Linux Audio

Check our new training course

Loading...
v3.1
   1/* SCTP kernel implementation
   2 * Copyright (c) 1999-2000 Cisco, Inc.
   3 * Copyright (c) 1999-2001 Motorola, Inc.
   4 * Copyright (c) 2001-2003 International Business Machines, Corp.
   5 * Copyright (c) 2001 Intel Corp.
   6 * Copyright (c) 2001 Nokia, Inc.
   7 * Copyright (c) 2001 La Monte H.P. Yarroll
   8 *
   9 * This file is part of the SCTP kernel implementation
  10 *
  11 * These functions handle all input from the IP layer into SCTP.
  12 *
  13 * This SCTP implementation is free software;
  14 * you can redistribute it and/or modify it under the terms of
  15 * the GNU General Public License as published by
  16 * the Free Software Foundation; either version 2, or (at your option)
  17 * any later version.
  18 *
  19 * This SCTP implementation is distributed in the hope that it
  20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
  21 *                 ************************
  22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  23 * See the GNU General Public License for more details.
  24 *
  25 * You should have received a copy of the GNU General Public License
  26 * along with GNU CC; see the file COPYING.  If not, write to
  27 * the Free Software Foundation, 59 Temple Place - Suite 330,
  28 * Boston, MA 02111-1307, USA.
  29 *
  30 * Please send any bug reports or fixes you make to the
  31 * email address(es):
  32 *    lksctp developers <lksctp-developers@lists.sourceforge.net>
  33 *
  34 * Or submit a bug report through the following website:
  35 *    http://www.sf.net/projects/lksctp
  36 *
  37 * Written or modified by:
  38 *    La Monte H.P. Yarroll <piggy@acm.org>
  39 *    Karl Knutson <karl@athena.chicago.il.us>
  40 *    Xingang Guo <xingang.guo@intel.com>
  41 *    Jon Grimm <jgrimm@us.ibm.com>
  42 *    Hui Huang <hui.huang@nokia.com>
  43 *    Daisy Chang <daisyc@us.ibm.com>
  44 *    Sridhar Samudrala <sri@us.ibm.com>
  45 *    Ardelle Fan <ardelle.fan@intel.com>
  46 *
  47 * Any bugs reported given to us we will try to fix... any fixes shared will
  48 * be incorporated into the next SCTP release.
  49 */
  50
  51#include <linux/types.h>
  52#include <linux/list.h> /* For struct list_head */
  53#include <linux/socket.h>
  54#include <linux/ip.h>
  55#include <linux/time.h> /* For struct timeval */
  56#include <linux/slab.h>
  57#include <net/ip.h>
  58#include <net/icmp.h>
  59#include <net/snmp.h>
  60#include <net/sock.h>
  61#include <net/xfrm.h>
  62#include <net/sctp/sctp.h>
  63#include <net/sctp/sm.h>
  64#include <net/sctp/checksum.h>
  65#include <net/net_namespace.h>
  66
  67/* Forward declarations for internal helpers. */
  68static int sctp_rcv_ootb(struct sk_buff *);
  69static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
  70				      const union sctp_addr *laddr,
  71				      const union sctp_addr *paddr,
 
  72				      struct sctp_transport **transportp);
  73static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr);
 
  74static struct sctp_association *__sctp_lookup_association(
 
  75					const union sctp_addr *local,
  76					const union sctp_addr *peer,
  77					struct sctp_transport **pt);
  78
  79static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
  80
  81
  82/* Calculate the SCTP checksum of an SCTP packet.  */
  83static inline int sctp_rcv_checksum(struct sk_buff *skb)
  84{
  85	struct sctphdr *sh = sctp_hdr(skb);
  86	__le32 cmp = sh->checksum;
  87	struct sk_buff *list;
  88	__le32 val;
  89	__u32 tmp = sctp_start_cksum((__u8 *)sh, skb_headlen(skb));
  90
  91	skb_walk_frags(skb, list)
  92		tmp = sctp_update_cksum((__u8 *)list->data, skb_headlen(list),
  93					tmp);
  94
  95	val = sctp_end_cksum(tmp);
  96
  97	if (val != cmp) {
  98		/* CRC failure, dump it. */
  99		SCTP_INC_STATS_BH(SCTP_MIB_CHECKSUMERRORS);
 100		return -1;
 101	}
 102	return 0;
 103}
 104
 105struct sctp_input_cb {
 106	union {
 107		struct inet_skb_parm	h4;
 108#if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
 109		struct inet6_skb_parm	h6;
 110#endif
 111	} header;
 112	struct sctp_chunk *chunk;
 113};
 114#define SCTP_INPUT_CB(__skb)	((struct sctp_input_cb *)&((__skb)->cb[0]))
 115
 116/*
 117 * This is the routine which IP calls when receiving an SCTP packet.
 118 */
 119int sctp_rcv(struct sk_buff *skb)
 120{
 121	struct sock *sk;
 122	struct sctp_association *asoc;
 123	struct sctp_endpoint *ep = NULL;
 124	struct sctp_ep_common *rcvr;
 125	struct sctp_transport *transport = NULL;
 126	struct sctp_chunk *chunk;
 127	struct sctphdr *sh;
 128	union sctp_addr src;
 129	union sctp_addr dest;
 130	int family;
 131	struct sctp_af *af;
 
 
 132
 133	if (skb->pkt_type!=PACKET_HOST)
 134		goto discard_it;
 135
 136	SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS);
 137
 138	if (skb_linearize(skb))
 
 
 
 
 139		goto discard_it;
 140
 141	sh = sctp_hdr(skb);
 142
 143	/* Pull up the IP and SCTP headers. */
 144	__skb_pull(skb, skb_transport_offset(skb));
 145	if (skb->len < sizeof(struct sctphdr))
 146		goto discard_it;
 147	if (!sctp_checksum_disable && !skb_csum_unnecessary(skb) &&
 148		  sctp_rcv_checksum(skb) < 0)
 149		goto discard_it;
 150
 151	skb_pull(skb, sizeof(struct sctphdr));
 
 152
 153	/* Make sure we at least have chunk headers worth of data left. */
 154	if (skb->len < sizeof(struct sctp_chunkhdr))
 
 
 
 
 155		goto discard_it;
 
 
 
 156
 157	family = ipver2af(ip_hdr(skb)->version);
 158	af = sctp_get_af_specific(family);
 159	if (unlikely(!af))
 160		goto discard_it;
 
 161
 162	/* Initialize local addresses for lookups. */
 163	af->from_skb(&src, skb, 1);
 164	af->from_skb(&dest, skb, 0);
 165
 166	/* If the packet is to or from a non-unicast address,
 167	 * silently discard the packet.
 168	 *
 169	 * This is not clearly defined in the RFC except in section
 170	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
 171	 * Transmission Protocol" 2.1, "It is important to note that the
 172	 * IP address of an SCTP transport address must be a routable
 173	 * unicast address.  In other words, IP multicast addresses and
 174	 * IP broadcast addresses cannot be used in an SCTP transport
 175	 * address."
 176	 */
 177	if (!af->addr_valid(&src, NULL, skb) ||
 178	    !af->addr_valid(&dest, NULL, skb))
 179		goto discard_it;
 180
 181	asoc = __sctp_rcv_lookup(skb, &src, &dest, &transport);
 182
 183	if (!asoc)
 184		ep = __sctp_rcv_lookup_endpoint(&dest);
 185
 186	/* Retrieve the common input handling substructure. */
 187	rcvr = asoc ? &asoc->base : &ep->base;
 188	sk = rcvr->sk;
 189
 190	/*
 191	 * If a frame arrives on an interface and the receiving socket is
 192	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
 193	 */
 194	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb)))
 195	{
 196		if (asoc) {
 197			sctp_association_put(asoc);
 198			asoc = NULL;
 
 199		} else {
 200			sctp_endpoint_put(ep);
 201			ep = NULL;
 202		}
 203		sk = sctp_get_ctl_sock();
 204		ep = sctp_sk(sk)->ep;
 205		sctp_endpoint_hold(ep);
 206		rcvr = &ep->base;
 207	}
 208
 209	/*
 210	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
 211	 * An SCTP packet is called an "out of the blue" (OOTB)
 212	 * packet if it is correctly formed, i.e., passed the
 213	 * receiver's checksum check, but the receiver is not
 214	 * able to identify the association to which this
 215	 * packet belongs.
 216	 */
 217	if (!asoc) {
 218		if (sctp_rcv_ootb(skb)) {
 219			SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES);
 220			goto discard_release;
 221		}
 222	}
 223
 224	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
 225		goto discard_release;
 226	nf_reset(skb);
 227
 228	if (sk_filter(sk, skb))
 229		goto discard_release;
 230
 231	/* Create an SCTP packet structure. */
 232	chunk = sctp_chunkify(skb, asoc, sk);
 233	if (!chunk)
 234		goto discard_release;
 235	SCTP_INPUT_CB(skb)->chunk = chunk;
 236
 237	/* Remember what endpoint is to handle this packet. */
 238	chunk->rcvr = rcvr;
 239
 240	/* Remember the SCTP header. */
 241	chunk->sctp_hdr = sh;
 242
 243	/* Set the source and destination addresses of the incoming chunk.  */
 244	sctp_init_addrs(chunk, &src, &dest);
 245
 246	/* Remember where we came from.  */
 247	chunk->transport = transport;
 248
 249	/* Acquire access to the sock lock. Note: We are safe from other
 250	 * bottom halves on this lock, but a user may be in the lock too,
 251	 * so check if it is busy.
 252	 */
 253	sctp_bh_lock_sock(sk);
 254
 255	if (sk != rcvr->sk) {
 256		/* Our cached sk is different from the rcvr->sk.  This is
 257		 * because migrate()/accept() may have moved the association
 258		 * to a new socket and released all the sockets.  So now we
 259		 * are holding a lock on the old socket while the user may
 260		 * be doing something with the new socket.  Switch our veiw
 261		 * of the current sk.
 262		 */
 263		sctp_bh_unlock_sock(sk);
 264		sk = rcvr->sk;
 265		sctp_bh_lock_sock(sk);
 266	}
 267
 268	if (sock_owned_by_user(sk)) {
 269		if (sctp_add_backlog(sk, skb)) {
 270			sctp_bh_unlock_sock(sk);
 271			sctp_chunk_free(chunk);
 272			skb = NULL; /* sctp_chunk_free already freed the skb */
 273			goto discard_release;
 274		}
 275		SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_BACKLOG);
 276	} else {
 277		SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_SOFTIRQ);
 278		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
 279	}
 280
 281	sctp_bh_unlock_sock(sk);
 282
 283	/* Release the asoc/ep ref we took in the lookup calls. */
 284	if (asoc)
 285		sctp_association_put(asoc);
 286	else
 287		sctp_endpoint_put(ep);
 288
 289	return 0;
 290
 291discard_it:
 292	SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_DISCARDS);
 293	kfree_skb(skb);
 294	return 0;
 295
 296discard_release:
 297	/* Release the asoc/ep ref we took in the lookup calls. */
 298	if (asoc)
 299		sctp_association_put(asoc);
 300	else
 301		sctp_endpoint_put(ep);
 302
 303	goto discard_it;
 304}
 305
 306/* Process the backlog queue of the socket.  Every skb on
 307 * the backlog holds a ref on an association or endpoint.
 308 * We hold this ref throughout the state machine to make
 309 * sure that the structure we need is still around.
 310 */
 311int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 312{
 313	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
 314	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
 
 315	struct sctp_ep_common *rcvr = NULL;
 316	int backloged = 0;
 317
 318	rcvr = chunk->rcvr;
 319
 320	/* If the rcvr is dead then the association or endpoint
 321	 * has been deleted and we can safely drop the chunk
 322	 * and refs that we are holding.
 323	 */
 324	if (rcvr->dead) {
 325		sctp_chunk_free(chunk);
 326		goto done;
 327	}
 328
 329	if (unlikely(rcvr->sk != sk)) {
 330		/* In this case, the association moved from one socket to
 331		 * another.  We are currently sitting on the backlog of the
 332		 * old socket, so we need to move.
 333		 * However, since we are here in the process context we
 334		 * need to take make sure that the user doesn't own
 335		 * the new socket when we process the packet.
 336		 * If the new socket is user-owned, queue the chunk to the
 337		 * backlog of the new socket without dropping any refs.
 338		 * Otherwise, we can safely push the chunk on the inqueue.
 339		 */
 340
 341		sk = rcvr->sk;
 342		sctp_bh_lock_sock(sk);
 
 343
 344		if (sock_owned_by_user(sk)) {
 345			if (sk_add_backlog(sk, skb))
 346				sctp_chunk_free(chunk);
 347			else
 348				backloged = 1;
 349		} else
 350			sctp_inq_push(inqueue, chunk);
 351
 352		sctp_bh_unlock_sock(sk);
 
 353
 354		/* If the chunk was backloged again, don't drop refs */
 355		if (backloged)
 356			return 0;
 357	} else {
 358		sctp_inq_push(inqueue, chunk);
 359	}
 360
 361done:
 362	/* Release the refs we took in sctp_add_backlog */
 363	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
 364		sctp_association_put(sctp_assoc(rcvr));
 365	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
 366		sctp_endpoint_put(sctp_ep(rcvr));
 367	else
 368		BUG();
 369
 370	return 0;
 371}
 372
 373static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
 374{
 375	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
 
 376	struct sctp_ep_common *rcvr = chunk->rcvr;
 377	int ret;
 378
 379	ret = sk_add_backlog(sk, skb);
 380	if (!ret) {
 381		/* Hold the assoc/ep while hanging on the backlog queue.
 382		 * This way, we know structures we need will not disappear
 383		 * from us
 384		 */
 385		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
 386			sctp_association_hold(sctp_assoc(rcvr));
 387		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
 388			sctp_endpoint_hold(sctp_ep(rcvr));
 389		else
 390			BUG();
 391	}
 392	return ret;
 393
 394}
 395
 396/* Handle icmp frag needed error. */
 397void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
 398			   struct sctp_transport *t, __u32 pmtu)
 399{
 400	if (!t || (t->pathmtu <= pmtu))
 401		return;
 402
 403	if (sock_owned_by_user(sk)) {
 404		asoc->pmtu_pending = 1;
 405		t->pmtu_pending = 1;
 406		return;
 407	}
 408
 409	if (t->param_flags & SPP_PMTUD_ENABLE) {
 410		/* Update transports view of the MTU */
 411		sctp_transport_update_pmtu(t, pmtu);
 412
 413		/* Update association pmtu. */
 414		sctp_assoc_sync_pmtu(asoc);
 415	}
 416
 417	/* Retransmit with the new pmtu setting.
 418	 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
 419	 * Needed will never be sent, but if a message was sent before
 420	 * PMTU discovery was disabled that was larger than the PMTU, it
 421	 * would not be fragmented, so it must be re-transmitted fragmented.
 422	 */
 
 
 
 
 
 
 
 423	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
 424}
 425
 
 
 
 
 
 
 
 
 
 
 
 
 426/*
 427 * SCTP Implementer's Guide, 2.37 ICMP handling procedures
 428 *
 429 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
 430 *        or a "Protocol Unreachable" treat this message as an abort
 431 *        with the T bit set.
 432 *
 433 * This function sends an event to the state machine, which will abort the
 434 * association.
 435 *
 436 */
 437void sctp_icmp_proto_unreachable(struct sock *sk,
 438			   struct sctp_association *asoc,
 439			   struct sctp_transport *t)
 440{
 441	SCTP_DEBUG_PRINTK("%s\n",  __func__);
 442
 443	if (sock_owned_by_user(sk)) {
 444		if (timer_pending(&t->proto_unreach_timer))
 445			return;
 446		else {
 447			if (!mod_timer(&t->proto_unreach_timer,
 448						jiffies + (HZ/20)))
 449				sctp_association_hold(asoc);
 450		}
 451			
 452	} else {
 453		if (timer_pending(&t->proto_unreach_timer) &&
 454		    del_timer(&t->proto_unreach_timer))
 
 
 
 
 455			sctp_association_put(asoc);
 456
 457		sctp_do_sm(SCTP_EVENT_T_OTHER,
 458			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
 459			   asoc->state, asoc->ep, asoc, t,
 460			   GFP_ATOMIC);
 461	}
 462}
 463
 464/* Common lookup code for icmp/icmpv6 error handler. */
 465struct sock *sctp_err_lookup(int family, struct sk_buff *skb,
 466			     struct sctphdr *sctphdr,
 467			     struct sctp_association **app,
 468			     struct sctp_transport **tpp)
 469{
 
 470	union sctp_addr saddr;
 471	union sctp_addr daddr;
 472	struct sctp_af *af;
 473	struct sock *sk = NULL;
 474	struct sctp_association *asoc;
 475	struct sctp_transport *transport = NULL;
 476	struct sctp_init_chunk *chunkhdr;
 477	__u32 vtag = ntohl(sctphdr->vtag);
 478	int len = skb->len - ((void *)sctphdr - (void *)skb->data);
 479
 480	*app = NULL; *tpp = NULL;
 481
 482	af = sctp_get_af_specific(family);
 483	if (unlikely(!af)) {
 484		return NULL;
 485	}
 486
 487	/* Initialize local addresses for lookups. */
 488	af->from_skb(&saddr, skb, 1);
 489	af->from_skb(&daddr, skb, 0);
 490
 491	/* Look for an association that matches the incoming ICMP error
 492	 * packet.
 493	 */
 494	asoc = __sctp_lookup_association(&saddr, &daddr, &transport);
 495	if (!asoc)
 496		return NULL;
 497
 498	sk = asoc->base.sk;
 499
 500	/* RFC 4960, Appendix C. ICMP Handling
 501	 *
 502	 * ICMP6) An implementation MUST validate that the Verification Tag
 503	 * contained in the ICMP message matches the Verification Tag of
 504	 * the peer.  If the Verification Tag is not 0 and does NOT
 505	 * match, discard the ICMP message.  If it is 0 and the ICMP
 506	 * message contains enough bytes to verify that the chunk type is
 507	 * an INIT chunk and that the Initiate Tag matches the tag of the
 508	 * peer, continue with ICMP7.  If the ICMP message is too short
 509	 * or the chunk type or the Initiate Tag does not match, silently
 510	 * discard the packet.
 511	 */
 512	if (vtag == 0) {
 513		chunkhdr = (void *)sctphdr + sizeof(struct sctphdr);
 514		if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t)
 515			  + sizeof(__be32) ||
 
 
 
 516		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
 517		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) {
 518			goto out;
 519		}
 520	} else if (vtag != asoc->c.peer_vtag) {
 521		goto out;
 522	}
 523
 524	sctp_bh_lock_sock(sk);
 525
 526	/* If too many ICMPs get dropped on busy
 527	 * servers this needs to be solved differently.
 528	 */
 529	if (sock_owned_by_user(sk))
 530		NET_INC_STATS_BH(&init_net, LINUX_MIB_LOCKDROPPEDICMPS);
 531
 532	*app = asoc;
 533	*tpp = transport;
 534	return sk;
 535
 536out:
 537	if (asoc)
 538		sctp_association_put(asoc);
 539	return NULL;
 540}
 541
 542/* Common cleanup code for icmp/icmpv6 error handler. */
 543void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
 544{
 545	sctp_bh_unlock_sock(sk);
 546	if (asoc)
 547		sctp_association_put(asoc);
 548}
 549
 550/*
 551 * This routine is called by the ICMP module when it gets some
 552 * sort of error condition.  If err < 0 then the socket should
 553 * be closed and the error returned to the user.  If err > 0
 554 * it's just the icmp type << 8 | icmp code.  After adjustment
 555 * header points to the first 8 bytes of the sctp header.  We need
 556 * to find the appropriate port.
 557 *
 558 * The locking strategy used here is very "optimistic". When
 559 * someone else accesses the socket the ICMP is just dropped
 560 * and for some paths there is no check at all.
 561 * A more general error queue to queue errors for later handling
 562 * is probably better.
 563 *
 564 */
 565void sctp_v4_err(struct sk_buff *skb, __u32 info)
 566{
 567	const struct iphdr *iph = (const struct iphdr *)skb->data;
 568	const int ihlen = iph->ihl * 4;
 569	const int type = icmp_hdr(skb)->type;
 570	const int code = icmp_hdr(skb)->code;
 571	struct sock *sk;
 572	struct sctp_association *asoc = NULL;
 573	struct sctp_transport *transport;
 574	struct inet_sock *inet;
 575	sk_buff_data_t saveip, savesctp;
 576	int err;
 577
 578	if (skb->len < ihlen + 8) {
 579		ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS);
 580		return;
 581	}
 582
 583	/* Fix up skb to look at the embedded net header. */
 584	saveip = skb->network_header;
 585	savesctp = skb->transport_header;
 586	skb_reset_network_header(skb);
 587	skb_set_transport_header(skb, ihlen);
 588	sk = sctp_err_lookup(AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
 589	/* Put back, the original values. */
 590	skb->network_header = saveip;
 591	skb->transport_header = savesctp;
 592	if (!sk) {
 593		ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS);
 594		return;
 595	}
 596	/* Warning:  The sock lock is held.  Remember to call
 597	 * sctp_err_finish!
 598	 */
 599
 600	switch (type) {
 601	case ICMP_PARAMETERPROB:
 602		err = EPROTO;
 603		break;
 604	case ICMP_DEST_UNREACH:
 605		if (code > NR_ICMP_UNREACH)
 606			goto out_unlock;
 607
 608		/* PMTU discovery (RFC1191) */
 609		if (ICMP_FRAG_NEEDED == code) {
 610			sctp_icmp_frag_needed(sk, asoc, transport, info);
 
 611			goto out_unlock;
 612		}
 613		else {
 614			if (ICMP_PROT_UNREACH == code) {
 615				sctp_icmp_proto_unreachable(sk, asoc,
 616							    transport);
 617				goto out_unlock;
 618			}
 619		}
 620		err = icmp_err_convert[code].errno;
 621		break;
 622	case ICMP_TIME_EXCEEDED:
 623		/* Ignore any time exceeded errors due to fragment reassembly
 624		 * timeouts.
 625		 */
 626		if (ICMP_EXC_FRAGTIME == code)
 627			goto out_unlock;
 628
 629		err = EHOSTUNREACH;
 630		break;
 
 
 
 631	default:
 632		goto out_unlock;
 633	}
 634
 635	inet = inet_sk(sk);
 636	if (!sock_owned_by_user(sk) && inet->recverr) {
 637		sk->sk_err = err;
 638		sk->sk_error_report(sk);
 639	} else {  /* Only an error on timeout */
 640		sk->sk_err_soft = err;
 641	}
 642
 643out_unlock:
 644	sctp_err_finish(sk, asoc);
 645}
 646
 647/*
 648 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
 649 *
 650 * This function scans all the chunks in the OOTB packet to determine if
 651 * the packet should be discarded right away.  If a response might be needed
 652 * for this packet, or, if further processing is possible, the packet will
 653 * be queued to a proper inqueue for the next phase of handling.
 654 *
 655 * Output:
 656 * Return 0 - If further processing is needed.
 657 * Return 1 - If the packet can be discarded right away.
 658 */
 659static int sctp_rcv_ootb(struct sk_buff *skb)
 660{
 661	sctp_chunkhdr_t *ch;
 662	__u8 *ch_end;
 663
 664	ch = (sctp_chunkhdr_t *) skb->data;
 665
 666	/* Scan through all the chunks in the packet.  */
 667	do {
 
 
 
 
 
 
 668		/* Break out if chunk length is less then minimal. */
 669		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
 670			break;
 671
 672		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
 673		if (ch_end > skb_tail_pointer(skb))
 674			break;
 675
 676		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
 677		 * receiver MUST silently discard the OOTB packet and take no
 678		 * further action.
 679		 */
 680		if (SCTP_CID_ABORT == ch->type)
 681			goto discard;
 682
 683		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
 684		 * chunk, the receiver should silently discard the packet
 685		 * and take no further action.
 686		 */
 687		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
 688			goto discard;
 689
 690		/* RFC 4460, 2.11.2
 691		 * This will discard packets with INIT chunk bundled as
 692		 * subsequent chunks in the packet.  When INIT is first,
 693		 * the normal INIT processing will discard the chunk.
 694		 */
 695		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
 696			goto discard;
 697
 698		ch = (sctp_chunkhdr_t *) ch_end;
 699	} while (ch_end < skb_tail_pointer(skb));
 700
 701	return 0;
 702
 703discard:
 704	return 1;
 705}
 706
 707/* Insert endpoint into the hash table.  */
 708static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
 709{
 
 710	struct sctp_ep_common *epb;
 711	struct sctp_hashbucket *head;
 712
 713	epb = &ep->base;
 714
 715	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
 716	head = &sctp_ep_hashtable[epb->hashent];
 717
 718	sctp_write_lock(&head->lock);
 719	hlist_add_head(&epb->node, &head->chain);
 720	sctp_write_unlock(&head->lock);
 721}
 722
 723/* Add an endpoint to the hash. Local BH-safe. */
 724void sctp_hash_endpoint(struct sctp_endpoint *ep)
 725{
 726	sctp_local_bh_disable();
 727	__sctp_hash_endpoint(ep);
 728	sctp_local_bh_enable();
 729}
 730
 731/* Remove endpoint from the hash table.  */
 732static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
 733{
 
 734	struct sctp_hashbucket *head;
 735	struct sctp_ep_common *epb;
 736
 737	epb = &ep->base;
 738
 739	if (hlist_unhashed(&epb->node))
 740		return;
 741
 742	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
 743
 744	head = &sctp_ep_hashtable[epb->hashent];
 745
 746	sctp_write_lock(&head->lock);
 747	__hlist_del(&epb->node);
 748	sctp_write_unlock(&head->lock);
 749}
 750
 751/* Remove endpoint from the hash.  Local BH-safe. */
 752void sctp_unhash_endpoint(struct sctp_endpoint *ep)
 753{
 754	sctp_local_bh_disable();
 755	__sctp_unhash_endpoint(ep);
 756	sctp_local_bh_enable();
 757}
 758
 759/* Look up an endpoint. */
 760static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr)
 
 761{
 762	struct sctp_hashbucket *head;
 763	struct sctp_ep_common *epb;
 764	struct sctp_endpoint *ep;
 765	struct hlist_node *node;
 766	int hash;
 767
 768	hash = sctp_ep_hashfn(ntohs(laddr->v4.sin_port));
 769	head = &sctp_ep_hashtable[hash];
 770	read_lock(&head->lock);
 771	sctp_for_each_hentry(epb, node, &head->chain) {
 772		ep = sctp_ep(epb);
 773		if (sctp_endpoint_is_match(ep, laddr))
 774			goto hit;
 775	}
 776
 777	ep = sctp_sk((sctp_get_ctl_sock()))->ep;
 778
 779hit:
 780	sctp_endpoint_hold(ep);
 781	read_unlock(&head->lock);
 782	return ep;
 783}
 784
 785/* Insert association into the hash table.  */
 786static void __sctp_hash_established(struct sctp_association *asoc)
 
 
 
 
 
 
 
 787{
 788	struct sctp_ep_common *epb;
 789	struct sctp_hashbucket *head;
 
 
 
 
 
 
 790
 791	epb = &asoc->base;
 
 
 
 792
 793	/* Calculate which chain this entry will belong to. */
 794	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, asoc->peer.port);
 
 
 
 795
 796	head = &sctp_assoc_hashtable[epb->hashent];
 
 
 
 
 
 
 797
 798	sctp_write_lock(&head->lock);
 799	hlist_add_head(&epb->node, &head->chain);
 800	sctp_write_unlock(&head->lock);
 
 
 
 
 801}
 802
 803/* Add an association to the hash. Local BH-safe. */
 804void sctp_hash_established(struct sctp_association *asoc)
 805{
 806	if (asoc->temp)
 807		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 808
 809	sctp_local_bh_disable();
 810	__sctp_hash_established(asoc);
 811	sctp_local_bh_enable();
 812}
 813
 814/* Remove association from the hash table.  */
 815static void __sctp_unhash_established(struct sctp_association *asoc)
 816{
 817	struct sctp_hashbucket *head;
 818	struct sctp_ep_common *epb;
 819
 820	epb = &asoc->base;
 
 
 
 
 
 
 
 
 821
 822	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port,
 823					 asoc->peer.port);
 
 
 
 
 
 
 
 
 
 
 
 
 824
 825	head = &sctp_assoc_hashtable[epb->hashent];
 
 
 
 826
 827	sctp_write_lock(&head->lock);
 828	__hlist_del(&epb->node);
 829	sctp_write_unlock(&head->lock);
 830}
 831
 832/* Remove association from the hash table.  Local BH-safe. */
 833void sctp_unhash_established(struct sctp_association *asoc)
 834{
 835	if (asoc->temp)
 836		return;
 837
 838	sctp_local_bh_disable();
 839	__sctp_unhash_established(asoc);
 840	sctp_local_bh_enable();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 841}
 842
 843/* Look up an association. */
 844static struct sctp_association *__sctp_lookup_association(
 
 845					const union sctp_addr *local,
 846					const union sctp_addr *peer,
 847					struct sctp_transport **pt)
 848{
 849	struct sctp_hashbucket *head;
 850	struct sctp_ep_common *epb;
 851	struct sctp_association *asoc;
 852	struct sctp_transport *transport;
 853	struct hlist_node *node;
 854	int hash;
 855
 856	/* Optimize here for direct hit, only listening connections can
 857	 * have wildcards anyways.
 858	 */
 859	hash = sctp_assoc_hashfn(ntohs(local->v4.sin_port), ntohs(peer->v4.sin_port));
 860	head = &sctp_assoc_hashtable[hash];
 861	read_lock(&head->lock);
 862	sctp_for_each_hentry(epb, node, &head->chain) {
 863		asoc = sctp_assoc(epb);
 864		transport = sctp_assoc_is_match(asoc, local, peer);
 865		if (transport)
 866			goto hit;
 867	}
 868
 869	read_unlock(&head->lock);
 
 
 870
 871	return NULL;
 
 872
 873hit:
 874	*pt = transport;
 875	sctp_association_hold(asoc);
 876	read_unlock(&head->lock);
 877	return asoc;
 878}
 879
 880/* Look up an association. BH-safe. */
 881SCTP_STATIC
 882struct sctp_association *sctp_lookup_association(const union sctp_addr *laddr,
 
 883						 const union sctp_addr *paddr,
 884					    struct sctp_transport **transportp)
 885{
 886	struct sctp_association *asoc;
 887
 888	sctp_local_bh_disable();
 889	asoc = __sctp_lookup_association(laddr, paddr, transportp);
 890	sctp_local_bh_enable();
 891
 892	return asoc;
 893}
 894
 895/* Is there an association matching the given local and peer addresses? */
 896int sctp_has_association(const union sctp_addr *laddr,
 897			 const union sctp_addr *paddr)
 
 898{
 899	struct sctp_association *asoc;
 900	struct sctp_transport *transport;
 901
 902	if ((asoc = sctp_lookup_association(laddr, paddr, &transport))) {
 903		sctp_association_put(asoc);
 904		return 1;
 905	}
 906
 907	return 0;
 908}
 909
 910/*
 911 * SCTP Implementors Guide, 2.18 Handling of address
 912 * parameters within the INIT or INIT-ACK.
 913 *
 914 * D) When searching for a matching TCB upon reception of an INIT
 915 *    or INIT-ACK chunk the receiver SHOULD use not only the
 916 *    source address of the packet (containing the INIT or
 917 *    INIT-ACK) but the receiver SHOULD also use all valid
 918 *    address parameters contained within the chunk.
 919 *
 920 * 2.18.3 Solution description
 921 *
 922 * This new text clearly specifies to an implementor the need
 923 * to look within the INIT or INIT-ACK. Any implementation that
 924 * does not do this, may not be able to establish associations
 925 * in certain circumstances.
 926 *
 927 */
 928static struct sctp_association *__sctp_rcv_init_lookup(struct sk_buff *skb,
 
 929	const union sctp_addr *laddr, struct sctp_transport **transportp)
 930{
 931	struct sctp_association *asoc;
 932	union sctp_addr addr;
 933	union sctp_addr *paddr = &addr;
 934	struct sctphdr *sh = sctp_hdr(skb);
 935	union sctp_params params;
 936	sctp_init_chunk_t *init;
 937	struct sctp_transport *transport;
 938	struct sctp_af *af;
 939
 940	/*
 941	 * This code will NOT touch anything inside the chunk--it is
 942	 * strictly READ-ONLY.
 943	 *
 944	 * RFC 2960 3  SCTP packet Format
 945	 *
 946	 * Multiple chunks can be bundled into one SCTP packet up to
 947	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
 948	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
 949	 * other chunk in a packet.  See Section 6.10 for more details
 950	 * on chunk bundling.
 951	 */
 952
 953	/* Find the start of the TLVs and the end of the chunk.  This is
 954	 * the region we search for address parameters.
 955	 */
 956	init = (sctp_init_chunk_t *)skb->data;
 957
 958	/* Walk the parameters looking for embedded addresses. */
 959	sctp_walk_params(params, init, init_hdr.params) {
 960
 961		/* Note: Ignoring hostname addresses. */
 962		af = sctp_get_af_specific(param_type2af(params.p->type));
 963		if (!af)
 964			continue;
 965
 966		af->from_addr_param(paddr, params.addr, sh->source, 0);
 967
 968		asoc = __sctp_lookup_association(laddr, paddr, &transport);
 969		if (asoc)
 970			return asoc;
 971	}
 972
 973	return NULL;
 974}
 975
 976/* ADD-IP, Section 5.2
 977 * When an endpoint receives an ASCONF Chunk from the remote peer
 978 * special procedures may be needed to identify the association the
 979 * ASCONF Chunk is associated with. To properly find the association
 980 * the following procedures SHOULD be followed:
 981 *
 982 * D2) If the association is not found, use the address found in the
 983 * Address Parameter TLV combined with the port number found in the
 984 * SCTP common header. If found proceed to rule D4.
 985 *
 986 * D2-ext) If more than one ASCONF Chunks are packed together, use the
 987 * address found in the ASCONF Address Parameter TLV of each of the
 988 * subsequent ASCONF Chunks. If found, proceed to rule D4.
 989 */
 990static struct sctp_association *__sctp_rcv_asconf_lookup(
 991					sctp_chunkhdr_t *ch,
 
 992					const union sctp_addr *laddr,
 993					__be16 peer_port,
 994					struct sctp_transport **transportp)
 995{
 996	sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
 997	struct sctp_af *af;
 998	union sctp_addr_param *param;
 999	union sctp_addr paddr;
1000
1001	/* Skip over the ADDIP header and find the Address parameter */
1002	param = (union sctp_addr_param *)(asconf + 1);
1003
1004	af = sctp_get_af_specific(param_type2af(param->p.type));
1005	if (unlikely(!af))
1006		return NULL;
1007
1008	af->from_addr_param(&paddr, param, peer_port, 0);
1009
1010	return __sctp_lookup_association(laddr, &paddr, transportp);
1011}
1012
1013
1014/* SCTP-AUTH, Section 6.3:
1015*    If the receiver does not find a STCB for a packet containing an AUTH
1016*    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1017*    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1018*    association.
1019*
1020* This means that any chunks that can help us identify the association need
1021* to be looked at to find this association.
1022*/
1023static struct sctp_association *__sctp_rcv_walk_lookup(struct sk_buff *skb,
 
1024				      const union sctp_addr *laddr,
1025				      struct sctp_transport **transportp)
1026{
1027	struct sctp_association *asoc = NULL;
1028	sctp_chunkhdr_t *ch;
1029	int have_auth = 0;
1030	unsigned int chunk_num = 1;
1031	__u8 *ch_end;
1032
1033	/* Walk through the chunks looking for AUTH or ASCONF chunks
1034	 * to help us find the association.
1035	 */
1036	ch = (sctp_chunkhdr_t *) skb->data;
1037	do {
1038		/* Break out if chunk length is less then minimal. */
1039		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1040			break;
1041
1042		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
1043		if (ch_end > skb_tail_pointer(skb))
1044			break;
1045
1046		switch(ch->type) {
1047		    case SCTP_CID_AUTH:
1048			    have_auth = chunk_num;
1049			    break;
1050
1051		    case SCTP_CID_COOKIE_ECHO:
1052			    /* If a packet arrives containing an AUTH chunk as
1053			     * a first chunk, a COOKIE-ECHO chunk as the second
1054			     * chunk, and possibly more chunks after them, and
1055			     * the receiver does not have an STCB for that
1056			     * packet, then authentication is based on
1057			     * the contents of the COOKIE- ECHO chunk.
1058			     */
1059			    if (have_auth == 1 && chunk_num == 2)
1060				    return NULL;
1061			    break;
1062
1063		    case SCTP_CID_ASCONF:
1064			    if (have_auth || sctp_addip_noauth)
1065				    asoc = __sctp_rcv_asconf_lookup(ch, laddr,
1066							sctp_hdr(skb)->source,
1067							transportp);
1068		    default:
1069			    break;
 
1070		}
1071
1072		if (asoc)
1073			break;
1074
1075		ch = (sctp_chunkhdr_t *) ch_end;
1076		chunk_num++;
1077	} while (ch_end < skb_tail_pointer(skb));
1078
1079	return asoc;
1080}
1081
1082/*
1083 * There are circumstances when we need to look inside the SCTP packet
1084 * for information to help us find the association.   Examples
1085 * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1086 * chunks.
1087 */
1088static struct sctp_association *__sctp_rcv_lookup_harder(struct sk_buff *skb,
 
1089				      const union sctp_addr *laddr,
1090				      struct sctp_transport **transportp)
1091{
1092	sctp_chunkhdr_t *ch;
 
 
 
 
 
 
 
 
1093
1094	ch = (sctp_chunkhdr_t *) skb->data;
1095
1096	/* The code below will attempt to walk the chunk and extract
1097	 * parameter information.  Before we do that, we need to verify
1098	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1099	 * walk off the end.
1100	 */
1101	if (WORD_ROUND(ntohs(ch->length)) > skb->len)
1102		return NULL;
1103
1104	/* If this is INIT/INIT-ACK look inside the chunk too. */
1105	switch (ch->type) {
1106	case SCTP_CID_INIT:
1107	case SCTP_CID_INIT_ACK:
1108		return __sctp_rcv_init_lookup(skb, laddr, transportp);
1109		break;
1110
1111	default:
1112		return __sctp_rcv_walk_lookup(skb, laddr, transportp);
1113		break;
1114	}
1115
1116
1117	return NULL;
1118}
1119
1120/* Lookup an association for an inbound skb. */
1121static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
 
1122				      const union sctp_addr *paddr,
1123				      const union sctp_addr *laddr,
1124				      struct sctp_transport **transportp)
1125{
1126	struct sctp_association *asoc;
1127
1128	asoc = __sctp_lookup_association(laddr, paddr, transportp);
 
 
1129
1130	/* Further lookup for INIT/INIT-ACK packets.
1131	 * SCTP Implementors Guide, 2.18 Handling of address
1132	 * parameters within the INIT or INIT-ACK.
1133	 */
1134	if (!asoc)
1135		asoc = __sctp_rcv_lookup_harder(skb, laddr, transportp);
 
 
 
 
 
 
 
 
 
 
1136
 
1137	return asoc;
1138}
v4.17
   1/* SCTP kernel implementation
   2 * Copyright (c) 1999-2000 Cisco, Inc.
   3 * Copyright (c) 1999-2001 Motorola, Inc.
   4 * Copyright (c) 2001-2003 International Business Machines, Corp.
   5 * Copyright (c) 2001 Intel Corp.
   6 * Copyright (c) 2001 Nokia, Inc.
   7 * Copyright (c) 2001 La Monte H.P. Yarroll
   8 *
   9 * This file is part of the SCTP kernel implementation
  10 *
  11 * These functions handle all input from the IP layer into SCTP.
  12 *
  13 * This SCTP implementation is free software;
  14 * you can redistribute it and/or modify it under the terms of
  15 * the GNU General Public License as published by
  16 * the Free Software Foundation; either version 2, or (at your option)
  17 * any later version.
  18 *
  19 * This SCTP implementation is distributed in the hope that it
  20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
  21 *                 ************************
  22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  23 * See the GNU General Public License for more details.
  24 *
  25 * You should have received a copy of the GNU General Public License
  26 * along with GNU CC; see the file COPYING.  If not, see
  27 * <http://www.gnu.org/licenses/>.
 
  28 *
  29 * Please send any bug reports or fixes you make to the
  30 * email address(es):
  31 *    lksctp developers <linux-sctp@vger.kernel.org>
 
 
 
  32 *
  33 * Written or modified by:
  34 *    La Monte H.P. Yarroll <piggy@acm.org>
  35 *    Karl Knutson <karl@athena.chicago.il.us>
  36 *    Xingang Guo <xingang.guo@intel.com>
  37 *    Jon Grimm <jgrimm@us.ibm.com>
  38 *    Hui Huang <hui.huang@nokia.com>
  39 *    Daisy Chang <daisyc@us.ibm.com>
  40 *    Sridhar Samudrala <sri@us.ibm.com>
  41 *    Ardelle Fan <ardelle.fan@intel.com>
 
 
 
  42 */
  43
  44#include <linux/types.h>
  45#include <linux/list.h> /* For struct list_head */
  46#include <linux/socket.h>
  47#include <linux/ip.h>
  48#include <linux/time.h> /* For struct timeval */
  49#include <linux/slab.h>
  50#include <net/ip.h>
  51#include <net/icmp.h>
  52#include <net/snmp.h>
  53#include <net/sock.h>
  54#include <net/xfrm.h>
  55#include <net/sctp/sctp.h>
  56#include <net/sctp/sm.h>
  57#include <net/sctp/checksum.h>
  58#include <net/net_namespace.h>
  59
  60/* Forward declarations for internal helpers. */
  61static int sctp_rcv_ootb(struct sk_buff *);
  62static struct sctp_association *__sctp_rcv_lookup(struct net *net,
  63				      struct sk_buff *skb,
  64				      const union sctp_addr *paddr,
  65				      const union sctp_addr *laddr,
  66				      struct sctp_transport **transportp);
  67static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
  68						const union sctp_addr *laddr);
  69static struct sctp_association *__sctp_lookup_association(
  70					struct net *net,
  71					const union sctp_addr *local,
  72					const union sctp_addr *peer,
  73					struct sctp_transport **pt);
  74
  75static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
  76
  77
  78/* Calculate the SCTP checksum of an SCTP packet.  */
  79static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
  80{
  81	struct sctphdr *sh = sctp_hdr(skb);
  82	__le32 cmp = sh->checksum;
  83	__le32 val = sctp_compute_cksum(skb, 0);
 
 
 
 
 
 
 
 
  84
  85	if (val != cmp) {
  86		/* CRC failure, dump it. */
  87		__SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
  88		return -1;
  89	}
  90	return 0;
  91}
  92
 
 
 
 
 
 
 
 
 
 
 
  93/*
  94 * This is the routine which IP calls when receiving an SCTP packet.
  95 */
  96int sctp_rcv(struct sk_buff *skb)
  97{
  98	struct sock *sk;
  99	struct sctp_association *asoc;
 100	struct sctp_endpoint *ep = NULL;
 101	struct sctp_ep_common *rcvr;
 102	struct sctp_transport *transport = NULL;
 103	struct sctp_chunk *chunk;
 
 104	union sctp_addr src;
 105	union sctp_addr dest;
 106	int family;
 107	struct sctp_af *af;
 108	struct net *net = dev_net(skb->dev);
 109	bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb);
 110
 111	if (skb->pkt_type != PACKET_HOST)
 112		goto discard_it;
 113
 114	__SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
 115
 116	/* If packet is too small to contain a single chunk, let's not
 117	 * waste time on it anymore.
 118	 */
 119	if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
 120		       skb_transport_offset(skb))
 121		goto discard_it;
 122
 123	/* If the packet is fragmented and we need to do crc checking,
 124	 * it's better to just linearize it otherwise crc computing
 125	 * takes longer.
 126	 */
 127	if ((!is_gso && skb_linearize(skb)) ||
 128	    !pskb_may_pull(skb, sizeof(struct sctphdr)))
 
 
 129		goto discard_it;
 130
 131	/* Pull up the IP header. */
 132	__skb_pull(skb, skb_transport_offset(skb));
 133
 134	skb->csum_valid = 0; /* Previous value not applicable */
 135	if (skb_csum_unnecessary(skb))
 136		__skb_decr_checksum_unnecessary(skb);
 137	else if (!sctp_checksum_disable &&
 138		 !is_gso &&
 139		 sctp_rcv_checksum(net, skb) < 0)
 140		goto discard_it;
 141	skb->csum_valid = 1;
 142
 143	__skb_pull(skb, sizeof(struct sctphdr));
 144
 145	family = ipver2af(ip_hdr(skb)->version);
 146	af = sctp_get_af_specific(family);
 147	if (unlikely(!af))
 148		goto discard_it;
 149	SCTP_INPUT_CB(skb)->af = af;
 150
 151	/* Initialize local addresses for lookups. */
 152	af->from_skb(&src, skb, 1);
 153	af->from_skb(&dest, skb, 0);
 154
 155	/* If the packet is to or from a non-unicast address,
 156	 * silently discard the packet.
 157	 *
 158	 * This is not clearly defined in the RFC except in section
 159	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
 160	 * Transmission Protocol" 2.1, "It is important to note that the
 161	 * IP address of an SCTP transport address must be a routable
 162	 * unicast address.  In other words, IP multicast addresses and
 163	 * IP broadcast addresses cannot be used in an SCTP transport
 164	 * address."
 165	 */
 166	if (!af->addr_valid(&src, NULL, skb) ||
 167	    !af->addr_valid(&dest, NULL, skb))
 168		goto discard_it;
 169
 170	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
 171
 172	if (!asoc)
 173		ep = __sctp_rcv_lookup_endpoint(net, &dest);
 174
 175	/* Retrieve the common input handling substructure. */
 176	rcvr = asoc ? &asoc->base : &ep->base;
 177	sk = rcvr->sk;
 178
 179	/*
 180	 * If a frame arrives on an interface and the receiving socket is
 181	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
 182	 */
 183	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
 184		if (transport) {
 185			sctp_transport_put(transport);
 
 186			asoc = NULL;
 187			transport = NULL;
 188		} else {
 189			sctp_endpoint_put(ep);
 190			ep = NULL;
 191		}
 192		sk = net->sctp.ctl_sock;
 193		ep = sctp_sk(sk)->ep;
 194		sctp_endpoint_hold(ep);
 195		rcvr = &ep->base;
 196	}
 197
 198	/*
 199	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
 200	 * An SCTP packet is called an "out of the blue" (OOTB)
 201	 * packet if it is correctly formed, i.e., passed the
 202	 * receiver's checksum check, but the receiver is not
 203	 * able to identify the association to which this
 204	 * packet belongs.
 205	 */
 206	if (!asoc) {
 207		if (sctp_rcv_ootb(skb)) {
 208			__SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
 209			goto discard_release;
 210		}
 211	}
 212
 213	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
 214		goto discard_release;
 215	nf_reset(skb);
 216
 217	if (sk_filter(sk, skb))
 218		goto discard_release;
 219
 220	/* Create an SCTP packet structure. */
 221	chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
 222	if (!chunk)
 223		goto discard_release;
 224	SCTP_INPUT_CB(skb)->chunk = chunk;
 225
 226	/* Remember what endpoint is to handle this packet. */
 227	chunk->rcvr = rcvr;
 228
 229	/* Remember the SCTP header. */
 230	chunk->sctp_hdr = sctp_hdr(skb);
 231
 232	/* Set the source and destination addresses of the incoming chunk.  */
 233	sctp_init_addrs(chunk, &src, &dest);
 234
 235	/* Remember where we came from.  */
 236	chunk->transport = transport;
 237
 238	/* Acquire access to the sock lock. Note: We are safe from other
 239	 * bottom halves on this lock, but a user may be in the lock too,
 240	 * so check if it is busy.
 241	 */
 242	bh_lock_sock(sk);
 243
 244	if (sk != rcvr->sk) {
 245		/* Our cached sk is different from the rcvr->sk.  This is
 246		 * because migrate()/accept() may have moved the association
 247		 * to a new socket and released all the sockets.  So now we
 248		 * are holding a lock on the old socket while the user may
 249		 * be doing something with the new socket.  Switch our veiw
 250		 * of the current sk.
 251		 */
 252		bh_unlock_sock(sk);
 253		sk = rcvr->sk;
 254		bh_lock_sock(sk);
 255	}
 256
 257	if (sock_owned_by_user(sk)) {
 258		if (sctp_add_backlog(sk, skb)) {
 259			bh_unlock_sock(sk);
 260			sctp_chunk_free(chunk);
 261			skb = NULL; /* sctp_chunk_free already freed the skb */
 262			goto discard_release;
 263		}
 264		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
 265	} else {
 266		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
 267		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
 268	}
 269
 270	bh_unlock_sock(sk);
 271
 272	/* Release the asoc/ep ref we took in the lookup calls. */
 273	if (transport)
 274		sctp_transport_put(transport);
 275	else
 276		sctp_endpoint_put(ep);
 277
 278	return 0;
 279
 280discard_it:
 281	__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
 282	kfree_skb(skb);
 283	return 0;
 284
 285discard_release:
 286	/* Release the asoc/ep ref we took in the lookup calls. */
 287	if (transport)
 288		sctp_transport_put(transport);
 289	else
 290		sctp_endpoint_put(ep);
 291
 292	goto discard_it;
 293}
 294
 295/* Process the backlog queue of the socket.  Every skb on
 296 * the backlog holds a ref on an association or endpoint.
 297 * We hold this ref throughout the state machine to make
 298 * sure that the structure we need is still around.
 299 */
 300int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 301{
 302	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
 303	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
 304	struct sctp_transport *t = chunk->transport;
 305	struct sctp_ep_common *rcvr = NULL;
 306	int backloged = 0;
 307
 308	rcvr = chunk->rcvr;
 309
 310	/* If the rcvr is dead then the association or endpoint
 311	 * has been deleted and we can safely drop the chunk
 312	 * and refs that we are holding.
 313	 */
 314	if (rcvr->dead) {
 315		sctp_chunk_free(chunk);
 316		goto done;
 317	}
 318
 319	if (unlikely(rcvr->sk != sk)) {
 320		/* In this case, the association moved from one socket to
 321		 * another.  We are currently sitting on the backlog of the
 322		 * old socket, so we need to move.
 323		 * However, since we are here in the process context we
 324		 * need to take make sure that the user doesn't own
 325		 * the new socket when we process the packet.
 326		 * If the new socket is user-owned, queue the chunk to the
 327		 * backlog of the new socket without dropping any refs.
 328		 * Otherwise, we can safely push the chunk on the inqueue.
 329		 */
 330
 331		sk = rcvr->sk;
 332		local_bh_disable();
 333		bh_lock_sock(sk);
 334
 335		if (sock_owned_by_user(sk)) {
 336			if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
 337				sctp_chunk_free(chunk);
 338			else
 339				backloged = 1;
 340		} else
 341			sctp_inq_push(inqueue, chunk);
 342
 343		bh_unlock_sock(sk);
 344		local_bh_enable();
 345
 346		/* If the chunk was backloged again, don't drop refs */
 347		if (backloged)
 348			return 0;
 349	} else {
 350		sctp_inq_push(inqueue, chunk);
 351	}
 352
 353done:
 354	/* Release the refs we took in sctp_add_backlog */
 355	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
 356		sctp_transport_put(t);
 357	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
 358		sctp_endpoint_put(sctp_ep(rcvr));
 359	else
 360		BUG();
 361
 362	return 0;
 363}
 364
 365static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
 366{
 367	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
 368	struct sctp_transport *t = chunk->transport;
 369	struct sctp_ep_common *rcvr = chunk->rcvr;
 370	int ret;
 371
 372	ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
 373	if (!ret) {
 374		/* Hold the assoc/ep while hanging on the backlog queue.
 375		 * This way, we know structures we need will not disappear
 376		 * from us
 377		 */
 378		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
 379			sctp_transport_hold(t);
 380		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
 381			sctp_endpoint_hold(sctp_ep(rcvr));
 382		else
 383			BUG();
 384	}
 385	return ret;
 386
 387}
 388
 389/* Handle icmp frag needed error. */
 390void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
 391			   struct sctp_transport *t, __u32 pmtu)
 392{
 393	if (!t || (t->pathmtu <= pmtu))
 394		return;
 395
 396	if (sock_owned_by_user(sk)) {
 397		asoc->pmtu_pending = 1;
 398		t->pmtu_pending = 1;
 399		return;
 400	}
 401
 402	if (!(t->param_flags & SPP_PMTUD_ENABLE))
 403		/* We can't allow retransmitting in such case, as the
 404		 * retransmission would be sized just as before, and thus we
 405		 * would get another icmp, and retransmit again.
 406		 */
 407		return;
 
 408
 409	/* Update transports view of the MTU. Return if no update was needed.
 410	 * If an update wasn't needed/possible, it also doesn't make sense to
 411	 * try to retransmit now.
 
 
 412	 */
 413	if (!sctp_transport_update_pmtu(t, pmtu))
 414		return;
 415
 416	/* Update association pmtu. */
 417	sctp_assoc_sync_pmtu(asoc);
 418
 419	/* Retransmit with the new pmtu setting. */
 420	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
 421}
 422
 423void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
 424			struct sk_buff *skb)
 425{
 426	struct dst_entry *dst;
 427
 428	if (sock_owned_by_user(sk) || !t)
 429		return;
 430	dst = sctp_transport_dst_check(t);
 431	if (dst)
 432		dst->ops->redirect(dst, sk, skb);
 433}
 434
 435/*
 436 * SCTP Implementer's Guide, 2.37 ICMP handling procedures
 437 *
 438 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
 439 *        or a "Protocol Unreachable" treat this message as an abort
 440 *        with the T bit set.
 441 *
 442 * This function sends an event to the state machine, which will abort the
 443 * association.
 444 *
 445 */
 446void sctp_icmp_proto_unreachable(struct sock *sk,
 447			   struct sctp_association *asoc,
 448			   struct sctp_transport *t)
 449{
 
 
 450	if (sock_owned_by_user(sk)) {
 451		if (timer_pending(&t->proto_unreach_timer))
 452			return;
 453		else {
 454			if (!mod_timer(&t->proto_unreach_timer,
 455						jiffies + (HZ/20)))
 456				sctp_association_hold(asoc);
 457		}
 
 458	} else {
 459		struct net *net = sock_net(sk);
 460
 461		pr_debug("%s: unrecognized next header type "
 462			 "encountered!\n", __func__);
 463
 464		if (del_timer(&t->proto_unreach_timer))
 465			sctp_association_put(asoc);
 466
 467		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
 468			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
 469			   asoc->state, asoc->ep, asoc, t,
 470			   GFP_ATOMIC);
 471	}
 472}
 473
 474/* Common lookup code for icmp/icmpv6 error handler. */
 475struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
 476			     struct sctphdr *sctphdr,
 477			     struct sctp_association **app,
 478			     struct sctp_transport **tpp)
 479{
 480	struct sctp_init_chunk *chunkhdr, _chunkhdr;
 481	union sctp_addr saddr;
 482	union sctp_addr daddr;
 483	struct sctp_af *af;
 484	struct sock *sk = NULL;
 485	struct sctp_association *asoc;
 486	struct sctp_transport *transport = NULL;
 
 487	__u32 vtag = ntohl(sctphdr->vtag);
 
 488
 489	*app = NULL; *tpp = NULL;
 490
 491	af = sctp_get_af_specific(family);
 492	if (unlikely(!af)) {
 493		return NULL;
 494	}
 495
 496	/* Initialize local addresses for lookups. */
 497	af->from_skb(&saddr, skb, 1);
 498	af->from_skb(&daddr, skb, 0);
 499
 500	/* Look for an association that matches the incoming ICMP error
 501	 * packet.
 502	 */
 503	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
 504	if (!asoc)
 505		return NULL;
 506
 507	sk = asoc->base.sk;
 508
 509	/* RFC 4960, Appendix C. ICMP Handling
 510	 *
 511	 * ICMP6) An implementation MUST validate that the Verification Tag
 512	 * contained in the ICMP message matches the Verification Tag of
 513	 * the peer.  If the Verification Tag is not 0 and does NOT
 514	 * match, discard the ICMP message.  If it is 0 and the ICMP
 515	 * message contains enough bytes to verify that the chunk type is
 516	 * an INIT chunk and that the Initiate Tag matches the tag of the
 517	 * peer, continue with ICMP7.  If the ICMP message is too short
 518	 * or the chunk type or the Initiate Tag does not match, silently
 519	 * discard the packet.
 520	 */
 521	if (vtag == 0) {
 522		/* chunk header + first 4 octects of init header */
 523		chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) +
 524					      sizeof(struct sctphdr),
 525					      sizeof(struct sctp_chunkhdr) +
 526					      sizeof(__be32), &_chunkhdr);
 527		if (!chunkhdr ||
 528		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
 529		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag)
 530			goto out;
 531
 532	} else if (vtag != asoc->c.peer_vtag) {
 533		goto out;
 534	}
 535
 536	bh_lock_sock(sk);
 537
 538	/* If too many ICMPs get dropped on busy
 539	 * servers this needs to be solved differently.
 540	 */
 541	if (sock_owned_by_user(sk))
 542		__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
 543
 544	*app = asoc;
 545	*tpp = transport;
 546	return sk;
 547
 548out:
 549	sctp_transport_put(transport);
 
 550	return NULL;
 551}
 552
 553/* Common cleanup code for icmp/icmpv6 error handler. */
 554void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
 555{
 556	bh_unlock_sock(sk);
 557	sctp_transport_put(t);
 
 558}
 559
 560/*
 561 * This routine is called by the ICMP module when it gets some
 562 * sort of error condition.  If err < 0 then the socket should
 563 * be closed and the error returned to the user.  If err > 0
 564 * it's just the icmp type << 8 | icmp code.  After adjustment
 565 * header points to the first 8 bytes of the sctp header.  We need
 566 * to find the appropriate port.
 567 *
 568 * The locking strategy used here is very "optimistic". When
 569 * someone else accesses the socket the ICMP is just dropped
 570 * and for some paths there is no check at all.
 571 * A more general error queue to queue errors for later handling
 572 * is probably better.
 573 *
 574 */
 575void sctp_v4_err(struct sk_buff *skb, __u32 info)
 576{
 577	const struct iphdr *iph = (const struct iphdr *)skb->data;
 578	const int ihlen = iph->ihl * 4;
 579	const int type = icmp_hdr(skb)->type;
 580	const int code = icmp_hdr(skb)->code;
 581	struct sock *sk;
 582	struct sctp_association *asoc = NULL;
 583	struct sctp_transport *transport;
 584	struct inet_sock *inet;
 585	__u16 saveip, savesctp;
 586	int err;
 587	struct net *net = dev_net(skb->dev);
 
 
 
 
 588
 589	/* Fix up skb to look at the embedded net header. */
 590	saveip = skb->network_header;
 591	savesctp = skb->transport_header;
 592	skb_reset_network_header(skb);
 593	skb_set_transport_header(skb, ihlen);
 594	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
 595	/* Put back, the original values. */
 596	skb->network_header = saveip;
 597	skb->transport_header = savesctp;
 598	if (!sk) {
 599		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 600		return;
 601	}
 602	/* Warning:  The sock lock is held.  Remember to call
 603	 * sctp_err_finish!
 604	 */
 605
 606	switch (type) {
 607	case ICMP_PARAMETERPROB:
 608		err = EPROTO;
 609		break;
 610	case ICMP_DEST_UNREACH:
 611		if (code > NR_ICMP_UNREACH)
 612			goto out_unlock;
 613
 614		/* PMTU discovery (RFC1191) */
 615		if (ICMP_FRAG_NEEDED == code) {
 616			sctp_icmp_frag_needed(sk, asoc, transport,
 617					      SCTP_TRUNC4(info));
 618			goto out_unlock;
 619		} else {
 
 620			if (ICMP_PROT_UNREACH == code) {
 621				sctp_icmp_proto_unreachable(sk, asoc,
 622							    transport);
 623				goto out_unlock;
 624			}
 625		}
 626		err = icmp_err_convert[code].errno;
 627		break;
 628	case ICMP_TIME_EXCEEDED:
 629		/* Ignore any time exceeded errors due to fragment reassembly
 630		 * timeouts.
 631		 */
 632		if (ICMP_EXC_FRAGTIME == code)
 633			goto out_unlock;
 634
 635		err = EHOSTUNREACH;
 636		break;
 637	case ICMP_REDIRECT:
 638		sctp_icmp_redirect(sk, transport, skb);
 639		/* Fall through to out_unlock. */
 640	default:
 641		goto out_unlock;
 642	}
 643
 644	inet = inet_sk(sk);
 645	if (!sock_owned_by_user(sk) && inet->recverr) {
 646		sk->sk_err = err;
 647		sk->sk_error_report(sk);
 648	} else {  /* Only an error on timeout */
 649		sk->sk_err_soft = err;
 650	}
 651
 652out_unlock:
 653	sctp_err_finish(sk, transport);
 654}
 655
 656/*
 657 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
 658 *
 659 * This function scans all the chunks in the OOTB packet to determine if
 660 * the packet should be discarded right away.  If a response might be needed
 661 * for this packet, or, if further processing is possible, the packet will
 662 * be queued to a proper inqueue for the next phase of handling.
 663 *
 664 * Output:
 665 * Return 0 - If further processing is needed.
 666 * Return 1 - If the packet can be discarded right away.
 667 */
 668static int sctp_rcv_ootb(struct sk_buff *skb)
 669{
 670	struct sctp_chunkhdr *ch, _ch;
 671	int ch_end, offset = 0;
 
 
 672
 673	/* Scan through all the chunks in the packet.  */
 674	do {
 675		/* Make sure we have at least the header there */
 676		if (offset + sizeof(_ch) > skb->len)
 677			break;
 678
 679		ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
 680
 681		/* Break out if chunk length is less then minimal. */
 682		if (ntohs(ch->length) < sizeof(_ch))
 683			break;
 684
 685		ch_end = offset + SCTP_PAD4(ntohs(ch->length));
 686		if (ch_end > skb->len)
 687			break;
 688
 689		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
 690		 * receiver MUST silently discard the OOTB packet and take no
 691		 * further action.
 692		 */
 693		if (SCTP_CID_ABORT == ch->type)
 694			goto discard;
 695
 696		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
 697		 * chunk, the receiver should silently discard the packet
 698		 * and take no further action.
 699		 */
 700		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
 701			goto discard;
 702
 703		/* RFC 4460, 2.11.2
 704		 * This will discard packets with INIT chunk bundled as
 705		 * subsequent chunks in the packet.  When INIT is first,
 706		 * the normal INIT processing will discard the chunk.
 707		 */
 708		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
 709			goto discard;
 710
 711		offset = ch_end;
 712	} while (ch_end < skb->len);
 713
 714	return 0;
 715
 716discard:
 717	return 1;
 718}
 719
 720/* Insert endpoint into the hash table.  */
 721static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
 722{
 723	struct net *net = sock_net(ep->base.sk);
 724	struct sctp_ep_common *epb;
 725	struct sctp_hashbucket *head;
 726
 727	epb = &ep->base;
 728
 729	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
 730	head = &sctp_ep_hashtable[epb->hashent];
 731
 732	write_lock(&head->lock);
 733	hlist_add_head(&epb->node, &head->chain);
 734	write_unlock(&head->lock);
 735}
 736
 737/* Add an endpoint to the hash. Local BH-safe. */
 738void sctp_hash_endpoint(struct sctp_endpoint *ep)
 739{
 740	local_bh_disable();
 741	__sctp_hash_endpoint(ep);
 742	local_bh_enable();
 743}
 744
 745/* Remove endpoint from the hash table.  */
 746static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
 747{
 748	struct net *net = sock_net(ep->base.sk);
 749	struct sctp_hashbucket *head;
 750	struct sctp_ep_common *epb;
 751
 752	epb = &ep->base;
 753
 754	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
 
 
 
 755
 756	head = &sctp_ep_hashtable[epb->hashent];
 757
 758	write_lock(&head->lock);
 759	hlist_del_init(&epb->node);
 760	write_unlock(&head->lock);
 761}
 762
 763/* Remove endpoint from the hash.  Local BH-safe. */
 764void sctp_unhash_endpoint(struct sctp_endpoint *ep)
 765{
 766	local_bh_disable();
 767	__sctp_unhash_endpoint(ep);
 768	local_bh_enable();
 769}
 770
 771/* Look up an endpoint. */
 772static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
 773						const union sctp_addr *laddr)
 774{
 775	struct sctp_hashbucket *head;
 776	struct sctp_ep_common *epb;
 777	struct sctp_endpoint *ep;
 
 778	int hash;
 779
 780	hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port));
 781	head = &sctp_ep_hashtable[hash];
 782	read_lock(&head->lock);
 783	sctp_for_each_hentry(epb, &head->chain) {
 784		ep = sctp_ep(epb);
 785		if (sctp_endpoint_is_match(ep, net, laddr))
 786			goto hit;
 787	}
 788
 789	ep = sctp_sk(net->sctp.ctl_sock)->ep;
 790
 791hit:
 792	sctp_endpoint_hold(ep);
 793	read_unlock(&head->lock);
 794	return ep;
 795}
 796
 797/* rhashtable for transport */
 798struct sctp_hash_cmp_arg {
 799	const union sctp_addr	*paddr;
 800	const struct net	*net;
 801	__be16			lport;
 802};
 803
 804static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
 805				const void *ptr)
 806{
 807	struct sctp_transport *t = (struct sctp_transport *)ptr;
 808	const struct sctp_hash_cmp_arg *x = arg->key;
 809	int err = 1;
 810
 811	if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
 812		return err;
 813	if (!sctp_transport_hold(t))
 814		return err;
 815
 816	if (!net_eq(sock_net(t->asoc->base.sk), x->net))
 817		goto out;
 818	if (x->lport != htons(t->asoc->base.bind_addr.port))
 819		goto out;
 820
 821	err = 0;
 822out:
 823	sctp_transport_put(t);
 824	return err;
 825}
 826
 827static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
 828{
 829	const struct sctp_transport *t = data;
 830	const union sctp_addr *paddr = &t->ipaddr;
 831	const struct net *net = sock_net(t->asoc->base.sk);
 832	__be16 lport = htons(t->asoc->base.bind_addr.port);
 833	__u32 addr;
 834
 835	if (paddr->sa.sa_family == AF_INET6)
 836		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
 837	else
 838		addr = (__force __u32)paddr->v4.sin_addr.s_addr;
 839
 840	return  jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
 841			     (__force __u32)lport, net_hash_mix(net), seed);
 842}
 843
 844static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed)
 
 845{
 846	const struct sctp_hash_cmp_arg *x = data;
 847	const union sctp_addr *paddr = x->paddr;
 848	const struct net *net = x->net;
 849	__be16 lport = x->lport;
 850	__u32 addr;
 851
 852	if (paddr->sa.sa_family == AF_INET6)
 853		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
 854	else
 855		addr = (__force __u32)paddr->v4.sin_addr.s_addr;
 856
 857	return  jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
 858			     (__force __u32)lport, net_hash_mix(net), seed);
 859}
 860
 861static const struct rhashtable_params sctp_hash_params = {
 862	.head_offset		= offsetof(struct sctp_transport, node),
 863	.hashfn			= sctp_hash_key,
 864	.obj_hashfn		= sctp_hash_obj,
 865	.obj_cmpfn		= sctp_hash_cmp,
 866	.automatic_shrinking	= true,
 867};
 868
 869int sctp_transport_hashtable_init(void)
 870{
 871	return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
 872}
 873
 874void sctp_transport_hashtable_destroy(void)
 
 875{
 876	rhltable_destroy(&sctp_transport_hashtable);
 877}
 878
 879int sctp_hash_transport(struct sctp_transport *t)
 880{
 881	struct sctp_transport *transport;
 882	struct rhlist_head *tmp, *list;
 883	struct sctp_hash_cmp_arg arg;
 884	int err;
 885
 886	if (t->asoc->temp)
 887		return 0;
 888
 889	arg.net   = sock_net(t->asoc->base.sk);
 890	arg.paddr = &t->ipaddr;
 891	arg.lport = htons(t->asoc->base.bind_addr.port);
 892
 893	rcu_read_lock();
 894	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
 895			       sctp_hash_params);
 896
 897	rhl_for_each_entry_rcu(transport, tmp, list, node)
 898		if (transport->asoc->ep == t->asoc->ep) {
 899			rcu_read_unlock();
 900			return -EEXIST;
 901		}
 902	rcu_read_unlock();
 903
 904	err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
 905				  &t->node, sctp_hash_params);
 906	if (err)
 907		pr_err_once("insert transport fail, errno %d\n", err);
 908
 909	return err;
 
 
 910}
 911
 912void sctp_unhash_transport(struct sctp_transport *t)
 
 913{
 914	if (t->asoc->temp)
 915		return;
 916
 917	rhltable_remove(&sctp_transport_hashtable, &t->node,
 918			sctp_hash_params);
 919}
 920
 921/* return a transport with holding it */
 922struct sctp_transport *sctp_addrs_lookup_transport(
 923				struct net *net,
 924				const union sctp_addr *laddr,
 925				const union sctp_addr *paddr)
 926{
 927	struct rhlist_head *tmp, *list;
 928	struct sctp_transport *t;
 929	struct sctp_hash_cmp_arg arg = {
 930		.paddr = paddr,
 931		.net   = net,
 932		.lport = laddr->v4.sin_port,
 933	};
 934
 935	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
 936			       sctp_hash_params);
 937
 938	rhl_for_each_entry_rcu(t, tmp, list, node) {
 939		if (!sctp_transport_hold(t))
 940			continue;
 941
 942		if (sctp_bind_addr_match(&t->asoc->base.bind_addr,
 943					 laddr, sctp_sk(t->asoc->base.sk)))
 944			return t;
 945		sctp_transport_put(t);
 946	}
 947
 948	return NULL;
 949}
 950
 951/* return a transport without holding it, as it's only used under sock lock */
 952struct sctp_transport *sctp_epaddr_lookup_transport(
 953				const struct sctp_endpoint *ep,
 954				const union sctp_addr *paddr)
 955{
 956	struct net *net = sock_net(ep->base.sk);
 957	struct rhlist_head *tmp, *list;
 958	struct sctp_transport *t;
 959	struct sctp_hash_cmp_arg arg = {
 960		.paddr = paddr,
 961		.net   = net,
 962		.lport = htons(ep->base.bind_addr.port),
 963	};
 964
 965	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
 966			       sctp_hash_params);
 967
 968	rhl_for_each_entry_rcu(t, tmp, list, node)
 969		if (ep == t->asoc->ep)
 970			return t;
 971
 972	return NULL;
 973}
 974
 975/* Look up an association. */
 976static struct sctp_association *__sctp_lookup_association(
 977					struct net *net,
 978					const union sctp_addr *local,
 979					const union sctp_addr *peer,
 980					struct sctp_transport **pt)
 981{
 982	struct sctp_transport *t;
 983	struct sctp_association *asoc = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 984
 985	t = sctp_addrs_lookup_transport(net, local, peer);
 986	if (!t)
 987		goto out;
 988
 989	asoc = t->asoc;
 990	*pt = t;
 991
 992out:
 
 
 
 993	return asoc;
 994}
 995
 996/* Look up an association. protected by RCU read lock */
 997static
 998struct sctp_association *sctp_lookup_association(struct net *net,
 999						 const union sctp_addr *laddr,
1000						 const union sctp_addr *paddr,
1001						 struct sctp_transport **transportp)
1002{
1003	struct sctp_association *asoc;
1004
1005	rcu_read_lock();
1006	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1007	rcu_read_unlock();
1008
1009	return asoc;
1010}
1011
1012/* Is there an association matching the given local and peer addresses? */
1013bool sctp_has_association(struct net *net,
1014			  const union sctp_addr *laddr,
1015			  const union sctp_addr *paddr)
1016{
 
1017	struct sctp_transport *transport;
1018
1019	if (sctp_lookup_association(net, laddr, paddr, &transport)) {
1020		sctp_transport_put(transport);
1021		return true;
1022	}
1023
1024	return false;
1025}
1026
1027/*
1028 * SCTP Implementors Guide, 2.18 Handling of address
1029 * parameters within the INIT or INIT-ACK.
1030 *
1031 * D) When searching for a matching TCB upon reception of an INIT
1032 *    or INIT-ACK chunk the receiver SHOULD use not only the
1033 *    source address of the packet (containing the INIT or
1034 *    INIT-ACK) but the receiver SHOULD also use all valid
1035 *    address parameters contained within the chunk.
1036 *
1037 * 2.18.3 Solution description
1038 *
1039 * This new text clearly specifies to an implementor the need
1040 * to look within the INIT or INIT-ACK. Any implementation that
1041 * does not do this, may not be able to establish associations
1042 * in certain circumstances.
1043 *
1044 */
1045static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1046	struct sk_buff *skb,
1047	const union sctp_addr *laddr, struct sctp_transport **transportp)
1048{
1049	struct sctp_association *asoc;
1050	union sctp_addr addr;
1051	union sctp_addr *paddr = &addr;
1052	struct sctphdr *sh = sctp_hdr(skb);
1053	union sctp_params params;
1054	struct sctp_init_chunk *init;
 
1055	struct sctp_af *af;
1056
1057	/*
1058	 * This code will NOT touch anything inside the chunk--it is
1059	 * strictly READ-ONLY.
1060	 *
1061	 * RFC 2960 3  SCTP packet Format
1062	 *
1063	 * Multiple chunks can be bundled into one SCTP packet up to
1064	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1065	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
1066	 * other chunk in a packet.  See Section 6.10 for more details
1067	 * on chunk bundling.
1068	 */
1069
1070	/* Find the start of the TLVs and the end of the chunk.  This is
1071	 * the region we search for address parameters.
1072	 */
1073	init = (struct sctp_init_chunk *)skb->data;
1074
1075	/* Walk the parameters looking for embedded addresses. */
1076	sctp_walk_params(params, init, init_hdr.params) {
1077
1078		/* Note: Ignoring hostname addresses. */
1079		af = sctp_get_af_specific(param_type2af(params.p->type));
1080		if (!af)
1081			continue;
1082
1083		af->from_addr_param(paddr, params.addr, sh->source, 0);
1084
1085		asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1086		if (asoc)
1087			return asoc;
1088	}
1089
1090	return NULL;
1091}
1092
1093/* ADD-IP, Section 5.2
1094 * When an endpoint receives an ASCONF Chunk from the remote peer
1095 * special procedures may be needed to identify the association the
1096 * ASCONF Chunk is associated with. To properly find the association
1097 * the following procedures SHOULD be followed:
1098 *
1099 * D2) If the association is not found, use the address found in the
1100 * Address Parameter TLV combined with the port number found in the
1101 * SCTP common header. If found proceed to rule D4.
1102 *
1103 * D2-ext) If more than one ASCONF Chunks are packed together, use the
1104 * address found in the ASCONF Address Parameter TLV of each of the
1105 * subsequent ASCONF Chunks. If found, proceed to rule D4.
1106 */
1107static struct sctp_association *__sctp_rcv_asconf_lookup(
1108					struct net *net,
1109					struct sctp_chunkhdr *ch,
1110					const union sctp_addr *laddr,
1111					__be16 peer_port,
1112					struct sctp_transport **transportp)
1113{
1114	struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch;
1115	struct sctp_af *af;
1116	union sctp_addr_param *param;
1117	union sctp_addr paddr;
1118
1119	/* Skip over the ADDIP header and find the Address parameter */
1120	param = (union sctp_addr_param *)(asconf + 1);
1121
1122	af = sctp_get_af_specific(param_type2af(param->p.type));
1123	if (unlikely(!af))
1124		return NULL;
1125
1126	af->from_addr_param(&paddr, param, peer_port, 0);
1127
1128	return __sctp_lookup_association(net, laddr, &paddr, transportp);
1129}
1130
1131
1132/* SCTP-AUTH, Section 6.3:
1133*    If the receiver does not find a STCB for a packet containing an AUTH
1134*    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1135*    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1136*    association.
1137*
1138* This means that any chunks that can help us identify the association need
1139* to be looked at to find this association.
1140*/
1141static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1142				      struct sk_buff *skb,
1143				      const union sctp_addr *laddr,
1144				      struct sctp_transport **transportp)
1145{
1146	struct sctp_association *asoc = NULL;
1147	struct sctp_chunkhdr *ch;
1148	int have_auth = 0;
1149	unsigned int chunk_num = 1;
1150	__u8 *ch_end;
1151
1152	/* Walk through the chunks looking for AUTH or ASCONF chunks
1153	 * to help us find the association.
1154	 */
1155	ch = (struct sctp_chunkhdr *)skb->data;
1156	do {
1157		/* Break out if chunk length is less then minimal. */
1158		if (ntohs(ch->length) < sizeof(*ch))
1159			break;
1160
1161		ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
1162		if (ch_end > skb_tail_pointer(skb))
1163			break;
1164
1165		switch (ch->type) {
1166		case SCTP_CID_AUTH:
1167			have_auth = chunk_num;
1168			break;
1169
1170		case SCTP_CID_COOKIE_ECHO:
1171			/* If a packet arrives containing an AUTH chunk as
1172			 * a first chunk, a COOKIE-ECHO chunk as the second
1173			 * chunk, and possibly more chunks after them, and
1174			 * the receiver does not have an STCB for that
1175			 * packet, then authentication is based on
1176			 * the contents of the COOKIE- ECHO chunk.
1177			 */
1178			if (have_auth == 1 && chunk_num == 2)
1179				return NULL;
1180			break;
1181
1182		case SCTP_CID_ASCONF:
1183			if (have_auth || net->sctp.addip_noauth)
1184				asoc = __sctp_rcv_asconf_lookup(
1185						net, ch, laddr,
1186						sctp_hdr(skb)->source,
1187						transportp);
1188		default:
1189			break;
1190		}
1191
1192		if (asoc)
1193			break;
1194
1195		ch = (struct sctp_chunkhdr *)ch_end;
1196		chunk_num++;
1197	} while (ch_end < skb_tail_pointer(skb));
1198
1199	return asoc;
1200}
1201
1202/*
1203 * There are circumstances when we need to look inside the SCTP packet
1204 * for information to help us find the association.   Examples
1205 * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1206 * chunks.
1207 */
1208static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1209				      struct sk_buff *skb,
1210				      const union sctp_addr *laddr,
1211				      struct sctp_transport **transportp)
1212{
1213	struct sctp_chunkhdr *ch;
1214
1215	/* We do not allow GSO frames here as we need to linearize and
1216	 * then cannot guarantee frame boundaries. This shouldn't be an
1217	 * issue as packets hitting this are mostly INIT or INIT-ACK and
1218	 * those cannot be on GSO-style anyway.
1219	 */
1220	if (skb_is_gso(skb) && skb_is_gso_sctp(skb))
1221		return NULL;
1222
1223	ch = (struct sctp_chunkhdr *)skb->data;
1224
1225	/* The code below will attempt to walk the chunk and extract
1226	 * parameter information.  Before we do that, we need to verify
1227	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1228	 * walk off the end.
1229	 */
1230	if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
1231		return NULL;
1232
1233	/* If this is INIT/INIT-ACK look inside the chunk too. */
1234	if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1235		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
 
 
 
1236
1237	return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
 
 
 
 
 
 
1238}
1239
1240/* Lookup an association for an inbound skb. */
1241static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1242				      struct sk_buff *skb,
1243				      const union sctp_addr *paddr,
1244				      const union sctp_addr *laddr,
1245				      struct sctp_transport **transportp)
1246{
1247	struct sctp_association *asoc;
1248
1249	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1250	if (asoc)
1251		goto out;
1252
1253	/* Further lookup for INIT/INIT-ACK packets.
1254	 * SCTP Implementors Guide, 2.18 Handling of address
1255	 * parameters within the INIT or INIT-ACK.
1256	 */
1257	asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1258	if (asoc)
1259		goto out;
1260
1261	if (paddr->sa.sa_family == AF_INET)
1262		pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n",
1263			 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port),
1264			 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port));
1265	else
1266		pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n",
1267			 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port),
1268			 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port));
1269
1270out:
1271	return asoc;
1272}