Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * builtin-timechart.c - make an svg timechart of system activity
   3 *
   4 * (C) Copyright 2009 Intel Corporation
   5 *
   6 * Authors:
   7 *     Arjan van de Ven <arjan@linux.intel.com>
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * as published by the Free Software Foundation; version 2
  12 * of the License.
  13 */
  14
 
 
  15#include "builtin.h"
  16
  17#include "util/util.h"
  18
  19#include "util/color.h"
  20#include <linux/list.h>
  21#include "util/cache.h"
 
 
  22#include <linux/rbtree.h>
  23#include "util/symbol.h"
  24#include "util/callchain.h"
  25#include "util/strlist.h"
  26
  27#include "perf.h"
  28#include "util/header.h"
  29#include "util/parse-options.h"
  30#include "util/parse-events.h"
  31#include "util/event.h"
  32#include "util/session.h"
  33#include "util/svghelper.h"
 
 
  34
  35#define SUPPORT_OLD_POWER_EVENTS 1
  36#define PWR_EVENT_EXIT -1
  37
  38
  39static char		const *input_name = "perf.data";
  40static char		const *output_name = "output.svg";
  41
  42static unsigned int	numcpus;
  43static u64		min_freq;	/* Lowest CPU frequency seen */
  44static u64		max_freq;	/* Highest CPU frequency seen */
  45static u64		turbo_frequency;
  46
  47static u64		first_time, last_time;
  48
  49static bool		power_only;
  50
  51
  52struct per_pid;
  53struct per_pidcomm;
  54
  55struct cpu_sample;
  56struct power_event;
  57struct wake_event;
  58
  59struct sample_wrapper;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60
  61/*
  62 * Datastructure layout:
  63 * We keep an list of "pid"s, matching the kernels notion of a task struct.
  64 * Each "pid" entry, has a list of "comm"s.
  65 *	this is because we want to track different programs different, while
  66 *	exec will reuse the original pid (by design).
  67 * Each comm has a list of samples that will be used to draw
  68 * final graph.
  69 */
  70
  71struct per_pid {
  72	struct per_pid *next;
  73
  74	int		pid;
  75	int		ppid;
  76
  77	u64		start_time;
  78	u64		end_time;
  79	u64		total_time;
  80	int		display;
  81
  82	struct per_pidcomm *all;
  83	struct per_pidcomm *current;
  84};
  85
  86
  87struct per_pidcomm {
  88	struct per_pidcomm *next;
  89
  90	u64		start_time;
  91	u64		end_time;
  92	u64		total_time;
  93
  94	int		Y;
  95	int		display;
  96
  97	long		state;
  98	u64		state_since;
  99
 100	char		*comm;
 101
 102	struct cpu_sample *samples;
 103};
 104
 105struct sample_wrapper {
 106	struct sample_wrapper *next;
 107
 108	u64		timestamp;
 109	unsigned char	data[0];
 110};
 111
 112#define TYPE_NONE	0
 113#define TYPE_RUNNING	1
 114#define TYPE_WAITING	2
 115#define TYPE_BLOCKED	3
 116
 117struct cpu_sample {
 118	struct cpu_sample *next;
 119
 120	u64 start_time;
 121	u64 end_time;
 122	int type;
 123	int cpu;
 
 124};
 125
 126static struct per_pid *all_data;
 127
 128#define CSTATE 1
 129#define PSTATE 2
 130
 131struct power_event {
 132	struct power_event *next;
 133	int type;
 134	int state;
 135	u64 start_time;
 136	u64 end_time;
 137	int cpu;
 138};
 139
 140struct wake_event {
 141	struct wake_event *next;
 142	int waker;
 143	int wakee;
 144	u64 time;
 
 145};
 146
 147static struct power_event    *power_events;
 148static struct wake_event     *wake_events;
 149
 150struct process_filter;
 151struct process_filter {
 152	char			*name;
 153	int			pid;
 154	struct process_filter	*next;
 155};
 156
 157static struct process_filter *process_filter;
 158
 159
 160static struct per_pid *find_create_pid(int pid)
 161{
 162	struct per_pid *cursor = all_data;
 163
 164	while (cursor) {
 165		if (cursor->pid == pid)
 166			return cursor;
 167		cursor = cursor->next;
 168	}
 169	cursor = malloc(sizeof(struct per_pid));
 170	assert(cursor != NULL);
 171	memset(cursor, 0, sizeof(struct per_pid));
 172	cursor->pid = pid;
 173	cursor->next = all_data;
 174	all_data = cursor;
 175	return cursor;
 176}
 177
 178static void pid_set_comm(int pid, char *comm)
 179{
 180	struct per_pid *p;
 181	struct per_pidcomm *c;
 182	p = find_create_pid(pid);
 183	c = p->all;
 184	while (c) {
 185		if (c->comm && strcmp(c->comm, comm) == 0) {
 186			p->current = c;
 187			return;
 188		}
 189		if (!c->comm) {
 190			c->comm = strdup(comm);
 191			p->current = c;
 192			return;
 193		}
 194		c = c->next;
 195	}
 196	c = malloc(sizeof(struct per_pidcomm));
 197	assert(c != NULL);
 198	memset(c, 0, sizeof(struct per_pidcomm));
 199	c->comm = strdup(comm);
 200	p->current = c;
 201	c->next = p->all;
 202	p->all = c;
 203}
 204
 205static void pid_fork(int pid, int ppid, u64 timestamp)
 206{
 207	struct per_pid *p, *pp;
 208	p = find_create_pid(pid);
 209	pp = find_create_pid(ppid);
 210	p->ppid = ppid;
 211	if (pp->current && pp->current->comm && !p->current)
 212		pid_set_comm(pid, pp->current->comm);
 213
 214	p->start_time = timestamp;
 215	if (p->current) {
 216		p->current->start_time = timestamp;
 217		p->current->state_since = timestamp;
 218	}
 219}
 220
 221static void pid_exit(int pid, u64 timestamp)
 222{
 223	struct per_pid *p;
 224	p = find_create_pid(pid);
 225	p->end_time = timestamp;
 226	if (p->current)
 227		p->current->end_time = timestamp;
 228}
 229
 230static void
 231pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
 
 232{
 233	struct per_pid *p;
 234	struct per_pidcomm *c;
 235	struct cpu_sample *sample;
 236
 237	p = find_create_pid(pid);
 238	c = p->current;
 239	if (!c) {
 240		c = malloc(sizeof(struct per_pidcomm));
 241		assert(c != NULL);
 242		memset(c, 0, sizeof(struct per_pidcomm));
 243		p->current = c;
 244		c->next = p->all;
 245		p->all = c;
 246	}
 247
 248	sample = malloc(sizeof(struct cpu_sample));
 249	assert(sample != NULL);
 250	memset(sample, 0, sizeof(struct cpu_sample));
 251	sample->start_time = start;
 252	sample->end_time = end;
 253	sample->type = type;
 254	sample->next = c->samples;
 255	sample->cpu = cpu;
 
 256	c->samples = sample;
 257
 258	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 259		c->total_time += (end-start);
 260		p->total_time += (end-start);
 261	}
 262
 263	if (c->start_time == 0 || c->start_time > start)
 264		c->start_time = start;
 265	if (p->start_time == 0 || p->start_time > start)
 266		p->start_time = start;
 267}
 268
 269#define MAX_CPUS 4096
 270
 271static u64 cpus_cstate_start_times[MAX_CPUS];
 272static int cpus_cstate_state[MAX_CPUS];
 273static u64 cpus_pstate_start_times[MAX_CPUS];
 274static u64 cpus_pstate_state[MAX_CPUS];
 275
 276static int process_comm_event(union perf_event *event,
 277			      struct perf_sample *sample __used,
 278			      struct perf_session *session __used)
 
 279{
 280	pid_set_comm(event->comm.tid, event->comm.comm);
 
 281	return 0;
 282}
 283
 284static int process_fork_event(union perf_event *event,
 285			      struct perf_sample *sample __used,
 286			      struct perf_session *session __used)
 
 287{
 288	pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
 
 289	return 0;
 290}
 291
 292static int process_exit_event(union perf_event *event,
 293			      struct perf_sample *sample __used,
 294			      struct perf_session *session __used)
 
 295{
 296	pid_exit(event->fork.pid, event->fork.time);
 
 297	return 0;
 298}
 299
 300struct trace_entry {
 301	unsigned short		type;
 302	unsigned char		flags;
 303	unsigned char		preempt_count;
 304	int			pid;
 305	int			lock_depth;
 306};
 307
 308#ifdef SUPPORT_OLD_POWER_EVENTS
 309static int use_old_power_events;
 310struct power_entry_old {
 311	struct trace_entry te;
 312	u64	type;
 313	u64	value;
 314	u64	cpu_id;
 315};
 316#endif
 317
 318struct power_processor_entry {
 319	struct trace_entry te;
 320	u32	state;
 321	u32	cpu_id;
 322};
 323
 324#define TASK_COMM_LEN 16
 325struct wakeup_entry {
 326	struct trace_entry te;
 327	char comm[TASK_COMM_LEN];
 328	int   pid;
 329	int   prio;
 330	int   success;
 331};
 332
 333/*
 334 * trace_flag_type is an enumeration that holds different
 335 * states when a trace occurs. These are:
 336 *  IRQS_OFF            - interrupts were disabled
 337 *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags
 338 *  NEED_RESCED         - reschedule is requested
 339 *  HARDIRQ             - inside an interrupt handler
 340 *  SOFTIRQ             - inside a softirq handler
 341 */
 342enum trace_flag_type {
 343	TRACE_FLAG_IRQS_OFF		= 0x01,
 344	TRACE_FLAG_IRQS_NOSUPPORT	= 0x02,
 345	TRACE_FLAG_NEED_RESCHED		= 0x04,
 346	TRACE_FLAG_HARDIRQ		= 0x08,
 347	TRACE_FLAG_SOFTIRQ		= 0x10,
 348};
 349
 350
 351
 352struct sched_switch {
 353	struct trace_entry te;
 354	char prev_comm[TASK_COMM_LEN];
 355	int  prev_pid;
 356	int  prev_prio;
 357	long prev_state; /* Arjan weeps. */
 358	char next_comm[TASK_COMM_LEN];
 359	int  next_pid;
 360	int  next_prio;
 361};
 362
 363static void c_state_start(int cpu, u64 timestamp, int state)
 364{
 365	cpus_cstate_start_times[cpu] = timestamp;
 366	cpus_cstate_state[cpu] = state;
 367}
 368
 369static void c_state_end(int cpu, u64 timestamp)
 370{
 371	struct power_event *pwr;
 372	pwr = malloc(sizeof(struct power_event));
 373	if (!pwr)
 374		return;
 375	memset(pwr, 0, sizeof(struct power_event));
 376
 377	pwr->state = cpus_cstate_state[cpu];
 378	pwr->start_time = cpus_cstate_start_times[cpu];
 379	pwr->end_time = timestamp;
 380	pwr->cpu = cpu;
 381	pwr->type = CSTATE;
 382	pwr->next = power_events;
 383
 384	power_events = pwr;
 385}
 386
 387static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
 388{
 389	struct power_event *pwr;
 390	pwr = malloc(sizeof(struct power_event));
 391
 392	if (new_freq > 8000000) /* detect invalid data */
 393		return;
 394
 
 395	if (!pwr)
 396		return;
 397	memset(pwr, 0, sizeof(struct power_event));
 398
 399	pwr->state = cpus_pstate_state[cpu];
 400	pwr->start_time = cpus_pstate_start_times[cpu];
 401	pwr->end_time = timestamp;
 402	pwr->cpu = cpu;
 403	pwr->type = PSTATE;
 404	pwr->next = power_events;
 405
 406	if (!pwr->start_time)
 407		pwr->start_time = first_time;
 408
 409	power_events = pwr;
 410
 411	cpus_pstate_state[cpu] = new_freq;
 412	cpus_pstate_start_times[cpu] = timestamp;
 413
 414	if ((u64)new_freq > max_freq)
 415		max_freq = new_freq;
 416
 417	if (new_freq < min_freq || min_freq == 0)
 418		min_freq = new_freq;
 419
 420	if (new_freq == max_freq - 1000)
 421			turbo_frequency = max_freq;
 422}
 423
 424static void
 425sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
 426{
 427	struct wake_event *we;
 428	struct per_pid *p;
 429	struct wakeup_entry *wake = (void *)te;
 430
 431	we = malloc(sizeof(struct wake_event));
 432	if (!we)
 433		return;
 434
 435	memset(we, 0, sizeof(struct wake_event));
 436	we->time = timestamp;
 437	we->waker = pid;
 
 438
 439	if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
 440		we->waker = -1;
 441
 442	we->wakee = wake->pid;
 443	we->next = wake_events;
 444	wake_events = we;
 445	p = find_create_pid(we->wakee);
 446
 447	if (p && p->current && p->current->state == TYPE_NONE) {
 448		p->current->state_since = timestamp;
 449		p->current->state = TYPE_WAITING;
 450	}
 451	if (p && p->current && p->current->state == TYPE_BLOCKED) {
 452		pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
 
 453		p->current->state_since = timestamp;
 454		p->current->state = TYPE_WAITING;
 455	}
 456}
 457
 458static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
 
 
 459{
 460	struct per_pid *p = NULL, *prev_p;
 461	struct sched_switch *sw = (void *)te;
 462
 463
 464	prev_p = find_create_pid(sw->prev_pid);
 465
 466	p = find_create_pid(sw->next_pid);
 467
 468	if (prev_p->current && prev_p->current->state != TYPE_NONE)
 469		pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
 
 
 470	if (p && p->current) {
 471		if (p->current->state != TYPE_NONE)
 472			pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
 
 
 473
 474		p->current->state_since = timestamp;
 475		p->current->state = TYPE_RUNNING;
 476	}
 477
 478	if (prev_p->current) {
 479		prev_p->current->state = TYPE_NONE;
 480		prev_p->current->state_since = timestamp;
 481		if (sw->prev_state & 2)
 482			prev_p->current->state = TYPE_BLOCKED;
 483		if (sw->prev_state == 0)
 484			prev_p->current->state = TYPE_WAITING;
 485	}
 486}
 487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 488
 489static int process_sample_event(union perf_event *event __used,
 
 490				struct perf_sample *sample,
 491				struct perf_evsel *evsel __used,
 492				struct perf_session *session)
 493{
 494	struct trace_entry *te;
 495
 496	if (session->sample_type & PERF_SAMPLE_TIME) {
 497		if (!first_time || first_time > sample->time)
 498			first_time = sample->time;
 499		if (last_time < sample->time)
 500			last_time = sample->time;
 
 
 
 
 
 
 501	}
 502
 503	te = (void *)sample->raw_data;
 504	if (session->sample_type & PERF_SAMPLE_RAW && sample->raw_size > 0) {
 505		char *event_str;
 506#ifdef SUPPORT_OLD_POWER_EVENTS
 507		struct power_entry_old *peo;
 508		peo = (void *)te;
 509#endif
 510		/*
 511		 * FIXME: use evsel, its already mapped from id to perf_evsel,
 512		 * remove perf_header__find_event infrastructure bits.
 513		 * Mapping all these "power:cpu_idle" strings to the tracepoint
 514		 * ID and then just comparing against evsel->attr.config.
 515		 *
 516		 * e.g.:
 517		 *
 518		 * if (evsel->attr.config == power_cpu_idle_id)
 519		 */
 520		event_str = perf_header__find_event(te->type);
 521
 522		if (!event_str)
 523			return 0;
 524
 525		if (sample->cpu > numcpus)
 526			numcpus = sample->cpu;
 527
 528		if (strcmp(event_str, "power:cpu_idle") == 0) {
 529			struct power_processor_entry *ppe = (void *)te;
 530			if (ppe->state == (u32)PWR_EVENT_EXIT)
 531				c_state_end(ppe->cpu_id, sample->time);
 532			else
 533				c_state_start(ppe->cpu_id, sample->time,
 534					      ppe->state);
 535		}
 536		else if (strcmp(event_str, "power:cpu_frequency") == 0) {
 537			struct power_processor_entry *ppe = (void *)te;
 538			p_state_change(ppe->cpu_id, sample->time, ppe->state);
 539		}
 540
 541		else if (strcmp(event_str, "sched:sched_wakeup") == 0)
 542			sched_wakeup(sample->cpu, sample->time, sample->pid, te);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 543
 544		else if (strcmp(event_str, "sched:sched_switch") == 0)
 545			sched_switch(sample->cpu, sample->time, te);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 546
 547#ifdef SUPPORT_OLD_POWER_EVENTS
 548		if (use_old_power_events) {
 549			if (strcmp(event_str, "power:power_start") == 0)
 550				c_state_start(peo->cpu_id, sample->time,
 551					      peo->value);
 552
 553			else if (strcmp(event_str, "power:power_end") == 0)
 554				c_state_end(sample->cpu, sample->time);
 555
 556			else if (strcmp(event_str,
 557					"power:power_frequency") == 0)
 558				p_state_change(peo->cpu_id, sample->time,
 559					       peo->value);
 560		}
 561#endif
 562	}
 
 
 
 
 
 563	return 0;
 564}
 565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 566/*
 567 * After the last sample we need to wrap up the current C/P state
 568 * and close out each CPU for these.
 569 */
 570static void end_sample_processing(void)
 571{
 572	u64 cpu;
 573	struct power_event *pwr;
 574
 575	for (cpu = 0; cpu <= numcpus; cpu++) {
 576		pwr = malloc(sizeof(struct power_event));
 
 
 577		if (!pwr)
 578			return;
 579		memset(pwr, 0, sizeof(struct power_event));
 580
 581		/* C state */
 582#if 0
 583		pwr->state = cpus_cstate_state[cpu];
 584		pwr->start_time = cpus_cstate_start_times[cpu];
 585		pwr->end_time = last_time;
 586		pwr->cpu = cpu;
 587		pwr->type = CSTATE;
 588		pwr->next = power_events;
 589
 590		power_events = pwr;
 591#endif
 592		/* P state */
 593
 594		pwr = malloc(sizeof(struct power_event));
 595		if (!pwr)
 596			return;
 597		memset(pwr, 0, sizeof(struct power_event));
 598
 599		pwr->state = cpus_pstate_state[cpu];
 600		pwr->start_time = cpus_pstate_start_times[cpu];
 601		pwr->end_time = last_time;
 602		pwr->cpu = cpu;
 603		pwr->type = PSTATE;
 604		pwr->next = power_events;
 605
 606		if (!pwr->start_time)
 607			pwr->start_time = first_time;
 608		if (!pwr->state)
 609			pwr->state = min_freq;
 610		power_events = pwr;
 611	}
 612}
 613
 614/*
 615 * Sort the pid datastructure
 616 */
 617static void sort_pids(void)
 618{
 619	struct per_pid *new_list, *p, *cursor, *prev;
 620	/* sort by ppid first, then by pid, lowest to highest */
 621
 622	new_list = NULL;
 623
 624	while (all_data) {
 625		p = all_data;
 626		all_data = p->next;
 627		p->next = NULL;
 628
 629		if (new_list == NULL) {
 630			new_list = p;
 631			p->next = NULL;
 632			continue;
 633		}
 634		prev = NULL;
 635		cursor = new_list;
 636		while (cursor) {
 637			if (cursor->ppid > p->ppid ||
 638				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 639				/* must insert before */
 640				if (prev) {
 641					p->next = prev->next;
 642					prev->next = p;
 643					cursor = NULL;
 644					continue;
 645				} else {
 646					p->next = new_list;
 647					new_list = p;
 648					cursor = NULL;
 649					continue;
 650				}
 651			}
 652
 653			prev = cursor;
 654			cursor = cursor->next;
 655			if (!cursor)
 656				prev->next = p;
 657		}
 658	}
 659	all_data = new_list;
 660}
 661
 662
 663static void draw_c_p_states(void)
 664{
 665	struct power_event *pwr;
 666	pwr = power_events;
 667
 668	/*
 669	 * two pass drawing so that the P state bars are on top of the C state blocks
 670	 */
 671	while (pwr) {
 672		if (pwr->type == CSTATE)
 673			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 674		pwr = pwr->next;
 675	}
 676
 677	pwr = power_events;
 678	while (pwr) {
 679		if (pwr->type == PSTATE) {
 680			if (!pwr->state)
 681				pwr->state = min_freq;
 682			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 683		}
 684		pwr = pwr->next;
 685	}
 686}
 687
 688static void draw_wakeups(void)
 689{
 690	struct wake_event *we;
 691	struct per_pid *p;
 692	struct per_pidcomm *c;
 693
 694	we = wake_events;
 695	while (we) {
 696		int from = 0, to = 0;
 697		char *task_from = NULL, *task_to = NULL;
 698
 699		/* locate the column of the waker and wakee */
 700		p = all_data;
 701		while (p) {
 702			if (p->pid == we->waker || p->pid == we->wakee) {
 703				c = p->all;
 704				while (c) {
 705					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
 706						if (p->pid == we->waker && !from) {
 707							from = c->Y;
 708							task_from = strdup(c->comm);
 709						}
 710						if (p->pid == we->wakee && !to) {
 711							to = c->Y;
 712							task_to = strdup(c->comm);
 713						}
 714					}
 715					c = c->next;
 716				}
 717				c = p->all;
 718				while (c) {
 719					if (p->pid == we->waker && !from) {
 720						from = c->Y;
 721						task_from = strdup(c->comm);
 722					}
 723					if (p->pid == we->wakee && !to) {
 724						to = c->Y;
 725						task_to = strdup(c->comm);
 726					}
 727					c = c->next;
 728				}
 729			}
 730			p = p->next;
 731		}
 732
 733		if (!task_from) {
 734			task_from = malloc(40);
 735			sprintf(task_from, "[%i]", we->waker);
 736		}
 737		if (!task_to) {
 738			task_to = malloc(40);
 739			sprintf(task_to, "[%i]", we->wakee);
 740		}
 741
 742		if (we->waker == -1)
 743			svg_interrupt(we->time, to);
 744		else if (from && to && abs(from - to) == 1)
 745			svg_wakeline(we->time, from, to);
 746		else
 747			svg_partial_wakeline(we->time, from, task_from, to, task_to);
 
 748		we = we->next;
 749
 750		free(task_from);
 751		free(task_to);
 752	}
 753}
 754
 755static void draw_cpu_usage(void)
 756{
 757	struct per_pid *p;
 758	struct per_pidcomm *c;
 759	struct cpu_sample *sample;
 760	p = all_data;
 761	while (p) {
 762		c = p->all;
 763		while (c) {
 764			sample = c->samples;
 765			while (sample) {
 766				if (sample->type == TYPE_RUNNING)
 767					svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
 
 
 
 
 
 
 768
 769				sample = sample->next;
 770			}
 771			c = c->next;
 772		}
 773		p = p->next;
 774	}
 775}
 776
 777static void draw_process_bars(void)
 778{
 779	struct per_pid *p;
 780	struct per_pidcomm *c;
 781	struct cpu_sample *sample;
 782	int Y = 0;
 783
 784	Y = 2 * numcpus + 2;
 785
 786	p = all_data;
 787	while (p) {
 788		c = p->all;
 789		while (c) {
 790			if (!c->display) {
 791				c->Y = 0;
 792				c = c->next;
 793				continue;
 794			}
 795
 796			svg_box(Y, c->start_time, c->end_time, "process");
 797			sample = c->samples;
 798			while (sample) {
 799				if (sample->type == TYPE_RUNNING)
 800					svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
 
 
 
 801				if (sample->type == TYPE_BLOCKED)
 802					svg_box(Y, sample->start_time, sample->end_time, "blocked");
 
 
 
 803				if (sample->type == TYPE_WAITING)
 804					svg_waiting(Y, sample->start_time, sample->end_time);
 
 
 
 805				sample = sample->next;
 806			}
 807
 808			if (c->comm) {
 809				char comm[256];
 810				if (c->total_time > 5000000000) /* 5 seconds */
 811					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
 812				else
 813					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
 814
 815				svg_text(Y, c->start_time, comm);
 816			}
 817			c->Y = Y;
 818			Y++;
 819			c = c->next;
 820		}
 821		p = p->next;
 822	}
 823}
 824
 825static void add_process_filter(const char *string)
 826{
 827	struct process_filter *filt;
 828	int pid;
 829
 830	pid = strtoull(string, NULL, 10);
 831	filt = malloc(sizeof(struct process_filter));
 832	if (!filt)
 833		return;
 834
 835	filt->name = strdup(string);
 836	filt->pid  = pid;
 837	filt->next = process_filter;
 838
 839	process_filter = filt;
 840}
 841
 842static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
 843{
 844	struct process_filter *filt;
 845	if (!process_filter)
 846		return 1;
 847
 848	filt = process_filter;
 849	while (filt) {
 850		if (filt->pid && p->pid == filt->pid)
 851			return 1;
 852		if (strcmp(filt->name, c->comm) == 0)
 853			return 1;
 854		filt = filt->next;
 855	}
 856	return 0;
 857}
 858
 859static int determine_display_tasks_filtered(void)
 860{
 861	struct per_pid *p;
 862	struct per_pidcomm *c;
 863	int count = 0;
 864
 865	p = all_data;
 866	while (p) {
 867		p->display = 0;
 868		if (p->start_time == 1)
 869			p->start_time = first_time;
 870
 871		/* no exit marker, task kept running to the end */
 872		if (p->end_time == 0)
 873			p->end_time = last_time;
 874
 875		c = p->all;
 876
 877		while (c) {
 878			c->display = 0;
 879
 880			if (c->start_time == 1)
 881				c->start_time = first_time;
 882
 883			if (passes_filter(p, c)) {
 884				c->display = 1;
 885				p->display = 1;
 886				count++;
 887			}
 888
 889			if (c->end_time == 0)
 890				c->end_time = last_time;
 891
 892			c = c->next;
 893		}
 894		p = p->next;
 895	}
 896	return count;
 897}
 898
 899static int determine_display_tasks(u64 threshold)
 900{
 901	struct per_pid *p;
 902	struct per_pidcomm *c;
 903	int count = 0;
 904
 905	if (process_filter)
 906		return determine_display_tasks_filtered();
 907
 908	p = all_data;
 909	while (p) {
 910		p->display = 0;
 911		if (p->start_time == 1)
 912			p->start_time = first_time;
 913
 914		/* no exit marker, task kept running to the end */
 915		if (p->end_time == 0)
 916			p->end_time = last_time;
 917		if (p->total_time >= threshold && !power_only)
 918			p->display = 1;
 919
 920		c = p->all;
 921
 922		while (c) {
 923			c->display = 0;
 924
 925			if (c->start_time == 1)
 926				c->start_time = first_time;
 927
 928			if (c->total_time >= threshold && !power_only) {
 929				c->display = 1;
 930				count++;
 931			}
 932
 933			if (c->end_time == 0)
 934				c->end_time = last_time;
 935
 936			c = c->next;
 937		}
 938		p = p->next;
 939	}
 940	return count;
 941}
 942
 943
 944
 945#define TIME_THRESH 10000000
 946
 947static void write_svg_file(const char *filename)
 948{
 949	u64 i;
 950	int count;
 
 951
 952	numcpus++;
 953
 954
 955	count = determine_display_tasks(TIME_THRESH);
 
 
 
 
 
 956
 957	/* We'd like to show at least 15 tasks; be less picky if we have fewer */
 958	if (count < 15)
 959		count = determine_display_tasks(TIME_THRESH / 10);
 960
 961	open_svg(filename, numcpus, count, first_time, last_time);
 962
 963	svg_time_grid();
 964	svg_legenda();
 965
 966	for (i = 0; i < numcpus; i++)
 967		svg_cpu_box(i, max_freq, turbo_frequency);
 968
 969	draw_cpu_usage();
 970	draw_process_bars();
 971	draw_c_p_states();
 972	draw_wakeups();
 
 
 
 973
 974	svg_close();
 975}
 976
 977static struct perf_event_ops event_ops = {
 978	.comm			= process_comm_event,
 979	.fork			= process_fork_event,
 980	.exit			= process_exit_event,
 981	.sample			= process_sample_event,
 982	.ordered_samples	= true,
 983};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 984
 985static int __cmd_timechart(void)
 
 
 
 986{
 987	struct perf_session *session = perf_session__new(input_name, O_RDONLY,
 988							 0, false, &event_ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 989	int ret = -EINVAL;
 990
 991	if (session == NULL)
 992		return -ENOMEM;
 993
 
 
 
 
 
 994	if (!perf_session__has_traces(session, "timechart record"))
 995		goto out_delete;
 996
 997	ret = perf_session__process_events(session, &event_ops);
 
 
 
 
 
 
 998	if (ret)
 999		goto out_delete;
1000
1001	end_sample_processing();
1002
1003	sort_pids();
1004
1005	write_svg_file(output_name);
1006
1007	pr_info("Written %2.1f seconds of trace to %s.\n",
1008		(last_time - first_time) / 1000000000.0, output_name);
1009out_delete:
1010	perf_session__delete(session);
1011	return ret;
1012}
1013
1014static const char * const timechart_usage[] = {
1015	"perf timechart [<options>] {record}",
1016	NULL
1017};
 
 
1018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1019#ifdef SUPPORT_OLD_POWER_EVENTS
1020static const char * const record_old_args[] = {
1021	"record",
1022	"-a",
1023	"-R",
1024	"-f",
1025	"-c", "1",
1026	"-e", "power:power_start",
1027	"-e", "power:power_end",
1028	"-e", "power:power_frequency",
1029	"-e", "sched:sched_wakeup",
1030	"-e", "sched:sched_switch",
1031};
1032#endif
 
 
1033
1034static const char * const record_new_args[] = {
1035	"record",
1036	"-a",
1037	"-R",
1038	"-f",
1039	"-c", "1",
1040	"-e", "power:cpu_frequency",
1041	"-e", "power:cpu_idle",
1042	"-e", "sched:sched_wakeup",
1043	"-e", "sched:sched_switch",
1044};
1045
1046static int __cmd_record(int argc, const char **argv)
1047{
1048	unsigned int rec_argc, i, j;
1049	const char **rec_argv;
1050	const char * const *record_args = record_new_args;
1051	unsigned int record_elems = ARRAY_SIZE(record_new_args);
1052
1053#ifdef SUPPORT_OLD_POWER_EVENTS
1054	if (!is_valid_tracepoint("power:cpu_idle") &&
1055	    is_valid_tracepoint("power:power_start")) {
1056		use_old_power_events = 1;
1057		record_args = record_old_args;
1058		record_elems = ARRAY_SIZE(record_old_args);
 
1059	}
1060#endif
1061
1062	rec_argc = record_elems + argc - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1064
1065	if (rec_argv == NULL)
1066		return -ENOMEM;
1067
1068	for (i = 0; i < record_elems; i++)
1069		rec_argv[i] = strdup(record_args[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
1070
1071	for (j = 1; j < (unsigned int)argc; j++, i++)
1072		rec_argv[i] = argv[j];
1073
1074	return cmd_record(i, rec_argv, NULL);
1075}
1076
1077static int
1078parse_process(const struct option *opt __used, const char *arg, int __used unset)
 
1079{
1080	if (arg)
1081		add_process_filter(arg);
1082	return 0;
1083}
1084
1085static const struct option options[] = {
1086	OPT_STRING('i', "input", &input_name, "file",
1087		    "input file name"),
1088	OPT_STRING('o', "output", &output_name, "file",
1089		    "output file name"),
1090	OPT_INTEGER('w', "width", &svg_page_width,
1091		    "page width"),
1092	OPT_BOOLEAN('P', "power-only", &power_only,
1093		    "output power data only"),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1094	OPT_CALLBACK('p', "process", NULL, "process",
1095		      "process selector. Pass a pid or process name.",
1096		       parse_process),
1097	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1098		    "Look for files with symbols relative to this directory"),
 
 
 
 
1099	OPT_END()
1100};
1101
1102
1103int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1104{
1105	argc = parse_options(argc, argv, options, timechart_usage,
 
 
 
 
 
 
 
 
 
 
 
 
1106			PARSE_OPT_STOP_AT_NON_OPTION);
1107
 
 
 
 
 
1108	symbol__init();
1109
1110	if (argc && !strncmp(argv[0], "rec", 3))
1111		return __cmd_record(argc, argv);
1112	else if (argc)
1113		usage_with_options(timechart_usage, options);
 
 
 
 
 
 
 
 
1114
1115	setup_pager();
1116
1117	return __cmd_timechart();
1118}
v3.15
   1/*
   2 * builtin-timechart.c - make an svg timechart of system activity
   3 *
   4 * (C) Copyright 2009 Intel Corporation
   5 *
   6 * Authors:
   7 *     Arjan van de Ven <arjan@linux.intel.com>
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * as published by the Free Software Foundation; version 2
  12 * of the License.
  13 */
  14
  15#include <traceevent/event-parse.h>
  16
  17#include "builtin.h"
  18
  19#include "util/util.h"
  20
  21#include "util/color.h"
  22#include <linux/list.h>
  23#include "util/cache.h"
  24#include "util/evlist.h"
  25#include "util/evsel.h"
  26#include <linux/rbtree.h>
  27#include "util/symbol.h"
  28#include "util/callchain.h"
  29#include "util/strlist.h"
  30
  31#include "perf.h"
  32#include "util/header.h"
  33#include "util/parse-options.h"
  34#include "util/parse-events.h"
  35#include "util/event.h"
  36#include "util/session.h"
  37#include "util/svghelper.h"
  38#include "util/tool.h"
  39#include "util/data.h"
  40
  41#define SUPPORT_OLD_POWER_EVENTS 1
  42#define PWR_EVENT_EXIT -1
  43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  44struct per_pid;
 
 
 
  45struct power_event;
  46struct wake_event;
  47
  48struct timechart {
  49	struct perf_tool	tool;
  50	struct per_pid		*all_data;
  51	struct power_event	*power_events;
  52	struct wake_event	*wake_events;
  53	int			proc_num;
  54	unsigned int		numcpus;
  55	u64			min_freq,	/* Lowest CPU frequency seen */
  56				max_freq,	/* Highest CPU frequency seen */
  57				turbo_frequency,
  58				first_time, last_time;
  59	bool			power_only,
  60				tasks_only,
  61				with_backtrace,
  62				topology;
  63};
  64
  65struct per_pidcomm;
  66struct cpu_sample;
  67
  68/*
  69 * Datastructure layout:
  70 * We keep an list of "pid"s, matching the kernels notion of a task struct.
  71 * Each "pid" entry, has a list of "comm"s.
  72 *	this is because we want to track different programs different, while
  73 *	exec will reuse the original pid (by design).
  74 * Each comm has a list of samples that will be used to draw
  75 * final graph.
  76 */
  77
  78struct per_pid {
  79	struct per_pid *next;
  80
  81	int		pid;
  82	int		ppid;
  83
  84	u64		start_time;
  85	u64		end_time;
  86	u64		total_time;
  87	int		display;
  88
  89	struct per_pidcomm *all;
  90	struct per_pidcomm *current;
  91};
  92
  93
  94struct per_pidcomm {
  95	struct per_pidcomm *next;
  96
  97	u64		start_time;
  98	u64		end_time;
  99	u64		total_time;
 100
 101	int		Y;
 102	int		display;
 103
 104	long		state;
 105	u64		state_since;
 106
 107	char		*comm;
 108
 109	struct cpu_sample *samples;
 110};
 111
 112struct sample_wrapper {
 113	struct sample_wrapper *next;
 114
 115	u64		timestamp;
 116	unsigned char	data[0];
 117};
 118
 119#define TYPE_NONE	0
 120#define TYPE_RUNNING	1
 121#define TYPE_WAITING	2
 122#define TYPE_BLOCKED	3
 123
 124struct cpu_sample {
 125	struct cpu_sample *next;
 126
 127	u64 start_time;
 128	u64 end_time;
 129	int type;
 130	int cpu;
 131	const char *backtrace;
 132};
 133
 
 
 134#define CSTATE 1
 135#define PSTATE 2
 136
 137struct power_event {
 138	struct power_event *next;
 139	int type;
 140	int state;
 141	u64 start_time;
 142	u64 end_time;
 143	int cpu;
 144};
 145
 146struct wake_event {
 147	struct wake_event *next;
 148	int waker;
 149	int wakee;
 150	u64 time;
 151	const char *backtrace;
 152};
 153
 
 
 
 
 154struct process_filter {
 155	char			*name;
 156	int			pid;
 157	struct process_filter	*next;
 158};
 159
 160static struct process_filter *process_filter;
 161
 162
 163static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
 164{
 165	struct per_pid *cursor = tchart->all_data;
 166
 167	while (cursor) {
 168		if (cursor->pid == pid)
 169			return cursor;
 170		cursor = cursor->next;
 171	}
 172	cursor = zalloc(sizeof(*cursor));
 173	assert(cursor != NULL);
 
 174	cursor->pid = pid;
 175	cursor->next = tchart->all_data;
 176	tchart->all_data = cursor;
 177	return cursor;
 178}
 179
 180static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
 181{
 182	struct per_pid *p;
 183	struct per_pidcomm *c;
 184	p = find_create_pid(tchart, pid);
 185	c = p->all;
 186	while (c) {
 187		if (c->comm && strcmp(c->comm, comm) == 0) {
 188			p->current = c;
 189			return;
 190		}
 191		if (!c->comm) {
 192			c->comm = strdup(comm);
 193			p->current = c;
 194			return;
 195		}
 196		c = c->next;
 197	}
 198	c = zalloc(sizeof(*c));
 199	assert(c != NULL);
 
 200	c->comm = strdup(comm);
 201	p->current = c;
 202	c->next = p->all;
 203	p->all = c;
 204}
 205
 206static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
 207{
 208	struct per_pid *p, *pp;
 209	p = find_create_pid(tchart, pid);
 210	pp = find_create_pid(tchart, ppid);
 211	p->ppid = ppid;
 212	if (pp->current && pp->current->comm && !p->current)
 213		pid_set_comm(tchart, pid, pp->current->comm);
 214
 215	p->start_time = timestamp;
 216	if (p->current) {
 217		p->current->start_time = timestamp;
 218		p->current->state_since = timestamp;
 219	}
 220}
 221
 222static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
 223{
 224	struct per_pid *p;
 225	p = find_create_pid(tchart, pid);
 226	p->end_time = timestamp;
 227	if (p->current)
 228		p->current->end_time = timestamp;
 229}
 230
 231static void pid_put_sample(struct timechart *tchart, int pid, int type,
 232			   unsigned int cpu, u64 start, u64 end,
 233			   const char *backtrace)
 234{
 235	struct per_pid *p;
 236	struct per_pidcomm *c;
 237	struct cpu_sample *sample;
 238
 239	p = find_create_pid(tchart, pid);
 240	c = p->current;
 241	if (!c) {
 242		c = zalloc(sizeof(*c));
 243		assert(c != NULL);
 
 244		p->current = c;
 245		c->next = p->all;
 246		p->all = c;
 247	}
 248
 249	sample = zalloc(sizeof(*sample));
 250	assert(sample != NULL);
 
 251	sample->start_time = start;
 252	sample->end_time = end;
 253	sample->type = type;
 254	sample->next = c->samples;
 255	sample->cpu = cpu;
 256	sample->backtrace = backtrace;
 257	c->samples = sample;
 258
 259	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 260		c->total_time += (end-start);
 261		p->total_time += (end-start);
 262	}
 263
 264	if (c->start_time == 0 || c->start_time > start)
 265		c->start_time = start;
 266	if (p->start_time == 0 || p->start_time > start)
 267		p->start_time = start;
 268}
 269
 270#define MAX_CPUS 4096
 271
 272static u64 cpus_cstate_start_times[MAX_CPUS];
 273static int cpus_cstate_state[MAX_CPUS];
 274static u64 cpus_pstate_start_times[MAX_CPUS];
 275static u64 cpus_pstate_state[MAX_CPUS];
 276
 277static int process_comm_event(struct perf_tool *tool,
 278			      union perf_event *event,
 279			      struct perf_sample *sample __maybe_unused,
 280			      struct machine *machine __maybe_unused)
 281{
 282	struct timechart *tchart = container_of(tool, struct timechart, tool);
 283	pid_set_comm(tchart, event->comm.tid, event->comm.comm);
 284	return 0;
 285}
 286
 287static int process_fork_event(struct perf_tool *tool,
 288			      union perf_event *event,
 289			      struct perf_sample *sample __maybe_unused,
 290			      struct machine *machine __maybe_unused)
 291{
 292	struct timechart *tchart = container_of(tool, struct timechart, tool);
 293	pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
 294	return 0;
 295}
 296
 297static int process_exit_event(struct perf_tool *tool,
 298			      union perf_event *event,
 299			      struct perf_sample *sample __maybe_unused,
 300			      struct machine *machine __maybe_unused)
 301{
 302	struct timechart *tchart = container_of(tool, struct timechart, tool);
 303	pid_exit(tchart, event->fork.pid, event->fork.time);
 304	return 0;
 305}
 306
 
 
 
 
 
 
 
 
 307#ifdef SUPPORT_OLD_POWER_EVENTS
 308static int use_old_power_events;
 
 
 
 
 
 
 309#endif
 310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 311static void c_state_start(int cpu, u64 timestamp, int state)
 312{
 313	cpus_cstate_start_times[cpu] = timestamp;
 314	cpus_cstate_state[cpu] = state;
 315}
 316
 317static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
 318{
 319	struct power_event *pwr = zalloc(sizeof(*pwr));
 320
 321	if (!pwr)
 322		return;
 
 323
 324	pwr->state = cpus_cstate_state[cpu];
 325	pwr->start_time = cpus_cstate_start_times[cpu];
 326	pwr->end_time = timestamp;
 327	pwr->cpu = cpu;
 328	pwr->type = CSTATE;
 329	pwr->next = tchart->power_events;
 330
 331	tchart->power_events = pwr;
 332}
 333
 334static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
 335{
 336	struct power_event *pwr;
 
 337
 338	if (new_freq > 8000000) /* detect invalid data */
 339		return;
 340
 341	pwr = zalloc(sizeof(*pwr));
 342	if (!pwr)
 343		return;
 
 344
 345	pwr->state = cpus_pstate_state[cpu];
 346	pwr->start_time = cpus_pstate_start_times[cpu];
 347	pwr->end_time = timestamp;
 348	pwr->cpu = cpu;
 349	pwr->type = PSTATE;
 350	pwr->next = tchart->power_events;
 351
 352	if (!pwr->start_time)
 353		pwr->start_time = tchart->first_time;
 354
 355	tchart->power_events = pwr;
 356
 357	cpus_pstate_state[cpu] = new_freq;
 358	cpus_pstate_start_times[cpu] = timestamp;
 359
 360	if ((u64)new_freq > tchart->max_freq)
 361		tchart->max_freq = new_freq;
 362
 363	if (new_freq < tchart->min_freq || tchart->min_freq == 0)
 364		tchart->min_freq = new_freq;
 365
 366	if (new_freq == tchart->max_freq - 1000)
 367		tchart->turbo_frequency = tchart->max_freq;
 368}
 369
 370static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
 371			 int waker, int wakee, u8 flags, const char *backtrace)
 372{
 
 373	struct per_pid *p;
 374	struct wake_event *we = zalloc(sizeof(*we));
 375
 
 376	if (!we)
 377		return;
 378
 
 379	we->time = timestamp;
 380	we->waker = waker;
 381	we->backtrace = backtrace;
 382
 383	if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
 384		we->waker = -1;
 385
 386	we->wakee = wakee;
 387	we->next = tchart->wake_events;
 388	tchart->wake_events = we;
 389	p = find_create_pid(tchart, we->wakee);
 390
 391	if (p && p->current && p->current->state == TYPE_NONE) {
 392		p->current->state_since = timestamp;
 393		p->current->state = TYPE_WAITING;
 394	}
 395	if (p && p->current && p->current->state == TYPE_BLOCKED) {
 396		pid_put_sample(tchart, p->pid, p->current->state, cpu,
 397			       p->current->state_since, timestamp, NULL);
 398		p->current->state_since = timestamp;
 399		p->current->state = TYPE_WAITING;
 400	}
 401}
 402
 403static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
 404			 int prev_pid, int next_pid, u64 prev_state,
 405			 const char *backtrace)
 406{
 407	struct per_pid *p = NULL, *prev_p;
 
 
 408
 409	prev_p = find_create_pid(tchart, prev_pid);
 410
 411	p = find_create_pid(tchart, next_pid);
 412
 413	if (prev_p->current && prev_p->current->state != TYPE_NONE)
 414		pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
 415			       prev_p->current->state_since, timestamp,
 416			       backtrace);
 417	if (p && p->current) {
 418		if (p->current->state != TYPE_NONE)
 419			pid_put_sample(tchart, next_pid, p->current->state, cpu,
 420				       p->current->state_since, timestamp,
 421				       backtrace);
 422
 423		p->current->state_since = timestamp;
 424		p->current->state = TYPE_RUNNING;
 425	}
 426
 427	if (prev_p->current) {
 428		prev_p->current->state = TYPE_NONE;
 429		prev_p->current->state_since = timestamp;
 430		if (prev_state & 2)
 431			prev_p->current->state = TYPE_BLOCKED;
 432		if (prev_state == 0)
 433			prev_p->current->state = TYPE_WAITING;
 434	}
 435}
 436
 437static const char *cat_backtrace(union perf_event *event,
 438				 struct perf_sample *sample,
 439				 struct machine *machine)
 440{
 441	struct addr_location al;
 442	unsigned int i;
 443	char *p = NULL;
 444	size_t p_len;
 445	u8 cpumode = PERF_RECORD_MISC_USER;
 446	struct addr_location tal;
 447	struct ip_callchain *chain = sample->callchain;
 448	FILE *f = open_memstream(&p, &p_len);
 449
 450	if (!f) {
 451		perror("open_memstream error");
 452		return NULL;
 453	}
 454
 455	if (!chain)
 456		goto exit;
 457
 458	if (perf_event__preprocess_sample(event, machine, &al, sample) < 0) {
 459		fprintf(stderr, "problem processing %d event, skipping it.\n",
 460			event->header.type);
 461		goto exit;
 462	}
 463
 464	for (i = 0; i < chain->nr; i++) {
 465		u64 ip;
 466
 467		if (callchain_param.order == ORDER_CALLEE)
 468			ip = chain->ips[i];
 469		else
 470			ip = chain->ips[chain->nr - i - 1];
 471
 472		if (ip >= PERF_CONTEXT_MAX) {
 473			switch (ip) {
 474			case PERF_CONTEXT_HV:
 475				cpumode = PERF_RECORD_MISC_HYPERVISOR;
 476				break;
 477			case PERF_CONTEXT_KERNEL:
 478				cpumode = PERF_RECORD_MISC_KERNEL;
 479				break;
 480			case PERF_CONTEXT_USER:
 481				cpumode = PERF_RECORD_MISC_USER;
 482				break;
 483			default:
 484				pr_debug("invalid callchain context: "
 485					 "%"PRId64"\n", (s64) ip);
 486
 487				/*
 488				 * It seems the callchain is corrupted.
 489				 * Discard all.
 490				 */
 491				zfree(&p);
 492				goto exit;
 493			}
 494			continue;
 495		}
 496
 497		tal.filtered = 0;
 498		thread__find_addr_location(al.thread, machine, cpumode,
 499					   MAP__FUNCTION, ip, &tal);
 500
 501		if (tal.sym)
 502			fprintf(f, "..... %016" PRIx64 " %s\n", ip,
 503				tal.sym->name);
 504		else
 505			fprintf(f, "..... %016" PRIx64 "\n", ip);
 506	}
 507
 508exit:
 509	fclose(f);
 510
 511	return p;
 512}
 513
 514typedef int (*tracepoint_handler)(struct timechart *tchart,
 515				  struct perf_evsel *evsel,
 516				  struct perf_sample *sample,
 517				  const char *backtrace);
 518
 519static int process_sample_event(struct perf_tool *tool,
 520				union perf_event *event,
 521				struct perf_sample *sample,
 522				struct perf_evsel *evsel,
 523				struct machine *machine)
 524{
 525	struct timechart *tchart = container_of(tool, struct timechart, tool);
 526
 527	if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
 528		if (!tchart->first_time || tchart->first_time > sample->time)
 529			tchart->first_time = sample->time;
 530		if (tchart->last_time < sample->time)
 531			tchart->last_time = sample->time;
 532	}
 533
 534	if (evsel->handler != NULL) {
 535		tracepoint_handler f = evsel->handler;
 536		return f(tchart, evsel, sample,
 537			 cat_backtrace(event, sample, machine));
 538	}
 539
 540	return 0;
 541}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 542
 543static int
 544process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
 545			struct perf_evsel *evsel,
 546			struct perf_sample *sample,
 547			const char *backtrace __maybe_unused)
 548{
 549	u32 state = perf_evsel__intval(evsel, sample, "state");
 550	u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 551
 552	if (state == (u32)PWR_EVENT_EXIT)
 553		c_state_end(tchart, cpu_id, sample->time);
 554	else
 555		c_state_start(cpu_id, sample->time, state);
 556	return 0;
 557}
 558
 559static int
 560process_sample_cpu_frequency(struct timechart *tchart,
 561			     struct perf_evsel *evsel,
 562			     struct perf_sample *sample,
 563			     const char *backtrace __maybe_unused)
 564{
 565	u32 state = perf_evsel__intval(evsel, sample, "state");
 566	u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 567
 568	p_state_change(tchart, cpu_id, sample->time, state);
 569	return 0;
 570}
 571
 572static int
 573process_sample_sched_wakeup(struct timechart *tchart,
 574			    struct perf_evsel *evsel,
 575			    struct perf_sample *sample,
 576			    const char *backtrace)
 577{
 578	u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
 579	int waker = perf_evsel__intval(evsel, sample, "common_pid");
 580	int wakee = perf_evsel__intval(evsel, sample, "pid");
 581
 582	sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
 583	return 0;
 584}
 585
 586static int
 587process_sample_sched_switch(struct timechart *tchart,
 588			    struct perf_evsel *evsel,
 589			    struct perf_sample *sample,
 590			    const char *backtrace)
 591{
 592	int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
 593	int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 594	u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 595
 596	sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
 597		     prev_state, backtrace);
 598	return 0;
 599}
 600
 601#ifdef SUPPORT_OLD_POWER_EVENTS
 602static int
 603process_sample_power_start(struct timechart *tchart __maybe_unused,
 604			   struct perf_evsel *evsel,
 605			   struct perf_sample *sample,
 606			   const char *backtrace __maybe_unused)
 607{
 608	u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 609	u64 value = perf_evsel__intval(evsel, sample, "value");
 610
 611	c_state_start(cpu_id, sample->time, value);
 612	return 0;
 613}
 614
 615static int
 616process_sample_power_end(struct timechart *tchart,
 617			 struct perf_evsel *evsel __maybe_unused,
 618			 struct perf_sample *sample,
 619			 const char *backtrace __maybe_unused)
 620{
 621	c_state_end(tchart, sample->cpu, sample->time);
 622	return 0;
 623}
 624
 625static int
 626process_sample_power_frequency(struct timechart *tchart,
 627			       struct perf_evsel *evsel,
 628			       struct perf_sample *sample,
 629			       const char *backtrace __maybe_unused)
 630{
 631	u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 632	u64 value = perf_evsel__intval(evsel, sample, "value");
 633
 634	p_state_change(tchart, cpu_id, sample->time, value);
 635	return 0;
 636}
 637#endif /* SUPPORT_OLD_POWER_EVENTS */
 638
 639/*
 640 * After the last sample we need to wrap up the current C/P state
 641 * and close out each CPU for these.
 642 */
 643static void end_sample_processing(struct timechart *tchart)
 644{
 645	u64 cpu;
 646	struct power_event *pwr;
 647
 648	for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
 649		/* C state */
 650#if 0
 651		pwr = zalloc(sizeof(*pwr));
 652		if (!pwr)
 653			return;
 
 654
 
 
 655		pwr->state = cpus_cstate_state[cpu];
 656		pwr->start_time = cpus_cstate_start_times[cpu];
 657		pwr->end_time = tchart->last_time;
 658		pwr->cpu = cpu;
 659		pwr->type = CSTATE;
 660		pwr->next = tchart->power_events;
 661
 662		tchart->power_events = pwr;
 663#endif
 664		/* P state */
 665
 666		pwr = zalloc(sizeof(*pwr));
 667		if (!pwr)
 668			return;
 
 669
 670		pwr->state = cpus_pstate_state[cpu];
 671		pwr->start_time = cpus_pstate_start_times[cpu];
 672		pwr->end_time = tchart->last_time;
 673		pwr->cpu = cpu;
 674		pwr->type = PSTATE;
 675		pwr->next = tchart->power_events;
 676
 677		if (!pwr->start_time)
 678			pwr->start_time = tchart->first_time;
 679		if (!pwr->state)
 680			pwr->state = tchart->min_freq;
 681		tchart->power_events = pwr;
 682	}
 683}
 684
 685/*
 686 * Sort the pid datastructure
 687 */
 688static void sort_pids(struct timechart *tchart)
 689{
 690	struct per_pid *new_list, *p, *cursor, *prev;
 691	/* sort by ppid first, then by pid, lowest to highest */
 692
 693	new_list = NULL;
 694
 695	while (tchart->all_data) {
 696		p = tchart->all_data;
 697		tchart->all_data = p->next;
 698		p->next = NULL;
 699
 700		if (new_list == NULL) {
 701			new_list = p;
 702			p->next = NULL;
 703			continue;
 704		}
 705		prev = NULL;
 706		cursor = new_list;
 707		while (cursor) {
 708			if (cursor->ppid > p->ppid ||
 709				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 710				/* must insert before */
 711				if (prev) {
 712					p->next = prev->next;
 713					prev->next = p;
 714					cursor = NULL;
 715					continue;
 716				} else {
 717					p->next = new_list;
 718					new_list = p;
 719					cursor = NULL;
 720					continue;
 721				}
 722			}
 723
 724			prev = cursor;
 725			cursor = cursor->next;
 726			if (!cursor)
 727				prev->next = p;
 728		}
 729	}
 730	tchart->all_data = new_list;
 731}
 732
 733
 734static void draw_c_p_states(struct timechart *tchart)
 735{
 736	struct power_event *pwr;
 737	pwr = tchart->power_events;
 738
 739	/*
 740	 * two pass drawing so that the P state bars are on top of the C state blocks
 741	 */
 742	while (pwr) {
 743		if (pwr->type == CSTATE)
 744			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 745		pwr = pwr->next;
 746	}
 747
 748	pwr = tchart->power_events;
 749	while (pwr) {
 750		if (pwr->type == PSTATE) {
 751			if (!pwr->state)
 752				pwr->state = tchart->min_freq;
 753			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 754		}
 755		pwr = pwr->next;
 756	}
 757}
 758
 759static void draw_wakeups(struct timechart *tchart)
 760{
 761	struct wake_event *we;
 762	struct per_pid *p;
 763	struct per_pidcomm *c;
 764
 765	we = tchart->wake_events;
 766	while (we) {
 767		int from = 0, to = 0;
 768		char *task_from = NULL, *task_to = NULL;
 769
 770		/* locate the column of the waker and wakee */
 771		p = tchart->all_data;
 772		while (p) {
 773			if (p->pid == we->waker || p->pid == we->wakee) {
 774				c = p->all;
 775				while (c) {
 776					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
 777						if (p->pid == we->waker && !from) {
 778							from = c->Y;
 779							task_from = strdup(c->comm);
 780						}
 781						if (p->pid == we->wakee && !to) {
 782							to = c->Y;
 783							task_to = strdup(c->comm);
 784						}
 785					}
 786					c = c->next;
 787				}
 788				c = p->all;
 789				while (c) {
 790					if (p->pid == we->waker && !from) {
 791						from = c->Y;
 792						task_from = strdup(c->comm);
 793					}
 794					if (p->pid == we->wakee && !to) {
 795						to = c->Y;
 796						task_to = strdup(c->comm);
 797					}
 798					c = c->next;
 799				}
 800			}
 801			p = p->next;
 802		}
 803
 804		if (!task_from) {
 805			task_from = malloc(40);
 806			sprintf(task_from, "[%i]", we->waker);
 807		}
 808		if (!task_to) {
 809			task_to = malloc(40);
 810			sprintf(task_to, "[%i]", we->wakee);
 811		}
 812
 813		if (we->waker == -1)
 814			svg_interrupt(we->time, to, we->backtrace);
 815		else if (from && to && abs(from - to) == 1)
 816			svg_wakeline(we->time, from, to, we->backtrace);
 817		else
 818			svg_partial_wakeline(we->time, from, task_from, to,
 819					     task_to, we->backtrace);
 820		we = we->next;
 821
 822		free(task_from);
 823		free(task_to);
 824	}
 825}
 826
 827static void draw_cpu_usage(struct timechart *tchart)
 828{
 829	struct per_pid *p;
 830	struct per_pidcomm *c;
 831	struct cpu_sample *sample;
 832	p = tchart->all_data;
 833	while (p) {
 834		c = p->all;
 835		while (c) {
 836			sample = c->samples;
 837			while (sample) {
 838				if (sample->type == TYPE_RUNNING) {
 839					svg_process(sample->cpu,
 840						    sample->start_time,
 841						    sample->end_time,
 842						    p->pid,
 843						    c->comm,
 844						    sample->backtrace);
 845				}
 846
 847				sample = sample->next;
 848			}
 849			c = c->next;
 850		}
 851		p = p->next;
 852	}
 853}
 854
 855static void draw_process_bars(struct timechart *tchart)
 856{
 857	struct per_pid *p;
 858	struct per_pidcomm *c;
 859	struct cpu_sample *sample;
 860	int Y = 0;
 861
 862	Y = 2 * tchart->numcpus + 2;
 863
 864	p = tchart->all_data;
 865	while (p) {
 866		c = p->all;
 867		while (c) {
 868			if (!c->display) {
 869				c->Y = 0;
 870				c = c->next;
 871				continue;
 872			}
 873
 874			svg_box(Y, c->start_time, c->end_time, "process");
 875			sample = c->samples;
 876			while (sample) {
 877				if (sample->type == TYPE_RUNNING)
 878					svg_running(Y, sample->cpu,
 879						    sample->start_time,
 880						    sample->end_time,
 881						    sample->backtrace);
 882				if (sample->type == TYPE_BLOCKED)
 883					svg_blocked(Y, sample->cpu,
 884						    sample->start_time,
 885						    sample->end_time,
 886						    sample->backtrace);
 887				if (sample->type == TYPE_WAITING)
 888					svg_waiting(Y, sample->cpu,
 889						    sample->start_time,
 890						    sample->end_time,
 891						    sample->backtrace);
 892				sample = sample->next;
 893			}
 894
 895			if (c->comm) {
 896				char comm[256];
 897				if (c->total_time > 5000000000) /* 5 seconds */
 898					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
 899				else
 900					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
 901
 902				svg_text(Y, c->start_time, comm);
 903			}
 904			c->Y = Y;
 905			Y++;
 906			c = c->next;
 907		}
 908		p = p->next;
 909	}
 910}
 911
 912static void add_process_filter(const char *string)
 913{
 914	int pid = strtoull(string, NULL, 10);
 915	struct process_filter *filt = malloc(sizeof(*filt));
 916
 
 
 917	if (!filt)
 918		return;
 919
 920	filt->name = strdup(string);
 921	filt->pid  = pid;
 922	filt->next = process_filter;
 923
 924	process_filter = filt;
 925}
 926
 927static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
 928{
 929	struct process_filter *filt;
 930	if (!process_filter)
 931		return 1;
 932
 933	filt = process_filter;
 934	while (filt) {
 935		if (filt->pid && p->pid == filt->pid)
 936			return 1;
 937		if (strcmp(filt->name, c->comm) == 0)
 938			return 1;
 939		filt = filt->next;
 940	}
 941	return 0;
 942}
 943
 944static int determine_display_tasks_filtered(struct timechart *tchart)
 945{
 946	struct per_pid *p;
 947	struct per_pidcomm *c;
 948	int count = 0;
 949
 950	p = tchart->all_data;
 951	while (p) {
 952		p->display = 0;
 953		if (p->start_time == 1)
 954			p->start_time = tchart->first_time;
 955
 956		/* no exit marker, task kept running to the end */
 957		if (p->end_time == 0)
 958			p->end_time = tchart->last_time;
 959
 960		c = p->all;
 961
 962		while (c) {
 963			c->display = 0;
 964
 965			if (c->start_time == 1)
 966				c->start_time = tchart->first_time;
 967
 968			if (passes_filter(p, c)) {
 969				c->display = 1;
 970				p->display = 1;
 971				count++;
 972			}
 973
 974			if (c->end_time == 0)
 975				c->end_time = tchart->last_time;
 976
 977			c = c->next;
 978		}
 979		p = p->next;
 980	}
 981	return count;
 982}
 983
 984static int determine_display_tasks(struct timechart *tchart, u64 threshold)
 985{
 986	struct per_pid *p;
 987	struct per_pidcomm *c;
 988	int count = 0;
 989
 990	if (process_filter)
 991		return determine_display_tasks_filtered(tchart);
 992
 993	p = tchart->all_data;
 994	while (p) {
 995		p->display = 0;
 996		if (p->start_time == 1)
 997			p->start_time = tchart->first_time;
 998
 999		/* no exit marker, task kept running to the end */
1000		if (p->end_time == 0)
1001			p->end_time = tchart->last_time;
1002		if (p->total_time >= threshold)
1003			p->display = 1;
1004
1005		c = p->all;
1006
1007		while (c) {
1008			c->display = 0;
1009
1010			if (c->start_time == 1)
1011				c->start_time = tchart->first_time;
1012
1013			if (c->total_time >= threshold) {
1014				c->display = 1;
1015				count++;
1016			}
1017
1018			if (c->end_time == 0)
1019				c->end_time = tchart->last_time;
1020
1021			c = c->next;
1022		}
1023		p = p->next;
1024	}
1025	return count;
1026}
1027
1028
1029
1030#define TIME_THRESH 10000000
1031
1032static void write_svg_file(struct timechart *tchart, const char *filename)
1033{
1034	u64 i;
1035	int count;
1036	int thresh = TIME_THRESH;
1037
1038	if (tchart->power_only)
1039		tchart->proc_num = 0;
1040
1041	/* We'd like to show at least proc_num tasks;
1042	 * be less picky if we have fewer */
1043	do {
1044		count = determine_display_tasks(tchart, thresh);
1045		thresh /= 10;
1046	} while (!process_filter && thresh && count < tchart->proc_num);
1047
1048	if (!tchart->proc_num)
1049		count = 0;
 
1050
1051	open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1052
1053	svg_time_grid();
1054	svg_legenda();
1055
1056	for (i = 0; i < tchart->numcpus; i++)
1057		svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1058
1059	draw_cpu_usage(tchart);
1060	if (tchart->proc_num)
1061		draw_process_bars(tchart);
1062	if (!tchart->tasks_only)
1063		draw_c_p_states(tchart);
1064	if (tchart->proc_num)
1065		draw_wakeups(tchart);
1066
1067	svg_close();
1068}
1069
1070static int process_header(struct perf_file_section *section __maybe_unused,
1071			  struct perf_header *ph,
1072			  int feat,
1073			  int fd __maybe_unused,
1074			  void *data)
1075{
1076	struct timechart *tchart = data;
1077
1078	switch (feat) {
1079	case HEADER_NRCPUS:
1080		tchart->numcpus = ph->env.nr_cpus_avail;
1081		break;
1082
1083	case HEADER_CPU_TOPOLOGY:
1084		if (!tchart->topology)
1085			break;
1086
1087		if (svg_build_topology_map(ph->env.sibling_cores,
1088					   ph->env.nr_sibling_cores,
1089					   ph->env.sibling_threads,
1090					   ph->env.nr_sibling_threads))
1091			fprintf(stderr, "problem building topology\n");
1092		break;
1093
1094	default:
1095		break;
1096	}
1097
1098	return 0;
1099}
1100
1101static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1102{
1103	const struct perf_evsel_str_handler power_tracepoints[] = {
1104		{ "power:cpu_idle",		process_sample_cpu_idle },
1105		{ "power:cpu_frequency",	process_sample_cpu_frequency },
1106		{ "sched:sched_wakeup",		process_sample_sched_wakeup },
1107		{ "sched:sched_switch",		process_sample_sched_switch },
1108#ifdef SUPPORT_OLD_POWER_EVENTS
1109		{ "power:power_start",		process_sample_power_start },
1110		{ "power:power_end",		process_sample_power_end },
1111		{ "power:power_frequency",	process_sample_power_frequency },
1112#endif
1113	};
1114	struct perf_data_file file = {
1115		.path = input_name,
1116		.mode = PERF_DATA_MODE_READ,
1117	};
1118
1119	struct perf_session *session = perf_session__new(&file, false,
1120							 &tchart->tool);
1121	int ret = -EINVAL;
1122
1123	if (session == NULL)
1124		return -ENOMEM;
1125
1126	(void)perf_header__process_sections(&session->header,
1127					    perf_data_file__fd(session->file),
1128					    tchart,
1129					    process_header);
1130
1131	if (!perf_session__has_traces(session, "timechart record"))
1132		goto out_delete;
1133
1134	if (perf_session__set_tracepoints_handlers(session,
1135						   power_tracepoints)) {
1136		pr_err("Initializing session tracepoint handlers failed\n");
1137		goto out_delete;
1138	}
1139
1140	ret = perf_session__process_events(session, &tchart->tool);
1141	if (ret)
1142		goto out_delete;
1143
1144	end_sample_processing(tchart);
1145
1146	sort_pids(tchart);
1147
1148	write_svg_file(tchart, output_name);
1149
1150	pr_info("Written %2.1f seconds of trace to %s.\n",
1151		(tchart->last_time - tchart->first_time) / 1000000000.0, output_name);
1152out_delete:
1153	perf_session__delete(session);
1154	return ret;
1155}
1156
1157static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1158{
1159	unsigned int rec_argc, i, j;
1160	const char **rec_argv;
1161	const char **p;
1162	unsigned int record_elems;
1163
1164	const char * const common_args[] = {
1165		"record", "-a", "-R", "-c", "1",
1166	};
1167	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1168
1169	const char * const backtrace_args[] = {
1170		"-g",
1171	};
1172	unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1173
1174	const char * const power_args[] = {
1175		"-e", "power:cpu_frequency",
1176		"-e", "power:cpu_idle",
1177	};
1178	unsigned int power_args_nr = ARRAY_SIZE(power_args);
1179
1180	const char * const old_power_args[] = {
1181#ifdef SUPPORT_OLD_POWER_EVENTS
1182		"-e", "power:power_start",
1183		"-e", "power:power_end",
1184		"-e", "power:power_frequency",
 
 
 
 
 
 
 
 
 
1185#endif
1186	};
1187	unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1188
1189	const char * const tasks_args[] = {
1190		"-e", "sched:sched_wakeup",
1191		"-e", "sched:sched_switch",
1192	};
1193	unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
 
 
 
 
 
 
 
 
 
 
 
 
 
1194
1195#ifdef SUPPORT_OLD_POWER_EVENTS
1196	if (!is_valid_tracepoint("power:cpu_idle") &&
1197	    is_valid_tracepoint("power:power_start")) {
1198		use_old_power_events = 1;
1199		power_args_nr = 0;
1200	} else {
1201		old_power_args_nr = 0;
1202	}
1203#endif
1204
1205	if (tchart->power_only)
1206		tasks_args_nr = 0;
1207
1208	if (tchart->tasks_only) {
1209		power_args_nr = 0;
1210		old_power_args_nr = 0;
1211	}
1212
1213	if (!tchart->with_backtrace)
1214		backtrace_args_no = 0;
1215
1216	record_elems = common_args_nr + tasks_args_nr +
1217		power_args_nr + old_power_args_nr + backtrace_args_no;
1218
1219	rec_argc = record_elems + argc;
1220	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1221
1222	if (rec_argv == NULL)
1223		return -ENOMEM;
1224
1225	p = rec_argv;
1226	for (i = 0; i < common_args_nr; i++)
1227		*p++ = strdup(common_args[i]);
1228
1229	for (i = 0; i < backtrace_args_no; i++)
1230		*p++ = strdup(backtrace_args[i]);
1231
1232	for (i = 0; i < tasks_args_nr; i++)
1233		*p++ = strdup(tasks_args[i]);
1234
1235	for (i = 0; i < power_args_nr; i++)
1236		*p++ = strdup(power_args[i]);
1237
1238	for (i = 0; i < old_power_args_nr; i++)
1239		*p++ = strdup(old_power_args[i]);
1240
1241	for (j = 0; j < (unsigned int)argc; j++)
1242		*p++ = argv[j];
1243
1244	return cmd_record(rec_argc, rec_argv, NULL);
1245}
1246
1247static int
1248parse_process(const struct option *opt __maybe_unused, const char *arg,
1249	      int __maybe_unused unset)
1250{
1251	if (arg)
1252		add_process_filter(arg);
1253	return 0;
1254}
1255
1256static int
1257parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1258		int __maybe_unused unset)
1259{
1260	unsigned long duration = strtoul(arg, NULL, 0);
1261
1262	if (svg_highlight || svg_highlight_name)
1263		return -1;
1264
1265	if (duration)
1266		svg_highlight = duration;
1267	else
1268		svg_highlight_name = strdup(arg);
1269
1270	return 0;
1271}
1272
1273int cmd_timechart(int argc, const char **argv,
1274		  const char *prefix __maybe_unused)
1275{
1276	struct timechart tchart = {
1277		.tool = {
1278			.comm		 = process_comm_event,
1279			.fork		 = process_fork_event,
1280			.exit		 = process_exit_event,
1281			.sample		 = process_sample_event,
1282			.ordered_samples = true,
1283		},
1284		.proc_num = 15,
1285	};
1286	const char *output_name = "output.svg";
1287	const struct option timechart_options[] = {
1288	OPT_STRING('i', "input", &input_name, "file", "input file name"),
1289	OPT_STRING('o', "output", &output_name, "file", "output file name"),
1290	OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1291	OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1292		      "highlight tasks. Pass duration in ns or process name.",
1293		       parse_highlight),
1294	OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1295	OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1296		    "output processes data only"),
1297	OPT_CALLBACK('p', "process", NULL, "process",
1298		      "process selector. Pass a pid or process name.",
1299		       parse_process),
1300	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1301		    "Look for files with symbols relative to this directory"),
1302	OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1303		    "min. number of tasks to print"),
1304	OPT_BOOLEAN('t', "topology", &tchart.topology,
1305		    "sort CPUs according to topology"),
1306	OPT_END()
1307	};
1308	const char * const timechart_usage[] = {
1309		"perf timechart [<options>] {record}",
1310		NULL
1311	};
1312
1313	const struct option record_options[] = {
1314	OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1315	OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1316		    "output processes data only"),
1317	OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1318	OPT_END()
1319	};
1320	const char * const record_usage[] = {
1321		"perf timechart record [<options>]",
1322		NULL
1323	};
1324	argc = parse_options(argc, argv, timechart_options, timechart_usage,
1325			PARSE_OPT_STOP_AT_NON_OPTION);
1326
1327	if (tchart.power_only && tchart.tasks_only) {
1328		pr_err("-P and -T options cannot be used at the same time.\n");
1329		return -1;
1330	}
1331
1332	symbol__init();
1333
1334	if (argc && !strncmp(argv[0], "rec", 3)) {
1335		argc = parse_options(argc, argv, record_options, record_usage,
1336				     PARSE_OPT_STOP_AT_NON_OPTION);
1337
1338		if (tchart.power_only && tchart.tasks_only) {
1339			pr_err("-P and -T options cannot be used at the same time.\n");
1340			return -1;
1341		}
1342
1343		return timechart__record(&tchart, argc, argv);
1344	} else if (argc)
1345		usage_with_options(timechart_usage, timechart_options);
1346
1347	setup_pager();
1348
1349	return __cmd_timechart(&tchart, output_name);
1350}