Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v3.1
 
   1/* SCTP kernel implementation
   2 * Copyright (c) 1999-2000 Cisco, Inc.
   3 * Copyright (c) 1999-2001 Motorola, Inc.
   4 * Copyright (c) 2001-2003 International Business Machines, Corp.
   5 * Copyright (c) 2001 Intel Corp.
   6 * Copyright (c) 2001 Nokia, Inc.
   7 * Copyright (c) 2001 La Monte H.P. Yarroll
   8 *
   9 * This file is part of the SCTP kernel implementation
  10 *
  11 * These functions handle all input from the IP layer into SCTP.
  12 *
  13 * This SCTP implementation is free software;
  14 * you can redistribute it and/or modify it under the terms of
  15 * the GNU General Public License as published by
  16 * the Free Software Foundation; either version 2, or (at your option)
  17 * any later version.
  18 *
  19 * This SCTP implementation is distributed in the hope that it
  20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
  21 *                 ************************
  22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  23 * See the GNU General Public License for more details.
  24 *
  25 * You should have received a copy of the GNU General Public License
  26 * along with GNU CC; see the file COPYING.  If not, write to
  27 * the Free Software Foundation, 59 Temple Place - Suite 330,
  28 * Boston, MA 02111-1307, USA.
  29 *
  30 * Please send any bug reports or fixes you make to the
  31 * email address(es):
  32 *    lksctp developers <lksctp-developers@lists.sourceforge.net>
  33 *
  34 * Or submit a bug report through the following website:
  35 *    http://www.sf.net/projects/lksctp
  36 *
  37 * Written or modified by:
  38 *    La Monte H.P. Yarroll <piggy@acm.org>
  39 *    Karl Knutson <karl@athena.chicago.il.us>
  40 *    Xingang Guo <xingang.guo@intel.com>
  41 *    Jon Grimm <jgrimm@us.ibm.com>
  42 *    Hui Huang <hui.huang@nokia.com>
  43 *    Daisy Chang <daisyc@us.ibm.com>
  44 *    Sridhar Samudrala <sri@us.ibm.com>
  45 *    Ardelle Fan <ardelle.fan@intel.com>
  46 *
  47 * Any bugs reported given to us we will try to fix... any fixes shared will
  48 * be incorporated into the next SCTP release.
  49 */
  50
  51#include <linux/types.h>
  52#include <linux/list.h> /* For struct list_head */
  53#include <linux/socket.h>
  54#include <linux/ip.h>
  55#include <linux/time.h> /* For struct timeval */
  56#include <linux/slab.h>
  57#include <net/ip.h>
  58#include <net/icmp.h>
  59#include <net/snmp.h>
  60#include <net/sock.h>
  61#include <net/xfrm.h>
  62#include <net/sctp/sctp.h>
  63#include <net/sctp/sm.h>
  64#include <net/sctp/checksum.h>
  65#include <net/net_namespace.h>
 
 
  66
  67/* Forward declarations for internal helpers. */
  68static int sctp_rcv_ootb(struct sk_buff *);
  69static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
  70				      const union sctp_addr *laddr,
  71				      const union sctp_addr *paddr,
  72				      struct sctp_transport **transportp);
  73static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr);
 
 
 
 
 
 
  74static struct sctp_association *__sctp_lookup_association(
 
  75					const union sctp_addr *local,
  76					const union sctp_addr *peer,
  77					struct sctp_transport **pt);
 
  78
  79static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
  80
  81
  82/* Calculate the SCTP checksum of an SCTP packet.  */
  83static inline int sctp_rcv_checksum(struct sk_buff *skb)
  84{
  85	struct sctphdr *sh = sctp_hdr(skb);
  86	__le32 cmp = sh->checksum;
  87	struct sk_buff *list;
  88	__le32 val;
  89	__u32 tmp = sctp_start_cksum((__u8 *)sh, skb_headlen(skb));
  90
  91	skb_walk_frags(skb, list)
  92		tmp = sctp_update_cksum((__u8 *)list->data, skb_headlen(list),
  93					tmp);
  94
  95	val = sctp_end_cksum(tmp);
  96
  97	if (val != cmp) {
  98		/* CRC failure, dump it. */
  99		SCTP_INC_STATS_BH(SCTP_MIB_CHECKSUMERRORS);
 100		return -1;
 101	}
 102	return 0;
 103}
 104
 105struct sctp_input_cb {
 106	union {
 107		struct inet_skb_parm	h4;
 108#if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
 109		struct inet6_skb_parm	h6;
 110#endif
 111	} header;
 112	struct sctp_chunk *chunk;
 113};
 114#define SCTP_INPUT_CB(__skb)	((struct sctp_input_cb *)&((__skb)->cb[0]))
 115
 116/*
 117 * This is the routine which IP calls when receiving an SCTP packet.
 118 */
 119int sctp_rcv(struct sk_buff *skb)
 120{
 121	struct sock *sk;
 122	struct sctp_association *asoc;
 123	struct sctp_endpoint *ep = NULL;
 124	struct sctp_ep_common *rcvr;
 125	struct sctp_transport *transport = NULL;
 126	struct sctp_chunk *chunk;
 127	struct sctphdr *sh;
 128	union sctp_addr src;
 129	union sctp_addr dest;
 130	int family;
 131	struct sctp_af *af;
 
 
 
 132
 133	if (skb->pkt_type!=PACKET_HOST)
 134		goto discard_it;
 135
 136	SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS);
 137
 138	if (skb_linearize(skb))
 
 
 
 
 139		goto discard_it;
 140
 141	sh = sctp_hdr(skb);
 142
 143	/* Pull up the IP and SCTP headers. */
 144	__skb_pull(skb, skb_transport_offset(skb));
 145	if (skb->len < sizeof(struct sctphdr))
 146		goto discard_it;
 147	if (!sctp_checksum_disable && !skb_csum_unnecessary(skb) &&
 148		  sctp_rcv_checksum(skb) < 0)
 149		goto discard_it;
 150
 151	skb_pull(skb, sizeof(struct sctphdr));
 
 152
 153	/* Make sure we at least have chunk headers worth of data left. */
 154	if (skb->len < sizeof(struct sctp_chunkhdr))
 
 
 
 
 155		goto discard_it;
 
 
 
 156
 157	family = ipver2af(ip_hdr(skb)->version);
 158	af = sctp_get_af_specific(family);
 159	if (unlikely(!af))
 160		goto discard_it;
 
 161
 162	/* Initialize local addresses for lookups. */
 163	af->from_skb(&src, skb, 1);
 164	af->from_skb(&dest, skb, 0);
 
 
 165
 166	/* If the packet is to or from a non-unicast address,
 167	 * silently discard the packet.
 168	 *
 169	 * This is not clearly defined in the RFC except in section
 170	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
 171	 * Transmission Protocol" 2.1, "It is important to note that the
 172	 * IP address of an SCTP transport address must be a routable
 173	 * unicast address.  In other words, IP multicast addresses and
 174	 * IP broadcast addresses cannot be used in an SCTP transport
 175	 * address."
 176	 */
 177	if (!af->addr_valid(&src, NULL, skb) ||
 178	    !af->addr_valid(&dest, NULL, skb))
 179		goto discard_it;
 180
 181	asoc = __sctp_rcv_lookup(skb, &src, &dest, &transport);
 182
 183	if (!asoc)
 184		ep = __sctp_rcv_lookup_endpoint(&dest);
 185
 186	/* Retrieve the common input handling substructure. */
 187	rcvr = asoc ? &asoc->base : &ep->base;
 188	sk = rcvr->sk;
 189
 190	/*
 191	 * If a frame arrives on an interface and the receiving socket is
 192	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
 193	 */
 194	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb)))
 195	{
 196		if (asoc) {
 197			sctp_association_put(asoc);
 198			asoc = NULL;
 199		} else {
 200			sctp_endpoint_put(ep);
 201			ep = NULL;
 202		}
 203		sk = sctp_get_ctl_sock();
 204		ep = sctp_sk(sk)->ep;
 205		sctp_endpoint_hold(ep);
 206		rcvr = &ep->base;
 207	}
 208
 209	/*
 210	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
 211	 * An SCTP packet is called an "out of the blue" (OOTB)
 212	 * packet if it is correctly formed, i.e., passed the
 213	 * receiver's checksum check, but the receiver is not
 214	 * able to identify the association to which this
 215	 * packet belongs.
 216	 */
 217	if (!asoc) {
 218		if (sctp_rcv_ootb(skb)) {
 219			SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES);
 220			goto discard_release;
 221		}
 222	}
 223
 224	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
 225		goto discard_release;
 226	nf_reset(skb);
 227
 228	if (sk_filter(sk, skb))
 229		goto discard_release;
 230
 231	/* Create an SCTP packet structure. */
 232	chunk = sctp_chunkify(skb, asoc, sk);
 233	if (!chunk)
 234		goto discard_release;
 235	SCTP_INPUT_CB(skb)->chunk = chunk;
 236
 237	/* Remember what endpoint is to handle this packet. */
 238	chunk->rcvr = rcvr;
 239
 240	/* Remember the SCTP header. */
 241	chunk->sctp_hdr = sh;
 242
 243	/* Set the source and destination addresses of the incoming chunk.  */
 244	sctp_init_addrs(chunk, &src, &dest);
 245
 246	/* Remember where we came from.  */
 247	chunk->transport = transport;
 248
 249	/* Acquire access to the sock lock. Note: We are safe from other
 250	 * bottom halves on this lock, but a user may be in the lock too,
 251	 * so check if it is busy.
 252	 */
 253	sctp_bh_lock_sock(sk);
 254
 255	if (sk != rcvr->sk) {
 256		/* Our cached sk is different from the rcvr->sk.  This is
 257		 * because migrate()/accept() may have moved the association
 258		 * to a new socket and released all the sockets.  So now we
 259		 * are holding a lock on the old socket while the user may
 260		 * be doing something with the new socket.  Switch our veiw
 261		 * of the current sk.
 262		 */
 263		sctp_bh_unlock_sock(sk);
 264		sk = rcvr->sk;
 265		sctp_bh_lock_sock(sk);
 266	}
 267
 268	if (sock_owned_by_user(sk)) {
 269		if (sctp_add_backlog(sk, skb)) {
 270			sctp_bh_unlock_sock(sk);
 271			sctp_chunk_free(chunk);
 272			skb = NULL; /* sctp_chunk_free already freed the skb */
 273			goto discard_release;
 274		}
 275		SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_BACKLOG);
 276	} else {
 277		SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_SOFTIRQ);
 278		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
 279	}
 280
 281	sctp_bh_unlock_sock(sk);
 282
 283	/* Release the asoc/ep ref we took in the lookup calls. */
 284	if (asoc)
 285		sctp_association_put(asoc);
 286	else
 287		sctp_endpoint_put(ep);
 288
 289	return 0;
 290
 291discard_it:
 292	SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_DISCARDS);
 293	kfree_skb(skb);
 294	return 0;
 295
 296discard_release:
 297	/* Release the asoc/ep ref we took in the lookup calls. */
 298	if (asoc)
 299		sctp_association_put(asoc);
 300	else
 301		sctp_endpoint_put(ep);
 302
 303	goto discard_it;
 304}
 305
 306/* Process the backlog queue of the socket.  Every skb on
 307 * the backlog holds a ref on an association or endpoint.
 308 * We hold this ref throughout the state machine to make
 309 * sure that the structure we need is still around.
 310 */
 311int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 312{
 313	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
 314	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
 
 315	struct sctp_ep_common *rcvr = NULL;
 316	int backloged = 0;
 317
 318	rcvr = chunk->rcvr;
 319
 320	/* If the rcvr is dead then the association or endpoint
 321	 * has been deleted and we can safely drop the chunk
 322	 * and refs that we are holding.
 323	 */
 324	if (rcvr->dead) {
 325		sctp_chunk_free(chunk);
 326		goto done;
 327	}
 328
 329	if (unlikely(rcvr->sk != sk)) {
 330		/* In this case, the association moved from one socket to
 331		 * another.  We are currently sitting on the backlog of the
 332		 * old socket, so we need to move.
 333		 * However, since we are here in the process context we
 334		 * need to take make sure that the user doesn't own
 335		 * the new socket when we process the packet.
 336		 * If the new socket is user-owned, queue the chunk to the
 337		 * backlog of the new socket without dropping any refs.
 338		 * Otherwise, we can safely push the chunk on the inqueue.
 339		 */
 340
 341		sk = rcvr->sk;
 342		sctp_bh_lock_sock(sk);
 
 343
 344		if (sock_owned_by_user(sk)) {
 345			if (sk_add_backlog(sk, skb))
 346				sctp_chunk_free(chunk);
 347			else
 348				backloged = 1;
 349		} else
 350			sctp_inq_push(inqueue, chunk);
 351
 352		sctp_bh_unlock_sock(sk);
 
 353
 354		/* If the chunk was backloged again, don't drop refs */
 355		if (backloged)
 356			return 0;
 357	} else {
 358		sctp_inq_push(inqueue, chunk);
 
 
 
 
 
 
 359	}
 360
 361done:
 362	/* Release the refs we took in sctp_add_backlog */
 363	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
 364		sctp_association_put(sctp_assoc(rcvr));
 365	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
 366		sctp_endpoint_put(sctp_ep(rcvr));
 367	else
 368		BUG();
 369
 370	return 0;
 371}
 372
 373static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
 374{
 375	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
 
 376	struct sctp_ep_common *rcvr = chunk->rcvr;
 377	int ret;
 378
 379	ret = sk_add_backlog(sk, skb);
 380	if (!ret) {
 381		/* Hold the assoc/ep while hanging on the backlog queue.
 382		 * This way, we know structures we need will not disappear
 383		 * from us
 384		 */
 385		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
 386			sctp_association_hold(sctp_assoc(rcvr));
 387		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
 388			sctp_endpoint_hold(sctp_ep(rcvr));
 389		else
 390			BUG();
 391	}
 392	return ret;
 393
 394}
 395
 396/* Handle icmp frag needed error. */
 397void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
 398			   struct sctp_transport *t, __u32 pmtu)
 399{
 400	if (!t || (t->pathmtu <= pmtu))
 
 
 401		return;
 402
 403	if (sock_owned_by_user(sk)) {
 
 404		asoc->pmtu_pending = 1;
 405		t->pmtu_pending = 1;
 406		return;
 407	}
 408
 409	if (t->param_flags & SPP_PMTUD_ENABLE) {
 410		/* Update transports view of the MTU */
 411		sctp_transport_update_pmtu(t, pmtu);
 412
 413		/* Update association pmtu. */
 414		sctp_assoc_sync_pmtu(asoc);
 415	}
 416
 417	/* Retransmit with the new pmtu setting.
 418	 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
 419	 * Needed will never be sent, but if a message was sent before
 420	 * PMTU discovery was disabled that was larger than the PMTU, it
 421	 * would not be fragmented, so it must be re-transmitted fragmented.
 422	 */
 
 
 
 
 
 
 
 423	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
 424}
 425
 
 
 
 
 
 
 
 
 
 
 
 
 426/*
 427 * SCTP Implementer's Guide, 2.37 ICMP handling procedures
 428 *
 429 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
 430 *        or a "Protocol Unreachable" treat this message as an abort
 431 *        with the T bit set.
 432 *
 433 * This function sends an event to the state machine, which will abort the
 434 * association.
 435 *
 436 */
 437void sctp_icmp_proto_unreachable(struct sock *sk,
 438			   struct sctp_association *asoc,
 439			   struct sctp_transport *t)
 440{
 441	SCTP_DEBUG_PRINTK("%s\n",  __func__);
 442
 443	if (sock_owned_by_user(sk)) {
 444		if (timer_pending(&t->proto_unreach_timer))
 445			return;
 446		else {
 447			if (!mod_timer(&t->proto_unreach_timer,
 448						jiffies + (HZ/20)))
 449				sctp_association_hold(asoc);
 450		}
 451			
 452	} else {
 453		if (timer_pending(&t->proto_unreach_timer) &&
 454		    del_timer(&t->proto_unreach_timer))
 455			sctp_association_put(asoc);
 
 456
 457		sctp_do_sm(SCTP_EVENT_T_OTHER,
 
 
 
 458			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
 459			   asoc->state, asoc->ep, asoc, t,
 460			   GFP_ATOMIC);
 461	}
 462}
 463
 464/* Common lookup code for icmp/icmpv6 error handler. */
 465struct sock *sctp_err_lookup(int family, struct sk_buff *skb,
 466			     struct sctphdr *sctphdr,
 467			     struct sctp_association **app,
 468			     struct sctp_transport **tpp)
 469{
 
 470	union sctp_addr saddr;
 471	union sctp_addr daddr;
 472	struct sctp_af *af;
 473	struct sock *sk = NULL;
 474	struct sctp_association *asoc;
 475	struct sctp_transport *transport = NULL;
 476	struct sctp_init_chunk *chunkhdr;
 477	__u32 vtag = ntohl(sctphdr->vtag);
 478	int len = skb->len - ((void *)sctphdr - (void *)skb->data);
 
 479
 480	*app = NULL; *tpp = NULL;
 481
 482	af = sctp_get_af_specific(family);
 483	if (unlikely(!af)) {
 484		return NULL;
 485	}
 486
 487	/* Initialize local addresses for lookups. */
 488	af->from_skb(&saddr, skb, 1);
 489	af->from_skb(&daddr, skb, 0);
 490
 491	/* Look for an association that matches the incoming ICMP error
 492	 * packet.
 493	 */
 494	asoc = __sctp_lookup_association(&saddr, &daddr, &transport);
 495	if (!asoc)
 496		return NULL;
 497
 498	sk = asoc->base.sk;
 499
 500	/* RFC 4960, Appendix C. ICMP Handling
 501	 *
 502	 * ICMP6) An implementation MUST validate that the Verification Tag
 503	 * contained in the ICMP message matches the Verification Tag of
 504	 * the peer.  If the Verification Tag is not 0 and does NOT
 505	 * match, discard the ICMP message.  If it is 0 and the ICMP
 506	 * message contains enough bytes to verify that the chunk type is
 507	 * an INIT chunk and that the Initiate Tag matches the tag of the
 508	 * peer, continue with ICMP7.  If the ICMP message is too short
 509	 * or the chunk type or the Initiate Tag does not match, silently
 510	 * discard the packet.
 511	 */
 512	if (vtag == 0) {
 513		chunkhdr = (void *)sctphdr + sizeof(struct sctphdr);
 514		if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t)
 515			  + sizeof(__be32) ||
 
 
 
 516		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
 517		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) {
 518			goto out;
 519		}
 520	} else if (vtag != asoc->c.peer_vtag) {
 521		goto out;
 522	}
 523
 524	sctp_bh_lock_sock(sk);
 525
 526	/* If too many ICMPs get dropped on busy
 527	 * servers this needs to be solved differently.
 528	 */
 529	if (sock_owned_by_user(sk))
 530		NET_INC_STATS_BH(&init_net, LINUX_MIB_LOCKDROPPEDICMPS);
 531
 532	*app = asoc;
 533	*tpp = transport;
 534	return sk;
 535
 536out:
 537	if (asoc)
 538		sctp_association_put(asoc);
 539	return NULL;
 540}
 541
 542/* Common cleanup code for icmp/icmpv6 error handler. */
 543void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
 
 544{
 545	sctp_bh_unlock_sock(sk);
 546	if (asoc)
 547		sctp_association_put(asoc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548}
 549
 550/*
 551 * This routine is called by the ICMP module when it gets some
 552 * sort of error condition.  If err < 0 then the socket should
 553 * be closed and the error returned to the user.  If err > 0
 554 * it's just the icmp type << 8 | icmp code.  After adjustment
 555 * header points to the first 8 bytes of the sctp header.  We need
 556 * to find the appropriate port.
 557 *
 558 * The locking strategy used here is very "optimistic". When
 559 * someone else accesses the socket the ICMP is just dropped
 560 * and for some paths there is no check at all.
 561 * A more general error queue to queue errors for later handling
 562 * is probably better.
 563 *
 564 */
 565void sctp_v4_err(struct sk_buff *skb, __u32 info)
 566{
 567	const struct iphdr *iph = (const struct iphdr *)skb->data;
 568	const int ihlen = iph->ihl * 4;
 569	const int type = icmp_hdr(skb)->type;
 570	const int code = icmp_hdr(skb)->code;
 571	struct sock *sk;
 572	struct sctp_association *asoc = NULL;
 573	struct sctp_transport *transport;
 574	struct inet_sock *inet;
 575	sk_buff_data_t saveip, savesctp;
 576	int err;
 577
 578	if (skb->len < ihlen + 8) {
 579		ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS);
 580		return;
 581	}
 582
 583	/* Fix up skb to look at the embedded net header. */
 584	saveip = skb->network_header;
 585	savesctp = skb->transport_header;
 586	skb_reset_network_header(skb);
 587	skb_set_transport_header(skb, ihlen);
 588	sk = sctp_err_lookup(AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
 589	/* Put back, the original values. */
 590	skb->network_header = saveip;
 591	skb->transport_header = savesctp;
 592	if (!sk) {
 593		ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS);
 594		return;
 595	}
 596	/* Warning:  The sock lock is held.  Remember to call
 597	 * sctp_err_finish!
 598	 */
 599
 600	switch (type) {
 601	case ICMP_PARAMETERPROB:
 602		err = EPROTO;
 603		break;
 604	case ICMP_DEST_UNREACH:
 605		if (code > NR_ICMP_UNREACH)
 606			goto out_unlock;
 607
 608		/* PMTU discovery (RFC1191) */
 609		if (ICMP_FRAG_NEEDED == code) {
 610			sctp_icmp_frag_needed(sk, asoc, transport, info);
 611			goto out_unlock;
 612		}
 613		else {
 614			if (ICMP_PROT_UNREACH == code) {
 615				sctp_icmp_proto_unreachable(sk, asoc,
 616							    transport);
 617				goto out_unlock;
 618			}
 619		}
 620		err = icmp_err_convert[code].errno;
 621		break;
 622	case ICMP_TIME_EXCEEDED:
 623		/* Ignore any time exceeded errors due to fragment reassembly
 624		 * timeouts.
 625		 */
 626		if (ICMP_EXC_FRAGTIME == code)
 627			goto out_unlock;
 628
 629		err = EHOSTUNREACH;
 630		break;
 631	default:
 632		goto out_unlock;
 633	}
 
 
 634
 635	inet = inet_sk(sk);
 636	if (!sock_owned_by_user(sk) && inet->recverr) {
 637		sk->sk_err = err;
 638		sk->sk_error_report(sk);
 639	} else {  /* Only an error on timeout */
 640		sk->sk_err_soft = err;
 641	}
 642
 643out_unlock:
 644	sctp_err_finish(sk, asoc);
 
 
 
 
 
 
 
 
 
 
 
 645}
 646
 647/*
 648 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
 649 *
 650 * This function scans all the chunks in the OOTB packet to determine if
 651 * the packet should be discarded right away.  If a response might be needed
 652 * for this packet, or, if further processing is possible, the packet will
 653 * be queued to a proper inqueue for the next phase of handling.
 654 *
 655 * Output:
 656 * Return 0 - If further processing is needed.
 657 * Return 1 - If the packet can be discarded right away.
 658 */
 659static int sctp_rcv_ootb(struct sk_buff *skb)
 660{
 661	sctp_chunkhdr_t *ch;
 662	__u8 *ch_end;
 663
 664	ch = (sctp_chunkhdr_t *) skb->data;
 665
 666	/* Scan through all the chunks in the packet.  */
 667	do {
 
 
 
 
 
 
 668		/* Break out if chunk length is less then minimal. */
 669		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
 670			break;
 671
 672		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
 673		if (ch_end > skb_tail_pointer(skb))
 674			break;
 675
 676		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
 677		 * receiver MUST silently discard the OOTB packet and take no
 678		 * further action.
 679		 */
 680		if (SCTP_CID_ABORT == ch->type)
 681			goto discard;
 682
 683		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
 684		 * chunk, the receiver should silently discard the packet
 685		 * and take no further action.
 686		 */
 687		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
 688			goto discard;
 689
 690		/* RFC 4460, 2.11.2
 691		 * This will discard packets with INIT chunk bundled as
 692		 * subsequent chunks in the packet.  When INIT is first,
 693		 * the normal INIT processing will discard the chunk.
 694		 */
 695		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
 696			goto discard;
 697
 698		ch = (sctp_chunkhdr_t *) ch_end;
 699	} while (ch_end < skb_tail_pointer(skb));
 700
 701	return 0;
 702
 703discard:
 704	return 1;
 705}
 706
 707/* Insert endpoint into the hash table.  */
 708static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
 709{
 710	struct sctp_ep_common *epb;
 
 711	struct sctp_hashbucket *head;
 712
 713	epb = &ep->base;
 
 714
 715	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
 716	head = &sctp_ep_hashtable[epb->hashent];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 717
 718	sctp_write_lock(&head->lock);
 719	hlist_add_head(&epb->node, &head->chain);
 720	sctp_write_unlock(&head->lock);
 
 
 
 
 
 
 
 
 721}
 722
 723/* Add an endpoint to the hash. Local BH-safe. */
 724void sctp_hash_endpoint(struct sctp_endpoint *ep)
 725{
 726	sctp_local_bh_disable();
 727	__sctp_hash_endpoint(ep);
 728	sctp_local_bh_enable();
 
 
 
 
 729}
 730
 731/* Remove endpoint from the hash table.  */
 732static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
 733{
 
 734	struct sctp_hashbucket *head;
 735	struct sctp_ep_common *epb;
 736
 737	epb = &ep->base;
 738
 739	if (hlist_unhashed(&epb->node))
 740		return;
 741
 742	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
 743
 744	head = &sctp_ep_hashtable[epb->hashent];
 
 745
 746	sctp_write_lock(&head->lock);
 747	__hlist_del(&epb->node);
 748	sctp_write_unlock(&head->lock);
 749}
 750
 751/* Remove endpoint from the hash.  Local BH-safe. */
 752void sctp_unhash_endpoint(struct sctp_endpoint *ep)
 753{
 754	sctp_local_bh_disable();
 755	__sctp_unhash_endpoint(ep);
 756	sctp_local_bh_enable();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 757}
 758
 759/* Look up an endpoint. */
 760static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr)
 
 
 
 
 761{
 762	struct sctp_hashbucket *head;
 763	struct sctp_ep_common *epb;
 764	struct sctp_endpoint *ep;
 765	struct hlist_node *node;
 
 766	int hash;
 767
 768	hash = sctp_ep_hashfn(ntohs(laddr->v4.sin_port));
 
 769	head = &sctp_ep_hashtable[hash];
 770	read_lock(&head->lock);
 771	sctp_for_each_hentry(epb, node, &head->chain) {
 772		ep = sctp_ep(epb);
 773		if (sctp_endpoint_is_match(ep, laddr))
 774			goto hit;
 775	}
 776
 777	ep = sctp_sk((sctp_get_ctl_sock()))->ep;
 778
 779hit:
 
 
 
 
 
 
 
 
 
 780	sctp_endpoint_hold(ep);
 781	read_unlock(&head->lock);
 782	return ep;
 783}
 784
 785/* Insert association into the hash table.  */
 786static void __sctp_hash_established(struct sctp_association *asoc)
 
 
 
 
 
 
 
 787{
 788	struct sctp_ep_common *epb;
 789	struct sctp_hashbucket *head;
 
 
 
 
 
 
 790
 791	epb = &asoc->base;
 
 
 
 792
 793	/* Calculate which chain this entry will belong to. */
 794	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, asoc->peer.port);
 
 
 
 795
 796	head = &sctp_assoc_hashtable[epb->hashent];
 
 
 797
 798	sctp_write_lock(&head->lock);
 799	hlist_add_head(&epb->node, &head->chain);
 800	sctp_write_unlock(&head->lock);
 801}
 802
 803/* Add an association to the hash. Local BH-safe. */
 804void sctp_hash_established(struct sctp_association *asoc)
 805{
 806	if (asoc->temp)
 807		return;
 808
 809	sctp_local_bh_disable();
 810	__sctp_hash_established(asoc);
 811	sctp_local_bh_enable();
 812}
 813
 814/* Remove association from the hash table.  */
 815static void __sctp_unhash_established(struct sctp_association *asoc)
 
 
 
 
 
 
 
 816{
 817	struct sctp_hashbucket *head;
 818	struct sctp_ep_common *epb;
 
 
 
 
 
 819
 820	epb = &asoc->base;
 
 
 
 
 
 821
 822	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port,
 823					 asoc->peer.port);
 824
 825	head = &sctp_assoc_hashtable[epb->hashent];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 826
 827	sctp_write_lock(&head->lock);
 828	__hlist_del(&epb->node);
 829	sctp_write_unlock(&head->lock);
 830}
 831
 832/* Remove association from the hash table.  Local BH-safe. */
 833void sctp_unhash_established(struct sctp_association *asoc)
 834{
 835	if (asoc->temp)
 836		return;
 837
 838	sctp_local_bh_disable();
 839	__sctp_unhash_established(asoc);
 840	sctp_local_bh_enable();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 841}
 842
 843/* Look up an association. */
 844static struct sctp_association *__sctp_lookup_association(
 
 845					const union sctp_addr *local,
 846					const union sctp_addr *peer,
 847					struct sctp_transport **pt)
 
 848{
 849	struct sctp_hashbucket *head;
 850	struct sctp_ep_common *epb;
 851	struct sctp_association *asoc;
 852	struct sctp_transport *transport;
 853	struct hlist_node *node;
 854	int hash;
 855
 856	/* Optimize here for direct hit, only listening connections can
 857	 * have wildcards anyways.
 858	 */
 859	hash = sctp_assoc_hashfn(ntohs(local->v4.sin_port), ntohs(peer->v4.sin_port));
 860	head = &sctp_assoc_hashtable[hash];
 861	read_lock(&head->lock);
 862	sctp_for_each_hentry(epb, node, &head->chain) {
 863		asoc = sctp_assoc(epb);
 864		transport = sctp_assoc_is_match(asoc, local, peer);
 865		if (transport)
 866			goto hit;
 867	}
 868
 869	read_unlock(&head->lock);
 
 
 870
 871	return NULL;
 
 872
 873hit:
 874	*pt = transport;
 875	sctp_association_hold(asoc);
 876	read_unlock(&head->lock);
 877	return asoc;
 878}
 879
 880/* Look up an association. BH-safe. */
 881SCTP_STATIC
 882struct sctp_association *sctp_lookup_association(const union sctp_addr *laddr,
 
 883						 const union sctp_addr *paddr,
 884					    struct sctp_transport **transportp)
 
 885{
 886	struct sctp_association *asoc;
 887
 888	sctp_local_bh_disable();
 889	asoc = __sctp_lookup_association(laddr, paddr, transportp);
 890	sctp_local_bh_enable();
 891
 892	return asoc;
 893}
 894
 895/* Is there an association matching the given local and peer addresses? */
 896int sctp_has_association(const union sctp_addr *laddr,
 897			 const union sctp_addr *paddr)
 
 
 898{
 899	struct sctp_association *asoc;
 900	struct sctp_transport *transport;
 901
 902	if ((asoc = sctp_lookup_association(laddr, paddr, &transport))) {
 903		sctp_association_put(asoc);
 904		return 1;
 905	}
 906
 907	return 0;
 908}
 909
 910/*
 911 * SCTP Implementors Guide, 2.18 Handling of address
 912 * parameters within the INIT or INIT-ACK.
 913 *
 914 * D) When searching for a matching TCB upon reception of an INIT
 915 *    or INIT-ACK chunk the receiver SHOULD use not only the
 916 *    source address of the packet (containing the INIT or
 917 *    INIT-ACK) but the receiver SHOULD also use all valid
 918 *    address parameters contained within the chunk.
 919 *
 920 * 2.18.3 Solution description
 921 *
 922 * This new text clearly specifies to an implementor the need
 923 * to look within the INIT or INIT-ACK. Any implementation that
 924 * does not do this, may not be able to establish associations
 925 * in certain circumstances.
 926 *
 927 */
 928static struct sctp_association *__sctp_rcv_init_lookup(struct sk_buff *skb,
 929	const union sctp_addr *laddr, struct sctp_transport **transportp)
 
 
 930{
 931	struct sctp_association *asoc;
 932	union sctp_addr addr;
 933	union sctp_addr *paddr = &addr;
 934	struct sctphdr *sh = sctp_hdr(skb);
 935	union sctp_params params;
 936	sctp_init_chunk_t *init;
 937	struct sctp_transport *transport;
 938	struct sctp_af *af;
 939
 940	/*
 941	 * This code will NOT touch anything inside the chunk--it is
 942	 * strictly READ-ONLY.
 943	 *
 944	 * RFC 2960 3  SCTP packet Format
 945	 *
 946	 * Multiple chunks can be bundled into one SCTP packet up to
 947	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
 948	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
 949	 * other chunk in a packet.  See Section 6.10 for more details
 950	 * on chunk bundling.
 951	 */
 952
 953	/* Find the start of the TLVs and the end of the chunk.  This is
 954	 * the region we search for address parameters.
 955	 */
 956	init = (sctp_init_chunk_t *)skb->data;
 957
 958	/* Walk the parameters looking for embedded addresses. */
 959	sctp_walk_params(params, init, init_hdr.params) {
 960
 961		/* Note: Ignoring hostname addresses. */
 962		af = sctp_get_af_specific(param_type2af(params.p->type));
 963		if (!af)
 964			continue;
 965
 966		af->from_addr_param(paddr, params.addr, sh->source, 0);
 
 967
 968		asoc = __sctp_lookup_association(laddr, paddr, &transport);
 969		if (asoc)
 970			return asoc;
 971	}
 972
 973	return NULL;
 974}
 975
 976/* ADD-IP, Section 5.2
 977 * When an endpoint receives an ASCONF Chunk from the remote peer
 978 * special procedures may be needed to identify the association the
 979 * ASCONF Chunk is associated with. To properly find the association
 980 * the following procedures SHOULD be followed:
 981 *
 982 * D2) If the association is not found, use the address found in the
 983 * Address Parameter TLV combined with the port number found in the
 984 * SCTP common header. If found proceed to rule D4.
 985 *
 986 * D2-ext) If more than one ASCONF Chunks are packed together, use the
 987 * address found in the ASCONF Address Parameter TLV of each of the
 988 * subsequent ASCONF Chunks. If found, proceed to rule D4.
 989 */
 990static struct sctp_association *__sctp_rcv_asconf_lookup(
 991					sctp_chunkhdr_t *ch,
 
 992					const union sctp_addr *laddr,
 993					__be16 peer_port,
 994					struct sctp_transport **transportp)
 
 995{
 996	sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
 997	struct sctp_af *af;
 998	union sctp_addr_param *param;
 999	union sctp_addr paddr;
1000
 
 
 
1001	/* Skip over the ADDIP header and find the Address parameter */
1002	param = (union sctp_addr_param *)(asconf + 1);
1003
1004	af = sctp_get_af_specific(param_type2af(param->p.type));
1005	if (unlikely(!af))
1006		return NULL;
1007
1008	af->from_addr_param(&paddr, param, peer_port, 0);
 
1009
1010	return __sctp_lookup_association(laddr, &paddr, transportp);
1011}
1012
1013
1014/* SCTP-AUTH, Section 6.3:
1015*    If the receiver does not find a STCB for a packet containing an AUTH
1016*    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1017*    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1018*    association.
1019*
1020* This means that any chunks that can help us identify the association need
1021* to be looked at to find this association.
1022*/
1023static struct sctp_association *__sctp_rcv_walk_lookup(struct sk_buff *skb,
 
1024				      const union sctp_addr *laddr,
1025				      struct sctp_transport **transportp)
 
1026{
1027	struct sctp_association *asoc = NULL;
1028	sctp_chunkhdr_t *ch;
1029	int have_auth = 0;
1030	unsigned int chunk_num = 1;
1031	__u8 *ch_end;
1032
1033	/* Walk through the chunks looking for AUTH or ASCONF chunks
1034	 * to help us find the association.
1035	 */
1036	ch = (sctp_chunkhdr_t *) skb->data;
1037	do {
1038		/* Break out if chunk length is less then minimal. */
1039		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1040			break;
1041
1042		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
1043		if (ch_end > skb_tail_pointer(skb))
1044			break;
1045
1046		switch(ch->type) {
1047		    case SCTP_CID_AUTH:
1048			    have_auth = chunk_num;
1049			    break;
1050
1051		    case SCTP_CID_COOKIE_ECHO:
1052			    /* If a packet arrives containing an AUTH chunk as
1053			     * a first chunk, a COOKIE-ECHO chunk as the second
1054			     * chunk, and possibly more chunks after them, and
1055			     * the receiver does not have an STCB for that
1056			     * packet, then authentication is based on
1057			     * the contents of the COOKIE- ECHO chunk.
1058			     */
1059			    if (have_auth == 1 && chunk_num == 2)
1060				    return NULL;
1061			    break;
1062
1063		    case SCTP_CID_ASCONF:
1064			    if (have_auth || sctp_addip_noauth)
1065				    asoc = __sctp_rcv_asconf_lookup(ch, laddr,
1066							sctp_hdr(skb)->source,
1067							transportp);
1068		    default:
1069			    break;
 
 
1070		}
1071
1072		if (asoc)
1073			break;
1074
1075		ch = (sctp_chunkhdr_t *) ch_end;
1076		chunk_num++;
1077	} while (ch_end < skb_tail_pointer(skb));
1078
1079	return asoc;
1080}
1081
1082/*
1083 * There are circumstances when we need to look inside the SCTP packet
1084 * for information to help us find the association.   Examples
1085 * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1086 * chunks.
1087 */
1088static struct sctp_association *__sctp_rcv_lookup_harder(struct sk_buff *skb,
 
1089				      const union sctp_addr *laddr,
1090				      struct sctp_transport **transportp)
 
1091{
1092	sctp_chunkhdr_t *ch;
1093
1094	ch = (sctp_chunkhdr_t *) skb->data;
 
 
 
 
 
 
 
 
1095
1096	/* The code below will attempt to walk the chunk and extract
1097	 * parameter information.  Before we do that, we need to verify
1098	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1099	 * walk off the end.
1100	 */
1101	if (WORD_ROUND(ntohs(ch->length)) > skb->len)
1102		return NULL;
1103
1104	/* If this is INIT/INIT-ACK look inside the chunk too. */
1105	switch (ch->type) {
1106	case SCTP_CID_INIT:
1107	case SCTP_CID_INIT_ACK:
1108		return __sctp_rcv_init_lookup(skb, laddr, transportp);
1109		break;
1110
1111	default:
1112		return __sctp_rcv_walk_lookup(skb, laddr, transportp);
1113		break;
1114	}
1115
1116
1117	return NULL;
1118}
1119
1120/* Lookup an association for an inbound skb. */
1121static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
 
1122				      const union sctp_addr *paddr,
1123				      const union sctp_addr *laddr,
1124				      struct sctp_transport **transportp)
 
1125{
1126	struct sctp_association *asoc;
1127
1128	asoc = __sctp_lookup_association(laddr, paddr, transportp);
 
 
1129
1130	/* Further lookup for INIT/INIT-ACK packets.
1131	 * SCTP Implementors Guide, 2.18 Handling of address
1132	 * parameters within the INIT or INIT-ACK.
1133	 */
1134	if (!asoc)
1135		asoc = __sctp_rcv_lookup_harder(skb, laddr, transportp);
 
1136
 
 
 
 
 
 
 
 
 
 
1137	return asoc;
1138}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* SCTP kernel implementation
   3 * Copyright (c) 1999-2000 Cisco, Inc.
   4 * Copyright (c) 1999-2001 Motorola, Inc.
   5 * Copyright (c) 2001-2003 International Business Machines, Corp.
   6 * Copyright (c) 2001 Intel Corp.
   7 * Copyright (c) 2001 Nokia, Inc.
   8 * Copyright (c) 2001 La Monte H.P. Yarroll
   9 *
  10 * This file is part of the SCTP kernel implementation
  11 *
  12 * These functions handle all input from the IP layer into SCTP.
  13 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  14 * Please send any bug reports or fixes you make to the
  15 * email address(es):
  16 *    lksctp developers <linux-sctp@vger.kernel.org>
 
 
 
  17 *
  18 * Written or modified by:
  19 *    La Monte H.P. Yarroll <piggy@acm.org>
  20 *    Karl Knutson <karl@athena.chicago.il.us>
  21 *    Xingang Guo <xingang.guo@intel.com>
  22 *    Jon Grimm <jgrimm@us.ibm.com>
  23 *    Hui Huang <hui.huang@nokia.com>
  24 *    Daisy Chang <daisyc@us.ibm.com>
  25 *    Sridhar Samudrala <sri@us.ibm.com>
  26 *    Ardelle Fan <ardelle.fan@intel.com>
 
 
 
  27 */
  28
  29#include <linux/types.h>
  30#include <linux/list.h> /* For struct list_head */
  31#include <linux/socket.h>
  32#include <linux/ip.h>
  33#include <linux/time.h> /* For struct timeval */
  34#include <linux/slab.h>
  35#include <net/ip.h>
  36#include <net/icmp.h>
  37#include <net/snmp.h>
  38#include <net/sock.h>
  39#include <net/xfrm.h>
  40#include <net/sctp/sctp.h>
  41#include <net/sctp/sm.h>
  42#include <net/sctp/checksum.h>
  43#include <net/net_namespace.h>
  44#include <linux/rhashtable.h>
  45#include <net/sock_reuseport.h>
  46
  47/* Forward declarations for internal helpers. */
  48static int sctp_rcv_ootb(struct sk_buff *);
  49static struct sctp_association *__sctp_rcv_lookup(struct net *net,
  50				      struct sk_buff *skb,
  51				      const union sctp_addr *paddr,
  52				      const union sctp_addr *laddr,
  53				      struct sctp_transport **transportp,
  54				      int dif, int sdif);
  55static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
  56					struct net *net, struct sk_buff *skb,
  57					const union sctp_addr *laddr,
  58					const union sctp_addr *daddr,
  59					int dif, int sdif);
  60static struct sctp_association *__sctp_lookup_association(
  61					struct net *net,
  62					const union sctp_addr *local,
  63					const union sctp_addr *peer,
  64					struct sctp_transport **pt,
  65					int dif, int sdif);
  66
  67static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
  68
  69
  70/* Calculate the SCTP checksum of an SCTP packet.  */
  71static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
  72{
  73	struct sctphdr *sh = sctp_hdr(skb);
  74	__le32 cmp = sh->checksum;
  75	__le32 val = sctp_compute_cksum(skb, 0);
 
 
 
 
 
 
 
 
  76
  77	if (val != cmp) {
  78		/* CRC failure, dump it. */
  79		__SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
  80		return -1;
  81	}
  82	return 0;
  83}
  84
 
 
 
 
 
 
 
 
 
 
 
  85/*
  86 * This is the routine which IP calls when receiving an SCTP packet.
  87 */
  88int sctp_rcv(struct sk_buff *skb)
  89{
  90	struct sock *sk;
  91	struct sctp_association *asoc;
  92	struct sctp_endpoint *ep = NULL;
  93	struct sctp_ep_common *rcvr;
  94	struct sctp_transport *transport = NULL;
  95	struct sctp_chunk *chunk;
 
  96	union sctp_addr src;
  97	union sctp_addr dest;
  98	int family;
  99	struct sctp_af *af;
 100	struct net *net = dev_net(skb->dev);
 101	bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb);
 102	int dif, sdif;
 103
 104	if (skb->pkt_type != PACKET_HOST)
 105		goto discard_it;
 106
 107	__SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
 108
 109	/* If packet is too small to contain a single chunk, let's not
 110	 * waste time on it anymore.
 111	 */
 112	if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
 113		       skb_transport_offset(skb))
 114		goto discard_it;
 115
 116	/* If the packet is fragmented and we need to do crc checking,
 117	 * it's better to just linearize it otherwise crc computing
 118	 * takes longer.
 119	 */
 120	if ((!is_gso && skb_linearize(skb)) ||
 121	    !pskb_may_pull(skb, sizeof(struct sctphdr)))
 
 
 122		goto discard_it;
 123
 124	/* Pull up the IP header. */
 125	__skb_pull(skb, skb_transport_offset(skb));
 126
 127	skb->csum_valid = 0; /* Previous value not applicable */
 128	if (skb_csum_unnecessary(skb))
 129		__skb_decr_checksum_unnecessary(skb);
 130	else if (!sctp_checksum_disable &&
 131		 !is_gso &&
 132		 sctp_rcv_checksum(net, skb) < 0)
 133		goto discard_it;
 134	skb->csum_valid = 1;
 135
 136	__skb_pull(skb, sizeof(struct sctphdr));
 137
 138	family = ipver2af(ip_hdr(skb)->version);
 139	af = sctp_get_af_specific(family);
 140	if (unlikely(!af))
 141		goto discard_it;
 142	SCTP_INPUT_CB(skb)->af = af;
 143
 144	/* Initialize local addresses for lookups. */
 145	af->from_skb(&src, skb, 1);
 146	af->from_skb(&dest, skb, 0);
 147	dif = af->skb_iif(skb);
 148	sdif = af->skb_sdif(skb);
 149
 150	/* If the packet is to or from a non-unicast address,
 151	 * silently discard the packet.
 152	 *
 153	 * This is not clearly defined in the RFC except in section
 154	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
 155	 * Transmission Protocol" 2.1, "It is important to note that the
 156	 * IP address of an SCTP transport address must be a routable
 157	 * unicast address.  In other words, IP multicast addresses and
 158	 * IP broadcast addresses cannot be used in an SCTP transport
 159	 * address."
 160	 */
 161	if (!af->addr_valid(&src, NULL, skb) ||
 162	    !af->addr_valid(&dest, NULL, skb))
 163		goto discard_it;
 164
 165	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport, dif, sdif);
 166
 167	if (!asoc)
 168		ep = __sctp_rcv_lookup_endpoint(net, skb, &dest, &src, dif, sdif);
 169
 170	/* Retrieve the common input handling substructure. */
 171	rcvr = asoc ? &asoc->base : &ep->base;
 172	sk = rcvr->sk;
 173
 174	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
 176	 * An SCTP packet is called an "out of the blue" (OOTB)
 177	 * packet if it is correctly formed, i.e., passed the
 178	 * receiver's checksum check, but the receiver is not
 179	 * able to identify the association to which this
 180	 * packet belongs.
 181	 */
 182	if (!asoc) {
 183		if (sctp_rcv_ootb(skb)) {
 184			__SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
 185			goto discard_release;
 186		}
 187	}
 188
 189	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
 190		goto discard_release;
 191	nf_reset_ct(skb);
 192
 193	if (sk_filter(sk, skb))
 194		goto discard_release;
 195
 196	/* Create an SCTP packet structure. */
 197	chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
 198	if (!chunk)
 199		goto discard_release;
 200	SCTP_INPUT_CB(skb)->chunk = chunk;
 201
 202	/* Remember what endpoint is to handle this packet. */
 203	chunk->rcvr = rcvr;
 204
 205	/* Remember the SCTP header. */
 206	chunk->sctp_hdr = sctp_hdr(skb);
 207
 208	/* Set the source and destination addresses of the incoming chunk.  */
 209	sctp_init_addrs(chunk, &src, &dest);
 210
 211	/* Remember where we came from.  */
 212	chunk->transport = transport;
 213
 214	/* Acquire access to the sock lock. Note: We are safe from other
 215	 * bottom halves on this lock, but a user may be in the lock too,
 216	 * so check if it is busy.
 217	 */
 218	bh_lock_sock(sk);
 219
 220	if (sk != rcvr->sk) {
 221		/* Our cached sk is different from the rcvr->sk.  This is
 222		 * because migrate()/accept() may have moved the association
 223		 * to a new socket and released all the sockets.  So now we
 224		 * are holding a lock on the old socket while the user may
 225		 * be doing something with the new socket.  Switch our veiw
 226		 * of the current sk.
 227		 */
 228		bh_unlock_sock(sk);
 229		sk = rcvr->sk;
 230		bh_lock_sock(sk);
 231	}
 232
 233	if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
 234		if (sctp_add_backlog(sk, skb)) {
 235			bh_unlock_sock(sk);
 236			sctp_chunk_free(chunk);
 237			skb = NULL; /* sctp_chunk_free already freed the skb */
 238			goto discard_release;
 239		}
 240		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
 241	} else {
 242		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
 243		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
 244	}
 245
 246	bh_unlock_sock(sk);
 247
 248	/* Release the asoc/ep ref we took in the lookup calls. */
 249	if (transport)
 250		sctp_transport_put(transport);
 251	else
 252		sctp_endpoint_put(ep);
 253
 254	return 0;
 255
 256discard_it:
 257	__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
 258	kfree_skb(skb);
 259	return 0;
 260
 261discard_release:
 262	/* Release the asoc/ep ref we took in the lookup calls. */
 263	if (transport)
 264		sctp_transport_put(transport);
 265	else
 266		sctp_endpoint_put(ep);
 267
 268	goto discard_it;
 269}
 270
 271/* Process the backlog queue of the socket.  Every skb on
 272 * the backlog holds a ref on an association or endpoint.
 273 * We hold this ref throughout the state machine to make
 274 * sure that the structure we need is still around.
 275 */
 276int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 277{
 278	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
 279	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
 280	struct sctp_transport *t = chunk->transport;
 281	struct sctp_ep_common *rcvr = NULL;
 282	int backloged = 0;
 283
 284	rcvr = chunk->rcvr;
 285
 286	/* If the rcvr is dead then the association or endpoint
 287	 * has been deleted and we can safely drop the chunk
 288	 * and refs that we are holding.
 289	 */
 290	if (rcvr->dead) {
 291		sctp_chunk_free(chunk);
 292		goto done;
 293	}
 294
 295	if (unlikely(rcvr->sk != sk)) {
 296		/* In this case, the association moved from one socket to
 297		 * another.  We are currently sitting on the backlog of the
 298		 * old socket, so we need to move.
 299		 * However, since we are here in the process context we
 300		 * need to take make sure that the user doesn't own
 301		 * the new socket when we process the packet.
 302		 * If the new socket is user-owned, queue the chunk to the
 303		 * backlog of the new socket without dropping any refs.
 304		 * Otherwise, we can safely push the chunk on the inqueue.
 305		 */
 306
 307		sk = rcvr->sk;
 308		local_bh_disable();
 309		bh_lock_sock(sk);
 310
 311		if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
 312			if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf)))
 313				sctp_chunk_free(chunk);
 314			else
 315				backloged = 1;
 316		} else
 317			sctp_inq_push(inqueue, chunk);
 318
 319		bh_unlock_sock(sk);
 320		local_bh_enable();
 321
 322		/* If the chunk was backloged again, don't drop refs */
 323		if (backloged)
 324			return 0;
 325	} else {
 326		if (!sctp_newsk_ready(sk)) {
 327			if (!sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf)))
 328				return 0;
 329			sctp_chunk_free(chunk);
 330		} else {
 331			sctp_inq_push(inqueue, chunk);
 332		}
 333	}
 334
 335done:
 336	/* Release the refs we took in sctp_add_backlog */
 337	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
 338		sctp_transport_put(t);
 339	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
 340		sctp_endpoint_put(sctp_ep(rcvr));
 341	else
 342		BUG();
 343
 344	return 0;
 345}
 346
 347static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
 348{
 349	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
 350	struct sctp_transport *t = chunk->transport;
 351	struct sctp_ep_common *rcvr = chunk->rcvr;
 352	int ret;
 353
 354	ret = sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf));
 355	if (!ret) {
 356		/* Hold the assoc/ep while hanging on the backlog queue.
 357		 * This way, we know structures we need will not disappear
 358		 * from us
 359		 */
 360		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
 361			sctp_transport_hold(t);
 362		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
 363			sctp_endpoint_hold(sctp_ep(rcvr));
 364		else
 365			BUG();
 366	}
 367	return ret;
 368
 369}
 370
 371/* Handle icmp frag needed error. */
 372void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
 373			   struct sctp_transport *t, __u32 pmtu)
 374{
 375	if (!t ||
 376	    (t->pathmtu <= pmtu &&
 377	     t->pl.probe_size + sctp_transport_pl_hlen(t) <= pmtu))
 378		return;
 379
 380	if (sock_owned_by_user(sk)) {
 381		atomic_set(&t->mtu_info, pmtu);
 382		asoc->pmtu_pending = 1;
 383		t->pmtu_pending = 1;
 384		return;
 385	}
 386
 387	if (!(t->param_flags & SPP_PMTUD_ENABLE))
 388		/* We can't allow retransmitting in such case, as the
 389		 * retransmission would be sized just as before, and thus we
 390		 * would get another icmp, and retransmit again.
 391		 */
 392		return;
 
 393
 394	/* Update transports view of the MTU. Return if no update was needed.
 395	 * If an update wasn't needed/possible, it also doesn't make sense to
 396	 * try to retransmit now.
 
 
 397	 */
 398	if (!sctp_transport_update_pmtu(t, pmtu))
 399		return;
 400
 401	/* Update association pmtu. */
 402	sctp_assoc_sync_pmtu(asoc);
 403
 404	/* Retransmit with the new pmtu setting. */
 405	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
 406}
 407
 408void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
 409			struct sk_buff *skb)
 410{
 411	struct dst_entry *dst;
 412
 413	if (sock_owned_by_user(sk) || !t)
 414		return;
 415	dst = sctp_transport_dst_check(t);
 416	if (dst)
 417		dst->ops->redirect(dst, sk, skb);
 418}
 419
 420/*
 421 * SCTP Implementer's Guide, 2.37 ICMP handling procedures
 422 *
 423 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
 424 *        or a "Protocol Unreachable" treat this message as an abort
 425 *        with the T bit set.
 426 *
 427 * This function sends an event to the state machine, which will abort the
 428 * association.
 429 *
 430 */
 431void sctp_icmp_proto_unreachable(struct sock *sk,
 432			   struct sctp_association *asoc,
 433			   struct sctp_transport *t)
 434{
 
 
 435	if (sock_owned_by_user(sk)) {
 436		if (timer_pending(&t->proto_unreach_timer))
 437			return;
 438		else {
 439			if (!mod_timer(&t->proto_unreach_timer,
 440						jiffies + (HZ/20)))
 441				sctp_transport_hold(t);
 442		}
 
 443	} else {
 444		struct net *net = sock_net(sk);
 445
 446		pr_debug("%s: unrecognized next header type "
 447			 "encountered!\n", __func__);
 448
 449		if (del_timer(&t->proto_unreach_timer))
 450			sctp_transport_put(t);
 451
 452		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
 453			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
 454			   asoc->state, asoc->ep, asoc, t,
 455			   GFP_ATOMIC);
 456	}
 457}
 458
 459/* Common lookup code for icmp/icmpv6 error handler. */
 460struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
 461			     struct sctphdr *sctphdr,
 462			     struct sctp_association **app,
 463			     struct sctp_transport **tpp)
 464{
 465	struct sctp_init_chunk *chunkhdr, _chunkhdr;
 466	union sctp_addr saddr;
 467	union sctp_addr daddr;
 468	struct sctp_af *af;
 469	struct sock *sk = NULL;
 470	struct sctp_association *asoc;
 471	struct sctp_transport *transport = NULL;
 
 472	__u32 vtag = ntohl(sctphdr->vtag);
 473	int sdif = inet_sdif(skb);
 474	int dif = inet_iif(skb);
 475
 476	*app = NULL; *tpp = NULL;
 477
 478	af = sctp_get_af_specific(family);
 479	if (unlikely(!af)) {
 480		return NULL;
 481	}
 482
 483	/* Initialize local addresses for lookups. */
 484	af->from_skb(&saddr, skb, 1);
 485	af->from_skb(&daddr, skb, 0);
 486
 487	/* Look for an association that matches the incoming ICMP error
 488	 * packet.
 489	 */
 490	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport, dif, sdif);
 491	if (!asoc)
 492		return NULL;
 493
 494	sk = asoc->base.sk;
 495
 496	/* RFC 4960, Appendix C. ICMP Handling
 497	 *
 498	 * ICMP6) An implementation MUST validate that the Verification Tag
 499	 * contained in the ICMP message matches the Verification Tag of
 500	 * the peer.  If the Verification Tag is not 0 and does NOT
 501	 * match, discard the ICMP message.  If it is 0 and the ICMP
 502	 * message contains enough bytes to verify that the chunk type is
 503	 * an INIT chunk and that the Initiate Tag matches the tag of the
 504	 * peer, continue with ICMP7.  If the ICMP message is too short
 505	 * or the chunk type or the Initiate Tag does not match, silently
 506	 * discard the packet.
 507	 */
 508	if (vtag == 0) {
 509		/* chunk header + first 4 octects of init header */
 510		chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) +
 511					      sizeof(struct sctphdr),
 512					      sizeof(struct sctp_chunkhdr) +
 513					      sizeof(__be32), &_chunkhdr);
 514		if (!chunkhdr ||
 515		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
 516		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag)
 517			goto out;
 518
 519	} else if (vtag != asoc->c.peer_vtag) {
 520		goto out;
 521	}
 522
 523	bh_lock_sock(sk);
 524
 525	/* If too many ICMPs get dropped on busy
 526	 * servers this needs to be solved differently.
 527	 */
 528	if (sock_owned_by_user(sk))
 529		__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
 530
 531	*app = asoc;
 532	*tpp = transport;
 533	return sk;
 534
 535out:
 536	sctp_transport_put(transport);
 
 537	return NULL;
 538}
 539
 540/* Common cleanup code for icmp/icmpv6 error handler. */
 541void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
 542	__releases(&((__sk)->sk_lock.slock))
 543{
 544	bh_unlock_sock(sk);
 545	sctp_transport_put(t);
 546}
 547
 548static void sctp_v4_err_handle(struct sctp_transport *t, struct sk_buff *skb,
 549			       __u8 type, __u8 code, __u32 info)
 550{
 551	struct sctp_association *asoc = t->asoc;
 552	struct sock *sk = asoc->base.sk;
 553	int err = 0;
 554
 555	switch (type) {
 556	case ICMP_PARAMETERPROB:
 557		err = EPROTO;
 558		break;
 559	case ICMP_DEST_UNREACH:
 560		if (code > NR_ICMP_UNREACH)
 561			return;
 562		if (code == ICMP_FRAG_NEEDED) {
 563			sctp_icmp_frag_needed(sk, asoc, t, SCTP_TRUNC4(info));
 564			return;
 565		}
 566		if (code == ICMP_PROT_UNREACH) {
 567			sctp_icmp_proto_unreachable(sk, asoc, t);
 568			return;
 569		}
 570		err = icmp_err_convert[code].errno;
 571		break;
 572	case ICMP_TIME_EXCEEDED:
 573		if (code == ICMP_EXC_FRAGTIME)
 574			return;
 575
 576		err = EHOSTUNREACH;
 577		break;
 578	case ICMP_REDIRECT:
 579		sctp_icmp_redirect(sk, t, skb);
 580		return;
 581	default:
 582		return;
 583	}
 584	if (!sock_owned_by_user(sk) && inet_test_bit(RECVERR, sk)) {
 585		sk->sk_err = err;
 586		sk_error_report(sk);
 587	} else {  /* Only an error on timeout */
 588		WRITE_ONCE(sk->sk_err_soft, err);
 589	}
 590}
 591
 592/*
 593 * This routine is called by the ICMP module when it gets some
 594 * sort of error condition.  If err < 0 then the socket should
 595 * be closed and the error returned to the user.  If err > 0
 596 * it's just the icmp type << 8 | icmp code.  After adjustment
 597 * header points to the first 8 bytes of the sctp header.  We need
 598 * to find the appropriate port.
 599 *
 600 * The locking strategy used here is very "optimistic". When
 601 * someone else accesses the socket the ICMP is just dropped
 602 * and for some paths there is no check at all.
 603 * A more general error queue to queue errors for later handling
 604 * is probably better.
 605 *
 606 */
 607int sctp_v4_err(struct sk_buff *skb, __u32 info)
 608{
 609	const struct iphdr *iph = (const struct iphdr *)skb->data;
 
 610	const int type = icmp_hdr(skb)->type;
 611	const int code = icmp_hdr(skb)->code;
 612	struct net *net = dev_net(skb->dev);
 
 613	struct sctp_transport *transport;
 614	struct sctp_association *asoc;
 615	__u16 saveip, savesctp;
 616	struct sock *sk;
 
 
 
 
 
 617
 618	/* Fix up skb to look at the embedded net header. */
 619	saveip = skb->network_header;
 620	savesctp = skb->transport_header;
 621	skb_reset_network_header(skb);
 622	skb_set_transport_header(skb, iph->ihl * 4);
 623	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
 624	/* Put back, the original values. */
 625	skb->network_header = saveip;
 626	skb->transport_header = savesctp;
 627	if (!sk) {
 628		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 629		return -ENOENT;
 630	}
 
 
 
 631
 632	sctp_v4_err_handle(transport, skb, type, code, info);
 633	sctp_err_finish(sk, transport);
 
 
 
 
 
 634
 635	return 0;
 636}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 637
 638int sctp_udp_v4_err(struct sock *sk, struct sk_buff *skb)
 639{
 640	struct net *net = dev_net(skb->dev);
 641	struct sctp_association *asoc;
 642	struct sctp_transport *t;
 643	struct icmphdr *hdr;
 644	__u32 info = 0;
 645
 646	skb->transport_header += sizeof(struct udphdr);
 647	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &t);
 648	if (!sk) {
 649		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 650		return -ENOENT;
 
 651	}
 652
 653	skb->transport_header -= sizeof(struct udphdr);
 654	hdr = (struct icmphdr *)(skb_network_header(skb) - sizeof(struct icmphdr));
 655	if (hdr->type == ICMP_REDIRECT) {
 656		/* can't be handled without outer iphdr known, leave it to udp_err */
 657		sctp_err_finish(sk, t);
 658		return 0;
 659	}
 660	if (hdr->type == ICMP_DEST_UNREACH && hdr->code == ICMP_FRAG_NEEDED)
 661		info = ntohs(hdr->un.frag.mtu);
 662	sctp_v4_err_handle(t, skb, hdr->type, hdr->code, info);
 663
 664	sctp_err_finish(sk, t);
 665	return 1;
 666}
 667
 668/*
 669 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
 670 *
 671 * This function scans all the chunks in the OOTB packet to determine if
 672 * the packet should be discarded right away.  If a response might be needed
 673 * for this packet, or, if further processing is possible, the packet will
 674 * be queued to a proper inqueue for the next phase of handling.
 675 *
 676 * Output:
 677 * Return 0 - If further processing is needed.
 678 * Return 1 - If the packet can be discarded right away.
 679 */
 680static int sctp_rcv_ootb(struct sk_buff *skb)
 681{
 682	struct sctp_chunkhdr *ch, _ch;
 683	int ch_end, offset = 0;
 
 
 684
 685	/* Scan through all the chunks in the packet.  */
 686	do {
 687		/* Make sure we have at least the header there */
 688		if (offset + sizeof(_ch) > skb->len)
 689			break;
 690
 691		ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
 692
 693		/* Break out if chunk length is less then minimal. */
 694		if (!ch || ntohs(ch->length) < sizeof(_ch))
 695			break;
 696
 697		ch_end = offset + SCTP_PAD4(ntohs(ch->length));
 698		if (ch_end > skb->len)
 699			break;
 700
 701		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
 702		 * receiver MUST silently discard the OOTB packet and take no
 703		 * further action.
 704		 */
 705		if (SCTP_CID_ABORT == ch->type)
 706			goto discard;
 707
 708		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
 709		 * chunk, the receiver should silently discard the packet
 710		 * and take no further action.
 711		 */
 712		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
 713			goto discard;
 714
 715		/* RFC 4460, 2.11.2
 716		 * This will discard packets with INIT chunk bundled as
 717		 * subsequent chunks in the packet.  When INIT is first,
 718		 * the normal INIT processing will discard the chunk.
 719		 */
 720		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
 721			goto discard;
 722
 723		offset = ch_end;
 724	} while (ch_end < skb->len);
 725
 726	return 0;
 727
 728discard:
 729	return 1;
 730}
 731
 732/* Insert endpoint into the hash table.  */
 733static int __sctp_hash_endpoint(struct sctp_endpoint *ep)
 734{
 735	struct sock *sk = ep->base.sk;
 736	struct net *net = sock_net(sk);
 737	struct sctp_hashbucket *head;
 738
 739	ep->hashent = sctp_ep_hashfn(net, ep->base.bind_addr.port);
 740	head = &sctp_ep_hashtable[ep->hashent];
 741
 742	if (sk->sk_reuseport) {
 743		bool any = sctp_is_ep_boundall(sk);
 744		struct sctp_endpoint *ep2;
 745		struct list_head *list;
 746		int cnt = 0, err = 1;
 747
 748		list_for_each(list, &ep->base.bind_addr.address_list)
 749			cnt++;
 750
 751		sctp_for_each_hentry(ep2, &head->chain) {
 752			struct sock *sk2 = ep2->base.sk;
 753
 754			if (!net_eq(sock_net(sk2), net) || sk2 == sk ||
 755			    !uid_eq(sock_i_uid(sk2), sock_i_uid(sk)) ||
 756			    !sk2->sk_reuseport)
 757				continue;
 758
 759			err = sctp_bind_addrs_check(sctp_sk(sk2),
 760						    sctp_sk(sk), cnt);
 761			if (!err) {
 762				err = reuseport_add_sock(sk, sk2, any);
 763				if (err)
 764					return err;
 765				break;
 766			} else if (err < 0) {
 767				return err;
 768			}
 769		}
 770
 771		if (err) {
 772			err = reuseport_alloc(sk, any);
 773			if (err)
 774				return err;
 775		}
 776	}
 777
 778	write_lock(&head->lock);
 779	hlist_add_head(&ep->node, &head->chain);
 780	write_unlock(&head->lock);
 781	return 0;
 782}
 783
 784/* Add an endpoint to the hash. Local BH-safe. */
 785int sctp_hash_endpoint(struct sctp_endpoint *ep)
 786{
 787	int err;
 788
 789	local_bh_disable();
 790	err = __sctp_hash_endpoint(ep);
 791	local_bh_enable();
 792
 793	return err;
 794}
 795
 796/* Remove endpoint from the hash table.  */
 797static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
 798{
 799	struct sock *sk = ep->base.sk;
 800	struct sctp_hashbucket *head;
 
 801
 802	ep->hashent = sctp_ep_hashfn(sock_net(sk), ep->base.bind_addr.port);
 
 
 
 803
 804	head = &sctp_ep_hashtable[ep->hashent];
 805
 806	if (rcu_access_pointer(sk->sk_reuseport_cb))
 807		reuseport_detach_sock(sk);
 808
 809	write_lock(&head->lock);
 810	hlist_del_init(&ep->node);
 811	write_unlock(&head->lock);
 812}
 813
 814/* Remove endpoint from the hash.  Local BH-safe. */
 815void sctp_unhash_endpoint(struct sctp_endpoint *ep)
 816{
 817	local_bh_disable();
 818	__sctp_unhash_endpoint(ep);
 819	local_bh_enable();
 820}
 821
 822static inline __u32 sctp_hashfn(const struct net *net, __be16 lport,
 823				const union sctp_addr *paddr, __u32 seed)
 824{
 825	__u32 addr;
 826
 827	if (paddr->sa.sa_family == AF_INET6)
 828		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
 829	else
 830		addr = (__force __u32)paddr->v4.sin_addr.s_addr;
 831
 832	return  jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
 833			     (__force __u32)lport, net_hash_mix(net), seed);
 834}
 835
 836/* Look up an endpoint. */
 837static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
 838					struct net *net, struct sk_buff *skb,
 839					const union sctp_addr *laddr,
 840					const union sctp_addr *paddr,
 841					int dif, int sdif)
 842{
 843	struct sctp_hashbucket *head;
 
 844	struct sctp_endpoint *ep;
 845	struct sock *sk;
 846	__be16 lport;
 847	int hash;
 848
 849	lport = laddr->v4.sin_port;
 850	hash = sctp_ep_hashfn(net, ntohs(lport));
 851	head = &sctp_ep_hashtable[hash];
 852	read_lock(&head->lock);
 853	sctp_for_each_hentry(ep, &head->chain) {
 854		if (sctp_endpoint_is_match(ep, net, laddr, dif, sdif))
 
 855			goto hit;
 856	}
 857
 858	ep = sctp_sk(net->sctp.ctl_sock)->ep;
 859
 860hit:
 861	sk = ep->base.sk;
 862	if (sk->sk_reuseport) {
 863		__u32 phash = sctp_hashfn(net, lport, paddr, 0);
 864
 865		sk = reuseport_select_sock(sk, phash, skb,
 866					   sizeof(struct sctphdr));
 867		if (sk)
 868			ep = sctp_sk(sk)->ep;
 869	}
 870	sctp_endpoint_hold(ep);
 871	read_unlock(&head->lock);
 872	return ep;
 873}
 874
 875/* rhashtable for transport */
 876struct sctp_hash_cmp_arg {
 877	const union sctp_addr	*paddr;
 878	const struct net	*net;
 879	__be16			lport;
 880};
 881
 882static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
 883				const void *ptr)
 884{
 885	struct sctp_transport *t = (struct sctp_transport *)ptr;
 886	const struct sctp_hash_cmp_arg *x = arg->key;
 887	int err = 1;
 888
 889	if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
 890		return err;
 891	if (!sctp_transport_hold(t))
 892		return err;
 893
 894	if (!net_eq(t->asoc->base.net, x->net))
 895		goto out;
 896	if (x->lport != htons(t->asoc->base.bind_addr.port))
 897		goto out;
 898
 899	err = 0;
 900out:
 901	sctp_transport_put(t);
 902	return err;
 903}
 904
 905static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
 906{
 907	const struct sctp_transport *t = data;
 908
 909	return sctp_hashfn(t->asoc->base.net,
 910			   htons(t->asoc->base.bind_addr.port),
 911			   &t->ipaddr, seed);
 912}
 913
 914static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed)
 
 915{
 916	const struct sctp_hash_cmp_arg *x = data;
 
 917
 918	return sctp_hashfn(x->net, x->lport, x->paddr, seed);
 
 
 919}
 920
 921static const struct rhashtable_params sctp_hash_params = {
 922	.head_offset		= offsetof(struct sctp_transport, node),
 923	.hashfn			= sctp_hash_key,
 924	.obj_hashfn		= sctp_hash_obj,
 925	.obj_cmpfn		= sctp_hash_cmp,
 926	.automatic_shrinking	= true,
 927};
 928
 929int sctp_transport_hashtable_init(void)
 930{
 931	return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
 932}
 933
 934void sctp_transport_hashtable_destroy(void)
 935{
 936	rhltable_destroy(&sctp_transport_hashtable);
 937}
 938
 939int sctp_hash_transport(struct sctp_transport *t)
 940{
 941	struct sctp_transport *transport;
 942	struct rhlist_head *tmp, *list;
 943	struct sctp_hash_cmp_arg arg;
 944	int err;
 945
 946	if (t->asoc->temp)
 947		return 0;
 948
 949	arg.net   = t->asoc->base.net;
 950	arg.paddr = &t->ipaddr;
 951	arg.lport = htons(t->asoc->base.bind_addr.port);
 952
 953	rcu_read_lock();
 954	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
 955			       sctp_hash_params);
 956
 957	rhl_for_each_entry_rcu(transport, tmp, list, node)
 958		if (transport->asoc->ep == t->asoc->ep) {
 959			rcu_read_unlock();
 960			return -EEXIST;
 961		}
 962	rcu_read_unlock();
 963
 964	err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
 965				  &t->node, sctp_hash_params);
 966	if (err)
 967		pr_err_once("insert transport fail, errno %d\n", err);
 968
 969	return err;
 
 
 970}
 971
 972void sctp_unhash_transport(struct sctp_transport *t)
 
 973{
 974	if (t->asoc->temp)
 975		return;
 976
 977	rhltable_remove(&sctp_transport_hashtable, &t->node,
 978			sctp_hash_params);
 979}
 980
 981bool sctp_sk_bound_dev_eq(struct net *net, int bound_dev_if, int dif, int sdif)
 982{
 983	bool l3mdev_accept = true;
 984
 985#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 986	l3mdev_accept = !!READ_ONCE(net->sctp.l3mdev_accept);
 987#endif
 988	return inet_bound_dev_eq(l3mdev_accept, bound_dev_if, dif, sdif);
 989}
 990
 991/* return a transport with holding it */
 992struct sctp_transport *sctp_addrs_lookup_transport(
 993				struct net *net,
 994				const union sctp_addr *laddr,
 995				const union sctp_addr *paddr,
 996				int dif, int sdif)
 997{
 998	struct rhlist_head *tmp, *list;
 999	struct sctp_transport *t;
1000	int bound_dev_if;
1001	struct sctp_hash_cmp_arg arg = {
1002		.paddr = paddr,
1003		.net   = net,
1004		.lport = laddr->v4.sin_port,
1005	};
1006
1007	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
1008			       sctp_hash_params);
1009
1010	rhl_for_each_entry_rcu(t, tmp, list, node) {
1011		if (!sctp_transport_hold(t))
1012			continue;
1013
1014		bound_dev_if = READ_ONCE(t->asoc->base.sk->sk_bound_dev_if);
1015		if (sctp_sk_bound_dev_eq(net, bound_dev_if, dif, sdif) &&
1016		    sctp_bind_addr_match(&t->asoc->base.bind_addr,
1017					 laddr, sctp_sk(t->asoc->base.sk)))
1018			return t;
1019		sctp_transport_put(t);
1020	}
1021
1022	return NULL;
1023}
1024
1025/* return a transport without holding it, as it's only used under sock lock */
1026struct sctp_transport *sctp_epaddr_lookup_transport(
1027				const struct sctp_endpoint *ep,
1028				const union sctp_addr *paddr)
1029{
1030	struct rhlist_head *tmp, *list;
1031	struct sctp_transport *t;
1032	struct sctp_hash_cmp_arg arg = {
1033		.paddr = paddr,
1034		.net   = ep->base.net,
1035		.lport = htons(ep->base.bind_addr.port),
1036	};
1037
1038	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
1039			       sctp_hash_params);
1040
1041	rhl_for_each_entry_rcu(t, tmp, list, node)
1042		if (ep == t->asoc->ep)
1043			return t;
1044
1045	return NULL;
1046}
1047
1048/* Look up an association. */
1049static struct sctp_association *__sctp_lookup_association(
1050					struct net *net,
1051					const union sctp_addr *local,
1052					const union sctp_addr *peer,
1053					struct sctp_transport **pt,
1054					int dif, int sdif)
1055{
1056	struct sctp_transport *t;
1057	struct sctp_association *asoc = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1058
1059	t = sctp_addrs_lookup_transport(net, local, peer, dif, sdif);
1060	if (!t)
1061		goto out;
1062
1063	asoc = t->asoc;
1064	*pt = t;
1065
1066out:
 
 
 
1067	return asoc;
1068}
1069
1070/* Look up an association. protected by RCU read lock */
1071static
1072struct sctp_association *sctp_lookup_association(struct net *net,
1073						 const union sctp_addr *laddr,
1074						 const union sctp_addr *paddr,
1075						 struct sctp_transport **transportp,
1076						 int dif, int sdif)
1077{
1078	struct sctp_association *asoc;
1079
1080	rcu_read_lock();
1081	asoc = __sctp_lookup_association(net, laddr, paddr, transportp, dif, sdif);
1082	rcu_read_unlock();
1083
1084	return asoc;
1085}
1086
1087/* Is there an association matching the given local and peer addresses? */
1088bool sctp_has_association(struct net *net,
1089			  const union sctp_addr *laddr,
1090			  const union sctp_addr *paddr,
1091			  int dif, int sdif)
1092{
 
1093	struct sctp_transport *transport;
1094
1095	if (sctp_lookup_association(net, laddr, paddr, &transport, dif, sdif)) {
1096		sctp_transport_put(transport);
1097		return true;
1098	}
1099
1100	return false;
1101}
1102
1103/*
1104 * SCTP Implementors Guide, 2.18 Handling of address
1105 * parameters within the INIT or INIT-ACK.
1106 *
1107 * D) When searching for a matching TCB upon reception of an INIT
1108 *    or INIT-ACK chunk the receiver SHOULD use not only the
1109 *    source address of the packet (containing the INIT or
1110 *    INIT-ACK) but the receiver SHOULD also use all valid
1111 *    address parameters contained within the chunk.
1112 *
1113 * 2.18.3 Solution description
1114 *
1115 * This new text clearly specifies to an implementor the need
1116 * to look within the INIT or INIT-ACK. Any implementation that
1117 * does not do this, may not be able to establish associations
1118 * in certain circumstances.
1119 *
1120 */
1121static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1122	struct sk_buff *skb,
1123	const union sctp_addr *laddr, struct sctp_transport **transportp,
1124	int dif, int sdif)
1125{
1126	struct sctp_association *asoc;
1127	union sctp_addr addr;
1128	union sctp_addr *paddr = &addr;
1129	struct sctphdr *sh = sctp_hdr(skb);
1130	union sctp_params params;
1131	struct sctp_init_chunk *init;
 
1132	struct sctp_af *af;
1133
1134	/*
1135	 * This code will NOT touch anything inside the chunk--it is
1136	 * strictly READ-ONLY.
1137	 *
1138	 * RFC 2960 3  SCTP packet Format
1139	 *
1140	 * Multiple chunks can be bundled into one SCTP packet up to
1141	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1142	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
1143	 * other chunk in a packet.  See Section 6.10 for more details
1144	 * on chunk bundling.
1145	 */
1146
1147	/* Find the start of the TLVs and the end of the chunk.  This is
1148	 * the region we search for address parameters.
1149	 */
1150	init = (struct sctp_init_chunk *)skb->data;
1151
1152	/* Walk the parameters looking for embedded addresses. */
1153	sctp_walk_params(params, init) {
1154
1155		/* Note: Ignoring hostname addresses. */
1156		af = sctp_get_af_specific(param_type2af(params.p->type));
1157		if (!af)
1158			continue;
1159
1160		if (!af->from_addr_param(paddr, params.addr, sh->source, 0))
1161			continue;
1162
1163		asoc = __sctp_lookup_association(net, laddr, paddr, transportp, dif, sdif);
1164		if (asoc)
1165			return asoc;
1166	}
1167
1168	return NULL;
1169}
1170
1171/* ADD-IP, Section 5.2
1172 * When an endpoint receives an ASCONF Chunk from the remote peer
1173 * special procedures may be needed to identify the association the
1174 * ASCONF Chunk is associated with. To properly find the association
1175 * the following procedures SHOULD be followed:
1176 *
1177 * D2) If the association is not found, use the address found in the
1178 * Address Parameter TLV combined with the port number found in the
1179 * SCTP common header. If found proceed to rule D4.
1180 *
1181 * D2-ext) If more than one ASCONF Chunks are packed together, use the
1182 * address found in the ASCONF Address Parameter TLV of each of the
1183 * subsequent ASCONF Chunks. If found, proceed to rule D4.
1184 */
1185static struct sctp_association *__sctp_rcv_asconf_lookup(
1186					struct net *net,
1187					struct sctp_chunkhdr *ch,
1188					const union sctp_addr *laddr,
1189					__be16 peer_port,
1190					struct sctp_transport **transportp,
1191					int dif, int sdif)
1192{
1193	struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch;
1194	struct sctp_af *af;
1195	union sctp_addr_param *param;
1196	union sctp_addr paddr;
1197
1198	if (ntohs(ch->length) < sizeof(*asconf) + sizeof(struct sctp_paramhdr))
1199		return NULL;
1200
1201	/* Skip over the ADDIP header and find the Address parameter */
1202	param = (union sctp_addr_param *)(asconf + 1);
1203
1204	af = sctp_get_af_specific(param_type2af(param->p.type));
1205	if (unlikely(!af))
1206		return NULL;
1207
1208	if (!af->from_addr_param(&paddr, param, peer_port, 0))
1209		return NULL;
1210
1211	return __sctp_lookup_association(net, laddr, &paddr, transportp, dif, sdif);
1212}
1213
1214
1215/* SCTP-AUTH, Section 6.3:
1216*    If the receiver does not find a STCB for a packet containing an AUTH
1217*    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1218*    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1219*    association.
1220*
1221* This means that any chunks that can help us identify the association need
1222* to be looked at to find this association.
1223*/
1224static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1225				      struct sk_buff *skb,
1226				      const union sctp_addr *laddr,
1227				      struct sctp_transport **transportp,
1228				      int dif, int sdif)
1229{
1230	struct sctp_association *asoc = NULL;
1231	struct sctp_chunkhdr *ch;
1232	int have_auth = 0;
1233	unsigned int chunk_num = 1;
1234	__u8 *ch_end;
1235
1236	/* Walk through the chunks looking for AUTH or ASCONF chunks
1237	 * to help us find the association.
1238	 */
1239	ch = (struct sctp_chunkhdr *)skb->data;
1240	do {
1241		/* Break out if chunk length is less then minimal. */
1242		if (ntohs(ch->length) < sizeof(*ch))
1243			break;
1244
1245		ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
1246		if (ch_end > skb_tail_pointer(skb))
1247			break;
1248
1249		switch (ch->type) {
1250		case SCTP_CID_AUTH:
1251			have_auth = chunk_num;
1252			break;
1253
1254		case SCTP_CID_COOKIE_ECHO:
1255			/* If a packet arrives containing an AUTH chunk as
1256			 * a first chunk, a COOKIE-ECHO chunk as the second
1257			 * chunk, and possibly more chunks after them, and
1258			 * the receiver does not have an STCB for that
1259			 * packet, then authentication is based on
1260			 * the contents of the COOKIE- ECHO chunk.
1261			 */
1262			if (have_auth == 1 && chunk_num == 2)
1263				return NULL;
1264			break;
1265
1266		case SCTP_CID_ASCONF:
1267			if (have_auth || net->sctp.addip_noauth)
1268				asoc = __sctp_rcv_asconf_lookup(
1269						net, ch, laddr,
1270						sctp_hdr(skb)->source,
1271						transportp, dif, sdif);
1272			break;
1273		default:
1274			break;
1275		}
1276
1277		if (asoc)
1278			break;
1279
1280		ch = (struct sctp_chunkhdr *)ch_end;
1281		chunk_num++;
1282	} while (ch_end + sizeof(*ch) < skb_tail_pointer(skb));
1283
1284	return asoc;
1285}
1286
1287/*
1288 * There are circumstances when we need to look inside the SCTP packet
1289 * for information to help us find the association.   Examples
1290 * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1291 * chunks.
1292 */
1293static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1294				      struct sk_buff *skb,
1295				      const union sctp_addr *laddr,
1296				      struct sctp_transport **transportp,
1297				      int dif, int sdif)
1298{
1299	struct sctp_chunkhdr *ch;
1300
1301	/* We do not allow GSO frames here as we need to linearize and
1302	 * then cannot guarantee frame boundaries. This shouldn't be an
1303	 * issue as packets hitting this are mostly INIT or INIT-ACK and
1304	 * those cannot be on GSO-style anyway.
1305	 */
1306	if (skb_is_gso(skb) && skb_is_gso_sctp(skb))
1307		return NULL;
1308
1309	ch = (struct sctp_chunkhdr *)skb->data;
1310
1311	/* The code below will attempt to walk the chunk and extract
1312	 * parameter information.  Before we do that, we need to verify
1313	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1314	 * walk off the end.
1315	 */
1316	if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
1317		return NULL;
1318
1319	/* If this is INIT/INIT-ACK look inside the chunk too. */
1320	if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1321		return __sctp_rcv_init_lookup(net, skb, laddr, transportp, dif, sdif);
 
 
 
1322
1323	return __sctp_rcv_walk_lookup(net, skb, laddr, transportp, dif, sdif);
 
 
 
 
 
 
1324}
1325
1326/* Lookup an association for an inbound skb. */
1327static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1328				      struct sk_buff *skb,
1329				      const union sctp_addr *paddr,
1330				      const union sctp_addr *laddr,
1331				      struct sctp_transport **transportp,
1332				      int dif, int sdif)
1333{
1334	struct sctp_association *asoc;
1335
1336	asoc = __sctp_lookup_association(net, laddr, paddr, transportp, dif, sdif);
1337	if (asoc)
1338		goto out;
1339
1340	/* Further lookup for INIT/INIT-ACK packets.
1341	 * SCTP Implementors Guide, 2.18 Handling of address
1342	 * parameters within the INIT or INIT-ACK.
1343	 */
1344	asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp, dif, sdif);
1345	if (asoc)
1346		goto out;
1347
1348	if (paddr->sa.sa_family == AF_INET)
1349		pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n",
1350			 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port),
1351			 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port));
1352	else
1353		pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n",
1354			 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port),
1355			 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port));
1356
1357out:
1358	return asoc;
1359}