Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
   1/*
   2 * Copyright (C) Ericsson AB 2007-2008
   3 * Copyright (C) ST-Ericsson SA 2008-2010
   4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
   5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
   6 * License terms: GNU General Public License (GPL) version 2
   7 */
   8
   9#include <linux/dma-mapping.h>
  10#include <linux/kernel.h>
  11#include <linux/slab.h>
  12#include <linux/export.h>
  13#include <linux/dmaengine.h>
  14#include <linux/platform_device.h>
  15#include <linux/clk.h>
  16#include <linux/delay.h>
  17#include <linux/log2.h>
  18#include <linux/pm.h>
  19#include <linux/pm_runtime.h>
  20#include <linux/err.h>
  21#include <linux/of.h>
  22#include <linux/of_dma.h>
  23#include <linux/amba/bus.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/platform_data/dma-ste-dma40.h>
  26
  27#include "dmaengine.h"
  28#include "ste_dma40_ll.h"
  29
  30#define D40_NAME "dma40"
  31
  32#define D40_PHY_CHAN -1
  33
  34/* For masking out/in 2 bit channel positions */
  35#define D40_CHAN_POS(chan)  (2 * (chan / 2))
  36#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  37
  38/* Maximum iterations taken before giving up suspending a channel */
  39#define D40_SUSPEND_MAX_IT 500
  40
  41/* Milliseconds */
  42#define DMA40_AUTOSUSPEND_DELAY	100
  43
  44/* Hardware requirement on LCLA alignment */
  45#define LCLA_ALIGNMENT 0x40000
  46
  47/* Max number of links per event group */
  48#define D40_LCLA_LINK_PER_EVENT_GRP 128
  49#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  50
  51/* Max number of logical channels per physical channel */
  52#define D40_MAX_LOG_CHAN_PER_PHY 32
  53
  54/* Attempts before giving up to trying to get pages that are aligned */
  55#define MAX_LCLA_ALLOC_ATTEMPTS 256
  56
  57/* Bit markings for allocation map */
  58#define D40_ALLOC_FREE		BIT(31)
  59#define D40_ALLOC_PHY		BIT(30)
  60#define D40_ALLOC_LOG_FREE	0
  61
  62#define D40_MEMCPY_MAX_CHANS	8
  63
  64/* Reserved event lines for memcpy only. */
  65#define DB8500_DMA_MEMCPY_EV_0	51
  66#define DB8500_DMA_MEMCPY_EV_1	56
  67#define DB8500_DMA_MEMCPY_EV_2	57
  68#define DB8500_DMA_MEMCPY_EV_3	58
  69#define DB8500_DMA_MEMCPY_EV_4	59
  70#define DB8500_DMA_MEMCPY_EV_5	60
  71
  72static int dma40_memcpy_channels[] = {
  73	DB8500_DMA_MEMCPY_EV_0,
  74	DB8500_DMA_MEMCPY_EV_1,
  75	DB8500_DMA_MEMCPY_EV_2,
  76	DB8500_DMA_MEMCPY_EV_3,
  77	DB8500_DMA_MEMCPY_EV_4,
  78	DB8500_DMA_MEMCPY_EV_5,
  79};
  80
  81/* Default configuration for physcial memcpy */
  82static struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
  83	.mode = STEDMA40_MODE_PHYSICAL,
  84	.dir = DMA_MEM_TO_MEM,
  85
  86	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  87	.src_info.psize = STEDMA40_PSIZE_PHY_1,
  88	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  89
  90	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  91	.dst_info.psize = STEDMA40_PSIZE_PHY_1,
  92	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  93};
  94
  95/* Default configuration for logical memcpy */
  96static struct stedma40_chan_cfg dma40_memcpy_conf_log = {
  97	.mode = STEDMA40_MODE_LOGICAL,
  98	.dir = DMA_MEM_TO_MEM,
  99
 100	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 101	.src_info.psize = STEDMA40_PSIZE_LOG_1,
 102	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 103
 104	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 105	.dst_info.psize = STEDMA40_PSIZE_LOG_1,
 106	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 107};
 108
 109/**
 110 * enum 40_command - The different commands and/or statuses.
 111 *
 112 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 113 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 114 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 115 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 116 */
 117enum d40_command {
 118	D40_DMA_STOP		= 0,
 119	D40_DMA_RUN		= 1,
 120	D40_DMA_SUSPEND_REQ	= 2,
 121	D40_DMA_SUSPENDED	= 3
 122};
 123
 124/*
 125 * enum d40_events - The different Event Enables for the event lines.
 126 *
 127 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
 128 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
 129 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
 130 * @D40_ROUND_EVENTLINE: Status check for event line.
 131 */
 132
 133enum d40_events {
 134	D40_DEACTIVATE_EVENTLINE	= 0,
 135	D40_ACTIVATE_EVENTLINE		= 1,
 136	D40_SUSPEND_REQ_EVENTLINE	= 2,
 137	D40_ROUND_EVENTLINE		= 3
 138};
 139
 140/*
 141 * These are the registers that has to be saved and later restored
 142 * when the DMA hw is powered off.
 143 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
 144 */
 145static u32 d40_backup_regs[] = {
 146	D40_DREG_LCPA,
 147	D40_DREG_LCLA,
 148	D40_DREG_PRMSE,
 149	D40_DREG_PRMSO,
 150	D40_DREG_PRMOE,
 151	D40_DREG_PRMOO,
 152};
 153
 154#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
 155
 156/*
 157 * since 9540 and 8540 has the same HW revision
 158 * use v4a for 9540 or ealier
 159 * use v4b for 8540 or later
 160 * HW revision:
 161 * DB8500ed has revision 0
 162 * DB8500v1 has revision 2
 163 * DB8500v2 has revision 3
 164 * AP9540v1 has revision 4
 165 * DB8540v1 has revision 4
 166 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
 167 */
 168static u32 d40_backup_regs_v4a[] = {
 169	D40_DREG_PSEG1,
 170	D40_DREG_PSEG2,
 171	D40_DREG_PSEG3,
 172	D40_DREG_PSEG4,
 173	D40_DREG_PCEG1,
 174	D40_DREG_PCEG2,
 175	D40_DREG_PCEG3,
 176	D40_DREG_PCEG4,
 177	D40_DREG_RSEG1,
 178	D40_DREG_RSEG2,
 179	D40_DREG_RSEG3,
 180	D40_DREG_RSEG4,
 181	D40_DREG_RCEG1,
 182	D40_DREG_RCEG2,
 183	D40_DREG_RCEG3,
 184	D40_DREG_RCEG4,
 185};
 186
 187#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
 188
 189static u32 d40_backup_regs_v4b[] = {
 190	D40_DREG_CPSEG1,
 191	D40_DREG_CPSEG2,
 192	D40_DREG_CPSEG3,
 193	D40_DREG_CPSEG4,
 194	D40_DREG_CPSEG5,
 195	D40_DREG_CPCEG1,
 196	D40_DREG_CPCEG2,
 197	D40_DREG_CPCEG3,
 198	D40_DREG_CPCEG4,
 199	D40_DREG_CPCEG5,
 200	D40_DREG_CRSEG1,
 201	D40_DREG_CRSEG2,
 202	D40_DREG_CRSEG3,
 203	D40_DREG_CRSEG4,
 204	D40_DREG_CRSEG5,
 205	D40_DREG_CRCEG1,
 206	D40_DREG_CRCEG2,
 207	D40_DREG_CRCEG3,
 208	D40_DREG_CRCEG4,
 209	D40_DREG_CRCEG5,
 210};
 211
 212#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
 213
 214static u32 d40_backup_regs_chan[] = {
 215	D40_CHAN_REG_SSCFG,
 216	D40_CHAN_REG_SSELT,
 217	D40_CHAN_REG_SSPTR,
 218	D40_CHAN_REG_SSLNK,
 219	D40_CHAN_REG_SDCFG,
 220	D40_CHAN_REG_SDELT,
 221	D40_CHAN_REG_SDPTR,
 222	D40_CHAN_REG_SDLNK,
 223};
 224
 225#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
 226			     BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
 227
 228/**
 229 * struct d40_interrupt_lookup - lookup table for interrupt handler
 230 *
 231 * @src: Interrupt mask register.
 232 * @clr: Interrupt clear register.
 233 * @is_error: true if this is an error interrupt.
 234 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 235 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 236 */
 237struct d40_interrupt_lookup {
 238	u32 src;
 239	u32 clr;
 240	bool is_error;
 241	int offset;
 242};
 243
 244
 245static struct d40_interrupt_lookup il_v4a[] = {
 246	{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
 247	{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
 248	{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
 249	{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
 250	{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
 251	{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
 252	{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
 253	{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
 254	{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
 255	{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
 256};
 257
 258static struct d40_interrupt_lookup il_v4b[] = {
 259	{D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
 260	{D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
 261	{D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
 262	{D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
 263	{D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
 264	{D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
 265	{D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
 266	{D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
 267	{D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
 268	{D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
 269	{D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
 270	{D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
 271};
 272
 273/**
 274 * struct d40_reg_val - simple lookup struct
 275 *
 276 * @reg: The register.
 277 * @val: The value that belongs to the register in reg.
 278 */
 279struct d40_reg_val {
 280	unsigned int reg;
 281	unsigned int val;
 282};
 283
 284static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
 285	/* Clock every part of the DMA block from start */
 286	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 287
 288	/* Interrupts on all logical channels */
 289	{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
 290	{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
 291	{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
 292	{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
 293	{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
 294	{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
 295	{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
 296	{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
 297	{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
 298	{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
 299	{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
 300	{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
 301};
 302static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
 303	/* Clock every part of the DMA block from start */
 304	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 305
 306	/* Interrupts on all logical channels */
 307	{ .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
 308	{ .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
 309	{ .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
 310	{ .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
 311	{ .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
 312	{ .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
 313	{ .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
 314	{ .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
 315	{ .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
 316	{ .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
 317	{ .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
 318	{ .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
 319	{ .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
 320	{ .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
 321	{ .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
 322};
 323
 324/**
 325 * struct d40_lli_pool - Structure for keeping LLIs in memory
 326 *
 327 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 328 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 329 * pre_alloc_lli is used.
 330 * @dma_addr: DMA address, if mapped
 331 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 332 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 333 * one buffer to one buffer.
 334 */
 335struct d40_lli_pool {
 336	void	*base;
 337	int	 size;
 338	dma_addr_t	dma_addr;
 339	/* Space for dst and src, plus an extra for padding */
 340	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
 341};
 342
 343/**
 344 * struct d40_desc - A descriptor is one DMA job.
 345 *
 346 * @lli_phy: LLI settings for physical channel. Both src and dst=
 347 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 348 * lli_len equals one.
 349 * @lli_log: Same as above but for logical channels.
 350 * @lli_pool: The pool with two entries pre-allocated.
 351 * @lli_len: Number of llis of current descriptor.
 352 * @lli_current: Number of transferred llis.
 353 * @lcla_alloc: Number of LCLA entries allocated.
 354 * @txd: DMA engine struct. Used for among other things for communication
 355 * during a transfer.
 356 * @node: List entry.
 357 * @is_in_client_list: true if the client owns this descriptor.
 358 * @cyclic: true if this is a cyclic job
 359 *
 360 * This descriptor is used for both logical and physical transfers.
 361 */
 362struct d40_desc {
 363	/* LLI physical */
 364	struct d40_phy_lli_bidir	 lli_phy;
 365	/* LLI logical */
 366	struct d40_log_lli_bidir	 lli_log;
 367
 368	struct d40_lli_pool		 lli_pool;
 369	int				 lli_len;
 370	int				 lli_current;
 371	int				 lcla_alloc;
 372
 373	struct dma_async_tx_descriptor	 txd;
 374	struct list_head		 node;
 375
 376	bool				 is_in_client_list;
 377	bool				 cyclic;
 378};
 379
 380/**
 381 * struct d40_lcla_pool - LCLA pool settings and data.
 382 *
 383 * @base: The virtual address of LCLA. 18 bit aligned.
 384 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 385 * This pointer is only there for clean-up on error.
 386 * @pages: The number of pages needed for all physical channels.
 387 * Only used later for clean-up on error
 388 * @lock: Lock to protect the content in this struct.
 389 * @alloc_map: big map over which LCLA entry is own by which job.
 390 */
 391struct d40_lcla_pool {
 392	void		*base;
 393	dma_addr_t	dma_addr;
 394	void		*base_unaligned;
 395	int		 pages;
 396	spinlock_t	 lock;
 397	struct d40_desc	**alloc_map;
 398};
 399
 400/**
 401 * struct d40_phy_res - struct for handling eventlines mapped to physical
 402 * channels.
 403 *
 404 * @lock: A lock protection this entity.
 405 * @reserved: True if used by secure world or otherwise.
 406 * @num: The physical channel number of this entity.
 407 * @allocated_src: Bit mapped to show which src event line's are mapped to
 408 * this physical channel. Can also be free or physically allocated.
 409 * @allocated_dst: Same as for src but is dst.
 410 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
 411 * event line number.
 412 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
 413 */
 414struct d40_phy_res {
 415	spinlock_t lock;
 416	bool	   reserved;
 417	int	   num;
 418	u32	   allocated_src;
 419	u32	   allocated_dst;
 420	bool	   use_soft_lli;
 421};
 422
 423struct d40_base;
 424
 425/**
 426 * struct d40_chan - Struct that describes a channel.
 427 *
 428 * @lock: A spinlock to protect this struct.
 429 * @log_num: The logical number, if any of this channel.
 430 * @pending_tx: The number of pending transfers. Used between interrupt handler
 431 * and tasklet.
 432 * @busy: Set to true when transfer is ongoing on this channel.
 433 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 434 * point is NULL, then the channel is not allocated.
 435 * @chan: DMA engine handle.
 436 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 437 * transfer and call client callback.
 438 * @client: Cliented owned descriptor list.
 439 * @pending_queue: Submitted jobs, to be issued by issue_pending()
 440 * @active: Active descriptor.
 441 * @done: Completed jobs
 442 * @queue: Queued jobs.
 443 * @prepare_queue: Prepared jobs.
 444 * @dma_cfg: The client configuration of this dma channel.
 445 * @configured: whether the dma_cfg configuration is valid
 446 * @base: Pointer to the device instance struct.
 447 * @src_def_cfg: Default cfg register setting for src.
 448 * @dst_def_cfg: Default cfg register setting for dst.
 449 * @log_def: Default logical channel settings.
 450 * @lcpa: Pointer to dst and src lcpa settings.
 451 * @runtime_addr: runtime configured address.
 452 * @runtime_direction: runtime configured direction.
 453 *
 454 * This struct can either "be" a logical or a physical channel.
 455 */
 456struct d40_chan {
 457	spinlock_t			 lock;
 458	int				 log_num;
 459	int				 pending_tx;
 460	bool				 busy;
 461	struct d40_phy_res		*phy_chan;
 462	struct dma_chan			 chan;
 463	struct tasklet_struct		 tasklet;
 464	struct list_head		 client;
 465	struct list_head		 pending_queue;
 466	struct list_head		 active;
 467	struct list_head		 done;
 468	struct list_head		 queue;
 469	struct list_head		 prepare_queue;
 470	struct stedma40_chan_cfg	 dma_cfg;
 471	bool				 configured;
 472	struct d40_base			*base;
 473	/* Default register configurations */
 474	u32				 src_def_cfg;
 475	u32				 dst_def_cfg;
 476	struct d40_def_lcsp		 log_def;
 477	struct d40_log_lli_full		*lcpa;
 478	/* Runtime reconfiguration */
 479	dma_addr_t			runtime_addr;
 480	enum dma_transfer_direction	runtime_direction;
 481};
 482
 483/**
 484 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
 485 * controller
 486 *
 487 * @backup: the pointer to the registers address array for backup
 488 * @backup_size: the size of the registers address array for backup
 489 * @realtime_en: the realtime enable register
 490 * @realtime_clear: the realtime clear register
 491 * @high_prio_en: the high priority enable register
 492 * @high_prio_clear: the high priority clear register
 493 * @interrupt_en: the interrupt enable register
 494 * @interrupt_clear: the interrupt clear register
 495 * @il: the pointer to struct d40_interrupt_lookup
 496 * @il_size: the size of d40_interrupt_lookup array
 497 * @init_reg: the pointer to the struct d40_reg_val
 498 * @init_reg_size: the size of d40_reg_val array
 499 */
 500struct d40_gen_dmac {
 501	u32				*backup;
 502	u32				 backup_size;
 503	u32				 realtime_en;
 504	u32				 realtime_clear;
 505	u32				 high_prio_en;
 506	u32				 high_prio_clear;
 507	u32				 interrupt_en;
 508	u32				 interrupt_clear;
 509	struct d40_interrupt_lookup	*il;
 510	u32				 il_size;
 511	struct d40_reg_val		*init_reg;
 512	u32				 init_reg_size;
 513};
 514
 515/**
 516 * struct d40_base - The big global struct, one for each probe'd instance.
 517 *
 518 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 519 * @execmd_lock: Lock for execute command usage since several channels share
 520 * the same physical register.
 521 * @dev: The device structure.
 522 * @virtbase: The virtual base address of the DMA's register.
 523 * @rev: silicon revision detected.
 524 * @clk: Pointer to the DMA clock structure.
 525 * @phy_start: Physical memory start of the DMA registers.
 526 * @phy_size: Size of the DMA register map.
 527 * @irq: The IRQ number.
 528 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
 529 * transfers).
 530 * @num_phy_chans: The number of physical channels. Read from HW. This
 531 * is the number of available channels for this driver, not counting "Secure
 532 * mode" allocated physical channels.
 533 * @num_log_chans: The number of logical channels. Calculated from
 534 * num_phy_chans.
 535 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 536 * @dma_slave: dma_device channels that can do only do slave transfers.
 537 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
 538 * @phy_chans: Room for all possible physical channels in system.
 539 * @log_chans: Room for all possible logical channels in system.
 540 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 541 * to log_chans entries.
 542 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 543 * to phy_chans entries.
 544 * @plat_data: Pointer to provided platform_data which is the driver
 545 * configuration.
 546 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
 547 * @phy_res: Vector containing all physical channels.
 548 * @lcla_pool: lcla pool settings and data.
 549 * @lcpa_base: The virtual mapped address of LCPA.
 550 * @phy_lcpa: The physical address of the LCPA.
 551 * @lcpa_size: The size of the LCPA area.
 552 * @desc_slab: cache for descriptors.
 553 * @reg_val_backup: Here the values of some hardware registers are stored
 554 * before the DMA is powered off. They are restored when the power is back on.
 555 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
 556 * later
 557 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
 558 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
 559 * @initialized: true if the dma has been initialized
 560 * @gen_dmac: the struct for generic registers values to represent u8500/8540
 561 * DMA controller
 562 */
 563struct d40_base {
 564	spinlock_t			 interrupt_lock;
 565	spinlock_t			 execmd_lock;
 566	struct device			 *dev;
 567	void __iomem			 *virtbase;
 568	u8				  rev:4;
 569	struct clk			 *clk;
 570	phys_addr_t			  phy_start;
 571	resource_size_t			  phy_size;
 572	int				  irq;
 573	int				  num_memcpy_chans;
 574	int				  num_phy_chans;
 575	int				  num_log_chans;
 576	struct device_dma_parameters	  dma_parms;
 577	struct dma_device		  dma_both;
 578	struct dma_device		  dma_slave;
 579	struct dma_device		  dma_memcpy;
 580	struct d40_chan			 *phy_chans;
 581	struct d40_chan			 *log_chans;
 582	struct d40_chan			**lookup_log_chans;
 583	struct d40_chan			**lookup_phy_chans;
 584	struct stedma40_platform_data	 *plat_data;
 585	struct regulator		 *lcpa_regulator;
 586	/* Physical half channels */
 587	struct d40_phy_res		 *phy_res;
 588	struct d40_lcla_pool		  lcla_pool;
 589	void				 *lcpa_base;
 590	dma_addr_t			  phy_lcpa;
 591	resource_size_t			  lcpa_size;
 592	struct kmem_cache		 *desc_slab;
 593	u32				  reg_val_backup[BACKUP_REGS_SZ];
 594	u32				  reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
 595	u32				 *reg_val_backup_chan;
 596	u16				  gcc_pwr_off_mask;
 597	bool				  initialized;
 598	struct d40_gen_dmac		  gen_dmac;
 599};
 600
 601static struct device *chan2dev(struct d40_chan *d40c)
 602{
 603	return &d40c->chan.dev->device;
 604}
 605
 606static bool chan_is_physical(struct d40_chan *chan)
 607{
 608	return chan->log_num == D40_PHY_CHAN;
 609}
 610
 611static bool chan_is_logical(struct d40_chan *chan)
 612{
 613	return !chan_is_physical(chan);
 614}
 615
 616static void __iomem *chan_base(struct d40_chan *chan)
 617{
 618	return chan->base->virtbase + D40_DREG_PCBASE +
 619	       chan->phy_chan->num * D40_DREG_PCDELTA;
 620}
 621
 622#define d40_err(dev, format, arg...)		\
 623	dev_err(dev, "[%s] " format, __func__, ## arg)
 624
 625#define chan_err(d40c, format, arg...)		\
 626	d40_err(chan2dev(d40c), format, ## arg)
 627
 628static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
 629			      int lli_len)
 630{
 631	bool is_log = chan_is_logical(d40c);
 632	u32 align;
 633	void *base;
 634
 635	if (is_log)
 636		align = sizeof(struct d40_log_lli);
 637	else
 638		align = sizeof(struct d40_phy_lli);
 639
 640	if (lli_len == 1) {
 641		base = d40d->lli_pool.pre_alloc_lli;
 642		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
 643		d40d->lli_pool.base = NULL;
 644	} else {
 645		d40d->lli_pool.size = lli_len * 2 * align;
 646
 647		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
 648		d40d->lli_pool.base = base;
 649
 650		if (d40d->lli_pool.base == NULL)
 651			return -ENOMEM;
 652	}
 653
 654	if (is_log) {
 655		d40d->lli_log.src = PTR_ALIGN(base, align);
 656		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
 657
 658		d40d->lli_pool.dma_addr = 0;
 659	} else {
 660		d40d->lli_phy.src = PTR_ALIGN(base, align);
 661		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
 662
 663		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
 664							 d40d->lli_phy.src,
 665							 d40d->lli_pool.size,
 666							 DMA_TO_DEVICE);
 667
 668		if (dma_mapping_error(d40c->base->dev,
 669				      d40d->lli_pool.dma_addr)) {
 670			kfree(d40d->lli_pool.base);
 671			d40d->lli_pool.base = NULL;
 672			d40d->lli_pool.dma_addr = 0;
 673			return -ENOMEM;
 674		}
 675	}
 676
 677	return 0;
 678}
 679
 680static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
 681{
 682	if (d40d->lli_pool.dma_addr)
 683		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
 684				 d40d->lli_pool.size, DMA_TO_DEVICE);
 685
 686	kfree(d40d->lli_pool.base);
 687	d40d->lli_pool.base = NULL;
 688	d40d->lli_pool.size = 0;
 689	d40d->lli_log.src = NULL;
 690	d40d->lli_log.dst = NULL;
 691	d40d->lli_phy.src = NULL;
 692	d40d->lli_phy.dst = NULL;
 693}
 694
 695static int d40_lcla_alloc_one(struct d40_chan *d40c,
 696			      struct d40_desc *d40d)
 697{
 698	unsigned long flags;
 699	int i;
 700	int ret = -EINVAL;
 701
 702	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 703
 704	/*
 705	 * Allocate both src and dst at the same time, therefore the half
 706	 * start on 1 since 0 can't be used since zero is used as end marker.
 707	 */
 708	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 709		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
 710
 711		if (!d40c->base->lcla_pool.alloc_map[idx]) {
 712			d40c->base->lcla_pool.alloc_map[idx] = d40d;
 713			d40d->lcla_alloc++;
 714			ret = i;
 715			break;
 716		}
 717	}
 718
 719	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 720
 721	return ret;
 722}
 723
 724static int d40_lcla_free_all(struct d40_chan *d40c,
 725			     struct d40_desc *d40d)
 726{
 727	unsigned long flags;
 728	int i;
 729	int ret = -EINVAL;
 730
 731	if (chan_is_physical(d40c))
 732		return 0;
 733
 734	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 735
 736	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 737		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
 738
 739		if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
 740			d40c->base->lcla_pool.alloc_map[idx] = NULL;
 741			d40d->lcla_alloc--;
 742			if (d40d->lcla_alloc == 0) {
 743				ret = 0;
 744				break;
 745			}
 746		}
 747	}
 748
 749	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 750
 751	return ret;
 752
 753}
 754
 755static void d40_desc_remove(struct d40_desc *d40d)
 756{
 757	list_del(&d40d->node);
 758}
 759
 760static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
 761{
 762	struct d40_desc *desc = NULL;
 763
 764	if (!list_empty(&d40c->client)) {
 765		struct d40_desc *d;
 766		struct d40_desc *_d;
 767
 768		list_for_each_entry_safe(d, _d, &d40c->client, node) {
 769			if (async_tx_test_ack(&d->txd)) {
 770				d40_desc_remove(d);
 771				desc = d;
 772				memset(desc, 0, sizeof(*desc));
 773				break;
 774			}
 775		}
 776	}
 777
 778	if (!desc)
 779		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
 780
 781	if (desc)
 782		INIT_LIST_HEAD(&desc->node);
 783
 784	return desc;
 785}
 786
 787static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
 788{
 789
 790	d40_pool_lli_free(d40c, d40d);
 791	d40_lcla_free_all(d40c, d40d);
 792	kmem_cache_free(d40c->base->desc_slab, d40d);
 793}
 794
 795static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
 796{
 797	list_add_tail(&desc->node, &d40c->active);
 798}
 799
 800static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
 801{
 802	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
 803	struct d40_phy_lli *lli_src = desc->lli_phy.src;
 804	void __iomem *base = chan_base(chan);
 805
 806	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
 807	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
 808	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
 809	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
 810
 811	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
 812	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
 813	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
 814	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
 815}
 816
 817static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
 818{
 819	list_add_tail(&desc->node, &d40c->done);
 820}
 821
 822static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
 823{
 824	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
 825	struct d40_log_lli_bidir *lli = &desc->lli_log;
 826	int lli_current = desc->lli_current;
 827	int lli_len = desc->lli_len;
 828	bool cyclic = desc->cyclic;
 829	int curr_lcla = -EINVAL;
 830	int first_lcla = 0;
 831	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
 832	bool linkback;
 833
 834	/*
 835	 * We may have partially running cyclic transfers, in case we did't get
 836	 * enough LCLA entries.
 837	 */
 838	linkback = cyclic && lli_current == 0;
 839
 840	/*
 841	 * For linkback, we need one LCLA even with only one link, because we
 842	 * can't link back to the one in LCPA space
 843	 */
 844	if (linkback || (lli_len - lli_current > 1)) {
 845		/*
 846		 * If the channel is expected to use only soft_lli don't
 847		 * allocate a lcla. This is to avoid a HW issue that exists
 848		 * in some controller during a peripheral to memory transfer
 849		 * that uses linked lists.
 850		 */
 851		if (!(chan->phy_chan->use_soft_lli &&
 852			chan->dma_cfg.dir == DMA_DEV_TO_MEM))
 853			curr_lcla = d40_lcla_alloc_one(chan, desc);
 854
 855		first_lcla = curr_lcla;
 856	}
 857
 858	/*
 859	 * For linkback, we normally load the LCPA in the loop since we need to
 860	 * link it to the second LCLA and not the first.  However, if we
 861	 * couldn't even get a first LCLA, then we have to run in LCPA and
 862	 * reload manually.
 863	 */
 864	if (!linkback || curr_lcla == -EINVAL) {
 865		unsigned int flags = 0;
 866
 867		if (curr_lcla == -EINVAL)
 868			flags |= LLI_TERM_INT;
 869
 870		d40_log_lli_lcpa_write(chan->lcpa,
 871				       &lli->dst[lli_current],
 872				       &lli->src[lli_current],
 873				       curr_lcla,
 874				       flags);
 875		lli_current++;
 876	}
 877
 878	if (curr_lcla < 0)
 879		goto out;
 880
 881	for (; lli_current < lli_len; lli_current++) {
 882		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
 883					   8 * curr_lcla * 2;
 884		struct d40_log_lli *lcla = pool->base + lcla_offset;
 885		unsigned int flags = 0;
 886		int next_lcla;
 887
 888		if (lli_current + 1 < lli_len)
 889			next_lcla = d40_lcla_alloc_one(chan, desc);
 890		else
 891			next_lcla = linkback ? first_lcla : -EINVAL;
 892
 893		if (cyclic || next_lcla == -EINVAL)
 894			flags |= LLI_TERM_INT;
 895
 896		if (linkback && curr_lcla == first_lcla) {
 897			/* First link goes in both LCPA and LCLA */
 898			d40_log_lli_lcpa_write(chan->lcpa,
 899					       &lli->dst[lli_current],
 900					       &lli->src[lli_current],
 901					       next_lcla, flags);
 902		}
 903
 904		/*
 905		 * One unused LCLA in the cyclic case if the very first
 906		 * next_lcla fails...
 907		 */
 908		d40_log_lli_lcla_write(lcla,
 909				       &lli->dst[lli_current],
 910				       &lli->src[lli_current],
 911				       next_lcla, flags);
 912
 913		/*
 914		 * Cache maintenance is not needed if lcla is
 915		 * mapped in esram
 916		 */
 917		if (!use_esram_lcla) {
 918			dma_sync_single_range_for_device(chan->base->dev,
 919						pool->dma_addr, lcla_offset,
 920						2 * sizeof(struct d40_log_lli),
 921						DMA_TO_DEVICE);
 922		}
 923		curr_lcla = next_lcla;
 924
 925		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
 926			lli_current++;
 927			break;
 928		}
 929	}
 930
 931out:
 932	desc->lli_current = lli_current;
 933}
 934
 935static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
 936{
 937	if (chan_is_physical(d40c)) {
 938		d40_phy_lli_load(d40c, d40d);
 939		d40d->lli_current = d40d->lli_len;
 940	} else
 941		d40_log_lli_to_lcxa(d40c, d40d);
 942}
 943
 944static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
 945{
 946	struct d40_desc *d;
 947
 948	if (list_empty(&d40c->active))
 949		return NULL;
 950
 951	d = list_first_entry(&d40c->active,
 952			     struct d40_desc,
 953			     node);
 954	return d;
 955}
 956
 957/* remove desc from current queue and add it to the pending_queue */
 958static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
 959{
 960	d40_desc_remove(desc);
 961	desc->is_in_client_list = false;
 962	list_add_tail(&desc->node, &d40c->pending_queue);
 963}
 964
 965static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
 966{
 967	struct d40_desc *d;
 968
 969	if (list_empty(&d40c->pending_queue))
 970		return NULL;
 971
 972	d = list_first_entry(&d40c->pending_queue,
 973			     struct d40_desc,
 974			     node);
 975	return d;
 976}
 977
 978static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
 979{
 980	struct d40_desc *d;
 981
 982	if (list_empty(&d40c->queue))
 983		return NULL;
 984
 985	d = list_first_entry(&d40c->queue,
 986			     struct d40_desc,
 987			     node);
 988	return d;
 989}
 990
 991static struct d40_desc *d40_first_done(struct d40_chan *d40c)
 992{
 993	if (list_empty(&d40c->done))
 994		return NULL;
 995
 996	return list_first_entry(&d40c->done, struct d40_desc, node);
 997}
 998
 999static int d40_psize_2_burst_size(bool is_log, int psize)
1000{
1001	if (is_log) {
1002		if (psize == STEDMA40_PSIZE_LOG_1)
1003			return 1;
1004	} else {
1005		if (psize == STEDMA40_PSIZE_PHY_1)
1006			return 1;
1007	}
1008
1009	return 2 << psize;
1010}
1011
1012/*
1013 * The dma only supports transmitting packages up to
1014 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
1015 *
1016 * Calculate the total number of dma elements required to send the entire sg list.
1017 */
1018static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
1019{
1020	int dmalen;
1021	u32 max_w = max(data_width1, data_width2);
1022	u32 min_w = min(data_width1, data_width2);
1023	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1024
1025	if (seg_max > STEDMA40_MAX_SEG_SIZE)
1026		seg_max -= max_w;
1027
1028	if (!IS_ALIGNED(size, max_w))
1029		return -EINVAL;
1030
1031	if (size <= seg_max)
1032		dmalen = 1;
1033	else {
1034		dmalen = size / seg_max;
1035		if (dmalen * seg_max < size)
1036			dmalen++;
1037	}
1038	return dmalen;
1039}
1040
1041static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1042			   u32 data_width1, u32 data_width2)
1043{
1044	struct scatterlist *sg;
1045	int i;
1046	int len = 0;
1047	int ret;
1048
1049	for_each_sg(sgl, sg, sg_len, i) {
1050		ret = d40_size_2_dmalen(sg_dma_len(sg),
1051					data_width1, data_width2);
1052		if (ret < 0)
1053			return ret;
1054		len += ret;
1055	}
1056	return len;
1057}
1058
1059
1060#ifdef CONFIG_PM
1061static void dma40_backup(void __iomem *baseaddr, u32 *backup,
1062			 u32 *regaddr, int num, bool save)
1063{
1064	int i;
1065
1066	for (i = 0; i < num; i++) {
1067		void __iomem *addr = baseaddr + regaddr[i];
1068
1069		if (save)
1070			backup[i] = readl_relaxed(addr);
1071		else
1072			writel_relaxed(backup[i], addr);
1073	}
1074}
1075
1076static void d40_save_restore_registers(struct d40_base *base, bool save)
1077{
1078	int i;
1079
1080	/* Save/Restore channel specific registers */
1081	for (i = 0; i < base->num_phy_chans; i++) {
1082		void __iomem *addr;
1083		int idx;
1084
1085		if (base->phy_res[i].reserved)
1086			continue;
1087
1088		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
1089		idx = i * ARRAY_SIZE(d40_backup_regs_chan);
1090
1091		dma40_backup(addr, &base->reg_val_backup_chan[idx],
1092			     d40_backup_regs_chan,
1093			     ARRAY_SIZE(d40_backup_regs_chan),
1094			     save);
1095	}
1096
1097	/* Save/Restore global registers */
1098	dma40_backup(base->virtbase, base->reg_val_backup,
1099		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
1100		     save);
1101
1102	/* Save/Restore registers only existing on dma40 v3 and later */
1103	if (base->gen_dmac.backup)
1104		dma40_backup(base->virtbase, base->reg_val_backup_v4,
1105			     base->gen_dmac.backup,
1106			base->gen_dmac.backup_size,
1107			save);
1108}
1109#else
1110static void d40_save_restore_registers(struct d40_base *base, bool save)
1111{
1112}
1113#endif
1114
1115static int __d40_execute_command_phy(struct d40_chan *d40c,
1116				     enum d40_command command)
1117{
1118	u32 status;
1119	int i;
1120	void __iomem *active_reg;
1121	int ret = 0;
1122	unsigned long flags;
1123	u32 wmask;
1124
1125	if (command == D40_DMA_STOP) {
1126		ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1127		if (ret)
1128			return ret;
1129	}
1130
1131	spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1132
1133	if (d40c->phy_chan->num % 2 == 0)
1134		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1135	else
1136		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1137
1138	if (command == D40_DMA_SUSPEND_REQ) {
1139		status = (readl(active_reg) &
1140			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1141			D40_CHAN_POS(d40c->phy_chan->num);
1142
1143		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1144			goto done;
1145	}
1146
1147	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1148	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1149	       active_reg);
1150
1151	if (command == D40_DMA_SUSPEND_REQ) {
1152
1153		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1154			status = (readl(active_reg) &
1155				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1156				D40_CHAN_POS(d40c->phy_chan->num);
1157
1158			cpu_relax();
1159			/*
1160			 * Reduce the number of bus accesses while
1161			 * waiting for the DMA to suspend.
1162			 */
1163			udelay(3);
1164
1165			if (status == D40_DMA_STOP ||
1166			    status == D40_DMA_SUSPENDED)
1167				break;
1168		}
1169
1170		if (i == D40_SUSPEND_MAX_IT) {
1171			chan_err(d40c,
1172				"unable to suspend the chl %d (log: %d) status %x\n",
1173				d40c->phy_chan->num, d40c->log_num,
1174				status);
1175			dump_stack();
1176			ret = -EBUSY;
1177		}
1178
1179	}
1180done:
1181	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1182	return ret;
1183}
1184
1185static void d40_term_all(struct d40_chan *d40c)
1186{
1187	struct d40_desc *d40d;
1188	struct d40_desc *_d;
1189
1190	/* Release completed descriptors */
1191	while ((d40d = d40_first_done(d40c))) {
1192		d40_desc_remove(d40d);
1193		d40_desc_free(d40c, d40d);
1194	}
1195
1196	/* Release active descriptors */
1197	while ((d40d = d40_first_active_get(d40c))) {
1198		d40_desc_remove(d40d);
1199		d40_desc_free(d40c, d40d);
1200	}
1201
1202	/* Release queued descriptors waiting for transfer */
1203	while ((d40d = d40_first_queued(d40c))) {
1204		d40_desc_remove(d40d);
1205		d40_desc_free(d40c, d40d);
1206	}
1207
1208	/* Release pending descriptors */
1209	while ((d40d = d40_first_pending(d40c))) {
1210		d40_desc_remove(d40d);
1211		d40_desc_free(d40c, d40d);
1212	}
1213
1214	/* Release client owned descriptors */
1215	if (!list_empty(&d40c->client))
1216		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1217			d40_desc_remove(d40d);
1218			d40_desc_free(d40c, d40d);
1219		}
1220
1221	/* Release descriptors in prepare queue */
1222	if (!list_empty(&d40c->prepare_queue))
1223		list_for_each_entry_safe(d40d, _d,
1224					 &d40c->prepare_queue, node) {
1225			d40_desc_remove(d40d);
1226			d40_desc_free(d40c, d40d);
1227		}
1228
1229	d40c->pending_tx = 0;
1230}
1231
1232static void __d40_config_set_event(struct d40_chan *d40c,
1233				   enum d40_events event_type, u32 event,
1234				   int reg)
1235{
1236	void __iomem *addr = chan_base(d40c) + reg;
1237	int tries;
1238	u32 status;
1239
1240	switch (event_type) {
1241
1242	case D40_DEACTIVATE_EVENTLINE:
1243
1244		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1245		       | ~D40_EVENTLINE_MASK(event), addr);
1246		break;
1247
1248	case D40_SUSPEND_REQ_EVENTLINE:
1249		status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1250			  D40_EVENTLINE_POS(event);
1251
1252		if (status == D40_DEACTIVATE_EVENTLINE ||
1253		    status == D40_SUSPEND_REQ_EVENTLINE)
1254			break;
1255
1256		writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1257		       | ~D40_EVENTLINE_MASK(event), addr);
1258
1259		for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1260
1261			status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1262				  D40_EVENTLINE_POS(event);
1263
1264			cpu_relax();
1265			/*
1266			 * Reduce the number of bus accesses while
1267			 * waiting for the DMA to suspend.
1268			 */
1269			udelay(3);
1270
1271			if (status == D40_DEACTIVATE_EVENTLINE)
1272				break;
1273		}
1274
1275		if (tries == D40_SUSPEND_MAX_IT) {
1276			chan_err(d40c,
1277				"unable to stop the event_line chl %d (log: %d)"
1278				"status %x\n", d40c->phy_chan->num,
1279				 d40c->log_num, status);
1280		}
1281		break;
1282
1283	case D40_ACTIVATE_EVENTLINE:
1284	/*
1285	 * The hardware sometimes doesn't register the enable when src and dst
1286	 * event lines are active on the same logical channel.  Retry to ensure
1287	 * it does.  Usually only one retry is sufficient.
1288	 */
1289		tries = 100;
1290		while (--tries) {
1291			writel((D40_ACTIVATE_EVENTLINE <<
1292				D40_EVENTLINE_POS(event)) |
1293				~D40_EVENTLINE_MASK(event), addr);
1294
1295			if (readl(addr) & D40_EVENTLINE_MASK(event))
1296				break;
1297		}
1298
1299		if (tries != 99)
1300			dev_dbg(chan2dev(d40c),
1301				"[%s] workaround enable S%cLNK (%d tries)\n",
1302				__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1303				100 - tries);
1304
1305		WARN_ON(!tries);
1306		break;
1307
1308	case D40_ROUND_EVENTLINE:
1309		BUG();
1310		break;
1311
1312	}
1313}
1314
1315static void d40_config_set_event(struct d40_chan *d40c,
1316				 enum d40_events event_type)
1317{
1318	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1319
1320	/* Enable event line connected to device (or memcpy) */
1321	if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1322	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1323		__d40_config_set_event(d40c, event_type, event,
1324				       D40_CHAN_REG_SSLNK);
1325
1326	if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1327		__d40_config_set_event(d40c, event_type, event,
1328				       D40_CHAN_REG_SDLNK);
1329}
1330
1331static u32 d40_chan_has_events(struct d40_chan *d40c)
1332{
1333	void __iomem *chanbase = chan_base(d40c);
1334	u32 val;
1335
1336	val = readl(chanbase + D40_CHAN_REG_SSLNK);
1337	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1338
1339	return val;
1340}
1341
1342static int
1343__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1344{
1345	unsigned long flags;
1346	int ret = 0;
1347	u32 active_status;
1348	void __iomem *active_reg;
1349
1350	if (d40c->phy_chan->num % 2 == 0)
1351		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1352	else
1353		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1354
1355
1356	spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1357
1358	switch (command) {
1359	case D40_DMA_STOP:
1360	case D40_DMA_SUSPEND_REQ:
1361
1362		active_status = (readl(active_reg) &
1363				 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1364				 D40_CHAN_POS(d40c->phy_chan->num);
1365
1366		if (active_status == D40_DMA_RUN)
1367			d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1368		else
1369			d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1370
1371		if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1372			ret = __d40_execute_command_phy(d40c, command);
1373
1374		break;
1375
1376	case D40_DMA_RUN:
1377
1378		d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1379		ret = __d40_execute_command_phy(d40c, command);
1380		break;
1381
1382	case D40_DMA_SUSPENDED:
1383		BUG();
1384		break;
1385	}
1386
1387	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1388	return ret;
1389}
1390
1391static int d40_channel_execute_command(struct d40_chan *d40c,
1392				       enum d40_command command)
1393{
1394	if (chan_is_logical(d40c))
1395		return __d40_execute_command_log(d40c, command);
1396	else
1397		return __d40_execute_command_phy(d40c, command);
1398}
1399
1400static u32 d40_get_prmo(struct d40_chan *d40c)
1401{
1402	static const unsigned int phy_map[] = {
1403		[STEDMA40_PCHAN_BASIC_MODE]
1404			= D40_DREG_PRMO_PCHAN_BASIC,
1405		[STEDMA40_PCHAN_MODULO_MODE]
1406			= D40_DREG_PRMO_PCHAN_MODULO,
1407		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
1408			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1409	};
1410	static const unsigned int log_map[] = {
1411		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1412			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1413		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1414			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1415		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1416			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1417	};
1418
1419	if (chan_is_physical(d40c))
1420		return phy_map[d40c->dma_cfg.mode_opt];
1421	else
1422		return log_map[d40c->dma_cfg.mode_opt];
1423}
1424
1425static void d40_config_write(struct d40_chan *d40c)
1426{
1427	u32 addr_base;
1428	u32 var;
1429
1430	/* Odd addresses are even addresses + 4 */
1431	addr_base = (d40c->phy_chan->num % 2) * 4;
1432	/* Setup channel mode to logical or physical */
1433	var = ((u32)(chan_is_logical(d40c)) + 1) <<
1434		D40_CHAN_POS(d40c->phy_chan->num);
1435	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1436
1437	/* Setup operational mode option register */
1438	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1439
1440	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1441
1442	if (chan_is_logical(d40c)) {
1443		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1444			   & D40_SREG_ELEM_LOG_LIDX_MASK;
1445		void __iomem *chanbase = chan_base(d40c);
1446
1447		/* Set default config for CFG reg */
1448		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1449		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1450
1451		/* Set LIDX for lcla */
1452		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1453		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1454
1455		/* Clear LNK which will be used by d40_chan_has_events() */
1456		writel(0, chanbase + D40_CHAN_REG_SSLNK);
1457		writel(0, chanbase + D40_CHAN_REG_SDLNK);
1458	}
1459}
1460
1461static u32 d40_residue(struct d40_chan *d40c)
1462{
1463	u32 num_elt;
1464
1465	if (chan_is_logical(d40c))
1466		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1467			>> D40_MEM_LCSP2_ECNT_POS;
1468	else {
1469		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1470		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1471			  >> D40_SREG_ELEM_PHY_ECNT_POS;
1472	}
1473
1474	return num_elt * d40c->dma_cfg.dst_info.data_width;
1475}
1476
1477static bool d40_tx_is_linked(struct d40_chan *d40c)
1478{
1479	bool is_link;
1480
1481	if (chan_is_logical(d40c))
1482		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1483	else
1484		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1485			  & D40_SREG_LNK_PHYS_LNK_MASK;
1486
1487	return is_link;
1488}
1489
1490static int d40_pause(struct d40_chan *d40c)
1491{
1492	int res = 0;
1493	unsigned long flags;
1494
1495	if (!d40c->busy)
1496		return 0;
1497
1498	pm_runtime_get_sync(d40c->base->dev);
1499	spin_lock_irqsave(&d40c->lock, flags);
1500
1501	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1502
1503	pm_runtime_mark_last_busy(d40c->base->dev);
1504	pm_runtime_put_autosuspend(d40c->base->dev);
1505	spin_unlock_irqrestore(&d40c->lock, flags);
1506	return res;
1507}
1508
1509static int d40_resume(struct d40_chan *d40c)
1510{
1511	int res = 0;
1512	unsigned long flags;
1513
1514	if (!d40c->busy)
1515		return 0;
1516
1517	spin_lock_irqsave(&d40c->lock, flags);
1518	pm_runtime_get_sync(d40c->base->dev);
1519
1520	/* If bytes left to transfer or linked tx resume job */
1521	if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1522		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1523
1524	pm_runtime_mark_last_busy(d40c->base->dev);
1525	pm_runtime_put_autosuspend(d40c->base->dev);
1526	spin_unlock_irqrestore(&d40c->lock, flags);
1527	return res;
1528}
1529
1530static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1531{
1532	struct d40_chan *d40c = container_of(tx->chan,
1533					     struct d40_chan,
1534					     chan);
1535	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1536	unsigned long flags;
1537	dma_cookie_t cookie;
1538
1539	spin_lock_irqsave(&d40c->lock, flags);
1540	cookie = dma_cookie_assign(tx);
1541	d40_desc_queue(d40c, d40d);
1542	spin_unlock_irqrestore(&d40c->lock, flags);
1543
1544	return cookie;
1545}
1546
1547static int d40_start(struct d40_chan *d40c)
1548{
1549	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1550}
1551
1552static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1553{
1554	struct d40_desc *d40d;
1555	int err;
1556
1557	/* Start queued jobs, if any */
1558	d40d = d40_first_queued(d40c);
1559
1560	if (d40d != NULL) {
1561		if (!d40c->busy) {
1562			d40c->busy = true;
1563			pm_runtime_get_sync(d40c->base->dev);
1564		}
1565
1566		/* Remove from queue */
1567		d40_desc_remove(d40d);
1568
1569		/* Add to active queue */
1570		d40_desc_submit(d40c, d40d);
1571
1572		/* Initiate DMA job */
1573		d40_desc_load(d40c, d40d);
1574
1575		/* Start dma job */
1576		err = d40_start(d40c);
1577
1578		if (err)
1579			return NULL;
1580	}
1581
1582	return d40d;
1583}
1584
1585/* called from interrupt context */
1586static void dma_tc_handle(struct d40_chan *d40c)
1587{
1588	struct d40_desc *d40d;
1589
1590	/* Get first active entry from list */
1591	d40d = d40_first_active_get(d40c);
1592
1593	if (d40d == NULL)
1594		return;
1595
1596	if (d40d->cyclic) {
1597		/*
1598		 * If this was a paritially loaded list, we need to reloaded
1599		 * it, and only when the list is completed.  We need to check
1600		 * for done because the interrupt will hit for every link, and
1601		 * not just the last one.
1602		 */
1603		if (d40d->lli_current < d40d->lli_len
1604		    && !d40_tx_is_linked(d40c)
1605		    && !d40_residue(d40c)) {
1606			d40_lcla_free_all(d40c, d40d);
1607			d40_desc_load(d40c, d40d);
1608			(void) d40_start(d40c);
1609
1610			if (d40d->lli_current == d40d->lli_len)
1611				d40d->lli_current = 0;
1612		}
1613	} else {
1614		d40_lcla_free_all(d40c, d40d);
1615
1616		if (d40d->lli_current < d40d->lli_len) {
1617			d40_desc_load(d40c, d40d);
1618			/* Start dma job */
1619			(void) d40_start(d40c);
1620			return;
1621		}
1622
1623		if (d40_queue_start(d40c) == NULL) {
1624			d40c->busy = false;
1625
1626			pm_runtime_mark_last_busy(d40c->base->dev);
1627			pm_runtime_put_autosuspend(d40c->base->dev);
1628		}
1629
1630		d40_desc_remove(d40d);
1631		d40_desc_done(d40c, d40d);
1632	}
1633
1634	d40c->pending_tx++;
1635	tasklet_schedule(&d40c->tasklet);
1636
1637}
1638
1639static void dma_tasklet(unsigned long data)
1640{
1641	struct d40_chan *d40c = (struct d40_chan *) data;
1642	struct d40_desc *d40d;
1643	unsigned long flags;
1644	bool callback_active;
1645	dma_async_tx_callback callback;
1646	void *callback_param;
1647
1648	spin_lock_irqsave(&d40c->lock, flags);
1649
1650	/* Get first entry from the done list */
1651	d40d = d40_first_done(d40c);
1652	if (d40d == NULL) {
1653		/* Check if we have reached here for cyclic job */
1654		d40d = d40_first_active_get(d40c);
1655		if (d40d == NULL || !d40d->cyclic)
1656			goto err;
1657	}
1658
1659	if (!d40d->cyclic)
1660		dma_cookie_complete(&d40d->txd);
1661
1662	/*
1663	 * If terminating a channel pending_tx is set to zero.
1664	 * This prevents any finished active jobs to return to the client.
1665	 */
1666	if (d40c->pending_tx == 0) {
1667		spin_unlock_irqrestore(&d40c->lock, flags);
1668		return;
1669	}
1670
1671	/* Callback to client */
1672	callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1673	callback = d40d->txd.callback;
1674	callback_param = d40d->txd.callback_param;
1675
1676	if (!d40d->cyclic) {
1677		if (async_tx_test_ack(&d40d->txd)) {
1678			d40_desc_remove(d40d);
1679			d40_desc_free(d40c, d40d);
1680		} else if (!d40d->is_in_client_list) {
1681			d40_desc_remove(d40d);
1682			d40_lcla_free_all(d40c, d40d);
1683			list_add_tail(&d40d->node, &d40c->client);
1684			d40d->is_in_client_list = true;
1685		}
1686	}
1687
1688	d40c->pending_tx--;
1689
1690	if (d40c->pending_tx)
1691		tasklet_schedule(&d40c->tasklet);
1692
1693	spin_unlock_irqrestore(&d40c->lock, flags);
1694
1695	if (callback_active && callback)
1696		callback(callback_param);
1697
1698	return;
1699
1700err:
1701	/* Rescue manouver if receiving double interrupts */
1702	if (d40c->pending_tx > 0)
1703		d40c->pending_tx--;
1704	spin_unlock_irqrestore(&d40c->lock, flags);
1705}
1706
1707static irqreturn_t d40_handle_interrupt(int irq, void *data)
1708{
1709	int i;
1710	u32 idx;
1711	u32 row;
1712	long chan = -1;
1713	struct d40_chan *d40c;
1714	unsigned long flags;
1715	struct d40_base *base = data;
1716	u32 regs[base->gen_dmac.il_size];
1717	struct d40_interrupt_lookup *il = base->gen_dmac.il;
1718	u32 il_size = base->gen_dmac.il_size;
1719
1720	spin_lock_irqsave(&base->interrupt_lock, flags);
1721
1722	/* Read interrupt status of both logical and physical channels */
1723	for (i = 0; i < il_size; i++)
1724		regs[i] = readl(base->virtbase + il[i].src);
1725
1726	for (;;) {
1727
1728		chan = find_next_bit((unsigned long *)regs,
1729				     BITS_PER_LONG * il_size, chan + 1);
1730
1731		/* No more set bits found? */
1732		if (chan == BITS_PER_LONG * il_size)
1733			break;
1734
1735		row = chan / BITS_PER_LONG;
1736		idx = chan & (BITS_PER_LONG - 1);
1737
1738		if (il[row].offset == D40_PHY_CHAN)
1739			d40c = base->lookup_phy_chans[idx];
1740		else
1741			d40c = base->lookup_log_chans[il[row].offset + idx];
1742
1743		if (!d40c) {
1744			/*
1745			 * No error because this can happen if something else
1746			 * in the system is using the channel.
1747			 */
1748			continue;
1749		}
1750
1751		/* ACK interrupt */
1752		writel(BIT(idx), base->virtbase + il[row].clr);
1753
1754		spin_lock(&d40c->lock);
1755
1756		if (!il[row].is_error)
1757			dma_tc_handle(d40c);
1758		else
1759			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1760				chan, il[row].offset, idx);
1761
1762		spin_unlock(&d40c->lock);
1763	}
1764
1765	spin_unlock_irqrestore(&base->interrupt_lock, flags);
1766
1767	return IRQ_HANDLED;
1768}
1769
1770static int d40_validate_conf(struct d40_chan *d40c,
1771			     struct stedma40_chan_cfg *conf)
1772{
1773	int res = 0;
1774	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1775
1776	if (!conf->dir) {
1777		chan_err(d40c, "Invalid direction.\n");
1778		res = -EINVAL;
1779	}
1780
1781	if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
1782	    (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1783	    (conf->dev_type < 0)) {
1784		chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1785		res = -EINVAL;
1786	}
1787
1788	if (conf->dir == DMA_DEV_TO_DEV) {
1789		/*
1790		 * DMAC HW supports it. Will be added to this driver,
1791		 * in case any dma client requires it.
1792		 */
1793		chan_err(d40c, "periph to periph not supported\n");
1794		res = -EINVAL;
1795	}
1796
1797	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1798	    conf->src_info.data_width !=
1799	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1800	    conf->dst_info.data_width) {
1801		/*
1802		 * The DMAC hardware only supports
1803		 * src (burst x width) == dst (burst x width)
1804		 */
1805
1806		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1807		res = -EINVAL;
1808	}
1809
1810	return res;
1811}
1812
1813static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1814			       bool is_src, int log_event_line, bool is_log,
1815			       bool *first_user)
1816{
1817	unsigned long flags;
1818	spin_lock_irqsave(&phy->lock, flags);
1819
1820	*first_user = ((phy->allocated_src | phy->allocated_dst)
1821			== D40_ALLOC_FREE);
1822
1823	if (!is_log) {
1824		/* Physical interrupts are masked per physical full channel */
1825		if (phy->allocated_src == D40_ALLOC_FREE &&
1826		    phy->allocated_dst == D40_ALLOC_FREE) {
1827			phy->allocated_dst = D40_ALLOC_PHY;
1828			phy->allocated_src = D40_ALLOC_PHY;
1829			goto found;
1830		} else
1831			goto not_found;
1832	}
1833
1834	/* Logical channel */
1835	if (is_src) {
1836		if (phy->allocated_src == D40_ALLOC_PHY)
1837			goto not_found;
1838
1839		if (phy->allocated_src == D40_ALLOC_FREE)
1840			phy->allocated_src = D40_ALLOC_LOG_FREE;
1841
1842		if (!(phy->allocated_src & BIT(log_event_line))) {
1843			phy->allocated_src |= BIT(log_event_line);
1844			goto found;
1845		} else
1846			goto not_found;
1847	} else {
1848		if (phy->allocated_dst == D40_ALLOC_PHY)
1849			goto not_found;
1850
1851		if (phy->allocated_dst == D40_ALLOC_FREE)
1852			phy->allocated_dst = D40_ALLOC_LOG_FREE;
1853
1854		if (!(phy->allocated_dst & BIT(log_event_line))) {
1855			phy->allocated_dst |= BIT(log_event_line);
1856			goto found;
1857		} else
1858			goto not_found;
1859	}
1860
1861not_found:
1862	spin_unlock_irqrestore(&phy->lock, flags);
1863	return false;
1864found:
1865	spin_unlock_irqrestore(&phy->lock, flags);
1866	return true;
1867}
1868
1869static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1870			       int log_event_line)
1871{
1872	unsigned long flags;
1873	bool is_free = false;
1874
1875	spin_lock_irqsave(&phy->lock, flags);
1876	if (!log_event_line) {
1877		phy->allocated_dst = D40_ALLOC_FREE;
1878		phy->allocated_src = D40_ALLOC_FREE;
1879		is_free = true;
1880		goto out;
1881	}
1882
1883	/* Logical channel */
1884	if (is_src) {
1885		phy->allocated_src &= ~BIT(log_event_line);
1886		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1887			phy->allocated_src = D40_ALLOC_FREE;
1888	} else {
1889		phy->allocated_dst &= ~BIT(log_event_line);
1890		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1891			phy->allocated_dst = D40_ALLOC_FREE;
1892	}
1893
1894	is_free = ((phy->allocated_src | phy->allocated_dst) ==
1895		   D40_ALLOC_FREE);
1896
1897out:
1898	spin_unlock_irqrestore(&phy->lock, flags);
1899
1900	return is_free;
1901}
1902
1903static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1904{
1905	int dev_type = d40c->dma_cfg.dev_type;
1906	int event_group;
1907	int event_line;
1908	struct d40_phy_res *phys;
1909	int i;
1910	int j;
1911	int log_num;
1912	int num_phy_chans;
1913	bool is_src;
1914	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1915
1916	phys = d40c->base->phy_res;
1917	num_phy_chans = d40c->base->num_phy_chans;
1918
1919	if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1920		log_num = 2 * dev_type;
1921		is_src = true;
1922	} else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1923		   d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1924		/* dst event lines are used for logical memcpy */
1925		log_num = 2 * dev_type + 1;
1926		is_src = false;
1927	} else
1928		return -EINVAL;
1929
1930	event_group = D40_TYPE_TO_GROUP(dev_type);
1931	event_line = D40_TYPE_TO_EVENT(dev_type);
1932
1933	if (!is_log) {
1934		if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1935			/* Find physical half channel */
1936			if (d40c->dma_cfg.use_fixed_channel) {
1937				i = d40c->dma_cfg.phy_channel;
1938				if (d40_alloc_mask_set(&phys[i], is_src,
1939						       0, is_log,
1940						       first_phy_user))
1941					goto found_phy;
1942			} else {
1943				for (i = 0; i < num_phy_chans; i++) {
1944					if (d40_alloc_mask_set(&phys[i], is_src,
1945						       0, is_log,
1946						       first_phy_user))
1947						goto found_phy;
1948				}
1949			}
1950		} else
1951			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1952				int phy_num = j  + event_group * 2;
1953				for (i = phy_num; i < phy_num + 2; i++) {
1954					if (d40_alloc_mask_set(&phys[i],
1955							       is_src,
1956							       0,
1957							       is_log,
1958							       first_phy_user))
1959						goto found_phy;
1960				}
1961			}
1962		return -EINVAL;
1963found_phy:
1964		d40c->phy_chan = &phys[i];
1965		d40c->log_num = D40_PHY_CHAN;
1966		goto out;
1967	}
1968	if (dev_type == -1)
1969		return -EINVAL;
1970
1971	/* Find logical channel */
1972	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1973		int phy_num = j + event_group * 2;
1974
1975		if (d40c->dma_cfg.use_fixed_channel) {
1976			i = d40c->dma_cfg.phy_channel;
1977
1978			if ((i != phy_num) && (i != phy_num + 1)) {
1979				dev_err(chan2dev(d40c),
1980					"invalid fixed phy channel %d\n", i);
1981				return -EINVAL;
1982			}
1983
1984			if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1985					       is_log, first_phy_user))
1986				goto found_log;
1987
1988			dev_err(chan2dev(d40c),
1989				"could not allocate fixed phy channel %d\n", i);
1990			return -EINVAL;
1991		}
1992
1993		/*
1994		 * Spread logical channels across all available physical rather
1995		 * than pack every logical channel at the first available phy
1996		 * channels.
1997		 */
1998		if (is_src) {
1999			for (i = phy_num; i < phy_num + 2; i++) {
2000				if (d40_alloc_mask_set(&phys[i], is_src,
2001						       event_line, is_log,
2002						       first_phy_user))
2003					goto found_log;
2004			}
2005		} else {
2006			for (i = phy_num + 1; i >= phy_num; i--) {
2007				if (d40_alloc_mask_set(&phys[i], is_src,
2008						       event_line, is_log,
2009						       first_phy_user))
2010					goto found_log;
2011			}
2012		}
2013	}
2014	return -EINVAL;
2015
2016found_log:
2017	d40c->phy_chan = &phys[i];
2018	d40c->log_num = log_num;
2019out:
2020
2021	if (is_log)
2022		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
2023	else
2024		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
2025
2026	return 0;
2027
2028}
2029
2030static int d40_config_memcpy(struct d40_chan *d40c)
2031{
2032	dma_cap_mask_t cap = d40c->chan.device->cap_mask;
2033
2034	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
2035		d40c->dma_cfg = dma40_memcpy_conf_log;
2036		d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
2037
2038		d40_log_cfg(&d40c->dma_cfg,
2039			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2040
2041	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
2042		   dma_has_cap(DMA_SLAVE, cap)) {
2043		d40c->dma_cfg = dma40_memcpy_conf_phy;
2044
2045		/* Generate interrrupt at end of transfer or relink. */
2046		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
2047
2048		/* Generate interrupt on error. */
2049		d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2050		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2051
2052	} else {
2053		chan_err(d40c, "No memcpy\n");
2054		return -EINVAL;
2055	}
2056
2057	return 0;
2058}
2059
2060static int d40_free_dma(struct d40_chan *d40c)
2061{
2062
2063	int res = 0;
2064	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2065	struct d40_phy_res *phy = d40c->phy_chan;
2066	bool is_src;
2067
2068	/* Terminate all queued and active transfers */
2069	d40_term_all(d40c);
2070
2071	if (phy == NULL) {
2072		chan_err(d40c, "phy == null\n");
2073		return -EINVAL;
2074	}
2075
2076	if (phy->allocated_src == D40_ALLOC_FREE &&
2077	    phy->allocated_dst == D40_ALLOC_FREE) {
2078		chan_err(d40c, "channel already free\n");
2079		return -EINVAL;
2080	}
2081
2082	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2083	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2084		is_src = false;
2085	else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2086		is_src = true;
2087	else {
2088		chan_err(d40c, "Unknown direction\n");
2089		return -EINVAL;
2090	}
2091
2092	pm_runtime_get_sync(d40c->base->dev);
2093	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2094	if (res) {
2095		chan_err(d40c, "stop failed\n");
2096		goto out;
2097	}
2098
2099	d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2100
2101	if (chan_is_logical(d40c))
2102		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2103	else
2104		d40c->base->lookup_phy_chans[phy->num] = NULL;
2105
2106	if (d40c->busy) {
2107		pm_runtime_mark_last_busy(d40c->base->dev);
2108		pm_runtime_put_autosuspend(d40c->base->dev);
2109	}
2110
2111	d40c->busy = false;
2112	d40c->phy_chan = NULL;
2113	d40c->configured = false;
2114out:
2115
2116	pm_runtime_mark_last_busy(d40c->base->dev);
2117	pm_runtime_put_autosuspend(d40c->base->dev);
2118	return res;
2119}
2120
2121static bool d40_is_paused(struct d40_chan *d40c)
2122{
2123	void __iomem *chanbase = chan_base(d40c);
2124	bool is_paused = false;
2125	unsigned long flags;
2126	void __iomem *active_reg;
2127	u32 status;
2128	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2129
2130	spin_lock_irqsave(&d40c->lock, flags);
2131
2132	if (chan_is_physical(d40c)) {
2133		if (d40c->phy_chan->num % 2 == 0)
2134			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2135		else
2136			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2137
2138		status = (readl(active_reg) &
2139			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2140			D40_CHAN_POS(d40c->phy_chan->num);
2141		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2142			is_paused = true;
2143
2144		goto _exit;
2145	}
2146
2147	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2148	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2149		status = readl(chanbase + D40_CHAN_REG_SDLNK);
2150	} else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2151		status = readl(chanbase + D40_CHAN_REG_SSLNK);
2152	} else {
2153		chan_err(d40c, "Unknown direction\n");
2154		goto _exit;
2155	}
2156
2157	status = (status & D40_EVENTLINE_MASK(event)) >>
2158		D40_EVENTLINE_POS(event);
2159
2160	if (status != D40_DMA_RUN)
2161		is_paused = true;
2162_exit:
2163	spin_unlock_irqrestore(&d40c->lock, flags);
2164	return is_paused;
2165
2166}
2167
2168static u32 stedma40_residue(struct dma_chan *chan)
2169{
2170	struct d40_chan *d40c =
2171		container_of(chan, struct d40_chan, chan);
2172	u32 bytes_left;
2173	unsigned long flags;
2174
2175	spin_lock_irqsave(&d40c->lock, flags);
2176	bytes_left = d40_residue(d40c);
2177	spin_unlock_irqrestore(&d40c->lock, flags);
2178
2179	return bytes_left;
2180}
2181
2182static int
2183d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2184		struct scatterlist *sg_src, struct scatterlist *sg_dst,
2185		unsigned int sg_len, dma_addr_t src_dev_addr,
2186		dma_addr_t dst_dev_addr)
2187{
2188	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2189	struct stedma40_half_channel_info *src_info = &cfg->src_info;
2190	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2191	int ret;
2192
2193	ret = d40_log_sg_to_lli(sg_src, sg_len,
2194				src_dev_addr,
2195				desc->lli_log.src,
2196				chan->log_def.lcsp1,
2197				src_info->data_width,
2198				dst_info->data_width);
2199
2200	ret = d40_log_sg_to_lli(sg_dst, sg_len,
2201				dst_dev_addr,
2202				desc->lli_log.dst,
2203				chan->log_def.lcsp3,
2204				dst_info->data_width,
2205				src_info->data_width);
2206
2207	return ret < 0 ? ret : 0;
2208}
2209
2210static int
2211d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2212		struct scatterlist *sg_src, struct scatterlist *sg_dst,
2213		unsigned int sg_len, dma_addr_t src_dev_addr,
2214		dma_addr_t dst_dev_addr)
2215{
2216	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2217	struct stedma40_half_channel_info *src_info = &cfg->src_info;
2218	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2219	unsigned long flags = 0;
2220	int ret;
2221
2222	if (desc->cyclic)
2223		flags |= LLI_CYCLIC | LLI_TERM_INT;
2224
2225	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2226				desc->lli_phy.src,
2227				virt_to_phys(desc->lli_phy.src),
2228				chan->src_def_cfg,
2229				src_info, dst_info, flags);
2230
2231	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2232				desc->lli_phy.dst,
2233				virt_to_phys(desc->lli_phy.dst),
2234				chan->dst_def_cfg,
2235				dst_info, src_info, flags);
2236
2237	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2238				   desc->lli_pool.size, DMA_TO_DEVICE);
2239
2240	return ret < 0 ? ret : 0;
2241}
2242
2243static struct d40_desc *
2244d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2245	      unsigned int sg_len, unsigned long dma_flags)
2246{
2247	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2248	struct d40_desc *desc;
2249	int ret;
2250
2251	desc = d40_desc_get(chan);
2252	if (!desc)
2253		return NULL;
2254
2255	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2256					cfg->dst_info.data_width);
2257	if (desc->lli_len < 0) {
2258		chan_err(chan, "Unaligned size\n");
2259		goto err;
2260	}
2261
2262	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2263	if (ret < 0) {
2264		chan_err(chan, "Could not allocate lli\n");
2265		goto err;
2266	}
2267
2268	desc->lli_current = 0;
2269	desc->txd.flags = dma_flags;
2270	desc->txd.tx_submit = d40_tx_submit;
2271
2272	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2273
2274	return desc;
2275
2276err:
2277	d40_desc_free(chan, desc);
2278	return NULL;
2279}
2280
2281static struct dma_async_tx_descriptor *
2282d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2283	    struct scatterlist *sg_dst, unsigned int sg_len,
2284	    enum dma_transfer_direction direction, unsigned long dma_flags)
2285{
2286	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2287	dma_addr_t src_dev_addr = 0;
2288	dma_addr_t dst_dev_addr = 0;
2289	struct d40_desc *desc;
2290	unsigned long flags;
2291	int ret;
2292
2293	if (!chan->phy_chan) {
2294		chan_err(chan, "Cannot prepare unallocated channel\n");
2295		return NULL;
2296	}
2297
2298	spin_lock_irqsave(&chan->lock, flags);
2299
2300	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2301	if (desc == NULL)
2302		goto err;
2303
2304	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2305		desc->cyclic = true;
2306
2307	if (direction == DMA_DEV_TO_MEM)
2308		src_dev_addr = chan->runtime_addr;
2309	else if (direction == DMA_MEM_TO_DEV)
2310		dst_dev_addr = chan->runtime_addr;
2311
2312	if (chan_is_logical(chan))
2313		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2314				      sg_len, src_dev_addr, dst_dev_addr);
2315	else
2316		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2317				      sg_len, src_dev_addr, dst_dev_addr);
2318
2319	if (ret) {
2320		chan_err(chan, "Failed to prepare %s sg job: %d\n",
2321			 chan_is_logical(chan) ? "log" : "phy", ret);
2322		goto err;
2323	}
2324
2325	/*
2326	 * add descriptor to the prepare queue in order to be able
2327	 * to free them later in terminate_all
2328	 */
2329	list_add_tail(&desc->node, &chan->prepare_queue);
2330
2331	spin_unlock_irqrestore(&chan->lock, flags);
2332
2333	return &desc->txd;
2334
2335err:
2336	if (desc)
2337		d40_desc_free(chan, desc);
2338	spin_unlock_irqrestore(&chan->lock, flags);
2339	return NULL;
2340}
2341
2342bool stedma40_filter(struct dma_chan *chan, void *data)
2343{
2344	struct stedma40_chan_cfg *info = data;
2345	struct d40_chan *d40c =
2346		container_of(chan, struct d40_chan, chan);
2347	int err;
2348
2349	if (data) {
2350		err = d40_validate_conf(d40c, info);
2351		if (!err)
2352			d40c->dma_cfg = *info;
2353	} else
2354		err = d40_config_memcpy(d40c);
2355
2356	if (!err)
2357		d40c->configured = true;
2358
2359	return err == 0;
2360}
2361EXPORT_SYMBOL(stedma40_filter);
2362
2363static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2364{
2365	bool realtime = d40c->dma_cfg.realtime;
2366	bool highprio = d40c->dma_cfg.high_priority;
2367	u32 rtreg;
2368	u32 event = D40_TYPE_TO_EVENT(dev_type);
2369	u32 group = D40_TYPE_TO_GROUP(dev_type);
2370	u32 bit = BIT(event);
2371	u32 prioreg;
2372	struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2373
2374	rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2375	/*
2376	 * Due to a hardware bug, in some cases a logical channel triggered by
2377	 * a high priority destination event line can generate extra packet
2378	 * transactions.
2379	 *
2380	 * The workaround is to not set the high priority level for the
2381	 * destination event lines that trigger logical channels.
2382	 */
2383	if (!src && chan_is_logical(d40c))
2384		highprio = false;
2385
2386	prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2387
2388	/* Destination event lines are stored in the upper halfword */
2389	if (!src)
2390		bit <<= 16;
2391
2392	writel(bit, d40c->base->virtbase + prioreg + group * 4);
2393	writel(bit, d40c->base->virtbase + rtreg + group * 4);
2394}
2395
2396static void d40_set_prio_realtime(struct d40_chan *d40c)
2397{
2398	if (d40c->base->rev < 3)
2399		return;
2400
2401	if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
2402	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2403		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2404
2405	if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
2406	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2407		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2408}
2409
2410#define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
2411#define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
2412#define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2413#define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2414#define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2415
2416static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2417				  struct of_dma *ofdma)
2418{
2419	struct stedma40_chan_cfg cfg;
2420	dma_cap_mask_t cap;
2421	u32 flags;
2422
2423	memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2424
2425	dma_cap_zero(cap);
2426	dma_cap_set(DMA_SLAVE, cap);
2427
2428	cfg.dev_type = dma_spec->args[0];
2429	flags = dma_spec->args[2];
2430
2431	switch (D40_DT_FLAGS_MODE(flags)) {
2432	case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2433	case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2434	}
2435
2436	switch (D40_DT_FLAGS_DIR(flags)) {
2437	case 0:
2438		cfg.dir = DMA_MEM_TO_DEV;
2439		cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2440		break;
2441	case 1:
2442		cfg.dir = DMA_DEV_TO_MEM;
2443		cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2444		break;
2445	}
2446
2447	if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2448		cfg.phy_channel = dma_spec->args[1];
2449		cfg.use_fixed_channel = true;
2450	}
2451
2452	if (D40_DT_FLAGS_HIGH_PRIO(flags))
2453		cfg.high_priority = true;
2454
2455	return dma_request_channel(cap, stedma40_filter, &cfg);
2456}
2457
2458/* DMA ENGINE functions */
2459static int d40_alloc_chan_resources(struct dma_chan *chan)
2460{
2461	int err;
2462	unsigned long flags;
2463	struct d40_chan *d40c =
2464		container_of(chan, struct d40_chan, chan);
2465	bool is_free_phy;
2466	spin_lock_irqsave(&d40c->lock, flags);
2467
2468	dma_cookie_init(chan);
2469
2470	/* If no dma configuration is set use default configuration (memcpy) */
2471	if (!d40c->configured) {
2472		err = d40_config_memcpy(d40c);
2473		if (err) {
2474			chan_err(d40c, "Failed to configure memcpy channel\n");
2475			goto fail;
2476		}
2477	}
2478
2479	err = d40_allocate_channel(d40c, &is_free_phy);
2480	if (err) {
2481		chan_err(d40c, "Failed to allocate channel\n");
2482		d40c->configured = false;
2483		goto fail;
2484	}
2485
2486	pm_runtime_get_sync(d40c->base->dev);
2487
2488	d40_set_prio_realtime(d40c);
2489
2490	if (chan_is_logical(d40c)) {
2491		if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2492			d40c->lcpa = d40c->base->lcpa_base +
2493				d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2494		else
2495			d40c->lcpa = d40c->base->lcpa_base +
2496				d40c->dma_cfg.dev_type *
2497				D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2498
2499		/* Unmask the Global Interrupt Mask. */
2500		d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2501		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2502	}
2503
2504	dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2505		 chan_is_logical(d40c) ? "logical" : "physical",
2506		 d40c->phy_chan->num,
2507		 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2508
2509
2510	/*
2511	 * Only write channel configuration to the DMA if the physical
2512	 * resource is free. In case of multiple logical channels
2513	 * on the same physical resource, only the first write is necessary.
2514	 */
2515	if (is_free_phy)
2516		d40_config_write(d40c);
2517fail:
2518	pm_runtime_mark_last_busy(d40c->base->dev);
2519	pm_runtime_put_autosuspend(d40c->base->dev);
2520	spin_unlock_irqrestore(&d40c->lock, flags);
2521	return err;
2522}
2523
2524static void d40_free_chan_resources(struct dma_chan *chan)
2525{
2526	struct d40_chan *d40c =
2527		container_of(chan, struct d40_chan, chan);
2528	int err;
2529	unsigned long flags;
2530
2531	if (d40c->phy_chan == NULL) {
2532		chan_err(d40c, "Cannot free unallocated channel\n");
2533		return;
2534	}
2535
2536	spin_lock_irqsave(&d40c->lock, flags);
2537
2538	err = d40_free_dma(d40c);
2539
2540	if (err)
2541		chan_err(d40c, "Failed to free channel\n");
2542	spin_unlock_irqrestore(&d40c->lock, flags);
2543}
2544
2545static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2546						       dma_addr_t dst,
2547						       dma_addr_t src,
2548						       size_t size,
2549						       unsigned long dma_flags)
2550{
2551	struct scatterlist dst_sg;
2552	struct scatterlist src_sg;
2553
2554	sg_init_table(&dst_sg, 1);
2555	sg_init_table(&src_sg, 1);
2556
2557	sg_dma_address(&dst_sg) = dst;
2558	sg_dma_address(&src_sg) = src;
2559
2560	sg_dma_len(&dst_sg) = size;
2561	sg_dma_len(&src_sg) = size;
2562
2563	return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2564}
2565
2566static struct dma_async_tx_descriptor *
2567d40_prep_memcpy_sg(struct dma_chan *chan,
2568		   struct scatterlist *dst_sg, unsigned int dst_nents,
2569		   struct scatterlist *src_sg, unsigned int src_nents,
2570		   unsigned long dma_flags)
2571{
2572	if (dst_nents != src_nents)
2573		return NULL;
2574
2575	return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2576}
2577
2578static struct dma_async_tx_descriptor *
2579d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2580		  unsigned int sg_len, enum dma_transfer_direction direction,
2581		  unsigned long dma_flags, void *context)
2582{
2583	if (!is_slave_direction(direction))
2584		return NULL;
2585
2586	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2587}
2588
2589static struct dma_async_tx_descriptor *
2590dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2591		     size_t buf_len, size_t period_len,
2592		     enum dma_transfer_direction direction, unsigned long flags,
2593		     void *context)
2594{
2595	unsigned int periods = buf_len / period_len;
2596	struct dma_async_tx_descriptor *txd;
2597	struct scatterlist *sg;
2598	int i;
2599
2600	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2601	if (!sg)
2602		return NULL;
2603
2604	for (i = 0; i < periods; i++) {
2605		sg_dma_address(&sg[i]) = dma_addr;
2606		sg_dma_len(&sg[i]) = period_len;
2607		dma_addr += period_len;
2608	}
2609
2610	sg[periods].offset = 0;
2611	sg_dma_len(&sg[periods]) = 0;
2612	sg[periods].page_link =
2613		((unsigned long)sg | 0x01) & ~0x02;
2614
2615	txd = d40_prep_sg(chan, sg, sg, periods, direction,
2616			  DMA_PREP_INTERRUPT);
2617
2618	kfree(sg);
2619
2620	return txd;
2621}
2622
2623static enum dma_status d40_tx_status(struct dma_chan *chan,
2624				     dma_cookie_t cookie,
2625				     struct dma_tx_state *txstate)
2626{
2627	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2628	enum dma_status ret;
2629
2630	if (d40c->phy_chan == NULL) {
2631		chan_err(d40c, "Cannot read status of unallocated channel\n");
2632		return -EINVAL;
2633	}
2634
2635	ret = dma_cookie_status(chan, cookie, txstate);
2636	if (ret != DMA_COMPLETE)
2637		dma_set_residue(txstate, stedma40_residue(chan));
2638
2639	if (d40_is_paused(d40c))
2640		ret = DMA_PAUSED;
2641
2642	return ret;
2643}
2644
2645static void d40_issue_pending(struct dma_chan *chan)
2646{
2647	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2648	unsigned long flags;
2649
2650	if (d40c->phy_chan == NULL) {
2651		chan_err(d40c, "Channel is not allocated!\n");
2652		return;
2653	}
2654
2655	spin_lock_irqsave(&d40c->lock, flags);
2656
2657	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2658
2659	/* Busy means that queued jobs are already being processed */
2660	if (!d40c->busy)
2661		(void) d40_queue_start(d40c);
2662
2663	spin_unlock_irqrestore(&d40c->lock, flags);
2664}
2665
2666static void d40_terminate_all(struct dma_chan *chan)
2667{
2668	unsigned long flags;
2669	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2670	int ret;
2671
2672	spin_lock_irqsave(&d40c->lock, flags);
2673
2674	pm_runtime_get_sync(d40c->base->dev);
2675	ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2676	if (ret)
2677		chan_err(d40c, "Failed to stop channel\n");
2678
2679	d40_term_all(d40c);
2680	pm_runtime_mark_last_busy(d40c->base->dev);
2681	pm_runtime_put_autosuspend(d40c->base->dev);
2682	if (d40c->busy) {
2683		pm_runtime_mark_last_busy(d40c->base->dev);
2684		pm_runtime_put_autosuspend(d40c->base->dev);
2685	}
2686	d40c->busy = false;
2687
2688	spin_unlock_irqrestore(&d40c->lock, flags);
2689}
2690
2691static int
2692dma40_config_to_halfchannel(struct d40_chan *d40c,
2693			    struct stedma40_half_channel_info *info,
2694			    u32 maxburst)
2695{
2696	int psize;
2697
2698	if (chan_is_logical(d40c)) {
2699		if (maxburst >= 16)
2700			psize = STEDMA40_PSIZE_LOG_16;
2701		else if (maxburst >= 8)
2702			psize = STEDMA40_PSIZE_LOG_8;
2703		else if (maxburst >= 4)
2704			psize = STEDMA40_PSIZE_LOG_4;
2705		else
2706			psize = STEDMA40_PSIZE_LOG_1;
2707	} else {
2708		if (maxburst >= 16)
2709			psize = STEDMA40_PSIZE_PHY_16;
2710		else if (maxburst >= 8)
2711			psize = STEDMA40_PSIZE_PHY_8;
2712		else if (maxburst >= 4)
2713			psize = STEDMA40_PSIZE_PHY_4;
2714		else
2715			psize = STEDMA40_PSIZE_PHY_1;
2716	}
2717
2718	info->psize = psize;
2719	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2720
2721	return 0;
2722}
2723
2724/* Runtime reconfiguration extension */
2725static int d40_set_runtime_config(struct dma_chan *chan,
2726				  struct dma_slave_config *config)
2727{
2728	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2729	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2730	enum dma_slave_buswidth src_addr_width, dst_addr_width;
2731	dma_addr_t config_addr;
2732	u32 src_maxburst, dst_maxburst;
2733	int ret;
2734
2735	src_addr_width = config->src_addr_width;
2736	src_maxburst = config->src_maxburst;
2737	dst_addr_width = config->dst_addr_width;
2738	dst_maxburst = config->dst_maxburst;
2739
2740	if (config->direction == DMA_DEV_TO_MEM) {
2741		config_addr = config->src_addr;
2742
2743		if (cfg->dir != DMA_DEV_TO_MEM)
2744			dev_dbg(d40c->base->dev,
2745				"channel was not configured for peripheral "
2746				"to memory transfer (%d) overriding\n",
2747				cfg->dir);
2748		cfg->dir = DMA_DEV_TO_MEM;
2749
2750		/* Configure the memory side */
2751		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2752			dst_addr_width = src_addr_width;
2753		if (dst_maxburst == 0)
2754			dst_maxburst = src_maxburst;
2755
2756	} else if (config->direction == DMA_MEM_TO_DEV) {
2757		config_addr = config->dst_addr;
2758
2759		if (cfg->dir != DMA_MEM_TO_DEV)
2760			dev_dbg(d40c->base->dev,
2761				"channel was not configured for memory "
2762				"to peripheral transfer (%d) overriding\n",
2763				cfg->dir);
2764		cfg->dir = DMA_MEM_TO_DEV;
2765
2766		/* Configure the memory side */
2767		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2768			src_addr_width = dst_addr_width;
2769		if (src_maxburst == 0)
2770			src_maxburst = dst_maxburst;
2771	} else {
2772		dev_err(d40c->base->dev,
2773			"unrecognized channel direction %d\n",
2774			config->direction);
2775		return -EINVAL;
2776	}
2777
2778	if (config_addr <= 0) {
2779		dev_err(d40c->base->dev, "no address supplied\n");
2780		return -EINVAL;
2781	}
2782
2783	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2784		dev_err(d40c->base->dev,
2785			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2786			src_maxburst,
2787			src_addr_width,
2788			dst_maxburst,
2789			dst_addr_width);
2790		return -EINVAL;
2791	}
2792
2793	if (src_maxburst > 16) {
2794		src_maxburst = 16;
2795		dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2796	} else if (dst_maxburst > 16) {
2797		dst_maxburst = 16;
2798		src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2799	}
2800
2801	/* Only valid widths are; 1, 2, 4 and 8. */
2802	if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2803	    src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2804	    dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2805	    dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2806	    !is_power_of_2(src_addr_width) ||
2807	    !is_power_of_2(dst_addr_width))
2808		return -EINVAL;
2809
2810	cfg->src_info.data_width = src_addr_width;
2811	cfg->dst_info.data_width = dst_addr_width;
2812
2813	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2814					  src_maxburst);
2815	if (ret)
2816		return ret;
2817
2818	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2819					  dst_maxburst);
2820	if (ret)
2821		return ret;
2822
2823	/* Fill in register values */
2824	if (chan_is_logical(d40c))
2825		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2826	else
2827		d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2828
2829	/* These settings will take precedence later */
2830	d40c->runtime_addr = config_addr;
2831	d40c->runtime_direction = config->direction;
2832	dev_dbg(d40c->base->dev,
2833		"configured channel %s for %s, data width %d/%d, "
2834		"maxburst %d/%d elements, LE, no flow control\n",
2835		dma_chan_name(chan),
2836		(config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2837		src_addr_width, dst_addr_width,
2838		src_maxburst, dst_maxburst);
2839
2840	return 0;
2841}
2842
2843static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2844		       unsigned long arg)
2845{
2846	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2847
2848	if (d40c->phy_chan == NULL) {
2849		chan_err(d40c, "Channel is not allocated!\n");
2850		return -EINVAL;
2851	}
2852
2853	switch (cmd) {
2854	case DMA_TERMINATE_ALL:
2855		d40_terminate_all(chan);
2856		return 0;
2857	case DMA_PAUSE:
2858		return d40_pause(d40c);
2859	case DMA_RESUME:
2860		return d40_resume(d40c);
2861	case DMA_SLAVE_CONFIG:
2862		return d40_set_runtime_config(chan,
2863			(struct dma_slave_config *) arg);
2864	default:
2865		break;
2866	}
2867
2868	/* Other commands are unimplemented */
2869	return -ENXIO;
2870}
2871
2872/* Initialization functions */
2873
2874static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2875				 struct d40_chan *chans, int offset,
2876				 int num_chans)
2877{
2878	int i = 0;
2879	struct d40_chan *d40c;
2880
2881	INIT_LIST_HEAD(&dma->channels);
2882
2883	for (i = offset; i < offset + num_chans; i++) {
2884		d40c = &chans[i];
2885		d40c->base = base;
2886		d40c->chan.device = dma;
2887
2888		spin_lock_init(&d40c->lock);
2889
2890		d40c->log_num = D40_PHY_CHAN;
2891
2892		INIT_LIST_HEAD(&d40c->done);
2893		INIT_LIST_HEAD(&d40c->active);
2894		INIT_LIST_HEAD(&d40c->queue);
2895		INIT_LIST_HEAD(&d40c->pending_queue);
2896		INIT_LIST_HEAD(&d40c->client);
2897		INIT_LIST_HEAD(&d40c->prepare_queue);
2898
2899		tasklet_init(&d40c->tasklet, dma_tasklet,
2900			     (unsigned long) d40c);
2901
2902		list_add_tail(&d40c->chan.device_node,
2903			      &dma->channels);
2904	}
2905}
2906
2907static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2908{
2909	if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2910		dev->device_prep_slave_sg = d40_prep_slave_sg;
2911
2912	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2913		dev->device_prep_dma_memcpy = d40_prep_memcpy;
2914
2915		/*
2916		 * This controller can only access address at even
2917		 * 32bit boundaries, i.e. 2^2
2918		 */
2919		dev->copy_align = 2;
2920	}
2921
2922	if (dma_has_cap(DMA_SG, dev->cap_mask))
2923		dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2924
2925	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2926		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2927
2928	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2929	dev->device_free_chan_resources = d40_free_chan_resources;
2930	dev->device_issue_pending = d40_issue_pending;
2931	dev->device_tx_status = d40_tx_status;
2932	dev->device_control = d40_control;
2933	dev->dev = base->dev;
2934}
2935
2936static int __init d40_dmaengine_init(struct d40_base *base,
2937				     int num_reserved_chans)
2938{
2939	int err ;
2940
2941	d40_chan_init(base, &base->dma_slave, base->log_chans,
2942		      0, base->num_log_chans);
2943
2944	dma_cap_zero(base->dma_slave.cap_mask);
2945	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2946	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2947
2948	d40_ops_init(base, &base->dma_slave);
2949
2950	err = dma_async_device_register(&base->dma_slave);
2951
2952	if (err) {
2953		d40_err(base->dev, "Failed to register slave channels\n");
2954		goto failure1;
2955	}
2956
2957	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2958		      base->num_log_chans, base->num_memcpy_chans);
2959
2960	dma_cap_zero(base->dma_memcpy.cap_mask);
2961	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2962	dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2963
2964	d40_ops_init(base, &base->dma_memcpy);
2965
2966	err = dma_async_device_register(&base->dma_memcpy);
2967
2968	if (err) {
2969		d40_err(base->dev,
2970			"Failed to regsiter memcpy only channels\n");
2971		goto failure2;
2972	}
2973
2974	d40_chan_init(base, &base->dma_both, base->phy_chans,
2975		      0, num_reserved_chans);
2976
2977	dma_cap_zero(base->dma_both.cap_mask);
2978	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2979	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2980	dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2981	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2982
2983	d40_ops_init(base, &base->dma_both);
2984	err = dma_async_device_register(&base->dma_both);
2985
2986	if (err) {
2987		d40_err(base->dev,
2988			"Failed to register logical and physical capable channels\n");
2989		goto failure3;
2990	}
2991	return 0;
2992failure3:
2993	dma_async_device_unregister(&base->dma_memcpy);
2994failure2:
2995	dma_async_device_unregister(&base->dma_slave);
2996failure1:
2997	return err;
2998}
2999
3000/* Suspend resume functionality */
3001#ifdef CONFIG_PM
3002static int dma40_pm_suspend(struct device *dev)
3003{
3004	struct platform_device *pdev = to_platform_device(dev);
3005	struct d40_base *base = platform_get_drvdata(pdev);
3006	int ret = 0;
3007
3008	if (base->lcpa_regulator)
3009		ret = regulator_disable(base->lcpa_regulator);
3010	return ret;
3011}
3012
3013static int dma40_runtime_suspend(struct device *dev)
3014{
3015	struct platform_device *pdev = to_platform_device(dev);
3016	struct d40_base *base = platform_get_drvdata(pdev);
3017
3018	d40_save_restore_registers(base, true);
3019
3020	/* Don't disable/enable clocks for v1 due to HW bugs */
3021	if (base->rev != 1)
3022		writel_relaxed(base->gcc_pwr_off_mask,
3023			       base->virtbase + D40_DREG_GCC);
3024
3025	return 0;
3026}
3027
3028static int dma40_runtime_resume(struct device *dev)
3029{
3030	struct platform_device *pdev = to_platform_device(dev);
3031	struct d40_base *base = platform_get_drvdata(pdev);
3032
3033	if (base->initialized)
3034		d40_save_restore_registers(base, false);
3035
3036	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3037		       base->virtbase + D40_DREG_GCC);
3038	return 0;
3039}
3040
3041static int dma40_resume(struct device *dev)
3042{
3043	struct platform_device *pdev = to_platform_device(dev);
3044	struct d40_base *base = platform_get_drvdata(pdev);
3045	int ret = 0;
3046
3047	if (base->lcpa_regulator)
3048		ret = regulator_enable(base->lcpa_regulator);
3049
3050	return ret;
3051}
3052
3053static const struct dev_pm_ops dma40_pm_ops = {
3054	.suspend		= dma40_pm_suspend,
3055	.runtime_suspend	= dma40_runtime_suspend,
3056	.runtime_resume		= dma40_runtime_resume,
3057	.resume			= dma40_resume,
3058};
3059#define DMA40_PM_OPS	(&dma40_pm_ops)
3060#else
3061#define DMA40_PM_OPS	NULL
3062#endif
3063
3064/* Initialization functions. */
3065
3066static int __init d40_phy_res_init(struct d40_base *base)
3067{
3068	int i;
3069	int num_phy_chans_avail = 0;
3070	u32 val[2];
3071	int odd_even_bit = -2;
3072	int gcc = D40_DREG_GCC_ENA;
3073
3074	val[0] = readl(base->virtbase + D40_DREG_PRSME);
3075	val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3076
3077	for (i = 0; i < base->num_phy_chans; i++) {
3078		base->phy_res[i].num = i;
3079		odd_even_bit += 2 * ((i % 2) == 0);
3080		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3081			/* Mark security only channels as occupied */
3082			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3083			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3084			base->phy_res[i].reserved = true;
3085			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3086						       D40_DREG_GCC_SRC);
3087			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3088						       D40_DREG_GCC_DST);
3089
3090
3091		} else {
3092			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3093			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3094			base->phy_res[i].reserved = false;
3095			num_phy_chans_avail++;
3096		}
3097		spin_lock_init(&base->phy_res[i].lock);
3098	}
3099
3100	/* Mark disabled channels as occupied */
3101	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3102		int chan = base->plat_data->disabled_channels[i];
3103
3104		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3105		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3106		base->phy_res[chan].reserved = true;
3107		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3108					       D40_DREG_GCC_SRC);
3109		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3110					       D40_DREG_GCC_DST);
3111		num_phy_chans_avail--;
3112	}
3113
3114	/* Mark soft_lli channels */
3115	for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3116		int chan = base->plat_data->soft_lli_chans[i];
3117
3118		base->phy_res[chan].use_soft_lli = true;
3119	}
3120
3121	dev_info(base->dev, "%d of %d physical DMA channels available\n",
3122		 num_phy_chans_avail, base->num_phy_chans);
3123
3124	/* Verify settings extended vs standard */
3125	val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3126
3127	for (i = 0; i < base->num_phy_chans; i++) {
3128
3129		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3130		    (val[0] & 0x3) != 1)
3131			dev_info(base->dev,
3132				 "[%s] INFO: channel %d is misconfigured (%d)\n",
3133				 __func__, i, val[0] & 0x3);
3134
3135		val[0] = val[0] >> 2;
3136	}
3137
3138	/*
3139	 * To keep things simple, Enable all clocks initially.
3140	 * The clocks will get managed later post channel allocation.
3141	 * The clocks for the event lines on which reserved channels exists
3142	 * are not managed here.
3143	 */
3144	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3145	base->gcc_pwr_off_mask = gcc;
3146
3147	return num_phy_chans_avail;
3148}
3149
3150static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3151{
3152	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3153	struct clk *clk = NULL;
3154	void __iomem *virtbase = NULL;
3155	struct resource *res = NULL;
3156	struct d40_base *base = NULL;
3157	int num_log_chans = 0;
3158	int num_phy_chans;
3159	int num_memcpy_chans;
3160	int clk_ret = -EINVAL;
3161	int i;
3162	u32 pid;
3163	u32 cid;
3164	u8 rev;
3165
3166	clk = clk_get(&pdev->dev, NULL);
3167	if (IS_ERR(clk)) {
3168		d40_err(&pdev->dev, "No matching clock found\n");
3169		goto failure;
3170	}
3171
3172	clk_ret = clk_prepare_enable(clk);
3173	if (clk_ret) {
3174		d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3175		goto failure;
3176	}
3177
3178	/* Get IO for DMAC base address */
3179	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3180	if (!res)
3181		goto failure;
3182
3183	if (request_mem_region(res->start, resource_size(res),
3184			       D40_NAME " I/O base") == NULL)
3185		goto failure;
3186
3187	virtbase = ioremap(res->start, resource_size(res));
3188	if (!virtbase)
3189		goto failure;
3190
3191	/* This is just a regular AMBA PrimeCell ID actually */
3192	for (pid = 0, i = 0; i < 4; i++)
3193		pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3194			& 255) << (i * 8);
3195	for (cid = 0, i = 0; i < 4; i++)
3196		cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3197			& 255) << (i * 8);
3198
3199	if (cid != AMBA_CID) {
3200		d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3201		goto failure;
3202	}
3203	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3204		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3205			AMBA_MANF_BITS(pid),
3206			AMBA_VENDOR_ST);
3207		goto failure;
3208	}
3209	/*
3210	 * HW revision:
3211	 * DB8500ed has revision 0
3212	 * ? has revision 1
3213	 * DB8500v1 has revision 2
3214	 * DB8500v2 has revision 3
3215	 * AP9540v1 has revision 4
3216	 * DB8540v1 has revision 4
3217	 */
3218	rev = AMBA_REV_BITS(pid);
3219	if (rev < 2) {
3220		d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3221		goto failure;
3222	}
3223
3224	/* The number of physical channels on this HW */
3225	if (plat_data->num_of_phy_chans)
3226		num_phy_chans = plat_data->num_of_phy_chans;
3227	else
3228		num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3229
3230	/* The number of channels used for memcpy */
3231	if (plat_data->num_of_memcpy_chans)
3232		num_memcpy_chans = plat_data->num_of_memcpy_chans;
3233	else
3234		num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3235
3236	num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3237
3238	dev_info(&pdev->dev,
3239		 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3240		 rev, &res->start, num_phy_chans, num_log_chans);
3241
3242	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3243		       (num_phy_chans + num_log_chans + num_memcpy_chans) *
3244		       sizeof(struct d40_chan), GFP_KERNEL);
3245
3246	if (base == NULL) {
3247		d40_err(&pdev->dev, "Out of memory\n");
3248		goto failure;
3249	}
3250
3251	base->rev = rev;
3252	base->clk = clk;
3253	base->num_memcpy_chans = num_memcpy_chans;
3254	base->num_phy_chans = num_phy_chans;
3255	base->num_log_chans = num_log_chans;
3256	base->phy_start = res->start;
3257	base->phy_size = resource_size(res);
3258	base->virtbase = virtbase;
3259	base->plat_data = plat_data;
3260	base->dev = &pdev->dev;
3261	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3262	base->log_chans = &base->phy_chans[num_phy_chans];
3263
3264	if (base->plat_data->num_of_phy_chans == 14) {
3265		base->gen_dmac.backup = d40_backup_regs_v4b;
3266		base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3267		base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3268		base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3269		base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3270		base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3271		base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3272		base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3273		base->gen_dmac.il = il_v4b;
3274		base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3275		base->gen_dmac.init_reg = dma_init_reg_v4b;
3276		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3277	} else {
3278		if (base->rev >= 3) {
3279			base->gen_dmac.backup = d40_backup_regs_v4a;
3280			base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3281		}
3282		base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3283		base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3284		base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3285		base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3286		base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3287		base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3288		base->gen_dmac.il = il_v4a;
3289		base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3290		base->gen_dmac.init_reg = dma_init_reg_v4a;
3291		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3292	}
3293
3294	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
3295				GFP_KERNEL);
3296	if (!base->phy_res)
3297		goto failure;
3298
3299	base->lookup_phy_chans = kzalloc(num_phy_chans *
3300					 sizeof(struct d40_chan *),
3301					 GFP_KERNEL);
3302	if (!base->lookup_phy_chans)
3303		goto failure;
3304
3305	base->lookup_log_chans = kzalloc(num_log_chans *
3306					 sizeof(struct d40_chan *),
3307					 GFP_KERNEL);
3308	if (!base->lookup_log_chans)
3309		goto failure;
3310
3311	base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
3312					    sizeof(d40_backup_regs_chan),
3313					    GFP_KERNEL);
3314	if (!base->reg_val_backup_chan)
3315		goto failure;
3316
3317	base->lcla_pool.alloc_map =
3318		kzalloc(num_phy_chans * sizeof(struct d40_desc *)
3319			* D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
3320	if (!base->lcla_pool.alloc_map)
3321		goto failure;
3322
3323	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3324					    0, SLAB_HWCACHE_ALIGN,
3325					    NULL);
3326	if (base->desc_slab == NULL)
3327		goto failure;
3328
3329	return base;
3330
3331failure:
3332	if (!clk_ret)
3333		clk_disable_unprepare(clk);
3334	if (!IS_ERR(clk))
3335		clk_put(clk);
3336	if (virtbase)
3337		iounmap(virtbase);
3338	if (res)
3339		release_mem_region(res->start,
3340				   resource_size(res));
3341	if (virtbase)
3342		iounmap(virtbase);
3343
3344	if (base) {
3345		kfree(base->lcla_pool.alloc_map);
3346		kfree(base->reg_val_backup_chan);
3347		kfree(base->lookup_log_chans);
3348		kfree(base->lookup_phy_chans);
3349		kfree(base->phy_res);
3350		kfree(base);
3351	}
3352
3353	return NULL;
3354}
3355
3356static void __init d40_hw_init(struct d40_base *base)
3357{
3358
3359	int i;
3360	u32 prmseo[2] = {0, 0};
3361	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3362	u32 pcmis = 0;
3363	u32 pcicr = 0;
3364	struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3365	u32 reg_size = base->gen_dmac.init_reg_size;
3366
3367	for (i = 0; i < reg_size; i++)
3368		writel(dma_init_reg[i].val,
3369		       base->virtbase + dma_init_reg[i].reg);
3370
3371	/* Configure all our dma channels to default settings */
3372	for (i = 0; i < base->num_phy_chans; i++) {
3373
3374		activeo[i % 2] = activeo[i % 2] << 2;
3375
3376		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3377		    == D40_ALLOC_PHY) {
3378			activeo[i % 2] |= 3;
3379			continue;
3380		}
3381
3382		/* Enable interrupt # */
3383		pcmis = (pcmis << 1) | 1;
3384
3385		/* Clear interrupt # */
3386		pcicr = (pcicr << 1) | 1;
3387
3388		/* Set channel to physical mode */
3389		prmseo[i % 2] = prmseo[i % 2] << 2;
3390		prmseo[i % 2] |= 1;
3391
3392	}
3393
3394	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3395	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3396	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3397	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3398
3399	/* Write which interrupt to enable */
3400	writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3401
3402	/* Write which interrupt to clear */
3403	writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3404
3405	/* These are __initdata and cannot be accessed after init */
3406	base->gen_dmac.init_reg = NULL;
3407	base->gen_dmac.init_reg_size = 0;
3408}
3409
3410static int __init d40_lcla_allocate(struct d40_base *base)
3411{
3412	struct d40_lcla_pool *pool = &base->lcla_pool;
3413	unsigned long *page_list;
3414	int i, j;
3415	int ret = 0;
3416
3417	/*
3418	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3419	 * To full fill this hardware requirement without wasting 256 kb
3420	 * we allocate pages until we get an aligned one.
3421	 */
3422	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
3423			    GFP_KERNEL);
3424
3425	if (!page_list) {
3426		ret = -ENOMEM;
3427		goto failure;
3428	}
3429
3430	/* Calculating how many pages that are required */
3431	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3432
3433	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3434		page_list[i] = __get_free_pages(GFP_KERNEL,
3435						base->lcla_pool.pages);
3436		if (!page_list[i]) {
3437
3438			d40_err(base->dev, "Failed to allocate %d pages.\n",
3439				base->lcla_pool.pages);
3440
3441			for (j = 0; j < i; j++)
3442				free_pages(page_list[j], base->lcla_pool.pages);
3443			goto failure;
3444		}
3445
3446		if ((virt_to_phys((void *)page_list[i]) &
3447		     (LCLA_ALIGNMENT - 1)) == 0)
3448			break;
3449	}
3450
3451	for (j = 0; j < i; j++)
3452		free_pages(page_list[j], base->lcla_pool.pages);
3453
3454	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3455		base->lcla_pool.base = (void *)page_list[i];
3456	} else {
3457		/*
3458		 * After many attempts and no succees with finding the correct
3459		 * alignment, try with allocating a big buffer.
3460		 */
3461		dev_warn(base->dev,
3462			 "[%s] Failed to get %d pages @ 18 bit align.\n",
3463			 __func__, base->lcla_pool.pages);
3464		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3465							 base->num_phy_chans +
3466							 LCLA_ALIGNMENT,
3467							 GFP_KERNEL);
3468		if (!base->lcla_pool.base_unaligned) {
3469			ret = -ENOMEM;
3470			goto failure;
3471		}
3472
3473		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3474						 LCLA_ALIGNMENT);
3475	}
3476
3477	pool->dma_addr = dma_map_single(base->dev, pool->base,
3478					SZ_1K * base->num_phy_chans,
3479					DMA_TO_DEVICE);
3480	if (dma_mapping_error(base->dev, pool->dma_addr)) {
3481		pool->dma_addr = 0;
3482		ret = -ENOMEM;
3483		goto failure;
3484	}
3485
3486	writel(virt_to_phys(base->lcla_pool.base),
3487	       base->virtbase + D40_DREG_LCLA);
3488failure:
3489	kfree(page_list);
3490	return ret;
3491}
3492
3493static int __init d40_of_probe(struct platform_device *pdev,
3494			       struct device_node *np)
3495{
3496	struct stedma40_platform_data *pdata;
3497	int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3498	const __be32 *list;
3499
3500	pdata = devm_kzalloc(&pdev->dev,
3501			     sizeof(struct stedma40_platform_data),
3502			     GFP_KERNEL);
3503	if (!pdata)
3504		return -ENOMEM;
3505
3506	/* If absent this value will be obtained from h/w. */
3507	of_property_read_u32(np, "dma-channels", &num_phy);
3508	if (num_phy > 0)
3509		pdata->num_of_phy_chans = num_phy;
3510
3511	list = of_get_property(np, "memcpy-channels", &num_memcpy);
3512	num_memcpy /= sizeof(*list);
3513
3514	if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3515		d40_err(&pdev->dev,
3516			"Invalid number of memcpy channels specified (%d)\n",
3517			num_memcpy);
3518		return -EINVAL;
3519	}
3520	pdata->num_of_memcpy_chans = num_memcpy;
3521
3522	of_property_read_u32_array(np, "memcpy-channels",
3523				   dma40_memcpy_channels,
3524				   num_memcpy);
3525
3526	list = of_get_property(np, "disabled-channels", &num_disabled);
3527	num_disabled /= sizeof(*list);
3528
3529	if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3530		d40_err(&pdev->dev,
3531			"Invalid number of disabled channels specified (%d)\n",
3532			num_disabled);
3533		return -EINVAL;
3534	}
3535
3536	of_property_read_u32_array(np, "disabled-channels",
3537				   pdata->disabled_channels,
3538				   num_disabled);
3539	pdata->disabled_channels[num_disabled] = -1;
3540
3541	pdev->dev.platform_data = pdata;
3542
3543	return 0;
3544}
3545
3546static int __init d40_probe(struct platform_device *pdev)
3547{
3548	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3549	struct device_node *np = pdev->dev.of_node;
3550	int ret = -ENOENT;
3551	struct d40_base *base = NULL;
3552	struct resource *res = NULL;
3553	int num_reserved_chans;
3554	u32 val;
3555
3556	if (!plat_data) {
3557		if (np) {
3558			if(d40_of_probe(pdev, np)) {
3559				ret = -ENOMEM;
3560				goto failure;
3561			}
3562		} else {
3563			d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3564			goto failure;
3565		}
3566	}
3567
3568	base = d40_hw_detect_init(pdev);
3569	if (!base)
3570		goto failure;
3571
3572	num_reserved_chans = d40_phy_res_init(base);
3573
3574	platform_set_drvdata(pdev, base);
3575
3576	spin_lock_init(&base->interrupt_lock);
3577	spin_lock_init(&base->execmd_lock);
3578
3579	/* Get IO for logical channel parameter address */
3580	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3581	if (!res) {
3582		ret = -ENOENT;
3583		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3584		goto failure;
3585	}
3586	base->lcpa_size = resource_size(res);
3587	base->phy_lcpa = res->start;
3588
3589	if (request_mem_region(res->start, resource_size(res),
3590			       D40_NAME " I/O lcpa") == NULL) {
3591		ret = -EBUSY;
3592		d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3593		goto failure;
3594	}
3595
3596	/* We make use of ESRAM memory for this. */
3597	val = readl(base->virtbase + D40_DREG_LCPA);
3598	if (res->start != val && val != 0) {
3599		dev_warn(&pdev->dev,
3600			 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3601			 __func__, val, &res->start);
3602	} else
3603		writel(res->start, base->virtbase + D40_DREG_LCPA);
3604
3605	base->lcpa_base = ioremap(res->start, resource_size(res));
3606	if (!base->lcpa_base) {
3607		ret = -ENOMEM;
3608		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3609		goto failure;
3610	}
3611	/* If lcla has to be located in ESRAM we don't need to allocate */
3612	if (base->plat_data->use_esram_lcla) {
3613		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3614							"lcla_esram");
3615		if (!res) {
3616			ret = -ENOENT;
3617			d40_err(&pdev->dev,
3618				"No \"lcla_esram\" memory resource\n");
3619			goto failure;
3620		}
3621		base->lcla_pool.base = ioremap(res->start,
3622						resource_size(res));
3623		if (!base->lcla_pool.base) {
3624			ret = -ENOMEM;
3625			d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3626			goto failure;
3627		}
3628		writel(res->start, base->virtbase + D40_DREG_LCLA);
3629
3630	} else {
3631		ret = d40_lcla_allocate(base);
3632		if (ret) {
3633			d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3634			goto failure;
3635		}
3636	}
3637
3638	spin_lock_init(&base->lcla_pool.lock);
3639
3640	base->irq = platform_get_irq(pdev, 0);
3641
3642	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3643	if (ret) {
3644		d40_err(&pdev->dev, "No IRQ defined\n");
3645		goto failure;
3646	}
3647
3648	pm_runtime_irq_safe(base->dev);
3649	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3650	pm_runtime_use_autosuspend(base->dev);
3651	pm_runtime_enable(base->dev);
3652	pm_runtime_resume(base->dev);
3653
3654	if (base->plat_data->use_esram_lcla) {
3655
3656		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3657		if (IS_ERR(base->lcpa_regulator)) {
3658			d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3659			ret = PTR_ERR(base->lcpa_regulator);
3660			base->lcpa_regulator = NULL;
3661			goto failure;
3662		}
3663
3664		ret = regulator_enable(base->lcpa_regulator);
3665		if (ret) {
3666			d40_err(&pdev->dev,
3667				"Failed to enable lcpa_regulator\n");
3668			regulator_put(base->lcpa_regulator);
3669			base->lcpa_regulator = NULL;
3670			goto failure;
3671		}
3672	}
3673
3674	base->initialized = true;
3675	ret = d40_dmaengine_init(base, num_reserved_chans);
3676	if (ret)
3677		goto failure;
3678
3679	base->dev->dma_parms = &base->dma_parms;
3680	ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3681	if (ret) {
3682		d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3683		goto failure;
3684	}
3685
3686	d40_hw_init(base);
3687
3688	if (np) {
3689		ret = of_dma_controller_register(np, d40_xlate, NULL);
3690		if (ret)
3691			dev_err(&pdev->dev,
3692				"could not register of_dma_controller\n");
3693	}
3694
3695	dev_info(base->dev, "initialized\n");
3696	return 0;
3697
3698failure:
3699	if (base) {
3700		if (base->desc_slab)
3701			kmem_cache_destroy(base->desc_slab);
3702		if (base->virtbase)
3703			iounmap(base->virtbase);
3704
3705		if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3706			iounmap(base->lcla_pool.base);
3707			base->lcla_pool.base = NULL;
3708		}
3709
3710		if (base->lcla_pool.dma_addr)
3711			dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3712					 SZ_1K * base->num_phy_chans,
3713					 DMA_TO_DEVICE);
3714
3715		if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3716			free_pages((unsigned long)base->lcla_pool.base,
3717				   base->lcla_pool.pages);
3718
3719		kfree(base->lcla_pool.base_unaligned);
3720
3721		if (base->phy_lcpa)
3722			release_mem_region(base->phy_lcpa,
3723					   base->lcpa_size);
3724		if (base->phy_start)
3725			release_mem_region(base->phy_start,
3726					   base->phy_size);
3727		if (base->clk) {
3728			clk_disable_unprepare(base->clk);
3729			clk_put(base->clk);
3730		}
3731
3732		if (base->lcpa_regulator) {
3733			regulator_disable(base->lcpa_regulator);
3734			regulator_put(base->lcpa_regulator);
3735		}
3736
3737		kfree(base->lcla_pool.alloc_map);
3738		kfree(base->lookup_log_chans);
3739		kfree(base->lookup_phy_chans);
3740		kfree(base->phy_res);
3741		kfree(base);
3742	}
3743
3744	d40_err(&pdev->dev, "probe failed\n");
3745	return ret;
3746}
3747
3748static const struct of_device_id d40_match[] = {
3749        { .compatible = "stericsson,dma40", },
3750        {}
3751};
3752
3753static struct platform_driver d40_driver = {
3754	.driver = {
3755		.owner = THIS_MODULE,
3756		.name  = D40_NAME,
3757		.pm = DMA40_PM_OPS,
3758		.of_match_table = d40_match,
3759	},
3760};
3761
3762static int __init stedma40_init(void)
3763{
3764	return platform_driver_probe(&d40_driver, d40_probe);
3765}
3766subsys_initcall(stedma40_init);
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) Ericsson AB 2007-2008
   4 * Copyright (C) ST-Ericsson SA 2008-2010
   5 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
   6 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
   7 */
   8
   9#include <linux/dma-mapping.h>
  10#include <linux/kernel.h>
  11#include <linux/slab.h>
  12#include <linux/export.h>
  13#include <linux/dmaengine.h>
  14#include <linux/platform_device.h>
  15#include <linux/clk.h>
  16#include <linux/delay.h>
  17#include <linux/log2.h>
  18#include <linux/pm.h>
  19#include <linux/pm_runtime.h>
  20#include <linux/err.h>
  21#include <linux/of.h>
  22#include <linux/of_address.h>
  23#include <linux/of_dma.h>
  24#include <linux/amba/bus.h>
  25#include <linux/regulator/consumer.h>
  26
  27#include "dmaengine.h"
  28#include "ste_dma40.h"
  29#include "ste_dma40_ll.h"
  30
  31/**
  32 * struct stedma40_platform_data - Configuration struct for the dma device.
  33 *
  34 * @disabled_channels: A vector, ending with -1, that marks physical channels
  35 * that are for different reasons not available for the driver.
  36 * @soft_lli_chans: A vector, that marks physical channels will use LLI by SW
  37 * which avoids HW bug that exists in some versions of the controller.
  38 * SoftLLI introduces relink overhead that could impact performance for
  39 * certain use cases.
  40 * @num_of_soft_lli_chans: The number of channels that needs to be configured
  41 * to use SoftLLI.
  42 * @use_esram_lcla: flag for mapping the lcla into esram region
  43 * @num_of_memcpy_chans: The number of channels reserved for memcpy.
  44 * @num_of_phy_chans: The number of physical channels implemented in HW.
  45 * 0 means reading the number of channels from DMA HW but this is only valid
  46 * for 'multiple of 4' channels, like 8.
  47 */
  48struct stedma40_platform_data {
  49	int				 disabled_channels[STEDMA40_MAX_PHYS];
  50	int				*soft_lli_chans;
  51	int				 num_of_soft_lli_chans;
  52	bool				 use_esram_lcla;
  53	int				 num_of_memcpy_chans;
  54	int				 num_of_phy_chans;
  55};
  56
  57#define D40_NAME "dma40"
  58
  59#define D40_PHY_CHAN -1
  60
  61/* For masking out/in 2 bit channel positions */
  62#define D40_CHAN_POS(chan)  (2 * (chan / 2))
  63#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  64
  65/* Maximum iterations taken before giving up suspending a channel */
  66#define D40_SUSPEND_MAX_IT 500
  67
  68/* Milliseconds */
  69#define DMA40_AUTOSUSPEND_DELAY	100
  70
  71/* Hardware requirement on LCLA alignment */
  72#define LCLA_ALIGNMENT 0x40000
  73
  74/* Max number of links per event group */
  75#define D40_LCLA_LINK_PER_EVENT_GRP 128
  76#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  77
  78/* Max number of logical channels per physical channel */
  79#define D40_MAX_LOG_CHAN_PER_PHY 32
  80
  81/* Attempts before giving up to trying to get pages that are aligned */
  82#define MAX_LCLA_ALLOC_ATTEMPTS 256
  83
  84/* Bit markings for allocation map */
  85#define D40_ALLOC_FREE		BIT(31)
  86#define D40_ALLOC_PHY		BIT(30)
  87#define D40_ALLOC_LOG_FREE	0
  88
  89#define D40_MEMCPY_MAX_CHANS	8
  90
  91/* Reserved event lines for memcpy only. */
  92#define DB8500_DMA_MEMCPY_EV_0	51
  93#define DB8500_DMA_MEMCPY_EV_1	56
  94#define DB8500_DMA_MEMCPY_EV_2	57
  95#define DB8500_DMA_MEMCPY_EV_3	58
  96#define DB8500_DMA_MEMCPY_EV_4	59
  97#define DB8500_DMA_MEMCPY_EV_5	60
  98
  99static int dma40_memcpy_channels[] = {
 100	DB8500_DMA_MEMCPY_EV_0,
 101	DB8500_DMA_MEMCPY_EV_1,
 102	DB8500_DMA_MEMCPY_EV_2,
 103	DB8500_DMA_MEMCPY_EV_3,
 104	DB8500_DMA_MEMCPY_EV_4,
 105	DB8500_DMA_MEMCPY_EV_5,
 106};
 107
 108/* Default configuration for physical memcpy */
 109static const struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
 110	.mode = STEDMA40_MODE_PHYSICAL,
 111	.dir = DMA_MEM_TO_MEM,
 112
 113	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 114	.src_info.psize = STEDMA40_PSIZE_PHY_1,
 115	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 116
 117	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 118	.dst_info.psize = STEDMA40_PSIZE_PHY_1,
 119	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 120};
 121
 122/* Default configuration for logical memcpy */
 123static const struct stedma40_chan_cfg dma40_memcpy_conf_log = {
 124	.mode = STEDMA40_MODE_LOGICAL,
 125	.dir = DMA_MEM_TO_MEM,
 126
 127	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 128	.src_info.psize = STEDMA40_PSIZE_LOG_1,
 129	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 130
 131	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 132	.dst_info.psize = STEDMA40_PSIZE_LOG_1,
 133	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 134};
 135
 136/**
 137 * enum d40_command - The different commands and/or statuses.
 138 *
 139 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 140 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 141 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 142 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 143 */
 144enum d40_command {
 145	D40_DMA_STOP		= 0,
 146	D40_DMA_RUN		= 1,
 147	D40_DMA_SUSPEND_REQ	= 2,
 148	D40_DMA_SUSPENDED	= 3
 149};
 150
 151/*
 152 * enum d40_events - The different Event Enables for the event lines.
 153 *
 154 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
 155 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
 156 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
 157 * @D40_ROUND_EVENTLINE: Status check for event line.
 158 */
 159
 160enum d40_events {
 161	D40_DEACTIVATE_EVENTLINE	= 0,
 162	D40_ACTIVATE_EVENTLINE		= 1,
 163	D40_SUSPEND_REQ_EVENTLINE	= 2,
 164	D40_ROUND_EVENTLINE		= 3
 165};
 166
 167/*
 168 * These are the registers that has to be saved and later restored
 169 * when the DMA hw is powered off.
 170 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
 171 */
 172static __maybe_unused u32 d40_backup_regs[] = {
 173	D40_DREG_LCPA,
 174	D40_DREG_LCLA,
 175	D40_DREG_PRMSE,
 176	D40_DREG_PRMSO,
 177	D40_DREG_PRMOE,
 178	D40_DREG_PRMOO,
 179};
 180
 181#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
 182
 183/*
 184 * since 9540 and 8540 has the same HW revision
 185 * use v4a for 9540 or earlier
 186 * use v4b for 8540 or later
 187 * HW revision:
 188 * DB8500ed has revision 0
 189 * DB8500v1 has revision 2
 190 * DB8500v2 has revision 3
 191 * AP9540v1 has revision 4
 192 * DB8540v1 has revision 4
 193 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
 194 */
 195static u32 d40_backup_regs_v4a[] = {
 196	D40_DREG_PSEG1,
 197	D40_DREG_PSEG2,
 198	D40_DREG_PSEG3,
 199	D40_DREG_PSEG4,
 200	D40_DREG_PCEG1,
 201	D40_DREG_PCEG2,
 202	D40_DREG_PCEG3,
 203	D40_DREG_PCEG4,
 204	D40_DREG_RSEG1,
 205	D40_DREG_RSEG2,
 206	D40_DREG_RSEG3,
 207	D40_DREG_RSEG4,
 208	D40_DREG_RCEG1,
 209	D40_DREG_RCEG2,
 210	D40_DREG_RCEG3,
 211	D40_DREG_RCEG4,
 212};
 213
 214#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
 215
 216static u32 d40_backup_regs_v4b[] = {
 217	D40_DREG_CPSEG1,
 218	D40_DREG_CPSEG2,
 219	D40_DREG_CPSEG3,
 220	D40_DREG_CPSEG4,
 221	D40_DREG_CPSEG5,
 222	D40_DREG_CPCEG1,
 223	D40_DREG_CPCEG2,
 224	D40_DREG_CPCEG3,
 225	D40_DREG_CPCEG4,
 226	D40_DREG_CPCEG5,
 227	D40_DREG_CRSEG1,
 228	D40_DREG_CRSEG2,
 229	D40_DREG_CRSEG3,
 230	D40_DREG_CRSEG4,
 231	D40_DREG_CRSEG5,
 232	D40_DREG_CRCEG1,
 233	D40_DREG_CRCEG2,
 234	D40_DREG_CRCEG3,
 235	D40_DREG_CRCEG4,
 236	D40_DREG_CRCEG5,
 237};
 238
 239#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
 240
 241static __maybe_unused u32 d40_backup_regs_chan[] = {
 242	D40_CHAN_REG_SSCFG,
 243	D40_CHAN_REG_SSELT,
 244	D40_CHAN_REG_SSPTR,
 245	D40_CHAN_REG_SSLNK,
 246	D40_CHAN_REG_SDCFG,
 247	D40_CHAN_REG_SDELT,
 248	D40_CHAN_REG_SDPTR,
 249	D40_CHAN_REG_SDLNK,
 250};
 251
 252#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
 253			     BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
 254
 255/**
 256 * struct d40_interrupt_lookup - lookup table for interrupt handler
 257 *
 258 * @src: Interrupt mask register.
 259 * @clr: Interrupt clear register.
 260 * @is_error: true if this is an error interrupt.
 261 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 262 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 263 */
 264struct d40_interrupt_lookup {
 265	u32 src;
 266	u32 clr;
 267	bool is_error;
 268	int offset;
 269};
 270
 271
 272static struct d40_interrupt_lookup il_v4a[] = {
 273	{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
 274	{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
 275	{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
 276	{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
 277	{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
 278	{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
 279	{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
 280	{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
 281	{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
 282	{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
 283};
 284
 285static struct d40_interrupt_lookup il_v4b[] = {
 286	{D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
 287	{D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
 288	{D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
 289	{D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
 290	{D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
 291	{D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
 292	{D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
 293	{D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
 294	{D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
 295	{D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
 296	{D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
 297	{D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
 298};
 299
 300/**
 301 * struct d40_reg_val - simple lookup struct
 302 *
 303 * @reg: The register.
 304 * @val: The value that belongs to the register in reg.
 305 */
 306struct d40_reg_val {
 307	unsigned int reg;
 308	unsigned int val;
 309};
 310
 311static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
 312	/* Clock every part of the DMA block from start */
 313	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 314
 315	/* Interrupts on all logical channels */
 316	{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
 317	{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
 318	{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
 319	{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
 320	{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
 321	{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
 322	{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
 323	{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
 324	{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
 325	{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
 326	{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
 327	{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
 328};
 329static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
 330	/* Clock every part of the DMA block from start */
 331	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 332
 333	/* Interrupts on all logical channels */
 334	{ .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
 335	{ .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
 336	{ .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
 337	{ .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
 338	{ .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
 339	{ .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
 340	{ .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
 341	{ .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
 342	{ .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
 343	{ .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
 344	{ .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
 345	{ .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
 346	{ .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
 347	{ .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
 348	{ .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
 349};
 350
 351/**
 352 * struct d40_lli_pool - Structure for keeping LLIs in memory
 353 *
 354 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 355 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 356 * pre_alloc_lli is used.
 357 * @dma_addr: DMA address, if mapped
 358 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 359 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 360 * one buffer to one buffer.
 361 */
 362struct d40_lli_pool {
 363	void	*base;
 364	int	 size;
 365	dma_addr_t	dma_addr;
 366	/* Space for dst and src, plus an extra for padding */
 367	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
 368};
 369
 370/**
 371 * struct d40_desc - A descriptor is one DMA job.
 372 *
 373 * @lli_phy: LLI settings for physical channel. Both src and dst=
 374 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 375 * lli_len equals one.
 376 * @lli_log: Same as above but for logical channels.
 377 * @lli_pool: The pool with two entries pre-allocated.
 378 * @lli_len: Number of llis of current descriptor.
 379 * @lli_current: Number of transferred llis.
 380 * @lcla_alloc: Number of LCLA entries allocated.
 381 * @txd: DMA engine struct. Used for among other things for communication
 382 * during a transfer.
 383 * @node: List entry.
 384 * @is_in_client_list: true if the client owns this descriptor.
 385 * @cyclic: true if this is a cyclic job
 386 *
 387 * This descriptor is used for both logical and physical transfers.
 388 */
 389struct d40_desc {
 390	/* LLI physical */
 391	struct d40_phy_lli_bidir	 lli_phy;
 392	/* LLI logical */
 393	struct d40_log_lli_bidir	 lli_log;
 394
 395	struct d40_lli_pool		 lli_pool;
 396	int				 lli_len;
 397	int				 lli_current;
 398	int				 lcla_alloc;
 399
 400	struct dma_async_tx_descriptor	 txd;
 401	struct list_head		 node;
 402
 403	bool				 is_in_client_list;
 404	bool				 cyclic;
 405};
 406
 407/**
 408 * struct d40_lcla_pool - LCLA pool settings and data.
 409 *
 410 * @base: The virtual address of LCLA. 18 bit aligned.
 411 * @dma_addr: DMA address, if mapped
 412 * @base_unaligned: The original kmalloc pointer, if kmalloc is used.
 413 * This pointer is only there for clean-up on error.
 414 * @pages: The number of pages needed for all physical channels.
 415 * Only used later for clean-up on error
 416 * @lock: Lock to protect the content in this struct.
 417 * @alloc_map: big map over which LCLA entry is own by which job.
 418 */
 419struct d40_lcla_pool {
 420	void		*base;
 421	dma_addr_t	dma_addr;
 422	void		*base_unaligned;
 423	int		 pages;
 424	spinlock_t	 lock;
 425	struct d40_desc	**alloc_map;
 426};
 427
 428/**
 429 * struct d40_phy_res - struct for handling eventlines mapped to physical
 430 * channels.
 431 *
 432 * @lock: A lock protection this entity.
 433 * @reserved: True if used by secure world or otherwise.
 434 * @num: The physical channel number of this entity.
 435 * @allocated_src: Bit mapped to show which src event line's are mapped to
 436 * this physical channel. Can also be free or physically allocated.
 437 * @allocated_dst: Same as for src but is dst.
 438 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
 439 * event line number.
 440 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
 441 */
 442struct d40_phy_res {
 443	spinlock_t lock;
 444	bool	   reserved;
 445	int	   num;
 446	u32	   allocated_src;
 447	u32	   allocated_dst;
 448	bool	   use_soft_lli;
 449};
 450
 451struct d40_base;
 452
 453/**
 454 * struct d40_chan - Struct that describes a channel.
 455 *
 456 * @lock: A spinlock to protect this struct.
 457 * @log_num: The logical number, if any of this channel.
 458 * @pending_tx: The number of pending transfers. Used between interrupt handler
 459 * and tasklet.
 460 * @busy: Set to true when transfer is ongoing on this channel.
 461 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 462 * point is NULL, then the channel is not allocated.
 463 * @chan: DMA engine handle.
 464 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 465 * transfer and call client callback.
 466 * @client: Cliented owned descriptor list.
 467 * @pending_queue: Submitted jobs, to be issued by issue_pending()
 468 * @active: Active descriptor.
 469 * @done: Completed jobs
 470 * @queue: Queued jobs.
 471 * @prepare_queue: Prepared jobs.
 472 * @dma_cfg: The client configuration of this dma channel.
 473 * @slave_config: DMA slave configuration.
 474 * @configured: whether the dma_cfg configuration is valid
 475 * @base: Pointer to the device instance struct.
 476 * @src_def_cfg: Default cfg register setting for src.
 477 * @dst_def_cfg: Default cfg register setting for dst.
 478 * @log_def: Default logical channel settings.
 479 * @lcpa: Pointer to dst and src lcpa settings.
 480 * @runtime_addr: runtime configured address.
 481 * @runtime_direction: runtime configured direction.
 482 *
 483 * This struct can either "be" a logical or a physical channel.
 484 */
 485struct d40_chan {
 486	spinlock_t			 lock;
 487	int				 log_num;
 488	int				 pending_tx;
 489	bool				 busy;
 490	struct d40_phy_res		*phy_chan;
 491	struct dma_chan			 chan;
 492	struct tasklet_struct		 tasklet;
 493	struct list_head		 client;
 494	struct list_head		 pending_queue;
 495	struct list_head		 active;
 496	struct list_head		 done;
 497	struct list_head		 queue;
 498	struct list_head		 prepare_queue;
 499	struct stedma40_chan_cfg	 dma_cfg;
 500	struct dma_slave_config		 slave_config;
 501	bool				 configured;
 502	struct d40_base			*base;
 503	/* Default register configurations */
 504	u32				 src_def_cfg;
 505	u32				 dst_def_cfg;
 506	struct d40_def_lcsp		 log_def;
 507	struct d40_log_lli_full		*lcpa;
 508	/* Runtime reconfiguration */
 509	dma_addr_t			runtime_addr;
 510	enum dma_transfer_direction	runtime_direction;
 511};
 512
 513/**
 514 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
 515 * controller
 516 *
 517 * @backup: the pointer to the registers address array for backup
 518 * @backup_size: the size of the registers address array for backup
 519 * @realtime_en: the realtime enable register
 520 * @realtime_clear: the realtime clear register
 521 * @high_prio_en: the high priority enable register
 522 * @high_prio_clear: the high priority clear register
 523 * @interrupt_en: the interrupt enable register
 524 * @interrupt_clear: the interrupt clear register
 525 * @il: the pointer to struct d40_interrupt_lookup
 526 * @il_size: the size of d40_interrupt_lookup array
 527 * @init_reg: the pointer to the struct d40_reg_val
 528 * @init_reg_size: the size of d40_reg_val array
 529 */
 530struct d40_gen_dmac {
 531	u32				*backup;
 532	u32				 backup_size;
 533	u32				 realtime_en;
 534	u32				 realtime_clear;
 535	u32				 high_prio_en;
 536	u32				 high_prio_clear;
 537	u32				 interrupt_en;
 538	u32				 interrupt_clear;
 539	struct d40_interrupt_lookup	*il;
 540	u32				 il_size;
 541	struct d40_reg_val		*init_reg;
 542	u32				 init_reg_size;
 543};
 544
 545/**
 546 * struct d40_base - The big global struct, one for each probe'd instance.
 547 *
 548 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 549 * @execmd_lock: Lock for execute command usage since several channels share
 550 * the same physical register.
 551 * @dev: The device structure.
 552 * @virtbase: The virtual base address of the DMA's register.
 553 * @rev: silicon revision detected.
 554 * @clk: Pointer to the DMA clock structure.
 555 * @irq: The IRQ number.
 556 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
 557 * transfers).
 558 * @num_phy_chans: The number of physical channels. Read from HW. This
 559 * is the number of available channels for this driver, not counting "Secure
 560 * mode" allocated physical channels.
 561 * @num_log_chans: The number of logical channels. Calculated from
 562 * num_phy_chans.
 563 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 564 * @dma_slave: dma_device channels that can do only do slave transfers.
 565 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
 566 * @phy_chans: Room for all possible physical channels in system.
 567 * @log_chans: Room for all possible logical channels in system.
 568 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 569 * to log_chans entries.
 570 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 571 * to phy_chans entries.
 572 * @plat_data: Pointer to provided platform_data which is the driver
 573 * configuration.
 574 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
 575 * @phy_res: Vector containing all physical channels.
 576 * @lcla_pool: lcla pool settings and data.
 577 * @lcpa_base: The virtual mapped address of LCPA.
 578 * @phy_lcpa: The physical address of the LCPA.
 579 * @lcpa_size: The size of the LCPA area.
 580 * @desc_slab: cache for descriptors.
 581 * @reg_val_backup: Here the values of some hardware registers are stored
 582 * before the DMA is powered off. They are restored when the power is back on.
 583 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
 584 * later
 585 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
 586 * @regs_interrupt: Scratch space for registers during interrupt.
 587 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
 588 * @gen_dmac: the struct for generic registers values to represent u8500/8540
 589 * DMA controller
 590 */
 591struct d40_base {
 592	spinlock_t			 interrupt_lock;
 593	spinlock_t			 execmd_lock;
 594	struct device			 *dev;
 595	void __iomem			 *virtbase;
 596	u8				  rev:4;
 597	struct clk			 *clk;
 598	int				  irq;
 599	int				  num_memcpy_chans;
 600	int				  num_phy_chans;
 601	int				  num_log_chans;
 602	struct dma_device		  dma_both;
 603	struct dma_device		  dma_slave;
 604	struct dma_device		  dma_memcpy;
 605	struct d40_chan			 *phy_chans;
 606	struct d40_chan			 *log_chans;
 607	struct d40_chan			**lookup_log_chans;
 608	struct d40_chan			**lookup_phy_chans;
 609	struct stedma40_platform_data	 *plat_data;
 610	struct regulator		 *lcpa_regulator;
 611	/* Physical half channels */
 612	struct d40_phy_res		 *phy_res;
 613	struct d40_lcla_pool		  lcla_pool;
 614	void				 *lcpa_base;
 615	dma_addr_t			  phy_lcpa;
 616	resource_size_t			  lcpa_size;
 617	struct kmem_cache		 *desc_slab;
 618	u32				  reg_val_backup[BACKUP_REGS_SZ];
 619	u32				  reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
 620	u32				 *reg_val_backup_chan;
 621	u32				 *regs_interrupt;
 622	u16				  gcc_pwr_off_mask;
 623	struct d40_gen_dmac		  gen_dmac;
 624};
 625
 626static struct device *chan2dev(struct d40_chan *d40c)
 627{
 628	return &d40c->chan.dev->device;
 629}
 630
 631static bool chan_is_physical(struct d40_chan *chan)
 632{
 633	return chan->log_num == D40_PHY_CHAN;
 634}
 635
 636static bool chan_is_logical(struct d40_chan *chan)
 637{
 638	return !chan_is_physical(chan);
 639}
 640
 641static void __iomem *chan_base(struct d40_chan *chan)
 642{
 643	return chan->base->virtbase + D40_DREG_PCBASE +
 644	       chan->phy_chan->num * D40_DREG_PCDELTA;
 645}
 646
 647#define d40_err(dev, format, arg...)		\
 648	dev_err(dev, "[%s] " format, __func__, ## arg)
 649
 650#define chan_err(d40c, format, arg...)		\
 651	d40_err(chan2dev(d40c), format, ## arg)
 652
 653static int d40_set_runtime_config_write(struct dma_chan *chan,
 654				  struct dma_slave_config *config,
 655				  enum dma_transfer_direction direction);
 656
 657static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
 658			      int lli_len)
 659{
 660	bool is_log = chan_is_logical(d40c);
 661	u32 align;
 662	void *base;
 663
 664	if (is_log)
 665		align = sizeof(struct d40_log_lli);
 666	else
 667		align = sizeof(struct d40_phy_lli);
 668
 669	if (lli_len == 1) {
 670		base = d40d->lli_pool.pre_alloc_lli;
 671		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
 672		d40d->lli_pool.base = NULL;
 673	} else {
 674		d40d->lli_pool.size = lli_len * 2 * align;
 675
 676		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
 677		d40d->lli_pool.base = base;
 678
 679		if (d40d->lli_pool.base == NULL)
 680			return -ENOMEM;
 681	}
 682
 683	if (is_log) {
 684		d40d->lli_log.src = PTR_ALIGN(base, align);
 685		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
 686
 687		d40d->lli_pool.dma_addr = 0;
 688	} else {
 689		d40d->lli_phy.src = PTR_ALIGN(base, align);
 690		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
 691
 692		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
 693							 d40d->lli_phy.src,
 694							 d40d->lli_pool.size,
 695							 DMA_TO_DEVICE);
 696
 697		if (dma_mapping_error(d40c->base->dev,
 698				      d40d->lli_pool.dma_addr)) {
 699			kfree(d40d->lli_pool.base);
 700			d40d->lli_pool.base = NULL;
 701			d40d->lli_pool.dma_addr = 0;
 702			return -ENOMEM;
 703		}
 704	}
 705
 706	return 0;
 707}
 708
 709static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
 710{
 711	if (d40d->lli_pool.dma_addr)
 712		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
 713				 d40d->lli_pool.size, DMA_TO_DEVICE);
 714
 715	kfree(d40d->lli_pool.base);
 716	d40d->lli_pool.base = NULL;
 717	d40d->lli_pool.size = 0;
 718	d40d->lli_log.src = NULL;
 719	d40d->lli_log.dst = NULL;
 720	d40d->lli_phy.src = NULL;
 721	d40d->lli_phy.dst = NULL;
 722}
 723
 724static int d40_lcla_alloc_one(struct d40_chan *d40c,
 725			      struct d40_desc *d40d)
 726{
 727	unsigned long flags;
 728	int i;
 729	int ret = -EINVAL;
 730
 731	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 732
 733	/*
 734	 * Allocate both src and dst at the same time, therefore the half
 735	 * start on 1 since 0 can't be used since zero is used as end marker.
 736	 */
 737	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 738		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
 739
 740		if (!d40c->base->lcla_pool.alloc_map[idx]) {
 741			d40c->base->lcla_pool.alloc_map[idx] = d40d;
 742			d40d->lcla_alloc++;
 743			ret = i;
 744			break;
 745		}
 746	}
 747
 748	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 749
 750	return ret;
 751}
 752
 753static int d40_lcla_free_all(struct d40_chan *d40c,
 754			     struct d40_desc *d40d)
 755{
 756	unsigned long flags;
 757	int i;
 758	int ret = -EINVAL;
 759
 760	if (chan_is_physical(d40c))
 761		return 0;
 762
 763	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 764
 765	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 766		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
 767
 768		if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
 769			d40c->base->lcla_pool.alloc_map[idx] = NULL;
 770			d40d->lcla_alloc--;
 771			if (d40d->lcla_alloc == 0) {
 772				ret = 0;
 773				break;
 774			}
 775		}
 776	}
 777
 778	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 779
 780	return ret;
 781
 782}
 783
 784static void d40_desc_remove(struct d40_desc *d40d)
 785{
 786	list_del(&d40d->node);
 787}
 788
 789static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
 790{
 791	struct d40_desc *desc = NULL;
 792
 793	if (!list_empty(&d40c->client)) {
 794		struct d40_desc *d;
 795		struct d40_desc *_d;
 796
 797		list_for_each_entry_safe(d, _d, &d40c->client, node) {
 798			if (async_tx_test_ack(&d->txd)) {
 799				d40_desc_remove(d);
 800				desc = d;
 801				memset(desc, 0, sizeof(*desc));
 802				break;
 803			}
 804		}
 805	}
 806
 807	if (!desc)
 808		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
 809
 810	if (desc)
 811		INIT_LIST_HEAD(&desc->node);
 812
 813	return desc;
 814}
 815
 816static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
 817{
 818
 819	d40_pool_lli_free(d40c, d40d);
 820	d40_lcla_free_all(d40c, d40d);
 821	kmem_cache_free(d40c->base->desc_slab, d40d);
 822}
 823
 824static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
 825{
 826	list_add_tail(&desc->node, &d40c->active);
 827}
 828
 829static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
 830{
 831	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
 832	struct d40_phy_lli *lli_src = desc->lli_phy.src;
 833	void __iomem *base = chan_base(chan);
 834
 835	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
 836	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
 837	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
 838	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
 839
 840	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
 841	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
 842	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
 843	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
 844}
 845
 846static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
 847{
 848	list_add_tail(&desc->node, &d40c->done);
 849}
 850
 851static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
 852{
 853	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
 854	struct d40_log_lli_bidir *lli = &desc->lli_log;
 855	int lli_current = desc->lli_current;
 856	int lli_len = desc->lli_len;
 857	bool cyclic = desc->cyclic;
 858	int curr_lcla = -EINVAL;
 859	int first_lcla = 0;
 860	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
 861	bool linkback;
 862
 863	/*
 864	 * We may have partially running cyclic transfers, in case we did't get
 865	 * enough LCLA entries.
 866	 */
 867	linkback = cyclic && lli_current == 0;
 868
 869	/*
 870	 * For linkback, we need one LCLA even with only one link, because we
 871	 * can't link back to the one in LCPA space
 872	 */
 873	if (linkback || (lli_len - lli_current > 1)) {
 874		/*
 875		 * If the channel is expected to use only soft_lli don't
 876		 * allocate a lcla. This is to avoid a HW issue that exists
 877		 * in some controller during a peripheral to memory transfer
 878		 * that uses linked lists.
 879		 */
 880		if (!(chan->phy_chan->use_soft_lli &&
 881			chan->dma_cfg.dir == DMA_DEV_TO_MEM))
 882			curr_lcla = d40_lcla_alloc_one(chan, desc);
 883
 884		first_lcla = curr_lcla;
 885	}
 886
 887	/*
 888	 * For linkback, we normally load the LCPA in the loop since we need to
 889	 * link it to the second LCLA and not the first.  However, if we
 890	 * couldn't even get a first LCLA, then we have to run in LCPA and
 891	 * reload manually.
 892	 */
 893	if (!linkback || curr_lcla == -EINVAL) {
 894		unsigned int flags = 0;
 895
 896		if (curr_lcla == -EINVAL)
 897			flags |= LLI_TERM_INT;
 898
 899		d40_log_lli_lcpa_write(chan->lcpa,
 900				       &lli->dst[lli_current],
 901				       &lli->src[lli_current],
 902				       curr_lcla,
 903				       flags);
 904		lli_current++;
 905	}
 906
 907	if (curr_lcla < 0)
 908		goto set_current;
 909
 910	for (; lli_current < lli_len; lli_current++) {
 911		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
 912					   8 * curr_lcla * 2;
 913		struct d40_log_lli *lcla = pool->base + lcla_offset;
 914		unsigned int flags = 0;
 915		int next_lcla;
 916
 917		if (lli_current + 1 < lli_len)
 918			next_lcla = d40_lcla_alloc_one(chan, desc);
 919		else
 920			next_lcla = linkback ? first_lcla : -EINVAL;
 921
 922		if (cyclic || next_lcla == -EINVAL)
 923			flags |= LLI_TERM_INT;
 924
 925		if (linkback && curr_lcla == first_lcla) {
 926			/* First link goes in both LCPA and LCLA */
 927			d40_log_lli_lcpa_write(chan->lcpa,
 928					       &lli->dst[lli_current],
 929					       &lli->src[lli_current],
 930					       next_lcla, flags);
 931		}
 932
 933		/*
 934		 * One unused LCLA in the cyclic case if the very first
 935		 * next_lcla fails...
 936		 */
 937		d40_log_lli_lcla_write(lcla,
 938				       &lli->dst[lli_current],
 939				       &lli->src[lli_current],
 940				       next_lcla, flags);
 941
 942		/*
 943		 * Cache maintenance is not needed if lcla is
 944		 * mapped in esram
 945		 */
 946		if (!use_esram_lcla) {
 947			dma_sync_single_range_for_device(chan->base->dev,
 948						pool->dma_addr, lcla_offset,
 949						2 * sizeof(struct d40_log_lli),
 950						DMA_TO_DEVICE);
 951		}
 952		curr_lcla = next_lcla;
 953
 954		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
 955			lli_current++;
 956			break;
 957		}
 958	}
 959 set_current:
 960	desc->lli_current = lli_current;
 961}
 962
 963static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
 964{
 965	if (chan_is_physical(d40c)) {
 966		d40_phy_lli_load(d40c, d40d);
 967		d40d->lli_current = d40d->lli_len;
 968	} else
 969		d40_log_lli_to_lcxa(d40c, d40d);
 970}
 971
 972static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
 973{
 974	return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
 975}
 976
 977/* remove desc from current queue and add it to the pending_queue */
 978static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
 979{
 980	d40_desc_remove(desc);
 981	desc->is_in_client_list = false;
 982	list_add_tail(&desc->node, &d40c->pending_queue);
 983}
 984
 985static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
 986{
 987	return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
 988					node);
 989}
 990
 991static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
 992{
 993	return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
 994}
 995
 996static struct d40_desc *d40_first_done(struct d40_chan *d40c)
 997{
 998	return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
 999}
1000
1001static int d40_psize_2_burst_size(bool is_log, int psize)
1002{
1003	if (is_log) {
1004		if (psize == STEDMA40_PSIZE_LOG_1)
1005			return 1;
1006	} else {
1007		if (psize == STEDMA40_PSIZE_PHY_1)
1008			return 1;
1009	}
1010
1011	return 2 << psize;
1012}
1013
1014/*
1015 * The dma only supports transmitting packages up to
1016 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
1017 *
1018 * Calculate the total number of dma elements required to send the entire sg list.
1019 */
1020static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
1021{
1022	int dmalen;
1023	u32 max_w = max(data_width1, data_width2);
1024	u32 min_w = min(data_width1, data_width2);
1025	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1026
1027	if (seg_max > STEDMA40_MAX_SEG_SIZE)
1028		seg_max -= max_w;
1029
1030	if (!IS_ALIGNED(size, max_w))
1031		return -EINVAL;
1032
1033	if (size <= seg_max)
1034		dmalen = 1;
1035	else {
1036		dmalen = size / seg_max;
1037		if (dmalen * seg_max < size)
1038			dmalen++;
1039	}
1040	return dmalen;
1041}
1042
1043static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1044			   u32 data_width1, u32 data_width2)
1045{
1046	struct scatterlist *sg;
1047	int i;
1048	int len = 0;
1049	int ret;
1050
1051	for_each_sg(sgl, sg, sg_len, i) {
1052		ret = d40_size_2_dmalen(sg_dma_len(sg),
1053					data_width1, data_width2);
1054		if (ret < 0)
1055			return ret;
1056		len += ret;
1057	}
1058	return len;
1059}
1060
1061static int __d40_execute_command_phy(struct d40_chan *d40c,
1062				     enum d40_command command)
1063{
1064	u32 status;
1065	int i;
1066	void __iomem *active_reg;
1067	int ret = 0;
1068	unsigned long flags;
1069	u32 wmask;
1070
1071	if (command == D40_DMA_STOP) {
1072		ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1073		if (ret)
1074			return ret;
1075	}
1076
1077	spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1078
1079	if (d40c->phy_chan->num % 2 == 0)
1080		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1081	else
1082		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1083
1084	if (command == D40_DMA_SUSPEND_REQ) {
1085		status = (readl(active_reg) &
1086			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1087			D40_CHAN_POS(d40c->phy_chan->num);
1088
1089		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1090			goto unlock;
1091	}
1092
1093	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1094	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1095	       active_reg);
1096
1097	if (command == D40_DMA_SUSPEND_REQ) {
1098
1099		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1100			status = (readl(active_reg) &
1101				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1102				D40_CHAN_POS(d40c->phy_chan->num);
1103
1104			cpu_relax();
1105			/*
1106			 * Reduce the number of bus accesses while
1107			 * waiting for the DMA to suspend.
1108			 */
1109			udelay(3);
1110
1111			if (status == D40_DMA_STOP ||
1112			    status == D40_DMA_SUSPENDED)
1113				break;
1114		}
1115
1116		if (i == D40_SUSPEND_MAX_IT) {
1117			chan_err(d40c,
1118				"unable to suspend the chl %d (log: %d) status %x\n",
1119				d40c->phy_chan->num, d40c->log_num,
1120				status);
1121			dump_stack();
1122			ret = -EBUSY;
1123		}
1124
1125	}
1126 unlock:
1127	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1128	return ret;
1129}
1130
1131static void d40_term_all(struct d40_chan *d40c)
1132{
1133	struct d40_desc *d40d;
1134	struct d40_desc *_d;
1135
1136	/* Release completed descriptors */
1137	while ((d40d = d40_first_done(d40c))) {
1138		d40_desc_remove(d40d);
1139		d40_desc_free(d40c, d40d);
1140	}
1141
1142	/* Release active descriptors */
1143	while ((d40d = d40_first_active_get(d40c))) {
1144		d40_desc_remove(d40d);
1145		d40_desc_free(d40c, d40d);
1146	}
1147
1148	/* Release queued descriptors waiting for transfer */
1149	while ((d40d = d40_first_queued(d40c))) {
1150		d40_desc_remove(d40d);
1151		d40_desc_free(d40c, d40d);
1152	}
1153
1154	/* Release pending descriptors */
1155	while ((d40d = d40_first_pending(d40c))) {
1156		d40_desc_remove(d40d);
1157		d40_desc_free(d40c, d40d);
1158	}
1159
1160	/* Release client owned descriptors */
1161	if (!list_empty(&d40c->client))
1162		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1163			d40_desc_remove(d40d);
1164			d40_desc_free(d40c, d40d);
1165		}
1166
1167	/* Release descriptors in prepare queue */
1168	if (!list_empty(&d40c->prepare_queue))
1169		list_for_each_entry_safe(d40d, _d,
1170					 &d40c->prepare_queue, node) {
1171			d40_desc_remove(d40d);
1172			d40_desc_free(d40c, d40d);
1173		}
1174
1175	d40c->pending_tx = 0;
1176}
1177
1178static void __d40_config_set_event(struct d40_chan *d40c,
1179				   enum d40_events event_type, u32 event,
1180				   int reg)
1181{
1182	void __iomem *addr = chan_base(d40c) + reg;
1183	int tries;
1184	u32 status;
1185
1186	switch (event_type) {
1187
1188	case D40_DEACTIVATE_EVENTLINE:
1189
1190		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1191		       | ~D40_EVENTLINE_MASK(event), addr);
1192		break;
1193
1194	case D40_SUSPEND_REQ_EVENTLINE:
1195		status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1196			  D40_EVENTLINE_POS(event);
1197
1198		if (status == D40_DEACTIVATE_EVENTLINE ||
1199		    status == D40_SUSPEND_REQ_EVENTLINE)
1200			break;
1201
1202		writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1203		       | ~D40_EVENTLINE_MASK(event), addr);
1204
1205		for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1206
1207			status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1208				  D40_EVENTLINE_POS(event);
1209
1210			cpu_relax();
1211			/*
1212			 * Reduce the number of bus accesses while
1213			 * waiting for the DMA to suspend.
1214			 */
1215			udelay(3);
1216
1217			if (status == D40_DEACTIVATE_EVENTLINE)
1218				break;
1219		}
1220
1221		if (tries == D40_SUSPEND_MAX_IT) {
1222			chan_err(d40c,
1223				"unable to stop the event_line chl %d (log: %d)"
1224				"status %x\n", d40c->phy_chan->num,
1225				 d40c->log_num, status);
1226		}
1227		break;
1228
1229	case D40_ACTIVATE_EVENTLINE:
1230	/*
1231	 * The hardware sometimes doesn't register the enable when src and dst
1232	 * event lines are active on the same logical channel.  Retry to ensure
1233	 * it does.  Usually only one retry is sufficient.
1234	 */
1235		tries = 100;
1236		while (--tries) {
1237			writel((D40_ACTIVATE_EVENTLINE <<
1238				D40_EVENTLINE_POS(event)) |
1239				~D40_EVENTLINE_MASK(event), addr);
1240
1241			if (readl(addr) & D40_EVENTLINE_MASK(event))
1242				break;
1243		}
1244
1245		if (tries != 99)
1246			dev_dbg(chan2dev(d40c),
1247				"[%s] workaround enable S%cLNK (%d tries)\n",
1248				__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1249				100 - tries);
1250
1251		WARN_ON(!tries);
1252		break;
1253
1254	case D40_ROUND_EVENTLINE:
1255		BUG();
1256		break;
1257
1258	}
1259}
1260
1261static void d40_config_set_event(struct d40_chan *d40c,
1262				 enum d40_events event_type)
1263{
1264	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1265
1266	/* Enable event line connected to device (or memcpy) */
1267	if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1268	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1269		__d40_config_set_event(d40c, event_type, event,
1270				       D40_CHAN_REG_SSLNK);
1271
1272	if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1273		__d40_config_set_event(d40c, event_type, event,
1274				       D40_CHAN_REG_SDLNK);
1275}
1276
1277static u32 d40_chan_has_events(struct d40_chan *d40c)
1278{
1279	void __iomem *chanbase = chan_base(d40c);
1280	u32 val;
1281
1282	val = readl(chanbase + D40_CHAN_REG_SSLNK);
1283	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1284
1285	return val;
1286}
1287
1288static int
1289__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1290{
1291	unsigned long flags;
1292	int ret = 0;
1293	u32 active_status;
1294	void __iomem *active_reg;
1295
1296	if (d40c->phy_chan->num % 2 == 0)
1297		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1298	else
1299		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1300
1301
1302	spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1303
1304	switch (command) {
1305	case D40_DMA_STOP:
1306	case D40_DMA_SUSPEND_REQ:
1307
1308		active_status = (readl(active_reg) &
1309				 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1310				 D40_CHAN_POS(d40c->phy_chan->num);
1311
1312		if (active_status == D40_DMA_RUN)
1313			d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1314		else
1315			d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1316
1317		if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1318			ret = __d40_execute_command_phy(d40c, command);
1319
1320		break;
1321
1322	case D40_DMA_RUN:
1323
1324		d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1325		ret = __d40_execute_command_phy(d40c, command);
1326		break;
1327
1328	case D40_DMA_SUSPENDED:
1329		BUG();
1330		break;
1331	}
1332
1333	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1334	return ret;
1335}
1336
1337static int d40_channel_execute_command(struct d40_chan *d40c,
1338				       enum d40_command command)
1339{
1340	if (chan_is_logical(d40c))
1341		return __d40_execute_command_log(d40c, command);
1342	else
1343		return __d40_execute_command_phy(d40c, command);
1344}
1345
1346static u32 d40_get_prmo(struct d40_chan *d40c)
1347{
1348	static const unsigned int phy_map[] = {
1349		[STEDMA40_PCHAN_BASIC_MODE]
1350			= D40_DREG_PRMO_PCHAN_BASIC,
1351		[STEDMA40_PCHAN_MODULO_MODE]
1352			= D40_DREG_PRMO_PCHAN_MODULO,
1353		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
1354			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1355	};
1356	static const unsigned int log_map[] = {
1357		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1358			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1359		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1360			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1361		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1362			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1363	};
1364
1365	if (chan_is_physical(d40c))
1366		return phy_map[d40c->dma_cfg.mode_opt];
1367	else
1368		return log_map[d40c->dma_cfg.mode_opt];
1369}
1370
1371static void d40_config_write(struct d40_chan *d40c)
1372{
1373	u32 addr_base;
1374	u32 var;
1375
1376	/* Odd addresses are even addresses + 4 */
1377	addr_base = (d40c->phy_chan->num % 2) * 4;
1378	/* Setup channel mode to logical or physical */
1379	var = ((u32)(chan_is_logical(d40c)) + 1) <<
1380		D40_CHAN_POS(d40c->phy_chan->num);
1381	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1382
1383	/* Setup operational mode option register */
1384	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1385
1386	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1387
1388	if (chan_is_logical(d40c)) {
1389		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1390			   & D40_SREG_ELEM_LOG_LIDX_MASK;
1391		void __iomem *chanbase = chan_base(d40c);
1392
1393		/* Set default config for CFG reg */
1394		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1395		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1396
1397		/* Set LIDX for lcla */
1398		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1399		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1400
1401		/* Clear LNK which will be used by d40_chan_has_events() */
1402		writel(0, chanbase + D40_CHAN_REG_SSLNK);
1403		writel(0, chanbase + D40_CHAN_REG_SDLNK);
1404	}
1405}
1406
1407static u32 d40_residue(struct d40_chan *d40c)
1408{
1409	u32 num_elt;
1410
1411	if (chan_is_logical(d40c))
1412		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1413			>> D40_MEM_LCSP2_ECNT_POS;
1414	else {
1415		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1416		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1417			  >> D40_SREG_ELEM_PHY_ECNT_POS;
1418	}
1419
1420	return num_elt * d40c->dma_cfg.dst_info.data_width;
1421}
1422
1423static bool d40_tx_is_linked(struct d40_chan *d40c)
1424{
1425	bool is_link;
1426
1427	if (chan_is_logical(d40c))
1428		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1429	else
1430		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1431			  & D40_SREG_LNK_PHYS_LNK_MASK;
1432
1433	return is_link;
1434}
1435
1436static int d40_pause(struct dma_chan *chan)
1437{
1438	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1439	int res = 0;
1440	unsigned long flags;
1441
1442	if (d40c->phy_chan == NULL) {
1443		chan_err(d40c, "Channel is not allocated!\n");
1444		return -EINVAL;
1445	}
1446
1447	if (!d40c->busy)
1448		return 0;
1449
1450	spin_lock_irqsave(&d40c->lock, flags);
1451	pm_runtime_get_sync(d40c->base->dev);
1452
1453	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1454
1455	pm_runtime_mark_last_busy(d40c->base->dev);
1456	pm_runtime_put_autosuspend(d40c->base->dev);
1457	spin_unlock_irqrestore(&d40c->lock, flags);
1458	return res;
1459}
1460
1461static int d40_resume(struct dma_chan *chan)
1462{
1463	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1464	int res = 0;
1465	unsigned long flags;
1466
1467	if (d40c->phy_chan == NULL) {
1468		chan_err(d40c, "Channel is not allocated!\n");
1469		return -EINVAL;
1470	}
1471
1472	if (!d40c->busy)
1473		return 0;
1474
1475	spin_lock_irqsave(&d40c->lock, flags);
1476	pm_runtime_get_sync(d40c->base->dev);
1477
1478	/* If bytes left to transfer or linked tx resume job */
1479	if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1480		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1481
1482	pm_runtime_mark_last_busy(d40c->base->dev);
1483	pm_runtime_put_autosuspend(d40c->base->dev);
1484	spin_unlock_irqrestore(&d40c->lock, flags);
1485	return res;
1486}
1487
1488static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1489{
1490	struct d40_chan *d40c = container_of(tx->chan,
1491					     struct d40_chan,
1492					     chan);
1493	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1494	unsigned long flags;
1495	dma_cookie_t cookie;
1496
1497	spin_lock_irqsave(&d40c->lock, flags);
1498	cookie = dma_cookie_assign(tx);
1499	d40_desc_queue(d40c, d40d);
1500	spin_unlock_irqrestore(&d40c->lock, flags);
1501
1502	return cookie;
1503}
1504
1505static int d40_start(struct d40_chan *d40c)
1506{
1507	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1508}
1509
1510static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1511{
1512	struct d40_desc *d40d;
1513	int err;
1514
1515	/* Start queued jobs, if any */
1516	d40d = d40_first_queued(d40c);
1517
1518	if (d40d != NULL) {
1519		if (!d40c->busy) {
1520			d40c->busy = true;
1521			pm_runtime_get_sync(d40c->base->dev);
1522		}
1523
1524		/* Remove from queue */
1525		d40_desc_remove(d40d);
1526
1527		/* Add to active queue */
1528		d40_desc_submit(d40c, d40d);
1529
1530		/* Initiate DMA job */
1531		d40_desc_load(d40c, d40d);
1532
1533		/* Start dma job */
1534		err = d40_start(d40c);
1535
1536		if (err)
1537			return NULL;
1538	}
1539
1540	return d40d;
1541}
1542
1543/* called from interrupt context */
1544static void dma_tc_handle(struct d40_chan *d40c)
1545{
1546	struct d40_desc *d40d;
1547
1548	/* Get first active entry from list */
1549	d40d = d40_first_active_get(d40c);
1550
1551	if (d40d == NULL)
1552		return;
1553
1554	if (d40d->cyclic) {
1555		/*
1556		 * If this was a paritially loaded list, we need to reloaded
1557		 * it, and only when the list is completed.  We need to check
1558		 * for done because the interrupt will hit for every link, and
1559		 * not just the last one.
1560		 */
1561		if (d40d->lli_current < d40d->lli_len
1562		    && !d40_tx_is_linked(d40c)
1563		    && !d40_residue(d40c)) {
1564			d40_lcla_free_all(d40c, d40d);
1565			d40_desc_load(d40c, d40d);
1566			(void) d40_start(d40c);
1567
1568			if (d40d->lli_current == d40d->lli_len)
1569				d40d->lli_current = 0;
1570		}
1571	} else {
1572		d40_lcla_free_all(d40c, d40d);
1573
1574		if (d40d->lli_current < d40d->lli_len) {
1575			d40_desc_load(d40c, d40d);
1576			/* Start dma job */
1577			(void) d40_start(d40c);
1578			return;
1579		}
1580
1581		if (d40_queue_start(d40c) == NULL) {
1582			d40c->busy = false;
1583
1584			pm_runtime_mark_last_busy(d40c->base->dev);
1585			pm_runtime_put_autosuspend(d40c->base->dev);
1586		}
1587
1588		d40_desc_remove(d40d);
1589		d40_desc_done(d40c, d40d);
1590	}
1591
1592	d40c->pending_tx++;
1593	tasklet_schedule(&d40c->tasklet);
1594
1595}
1596
1597static void dma_tasklet(struct tasklet_struct *t)
1598{
1599	struct d40_chan *d40c = from_tasklet(d40c, t, tasklet);
1600	struct d40_desc *d40d;
1601	unsigned long flags;
1602	bool callback_active;
1603	struct dmaengine_desc_callback cb;
1604
1605	spin_lock_irqsave(&d40c->lock, flags);
1606
1607	/* Get first entry from the done list */
1608	d40d = d40_first_done(d40c);
1609	if (d40d == NULL) {
1610		/* Check if we have reached here for cyclic job */
1611		d40d = d40_first_active_get(d40c);
1612		if (d40d == NULL || !d40d->cyclic)
1613			goto check_pending_tx;
1614	}
1615
1616	if (!d40d->cyclic)
1617		dma_cookie_complete(&d40d->txd);
1618
1619	/*
1620	 * If terminating a channel pending_tx is set to zero.
1621	 * This prevents any finished active jobs to return to the client.
1622	 */
1623	if (d40c->pending_tx == 0) {
1624		spin_unlock_irqrestore(&d40c->lock, flags);
1625		return;
1626	}
1627
1628	/* Callback to client */
1629	callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1630	dmaengine_desc_get_callback(&d40d->txd, &cb);
1631
1632	if (!d40d->cyclic) {
1633		if (async_tx_test_ack(&d40d->txd)) {
1634			d40_desc_remove(d40d);
1635			d40_desc_free(d40c, d40d);
1636		} else if (!d40d->is_in_client_list) {
1637			d40_desc_remove(d40d);
1638			d40_lcla_free_all(d40c, d40d);
1639			list_add_tail(&d40d->node, &d40c->client);
1640			d40d->is_in_client_list = true;
1641		}
1642	}
1643
1644	d40c->pending_tx--;
1645
1646	if (d40c->pending_tx)
1647		tasklet_schedule(&d40c->tasklet);
1648
1649	spin_unlock_irqrestore(&d40c->lock, flags);
1650
1651	if (callback_active)
1652		dmaengine_desc_callback_invoke(&cb, NULL);
1653
1654	return;
1655 check_pending_tx:
1656	/* Rescue maneuver if receiving double interrupts */
1657	if (d40c->pending_tx > 0)
1658		d40c->pending_tx--;
1659	spin_unlock_irqrestore(&d40c->lock, flags);
1660}
1661
1662static irqreturn_t d40_handle_interrupt(int irq, void *data)
1663{
1664	int i;
1665	u32 idx;
1666	u32 row;
1667	long chan = -1;
1668	struct d40_chan *d40c;
1669	struct d40_base *base = data;
1670	u32 *regs = base->regs_interrupt;
1671	struct d40_interrupt_lookup *il = base->gen_dmac.il;
1672	u32 il_size = base->gen_dmac.il_size;
1673
1674	spin_lock(&base->interrupt_lock);
1675
1676	/* Read interrupt status of both logical and physical channels */
1677	for (i = 0; i < il_size; i++)
1678		regs[i] = readl(base->virtbase + il[i].src);
1679
1680	for (;;) {
1681
1682		chan = find_next_bit((unsigned long *)regs,
1683				     BITS_PER_LONG * il_size, chan + 1);
1684
1685		/* No more set bits found? */
1686		if (chan == BITS_PER_LONG * il_size)
1687			break;
1688
1689		row = chan / BITS_PER_LONG;
1690		idx = chan & (BITS_PER_LONG - 1);
1691
1692		if (il[row].offset == D40_PHY_CHAN)
1693			d40c = base->lookup_phy_chans[idx];
1694		else
1695			d40c = base->lookup_log_chans[il[row].offset + idx];
1696
1697		if (!d40c) {
1698			/*
1699			 * No error because this can happen if something else
1700			 * in the system is using the channel.
1701			 */
1702			continue;
1703		}
1704
1705		/* ACK interrupt */
1706		writel(BIT(idx), base->virtbase + il[row].clr);
1707
1708		spin_lock(&d40c->lock);
1709
1710		if (!il[row].is_error)
1711			dma_tc_handle(d40c);
1712		else
1713			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1714				chan, il[row].offset, idx);
1715
1716		spin_unlock(&d40c->lock);
1717	}
1718
1719	spin_unlock(&base->interrupt_lock);
1720
1721	return IRQ_HANDLED;
1722}
1723
1724static int d40_validate_conf(struct d40_chan *d40c,
1725			     struct stedma40_chan_cfg *conf)
1726{
1727	int res = 0;
1728	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1729
1730	if (!conf->dir) {
1731		chan_err(d40c, "Invalid direction.\n");
1732		res = -EINVAL;
1733	}
1734
1735	if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
1736	    (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1737	    (conf->dev_type < 0)) {
1738		chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1739		res = -EINVAL;
1740	}
1741
1742	if (conf->dir == DMA_DEV_TO_DEV) {
1743		/*
1744		 * DMAC HW supports it. Will be added to this driver,
1745		 * in case any dma client requires it.
1746		 */
1747		chan_err(d40c, "periph to periph not supported\n");
1748		res = -EINVAL;
1749	}
1750
1751	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1752	    conf->src_info.data_width !=
1753	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1754	    conf->dst_info.data_width) {
1755		/*
1756		 * The DMAC hardware only supports
1757		 * src (burst x width) == dst (burst x width)
1758		 */
1759
1760		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1761		res = -EINVAL;
1762	}
1763
1764	return res;
1765}
1766
1767static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1768			       bool is_src, int log_event_line, bool is_log,
1769			       bool *first_user)
1770{
1771	unsigned long flags;
1772	spin_lock_irqsave(&phy->lock, flags);
1773
1774	*first_user = ((phy->allocated_src | phy->allocated_dst)
1775			== D40_ALLOC_FREE);
1776
1777	if (!is_log) {
1778		/* Physical interrupts are masked per physical full channel */
1779		if (phy->allocated_src == D40_ALLOC_FREE &&
1780		    phy->allocated_dst == D40_ALLOC_FREE) {
1781			phy->allocated_dst = D40_ALLOC_PHY;
1782			phy->allocated_src = D40_ALLOC_PHY;
1783			goto found_unlock;
1784		} else
1785			goto not_found_unlock;
1786	}
1787
1788	/* Logical channel */
1789	if (is_src) {
1790		if (phy->allocated_src == D40_ALLOC_PHY)
1791			goto not_found_unlock;
1792
1793		if (phy->allocated_src == D40_ALLOC_FREE)
1794			phy->allocated_src = D40_ALLOC_LOG_FREE;
1795
1796		if (!(phy->allocated_src & BIT(log_event_line))) {
1797			phy->allocated_src |= BIT(log_event_line);
1798			goto found_unlock;
1799		} else
1800			goto not_found_unlock;
1801	} else {
1802		if (phy->allocated_dst == D40_ALLOC_PHY)
1803			goto not_found_unlock;
1804
1805		if (phy->allocated_dst == D40_ALLOC_FREE)
1806			phy->allocated_dst = D40_ALLOC_LOG_FREE;
1807
1808		if (!(phy->allocated_dst & BIT(log_event_line))) {
1809			phy->allocated_dst |= BIT(log_event_line);
1810			goto found_unlock;
1811		}
1812	}
1813 not_found_unlock:
1814	spin_unlock_irqrestore(&phy->lock, flags);
1815	return false;
1816 found_unlock:
1817	spin_unlock_irqrestore(&phy->lock, flags);
1818	return true;
1819}
1820
1821static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1822			       int log_event_line)
1823{
1824	unsigned long flags;
1825	bool is_free = false;
1826
1827	spin_lock_irqsave(&phy->lock, flags);
1828	if (!log_event_line) {
1829		phy->allocated_dst = D40_ALLOC_FREE;
1830		phy->allocated_src = D40_ALLOC_FREE;
1831		is_free = true;
1832		goto unlock;
1833	}
1834
1835	/* Logical channel */
1836	if (is_src) {
1837		phy->allocated_src &= ~BIT(log_event_line);
1838		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1839			phy->allocated_src = D40_ALLOC_FREE;
1840	} else {
1841		phy->allocated_dst &= ~BIT(log_event_line);
1842		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1843			phy->allocated_dst = D40_ALLOC_FREE;
1844	}
1845
1846	is_free = ((phy->allocated_src | phy->allocated_dst) ==
1847		   D40_ALLOC_FREE);
1848 unlock:
1849	spin_unlock_irqrestore(&phy->lock, flags);
1850
1851	return is_free;
1852}
1853
1854static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1855{
1856	int dev_type = d40c->dma_cfg.dev_type;
1857	int event_group;
1858	int event_line;
1859	struct d40_phy_res *phys;
1860	int i;
1861	int j;
1862	int log_num;
1863	int num_phy_chans;
1864	bool is_src;
1865	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1866
1867	phys = d40c->base->phy_res;
1868	num_phy_chans = d40c->base->num_phy_chans;
1869
1870	if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1871		log_num = 2 * dev_type;
1872		is_src = true;
1873	} else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1874		   d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1875		/* dst event lines are used for logical memcpy */
1876		log_num = 2 * dev_type + 1;
1877		is_src = false;
1878	} else
1879		return -EINVAL;
1880
1881	event_group = D40_TYPE_TO_GROUP(dev_type);
1882	event_line = D40_TYPE_TO_EVENT(dev_type);
1883
1884	if (!is_log) {
1885		if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1886			/* Find physical half channel */
1887			if (d40c->dma_cfg.use_fixed_channel) {
1888				i = d40c->dma_cfg.phy_channel;
1889				if (d40_alloc_mask_set(&phys[i], is_src,
1890						       0, is_log,
1891						       first_phy_user))
1892					goto found_phy;
1893			} else {
1894				for (i = 0; i < num_phy_chans; i++) {
1895					if (d40_alloc_mask_set(&phys[i], is_src,
1896						       0, is_log,
1897						       first_phy_user))
1898						goto found_phy;
1899				}
1900			}
1901		} else
1902			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1903				int phy_num = j  + event_group * 2;
1904				for (i = phy_num; i < phy_num + 2; i++) {
1905					if (d40_alloc_mask_set(&phys[i],
1906							       is_src,
1907							       0,
1908							       is_log,
1909							       first_phy_user))
1910						goto found_phy;
1911				}
1912			}
1913		return -EINVAL;
1914found_phy:
1915		d40c->phy_chan = &phys[i];
1916		d40c->log_num = D40_PHY_CHAN;
1917		goto out;
1918	}
1919	if (dev_type == -1)
1920		return -EINVAL;
1921
1922	/* Find logical channel */
1923	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1924		int phy_num = j + event_group * 2;
1925
1926		if (d40c->dma_cfg.use_fixed_channel) {
1927			i = d40c->dma_cfg.phy_channel;
1928
1929			if ((i != phy_num) && (i != phy_num + 1)) {
1930				dev_err(chan2dev(d40c),
1931					"invalid fixed phy channel %d\n", i);
1932				return -EINVAL;
1933			}
1934
1935			if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1936					       is_log, first_phy_user))
1937				goto found_log;
1938
1939			dev_err(chan2dev(d40c),
1940				"could not allocate fixed phy channel %d\n", i);
1941			return -EINVAL;
1942		}
1943
1944		/*
1945		 * Spread logical channels across all available physical rather
1946		 * than pack every logical channel at the first available phy
1947		 * channels.
1948		 */
1949		if (is_src) {
1950			for (i = phy_num; i < phy_num + 2; i++) {
1951				if (d40_alloc_mask_set(&phys[i], is_src,
1952						       event_line, is_log,
1953						       first_phy_user))
1954					goto found_log;
1955			}
1956		} else {
1957			for (i = phy_num + 1; i >= phy_num; i--) {
1958				if (d40_alloc_mask_set(&phys[i], is_src,
1959						       event_line, is_log,
1960						       first_phy_user))
1961					goto found_log;
1962			}
1963		}
1964	}
1965	return -EINVAL;
1966
1967found_log:
1968	d40c->phy_chan = &phys[i];
1969	d40c->log_num = log_num;
1970out:
1971
1972	if (is_log)
1973		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1974	else
1975		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1976
1977	return 0;
1978
1979}
1980
1981static int d40_config_memcpy(struct d40_chan *d40c)
1982{
1983	dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1984
1985	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1986		d40c->dma_cfg = dma40_memcpy_conf_log;
1987		d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1988
1989		d40_log_cfg(&d40c->dma_cfg,
1990			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1991
1992	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
1993		   dma_has_cap(DMA_SLAVE, cap)) {
1994		d40c->dma_cfg = dma40_memcpy_conf_phy;
1995
1996		/* Generate interrupt at end of transfer or relink. */
1997		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
1998
1999		/* Generate interrupt on error. */
2000		d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2001		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2002
2003	} else {
2004		chan_err(d40c, "No memcpy\n");
2005		return -EINVAL;
2006	}
2007
2008	return 0;
2009}
2010
2011static int d40_free_dma(struct d40_chan *d40c)
2012{
2013
2014	int res = 0;
2015	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2016	struct d40_phy_res *phy = d40c->phy_chan;
2017	bool is_src;
2018
2019	/* Terminate all queued and active transfers */
2020	d40_term_all(d40c);
2021
2022	if (phy == NULL) {
2023		chan_err(d40c, "phy == null\n");
2024		return -EINVAL;
2025	}
2026
2027	if (phy->allocated_src == D40_ALLOC_FREE &&
2028	    phy->allocated_dst == D40_ALLOC_FREE) {
2029		chan_err(d40c, "channel already free\n");
2030		return -EINVAL;
2031	}
2032
2033	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2034	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2035		is_src = false;
2036	else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2037		is_src = true;
2038	else {
2039		chan_err(d40c, "Unknown direction\n");
2040		return -EINVAL;
2041	}
2042
2043	pm_runtime_get_sync(d40c->base->dev);
2044	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2045	if (res) {
2046		chan_err(d40c, "stop failed\n");
2047		goto mark_last_busy;
2048	}
2049
2050	d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2051
2052	if (chan_is_logical(d40c))
2053		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2054	else
2055		d40c->base->lookup_phy_chans[phy->num] = NULL;
2056
2057	if (d40c->busy) {
2058		pm_runtime_mark_last_busy(d40c->base->dev);
2059		pm_runtime_put_autosuspend(d40c->base->dev);
2060	}
2061
2062	d40c->busy = false;
2063	d40c->phy_chan = NULL;
2064	d40c->configured = false;
2065 mark_last_busy:
2066	pm_runtime_mark_last_busy(d40c->base->dev);
2067	pm_runtime_put_autosuspend(d40c->base->dev);
2068	return res;
2069}
2070
2071static bool d40_is_paused(struct d40_chan *d40c)
2072{
2073	void __iomem *chanbase = chan_base(d40c);
2074	bool is_paused = false;
2075	unsigned long flags;
2076	void __iomem *active_reg;
2077	u32 status;
2078	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2079
2080	spin_lock_irqsave(&d40c->lock, flags);
2081
2082	if (chan_is_physical(d40c)) {
2083		if (d40c->phy_chan->num % 2 == 0)
2084			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2085		else
2086			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2087
2088		status = (readl(active_reg) &
2089			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2090			D40_CHAN_POS(d40c->phy_chan->num);
2091		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2092			is_paused = true;
2093		goto unlock;
2094	}
2095
2096	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2097	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2098		status = readl(chanbase + D40_CHAN_REG_SDLNK);
2099	} else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2100		status = readl(chanbase + D40_CHAN_REG_SSLNK);
2101	} else {
2102		chan_err(d40c, "Unknown direction\n");
2103		goto unlock;
2104	}
2105
2106	status = (status & D40_EVENTLINE_MASK(event)) >>
2107		D40_EVENTLINE_POS(event);
2108
2109	if (status != D40_DMA_RUN)
2110		is_paused = true;
2111 unlock:
2112	spin_unlock_irqrestore(&d40c->lock, flags);
2113	return is_paused;
2114
2115}
2116
2117static u32 stedma40_residue(struct dma_chan *chan)
2118{
2119	struct d40_chan *d40c =
2120		container_of(chan, struct d40_chan, chan);
2121	u32 bytes_left;
2122	unsigned long flags;
2123
2124	spin_lock_irqsave(&d40c->lock, flags);
2125	bytes_left = d40_residue(d40c);
2126	spin_unlock_irqrestore(&d40c->lock, flags);
2127
2128	return bytes_left;
2129}
2130
2131static int
2132d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2133		struct scatterlist *sg_src, struct scatterlist *sg_dst,
2134		unsigned int sg_len, dma_addr_t src_dev_addr,
2135		dma_addr_t dst_dev_addr)
2136{
2137	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2138	struct stedma40_half_channel_info *src_info = &cfg->src_info;
2139	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2140	int ret;
2141
2142	ret = d40_log_sg_to_lli(sg_src, sg_len,
2143				src_dev_addr,
2144				desc->lli_log.src,
2145				chan->log_def.lcsp1,
2146				src_info->data_width,
2147				dst_info->data_width);
2148
2149	ret = d40_log_sg_to_lli(sg_dst, sg_len,
2150				dst_dev_addr,
2151				desc->lli_log.dst,
2152				chan->log_def.lcsp3,
2153				dst_info->data_width,
2154				src_info->data_width);
2155
2156	return ret < 0 ? ret : 0;
2157}
2158
2159static int
2160d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2161		struct scatterlist *sg_src, struct scatterlist *sg_dst,
2162		unsigned int sg_len, dma_addr_t src_dev_addr,
2163		dma_addr_t dst_dev_addr)
2164{
2165	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2166	struct stedma40_half_channel_info *src_info = &cfg->src_info;
2167	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2168	unsigned long flags = 0;
2169	int ret;
2170
2171	if (desc->cyclic)
2172		flags |= LLI_CYCLIC | LLI_TERM_INT;
2173
2174	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2175				desc->lli_phy.src,
2176				virt_to_phys(desc->lli_phy.src),
2177				chan->src_def_cfg,
2178				src_info, dst_info, flags);
2179
2180	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2181				desc->lli_phy.dst,
2182				virt_to_phys(desc->lli_phy.dst),
2183				chan->dst_def_cfg,
2184				dst_info, src_info, flags);
2185
2186	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2187				   desc->lli_pool.size, DMA_TO_DEVICE);
2188
2189	return ret < 0 ? ret : 0;
2190}
2191
2192static struct d40_desc *
2193d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2194	      unsigned int sg_len, unsigned long dma_flags)
2195{
2196	struct stedma40_chan_cfg *cfg;
2197	struct d40_desc *desc;
2198	int ret;
2199
2200	desc = d40_desc_get(chan);
2201	if (!desc)
2202		return NULL;
2203
2204	cfg = &chan->dma_cfg;
2205	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2206					cfg->dst_info.data_width);
2207	if (desc->lli_len < 0) {
2208		chan_err(chan, "Unaligned size\n");
2209		goto free_desc;
2210	}
2211
2212	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2213	if (ret < 0) {
2214		chan_err(chan, "Could not allocate lli\n");
2215		goto free_desc;
2216	}
2217
2218	desc->lli_current = 0;
2219	desc->txd.flags = dma_flags;
2220	desc->txd.tx_submit = d40_tx_submit;
2221
2222	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2223
2224	return desc;
2225 free_desc:
2226	d40_desc_free(chan, desc);
2227	return NULL;
2228}
2229
2230static struct dma_async_tx_descriptor *
2231d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2232	    struct scatterlist *sg_dst, unsigned int sg_len,
2233	    enum dma_transfer_direction direction, unsigned long dma_flags)
2234{
2235	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2236	dma_addr_t src_dev_addr;
2237	dma_addr_t dst_dev_addr;
2238	struct d40_desc *desc;
2239	unsigned long flags;
2240	int ret;
2241
2242	if (!chan->phy_chan) {
2243		chan_err(chan, "Cannot prepare unallocated channel\n");
2244		return NULL;
2245	}
2246
2247	d40_set_runtime_config_write(dchan, &chan->slave_config, direction);
2248
2249	spin_lock_irqsave(&chan->lock, flags);
2250
2251	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2252	if (desc == NULL)
2253		goto unlock;
2254
2255	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2256		desc->cyclic = true;
2257
2258	src_dev_addr = 0;
2259	dst_dev_addr = 0;
2260	if (direction == DMA_DEV_TO_MEM)
2261		src_dev_addr = chan->runtime_addr;
2262	else if (direction == DMA_MEM_TO_DEV)
2263		dst_dev_addr = chan->runtime_addr;
2264
2265	if (chan_is_logical(chan))
2266		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2267				      sg_len, src_dev_addr, dst_dev_addr);
2268	else
2269		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2270				      sg_len, src_dev_addr, dst_dev_addr);
2271
2272	if (ret) {
2273		chan_err(chan, "Failed to prepare %s sg job: %d\n",
2274			 chan_is_logical(chan) ? "log" : "phy", ret);
2275		goto free_desc;
2276	}
2277
2278	/*
2279	 * add descriptor to the prepare queue in order to be able
2280	 * to free them later in terminate_all
2281	 */
2282	list_add_tail(&desc->node, &chan->prepare_queue);
2283
2284	spin_unlock_irqrestore(&chan->lock, flags);
2285
2286	return &desc->txd;
2287 free_desc:
2288	d40_desc_free(chan, desc);
2289 unlock:
2290	spin_unlock_irqrestore(&chan->lock, flags);
2291	return NULL;
2292}
2293
2294static bool stedma40_filter(struct dma_chan *chan, void *data)
2295{
2296	struct stedma40_chan_cfg *info = data;
2297	struct d40_chan *d40c =
2298		container_of(chan, struct d40_chan, chan);
2299	int err;
2300
2301	if (data) {
2302		err = d40_validate_conf(d40c, info);
2303		if (!err)
2304			d40c->dma_cfg = *info;
2305	} else
2306		err = d40_config_memcpy(d40c);
2307
2308	if (!err)
2309		d40c->configured = true;
2310
2311	return err == 0;
2312}
2313
2314static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2315{
2316	bool realtime = d40c->dma_cfg.realtime;
2317	bool highprio = d40c->dma_cfg.high_priority;
2318	u32 rtreg;
2319	u32 event = D40_TYPE_TO_EVENT(dev_type);
2320	u32 group = D40_TYPE_TO_GROUP(dev_type);
2321	u32 bit = BIT(event);
2322	u32 prioreg;
2323	struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2324
2325	rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2326	/*
2327	 * Due to a hardware bug, in some cases a logical channel triggered by
2328	 * a high priority destination event line can generate extra packet
2329	 * transactions.
2330	 *
2331	 * The workaround is to not set the high priority level for the
2332	 * destination event lines that trigger logical channels.
2333	 */
2334	if (!src && chan_is_logical(d40c))
2335		highprio = false;
2336
2337	prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2338
2339	/* Destination event lines are stored in the upper halfword */
2340	if (!src)
2341		bit <<= 16;
2342
2343	writel(bit, d40c->base->virtbase + prioreg + group * 4);
2344	writel(bit, d40c->base->virtbase + rtreg + group * 4);
2345}
2346
2347static void d40_set_prio_realtime(struct d40_chan *d40c)
2348{
2349	if (d40c->base->rev < 3)
2350		return;
2351
2352	if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
2353	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2354		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2355
2356	if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
2357	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2358		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2359}
2360
2361#define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
2362#define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
2363#define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2364#define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2365#define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2366
2367static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2368				  struct of_dma *ofdma)
2369{
2370	struct stedma40_chan_cfg cfg;
2371	dma_cap_mask_t cap;
2372	u32 flags;
2373
2374	memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2375
2376	dma_cap_zero(cap);
2377	dma_cap_set(DMA_SLAVE, cap);
2378
2379	cfg.dev_type = dma_spec->args[0];
2380	flags = dma_spec->args[2];
2381
2382	switch (D40_DT_FLAGS_MODE(flags)) {
2383	case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2384	case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2385	}
2386
2387	switch (D40_DT_FLAGS_DIR(flags)) {
2388	case 0:
2389		cfg.dir = DMA_MEM_TO_DEV;
2390		cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2391		break;
2392	case 1:
2393		cfg.dir = DMA_DEV_TO_MEM;
2394		cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2395		break;
2396	}
2397
2398	if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2399		cfg.phy_channel = dma_spec->args[1];
2400		cfg.use_fixed_channel = true;
2401	}
2402
2403	if (D40_DT_FLAGS_HIGH_PRIO(flags))
2404		cfg.high_priority = true;
2405
2406	return dma_request_channel(cap, stedma40_filter, &cfg);
2407}
2408
2409/* DMA ENGINE functions */
2410static int d40_alloc_chan_resources(struct dma_chan *chan)
2411{
2412	int err;
2413	unsigned long flags;
2414	struct d40_chan *d40c =
2415		container_of(chan, struct d40_chan, chan);
2416	bool is_free_phy;
2417	spin_lock_irqsave(&d40c->lock, flags);
2418
2419	dma_cookie_init(chan);
2420
2421	/* If no dma configuration is set use default configuration (memcpy) */
2422	if (!d40c->configured) {
2423		err = d40_config_memcpy(d40c);
2424		if (err) {
2425			chan_err(d40c, "Failed to configure memcpy channel\n");
2426			goto mark_last_busy;
2427		}
2428	}
2429
2430	err = d40_allocate_channel(d40c, &is_free_phy);
2431	if (err) {
2432		chan_err(d40c, "Failed to allocate channel\n");
2433		d40c->configured = false;
2434		goto mark_last_busy;
2435	}
2436
2437	pm_runtime_get_sync(d40c->base->dev);
2438
2439	d40_set_prio_realtime(d40c);
2440
2441	if (chan_is_logical(d40c)) {
2442		if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2443			d40c->lcpa = d40c->base->lcpa_base +
2444				d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2445		else
2446			d40c->lcpa = d40c->base->lcpa_base +
2447				d40c->dma_cfg.dev_type *
2448				D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2449
2450		/* Unmask the Global Interrupt Mask. */
2451		d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2452		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2453	}
2454
2455	dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2456		 chan_is_logical(d40c) ? "logical" : "physical",
2457		 d40c->phy_chan->num,
2458		 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2459
2460
2461	/*
2462	 * Only write channel configuration to the DMA if the physical
2463	 * resource is free. In case of multiple logical channels
2464	 * on the same physical resource, only the first write is necessary.
2465	 */
2466	if (is_free_phy)
2467		d40_config_write(d40c);
2468 mark_last_busy:
2469	pm_runtime_mark_last_busy(d40c->base->dev);
2470	pm_runtime_put_autosuspend(d40c->base->dev);
2471	spin_unlock_irqrestore(&d40c->lock, flags);
2472	return err;
2473}
2474
2475static void d40_free_chan_resources(struct dma_chan *chan)
2476{
2477	struct d40_chan *d40c =
2478		container_of(chan, struct d40_chan, chan);
2479	int err;
2480	unsigned long flags;
2481
2482	if (d40c->phy_chan == NULL) {
2483		chan_err(d40c, "Cannot free unallocated channel\n");
2484		return;
2485	}
2486
2487	spin_lock_irqsave(&d40c->lock, flags);
2488
2489	err = d40_free_dma(d40c);
2490
2491	if (err)
2492		chan_err(d40c, "Failed to free channel\n");
2493	spin_unlock_irqrestore(&d40c->lock, flags);
2494}
2495
2496static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2497						       dma_addr_t dst,
2498						       dma_addr_t src,
2499						       size_t size,
2500						       unsigned long dma_flags)
2501{
2502	struct scatterlist dst_sg;
2503	struct scatterlist src_sg;
2504
2505	sg_init_table(&dst_sg, 1);
2506	sg_init_table(&src_sg, 1);
2507
2508	sg_dma_address(&dst_sg) = dst;
2509	sg_dma_address(&src_sg) = src;
2510
2511	sg_dma_len(&dst_sg) = size;
2512	sg_dma_len(&src_sg) = size;
2513
2514	return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
2515			   DMA_MEM_TO_MEM, dma_flags);
2516}
2517
2518static struct dma_async_tx_descriptor *
2519d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2520		  unsigned int sg_len, enum dma_transfer_direction direction,
2521		  unsigned long dma_flags, void *context)
2522{
2523	if (!is_slave_direction(direction))
2524		return NULL;
2525
2526	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2527}
2528
2529static struct dma_async_tx_descriptor *
2530dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2531		     size_t buf_len, size_t period_len,
2532		     enum dma_transfer_direction direction, unsigned long flags)
2533{
2534	unsigned int periods = buf_len / period_len;
2535	struct dma_async_tx_descriptor *txd;
2536	struct scatterlist *sg;
2537	int i;
2538
2539	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2540	if (!sg)
2541		return NULL;
2542
2543	for (i = 0; i < periods; i++) {
2544		sg_dma_address(&sg[i]) = dma_addr;
2545		sg_dma_len(&sg[i]) = period_len;
2546		dma_addr += period_len;
2547	}
2548
2549	sg_chain(sg, periods + 1, sg);
2550
2551	txd = d40_prep_sg(chan, sg, sg, periods, direction,
2552			  DMA_PREP_INTERRUPT);
2553
2554	kfree(sg);
2555
2556	return txd;
2557}
2558
2559static enum dma_status d40_tx_status(struct dma_chan *chan,
2560				     dma_cookie_t cookie,
2561				     struct dma_tx_state *txstate)
2562{
2563	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2564	enum dma_status ret;
2565
2566	if (d40c->phy_chan == NULL) {
2567		chan_err(d40c, "Cannot read status of unallocated channel\n");
2568		return -EINVAL;
2569	}
2570
2571	ret = dma_cookie_status(chan, cookie, txstate);
2572	if (ret != DMA_COMPLETE && txstate)
2573		dma_set_residue(txstate, stedma40_residue(chan));
2574
2575	if (d40_is_paused(d40c))
2576		ret = DMA_PAUSED;
2577
2578	return ret;
2579}
2580
2581static void d40_issue_pending(struct dma_chan *chan)
2582{
2583	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2584	unsigned long flags;
2585
2586	if (d40c->phy_chan == NULL) {
2587		chan_err(d40c, "Channel is not allocated!\n");
2588		return;
2589	}
2590
2591	spin_lock_irqsave(&d40c->lock, flags);
2592
2593	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2594
2595	/* Busy means that queued jobs are already being processed */
2596	if (!d40c->busy)
2597		(void) d40_queue_start(d40c);
2598
2599	spin_unlock_irqrestore(&d40c->lock, flags);
2600}
2601
2602static int d40_terminate_all(struct dma_chan *chan)
2603{
2604	unsigned long flags;
2605	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2606	int ret;
2607
2608	if (d40c->phy_chan == NULL) {
2609		chan_err(d40c, "Channel is not allocated!\n");
2610		return -EINVAL;
2611	}
2612
2613	spin_lock_irqsave(&d40c->lock, flags);
2614
2615	pm_runtime_get_sync(d40c->base->dev);
2616	ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2617	if (ret)
2618		chan_err(d40c, "Failed to stop channel\n");
2619
2620	d40_term_all(d40c);
2621	pm_runtime_mark_last_busy(d40c->base->dev);
2622	pm_runtime_put_autosuspend(d40c->base->dev);
2623	if (d40c->busy) {
2624		pm_runtime_mark_last_busy(d40c->base->dev);
2625		pm_runtime_put_autosuspend(d40c->base->dev);
2626	}
2627	d40c->busy = false;
2628
2629	spin_unlock_irqrestore(&d40c->lock, flags);
2630	return 0;
2631}
2632
2633static int
2634dma40_config_to_halfchannel(struct d40_chan *d40c,
2635			    struct stedma40_half_channel_info *info,
2636			    u32 maxburst)
2637{
2638	int psize;
2639
2640	if (chan_is_logical(d40c)) {
2641		if (maxburst >= 16)
2642			psize = STEDMA40_PSIZE_LOG_16;
2643		else if (maxburst >= 8)
2644			psize = STEDMA40_PSIZE_LOG_8;
2645		else if (maxburst >= 4)
2646			psize = STEDMA40_PSIZE_LOG_4;
2647		else
2648			psize = STEDMA40_PSIZE_LOG_1;
2649	} else {
2650		if (maxburst >= 16)
2651			psize = STEDMA40_PSIZE_PHY_16;
2652		else if (maxburst >= 8)
2653			psize = STEDMA40_PSIZE_PHY_8;
2654		else if (maxburst >= 4)
2655			psize = STEDMA40_PSIZE_PHY_4;
2656		else
2657			psize = STEDMA40_PSIZE_PHY_1;
2658	}
2659
2660	info->psize = psize;
2661	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2662
2663	return 0;
2664}
2665
2666static int d40_set_runtime_config(struct dma_chan *chan,
2667				  struct dma_slave_config *config)
2668{
2669	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2670
2671	memcpy(&d40c->slave_config, config, sizeof(*config));
2672
2673	return 0;
2674}
2675
2676/* Runtime reconfiguration extension */
2677static int d40_set_runtime_config_write(struct dma_chan *chan,
2678				  struct dma_slave_config *config,
2679				  enum dma_transfer_direction direction)
2680{
2681	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2682	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2683	enum dma_slave_buswidth src_addr_width, dst_addr_width;
2684	dma_addr_t config_addr;
2685	u32 src_maxburst, dst_maxburst;
2686	int ret;
2687
2688	if (d40c->phy_chan == NULL) {
2689		chan_err(d40c, "Channel is not allocated!\n");
2690		return -EINVAL;
2691	}
2692
2693	src_addr_width = config->src_addr_width;
2694	src_maxburst = config->src_maxburst;
2695	dst_addr_width = config->dst_addr_width;
2696	dst_maxburst = config->dst_maxburst;
2697
2698	if (direction == DMA_DEV_TO_MEM) {
2699		config_addr = config->src_addr;
2700
2701		if (cfg->dir != DMA_DEV_TO_MEM)
2702			dev_dbg(d40c->base->dev,
2703				"channel was not configured for peripheral "
2704				"to memory transfer (%d) overriding\n",
2705				cfg->dir);
2706		cfg->dir = DMA_DEV_TO_MEM;
2707
2708		/* Configure the memory side */
2709		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2710			dst_addr_width = src_addr_width;
2711		if (dst_maxburst == 0)
2712			dst_maxburst = src_maxburst;
2713
2714	} else if (direction == DMA_MEM_TO_DEV) {
2715		config_addr = config->dst_addr;
2716
2717		if (cfg->dir != DMA_MEM_TO_DEV)
2718			dev_dbg(d40c->base->dev,
2719				"channel was not configured for memory "
2720				"to peripheral transfer (%d) overriding\n",
2721				cfg->dir);
2722		cfg->dir = DMA_MEM_TO_DEV;
2723
2724		/* Configure the memory side */
2725		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2726			src_addr_width = dst_addr_width;
2727		if (src_maxburst == 0)
2728			src_maxburst = dst_maxburst;
2729	} else {
2730		dev_err(d40c->base->dev,
2731			"unrecognized channel direction %d\n",
2732			direction);
2733		return -EINVAL;
2734	}
2735
2736	if (config_addr <= 0) {
2737		dev_err(d40c->base->dev, "no address supplied\n");
2738		return -EINVAL;
2739	}
2740
2741	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2742		dev_err(d40c->base->dev,
2743			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2744			src_maxburst,
2745			src_addr_width,
2746			dst_maxburst,
2747			dst_addr_width);
2748		return -EINVAL;
2749	}
2750
2751	if (src_maxburst > 16) {
2752		src_maxburst = 16;
2753		dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2754	} else if (dst_maxburst > 16) {
2755		dst_maxburst = 16;
2756		src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2757	}
2758
2759	/* Only valid widths are; 1, 2, 4 and 8. */
2760	if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2761	    src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2762	    dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2763	    dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2764	    !is_power_of_2(src_addr_width) ||
2765	    !is_power_of_2(dst_addr_width))
2766		return -EINVAL;
2767
2768	cfg->src_info.data_width = src_addr_width;
2769	cfg->dst_info.data_width = dst_addr_width;
2770
2771	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2772					  src_maxburst);
2773	if (ret)
2774		return ret;
2775
2776	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2777					  dst_maxburst);
2778	if (ret)
2779		return ret;
2780
2781	/* Fill in register values */
2782	if (chan_is_logical(d40c))
2783		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2784	else
2785		d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2786
2787	/* These settings will take precedence later */
2788	d40c->runtime_addr = config_addr;
2789	d40c->runtime_direction = direction;
2790	dev_dbg(d40c->base->dev,
2791		"configured channel %s for %s, data width %d/%d, "
2792		"maxburst %d/%d elements, LE, no flow control\n",
2793		dma_chan_name(chan),
2794		(direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2795		src_addr_width, dst_addr_width,
2796		src_maxburst, dst_maxburst);
2797
2798	return 0;
2799}
2800
2801/* Initialization functions */
2802
2803static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2804				 struct d40_chan *chans, int offset,
2805				 int num_chans)
2806{
2807	int i = 0;
2808	struct d40_chan *d40c;
2809
2810	INIT_LIST_HEAD(&dma->channels);
2811
2812	for (i = offset; i < offset + num_chans; i++) {
2813		d40c = &chans[i];
2814		d40c->base = base;
2815		d40c->chan.device = dma;
2816
2817		spin_lock_init(&d40c->lock);
2818
2819		d40c->log_num = D40_PHY_CHAN;
2820
2821		INIT_LIST_HEAD(&d40c->done);
2822		INIT_LIST_HEAD(&d40c->active);
2823		INIT_LIST_HEAD(&d40c->queue);
2824		INIT_LIST_HEAD(&d40c->pending_queue);
2825		INIT_LIST_HEAD(&d40c->client);
2826		INIT_LIST_HEAD(&d40c->prepare_queue);
2827
2828		tasklet_setup(&d40c->tasklet, dma_tasklet);
2829
2830		list_add_tail(&d40c->chan.device_node,
2831			      &dma->channels);
2832	}
2833}
2834
2835static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2836{
2837	if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) {
2838		dev->device_prep_slave_sg = d40_prep_slave_sg;
2839		dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2840	}
2841
2842	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2843		dev->device_prep_dma_memcpy = d40_prep_memcpy;
2844		dev->directions = BIT(DMA_MEM_TO_MEM);
2845		/*
2846		 * This controller can only access address at even
2847		 * 32bit boundaries, i.e. 2^2
2848		 */
2849		dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
2850	}
2851
2852	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2853		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2854
2855	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2856	dev->device_free_chan_resources = d40_free_chan_resources;
2857	dev->device_issue_pending = d40_issue_pending;
2858	dev->device_tx_status = d40_tx_status;
2859	dev->device_config = d40_set_runtime_config;
2860	dev->device_pause = d40_pause;
2861	dev->device_resume = d40_resume;
2862	dev->device_terminate_all = d40_terminate_all;
2863	dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2864	dev->dev = base->dev;
2865}
2866
2867static int __init d40_dmaengine_init(struct d40_base *base,
2868				     int num_reserved_chans)
2869{
2870	int err ;
2871
2872	d40_chan_init(base, &base->dma_slave, base->log_chans,
2873		      0, base->num_log_chans);
2874
2875	dma_cap_zero(base->dma_slave.cap_mask);
2876	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2877	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2878
2879	d40_ops_init(base, &base->dma_slave);
2880
2881	err = dmaenginem_async_device_register(&base->dma_slave);
2882
2883	if (err) {
2884		d40_err(base->dev, "Failed to register slave channels\n");
2885		goto exit;
2886	}
2887
2888	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2889		      base->num_log_chans, base->num_memcpy_chans);
2890
2891	dma_cap_zero(base->dma_memcpy.cap_mask);
2892	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2893
2894	d40_ops_init(base, &base->dma_memcpy);
2895
2896	err = dmaenginem_async_device_register(&base->dma_memcpy);
2897
2898	if (err) {
2899		d40_err(base->dev,
2900			"Failed to register memcpy only channels\n");
2901		goto exit;
2902	}
2903
2904	d40_chan_init(base, &base->dma_both, base->phy_chans,
2905		      0, num_reserved_chans);
2906
2907	dma_cap_zero(base->dma_both.cap_mask);
2908	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2909	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2910	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2911
2912	d40_ops_init(base, &base->dma_both);
2913	err = dmaenginem_async_device_register(&base->dma_both);
2914
2915	if (err) {
2916		d40_err(base->dev,
2917			"Failed to register logical and physical capable channels\n");
2918		goto exit;
2919	}
2920	return 0;
2921 exit:
2922	return err;
2923}
2924
2925/* Suspend resume functionality */
2926#ifdef CONFIG_PM_SLEEP
2927static int dma40_suspend(struct device *dev)
2928{
2929	struct d40_base *base = dev_get_drvdata(dev);
2930	int ret;
2931
2932	ret = pm_runtime_force_suspend(dev);
2933	if (ret)
2934		return ret;
2935
2936	if (base->lcpa_regulator)
2937		ret = regulator_disable(base->lcpa_regulator);
2938	return ret;
2939}
2940
2941static int dma40_resume(struct device *dev)
2942{
2943	struct d40_base *base = dev_get_drvdata(dev);
2944	int ret = 0;
2945
2946	if (base->lcpa_regulator) {
2947		ret = regulator_enable(base->lcpa_regulator);
2948		if (ret)
2949			return ret;
2950	}
2951
2952	return pm_runtime_force_resume(dev);
2953}
2954#endif
2955
2956#ifdef CONFIG_PM
2957static void dma40_backup(void __iomem *baseaddr, u32 *backup,
2958			 u32 *regaddr, int num, bool save)
2959{
2960	int i;
2961
2962	for (i = 0; i < num; i++) {
2963		void __iomem *addr = baseaddr + regaddr[i];
2964
2965		if (save)
2966			backup[i] = readl_relaxed(addr);
2967		else
2968			writel_relaxed(backup[i], addr);
2969	}
2970}
2971
2972static void d40_save_restore_registers(struct d40_base *base, bool save)
2973{
2974	int i;
2975
2976	/* Save/Restore channel specific registers */
2977	for (i = 0; i < base->num_phy_chans; i++) {
2978		void __iomem *addr;
2979		int idx;
2980
2981		if (base->phy_res[i].reserved)
2982			continue;
2983
2984		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
2985		idx = i * ARRAY_SIZE(d40_backup_regs_chan);
2986
2987		dma40_backup(addr, &base->reg_val_backup_chan[idx],
2988			     d40_backup_regs_chan,
2989			     ARRAY_SIZE(d40_backup_regs_chan),
2990			     save);
2991	}
2992
2993	/* Save/Restore global registers */
2994	dma40_backup(base->virtbase, base->reg_val_backup,
2995		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
2996		     save);
2997
2998	/* Save/Restore registers only existing on dma40 v3 and later */
2999	if (base->gen_dmac.backup)
3000		dma40_backup(base->virtbase, base->reg_val_backup_v4,
3001			     base->gen_dmac.backup,
3002			base->gen_dmac.backup_size,
3003			save);
3004}
3005
3006static int dma40_runtime_suspend(struct device *dev)
3007{
3008	struct d40_base *base = dev_get_drvdata(dev);
3009
3010	d40_save_restore_registers(base, true);
3011
3012	/* Don't disable/enable clocks for v1 due to HW bugs */
3013	if (base->rev != 1)
3014		writel_relaxed(base->gcc_pwr_off_mask,
3015			       base->virtbase + D40_DREG_GCC);
3016
3017	return 0;
3018}
3019
3020static int dma40_runtime_resume(struct device *dev)
3021{
3022	struct d40_base *base = dev_get_drvdata(dev);
3023
3024	d40_save_restore_registers(base, false);
3025
3026	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3027		       base->virtbase + D40_DREG_GCC);
3028	return 0;
3029}
3030#endif
3031
3032static const struct dev_pm_ops dma40_pm_ops = {
3033	SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3034	SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3035				dma40_runtime_resume,
3036				NULL)
3037};
3038
3039/* Initialization functions. */
3040
3041static int __init d40_phy_res_init(struct d40_base *base)
3042{
3043	int i;
3044	int num_phy_chans_avail = 0;
3045	u32 val[2];
3046	int odd_even_bit = -2;
3047	int gcc = D40_DREG_GCC_ENA;
3048
3049	val[0] = readl(base->virtbase + D40_DREG_PRSME);
3050	val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3051
3052	for (i = 0; i < base->num_phy_chans; i++) {
3053		base->phy_res[i].num = i;
3054		odd_even_bit += 2 * ((i % 2) == 0);
3055		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3056			/* Mark security only channels as occupied */
3057			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3058			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3059			base->phy_res[i].reserved = true;
3060			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3061						       D40_DREG_GCC_SRC);
3062			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3063						       D40_DREG_GCC_DST);
3064
3065
3066		} else {
3067			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3068			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3069			base->phy_res[i].reserved = false;
3070			num_phy_chans_avail++;
3071		}
3072		spin_lock_init(&base->phy_res[i].lock);
3073	}
3074
3075	/* Mark disabled channels as occupied */
3076	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3077		int chan = base->plat_data->disabled_channels[i];
3078
3079		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3080		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3081		base->phy_res[chan].reserved = true;
3082		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3083					       D40_DREG_GCC_SRC);
3084		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3085					       D40_DREG_GCC_DST);
3086		num_phy_chans_avail--;
3087	}
3088
3089	/* Mark soft_lli channels */
3090	for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3091		int chan = base->plat_data->soft_lli_chans[i];
3092
3093		base->phy_res[chan].use_soft_lli = true;
3094	}
3095
3096	dev_info(base->dev, "%d of %d physical DMA channels available\n",
3097		 num_phy_chans_avail, base->num_phy_chans);
3098
3099	/* Verify settings extended vs standard */
3100	val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3101
3102	for (i = 0; i < base->num_phy_chans; i++) {
3103
3104		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3105		    (val[0] & 0x3) != 1)
3106			dev_info(base->dev,
3107				 "[%s] INFO: channel %d is misconfigured (%d)\n",
3108				 __func__, i, val[0] & 0x3);
3109
3110		val[0] = val[0] >> 2;
3111	}
3112
3113	/*
3114	 * To keep things simple, Enable all clocks initially.
3115	 * The clocks will get managed later post channel allocation.
3116	 * The clocks for the event lines on which reserved channels exists
3117	 * are not managed here.
3118	 */
3119	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3120	base->gcc_pwr_off_mask = gcc;
3121
3122	return num_phy_chans_avail;
3123}
3124
3125/* Called from the registered devm action */
3126static void d40_drop_kmem_cache_action(void *d)
3127{
3128	struct kmem_cache *desc_slab = d;
3129
3130	kmem_cache_destroy(desc_slab);
3131}
3132
3133static int __init d40_hw_detect_init(struct platform_device *pdev,
3134				     struct d40_base **retbase)
3135{
3136	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3137	struct device *dev = &pdev->dev;
3138	struct clk *clk;
3139	void __iomem *virtbase;
3140	struct d40_base *base;
3141	int num_log_chans;
3142	int num_phy_chans;
3143	int num_memcpy_chans;
3144	int i;
3145	u32 pid;
3146	u32 cid;
3147	u8 rev;
3148	int ret;
3149
3150	clk = devm_clk_get_enabled(dev, NULL);
3151	if (IS_ERR(clk))
3152		return PTR_ERR(clk);
3153
3154	/* Get IO for DMAC base address */
3155	virtbase = devm_platform_ioremap_resource_byname(pdev, "base");
3156	if (IS_ERR(virtbase))
3157		return PTR_ERR(virtbase);
3158
3159	/* This is just a regular AMBA PrimeCell ID actually */
3160	for (pid = 0, i = 0; i < 4; i++)
3161		pid |= (readl(virtbase + SZ_4K - 0x20 + 4 * i)
3162			& 255) << (i * 8);
3163	for (cid = 0, i = 0; i < 4; i++)
3164		cid |= (readl(virtbase + SZ_4K - 0x10 + 4 * i)
3165			& 255) << (i * 8);
3166
3167	if (cid != AMBA_CID) {
3168		d40_err(dev, "Unknown hardware! No PrimeCell ID\n");
3169		return -EINVAL;
3170	}
3171	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3172		d40_err(dev, "Unknown designer! Got %x wanted %x\n",
3173			AMBA_MANF_BITS(pid),
3174			AMBA_VENDOR_ST);
3175		return -EINVAL;
3176	}
3177	/*
3178	 * HW revision:
3179	 * DB8500ed has revision 0
3180	 * ? has revision 1
3181	 * DB8500v1 has revision 2
3182	 * DB8500v2 has revision 3
3183	 * AP9540v1 has revision 4
3184	 * DB8540v1 has revision 4
3185	 */
3186	rev = AMBA_REV_BITS(pid);
3187	if (rev < 2) {
3188		d40_err(dev, "hardware revision: %d is not supported", rev);
3189		return -EINVAL;
3190	}
3191
3192	/* The number of physical channels on this HW */
3193	if (plat_data->num_of_phy_chans)
3194		num_phy_chans = plat_data->num_of_phy_chans;
3195	else
3196		num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3197
3198	/* The number of channels used for memcpy */
3199	if (plat_data->num_of_memcpy_chans)
3200		num_memcpy_chans = plat_data->num_of_memcpy_chans;
3201	else
3202		num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3203
3204	num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3205
3206	dev_info(dev,
3207		 "hardware rev: %d with %d physical and %d logical channels\n",
3208		 rev, num_phy_chans, num_log_chans);
3209
3210	base = devm_kzalloc(dev,
3211		ALIGN(sizeof(struct d40_base), 4) +
3212		(num_phy_chans + num_log_chans + num_memcpy_chans) *
3213		sizeof(struct d40_chan), GFP_KERNEL);
3214
3215	if (!base)
3216		return -ENOMEM;
3217
3218	base->rev = rev;
3219	base->clk = clk;
3220	base->num_memcpy_chans = num_memcpy_chans;
3221	base->num_phy_chans = num_phy_chans;
3222	base->num_log_chans = num_log_chans;
3223	base->virtbase = virtbase;
3224	base->plat_data = plat_data;
3225	base->dev = dev;
3226	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3227	base->log_chans = &base->phy_chans[num_phy_chans];
3228
3229	if (base->plat_data->num_of_phy_chans == 14) {
3230		base->gen_dmac.backup = d40_backup_regs_v4b;
3231		base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3232		base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3233		base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3234		base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3235		base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3236		base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3237		base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3238		base->gen_dmac.il = il_v4b;
3239		base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3240		base->gen_dmac.init_reg = dma_init_reg_v4b;
3241		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3242	} else {
3243		if (base->rev >= 3) {
3244			base->gen_dmac.backup = d40_backup_regs_v4a;
3245			base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3246		}
3247		base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3248		base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3249		base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3250		base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3251		base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3252		base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3253		base->gen_dmac.il = il_v4a;
3254		base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3255		base->gen_dmac.init_reg = dma_init_reg_v4a;
3256		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3257	}
3258
3259	base->phy_res = devm_kcalloc(dev, num_phy_chans,
3260				     sizeof(*base->phy_res),
3261				     GFP_KERNEL);
3262	if (!base->phy_res)
3263		return -ENOMEM;
3264
3265	base->lookup_phy_chans = devm_kcalloc(dev, num_phy_chans,
3266					      sizeof(*base->lookup_phy_chans),
3267					      GFP_KERNEL);
3268	if (!base->lookup_phy_chans)
3269		return -ENOMEM;
3270
3271	base->lookup_log_chans = devm_kcalloc(dev, num_log_chans,
3272					      sizeof(*base->lookup_log_chans),
3273					      GFP_KERNEL);
3274	if (!base->lookup_log_chans)
3275		return -ENOMEM;
3276
3277	base->reg_val_backup_chan = devm_kmalloc_array(dev, base->num_phy_chans,
3278						  sizeof(d40_backup_regs_chan),
3279						  GFP_KERNEL);
3280	if (!base->reg_val_backup_chan)
3281		return -ENOMEM;
3282
3283	base->lcla_pool.alloc_map = devm_kcalloc(dev, num_phy_chans
3284					    * D40_LCLA_LINK_PER_EVENT_GRP,
3285					    sizeof(*base->lcla_pool.alloc_map),
3286					    GFP_KERNEL);
3287	if (!base->lcla_pool.alloc_map)
3288		return -ENOMEM;
3289
3290	base->regs_interrupt = devm_kmalloc_array(dev, base->gen_dmac.il_size,
3291					     sizeof(*base->regs_interrupt),
3292					     GFP_KERNEL);
3293	if (!base->regs_interrupt)
3294		return -ENOMEM;
3295
3296	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3297					    0, SLAB_HWCACHE_ALIGN,
3298					    NULL);
3299	if (!base->desc_slab)
3300		return -ENOMEM;
3301
3302	ret = devm_add_action_or_reset(dev, d40_drop_kmem_cache_action,
3303				       base->desc_slab);
3304	if (ret)
3305		return ret;
3306
3307	*retbase = base;
3308
3309	return 0;
3310}
3311
3312static void __init d40_hw_init(struct d40_base *base)
3313{
3314
3315	int i;
3316	u32 prmseo[2] = {0, 0};
3317	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3318	u32 pcmis = 0;
3319	u32 pcicr = 0;
3320	struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3321	u32 reg_size = base->gen_dmac.init_reg_size;
3322
3323	for (i = 0; i < reg_size; i++)
3324		writel(dma_init_reg[i].val,
3325		       base->virtbase + dma_init_reg[i].reg);
3326
3327	/* Configure all our dma channels to default settings */
3328	for (i = 0; i < base->num_phy_chans; i++) {
3329
3330		activeo[i % 2] = activeo[i % 2] << 2;
3331
3332		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3333		    == D40_ALLOC_PHY) {
3334			activeo[i % 2] |= 3;
3335			continue;
3336		}
3337
3338		/* Enable interrupt # */
3339		pcmis = (pcmis << 1) | 1;
3340
3341		/* Clear interrupt # */
3342		pcicr = (pcicr << 1) | 1;
3343
3344		/* Set channel to physical mode */
3345		prmseo[i % 2] = prmseo[i % 2] << 2;
3346		prmseo[i % 2] |= 1;
3347
3348	}
3349
3350	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3351	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3352	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3353	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3354
3355	/* Write which interrupt to enable */
3356	writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3357
3358	/* Write which interrupt to clear */
3359	writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3360
3361	/* These are __initdata and cannot be accessed after init */
3362	base->gen_dmac.init_reg = NULL;
3363	base->gen_dmac.init_reg_size = 0;
3364}
3365
3366static int __init d40_lcla_allocate(struct d40_base *base)
3367{
3368	struct d40_lcla_pool *pool = &base->lcla_pool;
3369	unsigned long *page_list;
3370	int i, j;
3371	int ret;
3372
3373	/*
3374	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3375	 * To full fill this hardware requirement without wasting 256 kb
3376	 * we allocate pages until we get an aligned one.
3377	 */
3378	page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
3379				  sizeof(*page_list),
3380				  GFP_KERNEL);
3381	if (!page_list)
3382		return -ENOMEM;
3383
3384	/* Calculating how many pages that are required */
3385	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3386
3387	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3388		page_list[i] = __get_free_pages(GFP_KERNEL,
3389						base->lcla_pool.pages);
3390		if (!page_list[i]) {
3391
3392			d40_err(base->dev, "Failed to allocate %d pages.\n",
3393				base->lcla_pool.pages);
3394			ret = -ENOMEM;
3395
3396			for (j = 0; j < i; j++)
3397				free_pages(page_list[j], base->lcla_pool.pages);
3398			goto free_page_list;
3399		}
3400
3401		if ((virt_to_phys((void *)page_list[i]) &
3402		     (LCLA_ALIGNMENT - 1)) == 0)
3403			break;
3404	}
3405
3406	for (j = 0; j < i; j++)
3407		free_pages(page_list[j], base->lcla_pool.pages);
3408
3409	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3410		base->lcla_pool.base = (void *)page_list[i];
3411	} else {
3412		/*
3413		 * After many attempts and no success with finding the correct
3414		 * alignment, try with allocating a big buffer.
3415		 */
3416		dev_warn(base->dev,
3417			 "[%s] Failed to get %d pages @ 18 bit align.\n",
3418			 __func__, base->lcla_pool.pages);
3419		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3420							 base->num_phy_chans +
3421							 LCLA_ALIGNMENT,
3422							 GFP_KERNEL);
3423		if (!base->lcla_pool.base_unaligned) {
3424			ret = -ENOMEM;
3425			goto free_page_list;
3426		}
3427
3428		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3429						 LCLA_ALIGNMENT);
3430	}
3431
3432	pool->dma_addr = dma_map_single(base->dev, pool->base,
3433					SZ_1K * base->num_phy_chans,
3434					DMA_TO_DEVICE);
3435	if (dma_mapping_error(base->dev, pool->dma_addr)) {
3436		pool->dma_addr = 0;
3437		ret = -ENOMEM;
3438		goto free_page_list;
3439	}
3440
3441	writel(virt_to_phys(base->lcla_pool.base),
3442	       base->virtbase + D40_DREG_LCLA);
3443	ret = 0;
3444 free_page_list:
3445	kfree(page_list);
3446	return ret;
3447}
3448
3449static int __init d40_of_probe(struct device *dev,
3450			       struct device_node *np)
3451{
3452	struct stedma40_platform_data *pdata;
3453	int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3454	const __be32 *list;
3455
3456	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3457	if (!pdata)
3458		return -ENOMEM;
3459
3460	/* If absent this value will be obtained from h/w. */
3461	of_property_read_u32(np, "dma-channels", &num_phy);
3462	if (num_phy > 0)
3463		pdata->num_of_phy_chans = num_phy;
3464
3465	list = of_get_property(np, "memcpy-channels", &num_memcpy);
3466	num_memcpy /= sizeof(*list);
3467
3468	if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3469		d40_err(dev,
3470			"Invalid number of memcpy channels specified (%d)\n",
3471			num_memcpy);
3472		return -EINVAL;
3473	}
3474	pdata->num_of_memcpy_chans = num_memcpy;
3475
3476	of_property_read_u32_array(np, "memcpy-channels",
3477				   dma40_memcpy_channels,
3478				   num_memcpy);
3479
3480	list = of_get_property(np, "disabled-channels", &num_disabled);
3481	num_disabled /= sizeof(*list);
3482
3483	if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3484		d40_err(dev,
3485			"Invalid number of disabled channels specified (%d)\n",
3486			num_disabled);
3487		return -EINVAL;
3488	}
3489
3490	of_property_read_u32_array(np, "disabled-channels",
3491				   pdata->disabled_channels,
3492				   num_disabled);
3493	pdata->disabled_channels[num_disabled] = -1;
3494
3495	dev->platform_data = pdata;
3496
3497	return 0;
3498}
3499
3500static int __init d40_probe(struct platform_device *pdev)
3501{
3502	struct device *dev = &pdev->dev;
3503	struct device_node *np = pdev->dev.of_node;
3504	struct device_node *np_lcpa;
3505	struct d40_base *base;
3506	struct resource *res;
3507	struct resource res_lcpa;
3508	int num_reserved_chans;
3509	u32 val;
3510	int ret;
3511
3512	if (d40_of_probe(dev, np)) {
3513		ret = -ENOMEM;
3514		goto report_failure;
3515	}
3516
3517	ret = d40_hw_detect_init(pdev, &base);
3518	if (ret)
3519		goto report_failure;
3520
3521	num_reserved_chans = d40_phy_res_init(base);
3522
3523	platform_set_drvdata(pdev, base);
3524
3525	spin_lock_init(&base->interrupt_lock);
3526	spin_lock_init(&base->execmd_lock);
3527
3528	/* Get IO for logical channel parameter address (LCPA) */
3529	np_lcpa = of_parse_phandle(np, "sram", 0);
3530	if (!np_lcpa) {
3531		dev_err(dev, "no LCPA SRAM node\n");
3532		ret = -EINVAL;
3533		goto report_failure;
3534	}
3535	/* This is no device so read the address directly from the node */
3536	ret = of_address_to_resource(np_lcpa, 0, &res_lcpa);
3537	if (ret) {
3538		dev_err(dev, "no LCPA SRAM resource\n");
3539		goto report_failure;
3540	}
3541	base->lcpa_size = resource_size(&res_lcpa);
3542	base->phy_lcpa = res_lcpa.start;
3543	dev_info(dev, "found LCPA SRAM at %pad, size %pa\n",
3544		 &base->phy_lcpa, &base->lcpa_size);
3545
3546	/* We make use of ESRAM memory for this. */
3547	val = readl(base->virtbase + D40_DREG_LCPA);
3548	if (base->phy_lcpa != val && val != 0) {
3549		dev_warn(dev,
3550			 "[%s] Mismatch LCPA dma 0x%x, def %08x\n",
3551			 __func__, val, (u32)base->phy_lcpa);
3552	} else
3553		writel(base->phy_lcpa, base->virtbase + D40_DREG_LCPA);
3554
3555	base->lcpa_base = devm_ioremap(dev, base->phy_lcpa, base->lcpa_size);
3556	if (!base->lcpa_base) {
3557		ret = -ENOMEM;
3558		d40_err(dev, "Failed to ioremap LCPA region\n");
3559		goto report_failure;
3560	}
3561	/* If lcla has to be located in ESRAM we don't need to allocate */
3562	if (base->plat_data->use_esram_lcla) {
3563		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3564							"lcla_esram");
3565		if (!res) {
3566			ret = -ENOENT;
3567			d40_err(dev,
3568				"No \"lcla_esram\" memory resource\n");
3569			goto report_failure;
3570		}
3571		base->lcla_pool.base = devm_ioremap(dev, res->start,
3572						    resource_size(res));
3573		if (!base->lcla_pool.base) {
3574			ret = -ENOMEM;
3575			d40_err(dev, "Failed to ioremap LCLA region\n");
3576			goto report_failure;
3577		}
3578		writel(res->start, base->virtbase + D40_DREG_LCLA);
3579
3580	} else {
3581		ret = d40_lcla_allocate(base);
3582		if (ret) {
3583			d40_err(dev, "Failed to allocate LCLA area\n");
3584			goto destroy_cache;
3585		}
3586	}
3587
3588	spin_lock_init(&base->lcla_pool.lock);
3589
3590	base->irq = platform_get_irq(pdev, 0);
3591	if (base->irq < 0) {
3592		ret = base->irq;
3593		goto destroy_cache;
3594	}
3595
3596	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3597	if (ret) {
3598		d40_err(dev, "No IRQ defined\n");
3599		goto destroy_cache;
3600	}
3601
3602	if (base->plat_data->use_esram_lcla) {
3603
3604		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3605		if (IS_ERR(base->lcpa_regulator)) {
3606			d40_err(dev, "Failed to get lcpa_regulator\n");
3607			ret = PTR_ERR(base->lcpa_regulator);
3608			base->lcpa_regulator = NULL;
3609			goto destroy_cache;
3610		}
3611
3612		ret = regulator_enable(base->lcpa_regulator);
3613		if (ret) {
3614			d40_err(dev,
3615				"Failed to enable lcpa_regulator\n");
3616			regulator_put(base->lcpa_regulator);
3617			base->lcpa_regulator = NULL;
3618			goto destroy_cache;
3619		}
3620	}
3621
3622	writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3623
3624	pm_runtime_irq_safe(base->dev);
3625	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3626	pm_runtime_use_autosuspend(base->dev);
3627	pm_runtime_mark_last_busy(base->dev);
3628	pm_runtime_set_active(base->dev);
3629	pm_runtime_enable(base->dev);
3630
3631	ret = d40_dmaengine_init(base, num_reserved_chans);
3632	if (ret)
3633		goto destroy_cache;
3634
3635	ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3636	if (ret) {
3637		d40_err(dev, "Failed to set dma max seg size\n");
3638		goto destroy_cache;
3639	}
3640
3641	d40_hw_init(base);
3642
3643	ret = of_dma_controller_register(np, d40_xlate, NULL);
3644	if (ret) {
3645		dev_err(dev,
3646			"could not register of_dma_controller\n");
3647		goto destroy_cache;
3648	}
3649
3650	dev_info(base->dev, "initialized\n");
3651	return 0;
3652
3653 destroy_cache:
3654	if (base->lcla_pool.dma_addr)
3655		dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3656				 SZ_1K * base->num_phy_chans,
3657				 DMA_TO_DEVICE);
3658
3659	if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3660		free_pages((unsigned long)base->lcla_pool.base,
3661			   base->lcla_pool.pages);
3662
3663	kfree(base->lcla_pool.base_unaligned);
3664
3665	if (base->lcpa_regulator) {
3666		regulator_disable(base->lcpa_regulator);
3667		regulator_put(base->lcpa_regulator);
3668	}
3669	pm_runtime_disable(base->dev);
3670
3671 report_failure:
3672	d40_err(dev, "probe failed\n");
3673	return ret;
3674}
3675
3676static const struct of_device_id d40_match[] = {
3677        { .compatible = "stericsson,dma40", },
3678        {}
3679};
3680
3681static struct platform_driver d40_driver = {
3682	.driver = {
3683		.name  = D40_NAME,
3684		.pm = &dma40_pm_ops,
3685		.of_match_table = d40_match,
3686	},
3687};
3688
3689static int __init stedma40_init(void)
3690{
3691	return platform_driver_probe(&d40_driver, d40_probe);
3692}
3693subsys_initcall(stedma40_init);