Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * Performance event support framework for SuperH hardware counters.
  3 *
  4 *  Copyright (C) 2009  Paul Mundt
  5 *
  6 * Heavily based on the x86 and PowerPC implementations.
  7 *
  8 * x86:
  9 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 10 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 11 *  Copyright (C) 2009 Jaswinder Singh Rajput
 12 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
 13 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 14 *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
 15 *
 16 * ppc:
 17 *  Copyright 2008-2009 Paul Mackerras, IBM Corporation.
 18 *
 19 * This file is subject to the terms and conditions of the GNU General Public
 20 * License.  See the file "COPYING" in the main directory of this archive
 21 * for more details.
 22 */
 23#include <linux/kernel.h>
 24#include <linux/init.h>
 25#include <linux/io.h>
 26#include <linux/irq.h>
 27#include <linux/perf_event.h>
 28#include <linux/export.h>
 29#include <asm/processor.h>
 30
 31struct cpu_hw_events {
 32	struct perf_event	*events[MAX_HWEVENTS];
 33	unsigned long		used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
 34	unsigned long		active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
 35};
 36
 37DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
 38
 39static struct sh_pmu *sh_pmu __read_mostly;
 40
 41/* Number of perf_events counting hardware events */
 42static atomic_t num_events;
 43/* Used to avoid races in calling reserve/release_pmc_hardware */
 44static DEFINE_MUTEX(pmc_reserve_mutex);
 45
 46/*
 47 * Stub these out for now, do something more profound later.
 48 */
 49int reserve_pmc_hardware(void)
 50{
 51	return 0;
 52}
 53
 54void release_pmc_hardware(void)
 55{
 56}
 57
 58static inline int sh_pmu_initialized(void)
 59{
 60	return !!sh_pmu;
 61}
 62
 63const char *perf_pmu_name(void)
 64{
 65	if (!sh_pmu)
 66		return NULL;
 67
 68	return sh_pmu->name;
 69}
 70EXPORT_SYMBOL_GPL(perf_pmu_name);
 71
 72int perf_num_counters(void)
 73{
 74	if (!sh_pmu)
 75		return 0;
 76
 77	return sh_pmu->num_events;
 78}
 79EXPORT_SYMBOL_GPL(perf_num_counters);
 80
 81/*
 82 * Release the PMU if this is the last perf_event.
 83 */
 84static void hw_perf_event_destroy(struct perf_event *event)
 85{
 86	if (!atomic_add_unless(&num_events, -1, 1)) {
 87		mutex_lock(&pmc_reserve_mutex);
 88		if (atomic_dec_return(&num_events) == 0)
 89			release_pmc_hardware();
 90		mutex_unlock(&pmc_reserve_mutex);
 91	}
 92}
 93
 94static int hw_perf_cache_event(int config, int *evp)
 95{
 96	unsigned long type, op, result;
 97	int ev;
 98
 99	if (!sh_pmu->cache_events)
100		return -EINVAL;
101
102	/* unpack config */
103	type = config & 0xff;
104	op = (config >> 8) & 0xff;
105	result = (config >> 16) & 0xff;
106
107	if (type >= PERF_COUNT_HW_CACHE_MAX ||
108	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
109	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
110		return -EINVAL;
111
112	ev = (*sh_pmu->cache_events)[type][op][result];
113	if (ev == 0)
114		return -EOPNOTSUPP;
115	if (ev == -1)
116		return -EINVAL;
117	*evp = ev;
118	return 0;
119}
120
121static int __hw_perf_event_init(struct perf_event *event)
122{
123	struct perf_event_attr *attr = &event->attr;
124	struct hw_perf_event *hwc = &event->hw;
125	int config = -1;
126	int err;
127
128	if (!sh_pmu_initialized())
129		return -ENODEV;
130
131	/*
132	 * All of the on-chip counters are "limited", in that they have
133	 * no interrupts, and are therefore unable to do sampling without
134	 * further work and timer assistance.
135	 */
136	if (hwc->sample_period)
137		return -EINVAL;
138
139	/*
140	 * See if we need to reserve the counter.
141	 *
142	 * If no events are currently in use, then we have to take a
143	 * mutex to ensure that we don't race with another task doing
144	 * reserve_pmc_hardware or release_pmc_hardware.
145	 */
146	err = 0;
147	if (!atomic_inc_not_zero(&num_events)) {
148		mutex_lock(&pmc_reserve_mutex);
149		if (atomic_read(&num_events) == 0 &&
150		    reserve_pmc_hardware())
151			err = -EBUSY;
152		else
153			atomic_inc(&num_events);
154		mutex_unlock(&pmc_reserve_mutex);
155	}
156
157	if (err)
158		return err;
159
160	event->destroy = hw_perf_event_destroy;
161
162	switch (attr->type) {
163	case PERF_TYPE_RAW:
164		config = attr->config & sh_pmu->raw_event_mask;
165		break;
166	case PERF_TYPE_HW_CACHE:
167		err = hw_perf_cache_event(attr->config, &config);
168		if (err)
169			return err;
170		break;
171	case PERF_TYPE_HARDWARE:
172		if (attr->config >= sh_pmu->max_events)
173			return -EINVAL;
174
175		config = sh_pmu->event_map(attr->config);
176		break;
177	}
178
179	if (config == -1)
180		return -EINVAL;
181
182	hwc->config |= config;
183
184	return 0;
185}
186
187static void sh_perf_event_update(struct perf_event *event,
188				   struct hw_perf_event *hwc, int idx)
189{
190	u64 prev_raw_count, new_raw_count;
191	s64 delta;
192	int shift = 0;
193
194	/*
195	 * Depending on the counter configuration, they may or may not
196	 * be chained, in which case the previous counter value can be
197	 * updated underneath us if the lower-half overflows.
198	 *
199	 * Our tactic to handle this is to first atomically read and
200	 * exchange a new raw count - then add that new-prev delta
201	 * count to the generic counter atomically.
202	 *
203	 * As there is no interrupt associated with the overflow events,
204	 * this is the simplest approach for maintaining consistency.
205	 */
206again:
207	prev_raw_count = local64_read(&hwc->prev_count);
208	new_raw_count = sh_pmu->read(idx);
209
210	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
211			     new_raw_count) != prev_raw_count)
212		goto again;
213
214	/*
215	 * Now we have the new raw value and have updated the prev
216	 * timestamp already. We can now calculate the elapsed delta
217	 * (counter-)time and add that to the generic counter.
218	 *
219	 * Careful, not all hw sign-extends above the physical width
220	 * of the count.
221	 */
222	delta = (new_raw_count << shift) - (prev_raw_count << shift);
223	delta >>= shift;
224
225	local64_add(delta, &event->count);
226}
227
228static void sh_pmu_stop(struct perf_event *event, int flags)
229{
230	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
231	struct hw_perf_event *hwc = &event->hw;
232	int idx = hwc->idx;
233
234	if (!(event->hw.state & PERF_HES_STOPPED)) {
235		sh_pmu->disable(hwc, idx);
236		cpuc->events[idx] = NULL;
237		event->hw.state |= PERF_HES_STOPPED;
238	}
239
240	if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
241		sh_perf_event_update(event, &event->hw, idx);
242		event->hw.state |= PERF_HES_UPTODATE;
243	}
244}
245
246static void sh_pmu_start(struct perf_event *event, int flags)
247{
248	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
249	struct hw_perf_event *hwc = &event->hw;
250	int idx = hwc->idx;
251
252	if (WARN_ON_ONCE(idx == -1))
253		return;
254
255	if (flags & PERF_EF_RELOAD)
256		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
257
258	cpuc->events[idx] = event;
259	event->hw.state = 0;
260	sh_pmu->enable(hwc, idx);
261}
262
263static void sh_pmu_del(struct perf_event *event, int flags)
264{
265	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
266
267	sh_pmu_stop(event, PERF_EF_UPDATE);
268	__clear_bit(event->hw.idx, cpuc->used_mask);
269
270	perf_event_update_userpage(event);
271}
272
273static int sh_pmu_add(struct perf_event *event, int flags)
274{
275	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
276	struct hw_perf_event *hwc = &event->hw;
277	int idx = hwc->idx;
278	int ret = -EAGAIN;
279
280	perf_pmu_disable(event->pmu);
281
282	if (__test_and_set_bit(idx, cpuc->used_mask)) {
283		idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events);
284		if (idx == sh_pmu->num_events)
285			goto out;
286
287		__set_bit(idx, cpuc->used_mask);
288		hwc->idx = idx;
289	}
290
291	sh_pmu->disable(hwc, idx);
292
293	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
294	if (flags & PERF_EF_START)
295		sh_pmu_start(event, PERF_EF_RELOAD);
296
297	perf_event_update_userpage(event);
298	ret = 0;
299out:
300	perf_pmu_enable(event->pmu);
301	return ret;
302}
303
304static void sh_pmu_read(struct perf_event *event)
305{
306	sh_perf_event_update(event, &event->hw, event->hw.idx);
307}
308
309static int sh_pmu_event_init(struct perf_event *event)
310{
311	int err;
312
313	/* does not support taken branch sampling */
314	if (has_branch_stack(event))
315		return -EOPNOTSUPP;
316
317	switch (event->attr.type) {
318	case PERF_TYPE_RAW:
319	case PERF_TYPE_HW_CACHE:
320	case PERF_TYPE_HARDWARE:
321		err = __hw_perf_event_init(event);
322		break;
323
324	default:
325		return -ENOENT;
326	}
327
328	if (unlikely(err)) {
329		if (event->destroy)
330			event->destroy(event);
331	}
332
333	return err;
334}
335
336static void sh_pmu_enable(struct pmu *pmu)
337{
338	if (!sh_pmu_initialized())
339		return;
340
341	sh_pmu->enable_all();
342}
343
344static void sh_pmu_disable(struct pmu *pmu)
345{
346	if (!sh_pmu_initialized())
347		return;
348
349	sh_pmu->disable_all();
350}
351
352static struct pmu pmu = {
353	.pmu_enable	= sh_pmu_enable,
354	.pmu_disable	= sh_pmu_disable,
355	.event_init	= sh_pmu_event_init,
356	.add		= sh_pmu_add,
357	.del		= sh_pmu_del,
358	.start		= sh_pmu_start,
359	.stop		= sh_pmu_stop,
360	.read		= sh_pmu_read,
361};
362
363static void sh_pmu_setup(int cpu)
364{
365	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
366
367	memset(cpuhw, 0, sizeof(struct cpu_hw_events));
368}
369
370static int
371sh_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
372{
373	unsigned int cpu = (long)hcpu;
374
375	switch (action & ~CPU_TASKS_FROZEN) {
376	case CPU_UP_PREPARE:
377		sh_pmu_setup(cpu);
378		break;
379
380	default:
381		break;
382	}
383
384	return NOTIFY_OK;
385}
386
387int register_sh_pmu(struct sh_pmu *_pmu)
388{
389	if (sh_pmu)
390		return -EBUSY;
391	sh_pmu = _pmu;
392
393	pr_info("Performance Events: %s support registered\n", _pmu->name);
394
395	WARN_ON(_pmu->num_events > MAX_HWEVENTS);
396
397	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
398	perf_cpu_notifier(sh_pmu_notifier);
399	return 0;
400}
v3.1
  1/*
  2 * Performance event support framework for SuperH hardware counters.
  3 *
  4 *  Copyright (C) 2009  Paul Mundt
  5 *
  6 * Heavily based on the x86 and PowerPC implementations.
  7 *
  8 * x86:
  9 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 10 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 11 *  Copyright (C) 2009 Jaswinder Singh Rajput
 12 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
 13 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 14 *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
 15 *
 16 * ppc:
 17 *  Copyright 2008-2009 Paul Mackerras, IBM Corporation.
 18 *
 19 * This file is subject to the terms and conditions of the GNU General Public
 20 * License.  See the file "COPYING" in the main directory of this archive
 21 * for more details.
 22 */
 23#include <linux/kernel.h>
 24#include <linux/init.h>
 25#include <linux/io.h>
 26#include <linux/irq.h>
 27#include <linux/perf_event.h>
 
 28#include <asm/processor.h>
 29
 30struct cpu_hw_events {
 31	struct perf_event	*events[MAX_HWEVENTS];
 32	unsigned long		used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
 33	unsigned long		active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
 34};
 35
 36DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
 37
 38static struct sh_pmu *sh_pmu __read_mostly;
 39
 40/* Number of perf_events counting hardware events */
 41static atomic_t num_events;
 42/* Used to avoid races in calling reserve/release_pmc_hardware */
 43static DEFINE_MUTEX(pmc_reserve_mutex);
 44
 45/*
 46 * Stub these out for now, do something more profound later.
 47 */
 48int reserve_pmc_hardware(void)
 49{
 50	return 0;
 51}
 52
 53void release_pmc_hardware(void)
 54{
 55}
 56
 57static inline int sh_pmu_initialized(void)
 58{
 59	return !!sh_pmu;
 60}
 61
 62const char *perf_pmu_name(void)
 63{
 64	if (!sh_pmu)
 65		return NULL;
 66
 67	return sh_pmu->name;
 68}
 69EXPORT_SYMBOL_GPL(perf_pmu_name);
 70
 71int perf_num_counters(void)
 72{
 73	if (!sh_pmu)
 74		return 0;
 75
 76	return sh_pmu->num_events;
 77}
 78EXPORT_SYMBOL_GPL(perf_num_counters);
 79
 80/*
 81 * Release the PMU if this is the last perf_event.
 82 */
 83static void hw_perf_event_destroy(struct perf_event *event)
 84{
 85	if (!atomic_add_unless(&num_events, -1, 1)) {
 86		mutex_lock(&pmc_reserve_mutex);
 87		if (atomic_dec_return(&num_events) == 0)
 88			release_pmc_hardware();
 89		mutex_unlock(&pmc_reserve_mutex);
 90	}
 91}
 92
 93static int hw_perf_cache_event(int config, int *evp)
 94{
 95	unsigned long type, op, result;
 96	int ev;
 97
 98	if (!sh_pmu->cache_events)
 99		return -EINVAL;
100
101	/* unpack config */
102	type = config & 0xff;
103	op = (config >> 8) & 0xff;
104	result = (config >> 16) & 0xff;
105
106	if (type >= PERF_COUNT_HW_CACHE_MAX ||
107	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
108	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
109		return -EINVAL;
110
111	ev = (*sh_pmu->cache_events)[type][op][result];
112	if (ev == 0)
113		return -EOPNOTSUPP;
114	if (ev == -1)
115		return -EINVAL;
116	*evp = ev;
117	return 0;
118}
119
120static int __hw_perf_event_init(struct perf_event *event)
121{
122	struct perf_event_attr *attr = &event->attr;
123	struct hw_perf_event *hwc = &event->hw;
124	int config = -1;
125	int err;
126
127	if (!sh_pmu_initialized())
128		return -ENODEV;
129
130	/*
131	 * All of the on-chip counters are "limited", in that they have
132	 * no interrupts, and are therefore unable to do sampling without
133	 * further work and timer assistance.
134	 */
135	if (hwc->sample_period)
136		return -EINVAL;
137
138	/*
139	 * See if we need to reserve the counter.
140	 *
141	 * If no events are currently in use, then we have to take a
142	 * mutex to ensure that we don't race with another task doing
143	 * reserve_pmc_hardware or release_pmc_hardware.
144	 */
145	err = 0;
146	if (!atomic_inc_not_zero(&num_events)) {
147		mutex_lock(&pmc_reserve_mutex);
148		if (atomic_read(&num_events) == 0 &&
149		    reserve_pmc_hardware())
150			err = -EBUSY;
151		else
152			atomic_inc(&num_events);
153		mutex_unlock(&pmc_reserve_mutex);
154	}
155
156	if (err)
157		return err;
158
159	event->destroy = hw_perf_event_destroy;
160
161	switch (attr->type) {
162	case PERF_TYPE_RAW:
163		config = attr->config & sh_pmu->raw_event_mask;
164		break;
165	case PERF_TYPE_HW_CACHE:
166		err = hw_perf_cache_event(attr->config, &config);
167		if (err)
168			return err;
169		break;
170	case PERF_TYPE_HARDWARE:
171		if (attr->config >= sh_pmu->max_events)
172			return -EINVAL;
173
174		config = sh_pmu->event_map(attr->config);
175		break;
176	}
177
178	if (config == -1)
179		return -EINVAL;
180
181	hwc->config |= config;
182
183	return 0;
184}
185
186static void sh_perf_event_update(struct perf_event *event,
187				   struct hw_perf_event *hwc, int idx)
188{
189	u64 prev_raw_count, new_raw_count;
190	s64 delta;
191	int shift = 0;
192
193	/*
194	 * Depending on the counter configuration, they may or may not
195	 * be chained, in which case the previous counter value can be
196	 * updated underneath us if the lower-half overflows.
197	 *
198	 * Our tactic to handle this is to first atomically read and
199	 * exchange a new raw count - then add that new-prev delta
200	 * count to the generic counter atomically.
201	 *
202	 * As there is no interrupt associated with the overflow events,
203	 * this is the simplest approach for maintaining consistency.
204	 */
205again:
206	prev_raw_count = local64_read(&hwc->prev_count);
207	new_raw_count = sh_pmu->read(idx);
208
209	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
210			     new_raw_count) != prev_raw_count)
211		goto again;
212
213	/*
214	 * Now we have the new raw value and have updated the prev
215	 * timestamp already. We can now calculate the elapsed delta
216	 * (counter-)time and add that to the generic counter.
217	 *
218	 * Careful, not all hw sign-extends above the physical width
219	 * of the count.
220	 */
221	delta = (new_raw_count << shift) - (prev_raw_count << shift);
222	delta >>= shift;
223
224	local64_add(delta, &event->count);
225}
226
227static void sh_pmu_stop(struct perf_event *event, int flags)
228{
229	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
230	struct hw_perf_event *hwc = &event->hw;
231	int idx = hwc->idx;
232
233	if (!(event->hw.state & PERF_HES_STOPPED)) {
234		sh_pmu->disable(hwc, idx);
235		cpuc->events[idx] = NULL;
236		event->hw.state |= PERF_HES_STOPPED;
237	}
238
239	if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
240		sh_perf_event_update(event, &event->hw, idx);
241		event->hw.state |= PERF_HES_UPTODATE;
242	}
243}
244
245static void sh_pmu_start(struct perf_event *event, int flags)
246{
247	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
248	struct hw_perf_event *hwc = &event->hw;
249	int idx = hwc->idx;
250
251	if (WARN_ON_ONCE(idx == -1))
252		return;
253
254	if (flags & PERF_EF_RELOAD)
255		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
256
257	cpuc->events[idx] = event;
258	event->hw.state = 0;
259	sh_pmu->enable(hwc, idx);
260}
261
262static void sh_pmu_del(struct perf_event *event, int flags)
263{
264	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
265
266	sh_pmu_stop(event, PERF_EF_UPDATE);
267	__clear_bit(event->hw.idx, cpuc->used_mask);
268
269	perf_event_update_userpage(event);
270}
271
272static int sh_pmu_add(struct perf_event *event, int flags)
273{
274	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
275	struct hw_perf_event *hwc = &event->hw;
276	int idx = hwc->idx;
277	int ret = -EAGAIN;
278
279	perf_pmu_disable(event->pmu);
280
281	if (__test_and_set_bit(idx, cpuc->used_mask)) {
282		idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events);
283		if (idx == sh_pmu->num_events)
284			goto out;
285
286		__set_bit(idx, cpuc->used_mask);
287		hwc->idx = idx;
288	}
289
290	sh_pmu->disable(hwc, idx);
291
292	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
293	if (flags & PERF_EF_START)
294		sh_pmu_start(event, PERF_EF_RELOAD);
295
296	perf_event_update_userpage(event);
297	ret = 0;
298out:
299	perf_pmu_enable(event->pmu);
300	return ret;
301}
302
303static void sh_pmu_read(struct perf_event *event)
304{
305	sh_perf_event_update(event, &event->hw, event->hw.idx);
306}
307
308static int sh_pmu_event_init(struct perf_event *event)
309{
310	int err;
311
 
 
 
 
312	switch (event->attr.type) {
313	case PERF_TYPE_RAW:
314	case PERF_TYPE_HW_CACHE:
315	case PERF_TYPE_HARDWARE:
316		err = __hw_perf_event_init(event);
317		break;
318
319	default:
320		return -ENOENT;
321	}
322
323	if (unlikely(err)) {
324		if (event->destroy)
325			event->destroy(event);
326	}
327
328	return err;
329}
330
331static void sh_pmu_enable(struct pmu *pmu)
332{
333	if (!sh_pmu_initialized())
334		return;
335
336	sh_pmu->enable_all();
337}
338
339static void sh_pmu_disable(struct pmu *pmu)
340{
341	if (!sh_pmu_initialized())
342		return;
343
344	sh_pmu->disable_all();
345}
346
347static struct pmu pmu = {
348	.pmu_enable	= sh_pmu_enable,
349	.pmu_disable	= sh_pmu_disable,
350	.event_init	= sh_pmu_event_init,
351	.add		= sh_pmu_add,
352	.del		= sh_pmu_del,
353	.start		= sh_pmu_start,
354	.stop		= sh_pmu_stop,
355	.read		= sh_pmu_read,
356};
357
358static void sh_pmu_setup(int cpu)
359{
360	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
361
362	memset(cpuhw, 0, sizeof(struct cpu_hw_events));
363}
364
365static int __cpuinit
366sh_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
367{
368	unsigned int cpu = (long)hcpu;
369
370	switch (action & ~CPU_TASKS_FROZEN) {
371	case CPU_UP_PREPARE:
372		sh_pmu_setup(cpu);
373		break;
374
375	default:
376		break;
377	}
378
379	return NOTIFY_OK;
380}
381
382int __cpuinit register_sh_pmu(struct sh_pmu *_pmu)
383{
384	if (sh_pmu)
385		return -EBUSY;
386	sh_pmu = _pmu;
387
388	pr_info("Performance Events: %s support registered\n", _pmu->name);
389
390	WARN_ON(_pmu->num_events > MAX_HWEVENTS);
391
392	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
393	perf_cpu_notifier(sh_pmu_notifier);
394	return 0;
395}