Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v3.1
 
   1/*
   2 * builtin-timechart.c - make an svg timechart of system activity
   3 *
   4 * (C) Copyright 2009 Intel Corporation
   5 *
   6 * Authors:
   7 *     Arjan van de Ven <arjan@linux.intel.com>
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * as published by the Free Software Foundation; version 2
  12 * of the License.
  13 */
  14
  15#include "builtin.h"
  16
  17#include "util/util.h"
  18
 
  19#include "util/color.h"
  20#include <linux/list.h>
  21#include "util/cache.h"
 
 
  22#include <linux/rbtree.h>
 
 
  23#include "util/symbol.h"
 
  24#include "util/callchain.h"
  25#include "util/strlist.h"
  26
  27#include "perf.h"
  28#include "util/header.h"
  29#include "util/parse-options.h"
 
  30#include "util/parse-events.h"
  31#include "util/event.h"
  32#include "util/session.h"
  33#include "util/svghelper.h"
 
 
 
 
 
 
 
 
 
 
 
 
  34
  35#define SUPPORT_OLD_POWER_EVENTS 1
  36#define PWR_EVENT_EXIT -1
  37
  38
  39static char		const *input_name = "perf.data";
  40static char		const *output_name = "output.svg";
  41
  42static unsigned int	numcpus;
  43static u64		min_freq;	/* Lowest CPU frequency seen */
  44static u64		max_freq;	/* Highest CPU frequency seen */
  45static u64		turbo_frequency;
  46
  47static u64		first_time, last_time;
  48
  49static bool		power_only;
  50
  51
  52struct per_pid;
  53struct per_pidcomm;
  54
  55struct cpu_sample;
  56struct power_event;
  57struct wake_event;
  58
  59struct sample_wrapper;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60
  61/*
  62 * Datastructure layout:
  63 * We keep an list of "pid"s, matching the kernels notion of a task struct.
  64 * Each "pid" entry, has a list of "comm"s.
  65 *	this is because we want to track different programs different, while
  66 *	exec will reuse the original pid (by design).
  67 * Each comm has a list of samples that will be used to draw
  68 * final graph.
  69 */
  70
  71struct per_pid {
  72	struct per_pid *next;
  73
  74	int		pid;
  75	int		ppid;
  76
  77	u64		start_time;
  78	u64		end_time;
  79	u64		total_time;
 
  80	int		display;
  81
  82	struct per_pidcomm *all;
  83	struct per_pidcomm *current;
  84};
  85
  86
  87struct per_pidcomm {
  88	struct per_pidcomm *next;
  89
  90	u64		start_time;
  91	u64		end_time;
  92	u64		total_time;
 
 
  93
  94	int		Y;
  95	int		display;
  96
  97	long		state;
  98	u64		state_since;
  99
 100	char		*comm;
 101
 102	struct cpu_sample *samples;
 
 103};
 104
 105struct sample_wrapper {
 106	struct sample_wrapper *next;
 107
 108	u64		timestamp;
 109	unsigned char	data[0];
 110};
 111
 112#define TYPE_NONE	0
 113#define TYPE_RUNNING	1
 114#define TYPE_WAITING	2
 115#define TYPE_BLOCKED	3
 116
 117struct cpu_sample {
 118	struct cpu_sample *next;
 119
 120	u64 start_time;
 121	u64 end_time;
 122	int type;
 123	int cpu;
 
 124};
 125
 126static struct per_pid *all_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127
 128#define CSTATE 1
 129#define PSTATE 2
 130
 131struct power_event {
 132	struct power_event *next;
 133	int type;
 134	int state;
 135	u64 start_time;
 136	u64 end_time;
 137	int cpu;
 138};
 139
 140struct wake_event {
 141	struct wake_event *next;
 142	int waker;
 143	int wakee;
 144	u64 time;
 
 145};
 146
 147static struct power_event    *power_events;
 148static struct wake_event     *wake_events;
 149
 150struct process_filter;
 151struct process_filter {
 152	char			*name;
 153	int			pid;
 154	struct process_filter	*next;
 155};
 156
 157static struct process_filter *process_filter;
 158
 159
 160static struct per_pid *find_create_pid(int pid)
 161{
 162	struct per_pid *cursor = all_data;
 163
 164	while (cursor) {
 165		if (cursor->pid == pid)
 166			return cursor;
 167		cursor = cursor->next;
 168	}
 169	cursor = malloc(sizeof(struct per_pid));
 170	assert(cursor != NULL);
 171	memset(cursor, 0, sizeof(struct per_pid));
 172	cursor->pid = pid;
 173	cursor->next = all_data;
 174	all_data = cursor;
 175	return cursor;
 176}
 177
 178static void pid_set_comm(int pid, char *comm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 179{
 180	struct per_pid *p;
 181	struct per_pidcomm *c;
 182	p = find_create_pid(pid);
 183	c = p->all;
 184	while (c) {
 185		if (c->comm && strcmp(c->comm, comm) == 0) {
 186			p->current = c;
 187			return;
 188		}
 189		if (!c->comm) {
 190			c->comm = strdup(comm);
 191			p->current = c;
 192			return;
 193		}
 194		c = c->next;
 195	}
 196	c = malloc(sizeof(struct per_pidcomm));
 197	assert(c != NULL);
 198	memset(c, 0, sizeof(struct per_pidcomm));
 199	c->comm = strdup(comm);
 200	p->current = c;
 201	c->next = p->all;
 202	p->all = c;
 203}
 204
 205static void pid_fork(int pid, int ppid, u64 timestamp)
 206{
 207	struct per_pid *p, *pp;
 208	p = find_create_pid(pid);
 209	pp = find_create_pid(ppid);
 210	p->ppid = ppid;
 211	if (pp->current && pp->current->comm && !p->current)
 212		pid_set_comm(pid, pp->current->comm);
 213
 214	p->start_time = timestamp;
 215	if (p->current) {
 216		p->current->start_time = timestamp;
 217		p->current->state_since = timestamp;
 218	}
 219}
 220
 221static void pid_exit(int pid, u64 timestamp)
 222{
 223	struct per_pid *p;
 224	p = find_create_pid(pid);
 225	p->end_time = timestamp;
 226	if (p->current)
 227		p->current->end_time = timestamp;
 228}
 229
 230static void
 231pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
 
 232{
 233	struct per_pid *p;
 234	struct per_pidcomm *c;
 235	struct cpu_sample *sample;
 236
 237	p = find_create_pid(pid);
 238	c = p->current;
 239	if (!c) {
 240		c = malloc(sizeof(struct per_pidcomm));
 241		assert(c != NULL);
 242		memset(c, 0, sizeof(struct per_pidcomm));
 243		p->current = c;
 244		c->next = p->all;
 245		p->all = c;
 246	}
 247
 248	sample = malloc(sizeof(struct cpu_sample));
 249	assert(sample != NULL);
 250	memset(sample, 0, sizeof(struct cpu_sample));
 251	sample->start_time = start;
 252	sample->end_time = end;
 253	sample->type = type;
 254	sample->next = c->samples;
 255	sample->cpu = cpu;
 
 256	c->samples = sample;
 257
 258	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 259		c->total_time += (end-start);
 260		p->total_time += (end-start);
 261	}
 262
 263	if (c->start_time == 0 || c->start_time > start)
 264		c->start_time = start;
 265	if (p->start_time == 0 || p->start_time > start)
 266		p->start_time = start;
 267}
 268
 269#define MAX_CPUS 4096
 270
 271static u64 cpus_cstate_start_times[MAX_CPUS];
 272static int cpus_cstate_state[MAX_CPUS];
 273static u64 cpus_pstate_start_times[MAX_CPUS];
 274static u64 cpus_pstate_state[MAX_CPUS];
 275
 276static int process_comm_event(union perf_event *event,
 277			      struct perf_sample *sample __used,
 278			      struct perf_session *session __used)
 
 279{
 280	pid_set_comm(event->comm.tid, event->comm.comm);
 
 281	return 0;
 282}
 283
 284static int process_fork_event(union perf_event *event,
 285			      struct perf_sample *sample __used,
 286			      struct perf_session *session __used)
 
 287{
 288	pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
 
 289	return 0;
 290}
 291
 292static int process_exit_event(union perf_event *event,
 293			      struct perf_sample *sample __used,
 294			      struct perf_session *session __used)
 
 295{
 296	pid_exit(event->fork.pid, event->fork.time);
 
 297	return 0;
 298}
 299
 300struct trace_entry {
 301	unsigned short		type;
 302	unsigned char		flags;
 303	unsigned char		preempt_count;
 304	int			pid;
 305	int			lock_depth;
 306};
 307
 308#ifdef SUPPORT_OLD_POWER_EVENTS
 309static int use_old_power_events;
 310struct power_entry_old {
 311	struct trace_entry te;
 312	u64	type;
 313	u64	value;
 314	u64	cpu_id;
 315};
 316#endif
 317
 318struct power_processor_entry {
 319	struct trace_entry te;
 320	u32	state;
 321	u32	cpu_id;
 322};
 323
 324#define TASK_COMM_LEN 16
 325struct wakeup_entry {
 326	struct trace_entry te;
 327	char comm[TASK_COMM_LEN];
 328	int   pid;
 329	int   prio;
 330	int   success;
 331};
 332
 333/*
 334 * trace_flag_type is an enumeration that holds different
 335 * states when a trace occurs. These are:
 336 *  IRQS_OFF            - interrupts were disabled
 337 *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags
 338 *  NEED_RESCED         - reschedule is requested
 339 *  HARDIRQ             - inside an interrupt handler
 340 *  SOFTIRQ             - inside a softirq handler
 341 */
 342enum trace_flag_type {
 343	TRACE_FLAG_IRQS_OFF		= 0x01,
 344	TRACE_FLAG_IRQS_NOSUPPORT	= 0x02,
 345	TRACE_FLAG_NEED_RESCHED		= 0x04,
 346	TRACE_FLAG_HARDIRQ		= 0x08,
 347	TRACE_FLAG_SOFTIRQ		= 0x10,
 348};
 349
 350
 351
 352struct sched_switch {
 353	struct trace_entry te;
 354	char prev_comm[TASK_COMM_LEN];
 355	int  prev_pid;
 356	int  prev_prio;
 357	long prev_state; /* Arjan weeps. */
 358	char next_comm[TASK_COMM_LEN];
 359	int  next_pid;
 360	int  next_prio;
 361};
 362
 363static void c_state_start(int cpu, u64 timestamp, int state)
 364{
 365	cpus_cstate_start_times[cpu] = timestamp;
 366	cpus_cstate_state[cpu] = state;
 367}
 368
 369static void c_state_end(int cpu, u64 timestamp)
 370{
 371	struct power_event *pwr;
 372	pwr = malloc(sizeof(struct power_event));
 373	if (!pwr)
 374		return;
 375	memset(pwr, 0, sizeof(struct power_event));
 376
 377	pwr->state = cpus_cstate_state[cpu];
 378	pwr->start_time = cpus_cstate_start_times[cpu];
 379	pwr->end_time = timestamp;
 380	pwr->cpu = cpu;
 381	pwr->type = CSTATE;
 382	pwr->next = power_events;
 383
 384	power_events = pwr;
 385}
 386
 387static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
 
 388{
 389	struct power_event *pwr;
 390	pwr = malloc(sizeof(struct power_event));
 391
 392	if (new_freq > 8000000) /* detect invalid data */
 393		return;
 394
 395	if (!pwr)
 396		return;
 397	memset(pwr, 0, sizeof(struct power_event));
 398
 399	pwr->state = cpus_pstate_state[cpu];
 400	pwr->start_time = cpus_pstate_start_times[cpu];
 401	pwr->end_time = timestamp;
 402	pwr->cpu = cpu;
 403	pwr->type = PSTATE;
 404	pwr->next = power_events;
 405
 406	if (!pwr->start_time)
 407		pwr->start_time = first_time;
 
 
 
 
 
 
 
 
 
 
 
 408
 409	power_events = pwr;
 
 
 410
 411	cpus_pstate_state[cpu] = new_freq;
 412	cpus_pstate_start_times[cpu] = timestamp;
 413
 414	if ((u64)new_freq > max_freq)
 415		max_freq = new_freq;
 416
 417	if (new_freq < min_freq || min_freq == 0)
 418		min_freq = new_freq;
 419
 420	if (new_freq == max_freq - 1000)
 421			turbo_frequency = max_freq;
 422}
 423
 424static void
 425sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
 426{
 427	struct wake_event *we;
 428	struct per_pid *p;
 429	struct wakeup_entry *wake = (void *)te;
 430
 431	we = malloc(sizeof(struct wake_event));
 432	if (!we)
 433		return;
 434
 435	memset(we, 0, sizeof(struct wake_event));
 436	we->time = timestamp;
 437	we->waker = pid;
 
 438
 439	if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
 440		we->waker = -1;
 441
 442	we->wakee = wake->pid;
 443	we->next = wake_events;
 444	wake_events = we;
 445	p = find_create_pid(we->wakee);
 446
 447	if (p && p->current && p->current->state == TYPE_NONE) {
 448		p->current->state_since = timestamp;
 449		p->current->state = TYPE_WAITING;
 450	}
 451	if (p && p->current && p->current->state == TYPE_BLOCKED) {
 452		pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
 
 453		p->current->state_since = timestamp;
 454		p->current->state = TYPE_WAITING;
 455	}
 456}
 457
 458static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
 
 
 459{
 460	struct per_pid *p = NULL, *prev_p;
 461	struct sched_switch *sw = (void *)te;
 462
 463
 464	prev_p = find_create_pid(sw->prev_pid);
 465
 466	p = find_create_pid(sw->next_pid);
 467
 468	if (prev_p->current && prev_p->current->state != TYPE_NONE)
 469		pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
 
 
 470	if (p && p->current) {
 471		if (p->current->state != TYPE_NONE)
 472			pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
 
 
 473
 474		p->current->state_since = timestamp;
 475		p->current->state = TYPE_RUNNING;
 476	}
 477
 478	if (prev_p->current) {
 479		prev_p->current->state = TYPE_NONE;
 480		prev_p->current->state_since = timestamp;
 481		if (sw->prev_state & 2)
 482			prev_p->current->state = TYPE_BLOCKED;
 483		if (sw->prev_state == 0)
 484			prev_p->current->state = TYPE_WAITING;
 485	}
 486}
 487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 488
 489static int process_sample_event(union perf_event *event __used,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 490				struct perf_sample *sample,
 491				struct perf_evsel *evsel __used,
 492				struct perf_session *session)
 493{
 494	struct trace_entry *te;
 495
 496	if (session->sample_type & PERF_SAMPLE_TIME) {
 497		if (!first_time || first_time > sample->time)
 498			first_time = sample->time;
 499		if (last_time < sample->time)
 500			last_time = sample->time;
 
 
 
 
 
 
 501	}
 502
 503	te = (void *)sample->raw_data;
 504	if (session->sample_type & PERF_SAMPLE_RAW && sample->raw_size > 0) {
 505		char *event_str;
 506#ifdef SUPPORT_OLD_POWER_EVENTS
 507		struct power_entry_old *peo;
 508		peo = (void *)te;
 509#endif
 510		/*
 511		 * FIXME: use evsel, its already mapped from id to perf_evsel,
 512		 * remove perf_header__find_event infrastructure bits.
 513		 * Mapping all these "power:cpu_idle" strings to the tracepoint
 514		 * ID and then just comparing against evsel->attr.config.
 515		 *
 516		 * e.g.:
 517		 *
 518		 * if (evsel->attr.config == power_cpu_idle_id)
 519		 */
 520		event_str = perf_header__find_event(te->type);
 521
 522		if (!event_str)
 523			return 0;
 524
 525		if (sample->cpu > numcpus)
 526			numcpus = sample->cpu;
 527
 528		if (strcmp(event_str, "power:cpu_idle") == 0) {
 529			struct power_processor_entry *ppe = (void *)te;
 530			if (ppe->state == (u32)PWR_EVENT_EXIT)
 531				c_state_end(ppe->cpu_id, sample->time);
 532			else
 533				c_state_start(ppe->cpu_id, sample->time,
 534					      ppe->state);
 535		}
 536		else if (strcmp(event_str, "power:cpu_frequency") == 0) {
 537			struct power_processor_entry *ppe = (void *)te;
 538			p_state_change(ppe->cpu_id, sample->time, ppe->state);
 539		}
 540
 541		else if (strcmp(event_str, "sched:sched_wakeup") == 0)
 542			sched_wakeup(sample->cpu, sample->time, sample->pid, te);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 543
 544		else if (strcmp(event_str, "sched:sched_switch") == 0)
 545			sched_switch(sample->cpu, sample->time, te);
 
 
 546
 547#ifdef SUPPORT_OLD_POWER_EVENTS
 548		if (use_old_power_events) {
 549			if (strcmp(event_str, "power:power_start") == 0)
 550				c_state_start(peo->cpu_id, sample->time,
 551					      peo->value);
 552
 553			else if (strcmp(event_str, "power:power_end") == 0)
 554				c_state_end(sample->cpu, sample->time);
 555
 556			else if (strcmp(event_str,
 557					"power:power_frequency") == 0)
 558				p_state_change(peo->cpu_id, sample->time,
 559					       peo->value);
 560		}
 561#endif
 562	}
 
 
 
 
 
 563	return 0;
 564}
 565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 566/*
 567 * After the last sample we need to wrap up the current C/P state
 568 * and close out each CPU for these.
 569 */
 570static void end_sample_processing(void)
 571{
 572	u64 cpu;
 573	struct power_event *pwr;
 574
 575	for (cpu = 0; cpu <= numcpus; cpu++) {
 576		pwr = malloc(sizeof(struct power_event));
 
 
 577		if (!pwr)
 578			return;
 579		memset(pwr, 0, sizeof(struct power_event));
 580
 581		/* C state */
 582#if 0
 583		pwr->state = cpus_cstate_state[cpu];
 584		pwr->start_time = cpus_cstate_start_times[cpu];
 585		pwr->end_time = last_time;
 586		pwr->cpu = cpu;
 587		pwr->type = CSTATE;
 588		pwr->next = power_events;
 589
 590		power_events = pwr;
 591#endif
 592		/* P state */
 593
 594		pwr = malloc(sizeof(struct power_event));
 595		if (!pwr)
 596			return;
 597		memset(pwr, 0, sizeof(struct power_event));
 598
 599		pwr->state = cpus_pstate_state[cpu];
 600		pwr->start_time = cpus_pstate_start_times[cpu];
 601		pwr->end_time = last_time;
 602		pwr->cpu = cpu;
 603		pwr->type = PSTATE;
 604		pwr->next = power_events;
 605
 606		if (!pwr->start_time)
 607			pwr->start_time = first_time;
 608		if (!pwr->state)
 609			pwr->state = min_freq;
 610		power_events = pwr;
 611	}
 612}
 613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 614/*
 615 * Sort the pid datastructure
 616 */
 617static void sort_pids(void)
 618{
 619	struct per_pid *new_list, *p, *cursor, *prev;
 620	/* sort by ppid first, then by pid, lowest to highest */
 621
 622	new_list = NULL;
 623
 624	while (all_data) {
 625		p = all_data;
 626		all_data = p->next;
 627		p->next = NULL;
 628
 629		if (new_list == NULL) {
 630			new_list = p;
 631			p->next = NULL;
 632			continue;
 633		}
 634		prev = NULL;
 635		cursor = new_list;
 636		while (cursor) {
 637			if (cursor->ppid > p->ppid ||
 638				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 639				/* must insert before */
 640				if (prev) {
 641					p->next = prev->next;
 642					prev->next = p;
 643					cursor = NULL;
 644					continue;
 645				} else {
 646					p->next = new_list;
 647					new_list = p;
 648					cursor = NULL;
 649					continue;
 650				}
 651			}
 652
 653			prev = cursor;
 654			cursor = cursor->next;
 655			if (!cursor)
 656				prev->next = p;
 657		}
 658	}
 659	all_data = new_list;
 660}
 661
 662
 663static void draw_c_p_states(void)
 664{
 665	struct power_event *pwr;
 666	pwr = power_events;
 667
 668	/*
 669	 * two pass drawing so that the P state bars are on top of the C state blocks
 670	 */
 671	while (pwr) {
 672		if (pwr->type == CSTATE)
 673			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 674		pwr = pwr->next;
 675	}
 676
 677	pwr = power_events;
 678	while (pwr) {
 679		if (pwr->type == PSTATE) {
 680			if (!pwr->state)
 681				pwr->state = min_freq;
 682			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 683		}
 684		pwr = pwr->next;
 685	}
 686}
 687
 688static void draw_wakeups(void)
 689{
 690	struct wake_event *we;
 691	struct per_pid *p;
 692	struct per_pidcomm *c;
 693
 694	we = wake_events;
 695	while (we) {
 696		int from = 0, to = 0;
 697		char *task_from = NULL, *task_to = NULL;
 698
 699		/* locate the column of the waker and wakee */
 700		p = all_data;
 701		while (p) {
 702			if (p->pid == we->waker || p->pid == we->wakee) {
 703				c = p->all;
 704				while (c) {
 705					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
 706						if (p->pid == we->waker && !from) {
 707							from = c->Y;
 708							task_from = strdup(c->comm);
 709						}
 710						if (p->pid == we->wakee && !to) {
 711							to = c->Y;
 712							task_to = strdup(c->comm);
 713						}
 714					}
 715					c = c->next;
 716				}
 717				c = p->all;
 718				while (c) {
 719					if (p->pid == we->waker && !from) {
 720						from = c->Y;
 721						task_from = strdup(c->comm);
 722					}
 723					if (p->pid == we->wakee && !to) {
 724						to = c->Y;
 725						task_to = strdup(c->comm);
 726					}
 727					c = c->next;
 728				}
 729			}
 730			p = p->next;
 731		}
 732
 733		if (!task_from) {
 734			task_from = malloc(40);
 735			sprintf(task_from, "[%i]", we->waker);
 736		}
 737		if (!task_to) {
 738			task_to = malloc(40);
 739			sprintf(task_to, "[%i]", we->wakee);
 740		}
 741
 742		if (we->waker == -1)
 743			svg_interrupt(we->time, to);
 744		else if (from && to && abs(from - to) == 1)
 745			svg_wakeline(we->time, from, to);
 746		else
 747			svg_partial_wakeline(we->time, from, task_from, to, task_to);
 
 748		we = we->next;
 749
 750		free(task_from);
 751		free(task_to);
 752	}
 753}
 754
 755static void draw_cpu_usage(void)
 756{
 757	struct per_pid *p;
 758	struct per_pidcomm *c;
 759	struct cpu_sample *sample;
 760	p = all_data;
 761	while (p) {
 762		c = p->all;
 763		while (c) {
 764			sample = c->samples;
 765			while (sample) {
 766				if (sample->type == TYPE_RUNNING)
 767					svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
 
 
 
 
 
 
 768
 769				sample = sample->next;
 770			}
 771			c = c->next;
 772		}
 773		p = p->next;
 774	}
 775}
 776
 777static void draw_process_bars(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778{
 779	struct per_pid *p;
 780	struct per_pidcomm *c;
 781	struct cpu_sample *sample;
 782	int Y = 0;
 783
 784	Y = 2 * numcpus + 2;
 785
 786	p = all_data;
 787	while (p) {
 788		c = p->all;
 789		while (c) {
 790			if (!c->display) {
 791				c->Y = 0;
 792				c = c->next;
 793				continue;
 794			}
 795
 796			svg_box(Y, c->start_time, c->end_time, "process");
 797			sample = c->samples;
 798			while (sample) {
 799				if (sample->type == TYPE_RUNNING)
 800					svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
 
 
 
 801				if (sample->type == TYPE_BLOCKED)
 802					svg_box(Y, sample->start_time, sample->end_time, "blocked");
 
 
 
 803				if (sample->type == TYPE_WAITING)
 804					svg_waiting(Y, sample->start_time, sample->end_time);
 
 
 
 805				sample = sample->next;
 806			}
 807
 808			if (c->comm) {
 809				char comm[256];
 810				if (c->total_time > 5000000000) /* 5 seconds */
 811					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
 812				else
 813					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
 814
 815				svg_text(Y, c->start_time, comm);
 816			}
 817			c->Y = Y;
 818			Y++;
 819			c = c->next;
 820		}
 821		p = p->next;
 822	}
 823}
 824
 825static void add_process_filter(const char *string)
 826{
 827	struct process_filter *filt;
 828	int pid;
 829
 830	pid = strtoull(string, NULL, 10);
 831	filt = malloc(sizeof(struct process_filter));
 832	if (!filt)
 833		return;
 834
 835	filt->name = strdup(string);
 836	filt->pid  = pid;
 837	filt->next = process_filter;
 838
 839	process_filter = filt;
 840}
 841
 842static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
 843{
 844	struct process_filter *filt;
 845	if (!process_filter)
 846		return 1;
 847
 848	filt = process_filter;
 849	while (filt) {
 850		if (filt->pid && p->pid == filt->pid)
 851			return 1;
 852		if (strcmp(filt->name, c->comm) == 0)
 853			return 1;
 854		filt = filt->next;
 855	}
 856	return 0;
 857}
 858
 859static int determine_display_tasks_filtered(void)
 860{
 861	struct per_pid *p;
 862	struct per_pidcomm *c;
 863	int count = 0;
 864
 865	p = all_data;
 866	while (p) {
 867		p->display = 0;
 868		if (p->start_time == 1)
 869			p->start_time = first_time;
 870
 871		/* no exit marker, task kept running to the end */
 872		if (p->end_time == 0)
 873			p->end_time = last_time;
 874
 875		c = p->all;
 876
 877		while (c) {
 878			c->display = 0;
 879
 880			if (c->start_time == 1)
 881				c->start_time = first_time;
 882
 883			if (passes_filter(p, c)) {
 884				c->display = 1;
 885				p->display = 1;
 886				count++;
 887			}
 888
 889			if (c->end_time == 0)
 890				c->end_time = last_time;
 891
 892			c = c->next;
 893		}
 894		p = p->next;
 895	}
 896	return count;
 897}
 898
 899static int determine_display_tasks(u64 threshold)
 900{
 901	struct per_pid *p;
 902	struct per_pidcomm *c;
 903	int count = 0;
 904
 905	if (process_filter)
 906		return determine_display_tasks_filtered();
 907
 908	p = all_data;
 909	while (p) {
 910		p->display = 0;
 911		if (p->start_time == 1)
 912			p->start_time = first_time;
 913
 914		/* no exit marker, task kept running to the end */
 915		if (p->end_time == 0)
 916			p->end_time = last_time;
 917		if (p->total_time >= threshold && !power_only)
 918			p->display = 1;
 919
 920		c = p->all;
 921
 922		while (c) {
 923			c->display = 0;
 924
 925			if (c->start_time == 1)
 926				c->start_time = first_time;
 927
 928			if (c->total_time >= threshold && !power_only) {
 929				c->display = 1;
 930				count++;
 931			}
 932
 933			if (c->end_time == 0)
 934				c->end_time = last_time;
 935
 936			c = c->next;
 937		}
 938		p = p->next;
 939	}
 940	return count;
 941}
 942
 
 
 
 
 
 
 
 
 
 
 
 943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 944
 
 945#define TIME_THRESH 10000000
 946
 947static void write_svg_file(const char *filename)
 948{
 949	u64 i;
 950	int count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 951
 952	numcpus++;
 
 953
 
 
 954
 955	count = determine_display_tasks(TIME_THRESH);
 
 956
 957	/* We'd like to show at least 15 tasks; be less picky if we have fewer */
 958	if (count < 15)
 959		count = determine_display_tasks(TIME_THRESH / 10);
 960
 961	open_svg(filename, numcpus, count, first_time, last_time);
 962
 963	svg_time_grid();
 964	svg_legenda();
 965
 966	for (i = 0; i < numcpus; i++)
 967		svg_cpu_box(i, max_freq, turbo_frequency);
 968
 969	draw_cpu_usage();
 970	draw_process_bars();
 971	draw_c_p_states();
 972	draw_wakeups();
 
 
 
 
 973
 974	svg_close();
 975}
 976
 977static struct perf_event_ops event_ops = {
 978	.comm			= process_comm_event,
 979	.fork			= process_fork_event,
 980	.exit			= process_exit_event,
 981	.sample			= process_sample_event,
 982	.ordered_samples	= true,
 983};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 984
 985static int __cmd_timechart(void)
 986{
 987	struct perf_session *session = perf_session__new(input_name, O_RDONLY,
 988							 0, false, &event_ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 989	int ret = -EINVAL;
 990
 991	if (session == NULL)
 992		return -ENOMEM;
 
 
 
 
 
 
 
 993
 994	if (!perf_session__has_traces(session, "timechart record"))
 995		goto out_delete;
 996
 997	ret = perf_session__process_events(session, &event_ops);
 
 
 
 
 
 
 998	if (ret)
 999		goto out_delete;
1000
1001	end_sample_processing();
1002
1003	sort_pids();
1004
1005	write_svg_file(output_name);
1006
1007	pr_info("Written %2.1f seconds of trace to %s.\n",
1008		(last_time - first_time) / 1000000000.0, output_name);
1009out_delete:
1010	perf_session__delete(session);
1011	return ret;
1012}
1013
1014static const char * const timechart_usage[] = {
1015	"perf timechart [<options>] {record}",
1016	NULL
1017};
 
 
1018
1019#ifdef SUPPORT_OLD_POWER_EVENTS
1020static const char * const record_old_args[] = {
1021	"record",
1022	"-a",
1023	"-R",
1024	"-f",
1025	"-c", "1",
1026	"-e", "power:power_start",
1027	"-e", "power:power_end",
1028	"-e", "power:power_frequency",
1029	"-e", "sched:sched_wakeup",
1030	"-e", "sched:sched_switch",
1031};
1032#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033
1034static const char * const record_new_args[] = {
1035	"record",
1036	"-a",
1037	"-R",
1038	"-f",
1039	"-c", "1",
1040	"-e", "power:cpu_frequency",
1041	"-e", "power:cpu_idle",
1042	"-e", "sched:sched_wakeup",
1043	"-e", "sched:sched_switch",
1044};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1045
1046static int __cmd_record(int argc, const char **argv)
 
 
 
 
 
 
 
1047{
1048	unsigned int rec_argc, i, j;
1049	const char **rec_argv;
1050	const char * const *record_args = record_new_args;
1051	unsigned int record_elems = ARRAY_SIZE(record_new_args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1052
1053#ifdef SUPPORT_OLD_POWER_EVENTS
1054	if (!is_valid_tracepoint("power:cpu_idle") &&
1055	    is_valid_tracepoint("power:power_start")) {
1056		use_old_power_events = 1;
1057		record_args = record_old_args;
1058		record_elems = ARRAY_SIZE(record_old_args);
 
1059	}
1060#endif
1061
1062	rec_argc = record_elems + argc - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1064
1065	if (rec_argv == NULL)
1066		return -ENOMEM;
1067
1068	for (i = 0; i < record_elems; i++)
1069		rec_argv[i] = strdup(record_args[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
1070
1071	for (j = 1; j < (unsigned int)argc; j++, i++)
1072		rec_argv[i] = argv[j];
1073
1074	return cmd_record(i, rec_argv, NULL);
1075}
1076
1077static int
1078parse_process(const struct option *opt __used, const char *arg, int __used unset)
 
1079{
1080	if (arg)
1081		add_process_filter(arg);
1082	return 0;
1083}
1084
1085static const struct option options[] = {
1086	OPT_STRING('i', "input", &input_name, "file",
1087		    "input file name"),
1088	OPT_STRING('o', "output", &output_name, "file",
1089		    "output file name"),
1090	OPT_INTEGER('w', "width", &svg_page_width,
1091		    "page width"),
1092	OPT_BOOLEAN('P', "power-only", &power_only,
1093		    "output power data only"),
1094	OPT_CALLBACK('p', "process", NULL, "process",
1095		      "process selector. Pass a pid or process name.",
1096		       parse_process),
1097	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1098		    "Look for files with symbols relative to this directory"),
1099	OPT_END()
1100};
1101
 
 
 
 
 
 
 
1102
1103int cmd_timechart(int argc, const char **argv, const char *prefix __used)
 
1104{
1105	argc = parse_options(argc, argv, options, timechart_usage,
1106			PARSE_OPT_STOP_AT_NON_OPTION);
1107
1108	symbol__init();
 
 
 
 
 
 
 
 
 
 
 
 
 
1109
1110	if (argc && !strncmp(argv[0], "rec", 3))
1111		return __cmd_record(argc, argv);
1112	else if (argc)
1113		usage_with_options(timechart_usage, options);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1114
1115	setup_pager();
1116
1117	return __cmd_timechart();
 
 
 
 
 
 
1118}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * builtin-timechart.c - make an svg timechart of system activity
   4 *
   5 * (C) Copyright 2009 Intel Corporation
   6 *
   7 * Authors:
   8 *     Arjan van de Ven <arjan@linux.intel.com>
 
 
 
 
 
   9 */
  10
  11#include <errno.h>
  12#include <inttypes.h>
 
  13
  14#include "builtin.h"
  15#include "util/color.h"
  16#include <linux/list.h>
  17#include "util/evlist.h" // for struct evsel_str_handler
  18#include "util/evsel.h"
  19#include <linux/kernel.h>
  20#include <linux/rbtree.h>
  21#include <linux/time64.h>
  22#include <linux/zalloc.h>
  23#include "util/symbol.h"
  24#include "util/thread.h"
  25#include "util/callchain.h"
 
  26
 
  27#include "util/header.h"
  28#include <subcmd/pager.h>
  29#include <subcmd/parse-options.h>
  30#include "util/parse-events.h"
  31#include "util/event.h"
  32#include "util/session.h"
  33#include "util/svghelper.h"
  34#include "util/tool.h"
  35#include "util/data.h"
  36#include "util/debug.h"
  37#include "util/string2.h"
  38#include "util/tracepoint.h"
  39#include "util/util.h"
  40#include <linux/err.h>
  41#include <traceevent/event-parse.h>
  42
  43#ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
  44FILE *open_memstream(char **ptr, size_t *sizeloc);
  45#endif
  46
  47#define SUPPORT_OLD_POWER_EVENTS 1
  48#define PWR_EVENT_EXIT -1
  49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  50struct per_pid;
 
 
 
  51struct power_event;
  52struct wake_event;
  53
  54struct timechart {
  55	struct perf_tool	tool;
  56	struct per_pid		*all_data;
  57	struct power_event	*power_events;
  58	struct wake_event	*wake_events;
  59	int			proc_num;
  60	unsigned int		numcpus;
  61	u64			min_freq,	/* Lowest CPU frequency seen */
  62				max_freq,	/* Highest CPU frequency seen */
  63				turbo_frequency,
  64				first_time, last_time;
  65	bool			power_only,
  66				tasks_only,
  67				with_backtrace,
  68				topology;
  69	bool			force;
  70	/* IO related settings */
  71	bool			io_only,
  72				skip_eagain;
  73	u64			io_events;
  74	u64			min_time,
  75				merge_dist;
  76};
  77
  78struct per_pidcomm;
  79struct cpu_sample;
  80struct io_sample;
  81
  82/*
  83 * Datastructure layout:
  84 * We keep an list of "pid"s, matching the kernels notion of a task struct.
  85 * Each "pid" entry, has a list of "comm"s.
  86 *	this is because we want to track different programs different, while
  87 *	exec will reuse the original pid (by design).
  88 * Each comm has a list of samples that will be used to draw
  89 * final graph.
  90 */
  91
  92struct per_pid {
  93	struct per_pid *next;
  94
  95	int		pid;
  96	int		ppid;
  97
  98	u64		start_time;
  99	u64		end_time;
 100	u64		total_time;
 101	u64		total_bytes;
 102	int		display;
 103
 104	struct per_pidcomm *all;
 105	struct per_pidcomm *current;
 106};
 107
 108
 109struct per_pidcomm {
 110	struct per_pidcomm *next;
 111
 112	u64		start_time;
 113	u64		end_time;
 114	u64		total_time;
 115	u64		max_bytes;
 116	u64		total_bytes;
 117
 118	int		Y;
 119	int		display;
 120
 121	long		state;
 122	u64		state_since;
 123
 124	char		*comm;
 125
 126	struct cpu_sample *samples;
 127	struct io_sample  *io_samples;
 128};
 129
 130struct sample_wrapper {
 131	struct sample_wrapper *next;
 132
 133	u64		timestamp;
 134	unsigned char	data[];
 135};
 136
 137#define TYPE_NONE	0
 138#define TYPE_RUNNING	1
 139#define TYPE_WAITING	2
 140#define TYPE_BLOCKED	3
 141
 142struct cpu_sample {
 143	struct cpu_sample *next;
 144
 145	u64 start_time;
 146	u64 end_time;
 147	int type;
 148	int cpu;
 149	const char *backtrace;
 150};
 151
 152enum {
 153	IOTYPE_READ,
 154	IOTYPE_WRITE,
 155	IOTYPE_SYNC,
 156	IOTYPE_TX,
 157	IOTYPE_RX,
 158	IOTYPE_POLL,
 159};
 160
 161struct io_sample {
 162	struct io_sample *next;
 163
 164	u64 start_time;
 165	u64 end_time;
 166	u64 bytes;
 167	int type;
 168	int fd;
 169	int err;
 170	int merges;
 171};
 172
 173#define CSTATE 1
 174#define PSTATE 2
 175
 176struct power_event {
 177	struct power_event *next;
 178	int type;
 179	int state;
 180	u64 start_time;
 181	u64 end_time;
 182	int cpu;
 183};
 184
 185struct wake_event {
 186	struct wake_event *next;
 187	int waker;
 188	int wakee;
 189	u64 time;
 190	const char *backtrace;
 191};
 192
 
 
 
 
 193struct process_filter {
 194	char			*name;
 195	int			pid;
 196	struct process_filter	*next;
 197};
 198
 199static struct process_filter *process_filter;
 200
 201
 202static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
 203{
 204	struct per_pid *cursor = tchart->all_data;
 205
 206	while (cursor) {
 207		if (cursor->pid == pid)
 208			return cursor;
 209		cursor = cursor->next;
 210	}
 211	cursor = zalloc(sizeof(*cursor));
 212	assert(cursor != NULL);
 
 213	cursor->pid = pid;
 214	cursor->next = tchart->all_data;
 215	tchart->all_data = cursor;
 216	return cursor;
 217}
 218
 219static struct per_pidcomm *create_pidcomm(struct per_pid *p)
 220{
 221	struct per_pidcomm *c;
 222
 223	c = zalloc(sizeof(*c));
 224	if (!c)
 225		return NULL;
 226	p->current = c;
 227	c->next = p->all;
 228	p->all = c;
 229	return c;
 230}
 231
 232static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
 233{
 234	struct per_pid *p;
 235	struct per_pidcomm *c;
 236	p = find_create_pid(tchart, pid);
 237	c = p->all;
 238	while (c) {
 239		if (c->comm && strcmp(c->comm, comm) == 0) {
 240			p->current = c;
 241			return;
 242		}
 243		if (!c->comm) {
 244			c->comm = strdup(comm);
 245			p->current = c;
 246			return;
 247		}
 248		c = c->next;
 249	}
 250	c = create_pidcomm(p);
 251	assert(c != NULL);
 
 252	c->comm = strdup(comm);
 
 
 
 253}
 254
 255static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
 256{
 257	struct per_pid *p, *pp;
 258	p = find_create_pid(tchart, pid);
 259	pp = find_create_pid(tchart, ppid);
 260	p->ppid = ppid;
 261	if (pp->current && pp->current->comm && !p->current)
 262		pid_set_comm(tchart, pid, pp->current->comm);
 263
 264	p->start_time = timestamp;
 265	if (p->current && !p->current->start_time) {
 266		p->current->start_time = timestamp;
 267		p->current->state_since = timestamp;
 268	}
 269}
 270
 271static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
 272{
 273	struct per_pid *p;
 274	p = find_create_pid(tchart, pid);
 275	p->end_time = timestamp;
 276	if (p->current)
 277		p->current->end_time = timestamp;
 278}
 279
 280static void pid_put_sample(struct timechart *tchart, int pid, int type,
 281			   unsigned int cpu, u64 start, u64 end,
 282			   const char *backtrace)
 283{
 284	struct per_pid *p;
 285	struct per_pidcomm *c;
 286	struct cpu_sample *sample;
 287
 288	p = find_create_pid(tchart, pid);
 289	c = p->current;
 290	if (!c) {
 291		c = create_pidcomm(p);
 292		assert(c != NULL);
 
 
 
 
 293	}
 294
 295	sample = zalloc(sizeof(*sample));
 296	assert(sample != NULL);
 
 297	sample->start_time = start;
 298	sample->end_time = end;
 299	sample->type = type;
 300	sample->next = c->samples;
 301	sample->cpu = cpu;
 302	sample->backtrace = backtrace;
 303	c->samples = sample;
 304
 305	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 306		c->total_time += (end-start);
 307		p->total_time += (end-start);
 308	}
 309
 310	if (c->start_time == 0 || c->start_time > start)
 311		c->start_time = start;
 312	if (p->start_time == 0 || p->start_time > start)
 313		p->start_time = start;
 314}
 315
 316#define MAX_CPUS 4096
 317
 318static u64 *cpus_cstate_start_times;
 319static int *cpus_cstate_state;
 320static u64 *cpus_pstate_start_times;
 321static u64 *cpus_pstate_state;
 322
 323static int process_comm_event(struct perf_tool *tool,
 324			      union perf_event *event,
 325			      struct perf_sample *sample __maybe_unused,
 326			      struct machine *machine __maybe_unused)
 327{
 328	struct timechart *tchart = container_of(tool, struct timechart, tool);
 329	pid_set_comm(tchart, event->comm.tid, event->comm.comm);
 330	return 0;
 331}
 332
 333static int process_fork_event(struct perf_tool *tool,
 334			      union perf_event *event,
 335			      struct perf_sample *sample __maybe_unused,
 336			      struct machine *machine __maybe_unused)
 337{
 338	struct timechart *tchart = container_of(tool, struct timechart, tool);
 339	pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
 340	return 0;
 341}
 342
 343static int process_exit_event(struct perf_tool *tool,
 344			      union perf_event *event,
 345			      struct perf_sample *sample __maybe_unused,
 346			      struct machine *machine __maybe_unused)
 347{
 348	struct timechart *tchart = container_of(tool, struct timechart, tool);
 349	pid_exit(tchart, event->fork.pid, event->fork.time);
 350	return 0;
 351}
 352
 
 
 
 
 
 
 
 
 353#ifdef SUPPORT_OLD_POWER_EVENTS
 354static int use_old_power_events;
 
 
 
 
 
 
 355#endif
 356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 357static void c_state_start(int cpu, u64 timestamp, int state)
 358{
 359	cpus_cstate_start_times[cpu] = timestamp;
 360	cpus_cstate_state[cpu] = state;
 361}
 362
 363static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
 364{
 365	struct power_event *pwr = zalloc(sizeof(*pwr));
 366
 367	if (!pwr)
 368		return;
 
 369
 370	pwr->state = cpus_cstate_state[cpu];
 371	pwr->start_time = cpus_cstate_start_times[cpu];
 372	pwr->end_time = timestamp;
 373	pwr->cpu = cpu;
 374	pwr->type = CSTATE;
 375	pwr->next = tchart->power_events;
 376
 377	tchart->power_events = pwr;
 378}
 379
 380static struct power_event *p_state_end(struct timechart *tchart, int cpu,
 381					u64 timestamp)
 382{
 383	struct power_event *pwr = zalloc(sizeof(*pwr));
 
 
 
 
 384
 385	if (!pwr)
 386		return NULL;
 
 387
 388	pwr->state = cpus_pstate_state[cpu];
 389	pwr->start_time = cpus_pstate_start_times[cpu];
 390	pwr->end_time = timestamp;
 391	pwr->cpu = cpu;
 392	pwr->type = PSTATE;
 393	pwr->next = tchart->power_events;
 
 394	if (!pwr->start_time)
 395		pwr->start_time = tchart->first_time;
 396
 397	tchart->power_events = pwr;
 398	return pwr;
 399}
 400
 401static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
 402{
 403	struct power_event *pwr;
 404
 405	if (new_freq > 8000000) /* detect invalid data */
 406		return;
 407
 408	pwr = p_state_end(tchart, cpu, timestamp);
 409	if (!pwr)
 410		return;
 411
 412	cpus_pstate_state[cpu] = new_freq;
 413	cpus_pstate_start_times[cpu] = timestamp;
 414
 415	if ((u64)new_freq > tchart->max_freq)
 416		tchart->max_freq = new_freq;
 417
 418	if (new_freq < tchart->min_freq || tchart->min_freq == 0)
 419		tchart->min_freq = new_freq;
 420
 421	if (new_freq == tchart->max_freq - 1000)
 422		tchart->turbo_frequency = tchart->max_freq;
 423}
 424
 425static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
 426			 int waker, int wakee, u8 flags, const char *backtrace)
 427{
 
 428	struct per_pid *p;
 429	struct wake_event *we = zalloc(sizeof(*we));
 430
 
 431	if (!we)
 432		return;
 433
 
 434	we->time = timestamp;
 435	we->waker = waker;
 436	we->backtrace = backtrace;
 437
 438	if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
 439		we->waker = -1;
 440
 441	we->wakee = wakee;
 442	we->next = tchart->wake_events;
 443	tchart->wake_events = we;
 444	p = find_create_pid(tchart, we->wakee);
 445
 446	if (p && p->current && p->current->state == TYPE_NONE) {
 447		p->current->state_since = timestamp;
 448		p->current->state = TYPE_WAITING;
 449	}
 450	if (p && p->current && p->current->state == TYPE_BLOCKED) {
 451		pid_put_sample(tchart, p->pid, p->current->state, cpu,
 452			       p->current->state_since, timestamp, NULL);
 453		p->current->state_since = timestamp;
 454		p->current->state = TYPE_WAITING;
 455	}
 456}
 457
 458static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
 459			 int prev_pid, int next_pid, u64 prev_state,
 460			 const char *backtrace)
 461{
 462	struct per_pid *p = NULL, *prev_p;
 
 
 463
 464	prev_p = find_create_pid(tchart, prev_pid);
 465
 466	p = find_create_pid(tchart, next_pid);
 467
 468	if (prev_p->current && prev_p->current->state != TYPE_NONE)
 469		pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
 470			       prev_p->current->state_since, timestamp,
 471			       backtrace);
 472	if (p && p->current) {
 473		if (p->current->state != TYPE_NONE)
 474			pid_put_sample(tchart, next_pid, p->current->state, cpu,
 475				       p->current->state_since, timestamp,
 476				       backtrace);
 477
 478		p->current->state_since = timestamp;
 479		p->current->state = TYPE_RUNNING;
 480	}
 481
 482	if (prev_p->current) {
 483		prev_p->current->state = TYPE_NONE;
 484		prev_p->current->state_since = timestamp;
 485		if (prev_state & 2)
 486			prev_p->current->state = TYPE_BLOCKED;
 487		if (prev_state == 0)
 488			prev_p->current->state = TYPE_WAITING;
 489	}
 490}
 491
 492static const char *cat_backtrace(union perf_event *event,
 493				 struct perf_sample *sample,
 494				 struct machine *machine)
 495{
 496	struct addr_location al;
 497	unsigned int i;
 498	char *p = NULL;
 499	size_t p_len;
 500	u8 cpumode = PERF_RECORD_MISC_USER;
 501	struct ip_callchain *chain = sample->callchain;
 502	FILE *f = open_memstream(&p, &p_len);
 503
 504	if (!f) {
 505		perror("open_memstream error");
 506		return NULL;
 507	}
 508
 509	addr_location__init(&al);
 510	if (!chain)
 511		goto exit;
 512
 513	if (machine__resolve(machine, &al, sample) < 0) {
 514		fprintf(stderr, "problem processing %d event, skipping it.\n",
 515			event->header.type);
 516		goto exit;
 517	}
 518
 519	for (i = 0; i < chain->nr; i++) {
 520		u64 ip;
 521		struct addr_location tal;
 522
 523		if (callchain_param.order == ORDER_CALLEE)
 524			ip = chain->ips[i];
 525		else
 526			ip = chain->ips[chain->nr - i - 1];
 527
 528		if (ip >= PERF_CONTEXT_MAX) {
 529			switch (ip) {
 530			case PERF_CONTEXT_HV:
 531				cpumode = PERF_RECORD_MISC_HYPERVISOR;
 532				break;
 533			case PERF_CONTEXT_KERNEL:
 534				cpumode = PERF_RECORD_MISC_KERNEL;
 535				break;
 536			case PERF_CONTEXT_USER:
 537				cpumode = PERF_RECORD_MISC_USER;
 538				break;
 539			default:
 540				pr_debug("invalid callchain context: "
 541					 "%"PRId64"\n", (s64) ip);
 542
 543				/*
 544				 * It seems the callchain is corrupted.
 545				 * Discard all.
 546				 */
 547				zfree(&p);
 548				goto exit;
 549			}
 550			continue;
 551		}
 552
 553		addr_location__init(&tal);
 554		tal.filtered = 0;
 555		if (thread__find_symbol(al.thread, cpumode, ip, &tal))
 556			fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
 557		else
 558			fprintf(f, "..... %016" PRIx64 "\n", ip);
 559
 560		addr_location__exit(&tal);
 561	}
 562exit:
 563	addr_location__exit(&al);
 564	fclose(f);
 565
 566	return p;
 567}
 568
 569typedef int (*tracepoint_handler)(struct timechart *tchart,
 570				  struct evsel *evsel,
 571				  struct perf_sample *sample,
 572				  const char *backtrace);
 573
 574static int process_sample_event(struct perf_tool *tool,
 575				union perf_event *event,
 576				struct perf_sample *sample,
 577				struct evsel *evsel,
 578				struct machine *machine)
 579{
 580	struct timechart *tchart = container_of(tool, struct timechart, tool);
 581
 582	if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) {
 583		if (!tchart->first_time || tchart->first_time > sample->time)
 584			tchart->first_time = sample->time;
 585		if (tchart->last_time < sample->time)
 586			tchart->last_time = sample->time;
 587	}
 588
 589	if (evsel->handler != NULL) {
 590		tracepoint_handler f = evsel->handler;
 591		return f(tchart, evsel, sample,
 592			 cat_backtrace(event, sample, machine));
 593	}
 594
 595	return 0;
 596}
 597
 598static int
 599process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
 600			struct evsel *evsel,
 601			struct perf_sample *sample,
 602			const char *backtrace __maybe_unused)
 603{
 604	u32 state  = evsel__intval(evsel, sample, "state");
 605	u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
 606
 607	if (state == (u32)PWR_EVENT_EXIT)
 608		c_state_end(tchart, cpu_id, sample->time);
 609	else
 610		c_state_start(cpu_id, sample->time, state);
 611	return 0;
 612}
 613
 614static int
 615process_sample_cpu_frequency(struct timechart *tchart,
 616			     struct evsel *evsel,
 617			     struct perf_sample *sample,
 618			     const char *backtrace __maybe_unused)
 619{
 620	u32 state  = evsel__intval(evsel, sample, "state");
 621	u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
 622
 623	p_state_change(tchart, cpu_id, sample->time, state);
 624	return 0;
 625}
 
 
 
 
 
 
 626
 627static int
 628process_sample_sched_wakeup(struct timechart *tchart,
 629			    struct evsel *evsel,
 630			    struct perf_sample *sample,
 631			    const char *backtrace)
 632{
 633	u8 flags  = evsel__intval(evsel, sample, "common_flags");
 634	int waker = evsel__intval(evsel, sample, "common_pid");
 635	int wakee = evsel__intval(evsel, sample, "pid");
 636
 637	sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
 638	return 0;
 639}
 640
 641static int
 642process_sample_sched_switch(struct timechart *tchart,
 643			    struct evsel *evsel,
 644			    struct perf_sample *sample,
 645			    const char *backtrace)
 646{
 647	int prev_pid   = evsel__intval(evsel, sample, "prev_pid");
 648	int next_pid   = evsel__intval(evsel, sample, "next_pid");
 649	u64 prev_state = evsel__intval(evsel, sample, "prev_state");
 650
 651	sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
 652		     prev_state, backtrace);
 653	return 0;
 654}
 655
 656#ifdef SUPPORT_OLD_POWER_EVENTS
 657static int
 658process_sample_power_start(struct timechart *tchart __maybe_unused,
 659			   struct evsel *evsel,
 660			   struct perf_sample *sample,
 661			   const char *backtrace __maybe_unused)
 662{
 663	u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
 664	u64 value  = evsel__intval(evsel, sample, "value");
 665
 666	c_state_start(cpu_id, sample->time, value);
 667	return 0;
 668}
 669
 670static int
 671process_sample_power_end(struct timechart *tchart,
 672			 struct evsel *evsel __maybe_unused,
 673			 struct perf_sample *sample,
 674			 const char *backtrace __maybe_unused)
 675{
 676	c_state_end(tchart, sample->cpu, sample->time);
 677	return 0;
 678}
 679
 680static int
 681process_sample_power_frequency(struct timechart *tchart,
 682			       struct evsel *evsel,
 683			       struct perf_sample *sample,
 684			       const char *backtrace __maybe_unused)
 685{
 686	u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
 687	u64 value  = evsel__intval(evsel, sample, "value");
 688
 689	p_state_change(tchart, cpu_id, sample->time, value);
 690	return 0;
 691}
 692#endif /* SUPPORT_OLD_POWER_EVENTS */
 693
 694/*
 695 * After the last sample we need to wrap up the current C/P state
 696 * and close out each CPU for these.
 697 */
 698static void end_sample_processing(struct timechart *tchart)
 699{
 700	u64 cpu;
 701	struct power_event *pwr;
 702
 703	for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
 704		/* C state */
 705#if 0
 706		pwr = zalloc(sizeof(*pwr));
 707		if (!pwr)
 708			return;
 
 709
 
 
 710		pwr->state = cpus_cstate_state[cpu];
 711		pwr->start_time = cpus_cstate_start_times[cpu];
 712		pwr->end_time = tchart->last_time;
 713		pwr->cpu = cpu;
 714		pwr->type = CSTATE;
 715		pwr->next = tchart->power_events;
 716
 717		tchart->power_events = pwr;
 718#endif
 719		/* P state */
 720
 721		pwr = p_state_end(tchart, cpu, tchart->last_time);
 722		if (!pwr)
 723			return;
 
 724
 
 
 
 
 
 
 
 
 
 725		if (!pwr->state)
 726			pwr->state = tchart->min_freq;
 
 727	}
 728}
 729
 730static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
 731			       u64 start, int fd)
 732{
 733	struct per_pid *p = find_create_pid(tchart, pid);
 734	struct per_pidcomm *c = p->current;
 735	struct io_sample *sample;
 736	struct io_sample *prev;
 737
 738	if (!c) {
 739		c = create_pidcomm(p);
 740		if (!c)
 741			return -ENOMEM;
 742	}
 743
 744	prev = c->io_samples;
 745
 746	if (prev && prev->start_time && !prev->end_time) {
 747		pr_warning("Skip invalid start event: "
 748			   "previous event already started!\n");
 749
 750		/* remove previous event that has been started,
 751		 * we are not sure we will ever get an end for it */
 752		c->io_samples = prev->next;
 753		free(prev);
 754		return 0;
 755	}
 756
 757	sample = zalloc(sizeof(*sample));
 758	if (!sample)
 759		return -ENOMEM;
 760	sample->start_time = start;
 761	sample->type = type;
 762	sample->fd = fd;
 763	sample->next = c->io_samples;
 764	c->io_samples = sample;
 765
 766	if (c->start_time == 0 || c->start_time > start)
 767		c->start_time = start;
 768
 769	return 0;
 770}
 771
 772static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
 773			     u64 end, long ret)
 774{
 775	struct per_pid *p = find_create_pid(tchart, pid);
 776	struct per_pidcomm *c = p->current;
 777	struct io_sample *sample, *prev;
 778
 779	if (!c) {
 780		pr_warning("Invalid pidcomm!\n");
 781		return -1;
 782	}
 783
 784	sample = c->io_samples;
 785
 786	if (!sample) /* skip partially captured events */
 787		return 0;
 788
 789	if (sample->end_time) {
 790		pr_warning("Skip invalid end event: "
 791			   "previous event already ended!\n");
 792		return 0;
 793	}
 794
 795	if (sample->type != type) {
 796		pr_warning("Skip invalid end event: invalid event type!\n");
 797		return 0;
 798	}
 799
 800	sample->end_time = end;
 801	prev = sample->next;
 802
 803	/* we want to be able to see small and fast transfers, so make them
 804	 * at least min_time long, but don't overlap them */
 805	if (sample->end_time - sample->start_time < tchart->min_time)
 806		sample->end_time = sample->start_time + tchart->min_time;
 807	if (prev && sample->start_time < prev->end_time) {
 808		if (prev->err) /* try to make errors more visible */
 809			sample->start_time = prev->end_time;
 810		else
 811			prev->end_time = sample->start_time;
 812	}
 813
 814	if (ret < 0) {
 815		sample->err = ret;
 816	} else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
 817		   type == IOTYPE_TX || type == IOTYPE_RX) {
 818
 819		if ((u64)ret > c->max_bytes)
 820			c->max_bytes = ret;
 821
 822		c->total_bytes += ret;
 823		p->total_bytes += ret;
 824		sample->bytes = ret;
 825	}
 826
 827	/* merge two requests to make svg smaller and render-friendly */
 828	if (prev &&
 829	    prev->type == sample->type &&
 830	    prev->err == sample->err &&
 831	    prev->fd == sample->fd &&
 832	    prev->end_time + tchart->merge_dist >= sample->start_time) {
 833
 834		sample->bytes += prev->bytes;
 835		sample->merges += prev->merges + 1;
 836
 837		sample->start_time = prev->start_time;
 838		sample->next = prev->next;
 839		free(prev);
 840
 841		if (!sample->err && sample->bytes > c->max_bytes)
 842			c->max_bytes = sample->bytes;
 843	}
 844
 845	tchart->io_events++;
 846
 847	return 0;
 848}
 849
 850static int
 851process_enter_read(struct timechart *tchart,
 852		   struct evsel *evsel,
 853		   struct perf_sample *sample)
 854{
 855	long fd = evsel__intval(evsel, sample, "fd");
 856	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
 857				   sample->time, fd);
 858}
 859
 860static int
 861process_exit_read(struct timechart *tchart,
 862		  struct evsel *evsel,
 863		  struct perf_sample *sample)
 864{
 865	long ret = evsel__intval(evsel, sample, "ret");
 866	return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
 867				 sample->time, ret);
 868}
 869
 870static int
 871process_enter_write(struct timechart *tchart,
 872		    struct evsel *evsel,
 873		    struct perf_sample *sample)
 874{
 875	long fd = evsel__intval(evsel, sample, "fd");
 876	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
 877				   sample->time, fd);
 878}
 879
 880static int
 881process_exit_write(struct timechart *tchart,
 882		   struct evsel *evsel,
 883		   struct perf_sample *sample)
 884{
 885	long ret = evsel__intval(evsel, sample, "ret");
 886	return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
 887				 sample->time, ret);
 888}
 889
 890static int
 891process_enter_sync(struct timechart *tchart,
 892		   struct evsel *evsel,
 893		   struct perf_sample *sample)
 894{
 895	long fd = evsel__intval(evsel, sample, "fd");
 896	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
 897				   sample->time, fd);
 898}
 899
 900static int
 901process_exit_sync(struct timechart *tchart,
 902		  struct evsel *evsel,
 903		  struct perf_sample *sample)
 904{
 905	long ret = evsel__intval(evsel, sample, "ret");
 906	return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
 907				 sample->time, ret);
 908}
 909
 910static int
 911process_enter_tx(struct timechart *tchart,
 912		 struct evsel *evsel,
 913		 struct perf_sample *sample)
 914{
 915	long fd = evsel__intval(evsel, sample, "fd");
 916	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
 917				   sample->time, fd);
 918}
 919
 920static int
 921process_exit_tx(struct timechart *tchart,
 922		struct evsel *evsel,
 923		struct perf_sample *sample)
 924{
 925	long ret = evsel__intval(evsel, sample, "ret");
 926	return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
 927				 sample->time, ret);
 928}
 929
 930static int
 931process_enter_rx(struct timechart *tchart,
 932		 struct evsel *evsel,
 933		 struct perf_sample *sample)
 934{
 935	long fd = evsel__intval(evsel, sample, "fd");
 936	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
 937				   sample->time, fd);
 938}
 939
 940static int
 941process_exit_rx(struct timechart *tchart,
 942		struct evsel *evsel,
 943		struct perf_sample *sample)
 944{
 945	long ret = evsel__intval(evsel, sample, "ret");
 946	return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
 947				 sample->time, ret);
 948}
 949
 950static int
 951process_enter_poll(struct timechart *tchart,
 952		   struct evsel *evsel,
 953		   struct perf_sample *sample)
 954{
 955	long fd = evsel__intval(evsel, sample, "fd");
 956	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
 957				   sample->time, fd);
 958}
 959
 960static int
 961process_exit_poll(struct timechart *tchart,
 962		  struct evsel *evsel,
 963		  struct perf_sample *sample)
 964{
 965	long ret = evsel__intval(evsel, sample, "ret");
 966	return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
 967				 sample->time, ret);
 968}
 969
 970/*
 971 * Sort the pid datastructure
 972 */
 973static void sort_pids(struct timechart *tchart)
 974{
 975	struct per_pid *new_list, *p, *cursor, *prev;
 976	/* sort by ppid first, then by pid, lowest to highest */
 977
 978	new_list = NULL;
 979
 980	while (tchart->all_data) {
 981		p = tchart->all_data;
 982		tchart->all_data = p->next;
 983		p->next = NULL;
 984
 985		if (new_list == NULL) {
 986			new_list = p;
 987			p->next = NULL;
 988			continue;
 989		}
 990		prev = NULL;
 991		cursor = new_list;
 992		while (cursor) {
 993			if (cursor->ppid > p->ppid ||
 994				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 995				/* must insert before */
 996				if (prev) {
 997					p->next = prev->next;
 998					prev->next = p;
 999					cursor = NULL;
1000					continue;
1001				} else {
1002					p->next = new_list;
1003					new_list = p;
1004					cursor = NULL;
1005					continue;
1006				}
1007			}
1008
1009			prev = cursor;
1010			cursor = cursor->next;
1011			if (!cursor)
1012				prev->next = p;
1013		}
1014	}
1015	tchart->all_data = new_list;
1016}
1017
1018
1019static void draw_c_p_states(struct timechart *tchart)
1020{
1021	struct power_event *pwr;
1022	pwr = tchart->power_events;
1023
1024	/*
1025	 * two pass drawing so that the P state bars are on top of the C state blocks
1026	 */
1027	while (pwr) {
1028		if (pwr->type == CSTATE)
1029			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1030		pwr = pwr->next;
1031	}
1032
1033	pwr = tchart->power_events;
1034	while (pwr) {
1035		if (pwr->type == PSTATE) {
1036			if (!pwr->state)
1037				pwr->state = tchart->min_freq;
1038			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1039		}
1040		pwr = pwr->next;
1041	}
1042}
1043
1044static void draw_wakeups(struct timechart *tchart)
1045{
1046	struct wake_event *we;
1047	struct per_pid *p;
1048	struct per_pidcomm *c;
1049
1050	we = tchart->wake_events;
1051	while (we) {
1052		int from = 0, to = 0;
1053		char *task_from = NULL, *task_to = NULL;
1054
1055		/* locate the column of the waker and wakee */
1056		p = tchart->all_data;
1057		while (p) {
1058			if (p->pid == we->waker || p->pid == we->wakee) {
1059				c = p->all;
1060				while (c) {
1061					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1062						if (p->pid == we->waker && !from) {
1063							from = c->Y;
1064							task_from = strdup(c->comm);
1065						}
1066						if (p->pid == we->wakee && !to) {
1067							to = c->Y;
1068							task_to = strdup(c->comm);
1069						}
1070					}
1071					c = c->next;
1072				}
1073				c = p->all;
1074				while (c) {
1075					if (p->pid == we->waker && !from) {
1076						from = c->Y;
1077						task_from = strdup(c->comm);
1078					}
1079					if (p->pid == we->wakee && !to) {
1080						to = c->Y;
1081						task_to = strdup(c->comm);
1082					}
1083					c = c->next;
1084				}
1085			}
1086			p = p->next;
1087		}
1088
1089		if (!task_from) {
1090			task_from = malloc(40);
1091			sprintf(task_from, "[%i]", we->waker);
1092		}
1093		if (!task_to) {
1094			task_to = malloc(40);
1095			sprintf(task_to, "[%i]", we->wakee);
1096		}
1097
1098		if (we->waker == -1)
1099			svg_interrupt(we->time, to, we->backtrace);
1100		else if (from && to && abs(from - to) == 1)
1101			svg_wakeline(we->time, from, to, we->backtrace);
1102		else
1103			svg_partial_wakeline(we->time, from, task_from, to,
1104					     task_to, we->backtrace);
1105		we = we->next;
1106
1107		free(task_from);
1108		free(task_to);
1109	}
1110}
1111
1112static void draw_cpu_usage(struct timechart *tchart)
1113{
1114	struct per_pid *p;
1115	struct per_pidcomm *c;
1116	struct cpu_sample *sample;
1117	p = tchart->all_data;
1118	while (p) {
1119		c = p->all;
1120		while (c) {
1121			sample = c->samples;
1122			while (sample) {
1123				if (sample->type == TYPE_RUNNING) {
1124					svg_process(sample->cpu,
1125						    sample->start_time,
1126						    sample->end_time,
1127						    p->pid,
1128						    c->comm,
1129						    sample->backtrace);
1130				}
1131
1132				sample = sample->next;
1133			}
1134			c = c->next;
1135		}
1136		p = p->next;
1137	}
1138}
1139
1140static void draw_io_bars(struct timechart *tchart)
1141{
1142	const char *suf;
1143	double bytes;
1144	char comm[256];
1145	struct per_pid *p;
1146	struct per_pidcomm *c;
1147	struct io_sample *sample;
1148	int Y = 1;
1149
1150	p = tchart->all_data;
1151	while (p) {
1152		c = p->all;
1153		while (c) {
1154			if (!c->display) {
1155				c->Y = 0;
1156				c = c->next;
1157				continue;
1158			}
1159
1160			svg_box(Y, c->start_time, c->end_time, "process3");
1161			sample = c->io_samples;
1162			for (sample = c->io_samples; sample; sample = sample->next) {
1163				double h = (double)sample->bytes / c->max_bytes;
1164
1165				if (tchart->skip_eagain &&
1166				    sample->err == -EAGAIN)
1167					continue;
1168
1169				if (sample->err)
1170					h = 1;
1171
1172				if (sample->type == IOTYPE_SYNC)
1173					svg_fbox(Y,
1174						sample->start_time,
1175						sample->end_time,
1176						1,
1177						sample->err ? "error" : "sync",
1178						sample->fd,
1179						sample->err,
1180						sample->merges);
1181				else if (sample->type == IOTYPE_POLL)
1182					svg_fbox(Y,
1183						sample->start_time,
1184						sample->end_time,
1185						1,
1186						sample->err ? "error" : "poll",
1187						sample->fd,
1188						sample->err,
1189						sample->merges);
1190				else if (sample->type == IOTYPE_READ)
1191					svg_ubox(Y,
1192						sample->start_time,
1193						sample->end_time,
1194						h,
1195						sample->err ? "error" : "disk",
1196						sample->fd,
1197						sample->err,
1198						sample->merges);
1199				else if (sample->type == IOTYPE_WRITE)
1200					svg_lbox(Y,
1201						sample->start_time,
1202						sample->end_time,
1203						h,
1204						sample->err ? "error" : "disk",
1205						sample->fd,
1206						sample->err,
1207						sample->merges);
1208				else if (sample->type == IOTYPE_RX)
1209					svg_ubox(Y,
1210						sample->start_time,
1211						sample->end_time,
1212						h,
1213						sample->err ? "error" : "net",
1214						sample->fd,
1215						sample->err,
1216						sample->merges);
1217				else if (sample->type == IOTYPE_TX)
1218					svg_lbox(Y,
1219						sample->start_time,
1220						sample->end_time,
1221						h,
1222						sample->err ? "error" : "net",
1223						sample->fd,
1224						sample->err,
1225						sample->merges);
1226			}
1227
1228			suf = "";
1229			bytes = c->total_bytes;
1230			if (bytes > 1024) {
1231				bytes = bytes / 1024;
1232				suf = "K";
1233			}
1234			if (bytes > 1024) {
1235				bytes = bytes / 1024;
1236				suf = "M";
1237			}
1238			if (bytes > 1024) {
1239				bytes = bytes / 1024;
1240				suf = "G";
1241			}
1242
1243
1244			sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1245			svg_text(Y, c->start_time, comm);
1246
1247			c->Y = Y;
1248			Y++;
1249			c = c->next;
1250		}
1251		p = p->next;
1252	}
1253}
1254
1255static void draw_process_bars(struct timechart *tchart)
1256{
1257	struct per_pid *p;
1258	struct per_pidcomm *c;
1259	struct cpu_sample *sample;
1260	int Y = 0;
1261
1262	Y = 2 * tchart->numcpus + 2;
1263
1264	p = tchart->all_data;
1265	while (p) {
1266		c = p->all;
1267		while (c) {
1268			if (!c->display) {
1269				c->Y = 0;
1270				c = c->next;
1271				continue;
1272			}
1273
1274			svg_box(Y, c->start_time, c->end_time, "process");
1275			sample = c->samples;
1276			while (sample) {
1277				if (sample->type == TYPE_RUNNING)
1278					svg_running(Y, sample->cpu,
1279						    sample->start_time,
1280						    sample->end_time,
1281						    sample->backtrace);
1282				if (sample->type == TYPE_BLOCKED)
1283					svg_blocked(Y, sample->cpu,
1284						    sample->start_time,
1285						    sample->end_time,
1286						    sample->backtrace);
1287				if (sample->type == TYPE_WAITING)
1288					svg_waiting(Y, sample->cpu,
1289						    sample->start_time,
1290						    sample->end_time,
1291						    sample->backtrace);
1292				sample = sample->next;
1293			}
1294
1295			if (c->comm) {
1296				char comm[256];
1297				if (c->total_time > 5000000000) /* 5 seconds */
1298					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1299				else
1300					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1301
1302				svg_text(Y, c->start_time, comm);
1303			}
1304			c->Y = Y;
1305			Y++;
1306			c = c->next;
1307		}
1308		p = p->next;
1309	}
1310}
1311
1312static void add_process_filter(const char *string)
1313{
1314	int pid = strtoull(string, NULL, 10);
1315	struct process_filter *filt = malloc(sizeof(*filt));
1316
 
 
1317	if (!filt)
1318		return;
1319
1320	filt->name = strdup(string);
1321	filt->pid  = pid;
1322	filt->next = process_filter;
1323
1324	process_filter = filt;
1325}
1326
1327static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1328{
1329	struct process_filter *filt;
1330	if (!process_filter)
1331		return 1;
1332
1333	filt = process_filter;
1334	while (filt) {
1335		if (filt->pid && p->pid == filt->pid)
1336			return 1;
1337		if (strcmp(filt->name, c->comm) == 0)
1338			return 1;
1339		filt = filt->next;
1340	}
1341	return 0;
1342}
1343
1344static int determine_display_tasks_filtered(struct timechart *tchart)
1345{
1346	struct per_pid *p;
1347	struct per_pidcomm *c;
1348	int count = 0;
1349
1350	p = tchart->all_data;
1351	while (p) {
1352		p->display = 0;
1353		if (p->start_time == 1)
1354			p->start_time = tchart->first_time;
1355
1356		/* no exit marker, task kept running to the end */
1357		if (p->end_time == 0)
1358			p->end_time = tchart->last_time;
1359
1360		c = p->all;
1361
1362		while (c) {
1363			c->display = 0;
1364
1365			if (c->start_time == 1)
1366				c->start_time = tchart->first_time;
1367
1368			if (passes_filter(p, c)) {
1369				c->display = 1;
1370				p->display = 1;
1371				count++;
1372			}
1373
1374			if (c->end_time == 0)
1375				c->end_time = tchart->last_time;
1376
1377			c = c->next;
1378		}
1379		p = p->next;
1380	}
1381	return count;
1382}
1383
1384static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1385{
1386	struct per_pid *p;
1387	struct per_pidcomm *c;
1388	int count = 0;
1389
1390	p = tchart->all_data;
 
 
 
1391	while (p) {
1392		p->display = 0;
1393		if (p->start_time == 1)
1394			p->start_time = tchart->first_time;
1395
1396		/* no exit marker, task kept running to the end */
1397		if (p->end_time == 0)
1398			p->end_time = tchart->last_time;
1399		if (p->total_time >= threshold)
1400			p->display = 1;
1401
1402		c = p->all;
1403
1404		while (c) {
1405			c->display = 0;
1406
1407			if (c->start_time == 1)
1408				c->start_time = tchart->first_time;
1409
1410			if (c->total_time >= threshold) {
1411				c->display = 1;
1412				count++;
1413			}
1414
1415			if (c->end_time == 0)
1416				c->end_time = tchart->last_time;
1417
1418			c = c->next;
1419		}
1420		p = p->next;
1421	}
1422	return count;
1423}
1424
1425static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1426{
1427	struct per_pid *p;
1428	struct per_pidcomm *c;
1429	int count = 0;
1430
1431	p = timechart->all_data;
1432	while (p) {
1433		/* no exit marker, task kept running to the end */
1434		if (p->end_time == 0)
1435			p->end_time = timechart->last_time;
1436
1437		c = p->all;
1438
1439		while (c) {
1440			c->display = 0;
1441
1442			if (c->total_bytes >= threshold) {
1443				c->display = 1;
1444				count++;
1445			}
1446
1447			if (c->end_time == 0)
1448				c->end_time = timechart->last_time;
1449
1450			c = c->next;
1451		}
1452		p = p->next;
1453	}
1454	return count;
1455}
1456
1457#define BYTES_THRESH (1 * 1024 * 1024)
1458#define TIME_THRESH 10000000
1459
1460static void write_svg_file(struct timechart *tchart, const char *filename)
1461{
1462	u64 i;
1463	int count;
1464	int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1465
1466	if (tchart->power_only)
1467		tchart->proc_num = 0;
1468
1469	/* We'd like to show at least proc_num tasks;
1470	 * be less picky if we have fewer */
1471	do {
1472		if (process_filter)
1473			count = determine_display_tasks_filtered(tchart);
1474		else if (tchart->io_events)
1475			count = determine_display_io_tasks(tchart, thresh);
1476		else
1477			count = determine_display_tasks(tchart, thresh);
1478		thresh /= 10;
1479	} while (!process_filter && thresh && count < tchart->proc_num);
1480
1481	if (!tchart->proc_num)
1482		count = 0;
1483
1484	if (tchart->io_events) {
1485		open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1486
1487		svg_time_grid(0.5);
1488		svg_io_legenda();
1489
1490		draw_io_bars(tchart);
1491	} else {
1492		open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1493
1494		svg_time_grid(0);
1495
1496		svg_legenda();
 
1497
1498		for (i = 0; i < tchart->numcpus; i++)
1499			svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1500
1501		draw_cpu_usage(tchart);
1502		if (tchart->proc_num)
1503			draw_process_bars(tchart);
1504		if (!tchart->tasks_only)
1505			draw_c_p_states(tchart);
1506		if (tchart->proc_num)
1507			draw_wakeups(tchart);
1508	}
1509
1510	svg_close();
1511}
1512
1513static int process_header(struct perf_file_section *section __maybe_unused,
1514			  struct perf_header *ph,
1515			  int feat,
1516			  int fd __maybe_unused,
1517			  void *data)
1518{
1519	struct timechart *tchart = data;
1520
1521	switch (feat) {
1522	case HEADER_NRCPUS:
1523		tchart->numcpus = ph->env.nr_cpus_avail;
1524		break;
1525
1526	case HEADER_CPU_TOPOLOGY:
1527		if (!tchart->topology)
1528			break;
1529
1530		if (svg_build_topology_map(&ph->env))
1531			fprintf(stderr, "problem building topology\n");
1532		break;
1533
1534	default:
1535		break;
1536	}
1537
1538	return 0;
1539}
1540
1541static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1542{
1543	const struct evsel_str_handler power_tracepoints[] = {
1544		{ "power:cpu_idle",		process_sample_cpu_idle },
1545		{ "power:cpu_frequency",	process_sample_cpu_frequency },
1546		{ "sched:sched_wakeup",		process_sample_sched_wakeup },
1547		{ "sched:sched_switch",		process_sample_sched_switch },
1548#ifdef SUPPORT_OLD_POWER_EVENTS
1549		{ "power:power_start",		process_sample_power_start },
1550		{ "power:power_end",		process_sample_power_end },
1551		{ "power:power_frequency",	process_sample_power_frequency },
1552#endif
1553
1554		{ "syscalls:sys_enter_read",		process_enter_read },
1555		{ "syscalls:sys_enter_pread64",		process_enter_read },
1556		{ "syscalls:sys_enter_readv",		process_enter_read },
1557		{ "syscalls:sys_enter_preadv",		process_enter_read },
1558		{ "syscalls:sys_enter_write",		process_enter_write },
1559		{ "syscalls:sys_enter_pwrite64",	process_enter_write },
1560		{ "syscalls:sys_enter_writev",		process_enter_write },
1561		{ "syscalls:sys_enter_pwritev",		process_enter_write },
1562		{ "syscalls:sys_enter_sync",		process_enter_sync },
1563		{ "syscalls:sys_enter_sync_file_range",	process_enter_sync },
1564		{ "syscalls:sys_enter_fsync",		process_enter_sync },
1565		{ "syscalls:sys_enter_msync",		process_enter_sync },
1566		{ "syscalls:sys_enter_recvfrom",	process_enter_rx },
1567		{ "syscalls:sys_enter_recvmmsg",	process_enter_rx },
1568		{ "syscalls:sys_enter_recvmsg",		process_enter_rx },
1569		{ "syscalls:sys_enter_sendto",		process_enter_tx },
1570		{ "syscalls:sys_enter_sendmsg",		process_enter_tx },
1571		{ "syscalls:sys_enter_sendmmsg",	process_enter_tx },
1572		{ "syscalls:sys_enter_epoll_pwait",	process_enter_poll },
1573		{ "syscalls:sys_enter_epoll_wait",	process_enter_poll },
1574		{ "syscalls:sys_enter_poll",		process_enter_poll },
1575		{ "syscalls:sys_enter_ppoll",		process_enter_poll },
1576		{ "syscalls:sys_enter_pselect6",	process_enter_poll },
1577		{ "syscalls:sys_enter_select",		process_enter_poll },
1578
1579		{ "syscalls:sys_exit_read",		process_exit_read },
1580		{ "syscalls:sys_exit_pread64",		process_exit_read },
1581		{ "syscalls:sys_exit_readv",		process_exit_read },
1582		{ "syscalls:sys_exit_preadv",		process_exit_read },
1583		{ "syscalls:sys_exit_write",		process_exit_write },
1584		{ "syscalls:sys_exit_pwrite64",		process_exit_write },
1585		{ "syscalls:sys_exit_writev",		process_exit_write },
1586		{ "syscalls:sys_exit_pwritev",		process_exit_write },
1587		{ "syscalls:sys_exit_sync",		process_exit_sync },
1588		{ "syscalls:sys_exit_sync_file_range",	process_exit_sync },
1589		{ "syscalls:sys_exit_fsync",		process_exit_sync },
1590		{ "syscalls:sys_exit_msync",		process_exit_sync },
1591		{ "syscalls:sys_exit_recvfrom",		process_exit_rx },
1592		{ "syscalls:sys_exit_recvmmsg",		process_exit_rx },
1593		{ "syscalls:sys_exit_recvmsg",		process_exit_rx },
1594		{ "syscalls:sys_exit_sendto",		process_exit_tx },
1595		{ "syscalls:sys_exit_sendmsg",		process_exit_tx },
1596		{ "syscalls:sys_exit_sendmmsg",		process_exit_tx },
1597		{ "syscalls:sys_exit_epoll_pwait",	process_exit_poll },
1598		{ "syscalls:sys_exit_epoll_wait",	process_exit_poll },
1599		{ "syscalls:sys_exit_poll",		process_exit_poll },
1600		{ "syscalls:sys_exit_ppoll",		process_exit_poll },
1601		{ "syscalls:sys_exit_pselect6",		process_exit_poll },
1602		{ "syscalls:sys_exit_select",		process_exit_poll },
1603	};
1604	struct perf_data data = {
1605		.path  = input_name,
1606		.mode  = PERF_DATA_MODE_READ,
1607		.force = tchart->force,
1608	};
1609
1610	struct perf_session *session = perf_session__new(&data, &tchart->tool);
1611	int ret = -EINVAL;
1612
1613	if (IS_ERR(session))
1614		return PTR_ERR(session);
1615
1616	symbol__init(&session->header.env);
1617
1618	(void)perf_header__process_sections(&session->header,
1619					    perf_data__fd(session->data),
1620					    tchart,
1621					    process_header);
1622
1623	if (!perf_session__has_traces(session, "timechart record"))
1624		goto out_delete;
1625
1626	if (perf_session__set_tracepoints_handlers(session,
1627						   power_tracepoints)) {
1628		pr_err("Initializing session tracepoint handlers failed\n");
1629		goto out_delete;
1630	}
1631
1632	ret = perf_session__process_events(session);
1633	if (ret)
1634		goto out_delete;
1635
1636	end_sample_processing(tchart);
1637
1638	sort_pids(tchart);
1639
1640	write_svg_file(tchart, output_name);
1641
1642	pr_info("Written %2.1f seconds of trace to %s.\n",
1643		(tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1644out_delete:
1645	perf_session__delete(session);
1646	return ret;
1647}
1648
1649static int timechart__io_record(int argc, const char **argv)
1650{
1651	unsigned int rec_argc, i;
1652	const char **rec_argv;
1653	const char **p;
1654	char *filter = NULL;
1655
1656	const char * const common_args[] = {
1657		"record", "-a", "-R", "-c", "1",
1658	};
1659	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1660
1661	const char * const disk_events[] = {
1662		"syscalls:sys_enter_read",
1663		"syscalls:sys_enter_pread64",
1664		"syscalls:sys_enter_readv",
1665		"syscalls:sys_enter_preadv",
1666		"syscalls:sys_enter_write",
1667		"syscalls:sys_enter_pwrite64",
1668		"syscalls:sys_enter_writev",
1669		"syscalls:sys_enter_pwritev",
1670		"syscalls:sys_enter_sync",
1671		"syscalls:sys_enter_sync_file_range",
1672		"syscalls:sys_enter_fsync",
1673		"syscalls:sys_enter_msync",
1674
1675		"syscalls:sys_exit_read",
1676		"syscalls:sys_exit_pread64",
1677		"syscalls:sys_exit_readv",
1678		"syscalls:sys_exit_preadv",
1679		"syscalls:sys_exit_write",
1680		"syscalls:sys_exit_pwrite64",
1681		"syscalls:sys_exit_writev",
1682		"syscalls:sys_exit_pwritev",
1683		"syscalls:sys_exit_sync",
1684		"syscalls:sys_exit_sync_file_range",
1685		"syscalls:sys_exit_fsync",
1686		"syscalls:sys_exit_msync",
1687	};
1688	unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1689
1690	const char * const net_events[] = {
1691		"syscalls:sys_enter_recvfrom",
1692		"syscalls:sys_enter_recvmmsg",
1693		"syscalls:sys_enter_recvmsg",
1694		"syscalls:sys_enter_sendto",
1695		"syscalls:sys_enter_sendmsg",
1696		"syscalls:sys_enter_sendmmsg",
1697
1698		"syscalls:sys_exit_recvfrom",
1699		"syscalls:sys_exit_recvmmsg",
1700		"syscalls:sys_exit_recvmsg",
1701		"syscalls:sys_exit_sendto",
1702		"syscalls:sys_exit_sendmsg",
1703		"syscalls:sys_exit_sendmmsg",
1704	};
1705	unsigned int net_events_nr = ARRAY_SIZE(net_events);
1706
1707	const char * const poll_events[] = {
1708		"syscalls:sys_enter_epoll_pwait",
1709		"syscalls:sys_enter_epoll_wait",
1710		"syscalls:sys_enter_poll",
1711		"syscalls:sys_enter_ppoll",
1712		"syscalls:sys_enter_pselect6",
1713		"syscalls:sys_enter_select",
1714
1715		"syscalls:sys_exit_epoll_pwait",
1716		"syscalls:sys_exit_epoll_wait",
1717		"syscalls:sys_exit_poll",
1718		"syscalls:sys_exit_ppoll",
1719		"syscalls:sys_exit_pselect6",
1720		"syscalls:sys_exit_select",
1721	};
1722	unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1723
1724	rec_argc = common_args_nr +
1725		disk_events_nr * 4 +
1726		net_events_nr * 4 +
1727		poll_events_nr * 4 +
1728		argc;
1729	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1730
1731	if (rec_argv == NULL)
1732		return -ENOMEM;
1733
1734	if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1735		free(rec_argv);
1736		return -ENOMEM;
1737	}
1738
1739	p = rec_argv;
1740	for (i = 0; i < common_args_nr; i++)
1741		*p++ = strdup(common_args[i]);
1742
1743	for (i = 0; i < disk_events_nr; i++) {
1744		if (!is_valid_tracepoint(disk_events[i])) {
1745			rec_argc -= 4;
1746			continue;
1747		}
1748
1749		*p++ = "-e";
1750		*p++ = strdup(disk_events[i]);
1751		*p++ = "--filter";
1752		*p++ = filter;
1753	}
1754	for (i = 0; i < net_events_nr; i++) {
1755		if (!is_valid_tracepoint(net_events[i])) {
1756			rec_argc -= 4;
1757			continue;
1758		}
1759
1760		*p++ = "-e";
1761		*p++ = strdup(net_events[i]);
1762		*p++ = "--filter";
1763		*p++ = filter;
1764	}
1765	for (i = 0; i < poll_events_nr; i++) {
1766		if (!is_valid_tracepoint(poll_events[i])) {
1767			rec_argc -= 4;
1768			continue;
1769		}
1770
1771		*p++ = "-e";
1772		*p++ = strdup(poll_events[i]);
1773		*p++ = "--filter";
1774		*p++ = filter;
1775	}
1776
1777	for (i = 0; i < (unsigned int)argc; i++)
1778		*p++ = argv[i];
1779
1780	return cmd_record(rec_argc, rec_argv);
1781}
1782
1783
1784static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1785{
1786	unsigned int rec_argc, i, j;
1787	const char **rec_argv;
1788	const char **p;
1789	unsigned int record_elems;
1790
1791	const char * const common_args[] = {
1792		"record", "-a", "-R", "-c", "1",
1793	};
1794	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1795
1796	const char * const backtrace_args[] = {
1797		"-g",
1798	};
1799	unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1800
1801	const char * const power_args[] = {
1802		"-e", "power:cpu_frequency",
1803		"-e", "power:cpu_idle",
1804	};
1805	unsigned int power_args_nr = ARRAY_SIZE(power_args);
1806
1807	const char * const old_power_args[] = {
1808#ifdef SUPPORT_OLD_POWER_EVENTS
1809		"-e", "power:power_start",
1810		"-e", "power:power_end",
1811		"-e", "power:power_frequency",
1812#endif
1813	};
1814	unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1815
1816	const char * const tasks_args[] = {
1817		"-e", "sched:sched_wakeup",
1818		"-e", "sched:sched_switch",
1819	};
1820	unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1821
1822#ifdef SUPPORT_OLD_POWER_EVENTS
1823	if (!is_valid_tracepoint("power:cpu_idle") &&
1824	    is_valid_tracepoint("power:power_start")) {
1825		use_old_power_events = 1;
1826		power_args_nr = 0;
1827	} else {
1828		old_power_args_nr = 0;
1829	}
1830#endif
1831
1832	if (tchart->power_only)
1833		tasks_args_nr = 0;
1834
1835	if (tchart->tasks_only) {
1836		power_args_nr = 0;
1837		old_power_args_nr = 0;
1838	}
1839
1840	if (!tchart->with_backtrace)
1841		backtrace_args_no = 0;
1842
1843	record_elems = common_args_nr + tasks_args_nr +
1844		power_args_nr + old_power_args_nr + backtrace_args_no;
1845
1846	rec_argc = record_elems + argc;
1847	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1848
1849	if (rec_argv == NULL)
1850		return -ENOMEM;
1851
1852	p = rec_argv;
1853	for (i = 0; i < common_args_nr; i++)
1854		*p++ = strdup(common_args[i]);
1855
1856	for (i = 0; i < backtrace_args_no; i++)
1857		*p++ = strdup(backtrace_args[i]);
1858
1859	for (i = 0; i < tasks_args_nr; i++)
1860		*p++ = strdup(tasks_args[i]);
1861
1862	for (i = 0; i < power_args_nr; i++)
1863		*p++ = strdup(power_args[i]);
1864
1865	for (i = 0; i < old_power_args_nr; i++)
1866		*p++ = strdup(old_power_args[i]);
1867
1868	for (j = 0; j < (unsigned int)argc; j++)
1869		*p++ = argv[j];
1870
1871	return cmd_record(rec_argc, rec_argv);
1872}
1873
1874static int
1875parse_process(const struct option *opt __maybe_unused, const char *arg,
1876	      int __maybe_unused unset)
1877{
1878	if (arg)
1879		add_process_filter(arg);
1880	return 0;
1881}
1882
1883static int
1884parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1885		int __maybe_unused unset)
1886{
1887	unsigned long duration = strtoul(arg, NULL, 0);
1888
1889	if (svg_highlight || svg_highlight_name)
1890		return -1;
 
 
 
 
 
 
 
 
1891
1892	if (duration)
1893		svg_highlight = duration;
1894	else
1895		svg_highlight_name = strdup(arg);
1896
1897	return 0;
1898}
1899
1900static int
1901parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1902{
1903	char unit = 'n';
1904	u64 *value = opt->value;
1905
1906	if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1907		switch (unit) {
1908		case 'm':
1909			*value *= NSEC_PER_MSEC;
1910			break;
1911		case 'u':
1912			*value *= NSEC_PER_USEC;
1913			break;
1914		case 'n':
1915			break;
1916		default:
1917			return -1;
1918		}
1919	}
1920
1921	return 0;
1922}
1923
1924int cmd_timechart(int argc, const char **argv)
1925{
1926	struct timechart tchart = {
1927		.tool = {
1928			.comm		 = process_comm_event,
1929			.fork		 = process_fork_event,
1930			.exit		 = process_exit_event,
1931			.sample		 = process_sample_event,
1932			.ordered_events	 = true,
1933		},
1934		.proc_num = 15,
1935		.min_time = NSEC_PER_MSEC,
1936		.merge_dist = 1000,
1937	};
1938	const char *output_name = "output.svg";
1939	const struct option timechart_common_options[] = {
1940	OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1941	OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1942	OPT_END()
1943	};
1944	const struct option timechart_options[] = {
1945	OPT_STRING('i', "input", &input_name, "file", "input file name"),
1946	OPT_STRING('o', "output", &output_name, "file", "output file name"),
1947	OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1948	OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1949		      "highlight tasks. Pass duration in ns or process name.",
1950		       parse_highlight),
1951	OPT_CALLBACK('p', "process", NULL, "process",
1952		      "process selector. Pass a pid or process name.",
1953		       parse_process),
1954	OPT_CALLBACK(0, "symfs", NULL, "directory",
1955		     "Look for files with symbols relative to this directory",
1956		     symbol__config_symfs),
1957	OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1958		    "min. number of tasks to print"),
1959	OPT_BOOLEAN('t', "topology", &tchart.topology,
1960		    "sort CPUs according to topology"),
1961	OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1962		    "skip EAGAIN errors"),
1963	OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1964		     "all IO faster than min-time will visually appear longer",
1965		     parse_time),
1966	OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1967		     "merge events that are merge-dist us apart",
1968		     parse_time),
1969	OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1970	OPT_PARENT(timechart_common_options),
1971	};
1972	const char * const timechart_subcommands[] = { "record", NULL };
1973	const char *timechart_usage[] = {
1974		"perf timechart [<options>] {record}",
1975		NULL
1976	};
1977	const struct option timechart_record_options[] = {
1978	OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1979		    "record only IO data"),
1980	OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1981	OPT_PARENT(timechart_common_options),
1982	};
1983	const char * const timechart_record_usage[] = {
1984		"perf timechart record [<options>]",
1985		NULL
1986	};
1987	int ret;
1988
1989	cpus_cstate_start_times = calloc(MAX_CPUS, sizeof(*cpus_cstate_start_times));
1990	if (!cpus_cstate_start_times)
1991		return -ENOMEM;
1992	cpus_cstate_state = calloc(MAX_CPUS, sizeof(*cpus_cstate_state));
1993	if (!cpus_cstate_state) {
1994		ret = -ENOMEM;
1995		goto out;
1996	}
1997	cpus_pstate_start_times = calloc(MAX_CPUS, sizeof(*cpus_pstate_start_times));
1998	if (!cpus_pstate_start_times) {
1999		ret = -ENOMEM;
2000		goto out;
2001	}
2002	cpus_pstate_state = calloc(MAX_CPUS, sizeof(*cpus_pstate_state));
2003	if (!cpus_pstate_state) {
2004		ret = -ENOMEM;
2005		goto out;
2006	}
2007
2008	argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
2009			timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
2010
2011	if (tchart.power_only && tchart.tasks_only) {
2012		pr_err("-P and -T options cannot be used at the same time.\n");
2013		ret = -1;
2014		goto out;
2015	}
2016
2017	if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
2018		argc = parse_options(argc, argv, timechart_record_options,
2019				     timechart_record_usage,
2020				     PARSE_OPT_STOP_AT_NON_OPTION);
2021
2022		if (tchart.power_only && tchart.tasks_only) {
2023			pr_err("-P and -T options cannot be used at the same time.\n");
2024			ret = -1;
2025			goto out;
2026		}
2027
2028		if (tchart.io_only)
2029			ret = timechart__io_record(argc, argv);
2030		else
2031			ret = timechart__record(&tchart, argc, argv);
2032		goto out;
2033	} else if (argc)
2034		usage_with_options(timechart_usage, timechart_options);
2035
2036	setup_pager();
2037
2038	ret = __cmd_timechart(&tchart, output_name);
2039out:
2040	zfree(&cpus_cstate_start_times);
2041	zfree(&cpus_cstate_state);
2042	zfree(&cpus_pstate_start_times);
2043	zfree(&cpus_pstate_state);
2044	return ret;
2045}