Loading...
1/*
2 * Performance event support framework for SuperH hardware counters.
3 *
4 * Copyright (C) 2009 Paul Mundt
5 *
6 * Heavily based on the x86 and PowerPC implementations.
7 *
8 * x86:
9 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
10 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
11 * Copyright (C) 2009 Jaswinder Singh Rajput
12 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
13 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
14 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
15 *
16 * ppc:
17 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
18 *
19 * This file is subject to the terms and conditions of the GNU General Public
20 * License. See the file "COPYING" in the main directory of this archive
21 * for more details.
22 */
23#include <linux/kernel.h>
24#include <linux/init.h>
25#include <linux/io.h>
26#include <linux/irq.h>
27#include <linux/perf_event.h>
28#include <linux/export.h>
29#include <asm/processor.h>
30
31struct cpu_hw_events {
32 struct perf_event *events[MAX_HWEVENTS];
33 unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
34 unsigned long active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
35};
36
37DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
38
39static struct sh_pmu *sh_pmu __read_mostly;
40
41/* Number of perf_events counting hardware events */
42static atomic_t num_events;
43/* Used to avoid races in calling reserve/release_pmc_hardware */
44static DEFINE_MUTEX(pmc_reserve_mutex);
45
46/*
47 * Stub these out for now, do something more profound later.
48 */
49int reserve_pmc_hardware(void)
50{
51 return 0;
52}
53
54void release_pmc_hardware(void)
55{
56}
57
58static inline int sh_pmu_initialized(void)
59{
60 return !!sh_pmu;
61}
62
63const char *perf_pmu_name(void)
64{
65 if (!sh_pmu)
66 return NULL;
67
68 return sh_pmu->name;
69}
70EXPORT_SYMBOL_GPL(perf_pmu_name);
71
72int perf_num_counters(void)
73{
74 if (!sh_pmu)
75 return 0;
76
77 return sh_pmu->num_events;
78}
79EXPORT_SYMBOL_GPL(perf_num_counters);
80
81/*
82 * Release the PMU if this is the last perf_event.
83 */
84static void hw_perf_event_destroy(struct perf_event *event)
85{
86 if (!atomic_add_unless(&num_events, -1, 1)) {
87 mutex_lock(&pmc_reserve_mutex);
88 if (atomic_dec_return(&num_events) == 0)
89 release_pmc_hardware();
90 mutex_unlock(&pmc_reserve_mutex);
91 }
92}
93
94static int hw_perf_cache_event(int config, int *evp)
95{
96 unsigned long type, op, result;
97 int ev;
98
99 if (!sh_pmu->cache_events)
100 return -EINVAL;
101
102 /* unpack config */
103 type = config & 0xff;
104 op = (config >> 8) & 0xff;
105 result = (config >> 16) & 0xff;
106
107 if (type >= PERF_COUNT_HW_CACHE_MAX ||
108 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
109 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
110 return -EINVAL;
111
112 ev = (*sh_pmu->cache_events)[type][op][result];
113 if (ev == 0)
114 return -EOPNOTSUPP;
115 if (ev == -1)
116 return -EINVAL;
117 *evp = ev;
118 return 0;
119}
120
121static int __hw_perf_event_init(struct perf_event *event)
122{
123 struct perf_event_attr *attr = &event->attr;
124 struct hw_perf_event *hwc = &event->hw;
125 int config = -1;
126 int err;
127
128 if (!sh_pmu_initialized())
129 return -ENODEV;
130
131 /*
132 * All of the on-chip counters are "limited", in that they have
133 * no interrupts, and are therefore unable to do sampling without
134 * further work and timer assistance.
135 */
136 if (hwc->sample_period)
137 return -EINVAL;
138
139 /*
140 * See if we need to reserve the counter.
141 *
142 * If no events are currently in use, then we have to take a
143 * mutex to ensure that we don't race with another task doing
144 * reserve_pmc_hardware or release_pmc_hardware.
145 */
146 err = 0;
147 if (!atomic_inc_not_zero(&num_events)) {
148 mutex_lock(&pmc_reserve_mutex);
149 if (atomic_read(&num_events) == 0 &&
150 reserve_pmc_hardware())
151 err = -EBUSY;
152 else
153 atomic_inc(&num_events);
154 mutex_unlock(&pmc_reserve_mutex);
155 }
156
157 if (err)
158 return err;
159
160 event->destroy = hw_perf_event_destroy;
161
162 switch (attr->type) {
163 case PERF_TYPE_RAW:
164 config = attr->config & sh_pmu->raw_event_mask;
165 break;
166 case PERF_TYPE_HW_CACHE:
167 err = hw_perf_cache_event(attr->config, &config);
168 if (err)
169 return err;
170 break;
171 case PERF_TYPE_HARDWARE:
172 if (attr->config >= sh_pmu->max_events)
173 return -EINVAL;
174
175 config = sh_pmu->event_map(attr->config);
176 break;
177 }
178
179 if (config == -1)
180 return -EINVAL;
181
182 hwc->config |= config;
183
184 return 0;
185}
186
187static void sh_perf_event_update(struct perf_event *event,
188 struct hw_perf_event *hwc, int idx)
189{
190 u64 prev_raw_count, new_raw_count;
191 s64 delta;
192 int shift = 0;
193
194 /*
195 * Depending on the counter configuration, they may or may not
196 * be chained, in which case the previous counter value can be
197 * updated underneath us if the lower-half overflows.
198 *
199 * Our tactic to handle this is to first atomically read and
200 * exchange a new raw count - then add that new-prev delta
201 * count to the generic counter atomically.
202 *
203 * As there is no interrupt associated with the overflow events,
204 * this is the simplest approach for maintaining consistency.
205 */
206again:
207 prev_raw_count = local64_read(&hwc->prev_count);
208 new_raw_count = sh_pmu->read(idx);
209
210 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
211 new_raw_count) != prev_raw_count)
212 goto again;
213
214 /*
215 * Now we have the new raw value and have updated the prev
216 * timestamp already. We can now calculate the elapsed delta
217 * (counter-)time and add that to the generic counter.
218 *
219 * Careful, not all hw sign-extends above the physical width
220 * of the count.
221 */
222 delta = (new_raw_count << shift) - (prev_raw_count << shift);
223 delta >>= shift;
224
225 local64_add(delta, &event->count);
226}
227
228static void sh_pmu_stop(struct perf_event *event, int flags)
229{
230 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
231 struct hw_perf_event *hwc = &event->hw;
232 int idx = hwc->idx;
233
234 if (!(event->hw.state & PERF_HES_STOPPED)) {
235 sh_pmu->disable(hwc, idx);
236 cpuc->events[idx] = NULL;
237 event->hw.state |= PERF_HES_STOPPED;
238 }
239
240 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
241 sh_perf_event_update(event, &event->hw, idx);
242 event->hw.state |= PERF_HES_UPTODATE;
243 }
244}
245
246static void sh_pmu_start(struct perf_event *event, int flags)
247{
248 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
249 struct hw_perf_event *hwc = &event->hw;
250 int idx = hwc->idx;
251
252 if (WARN_ON_ONCE(idx == -1))
253 return;
254
255 if (flags & PERF_EF_RELOAD)
256 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
257
258 cpuc->events[idx] = event;
259 event->hw.state = 0;
260 sh_pmu->enable(hwc, idx);
261}
262
263static void sh_pmu_del(struct perf_event *event, int flags)
264{
265 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
266
267 sh_pmu_stop(event, PERF_EF_UPDATE);
268 __clear_bit(event->hw.idx, cpuc->used_mask);
269
270 perf_event_update_userpage(event);
271}
272
273static int sh_pmu_add(struct perf_event *event, int flags)
274{
275 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
276 struct hw_perf_event *hwc = &event->hw;
277 int idx = hwc->idx;
278 int ret = -EAGAIN;
279
280 perf_pmu_disable(event->pmu);
281
282 if (__test_and_set_bit(idx, cpuc->used_mask)) {
283 idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events);
284 if (idx == sh_pmu->num_events)
285 goto out;
286
287 __set_bit(idx, cpuc->used_mask);
288 hwc->idx = idx;
289 }
290
291 sh_pmu->disable(hwc, idx);
292
293 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
294 if (flags & PERF_EF_START)
295 sh_pmu_start(event, PERF_EF_RELOAD);
296
297 perf_event_update_userpage(event);
298 ret = 0;
299out:
300 perf_pmu_enable(event->pmu);
301 return ret;
302}
303
304static void sh_pmu_read(struct perf_event *event)
305{
306 sh_perf_event_update(event, &event->hw, event->hw.idx);
307}
308
309static int sh_pmu_event_init(struct perf_event *event)
310{
311 int err;
312
313 /* does not support taken branch sampling */
314 if (has_branch_stack(event))
315 return -EOPNOTSUPP;
316
317 switch (event->attr.type) {
318 case PERF_TYPE_RAW:
319 case PERF_TYPE_HW_CACHE:
320 case PERF_TYPE_HARDWARE:
321 err = __hw_perf_event_init(event);
322 break;
323
324 default:
325 return -ENOENT;
326 }
327
328 if (unlikely(err)) {
329 if (event->destroy)
330 event->destroy(event);
331 }
332
333 return err;
334}
335
336static void sh_pmu_enable(struct pmu *pmu)
337{
338 if (!sh_pmu_initialized())
339 return;
340
341 sh_pmu->enable_all();
342}
343
344static void sh_pmu_disable(struct pmu *pmu)
345{
346 if (!sh_pmu_initialized())
347 return;
348
349 sh_pmu->disable_all();
350}
351
352static struct pmu pmu = {
353 .pmu_enable = sh_pmu_enable,
354 .pmu_disable = sh_pmu_disable,
355 .event_init = sh_pmu_event_init,
356 .add = sh_pmu_add,
357 .del = sh_pmu_del,
358 .start = sh_pmu_start,
359 .stop = sh_pmu_stop,
360 .read = sh_pmu_read,
361};
362
363static void sh_pmu_setup(int cpu)
364{
365 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
366
367 memset(cpuhw, 0, sizeof(struct cpu_hw_events));
368}
369
370static int
371sh_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
372{
373 unsigned int cpu = (long)hcpu;
374
375 switch (action & ~CPU_TASKS_FROZEN) {
376 case CPU_UP_PREPARE:
377 sh_pmu_setup(cpu);
378 break;
379
380 default:
381 break;
382 }
383
384 return NOTIFY_OK;
385}
386
387int register_sh_pmu(struct sh_pmu *_pmu)
388{
389 if (sh_pmu)
390 return -EBUSY;
391 sh_pmu = _pmu;
392
393 pr_info("Performance Events: %s support registered\n", _pmu->name);
394
395 WARN_ON(_pmu->num_events > MAX_HWEVENTS);
396
397 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
398 perf_cpu_notifier(sh_pmu_notifier);
399 return 0;
400}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Performance event support framework for SuperH hardware counters.
4 *
5 * Copyright (C) 2009 Paul Mundt
6 *
7 * Heavily based on the x86 and PowerPC implementations.
8 *
9 * x86:
10 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
11 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
12 * Copyright (C) 2009 Jaswinder Singh Rajput
13 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
14 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
15 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
16 *
17 * ppc:
18 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
19 */
20#include <linux/kernel.h>
21#include <linux/init.h>
22#include <linux/io.h>
23#include <linux/irq.h>
24#include <linux/perf_event.h>
25#include <linux/export.h>
26#include <asm/processor.h>
27
28struct cpu_hw_events {
29 struct perf_event *events[MAX_HWEVENTS];
30 unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
31 unsigned long active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
32};
33
34DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
35
36static struct sh_pmu *sh_pmu __read_mostly;
37
38/* Number of perf_events counting hardware events */
39static atomic_t num_events;
40/* Used to avoid races in calling reserve/release_pmc_hardware */
41static DEFINE_MUTEX(pmc_reserve_mutex);
42
43/*
44 * Stub these out for now, do something more profound later.
45 */
46int reserve_pmc_hardware(void)
47{
48 return 0;
49}
50
51void release_pmc_hardware(void)
52{
53}
54
55static inline int sh_pmu_initialized(void)
56{
57 return !!sh_pmu;
58}
59
60const char *perf_pmu_name(void)
61{
62 if (!sh_pmu)
63 return NULL;
64
65 return sh_pmu->name;
66}
67EXPORT_SYMBOL_GPL(perf_pmu_name);
68
69int perf_num_counters(void)
70{
71 if (!sh_pmu)
72 return 0;
73
74 return sh_pmu->num_events;
75}
76EXPORT_SYMBOL_GPL(perf_num_counters);
77
78/*
79 * Release the PMU if this is the last perf_event.
80 */
81static void hw_perf_event_destroy(struct perf_event *event)
82{
83 if (!atomic_add_unless(&num_events, -1, 1)) {
84 mutex_lock(&pmc_reserve_mutex);
85 if (atomic_dec_return(&num_events) == 0)
86 release_pmc_hardware();
87 mutex_unlock(&pmc_reserve_mutex);
88 }
89}
90
91static int hw_perf_cache_event(int config, int *evp)
92{
93 unsigned long type, op, result;
94 int ev;
95
96 if (!sh_pmu->cache_events)
97 return -EINVAL;
98
99 /* unpack config */
100 type = config & 0xff;
101 op = (config >> 8) & 0xff;
102 result = (config >> 16) & 0xff;
103
104 if (type >= PERF_COUNT_HW_CACHE_MAX ||
105 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
106 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
107 return -EINVAL;
108
109 ev = (*sh_pmu->cache_events)[type][op][result];
110 if (ev == 0)
111 return -EOPNOTSUPP;
112 if (ev == -1)
113 return -EINVAL;
114 *evp = ev;
115 return 0;
116}
117
118static int __hw_perf_event_init(struct perf_event *event)
119{
120 struct perf_event_attr *attr = &event->attr;
121 struct hw_perf_event *hwc = &event->hw;
122 int config = -1;
123 int err;
124
125 if (!sh_pmu_initialized())
126 return -ENODEV;
127
128 /*
129 * See if we need to reserve the counter.
130 *
131 * If no events are currently in use, then we have to take a
132 * mutex to ensure that we don't race with another task doing
133 * reserve_pmc_hardware or release_pmc_hardware.
134 */
135 err = 0;
136 if (!atomic_inc_not_zero(&num_events)) {
137 mutex_lock(&pmc_reserve_mutex);
138 if (atomic_read(&num_events) == 0 &&
139 reserve_pmc_hardware())
140 err = -EBUSY;
141 else
142 atomic_inc(&num_events);
143 mutex_unlock(&pmc_reserve_mutex);
144 }
145
146 if (err)
147 return err;
148
149 event->destroy = hw_perf_event_destroy;
150
151 switch (attr->type) {
152 case PERF_TYPE_RAW:
153 config = attr->config & sh_pmu->raw_event_mask;
154 break;
155 case PERF_TYPE_HW_CACHE:
156 err = hw_perf_cache_event(attr->config, &config);
157 if (err)
158 return err;
159 break;
160 case PERF_TYPE_HARDWARE:
161 if (attr->config >= sh_pmu->max_events)
162 return -EINVAL;
163
164 config = sh_pmu->event_map(attr->config);
165 break;
166 }
167
168 if (config == -1)
169 return -EINVAL;
170
171 hwc->config |= config;
172
173 return 0;
174}
175
176static void sh_perf_event_update(struct perf_event *event,
177 struct hw_perf_event *hwc, int idx)
178{
179 u64 prev_raw_count, new_raw_count;
180 s64 delta;
181 int shift = 0;
182
183 /*
184 * Depending on the counter configuration, they may or may not
185 * be chained, in which case the previous counter value can be
186 * updated underneath us if the lower-half overflows.
187 *
188 * Our tactic to handle this is to first atomically read and
189 * exchange a new raw count - then add that new-prev delta
190 * count to the generic counter atomically.
191 *
192 * As there is no interrupt associated with the overflow events,
193 * this is the simplest approach for maintaining consistency.
194 */
195again:
196 prev_raw_count = local64_read(&hwc->prev_count);
197 new_raw_count = sh_pmu->read(idx);
198
199 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
200 new_raw_count) != prev_raw_count)
201 goto again;
202
203 /*
204 * Now we have the new raw value and have updated the prev
205 * timestamp already. We can now calculate the elapsed delta
206 * (counter-)time and add that to the generic counter.
207 *
208 * Careful, not all hw sign-extends above the physical width
209 * of the count.
210 */
211 delta = (new_raw_count << shift) - (prev_raw_count << shift);
212 delta >>= shift;
213
214 local64_add(delta, &event->count);
215}
216
217static void sh_pmu_stop(struct perf_event *event, int flags)
218{
219 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
220 struct hw_perf_event *hwc = &event->hw;
221 int idx = hwc->idx;
222
223 if (!(event->hw.state & PERF_HES_STOPPED)) {
224 sh_pmu->disable(hwc, idx);
225 cpuc->events[idx] = NULL;
226 event->hw.state |= PERF_HES_STOPPED;
227 }
228
229 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
230 sh_perf_event_update(event, &event->hw, idx);
231 event->hw.state |= PERF_HES_UPTODATE;
232 }
233}
234
235static void sh_pmu_start(struct perf_event *event, int flags)
236{
237 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
238 struct hw_perf_event *hwc = &event->hw;
239 int idx = hwc->idx;
240
241 if (WARN_ON_ONCE(idx == -1))
242 return;
243
244 if (flags & PERF_EF_RELOAD)
245 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
246
247 cpuc->events[idx] = event;
248 event->hw.state = 0;
249 sh_pmu->enable(hwc, idx);
250}
251
252static void sh_pmu_del(struct perf_event *event, int flags)
253{
254 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
255
256 sh_pmu_stop(event, PERF_EF_UPDATE);
257 __clear_bit(event->hw.idx, cpuc->used_mask);
258
259 perf_event_update_userpage(event);
260}
261
262static int sh_pmu_add(struct perf_event *event, int flags)
263{
264 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
265 struct hw_perf_event *hwc = &event->hw;
266 int idx = hwc->idx;
267 int ret = -EAGAIN;
268
269 perf_pmu_disable(event->pmu);
270
271 if (__test_and_set_bit(idx, cpuc->used_mask)) {
272 idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events);
273 if (idx == sh_pmu->num_events)
274 goto out;
275
276 __set_bit(idx, cpuc->used_mask);
277 hwc->idx = idx;
278 }
279
280 sh_pmu->disable(hwc, idx);
281
282 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
283 if (flags & PERF_EF_START)
284 sh_pmu_start(event, PERF_EF_RELOAD);
285
286 perf_event_update_userpage(event);
287 ret = 0;
288out:
289 perf_pmu_enable(event->pmu);
290 return ret;
291}
292
293static void sh_pmu_read(struct perf_event *event)
294{
295 sh_perf_event_update(event, &event->hw, event->hw.idx);
296}
297
298static int sh_pmu_event_init(struct perf_event *event)
299{
300 int err;
301
302 /* does not support taken branch sampling */
303 if (has_branch_stack(event))
304 return -EOPNOTSUPP;
305
306 switch (event->attr.type) {
307 case PERF_TYPE_RAW:
308 case PERF_TYPE_HW_CACHE:
309 case PERF_TYPE_HARDWARE:
310 err = __hw_perf_event_init(event);
311 break;
312
313 default:
314 return -ENOENT;
315 }
316
317 if (unlikely(err)) {
318 if (event->destroy)
319 event->destroy(event);
320 }
321
322 return err;
323}
324
325static void sh_pmu_enable(struct pmu *pmu)
326{
327 if (!sh_pmu_initialized())
328 return;
329
330 sh_pmu->enable_all();
331}
332
333static void sh_pmu_disable(struct pmu *pmu)
334{
335 if (!sh_pmu_initialized())
336 return;
337
338 sh_pmu->disable_all();
339}
340
341static struct pmu pmu = {
342 .pmu_enable = sh_pmu_enable,
343 .pmu_disable = sh_pmu_disable,
344 .event_init = sh_pmu_event_init,
345 .add = sh_pmu_add,
346 .del = sh_pmu_del,
347 .start = sh_pmu_start,
348 .stop = sh_pmu_stop,
349 .read = sh_pmu_read,
350};
351
352static int sh_pmu_prepare_cpu(unsigned int cpu)
353{
354 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
355
356 memset(cpuhw, 0, sizeof(struct cpu_hw_events));
357 return 0;
358}
359
360int register_sh_pmu(struct sh_pmu *_pmu)
361{
362 if (sh_pmu)
363 return -EBUSY;
364 sh_pmu = _pmu;
365
366 pr_info("Performance Events: %s support registered\n", _pmu->name);
367
368 /*
369 * All of the on-chip counters are "limited", in that they have
370 * no interrupts, and are therefore unable to do sampling without
371 * further work and timer assistance.
372 */
373 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
374
375 WARN_ON(_pmu->num_events > MAX_HWEVENTS);
376
377 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
378 cpuhp_setup_state(CPUHP_PERF_SUPERH, "PERF_SUPERH", sh_pmu_prepare_cpu,
379 NULL);
380 return 0;
381}