		val[0] = val[0] >> 2;
3136	}
3137
3138	/*
3139	 * To keep things simple, Enable all clocks initially.
3140	 * The clocks will get managed later post channel allocation.
3141	 * The clocks for the event lines on which reserved channels exists
3142	 * are not managed here.
3143	 */
3144	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3145	base->gcc_pwr_off_mask = gcc;
3146
3147	return num_phy_chans_avail;
3148}
3149
3150static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3151{
3152	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3153	struct clk *clk = NULL;
3154	void __iomem *virtbase = NULL;
3155	struct resource *res = NULL;
3156	struct d40_base *base = NULL;
3157	int num_log_chans = 0;
3158	int num_phy_chans;
3159	int num_memcpy_chans;
3160	int clk_ret = -EINVAL;
3161	int i;
3162	u32 pid;
3163	u32 cid;
3164	u8 rev;
3165
3166	clk = clk_get(&pdev->dev, NULL);
 
3167	if (IS_ERR(clk)) {
3168		d40_err(&pdev->dev, "No matching clock found\n");
3169		goto failure;
3170	}
3171
3172	clk_ret = clk_prepare_enable(clk);
3173	if (clk_ret) {
3174		d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3175		goto failure;
3176	}
3177
3178	/* Get IO for DMAC base address */
3179	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3180	if (!res)
3181		goto failure;
3182
3183	if (request_mem_region(res->start, resource_size(res),
3184			       D40_NAME " I/O base") == NULL)
3185		goto failure;
3186
3187	virtbase = ioremap(res->start, resource_size(res));
3188	if (!virtbase)
3189		goto failure;
3190
3191	/* This is just a regular AMBA PrimeCell ID actually */
3192	for (pid = 0, i = 0; i < 4; i++)
3193		pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3194			& 255) << (i * 8);
3195	for (cid = 0, i = 0; i < 4; i++)
3196		cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3197			& 255) << (i * 8);
3198
3199	if (cid != AMBA_CID) {
3200		d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3201		goto failure;
3202	}
3203	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3204		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3205			AMBA_MANF_BITS(pid),
3206			AMBA_VENDOR_ST);
3207		goto failure;
3208	}
3209	/*
3210	 * HW revision:
3211	 * DB8500ed has revision 0
3212	 * ? has revision 1
3213	 * DB8500v1 has revision 2
3214	 * DB8500v2 has revision 3
3215	 * AP9540v1 has revision 4
3216	 * DB8540v1 has revision 4
3217	 */
3218	rev = AMBA_REV_BITS(pid);
 
 
 
 
 
 
 
3219	if (rev < 2) {
3220		d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
 
3221		goto failure;
3222	}
3223
3224	/* The number of physical channels on this HW */
3225	if (plat_data->num_of_phy_chans)
3226		num_phy_chans = plat_data->num_of_phy_chans;
3227	else
3228		num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3229
3230	/* The number of channels used for memcpy */
3231	if (plat_data->num_of_memcpy_chans)
3232		num_memcpy_chans = plat_data->num_of_memcpy_chans;
3233	else
3234		num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3235
3236	num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3237
3238	dev_info(&pdev->dev,
3239		 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3240		 rev, &res->start, num_phy_chans, num_log_chans);
3241
3242	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3243		       (num_phy_chans + num_log_chans + num_memcpy_chans) *
3244		       sizeof(struct d40_chan), GFP_KERNEL);
3245
3246	if (base == NULL) {
3247		d40_err(&pdev->dev, "Out of memory\n");
3248		goto failure;
3249	}
3250
3251	base->rev = rev;
3252	base->clk = clk;
3253	base->num_memcpy_chans = num_memcpy_chans;
3254	base->num_phy_chans = num_phy_chans;
3255	base->num_log_chans = num_log_chans;
3256	base->phy_start = res->start;
3257	base->phy_size = resource_size(res);
3258	base->virtbase = virtbase;
3259	base->plat_data = plat_data;
3260	base->dev = &pdev->dev;
3261	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3262	base->log_chans = &base->phy_chans[num_phy_chans];
3263
3264	if (base->plat_data->num_of_phy_chans == 14) {
3265		base->gen_dmac.backup = d40_backup_regs_v4b;
3266		base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3267		base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3268		base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3269		base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3270		base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3271		base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3272		base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3273		base->gen_dmac.il = il_v4b;
3274		base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3275		base->gen_dmac.init_reg = dma_init_reg_v4b;
3276		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3277	} else {
3278		if (base->rev >= 3) {
3279			base->gen_dmac.backup = d40_backup_regs_v4a;
3280			base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3281		}
3282		base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3283		base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3284		base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3285		base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3286		base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3287		base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3288		base->gen_dmac.il = il_v4a;
3289		base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3290		base->gen_dmac.init_reg = dma_init_reg_v4a;
3291		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3292	}
3293
3294	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
3295				GFP_KERNEL);
3296	if (!base->phy_res)
3297		goto failure;
3298
3299	base->lookup_phy_chans = kzalloc(num_phy_chans *
3300					 sizeof(struct d40_chan *),
3301					 GFP_KERNEL);
3302	if (!base->lookup_phy_chans)
3303		goto failure;
3304
3305	base->lookup_log_chans = kzalloc(num_log_chans *
3306					 sizeof(struct d40_chan *),
3307					 GFP_KERNEL);
3308	if (!base->lookup_log_chans)
3309		goto failure;
 
 
 
 
 
 
3310
3311	base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
3312					    sizeof(d40_backup_regs_chan),
3313					    GFP_KERNEL);
3314	if (!base->reg_val_backup_chan)
3315		goto failure;
3316
3317	base->lcla_pool.alloc_map =
3318		kzalloc(num_phy_chans * sizeof(struct d40_desc *)
3319			* D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
3320	if (!base->lcla_pool.alloc_map)
3321		goto failure;
3322
3323	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3324					    0, SLAB_HWCACHE_ALIGN,
3325					    NULL);
3326	if (base->desc_slab == NULL)
3327		goto failure;
3328
3329	return base;
3330
3331failure:
3332	if (!clk_ret)
3333		clk_disable_unprepare(clk);
3334	if (!IS_ERR(clk))
3335		clk_put(clk);
 
3336	if (virtbase)
3337		iounmap(virtbase);
3338	if (res)
3339		release_mem_region(res->start,
3340				   resource_size(res));
3341	if (virtbase)
3342		iounmap(virtbase);
3343
3344	if (base) {
3345		kfree(base->lcla_pool.alloc_map);
3346		kfree(base->reg_val_backup_chan);
3347		kfree(base->lookup_log_chans);
3348		kfree(base->lookup_phy_chans);
3349		kfree(base->phy_res);
3350		kfree(base);
3351	}
3352
3353	return NULL;
3354}
3355
3356static void __init d40_hw_init(struct d40_base *base)
3357{
3358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3359	int i;
3360	u32 prmseo[2] = {0, 0};
3361	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3362	u32 pcmis = 0;
3363	u32 pcicr = 0;
3364	struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3365	u32 reg_size = base->gen_dmac.init_reg_size;
3366
3367	for (i = 0; i < reg_size; i++)
3368		writel(dma_init_reg[i].val,
3369		       base->virtbase + dma_init_reg[i].reg);
3370
3371	/* Configure all our dma channels to default settings */
3372	for (i = 0; i < base->num_phy_chans; i++) {
3373
3374		activeo[i % 2] = activeo[i % 2] << 2;
3375
3376		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3377		    == D40_ALLOC_PHY) {
3378			activeo[i % 2] |= 3;
3379			continue;
3380		}
3381
3382		/* Enable interrupt # */
3383		pcmis = (pcmis << 1) | 1;
3384
3385		/* Clear interrupt # */
3386		pcicr = (pcicr << 1) | 1;
3387
3388		/* Set channel to physical mode */
3389		prmseo[i % 2] = prmseo[i % 2] << 2;
3390		prmseo[i % 2] |= 1;
3391
3392	}
3393
3394	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3395	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3396	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3397	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3398
3399	/* Write which interrupt to enable */
3400	writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3401
3402	/* Write which interrupt to clear */
3403	writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3404
3405	/* These are __initdata and cannot be accessed after init */
3406	base->gen_dmac.init_reg = NULL;
3407	base->gen_dmac.init_reg_size = 0;
3408}
3409
3410static int __init d40_lcla_allocate(struct d40_base *base)
3411{
3412	struct d40_lcla_pool *pool = &base->lcla_pool;
3413	unsigned long *page_list;
3414	int i, j;
3415	int ret = 0;
3416
3417	/*
3418	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3419	 * To full fill this hardware requirement without wasting 256 kb
3420	 * we allocate pages until we get an aligned one.
3421	 */
3422	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
3423			    GFP_KERNEL);
3424
3425	if (!page_list) {
3426		ret = -ENOMEM;
3427		goto failure;
3428	}
3429
3430	/* Calculating how many pages that are required */
3431	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3432
3433	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3434		page_list[i] = __get_free_pages(GFP_KERNEL,
3435						base->lcla_pool.pages);
3436		if (!page_list[i]) {
3437
3438			d40_err(base->dev, "Failed to allocate %d pages.\n",
3439				base->lcla_pool.pages);
3440
3441			for (j = 0; j < i; j++)
3442				free_pages(page_list[j], base->lcla_pool.pages);
3443			goto failure;
3444		}
3445
3446		if ((virt_to_phys((void *)page_list[i]) &
3447		     (LCLA_ALIGNMENT - 1)) == 0)
3448			break;
3449	}
3450
3451	for (j = 0; j < i; j++)
3452		free_pages(page_list[j], base->lcla_pool.pages);
3453
3454	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3455		base->lcla_pool.base = (void *)page_list[i];
3456	} else {
3457		/*
3458		 * After many attempts and no succees with finding the correct
3459		 * alignment, try with allocating a big buffer.
3460		 */
3461		dev_warn(base->dev,
3462			 "[%s] Failed to get %d pages @ 18 bit align.\n",
3463			 __func__, base->lcla_pool.pages);
3464		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3465							 base->num_phy_chans +
3466							 LCLA_ALIGNMENT,
3467							 GFP_KERNEL);
3468		if (!base->lcla_pool.base_unaligned) {
3469			ret = -ENOMEM;
3470			goto failure;
3471		}
3472
3473		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3474						 LCLA_ALIGNMENT);
3475	}
3476
3477	pool->dma_addr = dma_map_single(base->dev, pool->base,
3478					SZ_1K * base->num_phy_chans,
3479					DMA_TO_DEVICE);
3480	if (dma_mapping_error(base->dev, pool->dma_addr)) {
3481		pool->dma_addr = 0;
3482		ret = -ENOMEM;
3483		goto failure;
3484	}
3485
3486	writel(virt_to_phys(base->lcla_pool.base),
3487	       base->virtbase + D40_DREG_LCLA);
3488failure:
3489	kfree(page_list);
3490	return ret;
3491}
3492
3493static int __init d40_of_probe(struct platform_device *pdev,
3494			       struct device_node *np)
3495{
3496	struct stedma40_platform_data *pdata;
3497	int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3498	const __be32 *list;
3499
3500	pdata = devm_kzalloc(&pdev->dev,
3501			     sizeof(struct stedma40_platform_data),
3502			     GFP_KERNEL);
3503	if (!pdata)
3504		return -ENOMEM;
3505
3506	/* If absent this value will be obtained from h/w. */
3507	of_property_read_u32(np, "dma-channels", &num_phy);
3508	if (num_phy > 0)
3509		pdata->num_of_phy_chans = num_phy;
3510
3511	list = of_get_property(np, "memcpy-channels", &num_memcpy);
3512	num_memcpy /= sizeof(*list);
3513
3514	if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3515		d40_err(&pdev->dev,
3516			"Invalid number of memcpy channels specified (%d)\n",
3517			num_memcpy);
3518		return -EINVAL;
3519	}
3520	pdata->num_of_memcpy_chans = num_memcpy;
3521
3522	of_property_read_u32_array(np, "memcpy-channels",
3523				   dma40_memcpy_channels,
3524				   num_memcpy);
3525
3526	list = of_get_property(np, "disabled-channels", &num_disabled);
3527	num_disabled /= sizeof(*list);
3528
3529	if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3530		d40_err(&pdev->dev,
3531			"Invalid number of disabled channels specified (%d)\n",
3532			num_disabled);
3533		return -EINVAL;
3534	}
3535
3536	of_property_read_u32_array(np, "disabled-channels",
3537				   pdata->disabled_channels,
3538				   num_disabled);
3539	pdata->disabled_channels[num_disabled] = -1;
3540
3541	pdev->dev.platform_data = pdata;
3542
3543	return 0;
3544}
3545
3546static int __init d40_probe(struct platform_device *pdev)
3547{
3548	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3549	struct device_node *np = pdev->dev.of_node;
3550	int ret = -ENOENT;
3551	struct d40_base *base = NULL;
3552	struct resource *res = NULL;
3553	int num_reserved_chans;
3554	u32 val;
3555
3556	if (!plat_data) {
3557		if (np) {
3558			if(d40_of_probe(pdev, np)) {
3559				ret = -ENOMEM;
3560				goto failure;
3561			}
3562		} else {
3563			d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3564			goto failure;
3565		}
3566	}
3567
3568	base = d40_hw_detect_init(pdev);
 
3569	if (!base)
3570		goto failure;
3571
3572	num_reserved_chans = d40_phy_res_init(base);
3573
3574	platform_set_drvdata(pdev, base);
3575
3576	spin_lock_init(&base->interrupt_lock);
3577	spin_lock_init(&base->execmd_lock);
3578
3579	/* Get IO for logical channel parameter address */
3580	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3581	if (!res) {
3582		ret = -ENOENT;
3583		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3584		goto failure;
3585	}
3586	base->lcpa_size = resource_size(res);
3587	base->phy_lcpa = res->start;
3588
3589	if (request_mem_region(res->start, resource_size(res),
3590			       D40_NAME " I/O lcpa") == NULL) {
3591		ret = -EBUSY;
3592		d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
 
 
3593		goto failure;
3594	}
3595
3596	/* We make use of ESRAM memory for this. */
3597	val = readl(base->virtbase + D40_DREG_LCPA);
3598	if (res->start != val && val != 0) {
3599		dev_warn(&pdev->dev,
3600			 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3601			 __func__, val, &res->start);
3602	} else
3603		writel(res->start, base->virtbase + D40_DREG_LCPA);
3604
3605	base->lcpa_base = ioremap(res->start, resource_size(res));
3606	if (!base->lcpa_base) {
3607		ret = -ENOMEM;
3608		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3609		goto failure;
3610	}
3611	/* If lcla has to be located in ESRAM we don't need to allocate */
3612	if (base->plat_data->use_esram_lcla) {
3613		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3614							"lcla_esram");
3615		if (!res) {
3616			ret = -ENOENT;
3617			d40_err(&pdev->dev,
3618				"No \"lcla_esram\" memory resource\n");
3619			goto failure;
3620		}
3621		base->lcla_pool.base = ioremap(res->start,
3622						resource_size(res));
3623		if (!base->lcla_pool.base) {
3624			ret = -ENOMEM;
3625			d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3626			goto failure;
3627		}
3628		writel(res->start, base->virtbase + D40_DREG_LCLA);
3629
3630	} else {
3631		ret = d40_lcla_allocate(base);
3632		if (ret) {
3633			d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3634			goto failure;
3635		}
3636	}
3637
3638	spin_lock_init(&base->lcla_pool.lock);
3639
3640	base->irq = platform_get_irq(pdev, 0);
3641
3642	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3643	if (ret) {
3644		d40_err(&pdev->dev, "No IRQ defined\n");
3645		goto failure;
3646	}
3647
3648	pm_runtime_irq_safe(base->dev);
3649	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3650	pm_runtime_use_autosuspend(base->dev);
3651	pm_runtime_enable(base->dev);
3652	pm_runtime_resume(base->dev);
3653
3654	if (base->plat_data->use_esram_lcla) {
3655
3656		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3657		if (IS_ERR(base->lcpa_regulator)) {
3658			d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3659			ret = PTR_ERR(base->lcpa_regulator);
3660			base->lcpa_regulator = NULL;
3661			goto failure;
3662		}
3663
3664		ret = regulator_enable(base->lcpa_regulator);
3665		if (ret) {
3666			d40_err(&pdev->dev,
3667				"Failed to enable lcpa_regulator\n");
3668			regulator_put(base->lcpa_regulator);
3669			base->lcpa_regulator = NULL;
3670			goto failure;
3671		}
3672	}
3673
3674	base->initialized = true;
3675	ret = d40_dmaengine_init(base, num_reserved_chans);
3676	if (ret)
3677		goto failure;
3678
3679	base->dev->dma_parms = &base->dma_parms;
3680	ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3681	if (ret) {
3682		d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3683		goto failure;
3684	}
3685
3686	d40_hw_init(base);
3687
3688	if (np) {
3689		ret = of_dma_controller_register(np, d40_xlate, NULL);
3690		if (ret)
3691			dev_err(&pdev->dev,
3692				"could not register of_dma_controller\n");
3693	}
3694
3695	dev_info(base->dev, "initialized\n");
3696	return 0;
3697
3698failure:
3699	if (base) {
3700		if (base->desc_slab)
3701			kmem_cache_destroy(base->desc_slab);
3702		if (base->virtbase)
3703			iounmap(base->virtbase);
3704
3705		if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3706			iounmap(base->lcla_pool.base);
3707			base->lcla_pool.base = NULL;
3708		}
3709
3710		if (base->lcla_pool.dma_addr)
3711			dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3712					 SZ_1K * base->num_phy_chans,
3713					 DMA_TO_DEVICE);
3714
3715		if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3716			free_pages((unsigned long)base->lcla_pool.base,
3717				   base->lcla_pool.pages);
3718
3719		kfree(base->lcla_pool.base_unaligned);
3720
3721		if (base->phy_lcpa)
3722			release_mem_region(base->phy_lcpa,
3723					   base->lcpa_size);
3724		if (base->phy_start)
3725			release_mem_region(base->phy_start,
3726					   base->phy_size);
3727		if (base->clk) {
3728			clk_disable_unprepare(base->clk);
3729			clk_put(base->clk);
3730		}
3731
3732		if (base->lcpa_regulator) {
3733			regulator_disable(base->lcpa_regulator);
3734			regulator_put(base->lcpa_regulator);
3735		}
3736
3737		kfree(base->lcla_pool.alloc_map);
3738		kfree(base->lookup_log_chans);
3739		kfree(base->lookup_phy_chans);
3740		kfree(base->phy_res);
3741		kfree(base);
3742	}
3743
3744	d40_err(&pdev->dev, "probe failed\n");
3745	return ret;
3746}
3747
3748static const struct of_device_id d40_match[] = {
3749        { .compatible = "stericsson,dma40", },
3750        {}
3751};
3752
3753static struct platform_driver d40_driver = {
3754	.driver = {
3755		.owner = THIS_MODULE,
3756		.name  = D40_NAME,
3757		.pm = DMA40_PM_OPS,
3758		.of_match_table = d40_match,
3759	},
3760};
3761
3762static int __init stedma40_init(void)
3763{
3764	return platform_driver_probe(&d40_driver, d40_probe);
3765}
3766subsys_initcall(stedma40_init);
v3.5.6
   1/*
   2 * Copyright (C) Ericsson AB 2007-2008
   3 * Copyright (C) ST-Ericsson SA 2008-2010
   4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
   5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
   6 * License terms: GNU General Public License (GPL) version 2
   7 */
   8
   9#include <linux/dma-mapping.h>
  10#include <linux/kernel.h>
  11#include <linux/slab.h>
  12#include <linux/export.h>
  13#include <linux/dmaengine.h>
  14#include <linux/platform_device.h>
  15#include <linux/clk.h>
  16#include <linux/delay.h>
 
  17#include <linux/pm.h>
  18#include <linux/pm_runtime.h>
  19#include <linux/err.h>
 
 
  20#include <linux/amba/bus.h>
  21#include <linux/regulator/consumer.h>
  22
  23#include <plat/ste_dma40.h>
  24
  25#include "dmaengine.h"
  26#include "ste_dma40_ll.h"
  27
  28#define D40_NAME "dma40"
  29
  30#define D40_PHY_CHAN -1
  31
  32/* For masking out/in 2 bit channel positions */
  33#define D40_CHAN_POS(chan)  (2 * (chan / 2))
  34#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  35
  36/* Maximum iterations taken before giving up suspending a channel */
  37#define D40_SUSPEND_MAX_IT 500
  38
  39/* Milliseconds */
  40#define DMA40_AUTOSUSPEND_DELAY	100
  41
  42/* Hardware requirement on LCLA alignment */
  43#define LCLA_ALIGNMENT 0x40000
  44
  45/* Max number of links per event group */
  46#define D40_LCLA_LINK_PER_EVENT_GRP 128
  47#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  48
 
 
 
  49/* Attempts before giving up to trying to get pages that are aligned */
  50#define MAX_LCLA_ALLOC_ATTEMPTS 256
  51
  52/* Bit markings for allocation map */
  53#define D40_ALLOC_FREE		(1 << 31)
  54#define D40_ALLOC_PHY		(1 << 30)
  55#define D40_ALLOC_LOG_FREE	0
  56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  57/**
  58 * enum 40_command - The different commands and/or statuses.
  59 *
  60 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  61 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  62 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  63 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  64 */
  65enum d40_command {
  66	D40_DMA_STOP		= 0,
  67	D40_DMA_RUN		= 1,
  68	D40_DMA_SUSPEND_REQ	= 2,
  69	D40_DMA_SUSPENDED	= 3
  70};
  71
  72/*
  73 * enum d40_events - The different Event Enables for the event lines.
  74 *
  75 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
  76 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
  77 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
  78 * @D40_ROUND_EVENTLINE: Status check for event line.
  79 */
  80
  81enum d40_events {
  82	D40_DEACTIVATE_EVENTLINE	= 0,
  83	D40_ACTIVATE_EVENTLINE		= 1,
  84	D40_SUSPEND_REQ_EVENTLINE	= 2,
  85	D40_ROUND_EVENTLINE		= 3
  86};
  87
  88/*
  89 * These are the registers that has to be saved and later restored
  90 * when the DMA hw is powered off.
  91 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
  92 */
  93static u32 d40_backup_regs[] = {
  94	D40_DREG_LCPA,
  95	D40_DREG_LCLA,
  96	D40_DREG_PRMSE,
  97	D40_DREG_PRMSO,
  98	D40_DREG_PRMOE,
  99	D40_DREG_PRMOO,
 100};
 101
 102#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
 103
 104/* TODO: Check if all these registers have to be saved/restored on dma40 v3 */
 105static u32 d40_backup_regs_v3[] = {
 
 
 
 
 
 
 
 
 
 
 
 106	D40_DREG_PSEG1,
 107	D40_DREG_PSEG2,
 108	D40_DREG_PSEG3,
 109	D40_DREG_PSEG4,
 110	D40_DREG_PCEG1,
 111	D40_DREG_PCEG2,
 112	D40_DREG_PCEG3,
 113	D40_DREG_PCEG4,
 114	D40_DREG_RSEG1,
 115	D40_DREG_RSEG2,
 116	D40_DREG_RSEG3,
 117	D40_DREG_RSEG4,
 118	D40_DREG_RCEG1,
 119	D40_DREG_RCEG2,
 120	D40_DREG_RCEG3,
 121	D40_DREG_RCEG4,
 122};
 123
 124#define BACKUP_REGS_SZ_V3 ARRAY_SIZE(d40_backup_regs_v3)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 125
 126static u32 d40_backup_regs_chan[] = {
 127	D40_CHAN_REG_SSCFG,
 128	D40_CHAN_REG_SSELT,
 129	D40_CHAN_REG_SSPTR,
 130	D40_CHAN_REG_SSLNK,
 131	D40_CHAN_REG_SDCFG,
 132	D40_CHAN_REG_SDELT,
 133	D40_CHAN_REG_SDPTR,
 134	D40_CHAN_REG_SDLNK,
 135};
 136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 137/**
 138 * struct d40_lli_pool - Structure for keeping LLIs in memory
 139 *
 140 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 141 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 142 * pre_alloc_lli is used.
 143 * @dma_addr: DMA address, if mapped
 144 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 145 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 146 * one buffer to one buffer.
 147 */
 148struct d40_lli_pool {
 149	void	*base;
 150	int	 size;
 151	dma_addr_t	dma_addr;
 152	/* Space for dst and src, plus an extra for padding */
 153	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
 154};
 155
 156/**
 157 * struct d40_desc - A descriptor is one DMA job.
 158 *
 159 * @lli_phy: LLI settings for physical channel. Both src and dst=
 160 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 161 * lli_len equals one.
 162 * @lli_log: Same as above but for logical channels.
 163 * @lli_pool: The pool with two entries pre-allocated.
 164 * @lli_len: Number of llis of current descriptor.
 165 * @lli_current: Number of transferred llis.
 166 * @lcla_alloc: Number of LCLA entries allocated.
 167 * @txd: DMA engine struct. Used for among other things for communication
 168 * during a transfer.
 169 * @node: List entry.
 170 * @is_in_client_list: true if the client owns this descriptor.
 171 * @cyclic: true if this is a cyclic job
 172 *
 173 * This descriptor is used for both logical and physical transfers.
 174 */
 175struct d40_desc {
 176	/* LLI physical */
 177	struct d40_phy_lli_bidir	 lli_phy;
 178	/* LLI logical */
 179	struct d40_log_lli_bidir	 lli_log;
 180
 181	struct d40_lli_pool		 lli_pool;
 182	int				 lli_len;
 183	int				 lli_current;
 184	int				 lcla_alloc;
 185
 186	struct dma_async_tx_descriptor	 txd;
 187	struct list_head		 node;
 188
 189	bool				 is_in_client_list;
 190	bool				 cyclic;
 191};
 192
 193/**
 194 * struct d40_lcla_pool - LCLA pool settings and data.
 195 *
 196 * @base: The virtual address of LCLA. 18 bit aligned.
 197 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 198 * This pointer is only there for clean-up on error.
 199 * @pages: The number of pages needed for all physical channels.
 200 * Only used later for clean-up on error
 201 * @lock: Lock to protect the content in this struct.
 202 * @alloc_map: big map over which LCLA entry is own by which job.
 203 */
 204struct d40_lcla_pool {
 205	void		*base;
 206	dma_addr_t	dma_addr;
 207	void		*base_unaligned;
 208	int		 pages;
 209	spinlock_t	 lock;
 210	struct d40_desc	**alloc_map;
 211};
 212
 213/**
 214 * struct d40_phy_res - struct for handling eventlines mapped to physical
 215 * channels.
 216 *
 217 * @lock: A lock protection this entity.
 218 * @reserved: True if used by secure world or otherwise.
 219 * @num: The physical channel number of this entity.
 220 * @allocated_src: Bit mapped to show which src event line's are mapped to
 221 * this physical channel. Can also be free or physically allocated.
 222 * @allocated_dst: Same as for src but is dst.
 223 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
 224 * event line number.
 
 225 */
 226struct d40_phy_res {
 227	spinlock_t lock;
 228	bool	   reserved;
 229	int	   num;
 230	u32	   allocated_src;
 231	u32	   allocated_dst;
 
 232};
 233
 234struct d40_base;
 235
 236/**
 237 * struct d40_chan - Struct that describes a channel.
 238 *
 239 * @lock: A spinlock to protect this struct.
 240 * @log_num: The logical number, if any of this channel.
 241 * @pending_tx: The number of pending transfers. Used between interrupt handler
 242 * and tasklet.
 243 * @busy: Set to true when transfer is ongoing on this channel.
 244 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 245 * point is NULL, then the channel is not allocated.
 246 * @chan: DMA engine handle.
 247 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 248 * transfer and call client callback.
 249 * @client: Cliented owned descriptor list.
 250 * @pending_queue: Submitted jobs, to be issued by issue_pending()
 251 * @active: Active descriptor.
 
 252 * @queue: Queued jobs.
 253 * @prepare_queue: Prepared jobs.
 254 * @dma_cfg: The client configuration of this dma channel.
 255 * @configured: whether the dma_cfg configuration is valid
 256 * @base: Pointer to the device instance struct.
 257 * @src_def_cfg: Default cfg register setting for src.
 258 * @dst_def_cfg: Default cfg register setting for dst.
 259 * @log_def: Default logical channel settings.
 260 * @lcpa: Pointer to dst and src lcpa settings.
 261 * @runtime_addr: runtime configured address.
 262 * @runtime_direction: runtime configured direction.
 263 *
 264 * This struct can either "be" a logical or a physical channel.
 265 */
 266struct d40_chan {
 267	spinlock_t			 lock;
 268	int				 log_num;
 269	int				 pending_tx;
 270	bool				 busy;
 271	struct d40_phy_res		*phy_chan;
 272	struct dma_chan			 chan;
 273	struct tasklet_struct		 tasklet;
 274	struct list_head		 client;
 275	struct list_head		 pending_queue;
 276	struct list_head		 active;
 
 277	struct list_head		 queue;
 278	struct list_head		 prepare_queue;
 279	struct stedma40_chan_cfg	 dma_cfg;
 280	bool				 configured;
 281	struct d40_base			*base;
 282	/* Default register configurations */
 283	u32				 src_def_cfg;
 284	u32				 dst_def_cfg;
 285	struct d40_def_lcsp		 log_def;
 286	struct d40_log_lli_full		*lcpa;
 287	/* Runtime reconfiguration */
 288	dma_addr_t			runtime_addr;
 289	enum dma_transfer_direction	runtime_direction;
 290};
 291
 292/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 293 * struct d40_base - The big global struct, one for each probe'd instance.
 294 *
 295 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 296 * @execmd_lock: Lock for execute command usage since several channels share
 297 * the same physical register.
 298 * @dev: The device structure.
 299 * @virtbase: The virtual base address of the DMA's register.
 300 * @rev: silicon revision detected.
 301 * @clk: Pointer to the DMA clock structure.
 302 * @phy_start: Physical memory start of the DMA registers.
 303 * @phy_size: Size of the DMA register map.
 304 * @irq: The IRQ number.
 
 
 305 * @num_phy_chans: The number of physical channels. Read from HW. This
 306 * is the number of available channels for this driver, not counting "Secure
 307 * mode" allocated physical channels.
 308 * @num_log_chans: The number of logical channels. Calculated from
 309 * num_phy_chans.
 310 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 311 * @dma_slave: dma_device channels that can do only do slave transfers.
 312 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
 313 * @phy_chans: Room for all possible physical channels in system.
 314 * @log_chans: Room for all possible logical channels in system.
 315 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 316 * to log_chans entries.
 317 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 318 * to phy_chans entries.
 319 * @plat_data: Pointer to provided platform_data which is the driver
 320 * configuration.
 321 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
 322 * @phy_res: Vector containing all physical channels.
 323 * @lcla_pool: lcla pool settings and data.
 324 * @lcpa_base: The virtual mapped address of LCPA.
 325 * @phy_lcpa: The physical address of the LCPA.
 326 * @lcpa_size: The size of the LCPA area.
 327 * @desc_slab: cache for descriptors.
 328 * @reg_val_backup: Here the values of some hardware registers are stored
 329 * before the DMA is powered off. They are restored when the power is back on.
 330 * @reg_val_backup_v3: Backup of registers that only exits on dma40 v3 and
 331 * later.
 332 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
 333 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
 334 * @initialized: true if the dma has been initialized
 
 
 335 */
 336struct d40_base {
 337	spinlock_t			 interrupt_lock;
 338	spinlock_t			 execmd_lock;
 339	struct device			 *dev;
 340	void __iomem			 *virtbase;
 341	u8				  rev:4;
 342	struct clk			 *clk;
 343	phys_addr_t			  phy_start;
 344	resource_size_t			  phy_size;
 345	int				  irq;
 
 346	int				  num_phy_chans;
 347	int				  num_log_chans;
 
 348	struct dma_device		  dma_both;
 349	struct dma_device		  dma_slave;
 350	struct dma_device		  dma_memcpy;
 351	struct d40_chan			 *phy_chans;
 352	struct d40_chan			 *log_chans;
 353	struct d40_chan			**lookup_log_chans;
 354	struct d40_chan			**lookup_phy_chans;
 355	struct stedma40_platform_data	 *plat_data;
 356	struct regulator		 *lcpa_regulator;
 357	/* Physical half channels */
 358	struct d40_phy_res		 *phy_res;
 359	struct d40_lcla_pool		  lcla_pool;
 360	void				 *lcpa_base;
 361	dma_addr_t			  phy_lcpa;
 362	resource_size_t			  lcpa_size;
 363	struct kmem_cache		 *desc_slab;
 364	u32				  reg_val_backup[BACKUP_REGS_SZ];
 365	u32				  reg_val_backup_v3[BACKUP_REGS_SZ_V3];
 366	u32				 *reg_val_backup_chan;
 367	u16				  gcc_pwr_off_mask;
 368	bool				  initialized;
 369};
 370
 371/**
 372 * struct d40_interrupt_lookup - lookup table for interrupt handler
 373 *
 374 * @src: Interrupt mask register.
 375 * @clr: Interrupt clear register.
 376 * @is_error: true if this is an error interrupt.
 377 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 378 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 379 */
 380struct d40_interrupt_lookup {
 381	u32 src;
 382	u32 clr;
 383	bool is_error;
 384	int offset;
 385};
 386
 387/**
 388 * struct d40_reg_val - simple lookup struct
 389 *
 390 * @reg: The register.
 391 * @val: The value that belongs to the register in reg.
 392 */
 393struct d40_reg_val {
 394	unsigned int reg;
 395	unsigned int val;
 396};
 397
 398static struct device *chan2dev(struct d40_chan *d40c)
 399{
 400	return &d40c->chan.dev->device;
 401}
 402
 403static bool chan_is_physical(struct d40_chan *chan)
 404{
 405	return chan->log_num == D40_PHY_CHAN;
 406}
 407
 408static bool chan_is_logical(struct d40_chan *chan)
 409{
 410	return !chan_is_physical(chan);
 411}
 412
 413static void __iomem *chan_base(struct d40_chan *chan)
 414{
 415	return chan->base->virtbase + D40_DREG_PCBASE +
 416	       chan->phy_chan->num * D40_DREG_PCDELTA;
 417}
 418
 419#define d40_err(dev, format, arg...)		\
 420	dev_err(dev, "[%s] " format, __func__, ## arg)
 421
 422#define chan_err(d40c, format, arg...)		\
 423	d40_err(chan2dev(d40c), format, ## arg)
 424
 425static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
 426			      int lli_len)
 427{
 428	bool is_log = chan_is_logical(d40c);
 429	u32 align;
 430	void *base;
 431
 432	if (is_log)
 433		align = sizeof(struct d40_log_lli);
 434	else
 435		align = sizeof(struct d40_phy_lli);
 436
 437	if (lli_len == 1) {
 438		base = d40d->lli_pool.pre_alloc_lli;
 439		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
 440		d40d->lli_pool.base = NULL;
 441	} else {
 442		d40d->lli_pool.size = lli_len * 2 * align;
 443
 444		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
 445		d40d->lli_pool.base = base;
 446
 447		if (d40d->lli_pool.base == NULL)
 448			return -ENOMEM;
 449	}
 450
 451	if (is_log) {
 452		d40d->lli_log.src = PTR_ALIGN(base, align);
 453		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
 454
 455		d40d->lli_pool.dma_addr = 0;
 456	} else {
 457		d40d->lli_phy.src = PTR_ALIGN(base, align);
 458		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
 459
 460		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
 461							 d40d->lli_phy.src,
 462							 d40d->lli_pool.size,
 463							 DMA_TO_DEVICE);
 464
 465		if (dma_mapping_error(d40c->base->dev,
 466				      d40d->lli_pool.dma_addr)) {
 467			kfree(d40d->lli_pool.base);
 468			d40d->lli_pool.base = NULL;
 469			d40d->lli_pool.dma_addr = 0;
 470			return -ENOMEM;
 471		}
 472	}
 473
 474	return 0;
 475}
 476
 477static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
 478{
 479	if (d40d->lli_pool.dma_addr)
 480		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
 481				 d40d->lli_pool.size, DMA_TO_DEVICE);
 482
 483	kfree(d40d->lli_pool.base);
 484	d40d->lli_pool.base = NULL;
 485	d40d->lli_pool.size = 0;
 486	d40d->lli_log.src = NULL;
 487	d40d->lli_log.dst = NULL;
 488	d40d->lli_phy.src = NULL;
 489	d40d->lli_phy.dst = NULL;
 490}
 491
 492static int d40_lcla_alloc_one(struct d40_chan *d40c,
 493			      struct d40_desc *d40d)
 494{
 495	unsigned long flags;
 496	int i;
 497	int ret = -EINVAL;
 498	int p;
 499
 500	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 501
 502	p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
 503
 504	/*
 505	 * Allocate both src and dst at the same time, therefore the half
 506	 * start on 1 since 0 can't be used since zero is used as end marker.
 507	 */
 508	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 509		if (!d40c->base->lcla_pool.alloc_map[p + i]) {
 510			d40c->base->lcla_pool.alloc_map[p + i] = d40d;
 
 
 511			d40d->lcla_alloc++;
 512			ret = i;
 513			break;
 514		}
 515	}
 516
 517	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 518
 519	return ret;
 520}
 521
 522static int d40_lcla_free_all(struct d40_chan *d40c,
 523			     struct d40_desc *d40d)
 524{
 525	unsigned long flags;
 526	int i;
 527	int ret = -EINVAL;
 528
 529	if (chan_is_physical(d40c))
 530		return 0;
 531
 532	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 533
 534	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 535		if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
 536						    D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
 537			d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
 538							D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
 539			d40d->lcla_alloc--;
 540			if (d40d->lcla_alloc == 0) {
 541				ret = 0;
 542				break;
 543			}
 544		}
 545	}
 546
 547	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 548
 549	return ret;
 550
 551}
 552
 553static void d40_desc_remove(struct d40_desc *d40d)
 554{
 555	list_del(&d40d->node);
 556}
 557
 558static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
 559{
 560	struct d40_desc *desc = NULL;
 561
 562	if (!list_empty(&d40c->client)) {
 563		struct d40_desc *d;
 564		struct d40_desc *_d;
 565
 566		list_for_each_entry_safe(d, _d, &d40c->client, node) {
 567			if (async_tx_test_ack(&d->txd)) {
 568				d40_desc_remove(d);
 569				desc = d;
 570				memset(desc, 0, sizeof(*desc));
 571				break;
 572			}
 573		}
 574	}
 575
 576	if (!desc)
 577		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
 578
 579	if (desc)
 580		INIT_LIST_HEAD(&desc->node);
 581
 582	return desc;
 583}
 584
 585static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
 586{
 587
 588	d40_pool_lli_free(d40c, d40d);
 589	d40_lcla_free_all(d40c, d40d);
 590	kmem_cache_free(d40c->base->desc_slab, d40d);
 591}
 592
 593static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
 594{
 595	list_add_tail(&desc->node, &d40c->active);
 596}
 597
 598static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
 599{
 600	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
 601	struct d40_phy_lli *lli_src = desc->lli_phy.src;
 602	void __iomem *base = chan_base(chan);
 603
 604	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
 605	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
 606	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
 607	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
 608
 609	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
 610	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
 611	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
 612	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
 613}
 614
 
 
 
 
 
 615static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
 616{
 617	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
 618	struct d40_log_lli_bidir *lli = &desc->lli_log;
 619	int lli_current = desc->lli_current;
 620	int lli_len = desc->lli_len;
 621	bool cyclic = desc->cyclic;
 622	int curr_lcla = -EINVAL;
 623	int first_lcla = 0;
 624	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
 625	bool linkback;
 626
 627	/*
 628	 * We may have partially running cyclic transfers, in case we did't get
 629	 * enough LCLA entries.
 630	 */
 631	linkback = cyclic && lli_current == 0;
 632
 633	/*
 634	 * For linkback, we need one LCLA even with only one link, because we
 635	 * can't link back to the one in LCPA space
 636	 */
 637	if (linkback || (lli_len - lli_current > 1)) {
 638		curr_lcla = d40_lcla_alloc_one(chan, desc);
 
 
 
 
 
 
 
 
 
 639		first_lcla = curr_lcla;
 640	}
 641
 642	/*
 643	 * For linkback, we normally load the LCPA in the loop since we need to
 644	 * link it to the second LCLA and not the first.  However, if we
 645	 * couldn't even get a first LCLA, then we have to run in LCPA and
 646	 * reload manually.
 647	 */
 648	if (!linkback || curr_lcla == -EINVAL) {
 649		unsigned int flags = 0;
 650
 651		if (curr_lcla == -EINVAL)
 652			flags |= LLI_TERM_INT;
 653
 654		d40_log_lli_lcpa_write(chan->lcpa,
 655				       &lli->dst[lli_current],
 656				       &lli->src[lli_current],
 657				       curr_lcla,
 658				       flags);
 659		lli_current++;
 660	}
 661
 662	if (curr_lcla < 0)
 663		goto out;
 664
 665	for (; lli_current < lli_len; lli_current++) {
 666		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
 667					   8 * curr_lcla * 2;
 668		struct d40_log_lli *lcla = pool->base + lcla_offset;
 669		unsigned int flags = 0;
 670		int next_lcla;
 671
 672		if (lli_current + 1 < lli_len)
 673			next_lcla = d40_lcla_alloc_one(chan, desc);
 674		else
 675			next_lcla = linkback ? first_lcla : -EINVAL;
 676
 677		if (cyclic || next_lcla == -EINVAL)
 678			flags |= LLI_TERM_INT;
 679
 680		if (linkback && curr_lcla == first_lcla) {
 681			/* First link goes in both LCPA and LCLA */
 682			d40_log_lli_lcpa_write(chan->lcpa,
 683					       &lli->dst[lli_current],
 684					       &lli->src[lli_current],
 685					       next_lcla, flags);
 686		}
 687
 688		/*
 689		 * One unused LCLA in the cyclic case if the very first
 690		 * next_lcla fails...
 691		 */
 692		d40_log_lli_lcla_write(lcla,
 693				       &lli->dst[lli_current],
 694				       &lli->src[lli_current],
 695				       next_lcla, flags);
 696
 697		/*
 698		 * Cache maintenance is not needed if lcla is
 699		 * mapped in esram
 700		 */
 701		if (!use_esram_lcla) {
 702			dma_sync_single_range_for_device(chan->base->dev,
 703						pool->dma_addr, lcla_offset,
 704						2 * sizeof(struct d40_log_lli),
 705						DMA_TO_DEVICE);
 706		}
 707		curr_lcla = next_lcla;
 708
 709		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
 710			lli_current++;
 711			break;
 712		}
 713	}
 714
 715out:
 716	desc->lli_current = lli_current;
 717}
 718
 719static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
 720{
 721	if (chan_is_physical(d40c)) {
 722		d40_phy_lli_load(d40c, d40d);
 723		d40d->lli_current = d40d->lli_len;
 724	} else
 725		d40_log_lli_to_lcxa(d40c, d40d);
 726}
 727
 728static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
 729{
 730	struct d40_desc *d;
 731
 732	if (list_empty(&d40c->active))
 733		return NULL;
 734
 735	d = list_first_entry(&d40c->active,
 736			     struct d40_desc,
 737			     node);
 738	return d;
 739}
 740
 741/* remove desc from current queue and add it to the pending_queue */
 742static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
 743{
 744	d40_desc_remove(desc);
 745	desc->is_in_client_list = false;
 746	list_add_tail(&desc->node, &d40c->pending_queue);
 747}
 748
 749static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
 750{
 751	struct d40_desc *d;
 752
 753	if (list_empty(&d40c->pending_queue))
 754		return NULL;
 755
 756	d = list_first_entry(&d40c->pending_queue,
 757			     struct d40_desc,
 758			     node);
 759	return d;
 760}
 761
 762static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
 763{
 764	struct d40_desc *d;
 765
 766	if (list_empty(&d40c->queue))
 767		return NULL;
 768
 769	d = list_first_entry(&d40c->queue,
 770			     struct d40_desc,
 771			     node);
 772	return d;
 773}
 774
 
 
 
 
 
 
 
 
 775static int d40_psize_2_burst_size(bool is_log, int psize)
 776{
 777	if (is_log) {
 778		if (psize == STEDMA40_PSIZE_LOG_1)
 779			return 1;
 780	} else {
 781		if (psize == STEDMA40_PSIZE_PHY_1)
 782			return 1;
 783	}
 784
 785	return 2 << psize;
 786}
 787
 788/*
 789 * The dma only supports transmitting packages up to
 790 * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
 791 * dma elements required to send the entire sg list
 
 792 */
 793static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
 794{
 795	int dmalen;
 796	u32 max_w = max(data_width1, data_width2);
 797	u32 min_w = min(data_width1, data_width2);
 798	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
 799
 800	if (seg_max > STEDMA40_MAX_SEG_SIZE)
 801		seg_max -= (1 << max_w);
 802
 803	if (!IS_ALIGNED(size, 1 << max_w))
 804		return -EINVAL;
 805
 806	if (size <= seg_max)
 807		dmalen = 1;
 808	else {
 809		dmalen = size / seg_max;
 810		if (dmalen * seg_max < size)
 811			dmalen++;
 812	}
 813	return dmalen;
 814}
 815
 816static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
 817			   u32 data_width1, u32 data_width2)
 818{
 819	struct scatterlist *sg;
 820	int i;
 821	int len = 0;
 822	int ret;
 823
 824	for_each_sg(sgl, sg, sg_len, i) {
 825		ret = d40_size_2_dmalen(sg_dma_len(sg),
 826					data_width1, data_width2);
 827		if (ret < 0)
 828			return ret;
 829		len += ret;
 830	}
 831	return len;
 832}
 833
 834
 835#ifdef CONFIG_PM
 836static void dma40_backup(void __iomem *baseaddr, u32 *backup,
 837			 u32 *regaddr, int num, bool save)
 838{
 839	int i;
 840
 841	for (i = 0; i < num; i++) {
 842		void __iomem *addr = baseaddr + regaddr[i];
 843
 844		if (save)
 845			backup[i] = readl_relaxed(addr);
 846		else
 847			writel_relaxed(backup[i], addr);
 848	}
 849}
 850
 851static void d40_save_restore_registers(struct d40_base *base, bool save)
 852{
 853	int i;
 854
 855	/* Save/Restore channel specific registers */
 856	for (i = 0; i < base->num_phy_chans; i++) {
 857		void __iomem *addr;
 858		int idx;
 859
 860		if (base->phy_res[i].reserved)
 861			continue;
 862
 863		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
 864		idx = i * ARRAY_SIZE(d40_backup_regs_chan);
 865
 866		dma40_backup(addr, &base->reg_val_backup_chan[idx],
 867			     d40_backup_regs_chan,
 868			     ARRAY_SIZE(d40_backup_regs_chan),
 869			     save);
 870	}
 871
 872	/* Save/Restore global registers */
 873	dma40_backup(base->virtbase, base->reg_val_backup,
 874		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
 875		     save);
 876
 877	/* Save/Restore registers only existing on dma40 v3 and later */
 878	if (base->rev >= 3)
 879		dma40_backup(base->virtbase, base->reg_val_backup_v3,
 880			     d40_backup_regs_v3,
 881			     ARRAY_SIZE(d40_backup_regs_v3),
 882			     save);
 883}
 884#else
 885static void d40_save_restore_registers(struct d40_base *base, bool save)
 886{
 887}
 888#endif
 889
 890static int __d40_execute_command_phy(struct d40_chan *d40c,
 891				     enum d40_command command)
 892{
 893	u32 status;
 894	int i;
 895	void __iomem *active_reg;
 896	int ret = 0;
 897	unsigned long flags;
 898	u32 wmask;
 899
 900	if (command == D40_DMA_STOP) {
 901		ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
 902		if (ret)
 903			return ret;
 904	}
 905
 906	spin_lock_irqsave(&d40c->base->execmd_lock, flags);
 907
 908	if (d40c->phy_chan->num % 2 == 0)
 909		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
 910	else
 911		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
 912
 913	if (command == D40_DMA_SUSPEND_REQ) {
 914		status = (readl(active_reg) &
 915			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
 916			D40_CHAN_POS(d40c->phy_chan->num);
 917
 918		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
 919			goto done;
 920	}
 921
 922	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
 923	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
 924	       active_reg);
 925
 926	if (command == D40_DMA_SUSPEND_REQ) {
 927
 928		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
 929			status = (readl(active_reg) &
 930				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
 931				D40_CHAN_POS(d40c->phy_chan->num);
 932
 933			cpu_relax();
 934			/*
 935			 * Reduce the number of bus accesses while
 936			 * waiting for the DMA to suspend.
 937			 */
 938			udelay(3);
 939
 940			if (status == D40_DMA_STOP ||
 941			    status == D40_DMA_SUSPENDED)
 942				break;
 943		}
 944
 945		if (i == D40_SUSPEND_MAX_IT) {
 946			chan_err(d40c,
 947				"unable to suspend the chl %d (log: %d) status %x\n",
 948				d40c->phy_chan->num, d40c->log_num,
 949				status);
 950			dump_stack();
 951			ret = -EBUSY;
 952		}
 953
 954	}
 955done:
 956	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
 957	return ret;
 958}
 959
 960static void d40_term_all(struct d40_chan *d40c)
 961{
 962	struct d40_desc *d40d;
 963	struct d40_desc *_d;
 964
 
 
 
 
 
 
 965	/* Release active descriptors */
 966	while ((d40d = d40_first_active_get(d40c))) {
 967		d40_desc_remove(d40d);
 968		d40_desc_free(d40c, d40d);
 969	}
 970
 971	/* Release queued descriptors waiting for transfer */
 972	while ((d40d = d40_first_queued(d40c))) {
 973		d40_desc_remove(d40d);
 974		d40_desc_free(d40c, d40d);
 975	}
 976
 977	/* Release pending descriptors */
 978	while ((d40d = d40_first_pending(d40c))) {
 979		d40_desc_remove(d40d);
 980		d40_desc_free(d40c, d40d);
 981	}
 982
 983	/* Release client owned descriptors */
 984	if (!list_empty(&d40c->client))
 985		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
 986			d40_desc_remove(d40d);
 987			d40_desc_free(d40c, d40d);
 988		}
 989
 990	/* Release descriptors in prepare queue */
 991	if (!list_empty(&d40c->prepare_queue))
 992		list_for_each_entry_safe(d40d, _d,
 993					 &d40c->prepare_queue, node) {
 994			d40_desc_remove(d40d);
 995			d40_desc_free(d40c, d40d);
 996		}
 997
 998	d40c->pending_tx = 0;
 999}
1000
1001static void __d40_config_set_event(struct d40_chan *d40c,
1002				   enum d40_events event_type, u32 event,
1003				   int reg)
1004{
1005	void __iomem *addr = chan_base(d40c) + reg;
1006	int tries;
1007	u32 status;
1008
1009	switch (event_type) {
1010
1011	case D40_DEACTIVATE_EVENTLINE:
1012
1013		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1014		       | ~D40_EVENTLINE_MASK(event), addr);
1015		break;
1016
1017	case D40_SUSPEND_REQ_EVENTLINE:
1018		status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1019			  D40_EVENTLINE_POS(event);
1020
1021		if (status == D40_DEACTIVATE_EVENTLINE ||
1022		    status == D40_SUSPEND_REQ_EVENTLINE)
1023			break;
1024
1025		writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1026		       | ~D40_EVENTLINE_MASK(event), addr);
1027
1028		for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1029
1030			status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1031				  D40_EVENTLINE_POS(event);
1032
1033			cpu_relax();
1034			/*
1035			 * Reduce the number of bus accesses while
1036			 * waiting for the DMA to suspend.
1037			 */
1038			udelay(3);
1039
1040			if (status == D40_DEACTIVATE_EVENTLINE)
1041				break;
1042		}
1043
1044		if (tries == D40_SUSPEND_MAX_IT) {
1045			chan_err(d40c,
1046				"unable to stop the event_line chl %d (log: %d)"
1047				"status %x\n", d40c->phy_chan->num,
1048				 d40c->log_num, status);
1049		}
1050		break;
1051
1052	case D40_ACTIVATE_EVENTLINE:
1053	/*
1054	 * The hardware sometimes doesn't register the enable when src and dst
1055	 * event lines are active on the same logical channel.  Retry to ensure
1056	 * it does.  Usually only one retry is sufficient.
1057	 */
1058		tries = 100;
1059		while (--tries) {
1060			writel((D40_ACTIVATE_EVENTLINE <<
1061				D40_EVENTLINE_POS(event)) |
1062				~D40_EVENTLINE_MASK(event), addr);
1063
1064			if (readl(addr) & D40_EVENTLINE_MASK(event))
1065				break;
1066		}
1067
1068		if (tries != 99)
1069			dev_dbg(chan2dev(d40c),
1070				"[%s] workaround enable S%cLNK (%d tries)\n",
1071				__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1072				100 - tries);
1073
1074		WARN_ON(!tries);
1075		break;
1076
1077	case D40_ROUND_EVENTLINE:
1078		BUG();
1079		break;
1080
1081	}
1082}
1083
1084static void d40_config_set_event(struct d40_chan *d40c,
1085				 enum d40_events event_type)
1086{
 
 
1087	/* Enable event line connected to device (or memcpy) */
1088	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
1089	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
1090		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1091
1092		__d40_config_set_event(d40c, event_type, event,
1093				       D40_CHAN_REG_SSLNK);
1094	}
1095
1096	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
1097		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1098
 
1099		__d40_config_set_event(d40c, event_type, event,
1100				       D40_CHAN_REG_SDLNK);
1101	}
1102}
1103
1104static u32 d40_chan_has_events(struct d40_chan *d40c)
1105{
1106	void __iomem *chanbase = chan_base(d40c);
1107	u32 val;
1108
1109	val = readl(chanbase + D40_CHAN_REG_SSLNK);
1110	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1111
1112	return val;
1113}
1114
1115static int
1116__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1117{
1118	unsigned long flags;
1119	int ret = 0;
1120	u32 active_status;
1121	void __iomem *active_reg;
1122
1123	if (d40c->phy_chan->num % 2 == 0)
1124		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1125	else
1126		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1127
1128
1129	spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1130
1131	switch (command) {
1132	case D40_DMA_STOP:
1133	case D40_DMA_SUSPEND_REQ:
1134
1135		active_status = (readl(active_reg) &
1136				 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1137				 D40_CHAN_POS(d40c->phy_chan->num);
1138
1139		if (active_status == D40_DMA_RUN)
1140			d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1141		else
1142			d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1143
1144		if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1145			ret = __d40_execute_command_phy(d40c, command);
1146
1147		break;
1148
1149	case D40_DMA_RUN:
1150
1151		d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1152		ret = __d40_execute_command_phy(d40c, command);
1153		break;
1154
1155	case D40_DMA_SUSPENDED:
1156		BUG();
1157		break;
1158	}
1159
1160	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1161	return ret;
1162}
1163
1164static int d40_channel_execute_command(struct d40_chan *d40c,
1165				       enum d40_command command)
1166{
1167	if (chan_is_logical(d40c))
1168		return __d40_execute_command_log(d40c, command);
1169	else
1170		return __d40_execute_command_phy(d40c, command);
1171}
1172
1173static u32 d40_get_prmo(struct d40_chan *d40c)
1174{
1175	static const unsigned int phy_map[] = {
1176		[STEDMA40_PCHAN_BASIC_MODE]
1177			= D40_DREG_PRMO_PCHAN_BASIC,
1178		[STEDMA40_PCHAN_MODULO_MODE]
1179			= D40_DREG_PRMO_PCHAN_MODULO,
1180		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
1181			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1182	};
1183	static const unsigned int log_map[] = {
1184		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1185			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1186		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1187			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1188		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1189			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1190	};
1191
1192	if (chan_is_physical(d40c))
1193		return phy_map[d40c->dma_cfg.mode_opt];
1194	else
1195		return log_map[d40c->dma_cfg.mode_opt];
1196}
1197
1198static void d40_config_write(struct d40_chan *d40c)
1199{
1200	u32 addr_base;
1201	u32 var;
1202
1203	/* Odd addresses are even addresses + 4 */
1204	addr_base = (d40c->phy_chan->num % 2) * 4;
1205	/* Setup channel mode to logical or physical */
1206	var = ((u32)(chan_is_logical(d40c)) + 1) <<
1207		D40_CHAN_POS(d40c->phy_chan->num);
1208	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1209
1210	/* Setup operational mode option register */
1211	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1212
1213	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1214
1215	if (chan_is_logical(d40c)) {
1216		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1217			   & D40_SREG_ELEM_LOG_LIDX_MASK;
1218		void __iomem *chanbase = chan_base(d40c);
1219
1220		/* Set default config for CFG reg */
1221		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1222		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1223
1224		/* Set LIDX for lcla */
1225		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1226		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1227
1228		/* Clear LNK which will be used by d40_chan_has_events() */
1229		writel(0, chanbase + D40_CHAN_REG_SSLNK);
1230		writel(0, chanbase + D40_CHAN_REG_SDLNK);
1231	}
1232}
1233
1234static u32 d40_residue(struct d40_chan *d40c)
1235{
1236	u32 num_elt;
1237
1238	if (chan_is_logical(d40c))
1239		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1240			>> D40_MEM_LCSP2_ECNT_POS;
1241	else {
1242		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1243		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1244			  >> D40_SREG_ELEM_PHY_ECNT_POS;
1245	}
1246
1247	return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
1248}
1249
1250static bool d40_tx_is_linked(struct d40_chan *d40c)
1251{
1252	bool is_link;
1253
1254	if (chan_is_logical(d40c))
1255		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1256	else
1257		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1258			  & D40_SREG_LNK_PHYS_LNK_MASK;
1259
1260	return is_link;
1261}
1262
1263static int d40_pause(struct d40_chan *d40c)
1264{
1265	int res = 0;
1266	unsigned long flags;
1267
1268	if (!d40c->busy)
1269		return 0;
1270
1271	pm_runtime_get_sync(d40c->base->dev);
1272	spin_lock_irqsave(&d40c->lock, flags);
1273
1274	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1275
1276	pm_runtime_mark_last_busy(d40c->base->dev);
1277	pm_runtime_put_autosuspend(d40c->base->dev);
1278	spin_unlock_irqrestore(&d40c->lock, flags);
1279	return res;
1280}
1281
1282static int d40_resume(struct d40_chan *d40c)
1283{
1284	int res = 0;
1285	unsigned long flags;
1286
1287	if (!d40c->busy)
1288		return 0;
1289
1290	spin_lock_irqsave(&d40c->lock, flags);
1291	pm_runtime_get_sync(d40c->base->dev);
1292
1293	/* If bytes left to transfer or linked tx resume job */
1294	if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1295		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1296
1297	pm_runtime_mark_last_busy(d40c->base->dev);
1298	pm_runtime_put_autosuspend(d40c->base->dev);
1299	spin_unlock_irqrestore(&d40c->lock, flags);
1300	return res;
1301}
1302
1303static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1304{
1305	struct d40_chan *d40c = container_of(tx->chan,
1306					     struct d40_chan,
1307					     chan);
1308	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1309	unsigned long flags;
1310	dma_cookie_t cookie;
1311
1312	spin_lock_irqsave(&d40c->lock, flags);
1313	cookie = dma_cookie_assign(tx);
1314	d40_desc_queue(d40c, d40d);
1315	spin_unlock_irqrestore(&d40c->lock, flags);
1316
1317	return cookie;
1318}
1319
1320static int d40_start(struct d40_chan *d40c)
1321{
1322	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1323}
1324
1325static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1326{
1327	struct d40_desc *d40d;
1328	int err;
1329
1330	/* Start queued jobs, if any */
1331	d40d = d40_first_queued(d40c);
1332
1333	if (d40d != NULL) {
1334		if (!d40c->busy) {
1335			d40c->busy = true;
1336			pm_runtime_get_sync(d40c->base->dev);
1337		}
1338
1339		/* Remove from queue */
1340		d40_desc_remove(d40d);
1341
1342		/* Add to active queue */
1343		d40_desc_submit(d40c, d40d);
1344
1345		/* Initiate DMA job */
1346		d40_desc_load(d40c, d40d);
1347
1348		/* Start dma job */
1349		err = d40_start(d40c);
1350
1351		if (err)
1352			return NULL;
1353	}
1354
1355	return d40d;
1356}
1357
1358/* called from interrupt context */
1359static void dma_tc_handle(struct d40_chan *d40c)
1360{
1361	struct d40_desc *d40d;
1362
1363	/* Get first active entry from list */
1364	d40d = d40_first_active_get(d40c);
1365
1366	if (d40d == NULL)
1367		return;
1368
1369	if (d40d->cyclic) {
1370		/*
1371		 * If this was a paritially loaded list, we need to reloaded
1372		 * it, and only when the list is completed.  We need to check
1373		 * for done because the interrupt will hit for every link, and
1374		 * not just the last one.
1375		 */
1376		if (d40d->lli_current < d40d->lli_len
1377		    && !d40_tx_is_linked(d40c)
1378		    && !d40_residue(d40c)) {
1379			d40_lcla_free_all(d40c, d40d);
1380			d40_desc_load(d40c, d40d);
1381			(void) d40_start(d40c);
1382
1383			if (d40d->lli_current == d40d->lli_len)
1384				d40d->lli_current = 0;
1385		}
1386	} else {
1387		d40_lcla_free_all(d40c, d40d);
1388
1389		if (d40d->lli_current < d40d->lli_len) {
1390			d40_desc_load(d40c, d40d);
1391			/* Start dma job */
1392			(void) d40_start(d40c);
1393			return;
1394		}
1395
1396		if (d40_queue_start(d40c) == NULL)
1397			d40c->busy = false;
1398		pm_runtime_mark_last_busy(d40c->base->dev);
1399		pm_runtime_put_autosuspend(d40c->base->dev);
 
 
 
 
 
1400	}
1401
1402	d40c->pending_tx++;
1403	tasklet_schedule(&d40c->tasklet);
1404
1405}
1406
1407static void dma_tasklet(unsigned long data)
1408{
1409	struct d40_chan *d40c = (struct d40_chan *) data;
1410	struct d40_desc *d40d;
1411	unsigned long flags;
 
1412	dma_async_tx_callback callback;
1413	void *callback_param;
1414
1415	spin_lock_irqsave(&d40c->lock, flags);
1416
1417	/* Get first active entry from list */
1418	d40d = d40_first_active_get(d40c);
1419	if (d40d == NULL)
1420		goto err;
 
 
 
 
1421
1422	if (!d40d->cyclic)
1423		dma_cookie_complete(&d40d->txd);
1424
1425	/*
1426	 * If terminating a channel pending_tx is set to zero.
1427	 * This prevents any finished active jobs to return to the client.
1428	 */
1429	if (d40c->pending_tx == 0) {
1430		spin_unlock_irqrestore(&d40c->lock, flags);
1431		return;
1432	}
1433
1434	/* Callback to client */
 
1435	callback = d40d->txd.callback;
1436	callback_param = d40d->txd.callback_param;
1437
1438	if (!d40d->cyclic) {
1439		if (async_tx_test_ack(&d40d->txd)) {
1440			d40_desc_remove(d40d);
1441			d40_desc_free(d40c, d40d);
1442		} else {
1443			if (!d40d->is_in_client_list) {
1444				d40_desc_remove(d40d);
1445				d40_lcla_free_all(d40c, d40d);
1446				list_add_tail(&d40d->node, &d40c->client);
1447				d40d->is_in_client_list = true;
1448			}
1449		}
1450	}
1451
1452	d40c->pending_tx--;
1453
1454	if (d40c->pending_tx)
1455		tasklet_schedule(&d40c->tasklet);
1456
1457	spin_unlock_irqrestore(&d40c->lock, flags);
1458
1459	if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1460		callback(callback_param);
1461
1462	return;
1463
1464err:
1465	/* Rescue manouver if receiving double interrupts */
1466	if (d40c->pending_tx > 0)
1467		d40c->pending_tx--;
1468	spin_unlock_irqrestore(&d40c->lock, flags);
1469}
1470
1471static irqreturn_t d40_handle_interrupt(int irq, void *data)
1472{
1473	static const struct d40_interrupt_lookup il[] = {
1474		{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
1475		{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1476		{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1477		{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1478		{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
1479		{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
1480		{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
1481		{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
1482		{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
1483		{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
1484	};
1485
1486	int i;
1487	u32 regs[ARRAY_SIZE(il)];
1488	u32 idx;
1489	u32 row;
1490	long chan = -1;
1491	struct d40_chan *d40c;
1492	unsigned long flags;
1493	struct d40_base *base = data;
 
 
 
1494
1495	spin_lock_irqsave(&base->interrupt_lock, flags);
1496
1497	/* Read interrupt status of both logical and physical channels */
1498	for (i = 0; i < ARRAY_SIZE(il); i++)
1499		regs[i] = readl(base->virtbase + il[i].src);
1500
1501	for (;;) {
1502
1503		chan = find_next_bit((unsigned long *)regs,
1504				     BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1505
1506		/* No more set bits found? */
1507		if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1508			break;
1509
1510		row = chan / BITS_PER_LONG;
1511		idx = chan & (BITS_PER_LONG - 1);
1512
1513		/* ACK interrupt */
1514		writel(1 << idx, base->virtbase + il[row].clr);
1515
1516		if (il[row].offset == D40_PHY_CHAN)
1517			d40c = base->lookup_phy_chans[idx];
1518		else
1519			d40c = base->lookup_log_chans[il[row].offset + idx];
 
 
 
 
 
 
 
 
 
 
 
 
1520		spin_lock(&d40c->lock);
1521
1522		if (!il[row].is_error)
1523			dma_tc_handle(d40c);
1524		else
1525			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1526				chan, il[row].offset, idx);
1527
1528		spin_unlock(&d40c->lock);
1529	}
1530
1531	spin_unlock_irqrestore(&base->interrupt_lock, flags);
1532
1533	return IRQ_HANDLED;
1534}
1535
1536static int d40_validate_conf(struct d40_chan *d40c,
1537			     struct stedma40_chan_cfg *conf)
1538{
1539	int res = 0;
1540	u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1541	u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1542	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1543
1544	if (!conf->dir) {
1545		chan_err(d40c, "Invalid direction.\n");
1546		res = -EINVAL;
1547	}
1548
1549	if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1550	    d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1551	    d40c->runtime_addr == 0) {
1552
1553		chan_err(d40c, "Invalid TX channel address (%d)\n",
1554			 conf->dst_dev_type);
1555		res = -EINVAL;
1556	}
1557
1558	if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1559	    d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1560	    d40c->runtime_addr == 0) {
1561		chan_err(d40c, "Invalid RX channel address (%d)\n",
1562			conf->src_dev_type);
1563		res = -EINVAL;
1564	}
1565
1566	if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1567	    dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1568		chan_err(d40c, "Invalid dst\n");
1569		res = -EINVAL;
1570	}
1571
1572	if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1573	    src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1574		chan_err(d40c, "Invalid src\n");
1575		res = -EINVAL;
1576	}
1577
1578	if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1579	    dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1580		chan_err(d40c, "No event line\n");
1581		res = -EINVAL;
1582	}
1583
1584	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1585	    (src_event_group != dst_event_group)) {
1586		chan_err(d40c, "Invalid event group\n");
1587		res = -EINVAL;
1588	}
1589
1590	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1591		/*
1592		 * DMAC HW supports it. Will be added to this driver,
1593		 * in case any dma client requires it.
1594		 */
1595		chan_err(d40c, "periph to periph not supported\n");
1596		res = -EINVAL;
1597	}
1598
1599	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1600	    (1 << conf->src_info.data_width) !=
1601	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1602	    (1 << conf->dst_info.data_width)) {
1603		/*
1604		 * The DMAC hardware only supports
1605		 * src (burst x width) == dst (burst x width)
1606		 */
1607
1608		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1609		res = -EINVAL;
1610	}
1611
1612	return res;
1613}
1614
1615static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1616			       bool is_src, int log_event_line, bool is_log,
1617			       bool *first_user)
1618{
1619	unsigned long flags;
1620	spin_lock_irqsave(&phy->lock, flags);
1621
1622	*first_user = ((phy->allocated_src | phy->allocated_dst)
1623			== D40_ALLOC_FREE);
1624
1625	if (!is_log) {
1626		/* Physical interrupts are masked per physical full channel */
1627		if (phy->allocated_src == D40_ALLOC_FREE &&
1628		    phy->allocated_dst == D40_ALLOC_FREE) {
1629			phy->allocated_dst = D40_ALLOC_PHY;
1630			phy->allocated_src = D40_ALLOC_PHY;
1631			goto found;
1632		} else
1633			goto not_found;
1634	}
1635
1636	/* Logical channel */
1637	if (is_src) {
1638		if (phy->allocated_src == D40_ALLOC_PHY)
1639			goto not_found;
1640
1641		if (phy->allocated_src == D40_ALLOC_FREE)
1642			phy->allocated_src = D40_ALLOC_LOG_FREE;
1643
1644		if (!(phy->allocated_src & (1 << log_event_line))) {
1645			phy->allocated_src |= 1 << log_event_line;
1646			goto found;
1647		} else
1648			goto not_found;
1649	} else {
1650		if (phy->allocated_dst == D40_ALLOC_PHY)
1651			goto not_found;
1652
1653		if (phy->allocated_dst == D40_ALLOC_FREE)
1654			phy->allocated_dst = D40_ALLOC_LOG_FREE;
1655
1656		if (!(phy->allocated_dst & (1 << log_event_line))) {
1657			phy->allocated_dst |= 1 << log_event_line;
1658			goto found;
1659		} else
1660			goto not_found;
1661	}
1662
1663not_found:
1664	spin_unlock_irqrestore(&phy->lock, flags);
1665	return false;
1666found:
1667	spin_unlock_irqrestore(&phy->lock, flags);
1668	return true;
1669}
1670
1671static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1672			       int log_event_line)
1673{
1674	unsigned long flags;
1675	bool is_free = false;
1676
1677	spin_lock_irqsave(&phy->lock, flags);
1678	if (!log_event_line) {
1679		phy->allocated_dst = D40_ALLOC_FREE;
1680		phy->allocated_src = D40_ALLOC_FREE;
1681		is_free = true;
1682		goto out;
1683	}
1684
1685	/* Logical channel */
1686	if (is_src) {
1687		phy->allocated_src &= ~(1 << log_event_line);
1688		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1689			phy->allocated_src = D40_ALLOC_FREE;
1690	} else {
1691		phy->allocated_dst &= ~(1 << log_event_line);
1692		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1693			phy->allocated_dst = D40_ALLOC_FREE;
1694	}
1695
1696	is_free = ((phy->allocated_src | phy->allocated_dst) ==
1697		   D40_ALLOC_FREE);
1698
1699out:
1700	spin_unlock_irqrestore(&phy->lock, flags);
1701
1702	return is_free;
1703}
1704
1705static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1706{
1707	int dev_type;
1708	int event_group;
1709	int event_line;
1710	struct d40_phy_res *phys;
1711	int i;
1712	int j;
1713	int log_num;
 
1714	bool is_src;
1715	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1716
1717	phys = d40c->base->phy_res;
 
1718
1719	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1720		dev_type = d40c->dma_cfg.src_dev_type;
1721		log_num = 2 * dev_type;
1722		is_src = true;
1723	} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1724		   d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1725		/* dst event lines are used for logical memcpy */
1726		dev_type = d40c->dma_cfg.dst_dev_type;
1727		log_num = 2 * dev_type + 1;
1728		is_src = false;
1729	} else
1730		return -EINVAL;
1731
1732	event_group = D40_TYPE_TO_GROUP(dev_type);
1733	event_line = D40_TYPE_TO_EVENT(dev_type);
1734
1735	if (!is_log) {
1736		if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1737			/* Find physical half channel */
1738			for (i = 0; i < d40c->base->num_phy_chans; i++) {
1739
1740				if (d40_alloc_mask_set(&phys[i], is_src,
1741						       0, is_log,
1742						       first_phy_user))
1743					goto found_phy;
 
 
 
 
 
 
 
1744			}
1745		} else
1746			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1747				int phy_num = j  + event_group * 2;
1748				for (i = phy_num; i < phy_num + 2; i++) {
1749					if (d40_alloc_mask_set(&phys[i],
1750							       is_src,
1751							       0,
1752							       is_log,
1753							       first_phy_user))
1754						goto found_phy;
1755				}
1756			}
1757		return -EINVAL;
1758found_phy:
1759		d40c->phy_chan = &phys[i];
1760		d40c->log_num = D40_PHY_CHAN;
1761		goto out;
1762	}
1763	if (dev_type == -1)
1764		return -EINVAL;
1765
1766	/* Find logical channel */
1767	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1768		int phy_num = j + event_group * 2;
1769
1770		if (d40c->dma_cfg.use_fixed_channel) {
1771			i = d40c->dma_cfg.phy_channel;
1772
1773			if ((i != phy_num) && (i != phy_num + 1)) {
1774				dev_err(chan2dev(d40c),
1775					"invalid fixed phy channel %d\n", i);
1776				return -EINVAL;
1777			}
1778
1779			if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1780					       is_log, first_phy_user))
1781				goto found_log;
1782
1783			dev_err(chan2dev(d40c),
1784				"could not allocate fixed phy channel %d\n", i);
1785			return -EINVAL;
1786		}
1787
1788		/*
1789		 * Spread logical channels across all available physical rather
1790		 * than pack every logical channel at the first available phy
1791		 * channels.
1792		 */
1793		if (is_src) {
1794			for (i = phy_num; i < phy_num + 2; i++) {
1795				if (d40_alloc_mask_set(&phys[i], is_src,
1796						       event_line, is_log,
1797						       first_phy_user))
1798					goto found_log;
1799			}
1800		} else {
1801			for (i = phy_num + 1; i >= phy_num; i--) {
1802				if (d40_alloc_mask_set(&phys[i], is_src,
1803						       event_line, is_log,
1804						       first_phy_user))
1805					goto found_log;
1806			}
1807		}
1808	}
1809	return -EINVAL;
1810
1811found_log:
1812	d40c->phy_chan = &phys[i];
1813	d40c->log_num = log_num;
1814out:
1815
1816	if (is_log)
1817		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1818	else
1819		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1820
1821	return 0;
1822
1823}
1824
1825static int d40_config_memcpy(struct d40_chan *d40c)
1826{
1827	dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1828
1829	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1830		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1831		d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1832		d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1833			memcpy[d40c->chan.chan_id];
 
1834
1835	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
1836		   dma_has_cap(DMA_SLAVE, cap)) {
1837		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
 
 
 
 
 
 
 
 
1838	} else {
1839		chan_err(d40c, "No memcpy\n");
1840		return -EINVAL;
1841	}
1842
1843	return 0;
1844}
1845
1846static int d40_free_dma(struct d40_chan *d40c)
1847{
1848
1849	int res = 0;
1850	u32 event;
1851	struct d40_phy_res *phy = d40c->phy_chan;
1852	bool is_src;
1853
1854	/* Terminate all queued and active transfers */
1855	d40_term_all(d40c);
1856
1857	if (phy == NULL) {
1858		chan_err(d40c, "phy == null\n");
1859		return -EINVAL;
1860	}
1861
1862	if (phy->allocated_src == D40_ALLOC_FREE &&
1863	    phy->allocated_dst == D40_ALLOC_FREE) {
1864		chan_err(d40c, "channel already free\n");
1865		return -EINVAL;
1866	}
1867
1868	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1869	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1870		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1871		is_src = false;
1872	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1873		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1874		is_src = true;
1875	} else {
1876		chan_err(d40c, "Unknown direction\n");
1877		return -EINVAL;
1878	}
1879
1880	pm_runtime_get_sync(d40c->base->dev);
1881	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1882	if (res) {
1883		chan_err(d40c, "stop failed\n");
1884		goto out;
1885	}
1886
1887	d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
1888
1889	if (chan_is_logical(d40c))
1890		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1891	else
1892		d40c->base->lookup_phy_chans[phy->num] = NULL;
1893
1894	if (d40c->busy) {
1895		pm_runtime_mark_last_busy(d40c->base->dev);
1896		pm_runtime_put_autosuspend(d40c->base->dev);
1897	}
1898
1899	d40c->busy = false;
1900	d40c->phy_chan = NULL;
1901	d40c->configured = false;
1902out:
1903
1904	pm_runtime_mark_last_busy(d40c->base->dev);
1905	pm_runtime_put_autosuspend(d40c->base->dev);
1906	return res;
1907}
1908
1909static bool d40_is_paused(struct d40_chan *d40c)
1910{
1911	void __iomem *chanbase = chan_base(d40c);
1912	bool is_paused = false;
1913	unsigned long flags;
1914	void __iomem *active_reg;
1915	u32 status;
1916	u32 event;
1917
1918	spin_lock_irqsave(&d40c->lock, flags);
1919
1920	if (chan_is_physical(d40c)) {
1921		if (d40c->phy_chan->num % 2 == 0)
1922			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1923		else
1924			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1925
1926		status = (readl(active_reg) &
1927			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1928			D40_CHAN_POS(d40c->phy_chan->num);
1929		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1930			is_paused = true;
1931
1932		goto _exit;
1933	}
1934
1935	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1936	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1937		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1938		status = readl(chanbase + D40_CHAN_REG_SDLNK);
1939	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1940		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1941		status = readl(chanbase + D40_CHAN_REG_SSLNK);
1942	} else {
1943		chan_err(d40c, "Unknown direction\n");
1944		goto _exit;
1945	}
1946
1947	status = (status & D40_EVENTLINE_MASK(event)) >>
1948		D40_EVENTLINE_POS(event);
1949
1950	if (status != D40_DMA_RUN)
1951		is_paused = true;
1952_exit:
1953	spin_unlock_irqrestore(&d40c->lock, flags);
1954	return is_paused;
1955
1956}
1957
1958
1959static u32 stedma40_residue(struct dma_chan *chan)
1960{
1961	struct d40_chan *d40c =
1962		container_of(chan, struct d40_chan, chan);
1963	u32 bytes_left;
1964	unsigned long flags;
1965
1966	spin_lock_irqsave(&d40c->lock, flags);
1967	bytes_left = d40_residue(d40c);
1968	spin_unlock_irqrestore(&d40c->lock, flags);
1969
1970	return bytes_left;
1971}
1972
1973static int
1974d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
1975		struct scatterlist *sg_src, struct scatterlist *sg_dst,
1976		unsigned int sg_len, dma_addr_t src_dev_addr,
1977		dma_addr_t dst_dev_addr)
1978{
1979	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1980	struct stedma40_half_channel_info *src_info = &cfg->src_info;
1981	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1982	int ret;
1983
1984	ret = d40_log_sg_to_lli(sg_src, sg_len,
1985				src_dev_addr,
1986				desc->lli_log.src,
1987				chan->log_def.lcsp1,
1988				src_info->data_width,
1989				dst_info->data_width);
1990
1991	ret = d40_log_sg_to_lli(sg_dst, sg_len,
1992				dst_dev_addr,
1993				desc->lli_log.dst,
1994				chan->log_def.lcsp3,
1995				dst_info->data_width,
1996				src_info->data_width);
1997
1998	return ret < 0 ? ret : 0;
1999}
2000
2001static int
2002d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2003		struct scatterlist *sg_src, struct scatterlist *sg_dst,
2004		unsigned int sg_len, dma_addr_t src_dev_addr,
2005		dma_addr_t dst_dev_addr)
2006{
2007	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2008	struct stedma40_half_channel_info *src_info = &cfg->src_info;
2009	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2010	unsigned long flags = 0;
2011	int ret;
2012
2013	if (desc->cyclic)
2014		flags |= LLI_CYCLIC | LLI_TERM_INT;
2015
2016	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2017				desc->lli_phy.src,
2018				virt_to_phys(desc->lli_phy.src),
2019				chan->src_def_cfg,
2020				src_info, dst_info, flags);
2021
2022	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2023				desc->lli_phy.dst,
2024				virt_to_phys(desc->lli_phy.dst),
2025				chan->dst_def_cfg,
2026				dst_info, src_info, flags);
2027
2028	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2029				   desc->lli_pool.size, DMA_TO_DEVICE);
2030
2031	return ret < 0 ? ret : 0;
2032}
2033
2034
2035static struct d40_desc *
2036d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2037	      unsigned int sg_len, unsigned long dma_flags)
2038{
2039	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2040	struct d40_desc *desc;
2041	int ret;
2042
2043	desc = d40_desc_get(chan);
2044	if (!desc)
2045		return NULL;
2046
2047	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2048					cfg->dst_info.data_width);
2049	if (desc->lli_len < 0) {
2050		chan_err(chan, "Unaligned size\n");
2051		goto err;
2052	}
2053
2054	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2055	if (ret < 0) {
2056		chan_err(chan, "Could not allocate lli\n");
2057		goto err;
2058	}
2059
2060
2061	desc->lli_current = 0;
2062	desc->txd.flags = dma_flags;
2063	desc->txd.tx_submit = d40_tx_submit;
2064
2065	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2066
2067	return desc;
2068
2069err:
2070	d40_desc_free(chan, desc);
2071	return NULL;
2072}
2073
2074static dma_addr_t
2075d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
2076{
2077	struct stedma40_platform_data *plat = chan->base->plat_data;
2078	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2079	dma_addr_t addr = 0;
2080
2081	if (chan->runtime_addr)
2082		return chan->runtime_addr;
2083
2084	if (direction == DMA_DEV_TO_MEM)
2085		addr = plat->dev_rx[cfg->src_dev_type];
2086	else if (direction == DMA_MEM_TO_DEV)
2087		addr = plat->dev_tx[cfg->dst_dev_type];
2088
2089	return addr;
2090}
2091
2092static struct dma_async_tx_descriptor *
2093d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2094	    struct scatterlist *sg_dst, unsigned int sg_len,
2095	    enum dma_transfer_direction direction, unsigned long dma_flags)
2096{
2097	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2098	dma_addr_t src_dev_addr = 0;
2099	dma_addr_t dst_dev_addr = 0;
2100	struct d40_desc *desc;
2101	unsigned long flags;
2102	int ret;
2103
2104	if (!chan->phy_chan) {
2105		chan_err(chan, "Cannot prepare unallocated channel\n");
2106		return NULL;
2107	}
2108
2109
2110	spin_lock_irqsave(&chan->lock, flags);
2111
2112	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2113	if (desc == NULL)
2114		goto err;
2115
2116	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2117		desc->cyclic = true;
2118
2119	if (direction != DMA_TRANS_NONE) {
2120		dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
2121
2122		if (direction == DMA_DEV_TO_MEM)
2123			src_dev_addr = dev_addr;
2124		else if (direction == DMA_MEM_TO_DEV)
2125			dst_dev_addr = dev_addr;
2126	}
2127
2128	if (chan_is_logical(chan))
2129		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2130				      sg_len, src_dev_addr, dst_dev_addr);
2131	else
2132		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2133				      sg_len, src_dev_addr, dst_dev_addr);
2134
2135	if (ret) {
2136		chan_err(chan, "Failed to prepare %s sg job: %d\n",
2137			 chan_is_logical(chan) ? "log" : "phy", ret);
2138		goto err;
2139	}
2140
2141	/*
2142	 * add descriptor to the prepare queue in order to be able
2143	 * to free them later in terminate_all
2144	 */
2145	list_add_tail(&desc->node, &chan->prepare_queue);
2146
2147	spin_unlock_irqrestore(&chan->lock, flags);
2148
2149	return &desc->txd;
2150
2151err:
2152	if (desc)
2153		d40_desc_free(chan, desc);
2154	spin_unlock_irqrestore(&chan->lock, flags);
2155	return NULL;
2156}
2157
2158bool stedma40_filter(struct dma_chan *chan, void *data)
2159{
2160	struct stedma40_chan_cfg *info = data;
2161	struct d40_chan *d40c =
2162		container_of(chan, struct d40_chan, chan);
2163	int err;
2164
2165	if (data) {
2166		err = d40_validate_conf(d40c, info);
2167		if (!err)
2168			d40c->dma_cfg = *info;
2169	} else
2170		err = d40_config_memcpy(d40c);
2171
2172	if (!err)
2173		d40c->configured = true;
2174
2175	return err == 0;
2176}
2177EXPORT_SYMBOL(stedma40_filter);
2178
2179static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2180{
2181	bool realtime = d40c->dma_cfg.realtime;
2182	bool highprio = d40c->dma_cfg.high_priority;
2183	u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
2184	u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
2185	u32 event = D40_TYPE_TO_EVENT(dev_type);
2186	u32 group = D40_TYPE_TO_GROUP(dev_type);
2187	u32 bit = 1 << event;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2188
2189	/* Destination event lines are stored in the upper halfword */
2190	if (!src)
2191		bit <<= 16;
2192
2193	writel(bit, d40c->base->virtbase + prioreg + group * 4);
2194	writel(bit, d40c->base->virtbase + rtreg + group * 4);
2195}
2196
2197static void d40_set_prio_realtime(struct d40_chan *d40c)
2198{
2199	if (d40c->base->rev < 3)
2200		return;
2201
2202	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
2203	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
2204		__d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
2205
2206	if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
2207	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
2208		__d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2209}
2210
2211/* DMA ENGINE functions */
2212static int d40_alloc_chan_resources(struct dma_chan *chan)
2213{
2214	int err;
2215	unsigned long flags;
2216	struct d40_chan *d40c =
2217		container_of(chan, struct d40_chan, chan);
2218	bool is_free_phy;
2219	spin_lock_irqsave(&d40c->lock, flags);
2220
2221	dma_cookie_init(chan);
2222
2223	/* If no dma configuration is set use default configuration (memcpy) */
2224	if (!d40c->configured) {
2225		err = d40_config_memcpy(d40c);
2226		if (err) {
2227			chan_err(d40c, "Failed to configure memcpy channel\n");
2228			goto fail;
2229		}
2230	}
2231
2232	err = d40_allocate_channel(d40c, &is_free_phy);
2233	if (err) {
2234		chan_err(d40c, "Failed to allocate channel\n");
2235		d40c->configured = false;
2236		goto fail;
2237	}
2238
2239	pm_runtime_get_sync(d40c->base->dev);
2240	/* Fill in basic CFG register values */
2241	d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
2242		    &d40c->dst_def_cfg, chan_is_logical(d40c));
2243
2244	d40_set_prio_realtime(d40c);
2245
2246	if (chan_is_logical(d40c)) {
2247		d40_log_cfg(&d40c->dma_cfg,
2248			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2249
2250		if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
2251			d40c->lcpa = d40c->base->lcpa_base +
2252			  d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
2253		else
2254			d40c->lcpa = d40c->base->lcpa_base +
2255			  d40c->dma_cfg.dst_dev_type *
2256			  D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
 
 
 
 
2257	}
2258
2259	dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2260		 chan_is_logical(d40c) ? "logical" : "physical",
2261		 d40c->phy_chan->num,
2262		 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2263
2264
2265	/*
2266	 * Only write channel configuration to the DMA if the physical
2267	 * resource is free. In case of multiple logical channels
2268	 * on the same physical resource, only the first write is necessary.
2269	 */
2270	if (is_free_phy)
2271		d40_config_write(d40c);
2272fail:
2273	pm_runtime_mark_last_busy(d40c->base->dev);
2274	pm_runtime_put_autosuspend(d40c->base->dev);
2275	spin_unlock_irqrestore(&d40c->lock, flags);
2276	return err;
2277}
2278
2279static void d40_free_chan_resources(struct dma_chan *chan)
2280{
2281	struct d40_chan *d40c =
2282		container_of(chan, struct d40_chan, chan);
2283	int err;
2284	unsigned long flags;
2285
2286	if (d40c->phy_chan == NULL) {
2287		chan_err(d40c, "Cannot free unallocated channel\n");
2288		return;
2289	}
2290
2291
2292	spin_lock_irqsave(&d40c->lock, flags);
2293
2294	err = d40_free_dma(d40c);
2295
2296	if (err)
2297		chan_err(d40c, "Failed to free channel\n");
2298	spin_unlock_irqrestore(&d40c->lock, flags);
2299}
2300
2301static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2302						       dma_addr_t dst,
2303						       dma_addr_t src,
2304						       size_t size,
2305						       unsigned long dma_flags)
2306{
2307	struct scatterlist dst_sg;
2308	struct scatterlist src_sg;
2309
2310	sg_init_table(&dst_sg, 1);
2311	sg_init_table(&src_sg, 1);
2312
2313	sg_dma_address(&dst_sg) = dst;
2314	sg_dma_address(&src_sg) = src;
2315
2316	sg_dma_len(&dst_sg) = size;
2317	sg_dma_len(&src_sg) = size;
2318
2319	return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2320}
2321
2322static struct dma_async_tx_descriptor *
2323d40_prep_memcpy_sg(struct dma_chan *chan,
2324		   struct scatterlist *dst_sg, unsigned int dst_nents,
2325		   struct scatterlist *src_sg, unsigned int src_nents,
2326		   unsigned long dma_flags)
2327{
2328	if (dst_nents != src_nents)
2329		return NULL;
2330
2331	return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2332}
2333
2334static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2335							 struct scatterlist *sgl,
2336							 unsigned int sg_len,
2337							 enum dma_transfer_direction direction,
2338							 unsigned long dma_flags,
2339							 void *context)
2340{
2341	if (direction != DMA_DEV_TO_MEM && direction != DMA_MEM_TO_DEV)
2342		return NULL;
2343
2344	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2345}
2346
2347static struct dma_async_tx_descriptor *
2348dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2349		     size_t buf_len, size_t period_len,
2350		     enum dma_transfer_direction direction, void *context)
 
2351{
2352	unsigned int periods = buf_len / period_len;
2353	struct dma_async_tx_descriptor *txd;
2354	struct scatterlist *sg;
2355	int i;
2356
2357	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
 
 
 
2358	for (i = 0; i < periods; i++) {
2359		sg_dma_address(&sg[i]) = dma_addr;
2360		sg_dma_len(&sg[i]) = period_len;
2361		dma_addr += period_len;
2362	}
2363
2364	sg[periods].offset = 0;
2365	sg_dma_len(&sg[periods]) = 0;
2366	sg[periods].page_link =
2367		((unsigned long)sg | 0x01) & ~0x02;
2368
2369	txd = d40_prep_sg(chan, sg, sg, periods, direction,
2370			  DMA_PREP_INTERRUPT);
2371
2372	kfree(sg);
2373
2374	return txd;
2375}
2376
2377static enum dma_status d40_tx_status(struct dma_chan *chan,
2378				     dma_cookie_t cookie,
2379				     struct dma_tx_state *txstate)
2380{
2381	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2382	enum dma_status ret;
2383
2384	if (d40c->phy_chan == NULL) {
2385		chan_err(d40c, "Cannot read status of unallocated channel\n");
2386		return -EINVAL;
2387	}
2388
2389	ret = dma_cookie_status(chan, cookie, txstate);
2390	if (ret != DMA_SUCCESS)
2391		dma_set_residue(txstate, stedma40_residue(chan));
2392
2393	if (d40_is_paused(d40c))
2394		ret = DMA_PAUSED;
2395
2396	return ret;
2397}
2398
2399static void d40_issue_pending(struct dma_chan *chan)
2400{
2401	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2402	unsigned long flags;
2403
2404	if (d40c->phy_chan == NULL) {
2405		chan_err(d40c, "Channel is not allocated!\n");
2406		return;
2407	}
2408
2409	spin_lock_irqsave(&d40c->lock, flags);
2410
2411	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2412
2413	/* Busy means that queued jobs are already being processed */
2414	if (!d40c->busy)
2415		(void) d40_queue_start(d40c);
2416
2417	spin_unlock_irqrestore(&d40c->lock, flags);
2418}
2419
2420static void d40_terminate_all(struct dma_chan *chan)
2421{
2422	unsigned long flags;
2423	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2424	int ret;
2425
2426	spin_lock_irqsave(&d40c->lock, flags);
2427
2428	pm_runtime_get_sync(d40c->base->dev);
2429	ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2430	if (ret)
2431		chan_err(d40c, "Failed to stop channel\n");
2432
2433	d40_term_all(d40c);
2434	pm_runtime_mark_last_busy(d40c->base->dev);
2435	pm_runtime_put_autosuspend(d40c->base->dev);
2436	if (d40c->busy) {
2437		pm_runtime_mark_last_busy(d40c->base->dev);
2438		pm_runtime_put_autosuspend(d40c->base->dev);
2439	}
2440	d40c->busy = false;
2441
2442	spin_unlock_irqrestore(&d40c->lock, flags);
2443}
2444
2445static int
2446dma40_config_to_halfchannel(struct d40_chan *d40c,
2447			    struct stedma40_half_channel_info *info,
2448			    enum dma_slave_buswidth width,
2449			    u32 maxburst)
2450{
2451	enum stedma40_periph_data_width addr_width;
2452	int psize;
2453
2454	switch (width) {
2455	case DMA_SLAVE_BUSWIDTH_1_BYTE:
2456		addr_width = STEDMA40_BYTE_WIDTH;
2457		break;
2458	case DMA_SLAVE_BUSWIDTH_2_BYTES:
2459		addr_width = STEDMA40_HALFWORD_WIDTH;
2460		break;
2461	case DMA_SLAVE_BUSWIDTH_4_BYTES:
2462		addr_width = STEDMA40_WORD_WIDTH;
2463		break;
2464	case DMA_SLAVE_BUSWIDTH_8_BYTES:
2465		addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2466		break;
2467	default:
2468		dev_err(d40c->base->dev,
2469			"illegal peripheral address width "
2470			"requested (%d)\n",
2471			width);
2472		return -EINVAL;
2473	}
2474
2475	if (chan_is_logical(d40c)) {
2476		if (maxburst >= 16)
2477			psize = STEDMA40_PSIZE_LOG_16;
2478		else if (maxburst >= 8)
2479			psize = STEDMA40_PSIZE_LOG_8;
2480		else if (maxburst >= 4)
2481			psize = STEDMA40_PSIZE_LOG_4;
2482		else
2483			psize = STEDMA40_PSIZE_LOG_1;
2484	} else {
2485		if (maxburst >= 16)
2486			psize = STEDMA40_PSIZE_PHY_16;
2487		else if (maxburst >= 8)
2488			psize = STEDMA40_PSIZE_PHY_8;
2489		else if (maxburst >= 4)
2490			psize = STEDMA40_PSIZE_PHY_4;
2491		else
2492			psize = STEDMA40_PSIZE_PHY_1;
2493	}
2494
2495	info->data_width = addr_width;
2496	info->psize = psize;
2497	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2498
2499	return 0;
2500}
2501
2502/* Runtime reconfiguration extension */
2503static int d40_set_runtime_config(struct dma_chan *chan,
2504				  struct dma_slave_config *config)
2505{
2506	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2507	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2508	enum dma_slave_buswidth src_addr_width, dst_addr_width;
2509	dma_addr_t config_addr;
2510	u32 src_maxburst, dst_maxburst;
2511	int ret;
2512
2513	src_addr_width = config->src_addr_width;
2514	src_maxburst = config->src_maxburst;
2515	dst_addr_width = config->dst_addr_width;
2516	dst_maxburst = config->dst_maxburst;
2517
2518	if (config->direction == DMA_DEV_TO_MEM) {
2519		dma_addr_t dev_addr_rx =
2520			d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2521
2522		config_addr = config->src_addr;
2523		if (dev_addr_rx)
2524			dev_dbg(d40c->base->dev,
2525				"channel has a pre-wired RX address %08x "
2526				"overriding with %08x\n",
2527				dev_addr_rx, config_addr);
2528		if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2529			dev_dbg(d40c->base->dev,
2530				"channel was not configured for peripheral "
2531				"to memory transfer (%d) overriding\n",
2532				cfg->dir);
2533		cfg->dir = STEDMA40_PERIPH_TO_MEM;
2534
2535		/* Configure the memory side */
2536		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2537			dst_addr_width = src_addr_width;
2538		if (dst_maxburst == 0)
2539			dst_maxburst = src_maxburst;
2540
2541	} else if (config->direction == DMA_MEM_TO_DEV) {
2542		dma_addr_t dev_addr_tx =
2543			d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2544
2545		config_addr = config->dst_addr;
2546		if (dev_addr_tx)
2547			dev_dbg(d40c->base->dev,
2548				"channel has a pre-wired TX address %08x "
2549				"overriding with %08x\n",
2550				dev_addr_tx, config_addr);
2551		if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2552			dev_dbg(d40c->base->dev,
2553				"channel was not configured for memory "
2554				"to peripheral transfer (%d) overriding\n",
2555				cfg->dir);
2556		cfg->dir = STEDMA40_MEM_TO_PERIPH;
2557
2558		/* Configure the memory side */
2559		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2560			src_addr_width = dst_addr_width;
2561		if (src_maxburst == 0)
2562			src_maxburst = dst_maxburst;
2563	} else {
2564		dev_err(d40c->base->dev,
2565			"unrecognized channel direction %d\n",
2566			config->direction);
2567		return -EINVAL;
2568	}
2569
 
 
 
 
 
2570	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2571		dev_err(d40c->base->dev,
2572			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2573			src_maxburst,
2574			src_addr_width,
2575			dst_maxburst,
2576			dst_addr_width);
2577		return -EINVAL;
2578	}
2579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2580	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2581					  src_addr_width,
2582					  src_maxburst);
2583	if (ret)
2584		return ret;
2585
2586	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2587					  dst_addr_width,
2588					  dst_maxburst);
2589	if (ret)
2590		return ret;
2591
2592	/* Fill in register values */
2593	if (chan_is_logical(d40c))
2594		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2595	else
2596		d40_phy_cfg(cfg, &d40c->src_def_cfg,
2597			    &d40c->dst_def_cfg, false);
2598
2599	/* These settings will take precedence later */
2600	d40c->runtime_addr = config_addr;
2601	d40c->runtime_direction = config->direction;
2602	dev_dbg(d40c->base->dev,
2603		"configured channel %s for %s, data width %d/%d, "
2604		"maxburst %d/%d elements, LE, no flow control\n",
2605		dma_chan_name(chan),
2606		(config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2607		src_addr_width, dst_addr_width,
2608		src_maxburst, dst_maxburst);
2609
2610	return 0;
2611}
2612
2613static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2614		       unsigned long arg)
2615{
2616	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2617
2618	if (d40c->phy_chan == NULL) {
2619		chan_err(d40c, "Channel is not allocated!\n");
2620		return -EINVAL;
2621	}
2622
2623	switch (cmd) {
2624	case DMA_TERMINATE_ALL:
2625		d40_terminate_all(chan);
2626		return 0;
2627	case DMA_PAUSE:
2628		return d40_pause(d40c);
2629	case DMA_RESUME:
2630		return d40_resume(d40c);
2631	case DMA_SLAVE_CONFIG:
2632		return d40_set_runtime_config(chan,
2633			(struct dma_slave_config *) arg);
2634	default:
2635		break;
2636	}
2637
2638	/* Other commands are unimplemented */
2639	return -ENXIO;
2640}
2641
2642/* Initialization functions */
2643
2644static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2645				 struct d40_chan *chans, int offset,
2646				 int num_chans)
2647{
2648	int i = 0;
2649	struct d40_chan *d40c;
2650
2651	INIT_LIST_HEAD(&dma->channels);
2652
2653	for (i = offset; i < offset + num_chans; i++) {
2654		d40c = &chans[i];
2655		d40c->base = base;
2656		d40c->chan.device = dma;
2657
2658		spin_lock_init(&d40c->lock);
2659
2660		d40c->log_num = D40_PHY_CHAN;
2661
 
2662		INIT_LIST_HEAD(&d40c->active);
2663		INIT_LIST_HEAD(&d40c->queue);
2664		INIT_LIST_HEAD(&d40c->pending_queue);
2665		INIT_LIST_HEAD(&d40c->client);
2666		INIT_LIST_HEAD(&d40c->prepare_queue);
2667
2668		tasklet_init(&d40c->tasklet, dma_tasklet,
2669			     (unsigned long) d40c);
2670
2671		list_add_tail(&d40c->chan.device_node,
2672			      &dma->channels);
2673	}
2674}
2675
2676static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2677{
2678	if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2679		dev->device_prep_slave_sg = d40_prep_slave_sg;
2680
2681	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2682		dev->device_prep_dma_memcpy = d40_prep_memcpy;
2683
2684		/*
2685		 * This controller can only access address at even
2686		 * 32bit boundaries, i.e. 2^2
2687		 */
2688		dev->copy_align = 2;
2689	}
2690
2691	if (dma_has_cap(DMA_SG, dev->cap_mask))
2692		dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2693
2694	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2695		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2696
2697	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2698	dev->device_free_chan_resources = d40_free_chan_resources;
2699	dev->device_issue_pending = d40_issue_pending;
2700	dev->device_tx_status = d40_tx_status;
2701	dev->device_control = d40_control;
2702	dev->dev = base->dev;
2703}
2704
2705static int __init d40_dmaengine_init(struct d40_base *base,
2706				     int num_reserved_chans)
2707{
2708	int err ;
2709
2710	d40_chan_init(base, &base->dma_slave, base->log_chans,
2711		      0, base->num_log_chans);
2712
2713	dma_cap_zero(base->dma_slave.cap_mask);
2714	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2715	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2716
2717	d40_ops_init(base, &base->dma_slave);
2718
2719	err = dma_async_device_register(&base->dma_slave);
2720
2721	if (err) {
2722		d40_err(base->dev, "Failed to register slave channels\n");
2723		goto failure1;
2724	}
2725
2726	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2727		      base->num_log_chans, base->plat_data->memcpy_len);
2728
2729	dma_cap_zero(base->dma_memcpy.cap_mask);
2730	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2731	dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2732
2733	d40_ops_init(base, &base->dma_memcpy);
2734
2735	err = dma_async_device_register(&base->dma_memcpy);
2736
2737	if (err) {
2738		d40_err(base->dev,
2739			"Failed to regsiter memcpy only channels\n");
2740		goto failure2;
2741	}
2742
2743	d40_chan_init(base, &base->dma_both, base->phy_chans,
2744		      0, num_reserved_chans);
2745
2746	dma_cap_zero(base->dma_both.cap_mask);
2747	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2748	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2749	dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2750	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2751
2752	d40_ops_init(base, &base->dma_both);
2753	err = dma_async_device_register(&base->dma_both);
2754
2755	if (err) {
2756		d40_err(base->dev,
2757			"Failed to register logical and physical capable channels\n");
2758		goto failure3;
2759	}
2760	return 0;
2761failure3:
2762	dma_async_device_unregister(&base->dma_memcpy);
2763failure2:
2764	dma_async_device_unregister(&base->dma_slave);
2765failure1:
2766	return err;
2767}
2768
2769/* Suspend resume functionality */
2770#ifdef CONFIG_PM
2771static int dma40_pm_suspend(struct device *dev)
2772{
2773	struct platform_device *pdev = to_platform_device(dev);
2774	struct d40_base *base = platform_get_drvdata(pdev);
2775	int ret = 0;
2776	if (!pm_runtime_suspended(dev))
2777		return -EBUSY;
2778
2779	if (base->lcpa_regulator)
2780		ret = regulator_disable(base->lcpa_regulator);
2781	return ret;
2782}
2783
2784static int dma40_runtime_suspend(struct device *dev)
2785{
2786	struct platform_device *pdev = to_platform_device(dev);
2787	struct d40_base *base = platform_get_drvdata(pdev);
2788
2789	d40_save_restore_registers(base, true);
2790
2791	/* Don't disable/enable clocks for v1 due to HW bugs */
2792	if (base->rev != 1)
2793		writel_relaxed(base->gcc_pwr_off_mask,
2794			       base->virtbase + D40_DREG_GCC);
2795
2796	return 0;
2797}
2798
2799static int dma40_runtime_resume(struct device *dev)
2800{
2801	struct platform_device *pdev = to_platform_device(dev);
2802	struct d40_base *base = platform_get_drvdata(pdev);
2803
2804	if (base->initialized)
2805		d40_save_restore_registers(base, false);
2806
2807	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
2808		       base->virtbase + D40_DREG_GCC);
2809	return 0;
2810}
2811
2812static int dma40_resume(struct device *dev)
2813{
2814	struct platform_device *pdev = to_platform_device(dev);
2815	struct d40_base *base = platform_get_drvdata(pdev);
2816	int ret = 0;
2817
2818	if (base->lcpa_regulator)
2819		ret = regulator_enable(base->lcpa_regulator);
2820
2821	return ret;
2822}
2823
2824static const struct dev_pm_ops dma40_pm_ops = {
2825	.suspend		= dma40_pm_suspend,
2826	.runtime_suspend	= dma40_runtime_suspend,
2827	.runtime_resume		= dma40_runtime_resume,
2828	.resume			= dma40_resume,
2829};
2830#define DMA40_PM_OPS	(&dma40_pm_ops)
2831#else
2832#define DMA40_PM_OPS	NULL
2833#endif
2834
2835/* Initialization functions. */
2836
2837static int __init d40_phy_res_init(struct d40_base *base)
2838{
2839	int i;
2840	int num_phy_chans_avail = 0;
2841	u32 val[2];
2842	int odd_even_bit = -2;
2843	int gcc = D40_DREG_GCC_ENA;
2844
2845	val[0] = readl(base->virtbase + D40_DREG_PRSME);
2846	val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2847
2848	for (i = 0; i < base->num_phy_chans; i++) {
2849		base->phy_res[i].num = i;
2850		odd_even_bit += 2 * ((i % 2) == 0);
2851		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2852			/* Mark security only channels as occupied */
2853			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2854			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2855			base->phy_res[i].reserved = true;
2856			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
2857						       D40_DREG_GCC_SRC);
2858			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
2859						       D40_DREG_GCC_DST);
2860
2861
2862		} else {
2863			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2864			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2865			base->phy_res[i].reserved = false;
2866			num_phy_chans_avail++;
2867		}
2868		spin_lock_init(&base->phy_res[i].lock);
2869	}
2870
2871	/* Mark disabled channels as occupied */
2872	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2873		int chan = base->plat_data->disabled_channels[i];
2874
2875		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2876		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2877		base->phy_res[chan].reserved = true;
2878		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
2879					       D40_DREG_GCC_SRC);
2880		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
2881					       D40_DREG_GCC_DST);
2882		num_phy_chans_avail--;
2883	}
2884
 
 
 
 
 
 
 
2885	dev_info(base->dev, "%d of %d physical DMA channels available\n",
2886		 num_phy_chans_avail, base->num_phy_chans);
2887
2888	/* Verify settings extended vs standard */
2889	val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2890
2891	for (i = 0; i < base->num_phy_chans; i++) {
2892
2893		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2894		    (val[0] & 0x3) != 1)
2895			dev_info(base->dev,
2896				 "[%s] INFO: channel %d is misconfigured (%d)\n",
2897				 __func__, i, val[0] & 0x3);
2898
2899		val[0] = val[0] >> 2;
2900	}
2901
2902	/*
2903	 * To keep things simple, Enable all clocks initially.
2904	 * The clocks will get managed later post channel allocation.
2905	 * The clocks for the event lines on which reserved channels exists
2906	 * are not managed here.
2907	 */
2908	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
2909	base->gcc_pwr_off_mask = gcc;
2910
2911	return num_phy_chans_avail;
2912}
2913
2914static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2915{
2916	struct stedma40_platform_data *plat_data;
2917	struct clk *clk = NULL;
2918	void __iomem *virtbase = NULL;
2919	struct resource *res = NULL;
2920	struct d40_base *base = NULL;
2921	int num_log_chans = 0;
2922	int num_phy_chans;
 
 
2923	int i;
2924	u32 pid;
2925	u32 cid;
2926	u8 rev;
2927
2928	clk = clk_get(&pdev->dev, NULL);
2929
2930	if (IS_ERR(clk)) {
2931		d40_err(&pdev->dev, "No matching clock found\n");
2932		goto failure;
2933	}
2934
2935	clk_enable(clk);
 
 
 
 
2936
2937	/* Get IO for DMAC base address */
2938	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2939	if (!res)
2940		goto failure;
2941
2942	if (request_mem_region(res->start, resource_size(res),
2943			       D40_NAME " I/O base") == NULL)
2944		goto failure;
2945
2946	virtbase = ioremap(res->start, resource_size(res));
2947	if (!virtbase)
2948		goto failure;
2949
2950	/* This is just a regular AMBA PrimeCell ID actually */
2951	for (pid = 0, i = 0; i < 4; i++)
2952		pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
2953			& 255) << (i * 8);
2954	for (cid = 0, i = 0; i < 4; i++)
2955		cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
2956			& 255) << (i * 8);
2957
2958	if (cid != AMBA_CID) {
2959		d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
2960		goto failure;
2961	}
2962	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
2963		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2964			AMBA_MANF_BITS(pid),
2965			AMBA_VENDOR_ST);
2966		goto failure;
2967	}
2968	/*
2969	 * HW revision:
2970	 * DB8500ed has revision 0
2971	 * ? has revision 1
2972	 * DB8500v1 has revision 2
2973	 * DB8500v2 has revision 3
 
 
2974	 */
2975	rev = AMBA_REV_BITS(pid);
2976
2977	/* The number of physical channels on this HW */
2978	num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2979
2980	dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2981		 rev, res->start);
2982
2983	if (rev < 2) {
2984		d40_err(&pdev->dev, "hardware revision: %d is not supported",
2985			rev);
2986		goto failure;
2987	}
2988
2989	plat_data = pdev->dev.platform_data;
 
 
 
 
2990
2991	/* Count the number of logical channels in use */
2992	for (i = 0; i < plat_data->dev_len; i++)
2993		if (plat_data->dev_rx[i] != 0)
2994			num_log_chans++;
 
2995
2996	for (i = 0; i < plat_data->dev_len; i++)
2997		if (plat_data->dev_tx[i] != 0)
2998			num_log_chans++;
 
 
2999
3000	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3001		       (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
3002		       sizeof(struct d40_chan), GFP_KERNEL);
3003
3004	if (base == NULL) {
3005		d40_err(&pdev->dev, "Out of memory\n");
3006		goto failure;
3007	}
3008
3009	base->rev = rev;
3010	base->clk = clk;
 
3011	base->num_phy_chans = num_phy_chans;
3012	base->num_log_chans = num_log_chans;
3013	base->phy_start = res->start;
3014	base->phy_size = resource_size(res);
3015	base->virtbase = virtbase;
3016	base->plat_data = plat_data;
3017	base->dev = &pdev->dev;
3018	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3019	base->log_chans = &base->phy_chans[num_phy_chans];
3020
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3021	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
3022				GFP_KERNEL);
3023	if (!base->phy_res)
3024		goto failure;
3025
3026	base->lookup_phy_chans = kzalloc(num_phy_chans *
3027					 sizeof(struct d40_chan *),
3028					 GFP_KERNEL);
3029	if (!base->lookup_phy_chans)
3030		goto failure;
3031
3032	if (num_log_chans + plat_data->memcpy_len) {
3033		/*
3034		 * The max number of logical channels are event lines for all
3035		 * src devices and dst devices
3036		 */
3037		base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
3038						 sizeof(struct d40_chan *),
3039						 GFP_KERNEL);
3040		if (!base->lookup_log_chans)
3041			goto failure;
3042	}
3043
3044	base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
3045					    sizeof(d40_backup_regs_chan),
3046					    GFP_KERNEL);
3047	if (!base->reg_val_backup_chan)
3048		goto failure;
3049
3050	base->lcla_pool.alloc_map =
3051		kzalloc(num_phy_chans * sizeof(struct d40_desc *)
3052			* D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
3053	if (!base->lcla_pool.alloc_map)
3054		goto failure;
3055
3056	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3057					    0, SLAB_HWCACHE_ALIGN,
3058					    NULL);
3059	if (base->desc_slab == NULL)
3060		goto failure;
3061
3062	return base;
3063
3064failure:
3065	if (!IS_ERR(clk)) {
3066		clk_disable(clk);
 
3067		clk_put(clk);
3068	}
3069	if (virtbase)
3070		iounmap(virtbase);
3071	if (res)
3072		release_mem_region(res->start,
3073				   resource_size(res));
3074	if (virtbase)
3075		iounmap(virtbase);
3076
3077	if (base) {
3078		kfree(base->lcla_pool.alloc_map);
3079		kfree(base->reg_val_backup_chan);
3080		kfree(base->lookup_log_chans);
3081		kfree(base->lookup_phy_chans);
3082		kfree(base->phy_res);
3083		kfree(base);
3084	}
3085
3086	return NULL;
3087}
3088
3089static void __init d40_hw_init(struct d40_base *base)
3090{
3091
3092	static struct d40_reg_val dma_init_reg[] = {
3093		/* Clock every part of the DMA block from start */
3094		{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
3095
3096		/* Interrupts on all logical channels */
3097		{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
3098		{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
3099		{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
3100		{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
3101		{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
3102		{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
3103		{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
3104		{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
3105		{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
3106		{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
3107		{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
3108		{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
3109	};
3110	int i;
3111	u32 prmseo[2] = {0, 0};
3112	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3113	u32 pcmis = 0;
3114	u32 pcicr = 0;
 
 
3115
3116	for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
3117		writel(dma_init_reg[i].val,
3118		       base->virtbase + dma_init_reg[i].reg);
3119
3120	/* Configure all our dma channels to default settings */
3121	for (i = 0; i < base->num_phy_chans; i++) {
3122
3123		activeo[i % 2] = activeo[i % 2] << 2;
3124
3125		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3126		    == D40_ALLOC_PHY) {
3127			activeo[i % 2] |= 3;
3128			continue;
3129		}
3130
3131		/* Enable interrupt # */
3132		pcmis = (pcmis << 1) | 1;
3133
3134		/* Clear interrupt # */
3135		pcicr = (pcicr << 1) | 1;
3136
3137		/* Set channel to physical mode */
3138		prmseo[i % 2] = prmseo[i % 2] << 2;
3139		prmseo[i % 2] |= 1;
3140
3141	}
3142
3143	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3144	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3145	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3146	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3147
3148	/* Write which interrupt to enable */
3149	writel(pcmis, base->virtbase + D40_DREG_PCMIS);
3150
3151	/* Write which interrupt to clear */
3152	writel(pcicr, base->virtbase + D40_DREG_PCICR);
3153
 
 
 
3154}
3155
3156static int __init d40_lcla_allocate(struct d40_base *base)
3157{
3158	struct d40_lcla_pool *pool = &base->lcla_pool;
3159	unsigned long *page_list;
3160	int i, j;
3161	int ret = 0;
3162
3163	/*
3164	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3165	 * To full fill this hardware requirement without wasting 256 kb
3166	 * we allocate pages until we get an aligned one.
3167	 */
3168	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
3169			    GFP_KERNEL);
3170
3171	if (!page_list) {
3172		ret = -ENOMEM;
3173		goto failure;
3174	}
3175
3176	/* Calculating how many pages that are required */
3177	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3178
3179	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3180		page_list[i] = __get_free_pages(GFP_KERNEL,
3181						base->lcla_pool.pages);
3182		if (!page_list[i]) {
3183
3184			d40_err(base->dev, "Failed to allocate %d pages.\n",
3185				base->lcla_pool.pages);
3186
3187			for (j = 0; j < i; j++)
3188				free_pages(page_list[j], base->lcla_pool.pages);
3189			goto failure;
3190		}
3191
3192		if ((virt_to_phys((void *)page_list[i]) &
3193		     (LCLA_ALIGNMENT - 1)) == 0)
3194			break;
3195	}
3196
3197	for (j = 0; j < i; j++)
3198		free_pages(page_list[j], base->lcla_pool.pages);
3199
3200	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3201		base->lcla_pool.base = (void *)page_list[i];
3202	} else {
3203		/*
3204		 * After many attempts and no succees with finding the correct
3205		 * alignment, try with allocating a big buffer.
3206		 */
3207		dev_warn(base->dev,
3208			 "[%s] Failed to get %d pages @ 18 bit align.\n",
3209			 __func__, base->lcla_pool.pages);
3210		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3211							 base->num_phy_chans +
3212							 LCLA_ALIGNMENT,
3213							 GFP_KERNEL);
3214		if (!base->lcla_pool.base_unaligned) {
3215			ret = -ENOMEM;
3216			goto failure;
3217		}
3218
3219		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3220						 LCLA_ALIGNMENT);
3221	}
3222
3223	pool->dma_addr = dma_map_single(base->dev, pool->base,
3224					SZ_1K * base->num_phy_chans,
3225					DMA_TO_DEVICE);
3226	if (dma_mapping_error(base->dev, pool->dma_addr)) {
3227		pool->dma_addr = 0;
3228		ret = -ENOMEM;
3229		goto failure;
3230	}
3231
3232	writel(virt_to_phys(base->lcla_pool.base),
3233	       base->virtbase + D40_DREG_LCLA);
3234failure:
3235	kfree(page_list);
3236	return ret;
3237}
3238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3239static int __init d40_probe(struct platform_device *pdev)
3240{
3241	int err;
 
3242	int ret = -ENOENT;
3243	struct d40_base *base;
3244	struct resource *res = NULL;
3245	int num_reserved_chans;
3246	u32 val;
3247
 
 
 
 
 
 
 
 
 
 
 
 
3248	base = d40_hw_detect_init(pdev);
3249
3250	if (!base)
3251		goto failure;
3252
3253	num_reserved_chans = d40_phy_res_init(base);
3254
3255	platform_set_drvdata(pdev, base);
3256
3257	spin_lock_init(&base->interrupt_lock);
3258	spin_lock_init(&base->execmd_lock);
3259
3260	/* Get IO for logical channel parameter address */
3261	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3262	if (!res) {
3263		ret = -ENOENT;
3264		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3265		goto failure;
3266	}
3267	base->lcpa_size = resource_size(res);
3268	base->phy_lcpa = res->start;
3269
3270	if (request_mem_region(res->start, resource_size(res),
3271			       D40_NAME " I/O lcpa") == NULL) {
3272		ret = -EBUSY;
3273		d40_err(&pdev->dev,
3274			"Failed to request LCPA region 0x%x-0x%x\n",
3275			res->start, res->end);
3276		goto failure;
3277	}
3278
3279	/* We make use of ESRAM memory for this. */
3280	val = readl(base->virtbase + D40_DREG_LCPA);
3281	if (res->start != val && val != 0) {
3282		dev_warn(&pdev->dev,
3283			 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
3284			 __func__, val, res->start);
3285	} else
3286		writel(res->start, base->virtbase + D40_DREG_LCPA);
3287
3288	base->lcpa_base = ioremap(res->start, resource_size(res));
3289	if (!base->lcpa_base) {
3290		ret = -ENOMEM;
3291		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3292		goto failure;
3293	}
3294	/* If lcla has to be located in ESRAM we don't need to allocate */
3295	if (base->plat_data->use_esram_lcla) {
3296		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3297							"lcla_esram");
3298		if (!res) {
3299			ret = -ENOENT;
3300			d40_err(&pdev->dev,
3301				"No \"lcla_esram\" memory resource\n");
3302			goto failure;
3303		}
3304		base->lcla_pool.base = ioremap(res->start,
3305						resource_size(res));
3306		if (!base->lcla_pool.base) {
3307			ret = -ENOMEM;
3308			d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3309			goto failure;
3310		}
3311		writel(res->start, base->virtbase + D40_DREG_LCLA);
3312
3313	} else {
3314		ret = d40_lcla_allocate(base);
3315		if (ret) {
3316			d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3317			goto failure;
3318		}
3319	}
3320
3321	spin_lock_init(&base->lcla_pool.lock);
3322
3323	base->irq = platform_get_irq(pdev, 0);
3324
3325	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3326	if (ret) {
3327		d40_err(&pdev->dev, "No IRQ defined\n");
3328		goto failure;
3329	}
3330
3331	pm_runtime_irq_safe(base->dev);
3332	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3333	pm_runtime_use_autosuspend(base->dev);
3334	pm_runtime_enable(base->dev);
3335	pm_runtime_resume(base->dev);
3336
3337	if (base->plat_data->use_esram_lcla) {
3338
3339		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3340		if (IS_ERR(base->lcpa_regulator)) {
3341			d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
 
3342			base->lcpa_regulator = NULL;
3343			goto failure;
3344		}
3345
3346		ret = regulator_enable(base->lcpa_regulator);
3347		if (ret) {
3348			d40_err(&pdev->dev,
3349				"Failed to enable lcpa_regulator\n");
3350			regulator_put(base->lcpa_regulator);
3351			base->lcpa_regulator = NULL;
3352			goto failure;
3353		}
3354	}
3355
3356	base->initialized = true;
3357	err = d40_dmaengine_init(base, num_reserved_chans);
3358	if (err)
 
 
 
 
 
 
3359		goto failure;
 
3360
3361	d40_hw_init(base);
3362
 
 
 
 
 
 
 
3363	dev_info(base->dev, "initialized\n");
3364	return 0;
3365
3366failure:
3367	if (base) {
3368		if (base->desc_slab)
3369			kmem_cache_destroy(base->desc_slab);
3370		if (base->virtbase)
3371			iounmap(base->virtbase);
3372
3373		if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3374			iounmap(base->lcla_pool.base);
3375			base->lcla_pool.base = NULL;
3376		}
3377
3378		if (base->lcla_pool.dma_addr)
3379			dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3380					 SZ_1K * base->num_phy_chans,
3381					 DMA_TO_DEVICE);
3382
3383		if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3384			free_pages((unsigned long)base->lcla_pool.base,
3385				   base->lcla_pool.pages);
3386
3387		kfree(base->lcla_pool.base_unaligned);
3388
3389		if (base->phy_lcpa)
3390			release_mem_region(base->phy_lcpa,
3391					   base->lcpa_size);
3392		if (base->phy_start)
3393			release_mem_region(base->phy_start,
3394					   base->phy_size);
3395		if (base->clk) {
3396			clk_disable(base->clk);
3397			clk_put(base->clk);
3398		}
3399
3400		if (base->lcpa_regulator) {
3401			regulator_disable(base->lcpa_regulator);
3402			regulator_put(base->lcpa_regulator);
3403		}
3404
3405		kfree(base->lcla_pool.alloc_map);
3406		kfree(base->lookup_log_chans);
3407		kfree(base->lookup_phy_chans);
3408		kfree(base->phy_res);
3409		kfree(base);
3410	}
3411
3412	d40_err(&pdev->dev, "probe failed\n");
3413	return ret;
3414}
3415
 
 
 
 
 
3416static struct platform_driver d40_driver = {
3417	.driver = {
3418		.owner = THIS_MODULE,
3419		.name  = D40_NAME,
3420		.pm = DMA40_PM_OPS,
 
3421	},
3422};
3423
3424static int __init stedma40_init(void)
3425{
3426	return platform_driver_probe(&d40_driver, d40_probe);
3427}
3428subsys_initcall(stedma40_init);