Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/* ******************************************************************
   2 * Huffman encoder, part of New Generation Entropy library
   3 * Copyright (c) Yann Collet, Facebook, Inc.
   4 *
   5 *  You can contact the author at :
   6 *  - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
   7 *  - Public forum : https://groups.google.com/forum/#!forum/lz4c
   8 *
   9 * This source code is licensed under both the BSD-style license (found in the
  10 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
  11 * in the COPYING file in the root directory of this source tree).
  12 * You may select, at your option, one of the above-listed licenses.
  13****************************************************************** */
  14
  15/* **************************************************************
  16*  Compiler specifics
  17****************************************************************/
  18
  19
  20/* **************************************************************
  21*  Includes
  22****************************************************************/
  23#include "../common/zstd_deps.h"     /* ZSTD_memcpy, ZSTD_memset */
  24#include "../common/compiler.h"
  25#include "../common/bitstream.h"
  26#include "hist.h"
  27#define FSE_STATIC_LINKING_ONLY   /* FSE_optimalTableLog_internal */
  28#include "../common/fse.h"        /* header compression */
  29#define HUF_STATIC_LINKING_ONLY
  30#include "../common/huf.h"
  31#include "../common/error_private.h"
  32
  33
  34/* **************************************************************
  35*  Error Management
  36****************************************************************/
  37#define HUF_isError ERR_isError
  38#define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c)   /* use only *after* variable declarations */
  39
  40
  41/* **************************************************************
  42*  Utils
  43****************************************************************/
  44unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
  45{
  46    return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
  47}
  48
  49
  50/* *******************************************************
  51*  HUF : Huffman block compression
  52*********************************************************/
  53#define HUF_WORKSPACE_MAX_ALIGNMENT 8
  54
  55static void* HUF_alignUpWorkspace(void* workspace, size_t* workspaceSizePtr, size_t align)
  56{
  57    size_t const mask = align - 1;
  58    size_t const rem = (size_t)workspace & mask;
  59    size_t const add = (align - rem) & mask;
  60    BYTE* const aligned = (BYTE*)workspace + add;
  61    assert((align & (align - 1)) == 0); /* pow 2 */
  62    assert(align <= HUF_WORKSPACE_MAX_ALIGNMENT);
  63    if (*workspaceSizePtr >= add) {
  64        assert(add < align);
  65        assert(((size_t)aligned & mask) == 0);
  66        *workspaceSizePtr -= add;
  67        return aligned;
  68    } else {
  69        *workspaceSizePtr = 0;
  70        return NULL;
  71    }
  72}
  73
  74
  75/* HUF_compressWeights() :
  76 * Same as FSE_compress(), but dedicated to huff0's weights compression.
  77 * The use case needs much less stack memory.
  78 * Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX.
  79 */
  80#define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6
  81
  82typedef struct {
  83    FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)];
  84    U32 scratchBuffer[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(HUF_TABLELOG_MAX, MAX_FSE_TABLELOG_FOR_HUFF_HEADER)];
  85    unsigned count[HUF_TABLELOG_MAX+1];
  86    S16 norm[HUF_TABLELOG_MAX+1];
  87} HUF_CompressWeightsWksp;
  88
  89static size_t HUF_compressWeights(void* dst, size_t dstSize, const void* weightTable, size_t wtSize, void* workspace, size_t workspaceSize)
  90{
  91    BYTE* const ostart = (BYTE*) dst;
  92    BYTE* op = ostart;
  93    BYTE* const oend = ostart + dstSize;
  94
  95    unsigned maxSymbolValue = HUF_TABLELOG_MAX;
  96    U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER;
  97    HUF_CompressWeightsWksp* wksp = (HUF_CompressWeightsWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32));
  98
  99    if (workspaceSize < sizeof(HUF_CompressWeightsWksp)) return ERROR(GENERIC);
 100
 101    /* init conditions */
 102    if (wtSize <= 1) return 0;  /* Not compressible */
 103
 104    /* Scan input and build symbol stats */
 105    {   unsigned const maxCount = HIST_count_simple(wksp->count, &maxSymbolValue, weightTable, wtSize);   /* never fails */
 106        if (maxCount == wtSize) return 1;   /* only a single symbol in src : rle */
 107        if (maxCount == 1) return 0;        /* each symbol present maximum once => not compressible */
 108    }
 109
 110    tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue);
 111    CHECK_F( FSE_normalizeCount(wksp->norm, tableLog, wksp->count, wtSize, maxSymbolValue, /* useLowProbCount */ 0) );
 112
 113    /* Write table description header */
 114    {   CHECK_V_F(hSize, FSE_writeNCount(op, (size_t)(oend-op), wksp->norm, maxSymbolValue, tableLog) );
 115        op += hSize;
 116    }
 117
 118    /* Compress */
 119    CHECK_F( FSE_buildCTable_wksp(wksp->CTable, wksp->norm, maxSymbolValue, tableLog, wksp->scratchBuffer, sizeof(wksp->scratchBuffer)) );
 120    {   CHECK_V_F(cSize, FSE_compress_usingCTable(op, (size_t)(oend - op), weightTable, wtSize, wksp->CTable) );
 121        if (cSize == 0) return 0;   /* not enough space for compressed data */
 122        op += cSize;
 123    }
 124
 125    return (size_t)(op-ostart);
 126}
 127
 128static size_t HUF_getNbBits(HUF_CElt elt)
 129{
 130    return elt & 0xFF;
 131}
 132
 133static size_t HUF_getNbBitsFast(HUF_CElt elt)
 134{
 135    return elt;
 136}
 137
 138static size_t HUF_getValue(HUF_CElt elt)
 139{
 140    return elt & ~0xFF;
 141}
 142
 143static size_t HUF_getValueFast(HUF_CElt elt)
 144{
 145    return elt;
 146}
 147
 148static void HUF_setNbBits(HUF_CElt* elt, size_t nbBits)
 149{
 150    assert(nbBits <= HUF_TABLELOG_ABSOLUTEMAX);
 151    *elt = nbBits;
 152}
 153
 154static void HUF_setValue(HUF_CElt* elt, size_t value)
 155{
 156    size_t const nbBits = HUF_getNbBits(*elt);
 157    if (nbBits > 0) {
 158        assert((value >> nbBits) == 0);
 159        *elt |= value << (sizeof(HUF_CElt) * 8 - nbBits);
 160    }
 161}
 162
 163typedef struct {
 164    HUF_CompressWeightsWksp wksp;
 165    BYTE bitsToWeight[HUF_TABLELOG_MAX + 1];   /* precomputed conversion table */
 166    BYTE huffWeight[HUF_SYMBOLVALUE_MAX];
 167} HUF_WriteCTableWksp;
 168
 169size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize,
 170                            const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog,
 171                            void* workspace, size_t workspaceSize)
 172{
 173    HUF_CElt const* const ct = CTable + 1;
 174    BYTE* op = (BYTE*)dst;
 175    U32 n;
 176    HUF_WriteCTableWksp* wksp = (HUF_WriteCTableWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32));
 177
 178    /* check conditions */
 179    if (workspaceSize < sizeof(HUF_WriteCTableWksp)) return ERROR(GENERIC);
 180    if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
 181
 182    /* convert to weight */
 183    wksp->bitsToWeight[0] = 0;
 184    for (n=1; n<huffLog+1; n++)
 185        wksp->bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
 186    for (n=0; n<maxSymbolValue; n++)
 187        wksp->huffWeight[n] = wksp->bitsToWeight[HUF_getNbBits(ct[n])];
 188
 189    /* attempt weights compression by FSE */
 190    if (maxDstSize < 1) return ERROR(dstSize_tooSmall);
 191    {   CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, wksp->huffWeight, maxSymbolValue, &wksp->wksp, sizeof(wksp->wksp)) );
 192        if ((hSize>1) & (hSize < maxSymbolValue/2)) {   /* FSE compressed */
 193            op[0] = (BYTE)hSize;
 194            return hSize+1;
 195    }   }
 196
 197    /* write raw values as 4-bits (max : 15) */
 198    if (maxSymbolValue > (256-128)) return ERROR(GENERIC);   /* should not happen : likely means source cannot be compressed */
 199    if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall);   /* not enough space within dst buffer */
 200    op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1));
 201    wksp->huffWeight[maxSymbolValue] = 0;   /* to be sure it doesn't cause msan issue in final combination */
 202    for (n=0; n<maxSymbolValue; n+=2)
 203        op[(n/2)+1] = (BYTE)((wksp->huffWeight[n] << 4) + wksp->huffWeight[n+1]);
 204    return ((maxSymbolValue+1)/2) + 1;
 205}
 206
 207/*! HUF_writeCTable() :
 208    `CTable` : Huffman tree to save, using huf representation.
 209    @return : size of saved CTable */
 210size_t HUF_writeCTable (void* dst, size_t maxDstSize,
 211                        const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog)
 212{
 213    HUF_WriteCTableWksp wksp;
 214    return HUF_writeCTable_wksp(dst, maxDstSize, CTable, maxSymbolValue, huffLog, &wksp, sizeof(wksp));
 215}
 216
 217
 218size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* hasZeroWeights)
 219{
 220    BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];   /* init not required, even though some static analyzer may complain */
 221    U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];   /* large enough for values from 0 to 16 */
 222    U32 tableLog = 0;
 223    U32 nbSymbols = 0;
 224    HUF_CElt* const ct = CTable + 1;
 225
 226    /* get symbol weights */
 227    CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize));
 228    *hasZeroWeights = (rankVal[0] > 0);
 229
 230    /* check result */
 231    if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
 232    if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall);
 233
 234    CTable[0] = tableLog;
 235
 236    /* Prepare base value per rank */
 237    {   U32 n, nextRankStart = 0;
 238        for (n=1; n<=tableLog; n++) {
 239            U32 curr = nextRankStart;
 240            nextRankStart += (rankVal[n] << (n-1));
 241            rankVal[n] = curr;
 242    }   }
 243
 244    /* fill nbBits */
 245    {   U32 n; for (n=0; n<nbSymbols; n++) {
 246            const U32 w = huffWeight[n];
 247            HUF_setNbBits(ct + n, (BYTE)(tableLog + 1 - w) & -(w != 0));
 248    }   }
 249
 250    /* fill val */
 251    {   U16 nbPerRank[HUF_TABLELOG_MAX+2]  = {0};  /* support w=0=>n=tableLog+1 */
 252        U16 valPerRank[HUF_TABLELOG_MAX+2] = {0};
 253        { U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[HUF_getNbBits(ct[n])]++; }
 254        /* determine stating value per rank */
 255        valPerRank[tableLog+1] = 0;   /* for w==0 */
 256        {   U16 min = 0;
 257            U32 n; for (n=tableLog; n>0; n--) {  /* start at n=tablelog <-> w=1 */
 258                valPerRank[n] = min;     /* get starting value within each rank */
 259                min += nbPerRank[n];
 260                min >>= 1;
 261        }   }
 262        /* assign value within rank, symbol order */
 263        { U32 n; for (n=0; n<nbSymbols; n++) HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++); }
 264    }
 265
 266    *maxSymbolValuePtr = nbSymbols - 1;
 267    return readSize;
 268}
 269
 270U32 HUF_getNbBitsFromCTable(HUF_CElt const* CTable, U32 symbolValue)
 271{
 272    const HUF_CElt* ct = CTable + 1;
 273    assert(symbolValue <= HUF_SYMBOLVALUE_MAX);
 274    return (U32)HUF_getNbBits(ct[symbolValue]);
 275}
 276
 277
 278typedef struct nodeElt_s {
 279    U32 count;
 280    U16 parent;
 281    BYTE byte;
 282    BYTE nbBits;
 283} nodeElt;
 284
 285/*
 286 * HUF_setMaxHeight():
 287 * Enforces maxNbBits on the Huffman tree described in huffNode.
 288 *
 289 * It sets all nodes with nbBits > maxNbBits to be maxNbBits. Then it adjusts
 290 * the tree to so that it is a valid canonical Huffman tree.
 291 *
 292 * @pre               The sum of the ranks of each symbol == 2^largestBits,
 293 *                    where largestBits == huffNode[lastNonNull].nbBits.
 294 * @post              The sum of the ranks of each symbol == 2^largestBits,
 295 *                    where largestBits is the return value <= maxNbBits.
 296 *
 297 * @param huffNode    The Huffman tree modified in place to enforce maxNbBits.
 298 * @param lastNonNull The symbol with the lowest count in the Huffman tree.
 299 * @param maxNbBits   The maximum allowed number of bits, which the Huffman tree
 300 *                    may not respect. After this function the Huffman tree will
 301 *                    respect maxNbBits.
 302 * @return            The maximum number of bits of the Huffman tree after adjustment,
 303 *                    necessarily no more than maxNbBits.
 304 */
 305static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
 306{
 307    const U32 largestBits = huffNode[lastNonNull].nbBits;
 308    /* early exit : no elt > maxNbBits, so the tree is already valid. */
 309    if (largestBits <= maxNbBits) return largestBits;
 310
 311    /* there are several too large elements (at least >= 2) */
 312    {   int totalCost = 0;
 313        const U32 baseCost = 1 << (largestBits - maxNbBits);
 314        int n = (int)lastNonNull;
 315
 316        /* Adjust any ranks > maxNbBits to maxNbBits.
 317         * Compute totalCost, which is how far the sum of the ranks is
 318         * we are over 2^largestBits after adjust the offending ranks.
 319         */
 320        while (huffNode[n].nbBits > maxNbBits) {
 321            totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
 322            huffNode[n].nbBits = (BYTE)maxNbBits;
 323            n--;
 324        }
 325        /* n stops at huffNode[n].nbBits <= maxNbBits */
 326        assert(huffNode[n].nbBits <= maxNbBits);
 327        /* n end at index of smallest symbol using < maxNbBits */
 328        while (huffNode[n].nbBits == maxNbBits) --n;
 329
 330        /* renorm totalCost from 2^largestBits to 2^maxNbBits
 331         * note : totalCost is necessarily a multiple of baseCost */
 332        assert((totalCost & (baseCost - 1)) == 0);
 333        totalCost >>= (largestBits - maxNbBits);
 334        assert(totalCost > 0);
 335
 336        /* repay normalized cost */
 337        {   U32 const noSymbol = 0xF0F0F0F0;
 338            U32 rankLast[HUF_TABLELOG_MAX+2];
 339
 340            /* Get pos of last (smallest = lowest cum. count) symbol per rank */
 341            ZSTD_memset(rankLast, 0xF0, sizeof(rankLast));
 342            {   U32 currentNbBits = maxNbBits;
 343                int pos;
 344                for (pos=n ; pos >= 0; pos--) {
 345                    if (huffNode[pos].nbBits >= currentNbBits) continue;
 346                    currentNbBits = huffNode[pos].nbBits;   /* < maxNbBits */
 347                    rankLast[maxNbBits-currentNbBits] = (U32)pos;
 348            }   }
 349
 350            while (totalCost > 0) {
 351                /* Try to reduce the next power of 2 above totalCost because we
 352                 * gain back half the rank.
 353                 */
 354                U32 nBitsToDecrease = BIT_highbit32((U32)totalCost) + 1;
 355                for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
 356                    U32 const highPos = rankLast[nBitsToDecrease];
 357                    U32 const lowPos = rankLast[nBitsToDecrease-1];
 358                    if (highPos == noSymbol) continue;
 359                    /* Decrease highPos if no symbols of lowPos or if it is
 360                     * not cheaper to remove 2 lowPos than highPos.
 361                     */
 362                    if (lowPos == noSymbol) break;
 363                    {   U32 const highTotal = huffNode[highPos].count;
 364                        U32 const lowTotal = 2 * huffNode[lowPos].count;
 365                        if (highTotal <= lowTotal) break;
 366                }   }
 367                /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
 368                assert(rankLast[nBitsToDecrease] != noSymbol || nBitsToDecrease == 1);
 369                /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
 370                while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol))
 371                    nBitsToDecrease++;
 372                assert(rankLast[nBitsToDecrease] != noSymbol);
 373                /* Increase the number of bits to gain back half the rank cost. */
 374                totalCost -= 1 << (nBitsToDecrease-1);
 375                huffNode[rankLast[nBitsToDecrease]].nbBits++;
 376
 377                /* Fix up the new rank.
 378                 * If the new rank was empty, this symbol is now its smallest.
 379                 * Otherwise, this symbol will be the largest in the new rank so no adjustment.
 380                 */
 381                if (rankLast[nBitsToDecrease-1] == noSymbol)
 382                    rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease];
 383                /* Fix up the old rank.
 384                 * If the symbol was at position 0, meaning it was the highest weight symbol in the tree,
 385                 * it must be the only symbol in its rank, so the old rank now has no symbols.
 386                 * Otherwise, since the Huffman nodes are sorted by count, the previous position is now
 387                 * the smallest node in the rank. If the previous position belongs to a different rank,
 388                 * then the rank is now empty.
 389                 */
 390                if (rankLast[nBitsToDecrease] == 0)    /* special case, reached largest symbol */
 391                    rankLast[nBitsToDecrease] = noSymbol;
 392                else {
 393                    rankLast[nBitsToDecrease]--;
 394                    if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease)
 395                        rankLast[nBitsToDecrease] = noSymbol;   /* this rank is now empty */
 396                }
 397            }   /* while (totalCost > 0) */
 398
 399            /* If we've removed too much weight, then we have to add it back.
 400             * To avoid overshooting again, we only adjust the smallest rank.
 401             * We take the largest nodes from the lowest rank 0 and move them
 402             * to rank 1. There's guaranteed to be enough rank 0 symbols because
 403             * TODO.
 404             */
 405            while (totalCost < 0) {  /* Sometimes, cost correction overshoot */
 406                /* special case : no rank 1 symbol (using maxNbBits-1);
 407                 * let's create one from largest rank 0 (using maxNbBits).
 408                 */
 409                if (rankLast[1] == noSymbol) {
 410                    while (huffNode[n].nbBits == maxNbBits) n--;
 411                    huffNode[n+1].nbBits--;
 412                    assert(n >= 0);
 413                    rankLast[1] = (U32)(n+1);
 414                    totalCost++;
 415                    continue;
 416                }
 417                huffNode[ rankLast[1] + 1 ].nbBits--;
 418                rankLast[1]++;
 419                totalCost ++;
 420            }
 421        }   /* repay normalized cost */
 422    }   /* there are several too large elements (at least >= 2) */
 423
 424    return maxNbBits;
 425}
 426
 427typedef struct {
 428    U16 base;
 429    U16 curr;
 430} rankPos;
 431
 432typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32];
 433
 434/* Number of buckets available for HUF_sort() */
 435#define RANK_POSITION_TABLE_SIZE 192
 436
 437typedef struct {
 438  huffNodeTable huffNodeTbl;
 439  rankPos rankPosition[RANK_POSITION_TABLE_SIZE];
 440} HUF_buildCTable_wksp_tables;
 441
 442/* RANK_POSITION_DISTINCT_COUNT_CUTOFF == Cutoff point in HUF_sort() buckets for which we use log2 bucketing.
 443 * Strategy is to use as many buckets as possible for representing distinct
 444 * counts while using the remainder to represent all "large" counts.
 445 *
 446 * To satisfy this requirement for 192 buckets, we can do the following:
 447 * Let buckets 0-166 represent distinct counts of [0, 166]
 448 * Let buckets 166 to 192 represent all remaining counts up to RANK_POSITION_MAX_COUNT_LOG using log2 bucketing.
 449 */
 450#define RANK_POSITION_MAX_COUNT_LOG 32
 451#define RANK_POSITION_LOG_BUCKETS_BEGIN (RANK_POSITION_TABLE_SIZE - 1) - RANK_POSITION_MAX_COUNT_LOG - 1 /* == 158 */
 452#define RANK_POSITION_DISTINCT_COUNT_CUTOFF RANK_POSITION_LOG_BUCKETS_BEGIN + BIT_highbit32(RANK_POSITION_LOG_BUCKETS_BEGIN) /* == 166 */
 453
 454/* Return the appropriate bucket index for a given count. See definition of
 455 * RANK_POSITION_DISTINCT_COUNT_CUTOFF for explanation of bucketing strategy.
 456 */
 457static U32 HUF_getIndex(U32 const count) {
 458    return (count < RANK_POSITION_DISTINCT_COUNT_CUTOFF)
 459        ? count
 460        : BIT_highbit32(count) + RANK_POSITION_LOG_BUCKETS_BEGIN;
 461}
 462
 463/* Helper swap function for HUF_quickSortPartition() */
 464static void HUF_swapNodes(nodeElt* a, nodeElt* b) {
 465	nodeElt tmp = *a;
 466	*a = *b;
 467	*b = tmp;
 468}
 469
 470/* Returns 0 if the huffNode array is not sorted by descending count */
 471MEM_STATIC int HUF_isSorted(nodeElt huffNode[], U32 const maxSymbolValue1) {
 472    U32 i;
 473    for (i = 1; i < maxSymbolValue1; ++i) {
 474        if (huffNode[i].count > huffNode[i-1].count) {
 475            return 0;
 476        }
 477    }
 478    return 1;
 479}
 480
 481/* Insertion sort by descending order */
 482HINT_INLINE void HUF_insertionSort(nodeElt huffNode[], int const low, int const high) {
 483    int i;
 484    int const size = high-low+1;
 485    huffNode += low;
 486    for (i = 1; i < size; ++i) {
 487        nodeElt const key = huffNode[i];
 488        int j = i - 1;
 489        while (j >= 0 && huffNode[j].count < key.count) {
 490            huffNode[j + 1] = huffNode[j];
 491            j--;
 492        }
 493        huffNode[j + 1] = key;
 494    }
 495}
 496
 497/* Pivot helper function for quicksort. */
 498static int HUF_quickSortPartition(nodeElt arr[], int const low, int const high) {
 499    /* Simply select rightmost element as pivot. "Better" selectors like
 500     * median-of-three don't experimentally appear to have any benefit.
 501     */
 502    U32 const pivot = arr[high].count;
 503    int i = low - 1;
 504    int j = low;
 505    for ( ; j < high; j++) {
 506        if (arr[j].count > pivot) {
 507            i++;
 508            HUF_swapNodes(&arr[i], &arr[j]);
 509        }
 510    }
 511    HUF_swapNodes(&arr[i + 1], &arr[high]);
 512    return i + 1;
 513}
 514
 515/* Classic quicksort by descending with partially iterative calls
 516 * to reduce worst case callstack size.
 517 */
 518static void HUF_simpleQuickSort(nodeElt arr[], int low, int high) {
 519    int const kInsertionSortThreshold = 8;
 520    if (high - low < kInsertionSortThreshold) {
 521        HUF_insertionSort(arr, low, high);
 522        return;
 523    }
 524    while (low < high) {
 525        int const idx = HUF_quickSortPartition(arr, low, high);
 526        if (idx - low < high - idx) {
 527            HUF_simpleQuickSort(arr, low, idx - 1);
 528            low = idx + 1;
 529        } else {
 530            HUF_simpleQuickSort(arr, idx + 1, high);
 531            high = idx - 1;
 532        }
 533    }
 534}
 535
 536/*
 537 * HUF_sort():
 538 * Sorts the symbols [0, maxSymbolValue] by count[symbol] in decreasing order.
 539 * This is a typical bucket sorting strategy that uses either quicksort or insertion sort to sort each bucket.
 540 *
 541 * @param[out] huffNode       Sorted symbols by decreasing count. Only members `.count` and `.byte` are filled.
 542 *                            Must have (maxSymbolValue + 1) entries.
 543 * @param[in]  count          Histogram of the symbols.
 544 * @param[in]  maxSymbolValue Maximum symbol value.
 545 * @param      rankPosition   This is a scratch workspace. Must have RANK_POSITION_TABLE_SIZE entries.
 546 */
 547static void HUF_sort(nodeElt huffNode[], const unsigned count[], U32 const maxSymbolValue, rankPos rankPosition[]) {
 548    U32 n;
 549    U32 const maxSymbolValue1 = maxSymbolValue+1;
 550
 551    /* Compute base and set curr to base.
 552     * For symbol s let lowerRank = HUF_getIndex(count[n]) and rank = lowerRank + 1.
 553     * See HUF_getIndex to see bucketing strategy.
 554     * We attribute each symbol to lowerRank's base value, because we want to know where
 555     * each rank begins in the output, so for rank R we want to count ranks R+1 and above.
 556     */
 557    ZSTD_memset(rankPosition, 0, sizeof(*rankPosition) * RANK_POSITION_TABLE_SIZE);
 558    for (n = 0; n < maxSymbolValue1; ++n) {
 559        U32 lowerRank = HUF_getIndex(count[n]);
 560        assert(lowerRank < RANK_POSITION_TABLE_SIZE - 1);
 561        rankPosition[lowerRank].base++;
 562    }
 563
 564    assert(rankPosition[RANK_POSITION_TABLE_SIZE - 1].base == 0);
 565    /* Set up the rankPosition table */
 566    for (n = RANK_POSITION_TABLE_SIZE - 1; n > 0; --n) {
 567        rankPosition[n-1].base += rankPosition[n].base;
 568        rankPosition[n-1].curr = rankPosition[n-1].base;
 569    }
 570
 571    /* Insert each symbol into their appropriate bucket, setting up rankPosition table. */
 572    for (n = 0; n < maxSymbolValue1; ++n) {
 573        U32 const c = count[n];
 574        U32 const r = HUF_getIndex(c) + 1;
 575        U32 const pos = rankPosition[r].curr++;
 576        assert(pos < maxSymbolValue1);
 577        huffNode[pos].count = c;
 578        huffNode[pos].byte  = (BYTE)n;
 579    }
 580
 581    /* Sort each bucket. */
 582    for (n = RANK_POSITION_DISTINCT_COUNT_CUTOFF; n < RANK_POSITION_TABLE_SIZE - 1; ++n) {
 583        U32 const bucketSize = rankPosition[n].curr-rankPosition[n].base;
 584        U32 const bucketStartIdx = rankPosition[n].base;
 585        if (bucketSize > 1) {
 586            assert(bucketStartIdx < maxSymbolValue1);
 587            HUF_simpleQuickSort(huffNode + bucketStartIdx, 0, bucketSize-1);
 588        }
 589    }
 590
 591    assert(HUF_isSorted(huffNode, maxSymbolValue1));
 592}
 593
 594/* HUF_buildCTable_wksp() :
 595 *  Same as HUF_buildCTable(), but using externally allocated scratch buffer.
 596 *  `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as sizeof(HUF_buildCTable_wksp_tables).
 597 */
 598#define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
 599
 600/* HUF_buildTree():
 601 * Takes the huffNode array sorted by HUF_sort() and builds an unlimited-depth Huffman tree.
 602 *
 603 * @param huffNode        The array sorted by HUF_sort(). Builds the Huffman tree in this array.
 604 * @param maxSymbolValue  The maximum symbol value.
 605 * @return                The smallest node in the Huffman tree (by count).
 606 */
 607static int HUF_buildTree(nodeElt* huffNode, U32 maxSymbolValue)
 608{
 609    nodeElt* const huffNode0 = huffNode - 1;
 610    int nonNullRank;
 611    int lowS, lowN;
 612    int nodeNb = STARTNODE;
 613    int n, nodeRoot;
 614    /* init for parents */
 615    nonNullRank = (int)maxSymbolValue;
 616    while(huffNode[nonNullRank].count == 0) nonNullRank--;
 617    lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
 618    huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
 619    huffNode[lowS].parent = huffNode[lowS-1].parent = (U16)nodeNb;
 620    nodeNb++; lowS-=2;
 621    for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
 622    huffNode0[0].count = (U32)(1U<<31);  /* fake entry, strong barrier */
 623
 624    /* create parents */
 625    while (nodeNb <= nodeRoot) {
 626        int const n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
 627        int const n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
 628        huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
 629        huffNode[n1].parent = huffNode[n2].parent = (U16)nodeNb;
 630        nodeNb++;
 631    }
 632
 633    /* distribute weights (unlimited tree height) */
 634    huffNode[nodeRoot].nbBits = 0;
 635    for (n=nodeRoot-1; n>=STARTNODE; n--)
 636        huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
 637    for (n=0; n<=nonNullRank; n++)
 638        huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
 639
 640    return nonNullRank;
 641}
 642
 643/*
 644 * HUF_buildCTableFromTree():
 645 * Build the CTable given the Huffman tree in huffNode.
 646 *
 647 * @param[out] CTable         The output Huffman CTable.
 648 * @param      huffNode       The Huffman tree.
 649 * @param      nonNullRank    The last and smallest node in the Huffman tree.
 650 * @param      maxSymbolValue The maximum symbol value.
 651 * @param      maxNbBits      The exact maximum number of bits used in the Huffman tree.
 652 */
 653static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, int nonNullRank, U32 maxSymbolValue, U32 maxNbBits)
 654{
 655    HUF_CElt* const ct = CTable + 1;
 656    /* fill result into ctable (val, nbBits) */
 657    int n;
 658    U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
 659    U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
 660    int const alphabetSize = (int)(maxSymbolValue + 1);
 661    for (n=0; n<=nonNullRank; n++)
 662        nbPerRank[huffNode[n].nbBits]++;
 663    /* determine starting value per rank */
 664    {   U16 min = 0;
 665        for (n=(int)maxNbBits; n>0; n--) {
 666            valPerRank[n] = min;      /* get starting value within each rank */
 667            min += nbPerRank[n];
 668            min >>= 1;
 669    }   }
 670    for (n=0; n<alphabetSize; n++)
 671        HUF_setNbBits(ct + huffNode[n].byte, huffNode[n].nbBits);   /* push nbBits per symbol, symbol order */
 672    for (n=0; n<alphabetSize; n++)
 673        HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++);   /* assign value within rank, symbol order */
 674    CTable[0] = maxNbBits;
 675}
 676
 677size_t HUF_buildCTable_wksp (HUF_CElt* CTable, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize)
 678{
 679    HUF_buildCTable_wksp_tables* const wksp_tables = (HUF_buildCTable_wksp_tables*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(U32));
 680    nodeElt* const huffNode0 = wksp_tables->huffNodeTbl;
 681    nodeElt* const huffNode = huffNode0+1;
 682    int nonNullRank;
 683
 684    /* safety checks */
 685    if (wkspSize < sizeof(HUF_buildCTable_wksp_tables))
 686      return ERROR(workSpace_tooSmall);
 687    if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
 688    if (maxSymbolValue > HUF_SYMBOLVALUE_MAX)
 689      return ERROR(maxSymbolValue_tooLarge);
 690    ZSTD_memset(huffNode0, 0, sizeof(huffNodeTable));
 691
 692    /* sort, decreasing order */
 693    HUF_sort(huffNode, count, maxSymbolValue, wksp_tables->rankPosition);
 694
 695    /* build tree */
 696    nonNullRank = HUF_buildTree(huffNode, maxSymbolValue);
 697
 698    /* enforce maxTableLog */
 699    maxNbBits = HUF_setMaxHeight(huffNode, (U32)nonNullRank, maxNbBits);
 700    if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC);   /* check fit into table */
 701
 702    HUF_buildCTableFromTree(CTable, huffNode, nonNullRank, maxSymbolValue, maxNbBits);
 703
 704    return maxNbBits;
 705}
 706
 707size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue)
 708{
 709    HUF_CElt const* ct = CTable + 1;
 710    size_t nbBits = 0;
 711    int s;
 712    for (s = 0; s <= (int)maxSymbolValue; ++s) {
 713        nbBits += HUF_getNbBits(ct[s]) * count[s];
 714    }
 715    return nbBits >> 3;
 716}
 717
 718int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) {
 719  HUF_CElt const* ct = CTable + 1;
 720  int bad = 0;
 721  int s;
 722  for (s = 0; s <= (int)maxSymbolValue; ++s) {
 723    bad |= (count[s] != 0) & (HUF_getNbBits(ct[s]) == 0);
 724  }
 725  return !bad;
 726}
 727
 728size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
 729
 730/* HUF_CStream_t:
 731 * Huffman uses its own BIT_CStream_t implementation.
 732 * There are three major differences from BIT_CStream_t:
 733 *   1. HUF_addBits() takes a HUF_CElt (size_t) which is
 734 *      the pair (nbBits, value) in the format:
 735 *      format:
 736 *        - Bits [0, 4)            = nbBits
 737 *        - Bits [4, 64 - nbBits)  = 0
 738 *        - Bits [64 - nbBits, 64) = value
 739 *   2. The bitContainer is built from the upper bits and
 740 *      right shifted. E.g. to add a new value of N bits
 741 *      you right shift the bitContainer by N, then or in
 742 *      the new value into the N upper bits.
 743 *   3. The bitstream has two bit containers. You can add
 744 *      bits to the second container and merge them into
 745 *      the first container.
 746 */
 747
 748#define HUF_BITS_IN_CONTAINER (sizeof(size_t) * 8)
 749
 750typedef struct {
 751    size_t bitContainer[2];
 752    size_t bitPos[2];
 753
 754    BYTE* startPtr;
 755    BYTE* ptr;
 756    BYTE* endPtr;
 757} HUF_CStream_t;
 758
 759/*! HUF_initCStream():
 760 * Initializes the bitstream.
 761 * @returns 0 or an error code.
 762 */
 763static size_t HUF_initCStream(HUF_CStream_t* bitC,
 764                                  void* startPtr, size_t dstCapacity)
 765{
 766    ZSTD_memset(bitC, 0, sizeof(*bitC));
 767    bitC->startPtr = (BYTE*)startPtr;
 768    bitC->ptr = bitC->startPtr;
 769    bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->bitContainer[0]);
 770    if (dstCapacity <= sizeof(bitC->bitContainer[0])) return ERROR(dstSize_tooSmall);
 771    return 0;
 772}
 773
 774/*! HUF_addBits():
 775 * Adds the symbol stored in HUF_CElt elt to the bitstream.
 776 *
 777 * @param elt   The element we're adding. This is a (nbBits, value) pair.
 778 *              See the HUF_CStream_t docs for the format.
 779 * @param idx   Insert into the bitstream at this idx.
 780 * @param kFast This is a template parameter. If the bitstream is guaranteed
 781 *              to have at least 4 unused bits after this call it may be 1,
 782 *              otherwise it must be 0. HUF_addBits() is faster when fast is set.
 783 */
 784FORCE_INLINE_TEMPLATE void HUF_addBits(HUF_CStream_t* bitC, HUF_CElt elt, int idx, int kFast)
 785{
 786    assert(idx <= 1);
 787    assert(HUF_getNbBits(elt) <= HUF_TABLELOG_ABSOLUTEMAX);
 788    /* This is efficient on x86-64 with BMI2 because shrx
 789     * only reads the low 6 bits of the register. The compiler
 790     * knows this and elides the mask. When fast is set,
 791     * every operation can use the same value loaded from elt.
 792     */
 793    bitC->bitContainer[idx] >>= HUF_getNbBits(elt);
 794    bitC->bitContainer[idx] |= kFast ? HUF_getValueFast(elt) : HUF_getValue(elt);
 795    /* We only read the low 8 bits of bitC->bitPos[idx] so it
 796     * doesn't matter that the high bits have noise from the value.
 797     */
 798    bitC->bitPos[idx] += HUF_getNbBitsFast(elt);
 799    assert((bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER);
 800    /* The last 4-bits of elt are dirty if fast is set,
 801     * so we must not be overwriting bits that have already been
 802     * inserted into the bit container.
 803     */
 804#if DEBUGLEVEL >= 1
 805    {
 806        size_t const nbBits = HUF_getNbBits(elt);
 807        size_t const dirtyBits = nbBits == 0 ? 0 : BIT_highbit32((U32)nbBits) + 1;
 808        (void)dirtyBits;
 809        /* Middle bits are 0. */
 810        assert(((elt >> dirtyBits) << (dirtyBits + nbBits)) == 0);
 811        /* We didn't overwrite any bits in the bit container. */
 812        assert(!kFast || (bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER);
 813        (void)dirtyBits;
 814    }
 815#endif
 816}
 817
 818FORCE_INLINE_TEMPLATE void HUF_zeroIndex1(HUF_CStream_t* bitC)
 819{
 820    bitC->bitContainer[1] = 0;
 821    bitC->bitPos[1] = 0;
 822}
 823
 824/*! HUF_mergeIndex1() :
 825 * Merges the bit container @ index 1 into the bit container @ index 0
 826 * and zeros the bit container @ index 1.
 827 */
 828FORCE_INLINE_TEMPLATE void HUF_mergeIndex1(HUF_CStream_t* bitC)
 829{
 830    assert((bitC->bitPos[1] & 0xFF) < HUF_BITS_IN_CONTAINER);
 831    bitC->bitContainer[0] >>= (bitC->bitPos[1] & 0xFF);
 832    bitC->bitContainer[0] |= bitC->bitContainer[1];
 833    bitC->bitPos[0] += bitC->bitPos[1];
 834    assert((bitC->bitPos[0] & 0xFF) <= HUF_BITS_IN_CONTAINER);
 835}
 836
 837/*! HUF_flushBits() :
 838* Flushes the bits in the bit container @ index 0.
 839*
 840* @post bitPos will be < 8.
 841* @param kFast If kFast is set then we must know a-priori that
 842*              the bit container will not overflow.
 843*/
 844FORCE_INLINE_TEMPLATE void HUF_flushBits(HUF_CStream_t* bitC, int kFast)
 845{
 846    /* The upper bits of bitPos are noisy, so we must mask by 0xFF. */
 847    size_t const nbBits = bitC->bitPos[0] & 0xFF;
 848    size_t const nbBytes = nbBits >> 3;
 849    /* The top nbBits bits of bitContainer are the ones we need. */
 850    size_t const bitContainer = bitC->bitContainer[0] >> (HUF_BITS_IN_CONTAINER - nbBits);
 851    /* Mask bitPos to account for the bytes we consumed. */
 852    bitC->bitPos[0] &= 7;
 853    assert(nbBits > 0);
 854    assert(nbBits <= sizeof(bitC->bitContainer[0]) * 8);
 855    assert(bitC->ptr <= bitC->endPtr);
 856    MEM_writeLEST(bitC->ptr, bitContainer);
 857    bitC->ptr += nbBytes;
 858    assert(!kFast || bitC->ptr <= bitC->endPtr);
 859    if (!kFast && bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr;
 860    /* bitContainer doesn't need to be modified because the leftover
 861     * bits are already the top bitPos bits. And we don't care about
 862     * noise in the lower values.
 863     */
 864}
 865
 866/*! HUF_endMark()
 867 * @returns The Huffman stream end mark: A 1-bit value = 1.
 868 */
 869static HUF_CElt HUF_endMark(void)
 870{
 871    HUF_CElt endMark;
 872    HUF_setNbBits(&endMark, 1);
 873    HUF_setValue(&endMark, 1);
 874    return endMark;
 875}
 876
 877/*! HUF_closeCStream() :
 878 *  @return Size of CStream, in bytes,
 879 *          or 0 if it could not fit into dstBuffer */
 880static size_t HUF_closeCStream(HUF_CStream_t* bitC)
 881{
 882    HUF_addBits(bitC, HUF_endMark(), /* idx */ 0, /* kFast */ 0);
 883    HUF_flushBits(bitC, /* kFast */ 0);
 884    {
 885        size_t const nbBits = bitC->bitPos[0] & 0xFF;
 886        if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */
 887        return (bitC->ptr - bitC->startPtr) + (nbBits > 0);
 888    }
 889}
 890
 891FORCE_INLINE_TEMPLATE void
 892HUF_encodeSymbol(HUF_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable, int idx, int fast)
 893{
 894    HUF_addBits(bitCPtr, CTable[symbol], idx, fast);
 895}
 896
 897FORCE_INLINE_TEMPLATE void
 898HUF_compress1X_usingCTable_internal_body_loop(HUF_CStream_t* bitC,
 899                                   const BYTE* ip, size_t srcSize,
 900                                   const HUF_CElt* ct,
 901                                   int kUnroll, int kFastFlush, int kLastFast)
 902{
 903    /* Join to kUnroll */
 904    int n = (int)srcSize;
 905    int rem = n % kUnroll;
 906    if (rem > 0) {
 907        for (; rem > 0; --rem) {
 908            HUF_encodeSymbol(bitC, ip[--n], ct, 0, /* fast */ 0);
 909        }
 910        HUF_flushBits(bitC, kFastFlush);
 911    }
 912    assert(n % kUnroll == 0);
 913
 914    /* Join to 2 * kUnroll */
 915    if (n % (2 * kUnroll)) {
 916        int u;
 917        for (u = 1; u < kUnroll; ++u) {
 918            HUF_encodeSymbol(bitC, ip[n - u], ct, 0, 1);
 919        }
 920        HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, 0, kLastFast);
 921        HUF_flushBits(bitC, kFastFlush);
 922        n -= kUnroll;
 923    }
 924    assert(n % (2 * kUnroll) == 0);
 925
 926    for (; n>0; n-= 2 * kUnroll) {
 927        /* Encode kUnroll symbols into the bitstream @ index 0. */
 928        int u;
 929        for (u = 1; u < kUnroll; ++u) {
 930            HUF_encodeSymbol(bitC, ip[n - u], ct, /* idx */ 0, /* fast */ 1);
 931        }
 932        HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, /* idx */ 0, /* fast */ kLastFast);
 933        HUF_flushBits(bitC, kFastFlush);
 934        /* Encode kUnroll symbols into the bitstream @ index 1.
 935         * This allows us to start filling the bit container
 936         * without any data dependencies.
 937         */
 938        HUF_zeroIndex1(bitC);
 939        for (u = 1; u < kUnroll; ++u) {
 940            HUF_encodeSymbol(bitC, ip[n - kUnroll - u], ct, /* idx */ 1, /* fast */ 1);
 941        }
 942        HUF_encodeSymbol(bitC, ip[n - kUnroll - kUnroll], ct, /* idx */ 1, /* fast */ kLastFast);
 943        /* Merge bitstream @ index 1 into the bitstream @ index 0 */
 944        HUF_mergeIndex1(bitC);
 945        HUF_flushBits(bitC, kFastFlush);
 946    }
 947    assert(n == 0);
 948
 949}
 950
 951/*
 952 * Returns a tight upper bound on the output space needed by Huffman
 953 * with 8 bytes buffer to handle over-writes. If the output is at least
 954 * this large we don't need to do bounds checks during Huffman encoding.
 955 */
 956static size_t HUF_tightCompressBound(size_t srcSize, size_t tableLog)
 957{
 958    return ((srcSize * tableLog) >> 3) + 8;
 959}
 960
 961
 962FORCE_INLINE_TEMPLATE size_t
 963HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize,
 964                                   const void* src, size_t srcSize,
 965                                   const HUF_CElt* CTable)
 966{
 967    U32 const tableLog = (U32)CTable[0];
 968    HUF_CElt const* ct = CTable + 1;
 969    const BYTE* ip = (const BYTE*) src;
 970    BYTE* const ostart = (BYTE*)dst;
 971    BYTE* const oend = ostart + dstSize;
 972    BYTE* op = ostart;
 973    HUF_CStream_t bitC;
 974
 975    /* init */
 976    if (dstSize < 8) return 0;   /* not enough space to compress */
 977    { size_t const initErr = HUF_initCStream(&bitC, op, (size_t)(oend-op));
 978      if (HUF_isError(initErr)) return 0; }
 979
 980    if (dstSize < HUF_tightCompressBound(srcSize, (size_t)tableLog) || tableLog > 11)
 981        HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ MEM_32bits() ? 2 : 4, /* kFast */ 0, /* kLastFast */ 0);
 982    else {
 983        if (MEM_32bits()) {
 984            switch (tableLog) {
 985            case 11:
 986                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 2, /* kFastFlush */ 1, /* kLastFast */ 0);
 987                break;
 988            case 10: ZSTD_FALLTHROUGH;
 989            case 9: ZSTD_FALLTHROUGH;
 990            case 8:
 991                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 2, /* kFastFlush */ 1, /* kLastFast */ 1);
 992                break;
 993            case 7: ZSTD_FALLTHROUGH;
 994            default:
 995                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 3, /* kFastFlush */ 1, /* kLastFast */ 1);
 996                break;
 997            }
 998        } else {
 999            switch (tableLog) {
1000            case 11:
1001                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 5, /* kFastFlush */ 1, /* kLastFast */ 0);
1002                break;
1003            case 10:
1004                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 5, /* kFastFlush */ 1, /* kLastFast */ 1);
1005                break;
1006            case 9:
1007                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 6, /* kFastFlush */ 1, /* kLastFast */ 0);
1008                break;
1009            case 8:
1010                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 7, /* kFastFlush */ 1, /* kLastFast */ 0);
1011                break;
1012            case 7:
1013                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 8, /* kFastFlush */ 1, /* kLastFast */ 0);
1014                break;
1015            case 6: ZSTD_FALLTHROUGH;
1016            default:
1017                HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 9, /* kFastFlush */ 1, /* kLastFast */ 1);
1018                break;
1019            }
1020        }
1021    }
1022    assert(bitC.ptr <= bitC.endPtr);
1023
1024    return HUF_closeCStream(&bitC);
1025}
1026
1027#if DYNAMIC_BMI2
1028
1029static BMI2_TARGET_ATTRIBUTE size_t
1030HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize,
1031                                   const void* src, size_t srcSize,
1032                                   const HUF_CElt* CTable)
1033{
1034    return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
1035}
1036
1037static size_t
1038HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize,
1039                                      const void* src, size_t srcSize,
1040                                      const HUF_CElt* CTable)
1041{
1042    return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
1043}
1044
1045static size_t
1046HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
1047                              const void* src, size_t srcSize,
1048                              const HUF_CElt* CTable, const int bmi2)
1049{
1050    if (bmi2) {
1051        return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable);
1052    }
1053    return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable);
1054}
1055
1056#else
1057
1058static size_t
1059HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
1060                              const void* src, size_t srcSize,
1061                              const HUF_CElt* CTable, const int bmi2)
1062{
1063    (void)bmi2;
1064    return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
1065}
1066
1067#endif
1068
1069size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
1070{
1071    return HUF_compress1X_usingCTable_bmi2(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
1072}
1073
1074size_t HUF_compress1X_usingCTable_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2)
1075{
1076    return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, bmi2);
1077}
1078
1079static size_t
1080HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
1081                              const void* src, size_t srcSize,
1082                              const HUF_CElt* CTable, int bmi2)
1083{
1084    size_t const segmentSize = (srcSize+3)/4;   /* first 3 segments */
1085    const BYTE* ip = (const BYTE*) src;
1086    const BYTE* const iend = ip + srcSize;
1087    BYTE* const ostart = (BYTE*) dst;
1088    BYTE* const oend = ostart + dstSize;
1089    BYTE* op = ostart;
1090
1091    if (dstSize < 6 + 1 + 1 + 1 + 8) return 0;   /* minimum space to compress successfully */
1092    if (srcSize < 12) return 0;   /* no saving possible : too small input */
1093    op += 6;   /* jumpTable */
1094
1095    assert(op <= oend);
1096    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
1097        if (cSize == 0 || cSize > 65535) return 0;
1098        MEM_writeLE16(ostart, (U16)cSize);
1099        op += cSize;
1100    }
1101
1102    ip += segmentSize;
1103    assert(op <= oend);
1104    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
1105        if (cSize == 0 || cSize > 65535) return 0;
1106        MEM_writeLE16(ostart+2, (U16)cSize);
1107        op += cSize;
1108    }
1109
1110    ip += segmentSize;
1111    assert(op <= oend);
1112    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
1113        if (cSize == 0 || cSize > 65535) return 0;
1114        MEM_writeLE16(ostart+4, (U16)cSize);
1115        op += cSize;
1116    }
1117
1118    ip += segmentSize;
1119    assert(op <= oend);
1120    assert(ip <= iend);
1121    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, (size_t)(iend-ip), CTable, bmi2) );
1122        if (cSize == 0 || cSize > 65535) return 0;
1123        op += cSize;
1124    }
1125
1126    return (size_t)(op-ostart);
1127}
1128
1129size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
1130{
1131    return HUF_compress4X_usingCTable_bmi2(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
1132}
1133
1134size_t HUF_compress4X_usingCTable_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2)
1135{
1136    return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, bmi2);
1137}
1138
1139typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e;
1140
1141static size_t HUF_compressCTable_internal(
1142                BYTE* const ostart, BYTE* op, BYTE* const oend,
1143                const void* src, size_t srcSize,
1144                HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int bmi2)
1145{
1146    size_t const cSize = (nbStreams==HUF_singleStream) ?
1147                         HUF_compress1X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2) :
1148                         HUF_compress4X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2);
1149    if (HUF_isError(cSize)) { return cSize; }
1150    if (cSize==0) { return 0; }   /* uncompressible */
1151    op += cSize;
1152    /* check compressibility */
1153    assert(op >= ostart);
1154    if ((size_t)(op-ostart) >= srcSize-1) { return 0; }
1155    return (size_t)(op-ostart);
1156}
1157
1158typedef struct {
1159    unsigned count[HUF_SYMBOLVALUE_MAX + 1];
1160    HUF_CElt CTable[HUF_CTABLE_SIZE_ST(HUF_SYMBOLVALUE_MAX)];
1161    union {
1162        HUF_buildCTable_wksp_tables buildCTable_wksp;
1163        HUF_WriteCTableWksp writeCTable_wksp;
1164        U32 hist_wksp[HIST_WKSP_SIZE_U32];
1165    } wksps;
1166} HUF_compress_tables_t;
1167
1168#define SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE 4096
1169#define SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO 10  /* Must be >= 2 */
1170
1171/* HUF_compress_internal() :
1172 * `workSpace_align4` must be aligned on 4-bytes boundaries,
1173 * and occupies the same space as a table of HUF_WORKSPACE_SIZE_U64 unsigned */
1174static size_t
1175HUF_compress_internal (void* dst, size_t dstSize,
1176                 const void* src, size_t srcSize,
1177                       unsigned maxSymbolValue, unsigned huffLog,
1178                       HUF_nbStreams_e nbStreams,
1179                       void* workSpace, size_t wkspSize,
1180                       HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat,
1181                 const int bmi2, unsigned suspectUncompressible)
1182{
1183    HUF_compress_tables_t* const table = (HUF_compress_tables_t*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(size_t));
1184    BYTE* const ostart = (BYTE*)dst;
1185    BYTE* const oend = ostart + dstSize;
1186    BYTE* op = ostart;
1187
1188    HUF_STATIC_ASSERT(sizeof(*table) + HUF_WORKSPACE_MAX_ALIGNMENT <= HUF_WORKSPACE_SIZE);
1189
1190    /* checks & inits */
1191    if (wkspSize < sizeof(*table)) return ERROR(workSpace_tooSmall);
1192    if (!srcSize) return 0;  /* Uncompressed */
1193    if (!dstSize) return 0;  /* cannot fit anything within dst budget */
1194    if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong);   /* current block size limit */
1195    if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
1196    if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
1197    if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX;
1198    if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;
1199
1200    /* Heuristic : If old table is valid, use it for small inputs */
1201    if (preferRepeat && repeat && *repeat == HUF_repeat_valid) {
1202        return HUF_compressCTable_internal(ostart, op, oend,
1203                                           src, srcSize,
1204                                           nbStreams, oldHufTable, bmi2);
1205    }
1206
1207    /* If uncompressible data is suspected, do a smaller sampling first */
1208    DEBUG_STATIC_ASSERT(SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO >= 2);
1209    if (suspectUncompressible && srcSize >= (SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE * SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO)) {
1210        size_t largestTotal = 0;
1211        {   unsigned maxSymbolValueBegin = maxSymbolValue;
1212            CHECK_V_F(largestBegin, HIST_count_simple (table->count, &maxSymbolValueBegin, (const BYTE*)src, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) );
1213            largestTotal += largestBegin;
1214        }
1215        {   unsigned maxSymbolValueEnd = maxSymbolValue;
1216            CHECK_V_F(largestEnd, HIST_count_simple (table->count, &maxSymbolValueEnd, (const BYTE*)src + srcSize - SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) );
1217            largestTotal += largestEnd;
1218        }
1219        if (largestTotal <= ((2 * SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) >> 7)+4) return 0;   /* heuristic : probably not compressible enough */
1220    }
1221
1222    /* Scan input and build symbol stats */
1223    {   CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, table->wksps.hist_wksp, sizeof(table->wksps.hist_wksp)) );
1224        if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; }   /* single symbol, rle */
1225        if (largest <= (srcSize >> 7)+4) return 0;   /* heuristic : probably not compressible enough */
1226    }
1227
1228    /* Check validity of previous table */
1229    if ( repeat
1230      && *repeat == HUF_repeat_check
1231      && !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) {
1232        *repeat = HUF_repeat_none;
1233    }
1234    /* Heuristic : use existing table for small inputs */
1235    if (preferRepeat && repeat && *repeat != HUF_repeat_none) {
1236        return HUF_compressCTable_internal(ostart, op, oend,
1237                                           src, srcSize,
1238                                           nbStreams, oldHufTable, bmi2);
1239    }
1240
1241    /* Build Huffman Tree */
1242    huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
1243    {   size_t const maxBits = HUF_buildCTable_wksp(table->CTable, table->count,
1244                                            maxSymbolValue, huffLog,
1245                                            &table->wksps.buildCTable_wksp, sizeof(table->wksps.buildCTable_wksp));
1246        CHECK_F(maxBits);
1247        huffLog = (U32)maxBits;
1248    }
1249    /* Zero unused symbols in CTable, so we can check it for validity */
1250    {
1251        size_t const ctableSize = HUF_CTABLE_SIZE_ST(maxSymbolValue);
1252        size_t const unusedSize = sizeof(table->CTable) - ctableSize * sizeof(HUF_CElt);
1253        ZSTD_memset(table->CTable + ctableSize, 0, unusedSize);
1254    }
1255
1256    /* Write table description header */
1257    {   CHECK_V_F(hSize, HUF_writeCTable_wksp(op, dstSize, table->CTable, maxSymbolValue, huffLog,
1258                                              &table->wksps.writeCTable_wksp, sizeof(table->wksps.writeCTable_wksp)) );
1259        /* Check if using previous huffman table is beneficial */
1260        if (repeat && *repeat != HUF_repeat_none) {
1261            size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue);
1262            size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue);
1263            if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
1264                return HUF_compressCTable_internal(ostart, op, oend,
1265                                                   src, srcSize,
1266                                                   nbStreams, oldHufTable, bmi2);
1267        }   }
1268
1269        /* Use the new huffman table */
1270        if (hSize + 12ul >= srcSize) { return 0; }
1271        op += hSize;
1272        if (repeat) { *repeat = HUF_repeat_none; }
1273        if (oldHufTable)
1274            ZSTD_memcpy(oldHufTable, table->CTable, sizeof(table->CTable));  /* Save new table */
1275    }
1276    return HUF_compressCTable_internal(ostart, op, oend,
1277                                       src, srcSize,
1278                                       nbStreams, table->CTable, bmi2);
1279}
1280
1281
1282size_t HUF_compress1X_wksp (void* dst, size_t dstSize,
1283                      const void* src, size_t srcSize,
1284                      unsigned maxSymbolValue, unsigned huffLog,
1285                      void* workSpace, size_t wkspSize)
1286{
1287    return HUF_compress_internal(dst, dstSize, src, srcSize,
1288                                 maxSymbolValue, huffLog, HUF_singleStream,
1289                                 workSpace, wkspSize,
1290                                 NULL, NULL, 0, 0 /*bmi2*/, 0);
1291}
1292
1293size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
1294                      const void* src, size_t srcSize,
1295                      unsigned maxSymbolValue, unsigned huffLog,
1296                      void* workSpace, size_t wkspSize,
1297                      HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat,
1298                      int bmi2, unsigned suspectUncompressible)
1299{
1300    return HUF_compress_internal(dst, dstSize, src, srcSize,
1301                                 maxSymbolValue, huffLog, HUF_singleStream,
1302                                 workSpace, wkspSize, hufTable,
1303                                 repeat, preferRepeat, bmi2, suspectUncompressible);
1304}
1305
1306/* HUF_compress4X_repeat():
1307 * compress input using 4 streams.
1308 * provide workspace to generate compression tables */
1309size_t HUF_compress4X_wksp (void* dst, size_t dstSize,
1310                      const void* src, size_t srcSize,
1311                      unsigned maxSymbolValue, unsigned huffLog,
1312                      void* workSpace, size_t wkspSize)
1313{
1314    return HUF_compress_internal(dst, dstSize, src, srcSize,
1315                                 maxSymbolValue, huffLog, HUF_fourStreams,
1316                                 workSpace, wkspSize,
1317                                 NULL, NULL, 0, 0 /*bmi2*/, 0);
1318}
1319
1320/* HUF_compress4X_repeat():
1321 * compress input using 4 streams.
1322 * consider skipping quickly
1323 * re-use an existing huffman compression table */
1324size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
1325                      const void* src, size_t srcSize,
1326                      unsigned maxSymbolValue, unsigned huffLog,
1327                      void* workSpace, size_t wkspSize,
1328                      HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2, unsigned suspectUncompressible)
1329{
1330    return HUF_compress_internal(dst, dstSize, src, srcSize,
1331                                 maxSymbolValue, huffLog, HUF_fourStreams,
1332                                 workSpace, wkspSize,
1333                                 hufTable, repeat, preferRepeat, bmi2, suspectUncompressible);
1334}
1335