Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * linux/kernel/time/tick-broadcast.c
  3 *
  4 * This file contains functions which emulate a local clock-event
  5 * device via a broadcast event source.
  6 *
  7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
 10 *
 11 * This code is licenced under the GPL version 2. For details see
 12 * kernel-base/COPYING.
 13 */
 14#include <linux/cpu.h>
 15#include <linux/err.h>
 16#include <linux/hrtimer.h>
 17#include <linux/interrupt.h>
 18#include <linux/percpu.h>
 19#include <linux/profile.h>
 20#include <linux/sched.h>
 21#include <linux/smp.h>
 22#include <linux/module.h>
 23
 24#include "tick-internal.h"
 25
 26/*
 27 * Broadcast support for broken x86 hardware, where the local apic
 28 * timer stops in C3 state.
 29 */
 30
 31static struct tick_device tick_broadcast_device;
 32static cpumask_var_t tick_broadcast_mask;
 33static cpumask_var_t tick_broadcast_on;
 34static cpumask_var_t tmpmask;
 35static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
 36static int tick_broadcast_force;
 37
 38#ifdef CONFIG_TICK_ONESHOT
 39static void tick_broadcast_clear_oneshot(int cpu);
 40#else
 41static inline void tick_broadcast_clear_oneshot(int cpu) { }
 42#endif
 43
 44/*
 45 * Debugging: see timer_list.c
 46 */
 47struct tick_device *tick_get_broadcast_device(void)
 48{
 49	return &tick_broadcast_device;
 50}
 51
 52struct cpumask *tick_get_broadcast_mask(void)
 53{
 54	return tick_broadcast_mask;
 55}
 56
 57/*
 58 * Start the device in periodic mode
 59 */
 60static void tick_broadcast_start_periodic(struct clock_event_device *bc)
 61{
 62	if (bc)
 63		tick_setup_periodic(bc, 1);
 64}
 65
 66/*
 67 * Check, if the device can be utilized as broadcast device:
 68 */
 69static bool tick_check_broadcast_device(struct clock_event_device *curdev,
 70					struct clock_event_device *newdev)
 71{
 72	if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
 73	    (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
 74	    (newdev->features & CLOCK_EVT_FEAT_C3STOP))
 75		return false;
 76
 77	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
 78	    !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
 79		return false;
 80
 81	return !curdev || newdev->rating > curdev->rating;
 82}
 83
 84/*
 85 * Conditionally install/replace broadcast device
 86 */
 87void tick_install_broadcast_device(struct clock_event_device *dev)
 88{
 89	struct clock_event_device *cur = tick_broadcast_device.evtdev;
 90
 91	if (!tick_check_broadcast_device(cur, dev))
 92		return;
 93
 94	if (!try_module_get(dev->owner))
 95		return;
 96
 97	clockevents_exchange_device(cur, dev);
 98	if (cur)
 99		cur->event_handler = clockevents_handle_noop;
100	tick_broadcast_device.evtdev = dev;
101	if (!cpumask_empty(tick_broadcast_mask))
102		tick_broadcast_start_periodic(dev);
103	/*
104	 * Inform all cpus about this. We might be in a situation
105	 * where we did not switch to oneshot mode because the per cpu
106	 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
107	 * of a oneshot capable broadcast device. Without that
108	 * notification the systems stays stuck in periodic mode
109	 * forever.
110	 */
111	if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
112		tick_clock_notify();
113}
114
115/*
116 * Check, if the device is the broadcast device
117 */
118int tick_is_broadcast_device(struct clock_event_device *dev)
119{
120	return (dev && tick_broadcast_device.evtdev == dev);
121}
122
123int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
124{
125	int ret = -ENODEV;
126
127	if (tick_is_broadcast_device(dev)) {
128		raw_spin_lock(&tick_broadcast_lock);
129		ret = __clockevents_update_freq(dev, freq);
130		raw_spin_unlock(&tick_broadcast_lock);
131	}
132	return ret;
133}
134
135
136static void err_broadcast(const struct cpumask *mask)
137{
138	pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
139}
140
141static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
142{
143	if (!dev->broadcast)
144		dev->broadcast = tick_broadcast;
145	if (!dev->broadcast) {
146		pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
147			     dev->name);
148		dev->broadcast = err_broadcast;
149	}
150}
151
152/*
153 * Check, if the device is disfunctional and a place holder, which
154 * needs to be handled by the broadcast device.
155 */
156int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
157{
158	struct clock_event_device *bc = tick_broadcast_device.evtdev;
159	unsigned long flags;
160	int ret;
161
162	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
163
164	/*
165	 * Devices might be registered with both periodic and oneshot
166	 * mode disabled. This signals, that the device needs to be
167	 * operated from the broadcast device and is a placeholder for
168	 * the cpu local device.
169	 */
170	if (!tick_device_is_functional(dev)) {
171		dev->event_handler = tick_handle_periodic;
172		tick_device_setup_broadcast_func(dev);
173		cpumask_set_cpu(cpu, tick_broadcast_mask);
174		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
175			tick_broadcast_start_periodic(bc);
176		else
177			tick_broadcast_setup_oneshot(bc);
178		ret = 1;
179	} else {
180		/*
181		 * Clear the broadcast bit for this cpu if the
182		 * device is not power state affected.
 
183		 */
184		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
185			cpumask_clear_cpu(cpu, tick_broadcast_mask);
186		else
187			tick_device_setup_broadcast_func(dev);
188
189		/*
190		 * Clear the broadcast bit if the CPU is not in
191		 * periodic broadcast on state.
192		 */
193		if (!cpumask_test_cpu(cpu, tick_broadcast_on))
194			cpumask_clear_cpu(cpu, tick_broadcast_mask);
195
196		switch (tick_broadcast_device.mode) {
197		case TICKDEV_MODE_ONESHOT:
198			/*
199			 * If the system is in oneshot mode we can
200			 * unconditionally clear the oneshot mask bit,
201			 * because the CPU is running and therefore
202			 * not in an idle state which causes the power
203			 * state affected device to stop. Let the
204			 * caller initialize the device.
205			 */
206			tick_broadcast_clear_oneshot(cpu);
207			ret = 0;
208			break;
209
210		case TICKDEV_MODE_PERIODIC:
211			/*
212			 * If the system is in periodic mode, check
213			 * whether the broadcast device can be
214			 * switched off now.
215			 */
216			if (cpumask_empty(tick_broadcast_mask) && bc)
217				clockevents_shutdown(bc);
218			/*
219			 * If we kept the cpu in the broadcast mask,
220			 * tell the caller to leave the per cpu device
221			 * in shutdown state. The periodic interrupt
222			 * is delivered by the broadcast device.
223			 */
224			ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
225			break;
226		default:
227			/* Nothing to do */
228			ret = 0;
229			break;
230		}
231	}
232	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
233	return ret;
234}
235
236#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
237int tick_receive_broadcast(void)
238{
239	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
240	struct clock_event_device *evt = td->evtdev;
241
242	if (!evt)
243		return -ENODEV;
244
245	if (!evt->event_handler)
246		return -EINVAL;
247
248	evt->event_handler(evt);
249	return 0;
250}
251#endif
252
253/*
254 * Broadcast the event to the cpus, which are set in the mask (mangled).
255 */
256static void tick_do_broadcast(struct cpumask *mask)
257{
258	int cpu = smp_processor_id();
259	struct tick_device *td;
260
261	/*
262	 * Check, if the current cpu is in the mask
263	 */
264	if (cpumask_test_cpu(cpu, mask)) {
265		cpumask_clear_cpu(cpu, mask);
266		td = &per_cpu(tick_cpu_device, cpu);
267		td->evtdev->event_handler(td->evtdev);
268	}
269
270	if (!cpumask_empty(mask)) {
271		/*
272		 * It might be necessary to actually check whether the devices
273		 * have different broadcast functions. For now, just use the
274		 * one of the first device. This works as long as we have this
275		 * misfeature only on x86 (lapic)
276		 */
277		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
278		td->evtdev->broadcast(mask);
279	}
280}
281
282/*
283 * Periodic broadcast:
284 * - invoke the broadcast handlers
285 */
286static void tick_do_periodic_broadcast(void)
287{
288	cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
289	tick_do_broadcast(tmpmask);
 
 
 
 
 
290}
291
292/*
293 * Event handler for periodic broadcast ticks
294 */
295static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
296{
297	ktime_t next;
298
299	raw_spin_lock(&tick_broadcast_lock);
300
301	tick_do_periodic_broadcast();
302
303	/*
304	 * The device is in periodic mode. No reprogramming necessary:
305	 */
306	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
307		goto unlock;
308
309	/*
310	 * Setup the next period for devices, which do not have
311	 * periodic mode. We read dev->next_event first and add to it
312	 * when the event already expired. clockevents_program_event()
313	 * sets dev->next_event only when the event is really
314	 * programmed to the device.
315	 */
316	for (next = dev->next_event; ;) {
317		next = ktime_add(next, tick_period);
318
319		if (!clockevents_program_event(dev, next, false))
320			goto unlock;
321		tick_do_periodic_broadcast();
322	}
323unlock:
324	raw_spin_unlock(&tick_broadcast_lock);
325}
326
327/*
328 * Powerstate information: The system enters/leaves a state, where
329 * affected devices might stop
330 */
331static void tick_do_broadcast_on_off(unsigned long *reason)
332{
333	struct clock_event_device *bc, *dev;
334	struct tick_device *td;
335	unsigned long flags;
336	int cpu, bc_stopped;
337
338	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
339
340	cpu = smp_processor_id();
341	td = &per_cpu(tick_cpu_device, cpu);
342	dev = td->evtdev;
343	bc = tick_broadcast_device.evtdev;
344
345	/*
346	 * Is the device not affected by the powerstate ?
347	 */
348	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
349		goto out;
350
351	if (!tick_device_is_functional(dev))
352		goto out;
353
354	bc_stopped = cpumask_empty(tick_broadcast_mask);
355
356	switch (*reason) {
357	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
358	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
359		cpumask_set_cpu(cpu, tick_broadcast_on);
360		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
361			if (tick_broadcast_device.mode ==
362			    TICKDEV_MODE_PERIODIC)
363				clockevents_shutdown(dev);
364		}
365		if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
366			tick_broadcast_force = 1;
367		break;
368	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
369		if (tick_broadcast_force)
370			break;
371		cpumask_clear_cpu(cpu, tick_broadcast_on);
372		if (!tick_device_is_functional(dev))
373			break;
374		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
375			if (tick_broadcast_device.mode ==
376			    TICKDEV_MODE_PERIODIC)
377				tick_setup_periodic(dev, 0);
378		}
379		break;
380	}
381
382	if (cpumask_empty(tick_broadcast_mask)) {
383		if (!bc_stopped)
384			clockevents_shutdown(bc);
385	} else if (bc_stopped) {
386		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
387			tick_broadcast_start_periodic(bc);
388		else
389			tick_broadcast_setup_oneshot(bc);
390	}
391out:
392	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
393}
394
395/*
396 * Powerstate information: The system enters/leaves a state, where
397 * affected devices might stop.
398 */
399void tick_broadcast_on_off(unsigned long reason, int *oncpu)
400{
401	if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
402		printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
403		       "offline CPU #%d\n", *oncpu);
404	else
405		tick_do_broadcast_on_off(&reason);
406}
407
408/*
409 * Set the periodic handler depending on broadcast on/off
410 */
411void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
412{
413	if (!broadcast)
414		dev->event_handler = tick_handle_periodic;
415	else
416		dev->event_handler = tick_handle_periodic_broadcast;
417}
418
419/*
420 * Remove a CPU from broadcasting
421 */
422void tick_shutdown_broadcast(unsigned int *cpup)
423{
424	struct clock_event_device *bc;
425	unsigned long flags;
426	unsigned int cpu = *cpup;
427
428	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
429
430	bc = tick_broadcast_device.evtdev;
431	cpumask_clear_cpu(cpu, tick_broadcast_mask);
432	cpumask_clear_cpu(cpu, tick_broadcast_on);
433
434	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
435		if (bc && cpumask_empty(tick_broadcast_mask))
436			clockevents_shutdown(bc);
437	}
438
439	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
440}
441
442void tick_suspend_broadcast(void)
443{
444	struct clock_event_device *bc;
445	unsigned long flags;
446
447	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
448
449	bc = tick_broadcast_device.evtdev;
450	if (bc)
451		clockevents_shutdown(bc);
452
453	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
454}
455
456int tick_resume_broadcast(void)
457{
458	struct clock_event_device *bc;
459	unsigned long flags;
460	int broadcast = 0;
461
462	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
463
464	bc = tick_broadcast_device.evtdev;
465
466	if (bc) {
467		clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
468
469		switch (tick_broadcast_device.mode) {
470		case TICKDEV_MODE_PERIODIC:
471			if (!cpumask_empty(tick_broadcast_mask))
472				tick_broadcast_start_periodic(bc);
473			broadcast = cpumask_test_cpu(smp_processor_id(),
474						     tick_broadcast_mask);
475			break;
476		case TICKDEV_MODE_ONESHOT:
477			if (!cpumask_empty(tick_broadcast_mask))
478				broadcast = tick_resume_broadcast_oneshot(bc);
479			break;
480		}
481	}
482	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
483
484	return broadcast;
485}
486
487
488#ifdef CONFIG_TICK_ONESHOT
489
490static cpumask_var_t tick_broadcast_oneshot_mask;
491static cpumask_var_t tick_broadcast_pending_mask;
492static cpumask_var_t tick_broadcast_force_mask;
493
494/*
495 * Exposed for debugging: see timer_list.c
496 */
497struct cpumask *tick_get_broadcast_oneshot_mask(void)
498{
499	return tick_broadcast_oneshot_mask;
500}
501
502/*
503 * Called before going idle with interrupts disabled. Checks whether a
504 * broadcast event from the other core is about to happen. We detected
505 * that in tick_broadcast_oneshot_control(). The callsite can use this
506 * to avoid a deep idle transition as we are about to get the
507 * broadcast IPI right away.
508 */
509int tick_check_broadcast_expired(void)
510{
511	return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
512}
513
514/*
515 * Set broadcast interrupt affinity
516 */
517static void tick_broadcast_set_affinity(struct clock_event_device *bc,
518					const struct cpumask *cpumask)
519{
520	if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
521		return;
522
523	if (cpumask_equal(bc->cpumask, cpumask))
524		return;
525
526	bc->cpumask = cpumask;
527	irq_set_affinity(bc->irq, bc->cpumask);
528}
529
530static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
531				    ktime_t expires, int force)
532{
533	int ret;
534
535	if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
536		clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
537
538	ret = clockevents_program_event(bc, expires, force);
539	if (!ret)
540		tick_broadcast_set_affinity(bc, cpumask_of(cpu));
541	return ret;
542}
543
544int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
545{
546	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
547	return 0;
548}
549
550/*
551 * Called from irq_enter() when idle was interrupted to reenable the
552 * per cpu device.
553 */
554void tick_check_oneshot_broadcast_this_cpu(void)
555{
556	if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
557		struct tick_device *td = &__get_cpu_var(tick_cpu_device);
558
559		/*
560		 * We might be in the middle of switching over from
561		 * periodic to oneshot. If the CPU has not yet
562		 * switched over, leave the device alone.
563		 */
564		if (td->mode == TICKDEV_MODE_ONESHOT) {
565			clockevents_set_mode(td->evtdev,
566					     CLOCK_EVT_MODE_ONESHOT);
567		}
568	}
569}
570
571/*
572 * Handle oneshot mode broadcasting
573 */
574static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
575{
576	struct tick_device *td;
577	ktime_t now, next_event;
578	int cpu, next_cpu = 0;
579
580	raw_spin_lock(&tick_broadcast_lock);
581again:
582	dev->next_event.tv64 = KTIME_MAX;
583	next_event.tv64 = KTIME_MAX;
584	cpumask_clear(tmpmask);
585	now = ktime_get();
586	/* Find all expired events */
587	for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
588		td = &per_cpu(tick_cpu_device, cpu);
589		if (td->evtdev->next_event.tv64 <= now.tv64) {
590			cpumask_set_cpu(cpu, tmpmask);
591			/*
592			 * Mark the remote cpu in the pending mask, so
593			 * it can avoid reprogramming the cpu local
594			 * timer in tick_broadcast_oneshot_control().
595			 */
596			cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
597		} else if (td->evtdev->next_event.tv64 < next_event.tv64) {
598			next_event.tv64 = td->evtdev->next_event.tv64;
599			next_cpu = cpu;
600		}
601	}
602
603	/*
604	 * Remove the current cpu from the pending mask. The event is
605	 * delivered immediately in tick_do_broadcast() !
606	 */
607	cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
608
609	/* Take care of enforced broadcast requests */
610	cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
611	cpumask_clear(tick_broadcast_force_mask);
612
613	/*
614	 * Sanity check. Catch the case where we try to broadcast to
615	 * offline cpus.
616	 */
617	if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
618		cpumask_and(tmpmask, tmpmask, cpu_online_mask);
619
620	/*
621	 * Wakeup the cpus which have an expired event.
622	 */
623	tick_do_broadcast(tmpmask);
624
625	/*
626	 * Two reasons for reprogram:
627	 *
628	 * - The global event did not expire any CPU local
629	 * events. This happens in dyntick mode, as the maximum PIT
630	 * delta is quite small.
631	 *
632	 * - There are pending events on sleeping CPUs which were not
633	 * in the event mask
634	 */
635	if (next_event.tv64 != KTIME_MAX) {
636		/*
637		 * Rearm the broadcast device. If event expired,
638		 * repeat the above
639		 */
640		if (tick_broadcast_set_event(dev, next_cpu, next_event, 0))
641			goto again;
642	}
643	raw_spin_unlock(&tick_broadcast_lock);
644}
645
646static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
647{
648	if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
649		return 0;
650	if (bc->next_event.tv64 == KTIME_MAX)
651		return 0;
652	return bc->bound_on == cpu ? -EBUSY : 0;
653}
654
655static void broadcast_shutdown_local(struct clock_event_device *bc,
656				     struct clock_event_device *dev)
657{
658	/*
659	 * For hrtimer based broadcasting we cannot shutdown the cpu
660	 * local device if our own event is the first one to expire or
661	 * if we own the broadcast timer.
662	 */
663	if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
664		if (broadcast_needs_cpu(bc, smp_processor_id()))
665			return;
666		if (dev->next_event.tv64 < bc->next_event.tv64)
667			return;
668	}
669	clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
670}
671
672static void broadcast_move_bc(int deadcpu)
673{
674	struct clock_event_device *bc = tick_broadcast_device.evtdev;
675
676	if (!bc || !broadcast_needs_cpu(bc, deadcpu))
677		return;
678	/* This moves the broadcast assignment to this cpu */
679	clockevents_program_event(bc, bc->next_event, 1);
680}
681
682/*
683 * Powerstate information: The system enters/leaves a state, where
684 * affected devices might stop
685 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
686 */
687int tick_broadcast_oneshot_control(unsigned long reason)
688{
689	struct clock_event_device *bc, *dev;
690	struct tick_device *td;
691	unsigned long flags;
692	ktime_t now;
693	int cpu, ret = 0;
694
695	/*
696	 * Periodic mode does not care about the enter/exit of power
697	 * states
698	 */
699	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
700		return 0;
701
702	/*
703	 * We are called with preemtion disabled from the depth of the
704	 * idle code, so we can't be moved away.
705	 */
706	cpu = smp_processor_id();
707	td = &per_cpu(tick_cpu_device, cpu);
708	dev = td->evtdev;
709
710	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
711		return 0;
712
713	bc = tick_broadcast_device.evtdev;
714
715	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
716	if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
717		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
718			WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
719			broadcast_shutdown_local(bc, dev);
720			/*
721			 * We only reprogram the broadcast timer if we
722			 * did not mark ourself in the force mask and
723			 * if the cpu local event is earlier than the
724			 * broadcast event. If the current CPU is in
725			 * the force mask, then we are going to be
726			 * woken by the IPI right away.
727			 */
728			if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
729			    dev->next_event.tv64 < bc->next_event.tv64)
730				tick_broadcast_set_event(bc, cpu, dev->next_event, 1);
731		}
732		/*
733		 * If the current CPU owns the hrtimer broadcast
734		 * mechanism, it cannot go deep idle and we remove the
735		 * CPU from the broadcast mask. We don't have to go
736		 * through the EXIT path as the local timer is not
737		 * shutdown.
738		 */
739		ret = broadcast_needs_cpu(bc, cpu);
740		if (ret)
741			cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
742	} else {
743		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
 
 
744			clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
745			/*
746			 * The cpu which was handling the broadcast
747			 * timer marked this cpu in the broadcast
748			 * pending mask and fired the broadcast
749			 * IPI. So we are going to handle the expired
750			 * event anyway via the broadcast IPI
751			 * handler. No need to reprogram the timer
752			 * with an already expired event.
753			 */
754			if (cpumask_test_and_clear_cpu(cpu,
755				       tick_broadcast_pending_mask))
756				goto out;
757
758			/*
759			 * Bail out if there is no next event.
760			 */
761			if (dev->next_event.tv64 == KTIME_MAX)
762				goto out;
763			/*
764			 * If the pending bit is not set, then we are
765			 * either the CPU handling the broadcast
766			 * interrupt or we got woken by something else.
767			 *
768			 * We are not longer in the broadcast mask, so
769			 * if the cpu local expiry time is already
770			 * reached, we would reprogram the cpu local
771			 * timer with an already expired event.
772			 *
773			 * This can lead to a ping-pong when we return
774			 * to idle and therefor rearm the broadcast
775			 * timer before the cpu local timer was able
776			 * to fire. This happens because the forced
777			 * reprogramming makes sure that the event
778			 * will happen in the future and depending on
779			 * the min_delta setting this might be far
780			 * enough out that the ping-pong starts.
781			 *
782			 * If the cpu local next_event has expired
783			 * then we know that the broadcast timer
784			 * next_event has expired as well and
785			 * broadcast is about to be handled. So we
786			 * avoid reprogramming and enforce that the
787			 * broadcast handler, which did not run yet,
788			 * will invoke the cpu local handler.
789			 *
790			 * We cannot call the handler directly from
791			 * here, because we might be in a NOHZ phase
792			 * and we did not go through the irq_enter()
793			 * nohz fixups.
794			 */
795			now = ktime_get();
796			if (dev->next_event.tv64 <= now.tv64) {
797				cpumask_set_cpu(cpu, tick_broadcast_force_mask);
798				goto out;
799			}
800			/*
801			 * We got woken by something else. Reprogram
802			 * the cpu local timer device.
803			 */
804			tick_program_event(dev->next_event, 1);
805		}
806	}
807out:
808	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
809	return ret;
810}
811
812/*
813 * Reset the one shot broadcast for a cpu
814 *
815 * Called with tick_broadcast_lock held
816 */
817static void tick_broadcast_clear_oneshot(int cpu)
818{
819	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
820	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
821}
822
823static void tick_broadcast_init_next_event(struct cpumask *mask,
824					   ktime_t expires)
825{
826	struct tick_device *td;
827	int cpu;
828
829	for_each_cpu(cpu, mask) {
830		td = &per_cpu(tick_cpu_device, cpu);
831		if (td->evtdev)
832			td->evtdev->next_event = expires;
833	}
834}
835
836/**
837 * tick_broadcast_setup_oneshot - setup the broadcast device
838 */
839void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
840{
841	int cpu = smp_processor_id();
842
843	/* Set it up only once ! */
844	if (bc->event_handler != tick_handle_oneshot_broadcast) {
845		int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
846
847		bc->event_handler = tick_handle_oneshot_broadcast;
 
 
 
 
848
849		/*
850		 * We must be careful here. There might be other CPUs
851		 * waiting for periodic broadcast. We need to set the
852		 * oneshot_mask bits for those and program the
853		 * broadcast device to fire.
854		 */
855		cpumask_copy(tmpmask, tick_broadcast_mask);
856		cpumask_clear_cpu(cpu, tmpmask);
857		cpumask_or(tick_broadcast_oneshot_mask,
858			   tick_broadcast_oneshot_mask, tmpmask);
859
860		if (was_periodic && !cpumask_empty(tmpmask)) {
861			clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
862			tick_broadcast_init_next_event(tmpmask,
863						       tick_next_period);
864			tick_broadcast_set_event(bc, cpu, tick_next_period, 1);
865		} else
866			bc->next_event.tv64 = KTIME_MAX;
867	} else {
868		/*
869		 * The first cpu which switches to oneshot mode sets
870		 * the bit for all other cpus which are in the general
871		 * (periodic) broadcast mask. So the bit is set and
872		 * would prevent the first broadcast enter after this
873		 * to program the bc device.
874		 */
875		tick_broadcast_clear_oneshot(cpu);
876	}
877}
878
879/*
880 * Select oneshot operating mode for the broadcast device
881 */
882void tick_broadcast_switch_to_oneshot(void)
883{
884	struct clock_event_device *bc;
885	unsigned long flags;
886
887	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
888
889	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
890	bc = tick_broadcast_device.evtdev;
891	if (bc)
892		tick_broadcast_setup_oneshot(bc);
893
894	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
895}
896
897
898/*
899 * Remove a dead CPU from broadcasting
900 */
901void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
902{
903	unsigned long flags;
904	unsigned int cpu = *cpup;
905
906	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
907
908	/*
909	 * Clear the broadcast masks for the dead cpu, but do not stop
910	 * the broadcast device!
911	 */
912	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
913	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
914	cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
915
916	broadcast_move_bc(cpu);
917
918	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
919}
920
921/*
922 * Check, whether the broadcast device is in one shot mode
923 */
924int tick_broadcast_oneshot_active(void)
925{
926	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
927}
928
929/*
930 * Check whether the broadcast device supports oneshot.
931 */
932bool tick_broadcast_oneshot_available(void)
933{
934	struct clock_event_device *bc = tick_broadcast_device.evtdev;
935
936	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
937}
938
939#endif
940
941void __init tick_broadcast_init(void)
942{
943	zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
944	zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
945	zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
946#ifdef CONFIG_TICK_ONESHOT
947	zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
948	zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
949	zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
950#endif
951}
v3.1
  1/*
  2 * linux/kernel/time/tick-broadcast.c
  3 *
  4 * This file contains functions which emulate a local clock-event
  5 * device via a broadcast event source.
  6 *
  7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
 10 *
 11 * This code is licenced under the GPL version 2. For details see
 12 * kernel-base/COPYING.
 13 */
 14#include <linux/cpu.h>
 15#include <linux/err.h>
 16#include <linux/hrtimer.h>
 17#include <linux/interrupt.h>
 18#include <linux/percpu.h>
 19#include <linux/profile.h>
 20#include <linux/sched.h>
 
 
 21
 22#include "tick-internal.h"
 23
 24/*
 25 * Broadcast support for broken x86 hardware, where the local apic
 26 * timer stops in C3 state.
 27 */
 28
 29static struct tick_device tick_broadcast_device;
 30/* FIXME: Use cpumask_var_t. */
 31static DECLARE_BITMAP(tick_broadcast_mask, NR_CPUS);
 32static DECLARE_BITMAP(tmpmask, NR_CPUS);
 33static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
 34static int tick_broadcast_force;
 35
 36#ifdef CONFIG_TICK_ONESHOT
 37static void tick_broadcast_clear_oneshot(int cpu);
 38#else
 39static inline void tick_broadcast_clear_oneshot(int cpu) { }
 40#endif
 41
 42/*
 43 * Debugging: see timer_list.c
 44 */
 45struct tick_device *tick_get_broadcast_device(void)
 46{
 47	return &tick_broadcast_device;
 48}
 49
 50struct cpumask *tick_get_broadcast_mask(void)
 51{
 52	return to_cpumask(tick_broadcast_mask);
 53}
 54
 55/*
 56 * Start the device in periodic mode
 57 */
 58static void tick_broadcast_start_periodic(struct clock_event_device *bc)
 59{
 60	if (bc)
 61		tick_setup_periodic(bc, 1);
 62}
 63
 64/*
 65 * Check, if the device can be utilized as broadcast device:
 66 */
 67int tick_check_broadcast_device(struct clock_event_device *dev)
 
 68{
 69	if ((tick_broadcast_device.evtdev &&
 70	     tick_broadcast_device.evtdev->rating >= dev->rating) ||
 71	     (dev->features & CLOCK_EVT_FEAT_C3STOP))
 72		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 73
 74	clockevents_exchange_device(NULL, dev);
 
 
 75	tick_broadcast_device.evtdev = dev;
 76	if (!cpumask_empty(tick_get_broadcast_mask()))
 77		tick_broadcast_start_periodic(dev);
 78	return 1;
 
 
 
 
 
 
 
 
 
 79}
 80
 81/*
 82 * Check, if the device is the broadcast device
 83 */
 84int tick_is_broadcast_device(struct clock_event_device *dev)
 85{
 86	return (dev && tick_broadcast_device.evtdev == dev);
 87}
 88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 89/*
 90 * Check, if the device is disfunctional and a place holder, which
 91 * needs to be handled by the broadcast device.
 92 */
 93int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
 94{
 
 95	unsigned long flags;
 96	int ret = 0;
 97
 98	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 99
100	/*
101	 * Devices might be registered with both periodic and oneshot
102	 * mode disabled. This signals, that the device needs to be
103	 * operated from the broadcast device and is a placeholder for
104	 * the cpu local device.
105	 */
106	if (!tick_device_is_functional(dev)) {
107		dev->event_handler = tick_handle_periodic;
108		cpumask_set_cpu(cpu, tick_get_broadcast_mask());
109		tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
 
 
 
 
110		ret = 1;
111	} else {
112		/*
113		 * When the new device is not affected by the stop
114		 * feature and the cpu is marked in the broadcast mask
115		 * then clear the broadcast bit.
116		 */
117		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
118			int cpu = smp_processor_id();
 
 
119
120			cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121			tick_broadcast_clear_oneshot(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122		}
123	}
124	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
125	return ret;
126}
127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128/*
129 * Broadcast the event to the cpus, which are set in the mask (mangled).
130 */
131static void tick_do_broadcast(struct cpumask *mask)
132{
133	int cpu = smp_processor_id();
134	struct tick_device *td;
135
136	/*
137	 * Check, if the current cpu is in the mask
138	 */
139	if (cpumask_test_cpu(cpu, mask)) {
140		cpumask_clear_cpu(cpu, mask);
141		td = &per_cpu(tick_cpu_device, cpu);
142		td->evtdev->event_handler(td->evtdev);
143	}
144
145	if (!cpumask_empty(mask)) {
146		/*
147		 * It might be necessary to actually check whether the devices
148		 * have different broadcast functions. For now, just use the
149		 * one of the first device. This works as long as we have this
150		 * misfeature only on x86 (lapic)
151		 */
152		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
153		td->evtdev->broadcast(mask);
154	}
155}
156
157/*
158 * Periodic broadcast:
159 * - invoke the broadcast handlers
160 */
161static void tick_do_periodic_broadcast(void)
162{
163	raw_spin_lock(&tick_broadcast_lock);
164
165	cpumask_and(to_cpumask(tmpmask),
166		    cpu_online_mask, tick_get_broadcast_mask());
167	tick_do_broadcast(to_cpumask(tmpmask));
168
169	raw_spin_unlock(&tick_broadcast_lock);
170}
171
172/*
173 * Event handler for periodic broadcast ticks
174 */
175static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
176{
177	ktime_t next;
178
 
 
179	tick_do_periodic_broadcast();
180
181	/*
182	 * The device is in periodic mode. No reprogramming necessary:
183	 */
184	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
185		return;
186
187	/*
188	 * Setup the next period for devices, which do not have
189	 * periodic mode. We read dev->next_event first and add to it
190	 * when the event already expired. clockevents_program_event()
191	 * sets dev->next_event only when the event is really
192	 * programmed to the device.
193	 */
194	for (next = dev->next_event; ;) {
195		next = ktime_add(next, tick_period);
196
197		if (!clockevents_program_event(dev, next, ktime_get()))
198			return;
199		tick_do_periodic_broadcast();
200	}
 
 
201}
202
203/*
204 * Powerstate information: The system enters/leaves a state, where
205 * affected devices might stop
206 */
207static void tick_do_broadcast_on_off(unsigned long *reason)
208{
209	struct clock_event_device *bc, *dev;
210	struct tick_device *td;
211	unsigned long flags;
212	int cpu, bc_stopped;
213
214	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
215
216	cpu = smp_processor_id();
217	td = &per_cpu(tick_cpu_device, cpu);
218	dev = td->evtdev;
219	bc = tick_broadcast_device.evtdev;
220
221	/*
222	 * Is the device not affected by the powerstate ?
223	 */
224	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
225		goto out;
226
227	if (!tick_device_is_functional(dev))
228		goto out;
229
230	bc_stopped = cpumask_empty(tick_get_broadcast_mask());
231
232	switch (*reason) {
233	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
234	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
235		if (!cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
236			cpumask_set_cpu(cpu, tick_get_broadcast_mask());
237			if (tick_broadcast_device.mode ==
238			    TICKDEV_MODE_PERIODIC)
239				clockevents_shutdown(dev);
240		}
241		if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
242			tick_broadcast_force = 1;
243		break;
244	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
245		if (!tick_broadcast_force &&
246		    cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
247			cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
 
 
 
248			if (tick_broadcast_device.mode ==
249			    TICKDEV_MODE_PERIODIC)
250				tick_setup_periodic(dev, 0);
251		}
252		break;
253	}
254
255	if (cpumask_empty(tick_get_broadcast_mask())) {
256		if (!bc_stopped)
257			clockevents_shutdown(bc);
258	} else if (bc_stopped) {
259		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
260			tick_broadcast_start_periodic(bc);
261		else
262			tick_broadcast_setup_oneshot(bc);
263	}
264out:
265	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
266}
267
268/*
269 * Powerstate information: The system enters/leaves a state, where
270 * affected devices might stop.
271 */
272void tick_broadcast_on_off(unsigned long reason, int *oncpu)
273{
274	if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
275		printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
276		       "offline CPU #%d\n", *oncpu);
277	else
278		tick_do_broadcast_on_off(&reason);
279}
280
281/*
282 * Set the periodic handler depending on broadcast on/off
283 */
284void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
285{
286	if (!broadcast)
287		dev->event_handler = tick_handle_periodic;
288	else
289		dev->event_handler = tick_handle_periodic_broadcast;
290}
291
292/*
293 * Remove a CPU from broadcasting
294 */
295void tick_shutdown_broadcast(unsigned int *cpup)
296{
297	struct clock_event_device *bc;
298	unsigned long flags;
299	unsigned int cpu = *cpup;
300
301	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
302
303	bc = tick_broadcast_device.evtdev;
304	cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
 
305
306	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
307		if (bc && cpumask_empty(tick_get_broadcast_mask()))
308			clockevents_shutdown(bc);
309	}
310
311	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
312}
313
314void tick_suspend_broadcast(void)
315{
316	struct clock_event_device *bc;
317	unsigned long flags;
318
319	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
320
321	bc = tick_broadcast_device.evtdev;
322	if (bc)
323		clockevents_shutdown(bc);
324
325	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
326}
327
328int tick_resume_broadcast(void)
329{
330	struct clock_event_device *bc;
331	unsigned long flags;
332	int broadcast = 0;
333
334	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
335
336	bc = tick_broadcast_device.evtdev;
337
338	if (bc) {
339		clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
340
341		switch (tick_broadcast_device.mode) {
342		case TICKDEV_MODE_PERIODIC:
343			if (!cpumask_empty(tick_get_broadcast_mask()))
344				tick_broadcast_start_periodic(bc);
345			broadcast = cpumask_test_cpu(smp_processor_id(),
346						     tick_get_broadcast_mask());
347			break;
348		case TICKDEV_MODE_ONESHOT:
349			broadcast = tick_resume_broadcast_oneshot(bc);
 
350			break;
351		}
352	}
353	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
354
355	return broadcast;
356}
357
358
359#ifdef CONFIG_TICK_ONESHOT
360
361/* FIXME: use cpumask_var_t. */
362static DECLARE_BITMAP(tick_broadcast_oneshot_mask, NR_CPUS);
 
363
364/*
365 * Exposed for debugging: see timer_list.c
366 */
367struct cpumask *tick_get_broadcast_oneshot_mask(void)
368{
369	return to_cpumask(tick_broadcast_oneshot_mask);
370}
371
372static int tick_broadcast_set_event(ktime_t expires, int force)
 
 
 
 
 
 
 
373{
374	struct clock_event_device *bc = tick_broadcast_device.evtdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
375
376	return tick_dev_program_event(bc, expires, force);
 
 
 
377}
378
379int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
380{
381	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
382	return 0;
383}
384
385/*
386 * Called from irq_enter() when idle was interrupted to reenable the
387 * per cpu device.
388 */
389void tick_check_oneshot_broadcast(int cpu)
390{
391	if (cpumask_test_cpu(cpu, to_cpumask(tick_broadcast_oneshot_mask))) {
392		struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
393
394		clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT);
 
 
 
 
 
 
 
 
395	}
396}
397
398/*
399 * Handle oneshot mode broadcasting
400 */
401static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
402{
403	struct tick_device *td;
404	ktime_t now, next_event;
405	int cpu;
406
407	raw_spin_lock(&tick_broadcast_lock);
408again:
409	dev->next_event.tv64 = KTIME_MAX;
410	next_event.tv64 = KTIME_MAX;
411	cpumask_clear(to_cpumask(tmpmask));
412	now = ktime_get();
413	/* Find all expired events */
414	for_each_cpu(cpu, tick_get_broadcast_oneshot_mask()) {
415		td = &per_cpu(tick_cpu_device, cpu);
416		if (td->evtdev->next_event.tv64 <= now.tv64)
417			cpumask_set_cpu(cpu, to_cpumask(tmpmask));
418		else if (td->evtdev->next_event.tv64 < next_event.tv64)
 
 
 
 
 
 
419			next_event.tv64 = td->evtdev->next_event.tv64;
 
 
420	}
421
422	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423	 * Wakeup the cpus which have an expired event.
424	 */
425	tick_do_broadcast(to_cpumask(tmpmask));
426
427	/*
428	 * Two reasons for reprogram:
429	 *
430	 * - The global event did not expire any CPU local
431	 * events. This happens in dyntick mode, as the maximum PIT
432	 * delta is quite small.
433	 *
434	 * - There are pending events on sleeping CPUs which were not
435	 * in the event mask
436	 */
437	if (next_event.tv64 != KTIME_MAX) {
438		/*
439		 * Rearm the broadcast device. If event expired,
440		 * repeat the above
441		 */
442		if (tick_broadcast_set_event(next_event, 0))
443			goto again;
444	}
445	raw_spin_unlock(&tick_broadcast_lock);
446}
447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
448/*
449 * Powerstate information: The system enters/leaves a state, where
450 * affected devices might stop
 
451 */
452void tick_broadcast_oneshot_control(unsigned long reason)
453{
454	struct clock_event_device *bc, *dev;
455	struct tick_device *td;
456	unsigned long flags;
457	int cpu;
 
458
459	/*
460	 * Periodic mode does not care about the enter/exit of power
461	 * states
462	 */
463	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
464		return;
465
466	/*
467	 * We are called with preemtion disabled from the depth of the
468	 * idle code, so we can't be moved away.
469	 */
470	cpu = smp_processor_id();
471	td = &per_cpu(tick_cpu_device, cpu);
472	dev = td->evtdev;
473
474	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
475		return;
476
477	bc = tick_broadcast_device.evtdev;
478
479	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
480	if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
481		if (!cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
482			cpumask_set_cpu(cpu, tick_get_broadcast_oneshot_mask());
483			clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
484			if (dev->next_event.tv64 < bc->next_event.tv64)
485				tick_broadcast_set_event(dev->next_event, 1);
 
 
 
 
 
 
 
 
 
486		}
 
 
 
 
 
 
 
 
 
 
487	} else {
488		if (cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
489			cpumask_clear_cpu(cpu,
490					  tick_get_broadcast_oneshot_mask());
491			clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
492			if (dev->next_event.tv64 != KTIME_MAX)
493				tick_program_event(dev->next_event, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
494		}
495	}
 
496	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 
497}
498
499/*
500 * Reset the one shot broadcast for a cpu
501 *
502 * Called with tick_broadcast_lock held
503 */
504static void tick_broadcast_clear_oneshot(int cpu)
505{
506	cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
 
507}
508
509static void tick_broadcast_init_next_event(struct cpumask *mask,
510					   ktime_t expires)
511{
512	struct tick_device *td;
513	int cpu;
514
515	for_each_cpu(cpu, mask) {
516		td = &per_cpu(tick_cpu_device, cpu);
517		if (td->evtdev)
518			td->evtdev->next_event = expires;
519	}
520}
521
522/**
523 * tick_broadcast_setup_oneshot - setup the broadcast device
524 */
525void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
526{
527	int cpu = smp_processor_id();
528
529	/* Set it up only once ! */
530	if (bc->event_handler != tick_handle_oneshot_broadcast) {
531		int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
532
533		bc->event_handler = tick_handle_oneshot_broadcast;
534		clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
535
536		/* Take the do_timer update */
537		tick_do_timer_cpu = cpu;
538
539		/*
540		 * We must be careful here. There might be other CPUs
541		 * waiting for periodic broadcast. We need to set the
542		 * oneshot_mask bits for those and program the
543		 * broadcast device to fire.
544		 */
545		cpumask_copy(to_cpumask(tmpmask), tick_get_broadcast_mask());
546		cpumask_clear_cpu(cpu, to_cpumask(tmpmask));
547		cpumask_or(tick_get_broadcast_oneshot_mask(),
548			   tick_get_broadcast_oneshot_mask(),
549			   to_cpumask(tmpmask));
550
551		if (was_periodic && !cpumask_empty(to_cpumask(tmpmask))) {
552			tick_broadcast_init_next_event(to_cpumask(tmpmask),
553						       tick_next_period);
554			tick_broadcast_set_event(tick_next_period, 1);
555		} else
556			bc->next_event.tv64 = KTIME_MAX;
557	} else {
558		/*
559		 * The first cpu which switches to oneshot mode sets
560		 * the bit for all other cpus which are in the general
561		 * (periodic) broadcast mask. So the bit is set and
562		 * would prevent the first broadcast enter after this
563		 * to program the bc device.
564		 */
565		tick_broadcast_clear_oneshot(cpu);
566	}
567}
568
569/*
570 * Select oneshot operating mode for the broadcast device
571 */
572void tick_broadcast_switch_to_oneshot(void)
573{
574	struct clock_event_device *bc;
575	unsigned long flags;
576
577	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
578
579	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
580	bc = tick_broadcast_device.evtdev;
581	if (bc)
582		tick_broadcast_setup_oneshot(bc);
 
583	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
584}
585
586
587/*
588 * Remove a dead CPU from broadcasting
589 */
590void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
591{
592	unsigned long flags;
593	unsigned int cpu = *cpup;
594
595	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
596
597	/*
598	 * Clear the broadcast mask flag for the dead cpu, but do not
599	 * stop the broadcast device!
600	 */
601	cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
 
 
 
 
602
603	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
604}
605
606/*
607 * Check, whether the broadcast device is in one shot mode
608 */
609int tick_broadcast_oneshot_active(void)
610{
611	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
612}
613
614/*
615 * Check whether the broadcast device supports oneshot.
616 */
617bool tick_broadcast_oneshot_available(void)
618{
619	struct clock_event_device *bc = tick_broadcast_device.evtdev;
620
621	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
622}
623
624#endif