Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Versatile Express Serial Power Controller (SPC) support
  3 *
  4 * Copyright (C) 2013 ARM Ltd.
  5 *
  6 * Authors: Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
  7 *          Achin Gupta           <achin.gupta@arm.com>
  8 *          Lorenzo Pieralisi     <lorenzo.pieralisi@arm.com>
  9 *
 10 * This program is free software; you can redistribute it and/or modify
 11 * it under the terms of the GNU General Public License version 2 as
 12 * published by the Free Software Foundation.
 13 *
 14 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 15 * kind, whether express or implied; without even the implied warranty
 16 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 17 * GNU General Public License for more details.
 18 */
 19
 20#include <linux/clk-provider.h>
 21#include <linux/clkdev.h>
 22#include <linux/cpu.h>
 23#include <linux/delay.h>
 24#include <linux/err.h>
 25#include <linux/interrupt.h>
 26#include <linux/io.h>
 27#include <linux/platform_device.h>
 28#include <linux/pm_opp.h>
 29#include <linux/slab.h>
 30#include <linux/semaphore.h>
 31
 32#include <asm/cacheflush.h>
 33
 34#define SPCLOG "vexpress-spc: "
 35
 36#define PERF_LVL_A15		0x00
 37#define PERF_REQ_A15		0x04
 38#define PERF_LVL_A7		0x08
 39#define PERF_REQ_A7		0x0c
 40#define COMMS			0x10
 41#define COMMS_REQ		0x14
 42#define PWC_STATUS		0x18
 43#define PWC_FLAG		0x1c
 44
 45/* SPC wake-up IRQs status and mask */
 46#define WAKE_INT_MASK		0x24
 47#define WAKE_INT_RAW		0x28
 48#define WAKE_INT_STAT		0x2c
 49/* SPC power down registers */
 50#define A15_PWRDN_EN		0x30
 51#define A7_PWRDN_EN		0x34
 52/* SPC per-CPU mailboxes */
 53#define A15_BX_ADDR0		0x68
 54#define A7_BX_ADDR0		0x78
 55
 56/* SPC CPU/cluster reset statue */
 57#define STANDBYWFI_STAT		0x3c
 58#define STANDBYWFI_STAT_A15_CPU_MASK(cpu)	(1 << (cpu))
 59#define STANDBYWFI_STAT_A7_CPU_MASK(cpu)	(1 << (3 + (cpu)))
 60
 61/* SPC system config interface registers */
 62#define SYSCFG_WDATA		0x70
 63#define SYSCFG_RDATA		0x74
 64
 65/* A15/A7 OPP virtual register base */
 66#define A15_PERFVAL_BASE	0xC10
 67#define A7_PERFVAL_BASE		0xC30
 68
 69/* Config interface control bits */
 70#define SYSCFG_START		(1 << 31)
 71#define SYSCFG_SCC		(6 << 20)
 72#define SYSCFG_STAT		(14 << 20)
 73
 74/* wake-up interrupt masks */
 75#define GBL_WAKEUP_INT_MSK	(0x3 << 10)
 76
 77/* TC2 static dual-cluster configuration */
 78#define MAX_CLUSTERS		2
 79
 80/*
 81 * Even though the SPC takes max 3-5 ms to complete any OPP/COMMS
 82 * operation, the operation could start just before jiffie is about
 83 * to be incremented. So setting timeout value of 20ms = 2jiffies@100Hz
 84 */
 85#define TIMEOUT_US	20000
 86
 87#define MAX_OPPS	8
 88#define CA15_DVFS	0
 89#define CA7_DVFS	1
 90#define SPC_SYS_CFG	2
 91#define STAT_COMPLETE(type)	((1 << 0) << (type << 2))
 92#define STAT_ERR(type)		((1 << 1) << (type << 2))
 93#define RESPONSE_MASK(type)	(STAT_COMPLETE(type) | STAT_ERR(type))
 94
 95struct ve_spc_opp {
 96	unsigned long freq;
 97	unsigned long u_volt;
 98};
 99
100struct ve_spc_drvdata {
101	void __iomem *baseaddr;
102	/*
103	 * A15s cluster identifier
104	 * It corresponds to A15 processors MPIDR[15:8] bitfield
105	 */
106	u32 a15_clusid;
107	uint32_t cur_rsp_mask;
108	uint32_t cur_rsp_stat;
109	struct semaphore sem;
110	struct completion done;
111	struct ve_spc_opp *opps[MAX_CLUSTERS];
112	int num_opps[MAX_CLUSTERS];
113};
114
115static struct ve_spc_drvdata *info;
116
117static inline bool cluster_is_a15(u32 cluster)
118{
119	return cluster == info->a15_clusid;
120}
121
122/**
123 * ve_spc_global_wakeup_irq()
124 *
125 * Function to set/clear global wakeup IRQs. Not protected by locking since
126 * it might be used in code paths where normal cacheable locks are not
127 * working. Locking must be provided by the caller to ensure atomicity.
128 *
129 * @set: if true, global wake-up IRQs are set, if false they are cleared
130 */
131void ve_spc_global_wakeup_irq(bool set)
132{
133	u32 reg;
134
135	reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
136
137	if (set)
138		reg |= GBL_WAKEUP_INT_MSK;
139	else
140		reg &= ~GBL_WAKEUP_INT_MSK;
141
142	writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
143}
144
145/**
146 * ve_spc_cpu_wakeup_irq()
147 *
148 * Function to set/clear per-CPU wake-up IRQs. Not protected by locking since
149 * it might be used in code paths where normal cacheable locks are not
150 * working. Locking must be provided by the caller to ensure atomicity.
151 *
152 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
153 * @cpu: mpidr[7:0] bitfield describing cpu affinity level
154 * @set: if true, wake-up IRQs are set, if false they are cleared
155 */
156void ve_spc_cpu_wakeup_irq(u32 cluster, u32 cpu, bool set)
157{
158	u32 mask, reg;
159
160	if (cluster >= MAX_CLUSTERS)
161		return;
162
163	mask = 1 << cpu;
164
165	if (!cluster_is_a15(cluster))
166		mask <<= 4;
167
168	reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
169
170	if (set)
171		reg |= mask;
172	else
173		reg &= ~mask;
174
175	writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
176}
177
178/**
179 * ve_spc_set_resume_addr() - set the jump address used for warm boot
180 *
181 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
182 * @cpu: mpidr[7:0] bitfield describing cpu affinity level
183 * @addr: physical resume address
184 */
185void ve_spc_set_resume_addr(u32 cluster, u32 cpu, u32 addr)
186{
187	void __iomem *baseaddr;
188
189	if (cluster >= MAX_CLUSTERS)
190		return;
191
192	if (cluster_is_a15(cluster))
193		baseaddr = info->baseaddr + A15_BX_ADDR0 + (cpu << 2);
194	else
195		baseaddr = info->baseaddr + A7_BX_ADDR0 + (cpu << 2);
196
197	writel_relaxed(addr, baseaddr);
198}
199
200/**
201 * ve_spc_powerdown()
202 *
203 * Function to enable/disable cluster powerdown. Not protected by locking
204 * since it might be used in code paths where normal cacheable locks are not
205 * working. Locking must be provided by the caller to ensure atomicity.
206 *
207 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
208 * @enable: if true enables powerdown, if false disables it
209 */
210void ve_spc_powerdown(u32 cluster, bool enable)
211{
212	u32 pwdrn_reg;
213
214	if (cluster >= MAX_CLUSTERS)
215		return;
216
217	pwdrn_reg = cluster_is_a15(cluster) ? A15_PWRDN_EN : A7_PWRDN_EN;
218	writel_relaxed(enable, info->baseaddr + pwdrn_reg);
219}
220
221static u32 standbywfi_cpu_mask(u32 cpu, u32 cluster)
222{
223	return cluster_is_a15(cluster) ?
224		  STANDBYWFI_STAT_A15_CPU_MASK(cpu)
225		: STANDBYWFI_STAT_A7_CPU_MASK(cpu);
226}
227
228/**
229 * ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
230 *
231 * @cpu: mpidr[7:0] bitfield describing CPU affinity level within cluster
232 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
233 *
234 * @return: non-zero if and only if the specified CPU is in WFI
235 *
236 * Take care when interpreting the result of this function: a CPU might
237 * be in WFI temporarily due to idle, and is not necessarily safely
238 * parked.
239 */
240int ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
241{
242	int ret;
243	u32 mask = standbywfi_cpu_mask(cpu, cluster);
244
245	if (cluster >= MAX_CLUSTERS)
246		return 1;
247
248	ret = readl_relaxed(info->baseaddr + STANDBYWFI_STAT);
249
250	pr_debug("%s: PCFGREG[0x%X] = 0x%08X, mask = 0x%X\n",
251		 __func__, STANDBYWFI_STAT, ret, mask);
252
253	return ret & mask;
254}
255
256static int ve_spc_get_performance(int cluster, u32 *freq)
257{
258	struct ve_spc_opp *opps = info->opps[cluster];
259	u32 perf_cfg_reg = 0;
260	u32 perf;
261
262	perf_cfg_reg = cluster_is_a15(cluster) ? PERF_LVL_A15 : PERF_LVL_A7;
263
264	perf = readl_relaxed(info->baseaddr + perf_cfg_reg);
265	if (perf >= info->num_opps[cluster])
266		return -EINVAL;
267
268	opps += perf;
269	*freq = opps->freq;
270
271	return 0;
272}
273
274/* find closest match to given frequency in OPP table */
275static int ve_spc_round_performance(int cluster, u32 freq)
276{
277	int idx, max_opp = info->num_opps[cluster];
278	struct ve_spc_opp *opps = info->opps[cluster];
279	u32 fmin = 0, fmax = ~0, ftmp;
280
281	freq /= 1000; /* OPP entries in kHz */
282	for (idx = 0; idx < max_opp; idx++, opps++) {
283		ftmp = opps->freq;
284		if (ftmp >= freq) {
285			if (ftmp <= fmax)
286				fmax = ftmp;
287		} else {
288			if (ftmp >= fmin)
289				fmin = ftmp;
290		}
291	}
292	if (fmax != ~0)
293		return fmax * 1000;
294	else
295		return fmin * 1000;
296}
297
298static int ve_spc_find_performance_index(int cluster, u32 freq)
299{
300	int idx, max_opp = info->num_opps[cluster];
301	struct ve_spc_opp *opps = info->opps[cluster];
302
303	for (idx = 0; idx < max_opp; idx++, opps++)
304		if (opps->freq == freq)
305			break;
306	return (idx == max_opp) ? -EINVAL : idx;
307}
308
309static int ve_spc_waitforcompletion(int req_type)
310{
311	int ret = wait_for_completion_interruptible_timeout(
312			&info->done, usecs_to_jiffies(TIMEOUT_US));
313	if (ret == 0)
314		ret = -ETIMEDOUT;
315	else if (ret > 0)
316		ret = info->cur_rsp_stat & STAT_COMPLETE(req_type) ? 0 : -EIO;
317	return ret;
318}
319
320static int ve_spc_set_performance(int cluster, u32 freq)
321{
322	u32 perf_cfg_reg, perf_stat_reg;
323	int ret, perf, req_type;
324
325	if (cluster_is_a15(cluster)) {
326		req_type = CA15_DVFS;
327		perf_cfg_reg = PERF_LVL_A15;
328		perf_stat_reg = PERF_REQ_A15;
329	} else {
330		req_type = CA7_DVFS;
331		perf_cfg_reg = PERF_LVL_A7;
332		perf_stat_reg = PERF_REQ_A7;
333	}
334
335	perf = ve_spc_find_performance_index(cluster, freq);
336
337	if (perf < 0)
338		return perf;
339
340	if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
341		return -ETIME;
342
343	init_completion(&info->done);
344	info->cur_rsp_mask = RESPONSE_MASK(req_type);
345
346	writel(perf, info->baseaddr + perf_cfg_reg);
347	ret = ve_spc_waitforcompletion(req_type);
348
349	info->cur_rsp_mask = 0;
350	up(&info->sem);
351
352	return ret;
353}
354
355static int ve_spc_read_sys_cfg(int func, int offset, uint32_t *data)
356{
357	int ret;
358
359	if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
360		return -ETIME;
361
362	init_completion(&info->done);
363	info->cur_rsp_mask = RESPONSE_MASK(SPC_SYS_CFG);
364
365	/* Set the control value */
366	writel(SYSCFG_START | func | offset >> 2, info->baseaddr + COMMS);
367	ret = ve_spc_waitforcompletion(SPC_SYS_CFG);
368
369	if (ret == 0)
370		*data = readl(info->baseaddr + SYSCFG_RDATA);
371
372	info->cur_rsp_mask = 0;
373	up(&info->sem);
374
375	return ret;
376}
377
378static irqreturn_t ve_spc_irq_handler(int irq, void *data)
379{
380	struct ve_spc_drvdata *drv_data = data;
381	uint32_t status = readl_relaxed(drv_data->baseaddr + PWC_STATUS);
382
383	if (info->cur_rsp_mask & status) {
384		info->cur_rsp_stat = status;
385		complete(&drv_data->done);
386	}
387
388	return IRQ_HANDLED;
389}
390
391/*
392 *  +--------------------------+
393 *  | 31      20 | 19        0 |
394 *  +--------------------------+
395 *  |   m_volt   |  freq(kHz)  |
396 *  +--------------------------+
397 */
398#define MULT_FACTOR	20
399#define VOLT_SHIFT	20
400#define FREQ_MASK	(0xFFFFF)
401static int ve_spc_populate_opps(uint32_t cluster)
402{
403	uint32_t data = 0, off, ret, idx;
404	struct ve_spc_opp *opps;
405
406	opps = kzalloc(sizeof(*opps) * MAX_OPPS, GFP_KERNEL);
407	if (!opps)
408		return -ENOMEM;
409
410	info->opps[cluster] = opps;
411
412	off = cluster_is_a15(cluster) ? A15_PERFVAL_BASE : A7_PERFVAL_BASE;
413	for (idx = 0; idx < MAX_OPPS; idx++, off += 4, opps++) {
414		ret = ve_spc_read_sys_cfg(SYSCFG_SCC, off, &data);
415		if (!ret) {
416			opps->freq = (data & FREQ_MASK) * MULT_FACTOR;
417			opps->u_volt = (data >> VOLT_SHIFT) * 1000;
418		} else {
419			break;
420		}
421	}
422	info->num_opps[cluster] = idx;
423
424	return ret;
425}
426
427static int ve_init_opp_table(struct device *cpu_dev)
428{
429	int cluster = topology_physical_package_id(cpu_dev->id);
430	int idx, ret = 0, max_opp = info->num_opps[cluster];
431	struct ve_spc_opp *opps = info->opps[cluster];
432
433	for (idx = 0; idx < max_opp; idx++, opps++) {
434		ret = dev_pm_opp_add(cpu_dev, opps->freq * 1000, opps->u_volt);
435		if (ret) {
436			dev_warn(cpu_dev, "failed to add opp %lu %lu\n",
437				 opps->freq, opps->u_volt);
438			return ret;
439		}
440	}
441	return ret;
442}
443
444int __init ve_spc_init(void __iomem *baseaddr, u32 a15_clusid, int irq)
445{
446	int ret;
447	info = kzalloc(sizeof(*info), GFP_KERNEL);
448	if (!info) {
449		pr_err(SPCLOG "unable to allocate mem\n");
450		return -ENOMEM;
451	}
452
453	info->baseaddr = baseaddr;
454	info->a15_clusid = a15_clusid;
455
456	if (irq <= 0) {
457		pr_err(SPCLOG "Invalid IRQ %d\n", irq);
458		kfree(info);
459		return -EINVAL;
460	}
461
462	init_completion(&info->done);
463
464	readl_relaxed(info->baseaddr + PWC_STATUS);
465
466	ret = request_irq(irq, ve_spc_irq_handler, IRQF_TRIGGER_HIGH
467				| IRQF_ONESHOT, "vexpress-spc", info);
468	if (ret) {
469		pr_err(SPCLOG "IRQ %d request failed\n", irq);
470		kfree(info);
471		return -ENODEV;
472	}
473
474	sema_init(&info->sem, 1);
475	/*
476	 * Multi-cluster systems may need this data when non-coherent, during
477	 * cluster power-up/power-down. Make sure driver info reaches main
478	 * memory.
479	 */
480	sync_cache_w(info);
481	sync_cache_w(&info);
482
483	return 0;
484}
485
486struct clk_spc {
487	struct clk_hw hw;
488	int cluster;
489};
490
491#define to_clk_spc(spc) container_of(spc, struct clk_spc, hw)
492static unsigned long spc_recalc_rate(struct clk_hw *hw,
493		unsigned long parent_rate)
494{
495	struct clk_spc *spc = to_clk_spc(hw);
496	u32 freq;
497
498	if (ve_spc_get_performance(spc->cluster, &freq))
499		return -EIO;
500
501	return freq * 1000;
502}
503
504static long spc_round_rate(struct clk_hw *hw, unsigned long drate,
505		unsigned long *parent_rate)
506{
507	struct clk_spc *spc = to_clk_spc(hw);
508
509	return ve_spc_round_performance(spc->cluster, drate);
510}
511
512static int spc_set_rate(struct clk_hw *hw, unsigned long rate,
513		unsigned long parent_rate)
514{
515	struct clk_spc *spc = to_clk_spc(hw);
516
517	return ve_spc_set_performance(spc->cluster, rate / 1000);
518}
519
520static struct clk_ops clk_spc_ops = {
521	.recalc_rate = spc_recalc_rate,
522	.round_rate = spc_round_rate,
523	.set_rate = spc_set_rate,
524};
525
526static struct clk *ve_spc_clk_register(struct device *cpu_dev)
527{
528	struct clk_init_data init;
529	struct clk_spc *spc;
530
531	spc = kzalloc(sizeof(*spc), GFP_KERNEL);
532	if (!spc) {
533		pr_err("could not allocate spc clk\n");
534		return ERR_PTR(-ENOMEM);
535	}
536
537	spc->hw.init = &init;
538	spc->cluster = topology_physical_package_id(cpu_dev->id);
539
540	init.name = dev_name(cpu_dev);
541	init.ops = &clk_spc_ops;
542	init.flags = CLK_IS_ROOT | CLK_GET_RATE_NOCACHE;
543	init.num_parents = 0;
544
545	return devm_clk_register(cpu_dev, &spc->hw);
546}
547
548static int __init ve_spc_clk_init(void)
549{
550	int cpu;
551	struct clk *clk;
552
553	if (!info)
554		return 0; /* Continue only if SPC is initialised */
555
556	if (ve_spc_populate_opps(0) || ve_spc_populate_opps(1)) {
557		pr_err("failed to build OPP table\n");
558		return -ENODEV;
559	}
560
561	for_each_possible_cpu(cpu) {
562		struct device *cpu_dev = get_cpu_device(cpu);
563		if (!cpu_dev) {
564			pr_warn("failed to get cpu%d device\n", cpu);
565			continue;
566		}
567		clk = ve_spc_clk_register(cpu_dev);
568		if (IS_ERR(clk)) {
569			pr_warn("failed to register cpu%d clock\n", cpu);
570			continue;
571		}
572		if (clk_register_clkdev(clk, NULL, dev_name(cpu_dev))) {
573			pr_warn("failed to register cpu%d clock lookup\n", cpu);
574			continue;
575		}
576
577		if (ve_init_opp_table(cpu_dev))
578			pr_warn("failed to initialise cpu%d opp table\n", cpu);
579	}
580
581	platform_device_register_simple("vexpress-spc-cpufreq", -1, NULL, 0);
582	return 0;
583}
584module_init(ve_spc_clk_init);