Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 *  linux/kernel/time.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 *
  6 *  This file contains the interface functions for the various
  7 *  time related system calls: time, stime, gettimeofday, settimeofday,
  8 *			       adjtime
  9 */
 10/*
 11 * Modification history kernel/time.c
 12 *
 13 * 1993-09-02    Philip Gladstone
 14 *      Created file with time related functions from sched/core.c and adjtimex()
 15 * 1993-10-08    Torsten Duwe
 16 *      adjtime interface update and CMOS clock write code
 17 * 1995-08-13    Torsten Duwe
 18 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 19 * 1999-01-16    Ulrich Windl
 20 *	Introduced error checking for many cases in adjtimex().
 21 *	Updated NTP code according to technical memorandum Jan '96
 22 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 23 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 24 *	(Even though the technical memorandum forbids it)
 25 * 2004-07-14	 Christoph Lameter
 26 *	Added getnstimeofday to allow the posix timer functions to return
 27 *	with nanosecond accuracy
 28 */
 29
 30#include <linux/export.h>
 31#include <linux/timex.h>
 32#include <linux/capability.h>
 33#include <linux/timekeeper_internal.h>
 34#include <linux/errno.h>
 35#include <linux/syscalls.h>
 36#include <linux/security.h>
 37#include <linux/fs.h>
 38#include <linux/math64.h>
 39#include <linux/ptrace.h>
 40
 41#include <asm/uaccess.h>
 42#include <asm/unistd.h>
 43
 44#include "timeconst.h"
 45
 46/*
 47 * The timezone where the local system is located.  Used as a default by some
 48 * programs who obtain this value by using gettimeofday.
 49 */
 50struct timezone sys_tz;
 51
 52EXPORT_SYMBOL(sys_tz);
 53
 54#ifdef __ARCH_WANT_SYS_TIME
 55
 56/*
 57 * sys_time() can be implemented in user-level using
 58 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 59 * why not move it into the appropriate arch directory (for those
 60 * architectures that need it).
 61 */
 62SYSCALL_DEFINE1(time, time_t __user *, tloc)
 63{
 64	time_t i = get_seconds();
 65
 66	if (tloc) {
 67		if (put_user(i,tloc))
 68			return -EFAULT;
 69	}
 70	force_successful_syscall_return();
 71	return i;
 72}
 73
 74/*
 75 * sys_stime() can be implemented in user-level using
 76 * sys_settimeofday().  Is this for backwards compatibility?  If so,
 77 * why not move it into the appropriate arch directory (for those
 78 * architectures that need it).
 79 */
 80
 81SYSCALL_DEFINE1(stime, time_t __user *, tptr)
 82{
 83	struct timespec tv;
 84	int err;
 85
 86	if (get_user(tv.tv_sec, tptr))
 87		return -EFAULT;
 88
 89	tv.tv_nsec = 0;
 90
 91	err = security_settime(&tv, NULL);
 92	if (err)
 93		return err;
 94
 95	do_settimeofday(&tv);
 96	return 0;
 97}
 98
 99#endif /* __ARCH_WANT_SYS_TIME */
100
101SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
102		struct timezone __user *, tz)
103{
104	if (likely(tv != NULL)) {
105		struct timeval ktv;
106		do_gettimeofday(&ktv);
107		if (copy_to_user(tv, &ktv, sizeof(ktv)))
108			return -EFAULT;
109	}
110	if (unlikely(tz != NULL)) {
111		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
112			return -EFAULT;
113	}
114	return 0;
115}
116
117/*
118 * Indicates if there is an offset between the system clock and the hardware
119 * clock/persistent clock/rtc.
120 */
121int persistent_clock_is_local;
122
123/*
124 * Adjust the time obtained from the CMOS to be UTC time instead of
125 * local time.
126 *
127 * This is ugly, but preferable to the alternatives.  Otherwise we
128 * would either need to write a program to do it in /etc/rc (and risk
129 * confusion if the program gets run more than once; it would also be
130 * hard to make the program warp the clock precisely n hours)  or
131 * compile in the timezone information into the kernel.  Bad, bad....
132 *
133 *						- TYT, 1992-01-01
134 *
135 * The best thing to do is to keep the CMOS clock in universal time (UTC)
136 * as real UNIX machines always do it. This avoids all headaches about
137 * daylight saving times and warping kernel clocks.
138 */
139static inline void warp_clock(void)
140{
141	if (sys_tz.tz_minuteswest != 0) {
142		struct timespec adjust;
143
144		persistent_clock_is_local = 1;
145		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
146		adjust.tv_nsec = 0;
147		timekeeping_inject_offset(&adjust);
148	}
149}
150
151/*
152 * In case for some reason the CMOS clock has not already been running
153 * in UTC, but in some local time: The first time we set the timezone,
154 * we will warp the clock so that it is ticking UTC time instead of
155 * local time. Presumably, if someone is setting the timezone then we
156 * are running in an environment where the programs understand about
157 * timezones. This should be done at boot time in the /etc/rc script,
158 * as soon as possible, so that the clock can be set right. Otherwise,
159 * various programs will get confused when the clock gets warped.
160 */
161
162int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
163{
164	static int firsttime = 1;
165	int error = 0;
166
167	if (tv && !timespec_valid(tv))
168		return -EINVAL;
169
170	error = security_settime(tv, tz);
171	if (error)
172		return error;
173
174	if (tz) {
 
175		sys_tz = *tz;
176		update_vsyscall_tz();
177		if (firsttime) {
178			firsttime = 0;
179			if (!tv)
180				warp_clock();
181		}
182	}
183	if (tv)
 
 
 
 
184		return do_settimeofday(tv);
 
185	return 0;
186}
187
188SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
189		struct timezone __user *, tz)
190{
191	struct timeval user_tv;
192	struct timespec	new_ts;
193	struct timezone new_tz;
194
195	if (tv) {
196		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
197			return -EFAULT;
198		new_ts.tv_sec = user_tv.tv_sec;
199		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
200	}
201	if (tz) {
202		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
203			return -EFAULT;
204	}
205
206	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
207}
208
209SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
210{
211	struct timex txc;		/* Local copy of parameter */
212	int ret;
213
214	/* Copy the user data space into the kernel copy
215	 * structure. But bear in mind that the structures
216	 * may change
217	 */
218	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
219		return -EFAULT;
220	ret = do_adjtimex(&txc);
221	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
222}
223
224/**
225 * current_fs_time - Return FS time
226 * @sb: Superblock.
227 *
228 * Return the current time truncated to the time granularity supported by
229 * the fs.
230 */
231struct timespec current_fs_time(struct super_block *sb)
232{
233	struct timespec now = current_kernel_time();
234	return timespec_trunc(now, sb->s_time_gran);
235}
236EXPORT_SYMBOL(current_fs_time);
237
238/*
239 * Convert jiffies to milliseconds and back.
240 *
241 * Avoid unnecessary multiplications/divisions in the
242 * two most common HZ cases:
243 */
244unsigned int jiffies_to_msecs(const unsigned long j)
245{
246#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
247	return (MSEC_PER_SEC / HZ) * j;
248#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
249	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
250#else
251# if BITS_PER_LONG == 32
252	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
253# else
254	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
255# endif
256#endif
257}
258EXPORT_SYMBOL(jiffies_to_msecs);
259
260unsigned int jiffies_to_usecs(const unsigned long j)
261{
262#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
263	return (USEC_PER_SEC / HZ) * j;
264#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
265	return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
266#else
267# if BITS_PER_LONG == 32
268	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
269# else
270	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
271# endif
272#endif
273}
274EXPORT_SYMBOL(jiffies_to_usecs);
275
276/**
277 * timespec_trunc - Truncate timespec to a granularity
278 * @t: Timespec
279 * @gran: Granularity in ns.
280 *
281 * Truncate a timespec to a granularity. gran must be smaller than a second.
282 * Always rounds down.
283 *
284 * This function should be only used for timestamps returned by
285 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
286 * it doesn't handle the better resolution of the latter.
287 */
288struct timespec timespec_trunc(struct timespec t, unsigned gran)
289{
290	/*
291	 * Division is pretty slow so avoid it for common cases.
292	 * Currently current_kernel_time() never returns better than
293	 * jiffies resolution. Exploit that.
294	 */
295	if (gran <= jiffies_to_usecs(1) * 1000) {
296		/* nothing */
297	} else if (gran == 1000000000) {
298		t.tv_nsec = 0;
299	} else {
300		t.tv_nsec -= t.tv_nsec % gran;
301	}
302	return t;
303}
304EXPORT_SYMBOL(timespec_trunc);
305
306/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
307 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
308 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
309 *
310 * [For the Julian calendar (which was used in Russia before 1917,
311 * Britain & colonies before 1752, anywhere else before 1582,
312 * and is still in use by some communities) leave out the
313 * -year/100+year/400 terms, and add 10.]
314 *
315 * This algorithm was first published by Gauss (I think).
316 *
317 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
318 * machines where long is 32-bit! (However, as time_t is signed, we
319 * will already get problems at other places on 2038-01-19 03:14:08)
320 */
321unsigned long
322mktime(const unsigned int year0, const unsigned int mon0,
323       const unsigned int day, const unsigned int hour,
324       const unsigned int min, const unsigned int sec)
325{
326	unsigned int mon = mon0, year = year0;
327
328	/* 1..12 -> 11,12,1..10 */
329	if (0 >= (int) (mon -= 2)) {
330		mon += 12;	/* Puts Feb last since it has leap day */
331		year -= 1;
332	}
333
334	return ((((unsigned long)
335		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
336		  year*365 - 719499
337	    )*24 + hour /* now have hours */
338	  )*60 + min /* now have minutes */
339	)*60 + sec; /* finally seconds */
340}
341
342EXPORT_SYMBOL(mktime);
343
344/**
345 * set_normalized_timespec - set timespec sec and nsec parts and normalize
346 *
347 * @ts:		pointer to timespec variable to be set
348 * @sec:	seconds to set
349 * @nsec:	nanoseconds to set
350 *
351 * Set seconds and nanoseconds field of a timespec variable and
352 * normalize to the timespec storage format
353 *
354 * Note: The tv_nsec part is always in the range of
355 *	0 <= tv_nsec < NSEC_PER_SEC
356 * For negative values only the tv_sec field is negative !
357 */
358void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
359{
360	while (nsec >= NSEC_PER_SEC) {
361		/*
362		 * The following asm() prevents the compiler from
363		 * optimising this loop into a modulo operation. See
364		 * also __iter_div_u64_rem() in include/linux/time.h
365		 */
366		asm("" : "+rm"(nsec));
367		nsec -= NSEC_PER_SEC;
368		++sec;
369	}
370	while (nsec < 0) {
371		asm("" : "+rm"(nsec));
372		nsec += NSEC_PER_SEC;
373		--sec;
374	}
375	ts->tv_sec = sec;
376	ts->tv_nsec = nsec;
377}
378EXPORT_SYMBOL(set_normalized_timespec);
379
380/**
381 * ns_to_timespec - Convert nanoseconds to timespec
382 * @nsec:       the nanoseconds value to be converted
383 *
384 * Returns the timespec representation of the nsec parameter.
385 */
386struct timespec ns_to_timespec(const s64 nsec)
387{
388	struct timespec ts;
389	s32 rem;
390
391	if (!nsec)
392		return (struct timespec) {0, 0};
393
394	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
395	if (unlikely(rem < 0)) {
396		ts.tv_sec--;
397		rem += NSEC_PER_SEC;
398	}
399	ts.tv_nsec = rem;
400
401	return ts;
402}
403EXPORT_SYMBOL(ns_to_timespec);
404
405/**
406 * ns_to_timeval - Convert nanoseconds to timeval
407 * @nsec:       the nanoseconds value to be converted
408 *
409 * Returns the timeval representation of the nsec parameter.
410 */
411struct timeval ns_to_timeval(const s64 nsec)
412{
413	struct timespec ts = ns_to_timespec(nsec);
414	struct timeval tv;
415
416	tv.tv_sec = ts.tv_sec;
417	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
418
419	return tv;
420}
421EXPORT_SYMBOL(ns_to_timeval);
422
423/*
424 * When we convert to jiffies then we interpret incoming values
425 * the following way:
426 *
427 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
428 *
429 * - 'too large' values [that would result in larger than
430 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
431 *
432 * - all other values are converted to jiffies by either multiplying
433 *   the input value by a factor or dividing it with a factor
434 *
435 * We must also be careful about 32-bit overflows.
436 */
437unsigned long msecs_to_jiffies(const unsigned int m)
438{
439	/*
440	 * Negative value, means infinite timeout:
441	 */
442	if ((int)m < 0)
443		return MAX_JIFFY_OFFSET;
444
445#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
446	/*
447	 * HZ is equal to or smaller than 1000, and 1000 is a nice
448	 * round multiple of HZ, divide with the factor between them,
449	 * but round upwards:
450	 */
451	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
452#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
453	/*
454	 * HZ is larger than 1000, and HZ is a nice round multiple of
455	 * 1000 - simply multiply with the factor between them.
456	 *
457	 * But first make sure the multiplication result cannot
458	 * overflow:
459	 */
460	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
461		return MAX_JIFFY_OFFSET;
462
463	return m * (HZ / MSEC_PER_SEC);
464#else
465	/*
466	 * Generic case - multiply, round and divide. But first
467	 * check that if we are doing a net multiplication, that
468	 * we wouldn't overflow:
469	 */
470	if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
471		return MAX_JIFFY_OFFSET;
472
473	return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
474		>> MSEC_TO_HZ_SHR32;
475#endif
476}
477EXPORT_SYMBOL(msecs_to_jiffies);
478
479unsigned long usecs_to_jiffies(const unsigned int u)
480{
481	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
482		return MAX_JIFFY_OFFSET;
483#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
484	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
485#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
486	return u * (HZ / USEC_PER_SEC);
487#else
488	return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
489		>> USEC_TO_HZ_SHR32;
490#endif
491}
492EXPORT_SYMBOL(usecs_to_jiffies);
493
494/*
495 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
496 * that a remainder subtract here would not do the right thing as the
497 * resolution values don't fall on second boundries.  I.e. the line:
498 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
499 *
500 * Rather, we just shift the bits off the right.
501 *
502 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
503 * value to a scaled second value.
504 */
505unsigned long
506timespec_to_jiffies(const struct timespec *value)
507{
508	unsigned long sec = value->tv_sec;
509	long nsec = value->tv_nsec + TICK_NSEC - 1;
510
511	if (sec >= MAX_SEC_IN_JIFFIES){
512		sec = MAX_SEC_IN_JIFFIES;
513		nsec = 0;
514	}
515	return (((u64)sec * SEC_CONVERSION) +
516		(((u64)nsec * NSEC_CONVERSION) >>
517		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
518
519}
520EXPORT_SYMBOL(timespec_to_jiffies);
521
522void
523jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
524{
525	/*
526	 * Convert jiffies to nanoseconds and separate with
527	 * one divide.
528	 */
529	u32 rem;
530	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
531				    NSEC_PER_SEC, &rem);
532	value->tv_nsec = rem;
533}
534EXPORT_SYMBOL(jiffies_to_timespec);
535
536/* Same for "timeval"
537 *
538 * Well, almost.  The problem here is that the real system resolution is
539 * in nanoseconds and the value being converted is in micro seconds.
540 * Also for some machines (those that use HZ = 1024, in-particular),
541 * there is a LARGE error in the tick size in microseconds.
542
543 * The solution we use is to do the rounding AFTER we convert the
544 * microsecond part.  Thus the USEC_ROUND, the bits to be shifted off.
545 * Instruction wise, this should cost only an additional add with carry
546 * instruction above the way it was done above.
547 */
548unsigned long
549timeval_to_jiffies(const struct timeval *value)
550{
551	unsigned long sec = value->tv_sec;
552	long usec = value->tv_usec;
553
554	if (sec >= MAX_SEC_IN_JIFFIES){
555		sec = MAX_SEC_IN_JIFFIES;
556		usec = 0;
557	}
558	return (((u64)sec * SEC_CONVERSION) +
559		(((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
560		 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
561}
562EXPORT_SYMBOL(timeval_to_jiffies);
563
564void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
565{
566	/*
567	 * Convert jiffies to nanoseconds and separate with
568	 * one divide.
569	 */
570	u32 rem;
571
572	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
573				    NSEC_PER_SEC, &rem);
574	value->tv_usec = rem / NSEC_PER_USEC;
575}
576EXPORT_SYMBOL(jiffies_to_timeval);
577
578/*
579 * Convert jiffies/jiffies_64 to clock_t and back.
580 */
581clock_t jiffies_to_clock_t(unsigned long x)
582{
583#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
584# if HZ < USER_HZ
585	return x * (USER_HZ / HZ);
586# else
587	return x / (HZ / USER_HZ);
588# endif
589#else
590	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
591#endif
592}
593EXPORT_SYMBOL(jiffies_to_clock_t);
594
595unsigned long clock_t_to_jiffies(unsigned long x)
596{
597#if (HZ % USER_HZ)==0
598	if (x >= ~0UL / (HZ / USER_HZ))
599		return ~0UL;
600	return x * (HZ / USER_HZ);
601#else
602	/* Don't worry about loss of precision here .. */
603	if (x >= ~0UL / HZ * USER_HZ)
604		return ~0UL;
605
606	/* .. but do try to contain it here */
607	return div_u64((u64)x * HZ, USER_HZ);
608#endif
609}
610EXPORT_SYMBOL(clock_t_to_jiffies);
611
612u64 jiffies_64_to_clock_t(u64 x)
613{
614#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
615# if HZ < USER_HZ
616	x = div_u64(x * USER_HZ, HZ);
617# elif HZ > USER_HZ
618	x = div_u64(x, HZ / USER_HZ);
619# else
620	/* Nothing to do */
621# endif
622#else
623	/*
624	 * There are better ways that don't overflow early,
625	 * but even this doesn't overflow in hundreds of years
626	 * in 64 bits, so..
627	 */
628	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
629#endif
630	return x;
631}
632EXPORT_SYMBOL(jiffies_64_to_clock_t);
633
634u64 nsec_to_clock_t(u64 x)
635{
636#if (NSEC_PER_SEC % USER_HZ) == 0
637	return div_u64(x, NSEC_PER_SEC / USER_HZ);
638#elif (USER_HZ % 512) == 0
639	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
640#else
641	/*
642         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
643         * overflow after 64.99 years.
644         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
645         */
646	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
647#endif
648}
649
650/**
651 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
652 *
653 * @n:	nsecs in u64
654 *
655 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
656 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
657 * for scheduler, not for use in device drivers to calculate timeout value.
658 *
659 * note:
660 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
661 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
662 */
663u64 nsecs_to_jiffies64(u64 n)
664{
665#if (NSEC_PER_SEC % HZ) == 0
666	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
667	return div_u64(n, NSEC_PER_SEC / HZ);
668#elif (HZ % 512) == 0
669	/* overflow after 292 years if HZ = 1024 */
670	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
671#else
672	/*
673	 * Generic case - optimized for cases where HZ is a multiple of 3.
674	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
675	 */
676	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
677#endif
678}
679
680/**
681 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
682 *
683 * @n:	nsecs in u64
684 *
685 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
686 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
687 * for scheduler, not for use in device drivers to calculate timeout value.
688 *
689 * note:
690 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
691 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
692 */
693unsigned long nsecs_to_jiffies(u64 n)
694{
695	return (unsigned long)nsecs_to_jiffies64(n);
696}
697
698/*
699 * Add two timespec values and do a safety check for overflow.
700 * It's assumed that both values are valid (>= 0)
701 */
702struct timespec timespec_add_safe(const struct timespec lhs,
703				  const struct timespec rhs)
704{
705	struct timespec res;
706
707	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
708				lhs.tv_nsec + rhs.tv_nsec);
709
710	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
711		res.tv_sec = TIME_T_MAX;
712
713	return res;
714}
v3.1
  1/*
  2 *  linux/kernel/time.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 *
  6 *  This file contains the interface functions for the various
  7 *  time related system calls: time, stime, gettimeofday, settimeofday,
  8 *			       adjtime
  9 */
 10/*
 11 * Modification history kernel/time.c
 12 *
 13 * 1993-09-02    Philip Gladstone
 14 *      Created file with time related functions from sched.c and adjtimex()
 15 * 1993-10-08    Torsten Duwe
 16 *      adjtime interface update and CMOS clock write code
 17 * 1995-08-13    Torsten Duwe
 18 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 19 * 1999-01-16    Ulrich Windl
 20 *	Introduced error checking for many cases in adjtimex().
 21 *	Updated NTP code according to technical memorandum Jan '96
 22 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 23 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 24 *	(Even though the technical memorandum forbids it)
 25 * 2004-07-14	 Christoph Lameter
 26 *	Added getnstimeofday to allow the posix timer functions to return
 27 *	with nanosecond accuracy
 28 */
 29
 30#include <linux/module.h>
 31#include <linux/timex.h>
 32#include <linux/capability.h>
 33#include <linux/clocksource.h>
 34#include <linux/errno.h>
 35#include <linux/syscalls.h>
 36#include <linux/security.h>
 37#include <linux/fs.h>
 38#include <linux/math64.h>
 39#include <linux/ptrace.h>
 40
 41#include <asm/uaccess.h>
 42#include <asm/unistd.h>
 43
 44#include "timeconst.h"
 45
 46/*
 47 * The timezone where the local system is located.  Used as a default by some
 48 * programs who obtain this value by using gettimeofday.
 49 */
 50struct timezone sys_tz;
 51
 52EXPORT_SYMBOL(sys_tz);
 53
 54#ifdef __ARCH_WANT_SYS_TIME
 55
 56/*
 57 * sys_time() can be implemented in user-level using
 58 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 59 * why not move it into the appropriate arch directory (for those
 60 * architectures that need it).
 61 */
 62SYSCALL_DEFINE1(time, time_t __user *, tloc)
 63{
 64	time_t i = get_seconds();
 65
 66	if (tloc) {
 67		if (put_user(i,tloc))
 68			return -EFAULT;
 69	}
 70	force_successful_syscall_return();
 71	return i;
 72}
 73
 74/*
 75 * sys_stime() can be implemented in user-level using
 76 * sys_settimeofday().  Is this for backwards compatibility?  If so,
 77 * why not move it into the appropriate arch directory (for those
 78 * architectures that need it).
 79 */
 80
 81SYSCALL_DEFINE1(stime, time_t __user *, tptr)
 82{
 83	struct timespec tv;
 84	int err;
 85
 86	if (get_user(tv.tv_sec, tptr))
 87		return -EFAULT;
 88
 89	tv.tv_nsec = 0;
 90
 91	err = security_settime(&tv, NULL);
 92	if (err)
 93		return err;
 94
 95	do_settimeofday(&tv);
 96	return 0;
 97}
 98
 99#endif /* __ARCH_WANT_SYS_TIME */
100
101SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
102		struct timezone __user *, tz)
103{
104	if (likely(tv != NULL)) {
105		struct timeval ktv;
106		do_gettimeofday(&ktv);
107		if (copy_to_user(tv, &ktv, sizeof(ktv)))
108			return -EFAULT;
109	}
110	if (unlikely(tz != NULL)) {
111		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
112			return -EFAULT;
113	}
114	return 0;
115}
116
117/*
 
 
 
 
 
 
118 * Adjust the time obtained from the CMOS to be UTC time instead of
119 * local time.
120 *
121 * This is ugly, but preferable to the alternatives.  Otherwise we
122 * would either need to write a program to do it in /etc/rc (and risk
123 * confusion if the program gets run more than once; it would also be
124 * hard to make the program warp the clock precisely n hours)  or
125 * compile in the timezone information into the kernel.  Bad, bad....
126 *
127 *						- TYT, 1992-01-01
128 *
129 * The best thing to do is to keep the CMOS clock in universal time (UTC)
130 * as real UNIX machines always do it. This avoids all headaches about
131 * daylight saving times and warping kernel clocks.
132 */
133static inline void warp_clock(void)
134{
135	struct timespec adjust;
 
136
137	adjust = current_kernel_time();
138	adjust.tv_sec += sys_tz.tz_minuteswest * 60;
139	do_settimeofday(&adjust);
 
 
140}
141
142/*
143 * In case for some reason the CMOS clock has not already been running
144 * in UTC, but in some local time: The first time we set the timezone,
145 * we will warp the clock so that it is ticking UTC time instead of
146 * local time. Presumably, if someone is setting the timezone then we
147 * are running in an environment where the programs understand about
148 * timezones. This should be done at boot time in the /etc/rc script,
149 * as soon as possible, so that the clock can be set right. Otherwise,
150 * various programs will get confused when the clock gets warped.
151 */
152
153int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
154{
155	static int firsttime = 1;
156	int error = 0;
157
158	if (tv && !timespec_valid(tv))
159		return -EINVAL;
160
161	error = security_settime(tv, tz);
162	if (error)
163		return error;
164
165	if (tz) {
166		/* SMP safe, global irq locking makes it work. */
167		sys_tz = *tz;
168		update_vsyscall_tz();
169		if (firsttime) {
170			firsttime = 0;
171			if (!tv)
172				warp_clock();
173		}
174	}
175	if (tv)
176	{
177		/* SMP safe, again the code in arch/foo/time.c should
178		 * globally block out interrupts when it runs.
179		 */
180		return do_settimeofday(tv);
181	}
182	return 0;
183}
184
185SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
186		struct timezone __user *, tz)
187{
188	struct timeval user_tv;
189	struct timespec	new_ts;
190	struct timezone new_tz;
191
192	if (tv) {
193		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
194			return -EFAULT;
195		new_ts.tv_sec = user_tv.tv_sec;
196		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
197	}
198	if (tz) {
199		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
200			return -EFAULT;
201	}
202
203	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
204}
205
206SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
207{
208	struct timex txc;		/* Local copy of parameter */
209	int ret;
210
211	/* Copy the user data space into the kernel copy
212	 * structure. But bear in mind that the structures
213	 * may change
214	 */
215	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
216		return -EFAULT;
217	ret = do_adjtimex(&txc);
218	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
219}
220
221/**
222 * current_fs_time - Return FS time
223 * @sb: Superblock.
224 *
225 * Return the current time truncated to the time granularity supported by
226 * the fs.
227 */
228struct timespec current_fs_time(struct super_block *sb)
229{
230	struct timespec now = current_kernel_time();
231	return timespec_trunc(now, sb->s_time_gran);
232}
233EXPORT_SYMBOL(current_fs_time);
234
235/*
236 * Convert jiffies to milliseconds and back.
237 *
238 * Avoid unnecessary multiplications/divisions in the
239 * two most common HZ cases:
240 */
241inline unsigned int jiffies_to_msecs(const unsigned long j)
242{
243#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
244	return (MSEC_PER_SEC / HZ) * j;
245#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
246	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
247#else
248# if BITS_PER_LONG == 32
249	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
250# else
251	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
252# endif
253#endif
254}
255EXPORT_SYMBOL(jiffies_to_msecs);
256
257inline unsigned int jiffies_to_usecs(const unsigned long j)
258{
259#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
260	return (USEC_PER_SEC / HZ) * j;
261#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
262	return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
263#else
264# if BITS_PER_LONG == 32
265	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
266# else
267	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
268# endif
269#endif
270}
271EXPORT_SYMBOL(jiffies_to_usecs);
272
273/**
274 * timespec_trunc - Truncate timespec to a granularity
275 * @t: Timespec
276 * @gran: Granularity in ns.
277 *
278 * Truncate a timespec to a granularity. gran must be smaller than a second.
279 * Always rounds down.
280 *
281 * This function should be only used for timestamps returned by
282 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
283 * it doesn't handle the better resolution of the latter.
284 */
285struct timespec timespec_trunc(struct timespec t, unsigned gran)
286{
287	/*
288	 * Division is pretty slow so avoid it for common cases.
289	 * Currently current_kernel_time() never returns better than
290	 * jiffies resolution. Exploit that.
291	 */
292	if (gran <= jiffies_to_usecs(1) * 1000) {
293		/* nothing */
294	} else if (gran == 1000000000) {
295		t.tv_nsec = 0;
296	} else {
297		t.tv_nsec -= t.tv_nsec % gran;
298	}
299	return t;
300}
301EXPORT_SYMBOL(timespec_trunc);
302
303/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
304 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
305 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
306 *
307 * [For the Julian calendar (which was used in Russia before 1917,
308 * Britain & colonies before 1752, anywhere else before 1582,
309 * and is still in use by some communities) leave out the
310 * -year/100+year/400 terms, and add 10.]
311 *
312 * This algorithm was first published by Gauss (I think).
313 *
314 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
315 * machines where long is 32-bit! (However, as time_t is signed, we
316 * will already get problems at other places on 2038-01-19 03:14:08)
317 */
318unsigned long
319mktime(const unsigned int year0, const unsigned int mon0,
320       const unsigned int day, const unsigned int hour,
321       const unsigned int min, const unsigned int sec)
322{
323	unsigned int mon = mon0, year = year0;
324
325	/* 1..12 -> 11,12,1..10 */
326	if (0 >= (int) (mon -= 2)) {
327		mon += 12;	/* Puts Feb last since it has leap day */
328		year -= 1;
329	}
330
331	return ((((unsigned long)
332		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
333		  year*365 - 719499
334	    )*24 + hour /* now have hours */
335	  )*60 + min /* now have minutes */
336	)*60 + sec; /* finally seconds */
337}
338
339EXPORT_SYMBOL(mktime);
340
341/**
342 * set_normalized_timespec - set timespec sec and nsec parts and normalize
343 *
344 * @ts:		pointer to timespec variable to be set
345 * @sec:	seconds to set
346 * @nsec:	nanoseconds to set
347 *
348 * Set seconds and nanoseconds field of a timespec variable and
349 * normalize to the timespec storage format
350 *
351 * Note: The tv_nsec part is always in the range of
352 *	0 <= tv_nsec < NSEC_PER_SEC
353 * For negative values only the tv_sec field is negative !
354 */
355void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
356{
357	while (nsec >= NSEC_PER_SEC) {
358		/*
359		 * The following asm() prevents the compiler from
360		 * optimising this loop into a modulo operation. See
361		 * also __iter_div_u64_rem() in include/linux/time.h
362		 */
363		asm("" : "+rm"(nsec));
364		nsec -= NSEC_PER_SEC;
365		++sec;
366	}
367	while (nsec < 0) {
368		asm("" : "+rm"(nsec));
369		nsec += NSEC_PER_SEC;
370		--sec;
371	}
372	ts->tv_sec = sec;
373	ts->tv_nsec = nsec;
374}
375EXPORT_SYMBOL(set_normalized_timespec);
376
377/**
378 * ns_to_timespec - Convert nanoseconds to timespec
379 * @nsec:       the nanoseconds value to be converted
380 *
381 * Returns the timespec representation of the nsec parameter.
382 */
383struct timespec ns_to_timespec(const s64 nsec)
384{
385	struct timespec ts;
386	s32 rem;
387
388	if (!nsec)
389		return (struct timespec) {0, 0};
390
391	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
392	if (unlikely(rem < 0)) {
393		ts.tv_sec--;
394		rem += NSEC_PER_SEC;
395	}
396	ts.tv_nsec = rem;
397
398	return ts;
399}
400EXPORT_SYMBOL(ns_to_timespec);
401
402/**
403 * ns_to_timeval - Convert nanoseconds to timeval
404 * @nsec:       the nanoseconds value to be converted
405 *
406 * Returns the timeval representation of the nsec parameter.
407 */
408struct timeval ns_to_timeval(const s64 nsec)
409{
410	struct timespec ts = ns_to_timespec(nsec);
411	struct timeval tv;
412
413	tv.tv_sec = ts.tv_sec;
414	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
415
416	return tv;
417}
418EXPORT_SYMBOL(ns_to_timeval);
419
420/*
421 * When we convert to jiffies then we interpret incoming values
422 * the following way:
423 *
424 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
425 *
426 * - 'too large' values [that would result in larger than
427 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
428 *
429 * - all other values are converted to jiffies by either multiplying
430 *   the input value by a factor or dividing it with a factor
431 *
432 * We must also be careful about 32-bit overflows.
433 */
434unsigned long msecs_to_jiffies(const unsigned int m)
435{
436	/*
437	 * Negative value, means infinite timeout:
438	 */
439	if ((int)m < 0)
440		return MAX_JIFFY_OFFSET;
441
442#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
443	/*
444	 * HZ is equal to or smaller than 1000, and 1000 is a nice
445	 * round multiple of HZ, divide with the factor between them,
446	 * but round upwards:
447	 */
448	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
449#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
450	/*
451	 * HZ is larger than 1000, and HZ is a nice round multiple of
452	 * 1000 - simply multiply with the factor between them.
453	 *
454	 * But first make sure the multiplication result cannot
455	 * overflow:
456	 */
457	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
458		return MAX_JIFFY_OFFSET;
459
460	return m * (HZ / MSEC_PER_SEC);
461#else
462	/*
463	 * Generic case - multiply, round and divide. But first
464	 * check that if we are doing a net multiplication, that
465	 * we wouldn't overflow:
466	 */
467	if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
468		return MAX_JIFFY_OFFSET;
469
470	return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
471		>> MSEC_TO_HZ_SHR32;
472#endif
473}
474EXPORT_SYMBOL(msecs_to_jiffies);
475
476unsigned long usecs_to_jiffies(const unsigned int u)
477{
478	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
479		return MAX_JIFFY_OFFSET;
480#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
481	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
482#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
483	return u * (HZ / USEC_PER_SEC);
484#else
485	return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
486		>> USEC_TO_HZ_SHR32;
487#endif
488}
489EXPORT_SYMBOL(usecs_to_jiffies);
490
491/*
492 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
493 * that a remainder subtract here would not do the right thing as the
494 * resolution values don't fall on second boundries.  I.e. the line:
495 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
496 *
497 * Rather, we just shift the bits off the right.
498 *
499 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
500 * value to a scaled second value.
501 */
502unsigned long
503timespec_to_jiffies(const struct timespec *value)
504{
505	unsigned long sec = value->tv_sec;
506	long nsec = value->tv_nsec + TICK_NSEC - 1;
507
508	if (sec >= MAX_SEC_IN_JIFFIES){
509		sec = MAX_SEC_IN_JIFFIES;
510		nsec = 0;
511	}
512	return (((u64)sec * SEC_CONVERSION) +
513		(((u64)nsec * NSEC_CONVERSION) >>
514		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
515
516}
517EXPORT_SYMBOL(timespec_to_jiffies);
518
519void
520jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
521{
522	/*
523	 * Convert jiffies to nanoseconds and separate with
524	 * one divide.
525	 */
526	u32 rem;
527	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
528				    NSEC_PER_SEC, &rem);
529	value->tv_nsec = rem;
530}
531EXPORT_SYMBOL(jiffies_to_timespec);
532
533/* Same for "timeval"
534 *
535 * Well, almost.  The problem here is that the real system resolution is
536 * in nanoseconds and the value being converted is in micro seconds.
537 * Also for some machines (those that use HZ = 1024, in-particular),
538 * there is a LARGE error in the tick size in microseconds.
539
540 * The solution we use is to do the rounding AFTER we convert the
541 * microsecond part.  Thus the USEC_ROUND, the bits to be shifted off.
542 * Instruction wise, this should cost only an additional add with carry
543 * instruction above the way it was done above.
544 */
545unsigned long
546timeval_to_jiffies(const struct timeval *value)
547{
548	unsigned long sec = value->tv_sec;
549	long usec = value->tv_usec;
550
551	if (sec >= MAX_SEC_IN_JIFFIES){
552		sec = MAX_SEC_IN_JIFFIES;
553		usec = 0;
554	}
555	return (((u64)sec * SEC_CONVERSION) +
556		(((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
557		 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
558}
559EXPORT_SYMBOL(timeval_to_jiffies);
560
561void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
562{
563	/*
564	 * Convert jiffies to nanoseconds and separate with
565	 * one divide.
566	 */
567	u32 rem;
568
569	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
570				    NSEC_PER_SEC, &rem);
571	value->tv_usec = rem / NSEC_PER_USEC;
572}
573EXPORT_SYMBOL(jiffies_to_timeval);
574
575/*
576 * Convert jiffies/jiffies_64 to clock_t and back.
577 */
578clock_t jiffies_to_clock_t(long x)
579{
580#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
581# if HZ < USER_HZ
582	return x * (USER_HZ / HZ);
583# else
584	return x / (HZ / USER_HZ);
585# endif
586#else
587	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
588#endif
589}
590EXPORT_SYMBOL(jiffies_to_clock_t);
591
592unsigned long clock_t_to_jiffies(unsigned long x)
593{
594#if (HZ % USER_HZ)==0
595	if (x >= ~0UL / (HZ / USER_HZ))
596		return ~0UL;
597	return x * (HZ / USER_HZ);
598#else
599	/* Don't worry about loss of precision here .. */
600	if (x >= ~0UL / HZ * USER_HZ)
601		return ~0UL;
602
603	/* .. but do try to contain it here */
604	return div_u64((u64)x * HZ, USER_HZ);
605#endif
606}
607EXPORT_SYMBOL(clock_t_to_jiffies);
608
609u64 jiffies_64_to_clock_t(u64 x)
610{
611#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
612# if HZ < USER_HZ
613	x = div_u64(x * USER_HZ, HZ);
614# elif HZ > USER_HZ
615	x = div_u64(x, HZ / USER_HZ);
616# else
617	/* Nothing to do */
618# endif
619#else
620	/*
621	 * There are better ways that don't overflow early,
622	 * but even this doesn't overflow in hundreds of years
623	 * in 64 bits, so..
624	 */
625	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
626#endif
627	return x;
628}
629EXPORT_SYMBOL(jiffies_64_to_clock_t);
630
631u64 nsec_to_clock_t(u64 x)
632{
633#if (NSEC_PER_SEC % USER_HZ) == 0
634	return div_u64(x, NSEC_PER_SEC / USER_HZ);
635#elif (USER_HZ % 512) == 0
636	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
637#else
638	/*
639         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
640         * overflow after 64.99 years.
641         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
642         */
643	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
644#endif
645}
646
647/**
648 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
649 *
650 * @n:	nsecs in u64
651 *
652 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
653 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
654 * for scheduler, not for use in device drivers to calculate timeout value.
655 *
656 * note:
657 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
658 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
659 */
660u64 nsecs_to_jiffies64(u64 n)
661{
662#if (NSEC_PER_SEC % HZ) == 0
663	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
664	return div_u64(n, NSEC_PER_SEC / HZ);
665#elif (HZ % 512) == 0
666	/* overflow after 292 years if HZ = 1024 */
667	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
668#else
669	/*
670	 * Generic case - optimized for cases where HZ is a multiple of 3.
671	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
672	 */
673	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
674#endif
675}
676
677/**
678 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
679 *
680 * @n:	nsecs in u64
681 *
682 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
683 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
684 * for scheduler, not for use in device drivers to calculate timeout value.
685 *
686 * note:
687 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
688 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
689 */
690unsigned long nsecs_to_jiffies(u64 n)
691{
692	return (unsigned long)nsecs_to_jiffies64(n);
693}
694
695/*
696 * Add two timespec values and do a safety check for overflow.
697 * It's assumed that both values are valid (>= 0)
698 */
699struct timespec timespec_add_safe(const struct timespec lhs,
700				  const struct timespec rhs)
701{
702	struct timespec res;
703
704	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
705				lhs.tv_nsec + rhs.tv_nsec);
706
707	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
708		res.tv_sec = TIME_T_MAX;
709
710	return res;
711}