Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * Implementation of the kernel access vector cache (AVC).
  3 *
  4 * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
  5 *	     James Morris <jmorris@redhat.com>
  6 *
  7 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
  8 *	Replaced the avc_lock spinlock by RCU.
  9 *
 10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 11 *
 12 *	This program is free software; you can redistribute it and/or modify
 13 *	it under the terms of the GNU General Public License version 2,
 14 *	as published by the Free Software Foundation.
 15 */
 16#include <linux/types.h>
 17#include <linux/stddef.h>
 18#include <linux/kernel.h>
 19#include <linux/slab.h>
 20#include <linux/fs.h>
 21#include <linux/dcache.h>
 22#include <linux/init.h>
 23#include <linux/skbuff.h>
 24#include <linux/percpu.h>
 25#include <net/sock.h>
 26#include <linux/un.h>
 27#include <net/af_unix.h>
 28#include <linux/ip.h>
 29#include <linux/audit.h>
 30#include <linux/ipv6.h>
 31#include <net/ipv6.h>
 32#include "avc.h"
 33#include "avc_ss.h"
 34#include "classmap.h"
 35
 36#define AVC_CACHE_SLOTS			512
 37#define AVC_DEF_CACHE_THRESHOLD		512
 38#define AVC_CACHE_RECLAIM		16
 39
 40#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
 41#define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
 42#else
 43#define avc_cache_stats_incr(field)	do {} while (0)
 44#endif
 45
 46struct avc_entry {
 47	u32			ssid;
 48	u32			tsid;
 49	u16			tclass;
 50	struct av_decision	avd;
 51};
 52
 53struct avc_node {
 54	struct avc_entry	ae;
 55	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
 56	struct rcu_head		rhead;
 57};
 58
 59struct avc_cache {
 60	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
 61	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
 62	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
 63	atomic_t		active_nodes;
 64	u32			latest_notif;	/* latest revocation notification */
 65};
 66
 67struct avc_callback_node {
 68	int (*callback) (u32 event);
 
 
 69	u32 events;
 
 
 
 
 70	struct avc_callback_node *next;
 71};
 72
 73/* Exported via selinufs */
 74unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
 75
 76#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
 77DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
 78#endif
 79
 80static struct avc_cache avc_cache;
 81static struct avc_callback_node *avc_callbacks;
 82static struct kmem_cache *avc_node_cachep;
 83
 84static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
 85{
 86	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
 87}
 88
 89/**
 90 * avc_dump_av - Display an access vector in human-readable form.
 91 * @tclass: target security class
 92 * @av: access vector
 93 */
 94static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
 95{
 96	const char **perms;
 97	int i, perm;
 98
 99	if (av == 0) {
100		audit_log_format(ab, " null");
101		return;
102	}
103
104	perms = secclass_map[tclass-1].perms;
105
106	audit_log_format(ab, " {");
107	i = 0;
108	perm = 1;
109	while (i < (sizeof(av) * 8)) {
110		if ((perm & av) && perms[i]) {
111			audit_log_format(ab, " %s", perms[i]);
112			av &= ~perm;
113		}
114		i++;
115		perm <<= 1;
116	}
117
118	if (av)
119		audit_log_format(ab, " 0x%x", av);
120
121	audit_log_format(ab, " }");
122}
123
124/**
125 * avc_dump_query - Display a SID pair and a class in human-readable form.
126 * @ssid: source security identifier
127 * @tsid: target security identifier
128 * @tclass: target security class
129 */
130static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
131{
132	int rc;
133	char *scontext;
134	u32 scontext_len;
135
136	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
137	if (rc)
138		audit_log_format(ab, "ssid=%d", ssid);
139	else {
140		audit_log_format(ab, "scontext=%s", scontext);
141		kfree(scontext);
142	}
143
144	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
145	if (rc)
146		audit_log_format(ab, " tsid=%d", tsid);
147	else {
148		audit_log_format(ab, " tcontext=%s", scontext);
149		kfree(scontext);
150	}
151
152	BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
153	audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
154}
155
156/**
157 * avc_init - Initialize the AVC.
158 *
159 * Initialize the access vector cache.
160 */
161void __init avc_init(void)
162{
163	int i;
164
165	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
166		INIT_HLIST_HEAD(&avc_cache.slots[i]);
167		spin_lock_init(&avc_cache.slots_lock[i]);
168	}
169	atomic_set(&avc_cache.active_nodes, 0);
170	atomic_set(&avc_cache.lru_hint, 0);
171
172	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
173					     0, SLAB_PANIC, NULL);
174
175	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
176}
177
178int avc_get_hash_stats(char *page)
179{
180	int i, chain_len, max_chain_len, slots_used;
181	struct avc_node *node;
182	struct hlist_head *head;
183
184	rcu_read_lock();
185
186	slots_used = 0;
187	max_chain_len = 0;
188	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
189		head = &avc_cache.slots[i];
190		if (!hlist_empty(head)) {
 
 
191			slots_used++;
192			chain_len = 0;
193			hlist_for_each_entry_rcu(node, head, list)
194				chain_len++;
195			if (chain_len > max_chain_len)
196				max_chain_len = chain_len;
197		}
198	}
199
200	rcu_read_unlock();
201
202	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
203			 "longest chain: %d\n",
204			 atomic_read(&avc_cache.active_nodes),
205			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
206}
207
208static void avc_node_free(struct rcu_head *rhead)
209{
210	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
211	kmem_cache_free(avc_node_cachep, node);
212	avc_cache_stats_incr(frees);
213}
214
215static void avc_node_delete(struct avc_node *node)
216{
217	hlist_del_rcu(&node->list);
218	call_rcu(&node->rhead, avc_node_free);
219	atomic_dec(&avc_cache.active_nodes);
220}
221
222static void avc_node_kill(struct avc_node *node)
223{
224	kmem_cache_free(avc_node_cachep, node);
225	avc_cache_stats_incr(frees);
226	atomic_dec(&avc_cache.active_nodes);
227}
228
229static void avc_node_replace(struct avc_node *new, struct avc_node *old)
230{
231	hlist_replace_rcu(&old->list, &new->list);
232	call_rcu(&old->rhead, avc_node_free);
233	atomic_dec(&avc_cache.active_nodes);
234}
235
236static inline int avc_reclaim_node(void)
237{
238	struct avc_node *node;
239	int hvalue, try, ecx;
240	unsigned long flags;
241	struct hlist_head *head;
 
242	spinlock_t *lock;
243
244	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
245		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
246		head = &avc_cache.slots[hvalue];
247		lock = &avc_cache.slots_lock[hvalue];
248
249		if (!spin_trylock_irqsave(lock, flags))
250			continue;
251
252		rcu_read_lock();
253		hlist_for_each_entry(node, head, list) {
254			avc_node_delete(node);
255			avc_cache_stats_incr(reclaims);
256			ecx++;
257			if (ecx >= AVC_CACHE_RECLAIM) {
258				rcu_read_unlock();
259				spin_unlock_irqrestore(lock, flags);
260				goto out;
261			}
262		}
263		rcu_read_unlock();
264		spin_unlock_irqrestore(lock, flags);
265	}
266out:
267	return ecx;
268}
269
270static struct avc_node *avc_alloc_node(void)
271{
272	struct avc_node *node;
273
274	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC|__GFP_NOMEMALLOC);
275	if (!node)
276		goto out;
277
278	INIT_HLIST_NODE(&node->list);
279	avc_cache_stats_incr(allocations);
280
281	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
282		avc_reclaim_node();
283
284out:
285	return node;
286}
287
288static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
289{
290	node->ae.ssid = ssid;
291	node->ae.tsid = tsid;
292	node->ae.tclass = tclass;
293	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
294}
295
296static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
297{
298	struct avc_node *node, *ret = NULL;
299	int hvalue;
300	struct hlist_head *head;
 
301
302	hvalue = avc_hash(ssid, tsid, tclass);
303	head = &avc_cache.slots[hvalue];
304	hlist_for_each_entry_rcu(node, head, list) {
305		if (ssid == node->ae.ssid &&
306		    tclass == node->ae.tclass &&
307		    tsid == node->ae.tsid) {
308			ret = node;
309			break;
310		}
311	}
312
313	return ret;
314}
315
316/**
317 * avc_lookup - Look up an AVC entry.
318 * @ssid: source security identifier
319 * @tsid: target security identifier
320 * @tclass: target security class
321 *
322 * Look up an AVC entry that is valid for the
323 * (@ssid, @tsid), interpreting the permissions
324 * based on @tclass.  If a valid AVC entry exists,
325 * then this function returns the avc_node.
326 * Otherwise, this function returns NULL.
327 */
328static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
329{
330	struct avc_node *node;
331
332	avc_cache_stats_incr(lookups);
333	node = avc_search_node(ssid, tsid, tclass);
334
335	if (node)
336		return node;
337
338	avc_cache_stats_incr(misses);
339	return NULL;
340}
341
342static int avc_latest_notif_update(int seqno, int is_insert)
343{
344	int ret = 0;
345	static DEFINE_SPINLOCK(notif_lock);
346	unsigned long flag;
347
348	spin_lock_irqsave(&notif_lock, flag);
349	if (is_insert) {
350		if (seqno < avc_cache.latest_notif) {
351			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
352			       seqno, avc_cache.latest_notif);
353			ret = -EAGAIN;
354		}
355	} else {
356		if (seqno > avc_cache.latest_notif)
357			avc_cache.latest_notif = seqno;
358	}
359	spin_unlock_irqrestore(&notif_lock, flag);
360
361	return ret;
362}
363
364/**
365 * avc_insert - Insert an AVC entry.
366 * @ssid: source security identifier
367 * @tsid: target security identifier
368 * @tclass: target security class
369 * @avd: resulting av decision
370 *
371 * Insert an AVC entry for the SID pair
372 * (@ssid, @tsid) and class @tclass.
373 * The access vectors and the sequence number are
374 * normally provided by the security server in
375 * response to a security_compute_av() call.  If the
376 * sequence number @avd->seqno is not less than the latest
377 * revocation notification, then the function copies
378 * the access vectors into a cache entry, returns
379 * avc_node inserted. Otherwise, this function returns NULL.
380 */
381static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
382{
383	struct avc_node *pos, *node = NULL;
384	int hvalue;
385	unsigned long flag;
386
387	if (avc_latest_notif_update(avd->seqno, 1))
388		goto out;
389
390	node = avc_alloc_node();
391	if (node) {
392		struct hlist_head *head;
 
393		spinlock_t *lock;
394
395		hvalue = avc_hash(ssid, tsid, tclass);
396		avc_node_populate(node, ssid, tsid, tclass, avd);
397
398		head = &avc_cache.slots[hvalue];
399		lock = &avc_cache.slots_lock[hvalue];
400
401		spin_lock_irqsave(lock, flag);
402		hlist_for_each_entry(pos, head, list) {
403			if (pos->ae.ssid == ssid &&
404			    pos->ae.tsid == tsid &&
405			    pos->ae.tclass == tclass) {
406				avc_node_replace(node, pos);
407				goto found;
408			}
409		}
410		hlist_add_head_rcu(&node->list, head);
411found:
412		spin_unlock_irqrestore(lock, flag);
413	}
414out:
415	return node;
416}
417
418/**
419 * avc_audit_pre_callback - SELinux specific information
420 * will be called by generic audit code
421 * @ab: the audit buffer
422 * @a: audit_data
423 */
424static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
425{
426	struct common_audit_data *ad = a;
427	audit_log_format(ab, "avc:  %s ",
428			 ad->selinux_audit_data->denied ? "denied" : "granted");
429	avc_dump_av(ab, ad->selinux_audit_data->tclass,
430			ad->selinux_audit_data->audited);
431	audit_log_format(ab, " for ");
432}
433
434/**
435 * avc_audit_post_callback - SELinux specific information
436 * will be called by generic audit code
437 * @ab: the audit buffer
438 * @a: audit_data
439 */
440static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
441{
442	struct common_audit_data *ad = a;
443	audit_log_format(ab, " ");
444	avc_dump_query(ab, ad->selinux_audit_data->ssid,
445			   ad->selinux_audit_data->tsid,
446			   ad->selinux_audit_data->tclass);
447}
448
449/* This is the slow part of avc audit with big stack footprint */
450noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
451		u32 requested, u32 audited, u32 denied,
452		struct common_audit_data *a,
453		unsigned flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
454{
455	struct common_audit_data stack_data;
456	struct selinux_audit_data sad;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
457
458	if (!a) {
459		a = &stack_data;
460		a->type = LSM_AUDIT_DATA_NONE;
461	}
462
463	/*
464	 * When in a RCU walk do the audit on the RCU retry.  This is because
465	 * the collection of the dname in an inode audit message is not RCU
466	 * safe.  Note this may drop some audits when the situation changes
467	 * during retry. However this is logically just as if the operation
468	 * happened a little later.
469	 */
470	if ((a->type == LSM_AUDIT_DATA_INODE) &&
471	    (flags & MAY_NOT_BLOCK))
472		return -ECHILD;
473
474	sad.tclass = tclass;
475	sad.requested = requested;
476	sad.ssid = ssid;
477	sad.tsid = tsid;
478	sad.audited = audited;
479	sad.denied = denied;
480
481	a->selinux_audit_data = &sad;
482
483	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
484	return 0;
485}
486
487/**
488 * avc_add_callback - Register a callback for security events.
489 * @callback: callback function
490 * @events: security events
 
 
 
 
491 *
492 * Register a callback function for events in the set @events.
493 * Returns %0 on success or -%ENOMEM if insufficient memory
494 * exists to add the callback.
495 */
496int __init avc_add_callback(int (*callback)(u32 event), u32 events)
 
 
 
 
 
 
497{
498	struct avc_callback_node *c;
499	int rc = 0;
500
501	c = kmalloc(sizeof(*c), GFP_KERNEL);
502	if (!c) {
503		rc = -ENOMEM;
504		goto out;
505	}
506
507	c->callback = callback;
508	c->events = events;
 
 
 
509	c->next = avc_callbacks;
510	avc_callbacks = c;
511out:
512	return rc;
513}
514
515static inline int avc_sidcmp(u32 x, u32 y)
516{
517	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
518}
519
520/**
521 * avc_update_node Update an AVC entry
522 * @event : Updating event
523 * @perms : Permission mask bits
524 * @ssid,@tsid,@tclass : identifier of an AVC entry
525 * @seqno : sequence number when decision was made
526 *
527 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
528 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
529 * otherwise, this function updates the AVC entry. The original AVC-entry object
530 * will release later by RCU.
531 */
532static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
533			   u32 seqno)
534{
535	int hvalue, rc = 0;
536	unsigned long flag;
537	struct avc_node *pos, *node, *orig = NULL;
538	struct hlist_head *head;
 
539	spinlock_t *lock;
540
541	node = avc_alloc_node();
542	if (!node) {
543		rc = -ENOMEM;
544		goto out;
545	}
546
547	/* Lock the target slot */
548	hvalue = avc_hash(ssid, tsid, tclass);
549
550	head = &avc_cache.slots[hvalue];
551	lock = &avc_cache.slots_lock[hvalue];
552
553	spin_lock_irqsave(lock, flag);
554
555	hlist_for_each_entry(pos, head, list) {
556		if (ssid == pos->ae.ssid &&
557		    tsid == pos->ae.tsid &&
558		    tclass == pos->ae.tclass &&
559		    seqno == pos->ae.avd.seqno){
560			orig = pos;
561			break;
562		}
563	}
564
565	if (!orig) {
566		rc = -ENOENT;
567		avc_node_kill(node);
568		goto out_unlock;
569	}
570
571	/*
572	 * Copy and replace original node.
573	 */
574
575	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
576
577	switch (event) {
578	case AVC_CALLBACK_GRANT:
579		node->ae.avd.allowed |= perms;
580		break;
581	case AVC_CALLBACK_TRY_REVOKE:
582	case AVC_CALLBACK_REVOKE:
583		node->ae.avd.allowed &= ~perms;
584		break;
585	case AVC_CALLBACK_AUDITALLOW_ENABLE:
586		node->ae.avd.auditallow |= perms;
587		break;
588	case AVC_CALLBACK_AUDITALLOW_DISABLE:
589		node->ae.avd.auditallow &= ~perms;
590		break;
591	case AVC_CALLBACK_AUDITDENY_ENABLE:
592		node->ae.avd.auditdeny |= perms;
593		break;
594	case AVC_CALLBACK_AUDITDENY_DISABLE:
595		node->ae.avd.auditdeny &= ~perms;
596		break;
597	}
598	avc_node_replace(node, orig);
599out_unlock:
600	spin_unlock_irqrestore(lock, flag);
601out:
602	return rc;
603}
604
605/**
606 * avc_flush - Flush the cache
607 */
608static void avc_flush(void)
609{
610	struct hlist_head *head;
 
611	struct avc_node *node;
612	spinlock_t *lock;
613	unsigned long flag;
614	int i;
615
616	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
617		head = &avc_cache.slots[i];
618		lock = &avc_cache.slots_lock[i];
619
620		spin_lock_irqsave(lock, flag);
621		/*
622		 * With preemptable RCU, the outer spinlock does not
623		 * prevent RCU grace periods from ending.
624		 */
625		rcu_read_lock();
626		hlist_for_each_entry(node, head, list)
627			avc_node_delete(node);
628		rcu_read_unlock();
629		spin_unlock_irqrestore(lock, flag);
630	}
631}
632
633/**
634 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
635 * @seqno: policy sequence number
636 */
637int avc_ss_reset(u32 seqno)
638{
639	struct avc_callback_node *c;
640	int rc = 0, tmprc;
641
642	avc_flush();
643
644	for (c = avc_callbacks; c; c = c->next) {
645		if (c->events & AVC_CALLBACK_RESET) {
646			tmprc = c->callback(AVC_CALLBACK_RESET);
 
647			/* save the first error encountered for the return
648			   value and continue processing the callbacks */
649			if (!rc)
650				rc = tmprc;
651		}
652	}
653
654	avc_latest_notif_update(seqno, 0);
655	return rc;
656}
657
658/*
659 * Slow-path helper function for avc_has_perm_noaudit,
660 * when the avc_node lookup fails. We get called with
661 * the RCU read lock held, and need to return with it
662 * still held, but drop if for the security compute.
663 *
664 * Don't inline this, since it's the slow-path and just
665 * results in a bigger stack frame.
666 */
667static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid,
668			 u16 tclass, struct av_decision *avd)
669{
670	rcu_read_unlock();
671	security_compute_av(ssid, tsid, tclass, avd);
672	rcu_read_lock();
673	return avc_insert(ssid, tsid, tclass, avd);
674}
675
676static noinline int avc_denied(u32 ssid, u32 tsid,
677			 u16 tclass, u32 requested,
678			 unsigned flags,
679			 struct av_decision *avd)
680{
681	if (flags & AVC_STRICT)
682		return -EACCES;
683
684	if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE))
685		return -EACCES;
686
687	avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
688				tsid, tclass, avd->seqno);
689	return 0;
690}
691
692
693/**
694 * avc_has_perm_noaudit - Check permissions but perform no auditing.
695 * @ssid: source security identifier
696 * @tsid: target security identifier
697 * @tclass: target security class
698 * @requested: requested permissions, interpreted based on @tclass
699 * @flags:  AVC_STRICT or 0
700 * @avd: access vector decisions
701 *
702 * Check the AVC to determine whether the @requested permissions are granted
703 * for the SID pair (@ssid, @tsid), interpreting the permissions
704 * based on @tclass, and call the security server on a cache miss to obtain
705 * a new decision and add it to the cache.  Return a copy of the decisions
706 * in @avd.  Return %0 if all @requested permissions are granted,
707 * -%EACCES if any permissions are denied, or another -errno upon
708 * other errors.  This function is typically called by avc_has_perm(),
709 * but may also be called directly to separate permission checking from
710 * auditing, e.g. in cases where a lock must be held for the check but
711 * should be released for the auditing.
712 */
713inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
714			 u16 tclass, u32 requested,
715			 unsigned flags,
716			 struct av_decision *avd)
717{
718	struct avc_node *node;
719	int rc = 0;
720	u32 denied;
721
722	BUG_ON(!requested);
723
724	rcu_read_lock();
725
726	node = avc_lookup(ssid, tsid, tclass);
727	if (unlikely(!node)) {
728		node = avc_compute_av(ssid, tsid, tclass, avd);
 
 
 
729	} else {
730		memcpy(avd, &node->ae.avd, sizeof(*avd));
731		avd = &node->ae.avd;
732	}
733
734	denied = requested & ~(avd->allowed);
735	if (unlikely(denied))
736		rc = avc_denied(ssid, tsid, tclass, requested, flags, avd);
 
 
 
 
 
 
 
 
737
738	rcu_read_unlock();
739	return rc;
740}
741
742/**
743 * avc_has_perm - Check permissions and perform any appropriate auditing.
744 * @ssid: source security identifier
745 * @tsid: target security identifier
746 * @tclass: target security class
747 * @requested: requested permissions, interpreted based on @tclass
748 * @auditdata: auxiliary audit data
 
749 *
750 * Check the AVC to determine whether the @requested permissions are granted
751 * for the SID pair (@ssid, @tsid), interpreting the permissions
752 * based on @tclass, and call the security server on a cache miss to obtain
753 * a new decision and add it to the cache.  Audit the granting or denial of
754 * permissions in accordance with the policy.  Return %0 if all @requested
755 * permissions are granted, -%EACCES if any permissions are denied, or
756 * another -errno upon other errors.
757 */
758int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
759		 u32 requested, struct common_audit_data *auditdata)
 
760{
761	struct av_decision avd;
762	int rc, rc2;
763
764	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
765
766	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
 
767	if (rc2)
768		return rc2;
769	return rc;
770}
771
772u32 avc_policy_seqno(void)
773{
774	return avc_cache.latest_notif;
775}
776
777void avc_disable(void)
778{
779	/*
780	 * If you are looking at this because you have realized that we are
781	 * not destroying the avc_node_cachep it might be easy to fix, but
782	 * I don't know the memory barrier semantics well enough to know.  It's
783	 * possible that some other task dereferenced security_ops when
784	 * it still pointed to selinux operations.  If that is the case it's
785	 * possible that it is about to use the avc and is about to need the
786	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
787	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
788	 * the cache and get that memory back.
789	 */
790	if (avc_node_cachep) {
791		avc_flush();
792		/* kmem_cache_destroy(avc_node_cachep); */
793	}
794}
v3.1
  1/*
  2 * Implementation of the kernel access vector cache (AVC).
  3 *
  4 * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
  5 *	     James Morris <jmorris@redhat.com>
  6 *
  7 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
  8 *	Replaced the avc_lock spinlock by RCU.
  9 *
 10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 11 *
 12 *	This program is free software; you can redistribute it and/or modify
 13 *	it under the terms of the GNU General Public License version 2,
 14 *	as published by the Free Software Foundation.
 15 */
 16#include <linux/types.h>
 17#include <linux/stddef.h>
 18#include <linux/kernel.h>
 19#include <linux/slab.h>
 20#include <linux/fs.h>
 21#include <linux/dcache.h>
 22#include <linux/init.h>
 23#include <linux/skbuff.h>
 24#include <linux/percpu.h>
 25#include <net/sock.h>
 26#include <linux/un.h>
 27#include <net/af_unix.h>
 28#include <linux/ip.h>
 29#include <linux/audit.h>
 30#include <linux/ipv6.h>
 31#include <net/ipv6.h>
 32#include "avc.h"
 33#include "avc_ss.h"
 34#include "classmap.h"
 35
 36#define AVC_CACHE_SLOTS			512
 37#define AVC_DEF_CACHE_THRESHOLD		512
 38#define AVC_CACHE_RECLAIM		16
 39
 40#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
 41#define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
 42#else
 43#define avc_cache_stats_incr(field)	do {} while (0)
 44#endif
 45
 46struct avc_entry {
 47	u32			ssid;
 48	u32			tsid;
 49	u16			tclass;
 50	struct av_decision	avd;
 51};
 52
 53struct avc_node {
 54	struct avc_entry	ae;
 55	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
 56	struct rcu_head		rhead;
 57};
 58
 59struct avc_cache {
 60	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
 61	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
 62	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
 63	atomic_t		active_nodes;
 64	u32			latest_notif;	/* latest revocation notification */
 65};
 66
 67struct avc_callback_node {
 68	int (*callback) (u32 event, u32 ssid, u32 tsid,
 69			 u16 tclass, u32 perms,
 70			 u32 *out_retained);
 71	u32 events;
 72	u32 ssid;
 73	u32 tsid;
 74	u16 tclass;
 75	u32 perms;
 76	struct avc_callback_node *next;
 77};
 78
 79/* Exported via selinufs */
 80unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
 81
 82#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
 83DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
 84#endif
 85
 86static struct avc_cache avc_cache;
 87static struct avc_callback_node *avc_callbacks;
 88static struct kmem_cache *avc_node_cachep;
 89
 90static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
 91{
 92	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
 93}
 94
 95/**
 96 * avc_dump_av - Display an access vector in human-readable form.
 97 * @tclass: target security class
 98 * @av: access vector
 99 */
100static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
101{
102	const char **perms;
103	int i, perm;
104
105	if (av == 0) {
106		audit_log_format(ab, " null");
107		return;
108	}
109
110	perms = secclass_map[tclass-1].perms;
111
112	audit_log_format(ab, " {");
113	i = 0;
114	perm = 1;
115	while (i < (sizeof(av) * 8)) {
116		if ((perm & av) && perms[i]) {
117			audit_log_format(ab, " %s", perms[i]);
118			av &= ~perm;
119		}
120		i++;
121		perm <<= 1;
122	}
123
124	if (av)
125		audit_log_format(ab, " 0x%x", av);
126
127	audit_log_format(ab, " }");
128}
129
130/**
131 * avc_dump_query - Display a SID pair and a class in human-readable form.
132 * @ssid: source security identifier
133 * @tsid: target security identifier
134 * @tclass: target security class
135 */
136static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
137{
138	int rc;
139	char *scontext;
140	u32 scontext_len;
141
142	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
143	if (rc)
144		audit_log_format(ab, "ssid=%d", ssid);
145	else {
146		audit_log_format(ab, "scontext=%s", scontext);
147		kfree(scontext);
148	}
149
150	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
151	if (rc)
152		audit_log_format(ab, " tsid=%d", tsid);
153	else {
154		audit_log_format(ab, " tcontext=%s", scontext);
155		kfree(scontext);
156	}
157
158	BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
159	audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
160}
161
162/**
163 * avc_init - Initialize the AVC.
164 *
165 * Initialize the access vector cache.
166 */
167void __init avc_init(void)
168{
169	int i;
170
171	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
172		INIT_HLIST_HEAD(&avc_cache.slots[i]);
173		spin_lock_init(&avc_cache.slots_lock[i]);
174	}
175	atomic_set(&avc_cache.active_nodes, 0);
176	atomic_set(&avc_cache.lru_hint, 0);
177
178	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
179					     0, SLAB_PANIC, NULL);
180
181	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
182}
183
184int avc_get_hash_stats(char *page)
185{
186	int i, chain_len, max_chain_len, slots_used;
187	struct avc_node *node;
188	struct hlist_head *head;
189
190	rcu_read_lock();
191
192	slots_used = 0;
193	max_chain_len = 0;
194	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
195		head = &avc_cache.slots[i];
196		if (!hlist_empty(head)) {
197			struct hlist_node *next;
198
199			slots_used++;
200			chain_len = 0;
201			hlist_for_each_entry_rcu(node, next, head, list)
202				chain_len++;
203			if (chain_len > max_chain_len)
204				max_chain_len = chain_len;
205		}
206	}
207
208	rcu_read_unlock();
209
210	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
211			 "longest chain: %d\n",
212			 atomic_read(&avc_cache.active_nodes),
213			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
214}
215
216static void avc_node_free(struct rcu_head *rhead)
217{
218	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
219	kmem_cache_free(avc_node_cachep, node);
220	avc_cache_stats_incr(frees);
221}
222
223static void avc_node_delete(struct avc_node *node)
224{
225	hlist_del_rcu(&node->list);
226	call_rcu(&node->rhead, avc_node_free);
227	atomic_dec(&avc_cache.active_nodes);
228}
229
230static void avc_node_kill(struct avc_node *node)
231{
232	kmem_cache_free(avc_node_cachep, node);
233	avc_cache_stats_incr(frees);
234	atomic_dec(&avc_cache.active_nodes);
235}
236
237static void avc_node_replace(struct avc_node *new, struct avc_node *old)
238{
239	hlist_replace_rcu(&old->list, &new->list);
240	call_rcu(&old->rhead, avc_node_free);
241	atomic_dec(&avc_cache.active_nodes);
242}
243
244static inline int avc_reclaim_node(void)
245{
246	struct avc_node *node;
247	int hvalue, try, ecx;
248	unsigned long flags;
249	struct hlist_head *head;
250	struct hlist_node *next;
251	spinlock_t *lock;
252
253	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
254		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
255		head = &avc_cache.slots[hvalue];
256		lock = &avc_cache.slots_lock[hvalue];
257
258		if (!spin_trylock_irqsave(lock, flags))
259			continue;
260
261		rcu_read_lock();
262		hlist_for_each_entry(node, next, head, list) {
263			avc_node_delete(node);
264			avc_cache_stats_incr(reclaims);
265			ecx++;
266			if (ecx >= AVC_CACHE_RECLAIM) {
267				rcu_read_unlock();
268				spin_unlock_irqrestore(lock, flags);
269				goto out;
270			}
271		}
272		rcu_read_unlock();
273		spin_unlock_irqrestore(lock, flags);
274	}
275out:
276	return ecx;
277}
278
279static struct avc_node *avc_alloc_node(void)
280{
281	struct avc_node *node;
282
283	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
284	if (!node)
285		goto out;
286
287	INIT_HLIST_NODE(&node->list);
288	avc_cache_stats_incr(allocations);
289
290	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
291		avc_reclaim_node();
292
293out:
294	return node;
295}
296
297static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
298{
299	node->ae.ssid = ssid;
300	node->ae.tsid = tsid;
301	node->ae.tclass = tclass;
302	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
303}
304
305static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
306{
307	struct avc_node *node, *ret = NULL;
308	int hvalue;
309	struct hlist_head *head;
310	struct hlist_node *next;
311
312	hvalue = avc_hash(ssid, tsid, tclass);
313	head = &avc_cache.slots[hvalue];
314	hlist_for_each_entry_rcu(node, next, head, list) {
315		if (ssid == node->ae.ssid &&
316		    tclass == node->ae.tclass &&
317		    tsid == node->ae.tsid) {
318			ret = node;
319			break;
320		}
321	}
322
323	return ret;
324}
325
326/**
327 * avc_lookup - Look up an AVC entry.
328 * @ssid: source security identifier
329 * @tsid: target security identifier
330 * @tclass: target security class
331 *
332 * Look up an AVC entry that is valid for the
333 * (@ssid, @tsid), interpreting the permissions
334 * based on @tclass.  If a valid AVC entry exists,
335 * then this function returns the avc_node.
336 * Otherwise, this function returns NULL.
337 */
338static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
339{
340	struct avc_node *node;
341
342	avc_cache_stats_incr(lookups);
343	node = avc_search_node(ssid, tsid, tclass);
344
345	if (node)
346		return node;
347
348	avc_cache_stats_incr(misses);
349	return NULL;
350}
351
352static int avc_latest_notif_update(int seqno, int is_insert)
353{
354	int ret = 0;
355	static DEFINE_SPINLOCK(notif_lock);
356	unsigned long flag;
357
358	spin_lock_irqsave(&notif_lock, flag);
359	if (is_insert) {
360		if (seqno < avc_cache.latest_notif) {
361			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
362			       seqno, avc_cache.latest_notif);
363			ret = -EAGAIN;
364		}
365	} else {
366		if (seqno > avc_cache.latest_notif)
367			avc_cache.latest_notif = seqno;
368	}
369	spin_unlock_irqrestore(&notif_lock, flag);
370
371	return ret;
372}
373
374/**
375 * avc_insert - Insert an AVC entry.
376 * @ssid: source security identifier
377 * @tsid: target security identifier
378 * @tclass: target security class
379 * @avd: resulting av decision
380 *
381 * Insert an AVC entry for the SID pair
382 * (@ssid, @tsid) and class @tclass.
383 * The access vectors and the sequence number are
384 * normally provided by the security server in
385 * response to a security_compute_av() call.  If the
386 * sequence number @avd->seqno is not less than the latest
387 * revocation notification, then the function copies
388 * the access vectors into a cache entry, returns
389 * avc_node inserted. Otherwise, this function returns NULL.
390 */
391static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
392{
393	struct avc_node *pos, *node = NULL;
394	int hvalue;
395	unsigned long flag;
396
397	if (avc_latest_notif_update(avd->seqno, 1))
398		goto out;
399
400	node = avc_alloc_node();
401	if (node) {
402		struct hlist_head *head;
403		struct hlist_node *next;
404		spinlock_t *lock;
405
406		hvalue = avc_hash(ssid, tsid, tclass);
407		avc_node_populate(node, ssid, tsid, tclass, avd);
408
409		head = &avc_cache.slots[hvalue];
410		lock = &avc_cache.slots_lock[hvalue];
411
412		spin_lock_irqsave(lock, flag);
413		hlist_for_each_entry(pos, next, head, list) {
414			if (pos->ae.ssid == ssid &&
415			    pos->ae.tsid == tsid &&
416			    pos->ae.tclass == tclass) {
417				avc_node_replace(node, pos);
418				goto found;
419			}
420		}
421		hlist_add_head_rcu(&node->list, head);
422found:
423		spin_unlock_irqrestore(lock, flag);
424	}
425out:
426	return node;
427}
428
429/**
430 * avc_audit_pre_callback - SELinux specific information
431 * will be called by generic audit code
432 * @ab: the audit buffer
433 * @a: audit_data
434 */
435static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
436{
437	struct common_audit_data *ad = a;
438	audit_log_format(ab, "avc:  %s ",
439			 ad->selinux_audit_data.denied ? "denied" : "granted");
440	avc_dump_av(ab, ad->selinux_audit_data.tclass,
441			ad->selinux_audit_data.audited);
442	audit_log_format(ab, " for ");
443}
444
445/**
446 * avc_audit_post_callback - SELinux specific information
447 * will be called by generic audit code
448 * @ab: the audit buffer
449 * @a: audit_data
450 */
451static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
452{
453	struct common_audit_data *ad = a;
454	audit_log_format(ab, " ");
455	avc_dump_query(ab, ad->selinux_audit_data.ssid,
456			   ad->selinux_audit_data.tsid,
457			   ad->selinux_audit_data.tclass);
458}
459
460/**
461 * avc_audit - Audit the granting or denial of permissions.
462 * @ssid: source security identifier
463 * @tsid: target security identifier
464 * @tclass: target security class
465 * @requested: requested permissions
466 * @avd: access vector decisions
467 * @result: result from avc_has_perm_noaudit
468 * @a:  auxiliary audit data
469 * @flags: VFS walk flags
470 *
471 * Audit the granting or denial of permissions in accordance
472 * with the policy.  This function is typically called by
473 * avc_has_perm() after a permission check, but can also be
474 * called directly by callers who use avc_has_perm_noaudit()
475 * in order to separate the permission check from the auditing.
476 * For example, this separation is useful when the permission check must
477 * be performed under a lock, to allow the lock to be released
478 * before calling the auditing code.
479 */
480int avc_audit(u32 ssid, u32 tsid,
481	       u16 tclass, u32 requested,
482	       struct av_decision *avd, int result, struct common_audit_data *a,
483	       unsigned flags)
484{
485	struct common_audit_data stack_data;
486	u32 denied, audited;
487	denied = requested & ~avd->allowed;
488	if (denied) {
489		audited = denied & avd->auditdeny;
490		/*
491		 * a->selinux_audit_data.auditdeny is TRICKY!  Setting a bit in
492		 * this field means that ANY denials should NOT be audited if
493		 * the policy contains an explicit dontaudit rule for that
494		 * permission.  Take notice that this is unrelated to the
495		 * actual permissions that were denied.  As an example lets
496		 * assume:
497		 *
498		 * denied == READ
499		 * avd.auditdeny & ACCESS == 0 (not set means explicit rule)
500		 * selinux_audit_data.auditdeny & ACCESS == 1
501		 *
502		 * We will NOT audit the denial even though the denied
503		 * permission was READ and the auditdeny checks were for
504		 * ACCESS
505		 */
506		if (a &&
507		    a->selinux_audit_data.auditdeny &&
508		    !(a->selinux_audit_data.auditdeny & avd->auditdeny))
509			audited = 0;
510	} else if (result)
511		audited = denied = requested;
512	else
513		audited = requested & avd->auditallow;
514	if (!audited)
515		return 0;
516
517	if (!a) {
518		a = &stack_data;
519		COMMON_AUDIT_DATA_INIT(a, NONE);
520	}
521
522	/*
523	 * When in a RCU walk do the audit on the RCU retry.  This is because
524	 * the collection of the dname in an inode audit message is not RCU
525	 * safe.  Note this may drop some audits when the situation changes
526	 * during retry. However this is logically just as if the operation
527	 * happened a little later.
528	 */
529	if ((a->type == LSM_AUDIT_DATA_INODE) &&
530	    (flags & MAY_NOT_BLOCK))
531		return -ECHILD;
532
533	a->selinux_audit_data.tclass = tclass;
534	a->selinux_audit_data.requested = requested;
535	a->selinux_audit_data.ssid = ssid;
536	a->selinux_audit_data.tsid = tsid;
537	a->selinux_audit_data.audited = audited;
538	a->selinux_audit_data.denied = denied;
539	a->lsm_pre_audit = avc_audit_pre_callback;
540	a->lsm_post_audit = avc_audit_post_callback;
541	common_lsm_audit(a);
 
542	return 0;
543}
544
545/**
546 * avc_add_callback - Register a callback for security events.
547 * @callback: callback function
548 * @events: security events
549 * @ssid: source security identifier or %SECSID_WILD
550 * @tsid: target security identifier or %SECSID_WILD
551 * @tclass: target security class
552 * @perms: permissions
553 *
554 * Register a callback function for events in the set @events
555 * related to the SID pair (@ssid, @tsid) 
556 * and the permissions @perms, interpreting
557 * @perms based on @tclass.  Returns %0 on success or
558 * -%ENOMEM if insufficient memory exists to add the callback.
559 */
560int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
561				     u16 tclass, u32 perms,
562				     u32 *out_retained),
563		     u32 events, u32 ssid, u32 tsid,
564		     u16 tclass, u32 perms)
565{
566	struct avc_callback_node *c;
567	int rc = 0;
568
569	c = kmalloc(sizeof(*c), GFP_ATOMIC);
570	if (!c) {
571		rc = -ENOMEM;
572		goto out;
573	}
574
575	c->callback = callback;
576	c->events = events;
577	c->ssid = ssid;
578	c->tsid = tsid;
579	c->perms = perms;
580	c->next = avc_callbacks;
581	avc_callbacks = c;
582out:
583	return rc;
584}
585
586static inline int avc_sidcmp(u32 x, u32 y)
587{
588	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
589}
590
591/**
592 * avc_update_node Update an AVC entry
593 * @event : Updating event
594 * @perms : Permission mask bits
595 * @ssid,@tsid,@tclass : identifier of an AVC entry
596 * @seqno : sequence number when decision was made
597 *
598 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
599 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
600 * otherwise, this function updates the AVC entry. The original AVC-entry object
601 * will release later by RCU.
602 */
603static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
604			   u32 seqno)
605{
606	int hvalue, rc = 0;
607	unsigned long flag;
608	struct avc_node *pos, *node, *orig = NULL;
609	struct hlist_head *head;
610	struct hlist_node *next;
611	spinlock_t *lock;
612
613	node = avc_alloc_node();
614	if (!node) {
615		rc = -ENOMEM;
616		goto out;
617	}
618
619	/* Lock the target slot */
620	hvalue = avc_hash(ssid, tsid, tclass);
621
622	head = &avc_cache.slots[hvalue];
623	lock = &avc_cache.slots_lock[hvalue];
624
625	spin_lock_irqsave(lock, flag);
626
627	hlist_for_each_entry(pos, next, head, list) {
628		if (ssid == pos->ae.ssid &&
629		    tsid == pos->ae.tsid &&
630		    tclass == pos->ae.tclass &&
631		    seqno == pos->ae.avd.seqno){
632			orig = pos;
633			break;
634		}
635	}
636
637	if (!orig) {
638		rc = -ENOENT;
639		avc_node_kill(node);
640		goto out_unlock;
641	}
642
643	/*
644	 * Copy and replace original node.
645	 */
646
647	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
648
649	switch (event) {
650	case AVC_CALLBACK_GRANT:
651		node->ae.avd.allowed |= perms;
652		break;
653	case AVC_CALLBACK_TRY_REVOKE:
654	case AVC_CALLBACK_REVOKE:
655		node->ae.avd.allowed &= ~perms;
656		break;
657	case AVC_CALLBACK_AUDITALLOW_ENABLE:
658		node->ae.avd.auditallow |= perms;
659		break;
660	case AVC_CALLBACK_AUDITALLOW_DISABLE:
661		node->ae.avd.auditallow &= ~perms;
662		break;
663	case AVC_CALLBACK_AUDITDENY_ENABLE:
664		node->ae.avd.auditdeny |= perms;
665		break;
666	case AVC_CALLBACK_AUDITDENY_DISABLE:
667		node->ae.avd.auditdeny &= ~perms;
668		break;
669	}
670	avc_node_replace(node, orig);
671out_unlock:
672	spin_unlock_irqrestore(lock, flag);
673out:
674	return rc;
675}
676
677/**
678 * avc_flush - Flush the cache
679 */
680static void avc_flush(void)
681{
682	struct hlist_head *head;
683	struct hlist_node *next;
684	struct avc_node *node;
685	spinlock_t *lock;
686	unsigned long flag;
687	int i;
688
689	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
690		head = &avc_cache.slots[i];
691		lock = &avc_cache.slots_lock[i];
692
693		spin_lock_irqsave(lock, flag);
694		/*
695		 * With preemptable RCU, the outer spinlock does not
696		 * prevent RCU grace periods from ending.
697		 */
698		rcu_read_lock();
699		hlist_for_each_entry(node, next, head, list)
700			avc_node_delete(node);
701		rcu_read_unlock();
702		spin_unlock_irqrestore(lock, flag);
703	}
704}
705
706/**
707 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
708 * @seqno: policy sequence number
709 */
710int avc_ss_reset(u32 seqno)
711{
712	struct avc_callback_node *c;
713	int rc = 0, tmprc;
714
715	avc_flush();
716
717	for (c = avc_callbacks; c; c = c->next) {
718		if (c->events & AVC_CALLBACK_RESET) {
719			tmprc = c->callback(AVC_CALLBACK_RESET,
720					    0, 0, 0, 0, NULL);
721			/* save the first error encountered for the return
722			   value and continue processing the callbacks */
723			if (!rc)
724				rc = tmprc;
725		}
726	}
727
728	avc_latest_notif_update(seqno, 0);
729	return rc;
730}
731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
732/**
733 * avc_has_perm_noaudit - Check permissions but perform no auditing.
734 * @ssid: source security identifier
735 * @tsid: target security identifier
736 * @tclass: target security class
737 * @requested: requested permissions, interpreted based on @tclass
738 * @flags:  AVC_STRICT or 0
739 * @avd: access vector decisions
740 *
741 * Check the AVC to determine whether the @requested permissions are granted
742 * for the SID pair (@ssid, @tsid), interpreting the permissions
743 * based on @tclass, and call the security server on a cache miss to obtain
744 * a new decision and add it to the cache.  Return a copy of the decisions
745 * in @avd.  Return %0 if all @requested permissions are granted,
746 * -%EACCES if any permissions are denied, or another -errno upon
747 * other errors.  This function is typically called by avc_has_perm(),
748 * but may also be called directly to separate permission checking from
749 * auditing, e.g. in cases where a lock must be held for the check but
750 * should be released for the auditing.
751 */
752int avc_has_perm_noaudit(u32 ssid, u32 tsid,
753			 u16 tclass, u32 requested,
754			 unsigned flags,
755			 struct av_decision *avd)
756{
757	struct avc_node *node;
758	int rc = 0;
759	u32 denied;
760
761	BUG_ON(!requested);
762
763	rcu_read_lock();
764
765	node = avc_lookup(ssid, tsid, tclass);
766	if (unlikely(!node)) {
767		rcu_read_unlock();
768		security_compute_av(ssid, tsid, tclass, avd);
769		rcu_read_lock();
770		node = avc_insert(ssid, tsid, tclass, avd);
771	} else {
772		memcpy(avd, &node->ae.avd, sizeof(*avd));
773		avd = &node->ae.avd;
774	}
775
776	denied = requested & ~(avd->allowed);
777
778	if (denied) {
779		if (flags & AVC_STRICT)
780			rc = -EACCES;
781		else if (!selinux_enforcing || (avd->flags & AVD_FLAGS_PERMISSIVE))
782			avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
783					tsid, tclass, avd->seqno);
784		else
785			rc = -EACCES;
786	}
787
788	rcu_read_unlock();
789	return rc;
790}
791
792/**
793 * avc_has_perm - Check permissions and perform any appropriate auditing.
794 * @ssid: source security identifier
795 * @tsid: target security identifier
796 * @tclass: target security class
797 * @requested: requested permissions, interpreted based on @tclass
798 * @auditdata: auxiliary audit data
799 * @flags: VFS walk flags
800 *
801 * Check the AVC to determine whether the @requested permissions are granted
802 * for the SID pair (@ssid, @tsid), interpreting the permissions
803 * based on @tclass, and call the security server on a cache miss to obtain
804 * a new decision and add it to the cache.  Audit the granting or denial of
805 * permissions in accordance with the policy.  Return %0 if all @requested
806 * permissions are granted, -%EACCES if any permissions are denied, or
807 * another -errno upon other errors.
808 */
809int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
810		       u32 requested, struct common_audit_data *auditdata,
811		       unsigned flags)
812{
813	struct av_decision avd;
814	int rc, rc2;
815
816	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
817
818	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata,
819			flags);
820	if (rc2)
821		return rc2;
822	return rc;
823}
824
825u32 avc_policy_seqno(void)
826{
827	return avc_cache.latest_notif;
828}
829
830void avc_disable(void)
831{
832	/*
833	 * If you are looking at this because you have realized that we are
834	 * not destroying the avc_node_cachep it might be easy to fix, but
835	 * I don't know the memory barrier semantics well enough to know.  It's
836	 * possible that some other task dereferenced security_ops when
837	 * it still pointed to selinux operations.  If that is the case it's
838	 * possible that it is about to use the avc and is about to need the
839	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
840	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
841	 * the cache and get that memory back.
842	 */
843	if (avc_node_cachep) {
844		avc_flush();
845		/* kmem_cache_destroy(avc_node_cachep); */
846	}
847}