Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 *  linux/kernel/time.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 *
  6 *  This file contains the interface functions for the various
  7 *  time related system calls: time, stime, gettimeofday, settimeofday,
  8 *			       adjtime
  9 */
 10/*
 11 * Modification history kernel/time.c
 12 *
 13 * 1993-09-02    Philip Gladstone
 14 *      Created file with time related functions from sched/core.c and adjtimex()
 15 * 1993-10-08    Torsten Duwe
 16 *      adjtime interface update and CMOS clock write code
 17 * 1995-08-13    Torsten Duwe
 18 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 19 * 1999-01-16    Ulrich Windl
 20 *	Introduced error checking for many cases in adjtimex().
 21 *	Updated NTP code according to technical memorandum Jan '96
 22 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 23 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 24 *	(Even though the technical memorandum forbids it)
 25 * 2004-07-14	 Christoph Lameter
 26 *	Added getnstimeofday to allow the posix timer functions to return
 27 *	with nanosecond accuracy
 28 */
 29
 30#include <linux/export.h>
 31#include <linux/timex.h>
 32#include <linux/capability.h>
 33#include <linux/timekeeper_internal.h>
 34#include <linux/errno.h>
 35#include <linux/syscalls.h>
 36#include <linux/security.h>
 37#include <linux/fs.h>
 38#include <linux/math64.h>
 39#include <linux/ptrace.h>
 40
 41#include <asm/uaccess.h>
 42#include <asm/unistd.h>
 43
 44#include "timeconst.h"
 45
 46/*
 47 * The timezone where the local system is located.  Used as a default by some
 48 * programs who obtain this value by using gettimeofday.
 49 */
 50struct timezone sys_tz;
 51
 52EXPORT_SYMBOL(sys_tz);
 53
 54#ifdef __ARCH_WANT_SYS_TIME
 55
 56/*
 57 * sys_time() can be implemented in user-level using
 58 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 59 * why not move it into the appropriate arch directory (for those
 60 * architectures that need it).
 61 */
 62SYSCALL_DEFINE1(time, time_t __user *, tloc)
 63{
 64	time_t i = get_seconds();
 65
 66	if (tloc) {
 67		if (put_user(i,tloc))
 68			return -EFAULT;
 69	}
 70	force_successful_syscall_return();
 71	return i;
 72}
 73
 74/*
 75 * sys_stime() can be implemented in user-level using
 76 * sys_settimeofday().  Is this for backwards compatibility?  If so,
 77 * why not move it into the appropriate arch directory (for those
 78 * architectures that need it).
 79 */
 80
 81SYSCALL_DEFINE1(stime, time_t __user *, tptr)
 82{
 83	struct timespec tv;
 84	int err;
 85
 86	if (get_user(tv.tv_sec, tptr))
 87		return -EFAULT;
 88
 89	tv.tv_nsec = 0;
 90
 91	err = security_settime(&tv, NULL);
 92	if (err)
 93		return err;
 94
 95	do_settimeofday(&tv);
 96	return 0;
 97}
 98
 99#endif /* __ARCH_WANT_SYS_TIME */
100
101SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
102		struct timezone __user *, tz)
103{
104	if (likely(tv != NULL)) {
105		struct timeval ktv;
106		do_gettimeofday(&ktv);
107		if (copy_to_user(tv, &ktv, sizeof(ktv)))
108			return -EFAULT;
109	}
110	if (unlikely(tz != NULL)) {
111		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
112			return -EFAULT;
113	}
114	return 0;
115}
116
117/*
118 * Indicates if there is an offset between the system clock and the hardware
119 * clock/persistent clock/rtc.
120 */
121int persistent_clock_is_local;
122
123/*
124 * Adjust the time obtained from the CMOS to be UTC time instead of
125 * local time.
126 *
127 * This is ugly, but preferable to the alternatives.  Otherwise we
128 * would either need to write a program to do it in /etc/rc (and risk
129 * confusion if the program gets run more than once; it would also be
130 * hard to make the program warp the clock precisely n hours)  or
131 * compile in the timezone information into the kernel.  Bad, bad....
132 *
133 *						- TYT, 1992-01-01
134 *
135 * The best thing to do is to keep the CMOS clock in universal time (UTC)
136 * as real UNIX machines always do it. This avoids all headaches about
137 * daylight saving times and warping kernel clocks.
138 */
139static inline void warp_clock(void)
140{
141	if (sys_tz.tz_minuteswest != 0) {
142		struct timespec adjust;
143
144		persistent_clock_is_local = 1;
145		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
146		adjust.tv_nsec = 0;
147		timekeeping_inject_offset(&adjust);
148	}
149}
150
151/*
152 * In case for some reason the CMOS clock has not already been running
153 * in UTC, but in some local time: The first time we set the timezone,
154 * we will warp the clock so that it is ticking UTC time instead of
155 * local time. Presumably, if someone is setting the timezone then we
156 * are running in an environment where the programs understand about
157 * timezones. This should be done at boot time in the /etc/rc script,
158 * as soon as possible, so that the clock can be set right. Otherwise,
159 * various programs will get confused when the clock gets warped.
160 */
161
162int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
163{
164	static int firsttime = 1;
165	int error = 0;
166
167	if (tv && !timespec_valid(tv))
168		return -EINVAL;
169
170	error = security_settime(tv, tz);
171	if (error)
172		return error;
173
174	if (tz) {
175		sys_tz = *tz;
176		update_vsyscall_tz();
177		if (firsttime) {
178			firsttime = 0;
179			if (!tv)
180				warp_clock();
181		}
182	}
183	if (tv)
184		return do_settimeofday(tv);
185	return 0;
186}
187
188SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
189		struct timezone __user *, tz)
190{
191	struct timeval user_tv;
192	struct timespec	new_ts;
193	struct timezone new_tz;
194
195	if (tv) {
196		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
197			return -EFAULT;
198		new_ts.tv_sec = user_tv.tv_sec;
199		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
200	}
201	if (tz) {
202		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
203			return -EFAULT;
204	}
205
206	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
207}
208
209SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
210{
211	struct timex txc;		/* Local copy of parameter */
212	int ret;
213
214	/* Copy the user data space into the kernel copy
215	 * structure. But bear in mind that the structures
216	 * may change
217	 */
218	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
219		return -EFAULT;
220	ret = do_adjtimex(&txc);
221	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
222}
223
224/**
225 * current_fs_time - Return FS time
226 * @sb: Superblock.
227 *
228 * Return the current time truncated to the time granularity supported by
229 * the fs.
230 */
231struct timespec current_fs_time(struct super_block *sb)
232{
233	struct timespec now = current_kernel_time();
234	return timespec_trunc(now, sb->s_time_gran);
235}
236EXPORT_SYMBOL(current_fs_time);
237
238/*
239 * Convert jiffies to milliseconds and back.
240 *
241 * Avoid unnecessary multiplications/divisions in the
242 * two most common HZ cases:
243 */
244unsigned int jiffies_to_msecs(const unsigned long j)
245{
246#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
247	return (MSEC_PER_SEC / HZ) * j;
248#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
249	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
250#else
251# if BITS_PER_LONG == 32
252	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
253# else
254	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
255# endif
256#endif
257}
258EXPORT_SYMBOL(jiffies_to_msecs);
259
260unsigned int jiffies_to_usecs(const unsigned long j)
261{
262#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
263	return (USEC_PER_SEC / HZ) * j;
264#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
265	return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
266#else
267# if BITS_PER_LONG == 32
268	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
269# else
270	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
271# endif
272#endif
273}
274EXPORT_SYMBOL(jiffies_to_usecs);
275
276/**
277 * timespec_trunc - Truncate timespec to a granularity
278 * @t: Timespec
279 * @gran: Granularity in ns.
280 *
281 * Truncate a timespec to a granularity. gran must be smaller than a second.
282 * Always rounds down.
283 *
284 * This function should be only used for timestamps returned by
285 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
286 * it doesn't handle the better resolution of the latter.
287 */
288struct timespec timespec_trunc(struct timespec t, unsigned gran)
289{
290	/*
291	 * Division is pretty slow so avoid it for common cases.
292	 * Currently current_kernel_time() never returns better than
293	 * jiffies resolution. Exploit that.
294	 */
295	if (gran <= jiffies_to_usecs(1) * 1000) {
296		/* nothing */
297	} else if (gran == 1000000000) {
298		t.tv_nsec = 0;
299	} else {
300		t.tv_nsec -= t.tv_nsec % gran;
301	}
302	return t;
303}
304EXPORT_SYMBOL(timespec_trunc);
305
306/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
307 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
308 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
309 *
310 * [For the Julian calendar (which was used in Russia before 1917,
311 * Britain & colonies before 1752, anywhere else before 1582,
312 * and is still in use by some communities) leave out the
313 * -year/100+year/400 terms, and add 10.]
314 *
315 * This algorithm was first published by Gauss (I think).
316 *
317 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
318 * machines where long is 32-bit! (However, as time_t is signed, we
319 * will already get problems at other places on 2038-01-19 03:14:08)
320 */
321unsigned long
322mktime(const unsigned int year0, const unsigned int mon0,
323       const unsigned int day, const unsigned int hour,
324       const unsigned int min, const unsigned int sec)
325{
326	unsigned int mon = mon0, year = year0;
327
328	/* 1..12 -> 11,12,1..10 */
329	if (0 >= (int) (mon -= 2)) {
330		mon += 12;	/* Puts Feb last since it has leap day */
331		year -= 1;
332	}
333
334	return ((((unsigned long)
335		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
336		  year*365 - 719499
337	    )*24 + hour /* now have hours */
338	  )*60 + min /* now have minutes */
339	)*60 + sec; /* finally seconds */
340}
341
342EXPORT_SYMBOL(mktime);
343
344/**
345 * set_normalized_timespec - set timespec sec and nsec parts and normalize
346 *
347 * @ts:		pointer to timespec variable to be set
348 * @sec:	seconds to set
349 * @nsec:	nanoseconds to set
350 *
351 * Set seconds and nanoseconds field of a timespec variable and
352 * normalize to the timespec storage format
353 *
354 * Note: The tv_nsec part is always in the range of
355 *	0 <= tv_nsec < NSEC_PER_SEC
356 * For negative values only the tv_sec field is negative !
357 */
358void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
359{
360	while (nsec >= NSEC_PER_SEC) {
361		/*
362		 * The following asm() prevents the compiler from
363		 * optimising this loop into a modulo operation. See
364		 * also __iter_div_u64_rem() in include/linux/time.h
365		 */
366		asm("" : "+rm"(nsec));
367		nsec -= NSEC_PER_SEC;
368		++sec;
369	}
370	while (nsec < 0) {
371		asm("" : "+rm"(nsec));
372		nsec += NSEC_PER_SEC;
373		--sec;
374	}
375	ts->tv_sec = sec;
376	ts->tv_nsec = nsec;
377}
378EXPORT_SYMBOL(set_normalized_timespec);
379
380/**
381 * ns_to_timespec - Convert nanoseconds to timespec
382 * @nsec:       the nanoseconds value to be converted
383 *
384 * Returns the timespec representation of the nsec parameter.
385 */
386struct timespec ns_to_timespec(const s64 nsec)
387{
388	struct timespec ts;
389	s32 rem;
390
391	if (!nsec)
392		return (struct timespec) {0, 0};
393
394	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
395	if (unlikely(rem < 0)) {
396		ts.tv_sec--;
397		rem += NSEC_PER_SEC;
398	}
399	ts.tv_nsec = rem;
400
401	return ts;
402}
403EXPORT_SYMBOL(ns_to_timespec);
404
405/**
406 * ns_to_timeval - Convert nanoseconds to timeval
407 * @nsec:       the nanoseconds value to be converted
408 *
409 * Returns the timeval representation of the nsec parameter.
410 */
411struct timeval ns_to_timeval(const s64 nsec)
412{
413	struct timespec ts = ns_to_timespec(nsec);
414	struct timeval tv;
415
416	tv.tv_sec = ts.tv_sec;
417	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
418
419	return tv;
420}
421EXPORT_SYMBOL(ns_to_timeval);
422
423/*
424 * When we convert to jiffies then we interpret incoming values
425 * the following way:
426 *
427 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
428 *
429 * - 'too large' values [that would result in larger than
430 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
431 *
432 * - all other values are converted to jiffies by either multiplying
433 *   the input value by a factor or dividing it with a factor
434 *
435 * We must also be careful about 32-bit overflows.
436 */
437unsigned long msecs_to_jiffies(const unsigned int m)
438{
439	/*
440	 * Negative value, means infinite timeout:
441	 */
442	if ((int)m < 0)
443		return MAX_JIFFY_OFFSET;
444
445#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
446	/*
447	 * HZ is equal to or smaller than 1000, and 1000 is a nice
448	 * round multiple of HZ, divide with the factor between them,
449	 * but round upwards:
450	 */
451	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
452#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
453	/*
454	 * HZ is larger than 1000, and HZ is a nice round multiple of
455	 * 1000 - simply multiply with the factor between them.
456	 *
457	 * But first make sure the multiplication result cannot
458	 * overflow:
459	 */
460	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
461		return MAX_JIFFY_OFFSET;
462
463	return m * (HZ / MSEC_PER_SEC);
464#else
465	/*
466	 * Generic case - multiply, round and divide. But first
467	 * check that if we are doing a net multiplication, that
468	 * we wouldn't overflow:
469	 */
470	if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
471		return MAX_JIFFY_OFFSET;
472
473	return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
474		>> MSEC_TO_HZ_SHR32;
475#endif
476}
477EXPORT_SYMBOL(msecs_to_jiffies);
478
479unsigned long usecs_to_jiffies(const unsigned int u)
480{
481	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
482		return MAX_JIFFY_OFFSET;
483#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
484	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
485#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
486	return u * (HZ / USEC_PER_SEC);
487#else
488	return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
489		>> USEC_TO_HZ_SHR32;
490#endif
491}
492EXPORT_SYMBOL(usecs_to_jiffies);
493
494/*
495 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
496 * that a remainder subtract here would not do the right thing as the
497 * resolution values don't fall on second boundries.  I.e. the line:
498 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
499 *
500 * Rather, we just shift the bits off the right.
501 *
502 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
503 * value to a scaled second value.
504 */
505unsigned long
506timespec_to_jiffies(const struct timespec *value)
507{
508	unsigned long sec = value->tv_sec;
509	long nsec = value->tv_nsec + TICK_NSEC - 1;
510
511	if (sec >= MAX_SEC_IN_JIFFIES){
512		sec = MAX_SEC_IN_JIFFIES;
513		nsec = 0;
514	}
515	return (((u64)sec * SEC_CONVERSION) +
516		(((u64)nsec * NSEC_CONVERSION) >>
517		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
518
519}
520EXPORT_SYMBOL(timespec_to_jiffies);
521
522void
523jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
524{
525	/*
526	 * Convert jiffies to nanoseconds and separate with
527	 * one divide.
528	 */
529	u32 rem;
530	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
531				    NSEC_PER_SEC, &rem);
532	value->tv_nsec = rem;
533}
534EXPORT_SYMBOL(jiffies_to_timespec);
535
536/* Same for "timeval"
537 *
538 * Well, almost.  The problem here is that the real system resolution is
539 * in nanoseconds and the value being converted is in micro seconds.
540 * Also for some machines (those that use HZ = 1024, in-particular),
541 * there is a LARGE error in the tick size in microseconds.
542
543 * The solution we use is to do the rounding AFTER we convert the
544 * microsecond part.  Thus the USEC_ROUND, the bits to be shifted off.
545 * Instruction wise, this should cost only an additional add with carry
546 * instruction above the way it was done above.
547 */
548unsigned long
549timeval_to_jiffies(const struct timeval *value)
550{
551	unsigned long sec = value->tv_sec;
552	long usec = value->tv_usec;
553
554	if (sec >= MAX_SEC_IN_JIFFIES){
555		sec = MAX_SEC_IN_JIFFIES;
556		usec = 0;
557	}
558	return (((u64)sec * SEC_CONVERSION) +
559		(((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
560		 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
561}
562EXPORT_SYMBOL(timeval_to_jiffies);
563
564void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
565{
566	/*
567	 * Convert jiffies to nanoseconds and separate with
568	 * one divide.
569	 */
570	u32 rem;
571
572	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
573				    NSEC_PER_SEC, &rem);
574	value->tv_usec = rem / NSEC_PER_USEC;
575}
576EXPORT_SYMBOL(jiffies_to_timeval);
577
578/*
579 * Convert jiffies/jiffies_64 to clock_t and back.
580 */
581clock_t jiffies_to_clock_t(unsigned long x)
582{
583#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
584# if HZ < USER_HZ
585	return x * (USER_HZ / HZ);
586# else
587	return x / (HZ / USER_HZ);
588# endif
589#else
590	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
591#endif
592}
593EXPORT_SYMBOL(jiffies_to_clock_t);
594
595unsigned long clock_t_to_jiffies(unsigned long x)
596{
597#if (HZ % USER_HZ)==0
598	if (x >= ~0UL / (HZ / USER_HZ))
599		return ~0UL;
600	return x * (HZ / USER_HZ);
601#else
602	/* Don't worry about loss of precision here .. */
603	if (x >= ~0UL / HZ * USER_HZ)
604		return ~0UL;
605
606	/* .. but do try to contain it here */
607	return div_u64((u64)x * HZ, USER_HZ);
608#endif
609}
610EXPORT_SYMBOL(clock_t_to_jiffies);
611
612u64 jiffies_64_to_clock_t(u64 x)
613{
614#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
615# if HZ < USER_HZ
616	x = div_u64(x * USER_HZ, HZ);
617# elif HZ > USER_HZ
618	x = div_u64(x, HZ / USER_HZ);
619# else
620	/* Nothing to do */
621# endif
622#else
623	/*
624	 * There are better ways that don't overflow early,
625	 * but even this doesn't overflow in hundreds of years
626	 * in 64 bits, so..
627	 */
628	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
629#endif
630	return x;
631}
632EXPORT_SYMBOL(jiffies_64_to_clock_t);
633
634u64 nsec_to_clock_t(u64 x)
635{
636#if (NSEC_PER_SEC % USER_HZ) == 0
637	return div_u64(x, NSEC_PER_SEC / USER_HZ);
638#elif (USER_HZ % 512) == 0
639	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
640#else
641	/*
642         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
643         * overflow after 64.99 years.
644         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
645         */
646	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
647#endif
648}
649
650/**
651 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
652 *
653 * @n:	nsecs in u64
654 *
655 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
656 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
657 * for scheduler, not for use in device drivers to calculate timeout value.
658 *
659 * note:
660 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
661 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
662 */
663u64 nsecs_to_jiffies64(u64 n)
664{
665#if (NSEC_PER_SEC % HZ) == 0
666	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
667	return div_u64(n, NSEC_PER_SEC / HZ);
668#elif (HZ % 512) == 0
669	/* overflow after 292 years if HZ = 1024 */
670	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
671#else
672	/*
673	 * Generic case - optimized for cases where HZ is a multiple of 3.
674	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
675	 */
676	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
677#endif
678}
679
680/**
681 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
682 *
683 * @n:	nsecs in u64
684 *
685 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
686 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
687 * for scheduler, not for use in device drivers to calculate timeout value.
688 *
689 * note:
690 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
691 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
692 */
693unsigned long nsecs_to_jiffies(u64 n)
694{
695	return (unsigned long)nsecs_to_jiffies64(n);
696}
697
698/*
699 * Add two timespec values and do a safety check for overflow.
700 * It's assumed that both values are valid (>= 0)
701 */
702struct timespec timespec_add_safe(const struct timespec lhs,
703				  const struct timespec rhs)
704{
705	struct timespec res;
706
707	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
708				lhs.tv_nsec + rhs.tv_nsec);
709
710	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
711		res.tv_sec = TIME_T_MAX;
712
713	return res;
714}
v3.5.6
  1/*
  2 *  linux/kernel/time.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 *
  6 *  This file contains the interface functions for the various
  7 *  time related system calls: time, stime, gettimeofday, settimeofday,
  8 *			       adjtime
  9 */
 10/*
 11 * Modification history kernel/time.c
 12 *
 13 * 1993-09-02    Philip Gladstone
 14 *      Created file with time related functions from sched.c and adjtimex()
 15 * 1993-10-08    Torsten Duwe
 16 *      adjtime interface update and CMOS clock write code
 17 * 1995-08-13    Torsten Duwe
 18 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 19 * 1999-01-16    Ulrich Windl
 20 *	Introduced error checking for many cases in adjtimex().
 21 *	Updated NTP code according to technical memorandum Jan '96
 22 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 23 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 24 *	(Even though the technical memorandum forbids it)
 25 * 2004-07-14	 Christoph Lameter
 26 *	Added getnstimeofday to allow the posix timer functions to return
 27 *	with nanosecond accuracy
 28 */
 29
 30#include <linux/export.h>
 31#include <linux/timex.h>
 32#include <linux/capability.h>
 33#include <linux/clocksource.h>
 34#include <linux/errno.h>
 35#include <linux/syscalls.h>
 36#include <linux/security.h>
 37#include <linux/fs.h>
 38#include <linux/math64.h>
 39#include <linux/ptrace.h>
 40
 41#include <asm/uaccess.h>
 42#include <asm/unistd.h>
 43
 44#include "timeconst.h"
 45
 46/*
 47 * The timezone where the local system is located.  Used as a default by some
 48 * programs who obtain this value by using gettimeofday.
 49 */
 50struct timezone sys_tz;
 51
 52EXPORT_SYMBOL(sys_tz);
 53
 54#ifdef __ARCH_WANT_SYS_TIME
 55
 56/*
 57 * sys_time() can be implemented in user-level using
 58 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 59 * why not move it into the appropriate arch directory (for those
 60 * architectures that need it).
 61 */
 62SYSCALL_DEFINE1(time, time_t __user *, tloc)
 63{
 64	time_t i = get_seconds();
 65
 66	if (tloc) {
 67		if (put_user(i,tloc))
 68			return -EFAULT;
 69	}
 70	force_successful_syscall_return();
 71	return i;
 72}
 73
 74/*
 75 * sys_stime() can be implemented in user-level using
 76 * sys_settimeofday().  Is this for backwards compatibility?  If so,
 77 * why not move it into the appropriate arch directory (for those
 78 * architectures that need it).
 79 */
 80
 81SYSCALL_DEFINE1(stime, time_t __user *, tptr)
 82{
 83	struct timespec tv;
 84	int err;
 85
 86	if (get_user(tv.tv_sec, tptr))
 87		return -EFAULT;
 88
 89	tv.tv_nsec = 0;
 90
 91	err = security_settime(&tv, NULL);
 92	if (err)
 93		return err;
 94
 95	do_settimeofday(&tv);
 96	return 0;
 97}
 98
 99#endif /* __ARCH_WANT_SYS_TIME */
100
101SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
102		struct timezone __user *, tz)
103{
104	if (likely(tv != NULL)) {
105		struct timeval ktv;
106		do_gettimeofday(&ktv);
107		if (copy_to_user(tv, &ktv, sizeof(ktv)))
108			return -EFAULT;
109	}
110	if (unlikely(tz != NULL)) {
111		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
112			return -EFAULT;
113	}
114	return 0;
115}
116
117/*
 
 
 
 
 
 
118 * Adjust the time obtained from the CMOS to be UTC time instead of
119 * local time.
120 *
121 * This is ugly, but preferable to the alternatives.  Otherwise we
122 * would either need to write a program to do it in /etc/rc (and risk
123 * confusion if the program gets run more than once; it would also be
124 * hard to make the program warp the clock precisely n hours)  or
125 * compile in the timezone information into the kernel.  Bad, bad....
126 *
127 *						- TYT, 1992-01-01
128 *
129 * The best thing to do is to keep the CMOS clock in universal time (UTC)
130 * as real UNIX machines always do it. This avoids all headaches about
131 * daylight saving times and warping kernel clocks.
132 */
133static inline void warp_clock(void)
134{
135	struct timespec adjust;
 
136
137	adjust = current_kernel_time();
138	adjust.tv_sec += sys_tz.tz_minuteswest * 60;
139	do_settimeofday(&adjust);
 
 
140}
141
142/*
143 * In case for some reason the CMOS clock has not already been running
144 * in UTC, but in some local time: The first time we set the timezone,
145 * we will warp the clock so that it is ticking UTC time instead of
146 * local time. Presumably, if someone is setting the timezone then we
147 * are running in an environment where the programs understand about
148 * timezones. This should be done at boot time in the /etc/rc script,
149 * as soon as possible, so that the clock can be set right. Otherwise,
150 * various programs will get confused when the clock gets warped.
151 */
152
153int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
154{
155	static int firsttime = 1;
156	int error = 0;
157
158	if (tv && !timespec_valid(tv))
159		return -EINVAL;
160
161	error = security_settime(tv, tz);
162	if (error)
163		return error;
164
165	if (tz) {
166		sys_tz = *tz;
167		update_vsyscall_tz();
168		if (firsttime) {
169			firsttime = 0;
170			if (!tv)
171				warp_clock();
172		}
173	}
174	if (tv)
175		return do_settimeofday(tv);
176	return 0;
177}
178
179SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
180		struct timezone __user *, tz)
181{
182	struct timeval user_tv;
183	struct timespec	new_ts;
184	struct timezone new_tz;
185
186	if (tv) {
187		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
188			return -EFAULT;
189		new_ts.tv_sec = user_tv.tv_sec;
190		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
191	}
192	if (tz) {
193		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
194			return -EFAULT;
195	}
196
197	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
198}
199
200SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
201{
202	struct timex txc;		/* Local copy of parameter */
203	int ret;
204
205	/* Copy the user data space into the kernel copy
206	 * structure. But bear in mind that the structures
207	 * may change
208	 */
209	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
210		return -EFAULT;
211	ret = do_adjtimex(&txc);
212	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
213}
214
215/**
216 * current_fs_time - Return FS time
217 * @sb: Superblock.
218 *
219 * Return the current time truncated to the time granularity supported by
220 * the fs.
221 */
222struct timespec current_fs_time(struct super_block *sb)
223{
224	struct timespec now = current_kernel_time();
225	return timespec_trunc(now, sb->s_time_gran);
226}
227EXPORT_SYMBOL(current_fs_time);
228
229/*
230 * Convert jiffies to milliseconds and back.
231 *
232 * Avoid unnecessary multiplications/divisions in the
233 * two most common HZ cases:
234 */
235inline unsigned int jiffies_to_msecs(const unsigned long j)
236{
237#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
238	return (MSEC_PER_SEC / HZ) * j;
239#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
240	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
241#else
242# if BITS_PER_LONG == 32
243	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
244# else
245	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
246# endif
247#endif
248}
249EXPORT_SYMBOL(jiffies_to_msecs);
250
251inline unsigned int jiffies_to_usecs(const unsigned long j)
252{
253#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
254	return (USEC_PER_SEC / HZ) * j;
255#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
256	return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
257#else
258# if BITS_PER_LONG == 32
259	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
260# else
261	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
262# endif
263#endif
264}
265EXPORT_SYMBOL(jiffies_to_usecs);
266
267/**
268 * timespec_trunc - Truncate timespec to a granularity
269 * @t: Timespec
270 * @gran: Granularity in ns.
271 *
272 * Truncate a timespec to a granularity. gran must be smaller than a second.
273 * Always rounds down.
274 *
275 * This function should be only used for timestamps returned by
276 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
277 * it doesn't handle the better resolution of the latter.
278 */
279struct timespec timespec_trunc(struct timespec t, unsigned gran)
280{
281	/*
282	 * Division is pretty slow so avoid it for common cases.
283	 * Currently current_kernel_time() never returns better than
284	 * jiffies resolution. Exploit that.
285	 */
286	if (gran <= jiffies_to_usecs(1) * 1000) {
287		/* nothing */
288	} else if (gran == 1000000000) {
289		t.tv_nsec = 0;
290	} else {
291		t.tv_nsec -= t.tv_nsec % gran;
292	}
293	return t;
294}
295EXPORT_SYMBOL(timespec_trunc);
296
297/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
298 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
299 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
300 *
301 * [For the Julian calendar (which was used in Russia before 1917,
302 * Britain & colonies before 1752, anywhere else before 1582,
303 * and is still in use by some communities) leave out the
304 * -year/100+year/400 terms, and add 10.]
305 *
306 * This algorithm was first published by Gauss (I think).
307 *
308 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
309 * machines where long is 32-bit! (However, as time_t is signed, we
310 * will already get problems at other places on 2038-01-19 03:14:08)
311 */
312unsigned long
313mktime(const unsigned int year0, const unsigned int mon0,
314       const unsigned int day, const unsigned int hour,
315       const unsigned int min, const unsigned int sec)
316{
317	unsigned int mon = mon0, year = year0;
318
319	/* 1..12 -> 11,12,1..10 */
320	if (0 >= (int) (mon -= 2)) {
321		mon += 12;	/* Puts Feb last since it has leap day */
322		year -= 1;
323	}
324
325	return ((((unsigned long)
326		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
327		  year*365 - 719499
328	    )*24 + hour /* now have hours */
329	  )*60 + min /* now have minutes */
330	)*60 + sec; /* finally seconds */
331}
332
333EXPORT_SYMBOL(mktime);
334
335/**
336 * set_normalized_timespec - set timespec sec and nsec parts and normalize
337 *
338 * @ts:		pointer to timespec variable to be set
339 * @sec:	seconds to set
340 * @nsec:	nanoseconds to set
341 *
342 * Set seconds and nanoseconds field of a timespec variable and
343 * normalize to the timespec storage format
344 *
345 * Note: The tv_nsec part is always in the range of
346 *	0 <= tv_nsec < NSEC_PER_SEC
347 * For negative values only the tv_sec field is negative !
348 */
349void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
350{
351	while (nsec >= NSEC_PER_SEC) {
352		/*
353		 * The following asm() prevents the compiler from
354		 * optimising this loop into a modulo operation. See
355		 * also __iter_div_u64_rem() in include/linux/time.h
356		 */
357		asm("" : "+rm"(nsec));
358		nsec -= NSEC_PER_SEC;
359		++sec;
360	}
361	while (nsec < 0) {
362		asm("" : "+rm"(nsec));
363		nsec += NSEC_PER_SEC;
364		--sec;
365	}
366	ts->tv_sec = sec;
367	ts->tv_nsec = nsec;
368}
369EXPORT_SYMBOL(set_normalized_timespec);
370
371/**
372 * ns_to_timespec - Convert nanoseconds to timespec
373 * @nsec:       the nanoseconds value to be converted
374 *
375 * Returns the timespec representation of the nsec parameter.
376 */
377struct timespec ns_to_timespec(const s64 nsec)
378{
379	struct timespec ts;
380	s32 rem;
381
382	if (!nsec)
383		return (struct timespec) {0, 0};
384
385	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
386	if (unlikely(rem < 0)) {
387		ts.tv_sec--;
388		rem += NSEC_PER_SEC;
389	}
390	ts.tv_nsec = rem;
391
392	return ts;
393}
394EXPORT_SYMBOL(ns_to_timespec);
395
396/**
397 * ns_to_timeval - Convert nanoseconds to timeval
398 * @nsec:       the nanoseconds value to be converted
399 *
400 * Returns the timeval representation of the nsec parameter.
401 */
402struct timeval ns_to_timeval(const s64 nsec)
403{
404	struct timespec ts = ns_to_timespec(nsec);
405	struct timeval tv;
406
407	tv.tv_sec = ts.tv_sec;
408	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
409
410	return tv;
411}
412EXPORT_SYMBOL(ns_to_timeval);
413
414/*
415 * When we convert to jiffies then we interpret incoming values
416 * the following way:
417 *
418 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
419 *
420 * - 'too large' values [that would result in larger than
421 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
422 *
423 * - all other values are converted to jiffies by either multiplying
424 *   the input value by a factor or dividing it with a factor
425 *
426 * We must also be careful about 32-bit overflows.
427 */
428unsigned long msecs_to_jiffies(const unsigned int m)
429{
430	/*
431	 * Negative value, means infinite timeout:
432	 */
433	if ((int)m < 0)
434		return MAX_JIFFY_OFFSET;
435
436#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
437	/*
438	 * HZ is equal to or smaller than 1000, and 1000 is a nice
439	 * round multiple of HZ, divide with the factor between them,
440	 * but round upwards:
441	 */
442	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
443#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
444	/*
445	 * HZ is larger than 1000, and HZ is a nice round multiple of
446	 * 1000 - simply multiply with the factor between them.
447	 *
448	 * But first make sure the multiplication result cannot
449	 * overflow:
450	 */
451	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
452		return MAX_JIFFY_OFFSET;
453
454	return m * (HZ / MSEC_PER_SEC);
455#else
456	/*
457	 * Generic case - multiply, round and divide. But first
458	 * check that if we are doing a net multiplication, that
459	 * we wouldn't overflow:
460	 */
461	if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
462		return MAX_JIFFY_OFFSET;
463
464	return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
465		>> MSEC_TO_HZ_SHR32;
466#endif
467}
468EXPORT_SYMBOL(msecs_to_jiffies);
469
470unsigned long usecs_to_jiffies(const unsigned int u)
471{
472	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
473		return MAX_JIFFY_OFFSET;
474#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
475	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
476#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
477	return u * (HZ / USEC_PER_SEC);
478#else
479	return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
480		>> USEC_TO_HZ_SHR32;
481#endif
482}
483EXPORT_SYMBOL(usecs_to_jiffies);
484
485/*
486 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
487 * that a remainder subtract here would not do the right thing as the
488 * resolution values don't fall on second boundries.  I.e. the line:
489 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
490 *
491 * Rather, we just shift the bits off the right.
492 *
493 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
494 * value to a scaled second value.
495 */
496unsigned long
497timespec_to_jiffies(const struct timespec *value)
498{
499	unsigned long sec = value->tv_sec;
500	long nsec = value->tv_nsec + TICK_NSEC - 1;
501
502	if (sec >= MAX_SEC_IN_JIFFIES){
503		sec = MAX_SEC_IN_JIFFIES;
504		nsec = 0;
505	}
506	return (((u64)sec * SEC_CONVERSION) +
507		(((u64)nsec * NSEC_CONVERSION) >>
508		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
509
510}
511EXPORT_SYMBOL(timespec_to_jiffies);
512
513void
514jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
515{
516	/*
517	 * Convert jiffies to nanoseconds and separate with
518	 * one divide.
519	 */
520	u32 rem;
521	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
522				    NSEC_PER_SEC, &rem);
523	value->tv_nsec = rem;
524}
525EXPORT_SYMBOL(jiffies_to_timespec);
526
527/* Same for "timeval"
528 *
529 * Well, almost.  The problem here is that the real system resolution is
530 * in nanoseconds and the value being converted is in micro seconds.
531 * Also for some machines (those that use HZ = 1024, in-particular),
532 * there is a LARGE error in the tick size in microseconds.
533
534 * The solution we use is to do the rounding AFTER we convert the
535 * microsecond part.  Thus the USEC_ROUND, the bits to be shifted off.
536 * Instruction wise, this should cost only an additional add with carry
537 * instruction above the way it was done above.
538 */
539unsigned long
540timeval_to_jiffies(const struct timeval *value)
541{
542	unsigned long sec = value->tv_sec;
543	long usec = value->tv_usec;
544
545	if (sec >= MAX_SEC_IN_JIFFIES){
546		sec = MAX_SEC_IN_JIFFIES;
547		usec = 0;
548	}
549	return (((u64)sec * SEC_CONVERSION) +
550		(((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
551		 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
552}
553EXPORT_SYMBOL(timeval_to_jiffies);
554
555void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
556{
557	/*
558	 * Convert jiffies to nanoseconds and separate with
559	 * one divide.
560	 */
561	u32 rem;
562
563	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
564				    NSEC_PER_SEC, &rem);
565	value->tv_usec = rem / NSEC_PER_USEC;
566}
567EXPORT_SYMBOL(jiffies_to_timeval);
568
569/*
570 * Convert jiffies/jiffies_64 to clock_t and back.
571 */
572clock_t jiffies_to_clock_t(unsigned long x)
573{
574#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
575# if HZ < USER_HZ
576	return x * (USER_HZ / HZ);
577# else
578	return x / (HZ / USER_HZ);
579# endif
580#else
581	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
582#endif
583}
584EXPORT_SYMBOL(jiffies_to_clock_t);
585
586unsigned long clock_t_to_jiffies(unsigned long x)
587{
588#if (HZ % USER_HZ)==0
589	if (x >= ~0UL / (HZ / USER_HZ))
590		return ~0UL;
591	return x * (HZ / USER_HZ);
592#else
593	/* Don't worry about loss of precision here .. */
594	if (x >= ~0UL / HZ * USER_HZ)
595		return ~0UL;
596
597	/* .. but do try to contain it here */
598	return div_u64((u64)x * HZ, USER_HZ);
599#endif
600}
601EXPORT_SYMBOL(clock_t_to_jiffies);
602
603u64 jiffies_64_to_clock_t(u64 x)
604{
605#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
606# if HZ < USER_HZ
607	x = div_u64(x * USER_HZ, HZ);
608# elif HZ > USER_HZ
609	x = div_u64(x, HZ / USER_HZ);
610# else
611	/* Nothing to do */
612# endif
613#else
614	/*
615	 * There are better ways that don't overflow early,
616	 * but even this doesn't overflow in hundreds of years
617	 * in 64 bits, so..
618	 */
619	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
620#endif
621	return x;
622}
623EXPORT_SYMBOL(jiffies_64_to_clock_t);
624
625u64 nsec_to_clock_t(u64 x)
626{
627#if (NSEC_PER_SEC % USER_HZ) == 0
628	return div_u64(x, NSEC_PER_SEC / USER_HZ);
629#elif (USER_HZ % 512) == 0
630	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
631#else
632	/*
633         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
634         * overflow after 64.99 years.
635         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
636         */
637	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
638#endif
639}
640
641/**
642 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
643 *
644 * @n:	nsecs in u64
645 *
646 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
647 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
648 * for scheduler, not for use in device drivers to calculate timeout value.
649 *
650 * note:
651 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
652 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
653 */
654u64 nsecs_to_jiffies64(u64 n)
655{
656#if (NSEC_PER_SEC % HZ) == 0
657	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
658	return div_u64(n, NSEC_PER_SEC / HZ);
659#elif (HZ % 512) == 0
660	/* overflow after 292 years if HZ = 1024 */
661	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
662#else
663	/*
664	 * Generic case - optimized for cases where HZ is a multiple of 3.
665	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
666	 */
667	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
668#endif
669}
670
671/**
672 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
673 *
674 * @n:	nsecs in u64
675 *
676 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
677 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
678 * for scheduler, not for use in device drivers to calculate timeout value.
679 *
680 * note:
681 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
682 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
683 */
684unsigned long nsecs_to_jiffies(u64 n)
685{
686	return (unsigned long)nsecs_to_jiffies64(n);
687}
688
689/*
690 * Add two timespec values and do a safety check for overflow.
691 * It's assumed that both values are valid (>= 0)
692 */
693struct timespec timespec_add_safe(const struct timespec lhs,
694				  const struct timespec rhs)
695{
696	struct timespec res;
697
698	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
699				lhs.tv_nsec + rhs.tv_nsec);
700
701	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
702		res.tv_sec = TIME_T_MAX;
703
704	return res;
705}