Linux Audio

Check our new training course

Loading...
  1/*
  2 * Versatile Express Serial Power Controller (SPC) support
  3 *
  4 * Copyright (C) 2013 ARM Ltd.
  5 *
  6 * Authors: Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
  7 *          Achin Gupta           <achin.gupta@arm.com>
  8 *          Lorenzo Pieralisi     <lorenzo.pieralisi@arm.com>
  9 *
 10 * This program is free software; you can redistribute it and/or modify
 11 * it under the terms of the GNU General Public License version 2 as
 12 * published by the Free Software Foundation.
 13 *
 14 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 15 * kind, whether express or implied; without even the implied warranty
 16 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 17 * GNU General Public License for more details.
 18 */
 19
 20#include <linux/clk-provider.h>
 21#include <linux/clkdev.h>
 22#include <linux/cpu.h>
 23#include <linux/delay.h>
 24#include <linux/err.h>
 25#include <linux/interrupt.h>
 26#include <linux/io.h>
 27#include <linux/platform_device.h>
 28#include <linux/pm_opp.h>
 29#include <linux/slab.h>
 30#include <linux/semaphore.h>
 31
 32#include <asm/cacheflush.h>
 33
 
 
 34#define SPCLOG "vexpress-spc: "
 35
 36#define PERF_LVL_A15		0x00
 37#define PERF_REQ_A15		0x04
 38#define PERF_LVL_A7		0x08
 39#define PERF_REQ_A7		0x0c
 40#define COMMS			0x10
 41#define COMMS_REQ		0x14
 42#define PWC_STATUS		0x18
 43#define PWC_FLAG		0x1c
 44
 45/* SPC wake-up IRQs status and mask */
 46#define WAKE_INT_MASK		0x24
 47#define WAKE_INT_RAW		0x28
 48#define WAKE_INT_STAT		0x2c
 49/* SPC power down registers */
 50#define A15_PWRDN_EN		0x30
 51#define A7_PWRDN_EN		0x34
 52/* SPC per-CPU mailboxes */
 53#define A15_BX_ADDR0		0x68
 54#define A7_BX_ADDR0		0x78
 55
 56/* SPC CPU/cluster reset statue */
 57#define STANDBYWFI_STAT		0x3c
 58#define STANDBYWFI_STAT_A15_CPU_MASK(cpu)	(1 << (cpu))
 59#define STANDBYWFI_STAT_A7_CPU_MASK(cpu)	(1 << (3 + (cpu)))
 60
 61/* SPC system config interface registers */
 62#define SYSCFG_WDATA		0x70
 63#define SYSCFG_RDATA		0x74
 64
 65/* A15/A7 OPP virtual register base */
 66#define A15_PERFVAL_BASE	0xC10
 67#define A7_PERFVAL_BASE		0xC30
 68
 69/* Config interface control bits */
 70#define SYSCFG_START		(1 << 31)
 71#define SYSCFG_SCC		(6 << 20)
 72#define SYSCFG_STAT		(14 << 20)
 73
 74/* wake-up interrupt masks */
 75#define GBL_WAKEUP_INT_MSK	(0x3 << 10)
 76
 77/* TC2 static dual-cluster configuration */
 78#define MAX_CLUSTERS		2
 79
 80/*
 81 * Even though the SPC takes max 3-5 ms to complete any OPP/COMMS
 82 * operation, the operation could start just before jiffie is about
 83 * to be incremented. So setting timeout value of 20ms = 2jiffies@100Hz
 84 */
 85#define TIMEOUT_US	20000
 86
 87#define MAX_OPPS	8
 88#define CA15_DVFS	0
 89#define CA7_DVFS	1
 90#define SPC_SYS_CFG	2
 91#define STAT_COMPLETE(type)	((1 << 0) << (type << 2))
 92#define STAT_ERR(type)		((1 << 1) << (type << 2))
 93#define RESPONSE_MASK(type)	(STAT_COMPLETE(type) | STAT_ERR(type))
 94
 95struct ve_spc_opp {
 96	unsigned long freq;
 97	unsigned long u_volt;
 98};
 99
100struct ve_spc_drvdata {
101	void __iomem *baseaddr;
102	/*
103	 * A15s cluster identifier
104	 * It corresponds to A15 processors MPIDR[15:8] bitfield
105	 */
106	u32 a15_clusid;
107	uint32_t cur_rsp_mask;
108	uint32_t cur_rsp_stat;
109	struct semaphore sem;
110	struct completion done;
111	struct ve_spc_opp *opps[MAX_CLUSTERS];
112	int num_opps[MAX_CLUSTERS];
113};
114
115static struct ve_spc_drvdata *info;
116
117static inline bool cluster_is_a15(u32 cluster)
118{
119	return cluster == info->a15_clusid;
120}
121
122/**
123 * ve_spc_global_wakeup_irq()
124 *
125 * Function to set/clear global wakeup IRQs. Not protected by locking since
126 * it might be used in code paths where normal cacheable locks are not
127 * working. Locking must be provided by the caller to ensure atomicity.
128 *
129 * @set: if true, global wake-up IRQs are set, if false they are cleared
130 */
131void ve_spc_global_wakeup_irq(bool set)
132{
133	u32 reg;
134
135	reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
136
137	if (set)
138		reg |= GBL_WAKEUP_INT_MSK;
139	else
140		reg &= ~GBL_WAKEUP_INT_MSK;
141
142	writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
143}
144
145/**
146 * ve_spc_cpu_wakeup_irq()
147 *
148 * Function to set/clear per-CPU wake-up IRQs. Not protected by locking since
149 * it might be used in code paths where normal cacheable locks are not
150 * working. Locking must be provided by the caller to ensure atomicity.
151 *
152 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
153 * @cpu: mpidr[7:0] bitfield describing cpu affinity level
154 * @set: if true, wake-up IRQs are set, if false they are cleared
155 */
156void ve_spc_cpu_wakeup_irq(u32 cluster, u32 cpu, bool set)
157{
158	u32 mask, reg;
159
160	if (cluster >= MAX_CLUSTERS)
161		return;
162
163	mask = 1 << cpu;
164
165	if (!cluster_is_a15(cluster))
166		mask <<= 4;
167
168	reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
169
170	if (set)
171		reg |= mask;
172	else
173		reg &= ~mask;
174
175	writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
176}
177
178/**
179 * ve_spc_set_resume_addr() - set the jump address used for warm boot
180 *
181 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
182 * @cpu: mpidr[7:0] bitfield describing cpu affinity level
183 * @addr: physical resume address
184 */
185void ve_spc_set_resume_addr(u32 cluster, u32 cpu, u32 addr)
186{
187	void __iomem *baseaddr;
188
189	if (cluster >= MAX_CLUSTERS)
190		return;
191
192	if (cluster_is_a15(cluster))
193		baseaddr = info->baseaddr + A15_BX_ADDR0 + (cpu << 2);
194	else
195		baseaddr = info->baseaddr + A7_BX_ADDR0 + (cpu << 2);
196
197	writel_relaxed(addr, baseaddr);
198}
199
200/**
201 * ve_spc_powerdown()
202 *
203 * Function to enable/disable cluster powerdown. Not protected by locking
204 * since it might be used in code paths where normal cacheable locks are not
205 * working. Locking must be provided by the caller to ensure atomicity.
206 *
207 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
208 * @enable: if true enables powerdown, if false disables it
209 */
210void ve_spc_powerdown(u32 cluster, bool enable)
211{
212	u32 pwdrn_reg;
213
214	if (cluster >= MAX_CLUSTERS)
215		return;
216
217	pwdrn_reg = cluster_is_a15(cluster) ? A15_PWRDN_EN : A7_PWRDN_EN;
218	writel_relaxed(enable, info->baseaddr + pwdrn_reg);
219}
220
221static u32 standbywfi_cpu_mask(u32 cpu, u32 cluster)
222{
223	return cluster_is_a15(cluster) ?
224		  STANDBYWFI_STAT_A15_CPU_MASK(cpu)
225		: STANDBYWFI_STAT_A7_CPU_MASK(cpu);
226}
227
228/**
229 * ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
230 *
231 * @cpu: mpidr[7:0] bitfield describing CPU affinity level within cluster
232 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
233 *
234 * @return: non-zero if and only if the specified CPU is in WFI
235 *
236 * Take care when interpreting the result of this function: a CPU might
237 * be in WFI temporarily due to idle, and is not necessarily safely
238 * parked.
239 */
240int ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
241{
242	int ret;
243	u32 mask = standbywfi_cpu_mask(cpu, cluster);
244
245	if (cluster >= MAX_CLUSTERS)
246		return 1;
247
248	ret = readl_relaxed(info->baseaddr + STANDBYWFI_STAT);
249
250	pr_debug("%s: PCFGREG[0x%X] = 0x%08X, mask = 0x%X\n",
251		 __func__, STANDBYWFI_STAT, ret, mask);
252
253	return ret & mask;
254}
255
256static int ve_spc_get_performance(int cluster, u32 *freq)
257{
258	struct ve_spc_opp *opps = info->opps[cluster];
259	u32 perf_cfg_reg = 0;
260	u32 perf;
261
262	perf_cfg_reg = cluster_is_a15(cluster) ? PERF_LVL_A15 : PERF_LVL_A7;
263
264	perf = readl_relaxed(info->baseaddr + perf_cfg_reg);
265	if (perf >= info->num_opps[cluster])
266		return -EINVAL;
267
268	opps += perf;
269	*freq = opps->freq;
270
271	return 0;
272}
273
274/* find closest match to given frequency in OPP table */
275static int ve_spc_round_performance(int cluster, u32 freq)
276{
277	int idx, max_opp = info->num_opps[cluster];
278	struct ve_spc_opp *opps = info->opps[cluster];
279	u32 fmin = 0, fmax = ~0, ftmp;
280
281	freq /= 1000; /* OPP entries in kHz */
282	for (idx = 0; idx < max_opp; idx++, opps++) {
283		ftmp = opps->freq;
284		if (ftmp >= freq) {
285			if (ftmp <= fmax)
286				fmax = ftmp;
287		} else {
288			if (ftmp >= fmin)
289				fmin = ftmp;
290		}
291	}
292	if (fmax != ~0)
293		return fmax * 1000;
294	else
295		return fmin * 1000;
296}
297
298static int ve_spc_find_performance_index(int cluster, u32 freq)
299{
300	int idx, max_opp = info->num_opps[cluster];
301	struct ve_spc_opp *opps = info->opps[cluster];
302
303	for (idx = 0; idx < max_opp; idx++, opps++)
304		if (opps->freq == freq)
305			break;
306	return (idx == max_opp) ? -EINVAL : idx;
307}
308
309static int ve_spc_waitforcompletion(int req_type)
310{
311	int ret = wait_for_completion_interruptible_timeout(
312			&info->done, usecs_to_jiffies(TIMEOUT_US));
313	if (ret == 0)
314		ret = -ETIMEDOUT;
315	else if (ret > 0)
316		ret = info->cur_rsp_stat & STAT_COMPLETE(req_type) ? 0 : -EIO;
317	return ret;
318}
319
320static int ve_spc_set_performance(int cluster, u32 freq)
321{
322	u32 perf_cfg_reg, perf_stat_reg;
323	int ret, perf, req_type;
324
325	if (cluster_is_a15(cluster)) {
326		req_type = CA15_DVFS;
327		perf_cfg_reg = PERF_LVL_A15;
328		perf_stat_reg = PERF_REQ_A15;
329	} else {
330		req_type = CA7_DVFS;
331		perf_cfg_reg = PERF_LVL_A7;
332		perf_stat_reg = PERF_REQ_A7;
333	}
334
335	perf = ve_spc_find_performance_index(cluster, freq);
336
337	if (perf < 0)
338		return perf;
339
340	if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
341		return -ETIME;
342
343	init_completion(&info->done);
344	info->cur_rsp_mask = RESPONSE_MASK(req_type);
345
346	writel(perf, info->baseaddr + perf_cfg_reg);
347	ret = ve_spc_waitforcompletion(req_type);
348
349	info->cur_rsp_mask = 0;
350	up(&info->sem);
351
352	return ret;
353}
354
355static int ve_spc_read_sys_cfg(int func, int offset, uint32_t *data)
356{
357	int ret;
358
359	if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
360		return -ETIME;
361
362	init_completion(&info->done);
363	info->cur_rsp_mask = RESPONSE_MASK(SPC_SYS_CFG);
364
365	/* Set the control value */
366	writel(SYSCFG_START | func | offset >> 2, info->baseaddr + COMMS);
367	ret = ve_spc_waitforcompletion(SPC_SYS_CFG);
368
369	if (ret == 0)
370		*data = readl(info->baseaddr + SYSCFG_RDATA);
371
372	info->cur_rsp_mask = 0;
373	up(&info->sem);
374
375	return ret;
376}
377
378static irqreturn_t ve_spc_irq_handler(int irq, void *data)
379{
380	struct ve_spc_drvdata *drv_data = data;
381	uint32_t status = readl_relaxed(drv_data->baseaddr + PWC_STATUS);
382
383	if (info->cur_rsp_mask & status) {
384		info->cur_rsp_stat = status;
385		complete(&drv_data->done);
386	}
387
388	return IRQ_HANDLED;
389}
390
391/*
392 *  +--------------------------+
393 *  | 31      20 | 19        0 |
394 *  +--------------------------+
395 *  |   m_volt   |  freq(kHz)  |
396 *  +--------------------------+
397 */
398#define MULT_FACTOR	20
399#define VOLT_SHIFT	20
400#define FREQ_MASK	(0xFFFFF)
401static int ve_spc_populate_opps(uint32_t cluster)
402{
403	uint32_t data = 0, off, ret, idx;
404	struct ve_spc_opp *opps;
405
406	opps = kzalloc(sizeof(*opps) * MAX_OPPS, GFP_KERNEL);
407	if (!opps)
408		return -ENOMEM;
409
410	info->opps[cluster] = opps;
411
412	off = cluster_is_a15(cluster) ? A15_PERFVAL_BASE : A7_PERFVAL_BASE;
413	for (idx = 0; idx < MAX_OPPS; idx++, off += 4, opps++) {
414		ret = ve_spc_read_sys_cfg(SYSCFG_SCC, off, &data);
415		if (!ret) {
416			opps->freq = (data & FREQ_MASK) * MULT_FACTOR;
417			opps->u_volt = (data >> VOLT_SHIFT) * 1000;
418		} else {
419			break;
420		}
421	}
422	info->num_opps[cluster] = idx;
423
424	return ret;
425}
426
427static int ve_init_opp_table(struct device *cpu_dev)
428{
429	int cluster = topology_physical_package_id(cpu_dev->id);
430	int idx, ret = 0, max_opp = info->num_opps[cluster];
431	struct ve_spc_opp *opps = info->opps[cluster];
 
 
 
 
 
 
432
433	for (idx = 0; idx < max_opp; idx++, opps++) {
434		ret = dev_pm_opp_add(cpu_dev, opps->freq * 1000, opps->u_volt);
435		if (ret) {
436			dev_warn(cpu_dev, "failed to add opp %lu %lu\n",
437				 opps->freq, opps->u_volt);
438			return ret;
439		}
440	}
441	return ret;
442}
443
444int __init ve_spc_init(void __iomem *baseaddr, u32 a15_clusid, int irq)
445{
446	int ret;
447	info = kzalloc(sizeof(*info), GFP_KERNEL);
448	if (!info) {
449		pr_err(SPCLOG "unable to allocate mem\n");
450		return -ENOMEM;
451	}
452
453	info->baseaddr = baseaddr;
454	info->a15_clusid = a15_clusid;
455
456	if (irq <= 0) {
457		pr_err(SPCLOG "Invalid IRQ %d\n", irq);
458		kfree(info);
459		return -EINVAL;
460	}
461
462	init_completion(&info->done);
463
464	readl_relaxed(info->baseaddr + PWC_STATUS);
465
466	ret = request_irq(irq, ve_spc_irq_handler, IRQF_TRIGGER_HIGH
467				| IRQF_ONESHOT, "vexpress-spc", info);
468	if (ret) {
469		pr_err(SPCLOG "IRQ %d request failed\n", irq);
470		kfree(info);
471		return -ENODEV;
472	}
473
474	sema_init(&info->sem, 1);
475	/*
476	 * Multi-cluster systems may need this data when non-coherent, during
477	 * cluster power-up/power-down. Make sure driver info reaches main
478	 * memory.
479	 */
480	sync_cache_w(info);
481	sync_cache_w(&info);
482
483	return 0;
484}
485
486struct clk_spc {
487	struct clk_hw hw;
488	int cluster;
489};
490
491#define to_clk_spc(spc) container_of(spc, struct clk_spc, hw)
492static unsigned long spc_recalc_rate(struct clk_hw *hw,
493		unsigned long parent_rate)
494{
495	struct clk_spc *spc = to_clk_spc(hw);
496	u32 freq;
497
498	if (ve_spc_get_performance(spc->cluster, &freq))
499		return -EIO;
500
501	return freq * 1000;
502}
503
504static long spc_round_rate(struct clk_hw *hw, unsigned long drate,
505		unsigned long *parent_rate)
506{
507	struct clk_spc *spc = to_clk_spc(hw);
508
509	return ve_spc_round_performance(spc->cluster, drate);
510}
511
512static int spc_set_rate(struct clk_hw *hw, unsigned long rate,
513		unsigned long parent_rate)
514{
515	struct clk_spc *spc = to_clk_spc(hw);
516
517	return ve_spc_set_performance(spc->cluster, rate / 1000);
518}
519
520static struct clk_ops clk_spc_ops = {
521	.recalc_rate = spc_recalc_rate,
522	.round_rate = spc_round_rate,
523	.set_rate = spc_set_rate,
524};
525
526static struct clk *ve_spc_clk_register(struct device *cpu_dev)
527{
528	struct clk_init_data init;
529	struct clk_spc *spc;
530
531	spc = kzalloc(sizeof(*spc), GFP_KERNEL);
532	if (!spc) {
533		pr_err("could not allocate spc clk\n");
534		return ERR_PTR(-ENOMEM);
535	}
536
537	spc->hw.init = &init;
538	spc->cluster = topology_physical_package_id(cpu_dev->id);
539
 
 
540	init.name = dev_name(cpu_dev);
541	init.ops = &clk_spc_ops;
542	init.flags = CLK_IS_ROOT | CLK_GET_RATE_NOCACHE;
543	init.num_parents = 0;
544
545	return devm_clk_register(cpu_dev, &spc->hw);
546}
547
548static int __init ve_spc_clk_init(void)
549{
550	int cpu;
551	struct clk *clk;
552
553	if (!info)
554		return 0; /* Continue only if SPC is initialised */
555
556	if (ve_spc_populate_opps(0) || ve_spc_populate_opps(1)) {
557		pr_err("failed to build OPP table\n");
558		return -ENODEV;
559	}
560
561	for_each_possible_cpu(cpu) {
562		struct device *cpu_dev = get_cpu_device(cpu);
563		if (!cpu_dev) {
564			pr_warn("failed to get cpu%d device\n", cpu);
565			continue;
566		}
567		clk = ve_spc_clk_register(cpu_dev);
568		if (IS_ERR(clk)) {
569			pr_warn("failed to register cpu%d clock\n", cpu);
570			continue;
571		}
572		if (clk_register_clkdev(clk, NULL, dev_name(cpu_dev))) {
573			pr_warn("failed to register cpu%d clock lookup\n", cpu);
574			continue;
575		}
576
577		if (ve_init_opp_table(cpu_dev))
578			pr_warn("failed to initialise cpu%d opp table\n", cpu);
579	}
580
581	platform_device_register_simple("vexpress-spc-cpufreq", -1, NULL, 0);
582	return 0;
583}
584module_init(ve_spc_clk_init);
  1/*
  2 * Versatile Express Serial Power Controller (SPC) support
  3 *
  4 * Copyright (C) 2013 ARM Ltd.
  5 *
  6 * Authors: Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
  7 *          Achin Gupta           <achin.gupta@arm.com>
  8 *          Lorenzo Pieralisi     <lorenzo.pieralisi@arm.com>
  9 *
 10 * This program is free software; you can redistribute it and/or modify
 11 * it under the terms of the GNU General Public License version 2 as
 12 * published by the Free Software Foundation.
 13 *
 14 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 15 * kind, whether express or implied; without even the implied warranty
 16 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 17 * GNU General Public License for more details.
 18 */
 19
 20#include <linux/clk-provider.h>
 21#include <linux/clkdev.h>
 22#include <linux/cpu.h>
 23#include <linux/delay.h>
 24#include <linux/err.h>
 25#include <linux/interrupt.h>
 26#include <linux/io.h>
 27#include <linux/platform_device.h>
 28#include <linux/pm_opp.h>
 29#include <linux/slab.h>
 30#include <linux/semaphore.h>
 31
 32#include <asm/cacheflush.h>
 33
 34#include "spc.h"
 35
 36#define SPCLOG "vexpress-spc: "
 37
 38#define PERF_LVL_A15		0x00
 39#define PERF_REQ_A15		0x04
 40#define PERF_LVL_A7		0x08
 41#define PERF_REQ_A7		0x0c
 42#define COMMS			0x10
 43#define COMMS_REQ		0x14
 44#define PWC_STATUS		0x18
 45#define PWC_FLAG		0x1c
 46
 47/* SPC wake-up IRQs status and mask */
 48#define WAKE_INT_MASK		0x24
 49#define WAKE_INT_RAW		0x28
 50#define WAKE_INT_STAT		0x2c
 51/* SPC power down registers */
 52#define A15_PWRDN_EN		0x30
 53#define A7_PWRDN_EN		0x34
 54/* SPC per-CPU mailboxes */
 55#define A15_BX_ADDR0		0x68
 56#define A7_BX_ADDR0		0x78
 57
 58/* SPC CPU/cluster reset statue */
 59#define STANDBYWFI_STAT		0x3c
 60#define STANDBYWFI_STAT_A15_CPU_MASK(cpu)	(1 << (cpu))
 61#define STANDBYWFI_STAT_A7_CPU_MASK(cpu)	(1 << (3 + (cpu)))
 62
 63/* SPC system config interface registers */
 64#define SYSCFG_WDATA		0x70
 65#define SYSCFG_RDATA		0x74
 66
 67/* A15/A7 OPP virtual register base */
 68#define A15_PERFVAL_BASE	0xC10
 69#define A7_PERFVAL_BASE		0xC30
 70
 71/* Config interface control bits */
 72#define SYSCFG_START		(1 << 31)
 73#define SYSCFG_SCC		(6 << 20)
 74#define SYSCFG_STAT		(14 << 20)
 75
 76/* wake-up interrupt masks */
 77#define GBL_WAKEUP_INT_MSK	(0x3 << 10)
 78
 79/* TC2 static dual-cluster configuration */
 80#define MAX_CLUSTERS		2
 81
 82/*
 83 * Even though the SPC takes max 3-5 ms to complete any OPP/COMMS
 84 * operation, the operation could start just before jiffie is about
 85 * to be incremented. So setting timeout value of 20ms = 2jiffies@100Hz
 86 */
 87#define TIMEOUT_US	20000
 88
 89#define MAX_OPPS	8
 90#define CA15_DVFS	0
 91#define CA7_DVFS	1
 92#define SPC_SYS_CFG	2
 93#define STAT_COMPLETE(type)	((1 << 0) << (type << 2))
 94#define STAT_ERR(type)		((1 << 1) << (type << 2))
 95#define RESPONSE_MASK(type)	(STAT_COMPLETE(type) | STAT_ERR(type))
 96
 97struct ve_spc_opp {
 98	unsigned long freq;
 99	unsigned long u_volt;
100};
101
102struct ve_spc_drvdata {
103	void __iomem *baseaddr;
104	/*
105	 * A15s cluster identifier
106	 * It corresponds to A15 processors MPIDR[15:8] bitfield
107	 */
108	u32 a15_clusid;
109	uint32_t cur_rsp_mask;
110	uint32_t cur_rsp_stat;
111	struct semaphore sem;
112	struct completion done;
113	struct ve_spc_opp *opps[MAX_CLUSTERS];
114	int num_opps[MAX_CLUSTERS];
115};
116
117static struct ve_spc_drvdata *info;
118
119static inline bool cluster_is_a15(u32 cluster)
120{
121	return cluster == info->a15_clusid;
122}
123
124/**
125 * ve_spc_global_wakeup_irq()
126 *
127 * Function to set/clear global wakeup IRQs. Not protected by locking since
128 * it might be used in code paths where normal cacheable locks are not
129 * working. Locking must be provided by the caller to ensure atomicity.
130 *
131 * @set: if true, global wake-up IRQs are set, if false they are cleared
132 */
133void ve_spc_global_wakeup_irq(bool set)
134{
135	u32 reg;
136
137	reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
138
139	if (set)
140		reg |= GBL_WAKEUP_INT_MSK;
141	else
142		reg &= ~GBL_WAKEUP_INT_MSK;
143
144	writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
145}
146
147/**
148 * ve_spc_cpu_wakeup_irq()
149 *
150 * Function to set/clear per-CPU wake-up IRQs. Not protected by locking since
151 * it might be used in code paths where normal cacheable locks are not
152 * working. Locking must be provided by the caller to ensure atomicity.
153 *
154 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
155 * @cpu: mpidr[7:0] bitfield describing cpu affinity level
156 * @set: if true, wake-up IRQs are set, if false they are cleared
157 */
158void ve_spc_cpu_wakeup_irq(u32 cluster, u32 cpu, bool set)
159{
160	u32 mask, reg;
161
162	if (cluster >= MAX_CLUSTERS)
163		return;
164
165	mask = 1 << cpu;
166
167	if (!cluster_is_a15(cluster))
168		mask <<= 4;
169
170	reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
171
172	if (set)
173		reg |= mask;
174	else
175		reg &= ~mask;
176
177	writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
178}
179
180/**
181 * ve_spc_set_resume_addr() - set the jump address used for warm boot
182 *
183 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
184 * @cpu: mpidr[7:0] bitfield describing cpu affinity level
185 * @addr: physical resume address
186 */
187void ve_spc_set_resume_addr(u32 cluster, u32 cpu, u32 addr)
188{
189	void __iomem *baseaddr;
190
191	if (cluster >= MAX_CLUSTERS)
192		return;
193
194	if (cluster_is_a15(cluster))
195		baseaddr = info->baseaddr + A15_BX_ADDR0 + (cpu << 2);
196	else
197		baseaddr = info->baseaddr + A7_BX_ADDR0 + (cpu << 2);
198
199	writel_relaxed(addr, baseaddr);
200}
201
202/**
203 * ve_spc_powerdown()
204 *
205 * Function to enable/disable cluster powerdown. Not protected by locking
206 * since it might be used in code paths where normal cacheable locks are not
207 * working. Locking must be provided by the caller to ensure atomicity.
208 *
209 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
210 * @enable: if true enables powerdown, if false disables it
211 */
212void ve_spc_powerdown(u32 cluster, bool enable)
213{
214	u32 pwdrn_reg;
215
216	if (cluster >= MAX_CLUSTERS)
217		return;
218
219	pwdrn_reg = cluster_is_a15(cluster) ? A15_PWRDN_EN : A7_PWRDN_EN;
220	writel_relaxed(enable, info->baseaddr + pwdrn_reg);
221}
222
223static u32 standbywfi_cpu_mask(u32 cpu, u32 cluster)
224{
225	return cluster_is_a15(cluster) ?
226		  STANDBYWFI_STAT_A15_CPU_MASK(cpu)
227		: STANDBYWFI_STAT_A7_CPU_MASK(cpu);
228}
229
230/**
231 * ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
232 *
233 * @cpu: mpidr[7:0] bitfield describing CPU affinity level within cluster
234 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
235 *
236 * @return: non-zero if and only if the specified CPU is in WFI
237 *
238 * Take care when interpreting the result of this function: a CPU might
239 * be in WFI temporarily due to idle, and is not necessarily safely
240 * parked.
241 */
242int ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
243{
244	int ret;
245	u32 mask = standbywfi_cpu_mask(cpu, cluster);
246
247	if (cluster >= MAX_CLUSTERS)
248		return 1;
249
250	ret = readl_relaxed(info->baseaddr + STANDBYWFI_STAT);
251
252	pr_debug("%s: PCFGREG[0x%X] = 0x%08X, mask = 0x%X\n",
253		 __func__, STANDBYWFI_STAT, ret, mask);
254
255	return ret & mask;
256}
257
258static int ve_spc_get_performance(int cluster, u32 *freq)
259{
260	struct ve_spc_opp *opps = info->opps[cluster];
261	u32 perf_cfg_reg = 0;
262	u32 perf;
263
264	perf_cfg_reg = cluster_is_a15(cluster) ? PERF_LVL_A15 : PERF_LVL_A7;
265
266	perf = readl_relaxed(info->baseaddr + perf_cfg_reg);
267	if (perf >= info->num_opps[cluster])
268		return -EINVAL;
269
270	opps += perf;
271	*freq = opps->freq;
272
273	return 0;
274}
275
276/* find closest match to given frequency in OPP table */
277static int ve_spc_round_performance(int cluster, u32 freq)
278{
279	int idx, max_opp = info->num_opps[cluster];
280	struct ve_spc_opp *opps = info->opps[cluster];
281	u32 fmin = 0, fmax = ~0, ftmp;
282
283	freq /= 1000; /* OPP entries in kHz */
284	for (idx = 0; idx < max_opp; idx++, opps++) {
285		ftmp = opps->freq;
286		if (ftmp >= freq) {
287			if (ftmp <= fmax)
288				fmax = ftmp;
289		} else {
290			if (ftmp >= fmin)
291				fmin = ftmp;
292		}
293	}
294	if (fmax != ~0)
295		return fmax * 1000;
296	else
297		return fmin * 1000;
298}
299
300static int ve_spc_find_performance_index(int cluster, u32 freq)
301{
302	int idx, max_opp = info->num_opps[cluster];
303	struct ve_spc_opp *opps = info->opps[cluster];
304
305	for (idx = 0; idx < max_opp; idx++, opps++)
306		if (opps->freq == freq)
307			break;
308	return (idx == max_opp) ? -EINVAL : idx;
309}
310
311static int ve_spc_waitforcompletion(int req_type)
312{
313	int ret = wait_for_completion_interruptible_timeout(
314			&info->done, usecs_to_jiffies(TIMEOUT_US));
315	if (ret == 0)
316		ret = -ETIMEDOUT;
317	else if (ret > 0)
318		ret = info->cur_rsp_stat & STAT_COMPLETE(req_type) ? 0 : -EIO;
319	return ret;
320}
321
322static int ve_spc_set_performance(int cluster, u32 freq)
323{
324	u32 perf_cfg_reg;
325	int ret, perf, req_type;
326
327	if (cluster_is_a15(cluster)) {
328		req_type = CA15_DVFS;
329		perf_cfg_reg = PERF_LVL_A15;
 
330	} else {
331		req_type = CA7_DVFS;
332		perf_cfg_reg = PERF_LVL_A7;
 
333	}
334
335	perf = ve_spc_find_performance_index(cluster, freq);
336
337	if (perf < 0)
338		return perf;
339
340	if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
341		return -ETIME;
342
343	init_completion(&info->done);
344	info->cur_rsp_mask = RESPONSE_MASK(req_type);
345
346	writel(perf, info->baseaddr + perf_cfg_reg);
347	ret = ve_spc_waitforcompletion(req_type);
348
349	info->cur_rsp_mask = 0;
350	up(&info->sem);
351
352	return ret;
353}
354
355static int ve_spc_read_sys_cfg(int func, int offset, uint32_t *data)
356{
357	int ret;
358
359	if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
360		return -ETIME;
361
362	init_completion(&info->done);
363	info->cur_rsp_mask = RESPONSE_MASK(SPC_SYS_CFG);
364
365	/* Set the control value */
366	writel(SYSCFG_START | func | offset >> 2, info->baseaddr + COMMS);
367	ret = ve_spc_waitforcompletion(SPC_SYS_CFG);
368
369	if (ret == 0)
370		*data = readl(info->baseaddr + SYSCFG_RDATA);
371
372	info->cur_rsp_mask = 0;
373	up(&info->sem);
374
375	return ret;
376}
377
378static irqreturn_t ve_spc_irq_handler(int irq, void *data)
379{
380	struct ve_spc_drvdata *drv_data = data;
381	uint32_t status = readl_relaxed(drv_data->baseaddr + PWC_STATUS);
382
383	if (info->cur_rsp_mask & status) {
384		info->cur_rsp_stat = status;
385		complete(&drv_data->done);
386	}
387
388	return IRQ_HANDLED;
389}
390
391/*
392 *  +--------------------------+
393 *  | 31      20 | 19        0 |
394 *  +--------------------------+
395 *  |   m_volt   |  freq(kHz)  |
396 *  +--------------------------+
397 */
398#define MULT_FACTOR	20
399#define VOLT_SHIFT	20
400#define FREQ_MASK	(0xFFFFF)
401static int ve_spc_populate_opps(uint32_t cluster)
402{
403	uint32_t data = 0, off, ret, idx;
404	struct ve_spc_opp *opps;
405
406	opps = kzalloc(sizeof(*opps) * MAX_OPPS, GFP_KERNEL);
407	if (!opps)
408		return -ENOMEM;
409
410	info->opps[cluster] = opps;
411
412	off = cluster_is_a15(cluster) ? A15_PERFVAL_BASE : A7_PERFVAL_BASE;
413	for (idx = 0; idx < MAX_OPPS; idx++, off += 4, opps++) {
414		ret = ve_spc_read_sys_cfg(SYSCFG_SCC, off, &data);
415		if (!ret) {
416			opps->freq = (data & FREQ_MASK) * MULT_FACTOR;
417			opps->u_volt = (data >> VOLT_SHIFT) * 1000;
418		} else {
419			break;
420		}
421	}
422	info->num_opps[cluster] = idx;
423
424	return ret;
425}
426
427static int ve_init_opp_table(struct device *cpu_dev)
428{
429	int cluster;
430	int idx, ret = 0, max_opp;
431	struct ve_spc_opp *opps;
432
433	cluster = topology_physical_package_id(cpu_dev->id);
434	cluster = cluster < 0 ? 0 : cluster;
435
436	max_opp = info->num_opps[cluster];
437	opps = info->opps[cluster];
438
439	for (idx = 0; idx < max_opp; idx++, opps++) {
440		ret = dev_pm_opp_add(cpu_dev, opps->freq * 1000, opps->u_volt);
441		if (ret) {
442			dev_warn(cpu_dev, "failed to add opp %lu %lu\n",
443				 opps->freq, opps->u_volt);
444			return ret;
445		}
446	}
447	return ret;
448}
449
450int __init ve_spc_init(void __iomem *baseaddr, u32 a15_clusid, int irq)
451{
452	int ret;
453	info = kzalloc(sizeof(*info), GFP_KERNEL);
454	if (!info) {
455		pr_err(SPCLOG "unable to allocate mem\n");
456		return -ENOMEM;
457	}
458
459	info->baseaddr = baseaddr;
460	info->a15_clusid = a15_clusid;
461
462	if (irq <= 0) {
463		pr_err(SPCLOG "Invalid IRQ %d\n", irq);
464		kfree(info);
465		return -EINVAL;
466	}
467
468	init_completion(&info->done);
469
470	readl_relaxed(info->baseaddr + PWC_STATUS);
471
472	ret = request_irq(irq, ve_spc_irq_handler, IRQF_TRIGGER_HIGH
473				| IRQF_ONESHOT, "vexpress-spc", info);
474	if (ret) {
475		pr_err(SPCLOG "IRQ %d request failed\n", irq);
476		kfree(info);
477		return -ENODEV;
478	}
479
480	sema_init(&info->sem, 1);
481	/*
482	 * Multi-cluster systems may need this data when non-coherent, during
483	 * cluster power-up/power-down. Make sure driver info reaches main
484	 * memory.
485	 */
486	sync_cache_w(info);
487	sync_cache_w(&info);
488
489	return 0;
490}
491
492struct clk_spc {
493	struct clk_hw hw;
494	int cluster;
495};
496
497#define to_clk_spc(spc) container_of(spc, struct clk_spc, hw)
498static unsigned long spc_recalc_rate(struct clk_hw *hw,
499		unsigned long parent_rate)
500{
501	struct clk_spc *spc = to_clk_spc(hw);
502	u32 freq;
503
504	if (ve_spc_get_performance(spc->cluster, &freq))
505		return -EIO;
506
507	return freq * 1000;
508}
509
510static long spc_round_rate(struct clk_hw *hw, unsigned long drate,
511		unsigned long *parent_rate)
512{
513	struct clk_spc *spc = to_clk_spc(hw);
514
515	return ve_spc_round_performance(spc->cluster, drate);
516}
517
518static int spc_set_rate(struct clk_hw *hw, unsigned long rate,
519		unsigned long parent_rate)
520{
521	struct clk_spc *spc = to_clk_spc(hw);
522
523	return ve_spc_set_performance(spc->cluster, rate / 1000);
524}
525
526static struct clk_ops clk_spc_ops = {
527	.recalc_rate = spc_recalc_rate,
528	.round_rate = spc_round_rate,
529	.set_rate = spc_set_rate,
530};
531
532static struct clk *ve_spc_clk_register(struct device *cpu_dev)
533{
534	struct clk_init_data init;
535	struct clk_spc *spc;
536
537	spc = kzalloc(sizeof(*spc), GFP_KERNEL);
538	if (!spc) {
539		pr_err("could not allocate spc clk\n");
540		return ERR_PTR(-ENOMEM);
541	}
542
543	spc->hw.init = &init;
544	spc->cluster = topology_physical_package_id(cpu_dev->id);
545
546	spc->cluster = spc->cluster < 0 ? 0 : spc->cluster;
547
548	init.name = dev_name(cpu_dev);
549	init.ops = &clk_spc_ops;
550	init.flags = CLK_GET_RATE_NOCACHE;
551	init.num_parents = 0;
552
553	return devm_clk_register(cpu_dev, &spc->hw);
554}
555
556static int __init ve_spc_clk_init(void)
557{
558	int cpu;
559	struct clk *clk;
560
561	if (!info)
562		return 0; /* Continue only if SPC is initialised */
563
564	if (ve_spc_populate_opps(0) || ve_spc_populate_opps(1)) {
565		pr_err("failed to build OPP table\n");
566		return -ENODEV;
567	}
568
569	for_each_possible_cpu(cpu) {
570		struct device *cpu_dev = get_cpu_device(cpu);
571		if (!cpu_dev) {
572			pr_warn("failed to get cpu%d device\n", cpu);
573			continue;
574		}
575		clk = ve_spc_clk_register(cpu_dev);
576		if (IS_ERR(clk)) {
577			pr_warn("failed to register cpu%d clock\n", cpu);
578			continue;
579		}
580		if (clk_register_clkdev(clk, NULL, dev_name(cpu_dev))) {
581			pr_warn("failed to register cpu%d clock lookup\n", cpu);
582			continue;
583		}
584
585		if (ve_init_opp_table(cpu_dev))
586			pr_warn("failed to initialise cpu%d opp table\n", cpu);
587	}
588
589	platform_device_register_simple("vexpress-spc-cpufreq", -1, NULL, 0);
590	return 0;
591}
592device_initcall(ve_spc_clk_init);