Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 | /* ****************************************************************** * Huffman encoder, part of New Generation Entropy library * Copyright (c) Yann Collet, Facebook, Inc. * * You can contact the author at : * - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy * - Public forum : https://groups.google.com/forum/#!forum/lz4c * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. ****************************************************************** */ /* ************************************************************** * Compiler specifics ****************************************************************/ /* ************************************************************** * Includes ****************************************************************/ #include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */ #include "../common/compiler.h" #include "../common/bitstream.h" #include "hist.h" #define FSE_STATIC_LINKING_ONLY /* FSE_optimalTableLog_internal */ #include "../common/fse.h" /* header compression */ #define HUF_STATIC_LINKING_ONLY #include "../common/huf.h" #include "../common/error_private.h" /* ************************************************************** * Error Management ****************************************************************/ #define HUF_isError ERR_isError #define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */ /* ************************************************************** * Utils ****************************************************************/ unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue) { return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1); } /* ******************************************************* * HUF : Huffman block compression *********************************************************/ #define HUF_WORKSPACE_MAX_ALIGNMENT 8 static void* HUF_alignUpWorkspace(void* workspace, size_t* workspaceSizePtr, size_t align) { size_t const mask = align - 1; size_t const rem = (size_t)workspace & mask; size_t const add = (align - rem) & mask; BYTE* const aligned = (BYTE*)workspace + add; assert((align & (align - 1)) == 0); /* pow 2 */ assert(align <= HUF_WORKSPACE_MAX_ALIGNMENT); if (*workspaceSizePtr >= add) { assert(add < align); assert(((size_t)aligned & mask) == 0); *workspaceSizePtr -= add; return aligned; } else { *workspaceSizePtr = 0; return NULL; } } /* HUF_compressWeights() : * Same as FSE_compress(), but dedicated to huff0's weights compression. * The use case needs much less stack memory. * Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX. */ #define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6 typedef struct { FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)]; U32 scratchBuffer[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(HUF_TABLELOG_MAX, MAX_FSE_TABLELOG_FOR_HUFF_HEADER)]; unsigned count[HUF_TABLELOG_MAX+1]; S16 norm[HUF_TABLELOG_MAX+1]; } HUF_CompressWeightsWksp; static size_t HUF_compressWeights(void* dst, size_t dstSize, const void* weightTable, size_t wtSize, void* workspace, size_t workspaceSize) { BYTE* const ostart = (BYTE*) dst; BYTE* op = ostart; BYTE* const oend = ostart + dstSize; unsigned maxSymbolValue = HUF_TABLELOG_MAX; U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER; HUF_CompressWeightsWksp* wksp = (HUF_CompressWeightsWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32)); if (workspaceSize < sizeof(HUF_CompressWeightsWksp)) return ERROR(GENERIC); /* init conditions */ if (wtSize <= 1) return 0; /* Not compressible */ /* Scan input and build symbol stats */ { unsigned const maxCount = HIST_count_simple(wksp->count, &maxSymbolValue, weightTable, wtSize); /* never fails */ if (maxCount == wtSize) return 1; /* only a single symbol in src : rle */ if (maxCount == 1) return 0; /* each symbol present maximum once => not compressible */ } tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue); CHECK_F( FSE_normalizeCount(wksp->norm, tableLog, wksp->count, wtSize, maxSymbolValue, /* useLowProbCount */ 0) ); /* Write table description header */ { CHECK_V_F(hSize, FSE_writeNCount(op, (size_t)(oend-op), wksp->norm, maxSymbolValue, tableLog) ); op += hSize; } /* Compress */ CHECK_F( FSE_buildCTable_wksp(wksp->CTable, wksp->norm, maxSymbolValue, tableLog, wksp->scratchBuffer, sizeof(wksp->scratchBuffer)) ); { CHECK_V_F(cSize, FSE_compress_usingCTable(op, (size_t)(oend - op), weightTable, wtSize, wksp->CTable) ); if (cSize == 0) return 0; /* not enough space for compressed data */ op += cSize; } return (size_t)(op-ostart); } static size_t HUF_getNbBits(HUF_CElt elt) { return elt & 0xFF; } static size_t HUF_getNbBitsFast(HUF_CElt elt) { return elt; } static size_t HUF_getValue(HUF_CElt elt) { return elt & ~0xFF; } static size_t HUF_getValueFast(HUF_CElt elt) { return elt; } static void HUF_setNbBits(HUF_CElt* elt, size_t nbBits) { assert(nbBits <= HUF_TABLELOG_ABSOLUTEMAX); *elt = nbBits; } static void HUF_setValue(HUF_CElt* elt, size_t value) { size_t const nbBits = HUF_getNbBits(*elt); if (nbBits > 0) { assert((value >> nbBits) == 0); *elt |= value << (sizeof(HUF_CElt) * 8 - nbBits); } } typedef struct { HUF_CompressWeightsWksp wksp; BYTE bitsToWeight[HUF_TABLELOG_MAX + 1]; /* precomputed conversion table */ BYTE huffWeight[HUF_SYMBOLVALUE_MAX]; } HUF_WriteCTableWksp; size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog, void* workspace, size_t workspaceSize) { HUF_CElt const* const ct = CTable + 1; BYTE* op = (BYTE*)dst; U32 n; HUF_WriteCTableWksp* wksp = (HUF_WriteCTableWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32)); /* check conditions */ if (workspaceSize < sizeof(HUF_WriteCTableWksp)) return ERROR(GENERIC); if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge); /* convert to weight */ wksp->bitsToWeight[0] = 0; for (n=1; n<huffLog+1; n++) wksp->bitsToWeight[n] = (BYTE)(huffLog + 1 - n); for (n=0; n<maxSymbolValue; n++) wksp->huffWeight[n] = wksp->bitsToWeight[HUF_getNbBits(ct[n])]; /* attempt weights compression by FSE */ if (maxDstSize < 1) return ERROR(dstSize_tooSmall); { CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, wksp->huffWeight, maxSymbolValue, &wksp->wksp, sizeof(wksp->wksp)) ); if ((hSize>1) & (hSize < maxSymbolValue/2)) { /* FSE compressed */ op[0] = (BYTE)hSize; return hSize+1; } } /* write raw values as 4-bits (max : 15) */ if (maxSymbolValue > (256-128)) return ERROR(GENERIC); /* should not happen : likely means source cannot be compressed */ if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall); /* not enough space within dst buffer */ op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1)); wksp->huffWeight[maxSymbolValue] = 0; /* to be sure it doesn't cause msan issue in final combination */ for (n=0; n<maxSymbolValue; n+=2) op[(n/2)+1] = (BYTE)((wksp->huffWeight[n] << 4) + wksp->huffWeight[n+1]); return ((maxSymbolValue+1)/2) + 1; } /*! HUF_writeCTable() : `CTable` : Huffman tree to save, using huf representation. @return : size of saved CTable */ size_t HUF_writeCTable (void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog) { HUF_WriteCTableWksp wksp; return HUF_writeCTable_wksp(dst, maxDstSize, CTable, maxSymbolValue, huffLog, &wksp, sizeof(wksp)); } size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* hasZeroWeights) { BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1]; /* init not required, even though some static analyzer may complain */ U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; /* large enough for values from 0 to 16 */ U32 tableLog = 0; U32 nbSymbols = 0; HUF_CElt* const ct = CTable + 1; /* get symbol weights */ CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize)); *hasZeroWeights = (rankVal[0] > 0); /* check result */ if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge); if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall); CTable[0] = tableLog; /* Prepare base value per rank */ { U32 n, nextRankStart = 0; for (n=1; n<=tableLog; n++) { U32 curr = nextRankStart; nextRankStart += (rankVal[n] << (n-1)); rankVal[n] = curr; } } /* fill nbBits */ { U32 n; for (n=0; n<nbSymbols; n++) { const U32 w = huffWeight[n]; HUF_setNbBits(ct + n, (BYTE)(tableLog + 1 - w) & -(w != 0)); } } /* fill val */ { U16 nbPerRank[HUF_TABLELOG_MAX+2] = {0}; /* support w=0=>n=tableLog+1 */ U16 valPerRank[HUF_TABLELOG_MAX+2] = {0}; { U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[HUF_getNbBits(ct[n])]++; } /* determine stating value per rank */ valPerRank[tableLog+1] = 0; /* for w==0 */ { U16 min = 0; U32 n; for (n=tableLog; n>0; n--) { /* start at n=tablelog <-> w=1 */ valPerRank[n] = min; /* get starting value within each rank */ min += nbPerRank[n]; min >>= 1; } } /* assign value within rank, symbol order */ { U32 n; for (n=0; n<nbSymbols; n++) HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++); } } *maxSymbolValuePtr = nbSymbols - 1; return readSize; } U32 HUF_getNbBitsFromCTable(HUF_CElt const* CTable, U32 symbolValue) { const HUF_CElt* ct = CTable + 1; assert(symbolValue <= HUF_SYMBOLVALUE_MAX); return (U32)HUF_getNbBits(ct[symbolValue]); } typedef struct nodeElt_s { U32 count; U16 parent; BYTE byte; BYTE nbBits; } nodeElt; /* * HUF_setMaxHeight(): * Enforces maxNbBits on the Huffman tree described in huffNode. * * It sets all nodes with nbBits > maxNbBits to be maxNbBits. Then it adjusts * the tree to so that it is a valid canonical Huffman tree. * * @pre The sum of the ranks of each symbol == 2^largestBits, * where largestBits == huffNode[lastNonNull].nbBits. * @post The sum of the ranks of each symbol == 2^largestBits, * where largestBits is the return value <= maxNbBits. * * @param huffNode The Huffman tree modified in place to enforce maxNbBits. * @param lastNonNull The symbol with the lowest count in the Huffman tree. * @param maxNbBits The maximum allowed number of bits, which the Huffman tree * may not respect. After this function the Huffman tree will * respect maxNbBits. * @return The maximum number of bits of the Huffman tree after adjustment, * necessarily no more than maxNbBits. */ static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits) { const U32 largestBits = huffNode[lastNonNull].nbBits; /* early exit : no elt > maxNbBits, so the tree is already valid. */ if (largestBits <= maxNbBits) return largestBits; /* there are several too large elements (at least >= 2) */ { int totalCost = 0; const U32 baseCost = 1 << (largestBits - maxNbBits); int n = (int)lastNonNull; /* Adjust any ranks > maxNbBits to maxNbBits. * Compute totalCost, which is how far the sum of the ranks is * we are over 2^largestBits after adjust the offending ranks. */ while (huffNode[n].nbBits > maxNbBits) { totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits)); huffNode[n].nbBits = (BYTE)maxNbBits; n--; } /* n stops at huffNode[n].nbBits <= maxNbBits */ assert(huffNode[n].nbBits <= maxNbBits); /* n end at index of smallest symbol using < maxNbBits */ while (huffNode[n].nbBits == maxNbBits) --n; /* renorm totalCost from 2^largestBits to 2^maxNbBits * note : totalCost is necessarily a multiple of baseCost */ assert((totalCost & (baseCost - 1)) == 0); totalCost >>= (largestBits - maxNbBits); assert(totalCost > 0); /* repay normalized cost */ { U32 const noSymbol = 0xF0F0F0F0; U32 rankLast[HUF_TABLELOG_MAX+2]; /* Get pos of last (smallest = lowest cum. count) symbol per rank */ ZSTD_memset(rankLast, 0xF0, sizeof(rankLast)); { U32 currentNbBits = maxNbBits; int pos; for (pos=n ; pos >= 0; pos--) { if (huffNode[pos].nbBits >= currentNbBits) continue; currentNbBits = huffNode[pos].nbBits; /* < maxNbBits */ rankLast[maxNbBits-currentNbBits] = (U32)pos; } } while (totalCost > 0) { /* Try to reduce the next power of 2 above totalCost because we * gain back half the rank. */ U32 nBitsToDecrease = BIT_highbit32((U32)totalCost) + 1; for ( ; nBitsToDecrease > 1; nBitsToDecrease--) { U32 const highPos = rankLast[nBitsToDecrease]; U32 const lowPos = rankLast[nBitsToDecrease-1]; if (highPos == noSymbol) continue; /* Decrease highPos if no symbols of lowPos or if it is * not cheaper to remove 2 lowPos than highPos. */ if (lowPos == noSymbol) break; { U32 const highTotal = huffNode[highPos].count; U32 const lowTotal = 2 * huffNode[lowPos].count; if (highTotal <= lowTotal) break; } } /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */ assert(rankLast[nBitsToDecrease] != noSymbol || nBitsToDecrease == 1); /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */ while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol)) nBitsToDecrease++; assert(rankLast[nBitsToDecrease] != noSymbol); /* Increase the number of bits to gain back half the rank cost. */ totalCost -= 1 << (nBitsToDecrease-1); huffNode[rankLast[nBitsToDecrease]].nbBits++; /* Fix up the new rank. * If the new rank was empty, this symbol is now its smallest. * Otherwise, this symbol will be the largest in the new rank so no adjustment. */ if (rankLast[nBitsToDecrease-1] == noSymbol) rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease]; /* Fix up the old rank. * If the symbol was at position 0, meaning it was the highest weight symbol in the tree, * it must be the only symbol in its rank, so the old rank now has no symbols. * Otherwise, since the Huffman nodes are sorted by count, the previous position is now * the smallest node in the rank. If the previous position belongs to a different rank, * then the rank is now empty. */ if (rankLast[nBitsToDecrease] == 0) /* special case, reached largest symbol */ rankLast[nBitsToDecrease] = noSymbol; else { rankLast[nBitsToDecrease]--; if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease) rankLast[nBitsToDecrease] = noSymbol; /* this rank is now empty */ } } /* while (totalCost > 0) */ /* If we've removed too much weight, then we have to add it back. * To avoid overshooting again, we only adjust the smallest rank. * We take the largest nodes from the lowest rank 0 and move them * to rank 1. There's guaranteed to be enough rank 0 symbols because * TODO. */ while (totalCost < 0) { /* Sometimes, cost correction overshoot */ /* special case : no rank 1 symbol (using maxNbBits-1); * let's create one from largest rank 0 (using maxNbBits). */ if (rankLast[1] == noSymbol) { while (huffNode[n].nbBits == maxNbBits) n--; huffNode[n+1].nbBits--; assert(n >= 0); rankLast[1] = (U32)(n+1); totalCost++; continue; } huffNode[ rankLast[1] + 1 ].nbBits--; rankLast[1]++; totalCost ++; } } /* repay normalized cost */ } /* there are several too large elements (at least >= 2) */ return maxNbBits; } typedef struct { U16 base; U16 curr; } rankPos; typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32]; /* Number of buckets available for HUF_sort() */ #define RANK_POSITION_TABLE_SIZE 192 typedef struct { huffNodeTable huffNodeTbl; rankPos rankPosition[RANK_POSITION_TABLE_SIZE]; } HUF_buildCTable_wksp_tables; /* RANK_POSITION_DISTINCT_COUNT_CUTOFF == Cutoff point in HUF_sort() buckets for which we use log2 bucketing. * Strategy is to use as many buckets as possible for representing distinct * counts while using the remainder to represent all "large" counts. * * To satisfy this requirement for 192 buckets, we can do the following: * Let buckets 0-166 represent distinct counts of [0, 166] * Let buckets 166 to 192 represent all remaining counts up to RANK_POSITION_MAX_COUNT_LOG using log2 bucketing. */ #define RANK_POSITION_MAX_COUNT_LOG 32 #define RANK_POSITION_LOG_BUCKETS_BEGIN (RANK_POSITION_TABLE_SIZE - 1) - RANK_POSITION_MAX_COUNT_LOG - 1 /* == 158 */ #define RANK_POSITION_DISTINCT_COUNT_CUTOFF RANK_POSITION_LOG_BUCKETS_BEGIN + BIT_highbit32(RANK_POSITION_LOG_BUCKETS_BEGIN) /* == 166 */ /* Return the appropriate bucket index for a given count. See definition of * RANK_POSITION_DISTINCT_COUNT_CUTOFF for explanation of bucketing strategy. */ static U32 HUF_getIndex(U32 const count) { return (count < RANK_POSITION_DISTINCT_COUNT_CUTOFF) ? count : BIT_highbit32(count) + RANK_POSITION_LOG_BUCKETS_BEGIN; } /* Helper swap function for HUF_quickSortPartition() */ static void HUF_swapNodes(nodeElt* a, nodeElt* b) { nodeElt tmp = *a; *a = *b; *b = tmp; } /* Returns 0 if the huffNode array is not sorted by descending count */ MEM_STATIC int HUF_isSorted(nodeElt huffNode[], U32 const maxSymbolValue1) { U32 i; for (i = 1; i < maxSymbolValue1; ++i) { if (huffNode[i].count > huffNode[i-1].count) { return 0; } } return 1; } /* Insertion sort by descending order */ HINT_INLINE void HUF_insertionSort(nodeElt huffNode[], int const low, int const high) { int i; int const size = high-low+1; huffNode += low; for (i = 1; i < size; ++i) { nodeElt const key = huffNode[i]; int j = i - 1; while (j >= 0 && huffNode[j].count < key.count) { huffNode[j + 1] = huffNode[j]; j--; } huffNode[j + 1] = key; } } /* Pivot helper function for quicksort. */ static int HUF_quickSortPartition(nodeElt arr[], int const low, int const high) { /* Simply select rightmost element as pivot. "Better" selectors like * median-of-three don't experimentally appear to have any benefit. */ U32 const pivot = arr[high].count; int i = low - 1; int j = low; for ( ; j < high; j++) { if (arr[j].count > pivot) { i++; HUF_swapNodes(&arr[i], &arr[j]); } } HUF_swapNodes(&arr[i + 1], &arr[high]); return i + 1; } /* Classic quicksort by descending with partially iterative calls * to reduce worst case callstack size. */ static void HUF_simpleQuickSort(nodeElt arr[], int low, int high) { int const kInsertionSortThreshold = 8; if (high - low < kInsertionSortThreshold) { HUF_insertionSort(arr, low, high); return; } while (low < high) { int const idx = HUF_quickSortPartition(arr, low, high); if (idx - low < high - idx) { HUF_simpleQuickSort(arr, low, idx - 1); low = idx + 1; } else { HUF_simpleQuickSort(arr, idx + 1, high); high = idx - 1; } } } /* * HUF_sort(): * Sorts the symbols [0, maxSymbolValue] by count[symbol] in decreasing order. * This is a typical bucket sorting strategy that uses either quicksort or insertion sort to sort each bucket. * * @param[out] huffNode Sorted symbols by decreasing count. Only members `.count` and `.byte` are filled. * Must have (maxSymbolValue + 1) entries. * @param[in] count Histogram of the symbols. * @param[in] maxSymbolValue Maximum symbol value. * @param rankPosition This is a scratch workspace. Must have RANK_POSITION_TABLE_SIZE entries. */ static void HUF_sort(nodeElt huffNode[], const unsigned count[], U32 const maxSymbolValue, rankPos rankPosition[]) { U32 n; U32 const maxSymbolValue1 = maxSymbolValue+1; /* Compute base and set curr to base. * For symbol s let lowerRank = HUF_getIndex(count[n]) and rank = lowerRank + 1. * See HUF_getIndex to see bucketing strategy. * We attribute each symbol to lowerRank's base value, because we want to know where * each rank begins in the output, so for rank R we want to count ranks R+1 and above. */ ZSTD_memset(rankPosition, 0, sizeof(*rankPosition) * RANK_POSITION_TABLE_SIZE); for (n = 0; n < maxSymbolValue1; ++n) { U32 lowerRank = HUF_getIndex(count[n]); assert(lowerRank < RANK_POSITION_TABLE_SIZE - 1); rankPosition[lowerRank].base++; } assert(rankPosition[RANK_POSITION_TABLE_SIZE - 1].base == 0); /* Set up the rankPosition table */ for (n = RANK_POSITION_TABLE_SIZE - 1; n > 0; --n) { rankPosition[n-1].base += rankPosition[n].base; rankPosition[n-1].curr = rankPosition[n-1].base; } /* Insert each symbol into their appropriate bucket, setting up rankPosition table. */ for (n = 0; n < maxSymbolValue1; ++n) { U32 const c = count[n]; U32 const r = HUF_getIndex(c) + 1; U32 const pos = rankPosition[r].curr++; assert(pos < maxSymbolValue1); huffNode[pos].count = c; huffNode[pos].byte = (BYTE)n; } /* Sort each bucket. */ for (n = RANK_POSITION_DISTINCT_COUNT_CUTOFF; n < RANK_POSITION_TABLE_SIZE - 1; ++n) { U32 const bucketSize = rankPosition[n].curr-rankPosition[n].base; U32 const bucketStartIdx = rankPosition[n].base; if (bucketSize > 1) { assert(bucketStartIdx < maxSymbolValue1); HUF_simpleQuickSort(huffNode + bucketStartIdx, 0, bucketSize-1); } } assert(HUF_isSorted(huffNode, maxSymbolValue1)); } /* HUF_buildCTable_wksp() : * Same as HUF_buildCTable(), but using externally allocated scratch buffer. * `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as sizeof(HUF_buildCTable_wksp_tables). */ #define STARTNODE (HUF_SYMBOLVALUE_MAX+1) /* HUF_buildTree(): * Takes the huffNode array sorted by HUF_sort() and builds an unlimited-depth Huffman tree. * * @param huffNode The array sorted by HUF_sort(). Builds the Huffman tree in this array. * @param maxSymbolValue The maximum symbol value. * @return The smallest node in the Huffman tree (by count). */ static int HUF_buildTree(nodeElt* huffNode, U32 maxSymbolValue) { nodeElt* const huffNode0 = huffNode - 1; int nonNullRank; int lowS, lowN; int nodeNb = STARTNODE; int n, nodeRoot; /* init for parents */ nonNullRank = (int)maxSymbolValue; while(huffNode[nonNullRank].count == 0) nonNullRank--; lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb; huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count; huffNode[lowS].parent = huffNode[lowS-1].parent = (U16)nodeNb; nodeNb++; lowS-=2; for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30); huffNode0[0].count = (U32)(1U<<31); /* fake entry, strong barrier */ /* create parents */ while (nodeNb <= nodeRoot) { int const n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++; int const n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++; huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count; huffNode[n1].parent = huffNode[n2].parent = (U16)nodeNb; nodeNb++; } /* distribute weights (unlimited tree height) */ huffNode[nodeRoot].nbBits = 0; for (n=nodeRoot-1; n>=STARTNODE; n--) huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1; for (n=0; n<=nonNullRank; n++) huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1; return nonNullRank; } /* * HUF_buildCTableFromTree(): * Build the CTable given the Huffman tree in huffNode. * * @param[out] CTable The output Huffman CTable. * @param huffNode The Huffman tree. * @param nonNullRank The last and smallest node in the Huffman tree. * @param maxSymbolValue The maximum symbol value. * @param maxNbBits The exact maximum number of bits used in the Huffman tree. */ static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, int nonNullRank, U32 maxSymbolValue, U32 maxNbBits) { HUF_CElt* const ct = CTable + 1; /* fill result into ctable (val, nbBits) */ int n; U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0}; U16 valPerRank[HUF_TABLELOG_MAX+1] = {0}; int const alphabetSize = (int)(maxSymbolValue + 1); for (n=0; n<=nonNullRank; n++) nbPerRank[huffNode[n].nbBits]++; /* determine starting value per rank */ { U16 min = 0; for (n=(int)maxNbBits; n>0; n--) { valPerRank[n] = min; /* get starting value within each rank */ min += nbPerRank[n]; min >>= 1; } } for (n=0; n<alphabetSize; n++) HUF_setNbBits(ct + huffNode[n].byte, huffNode[n].nbBits); /* push nbBits per symbol, symbol order */ for (n=0; n<alphabetSize; n++) HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++); /* assign value within rank, symbol order */ CTable[0] = maxNbBits; } size_t HUF_buildCTable_wksp (HUF_CElt* CTable, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize) { HUF_buildCTable_wksp_tables* const wksp_tables = (HUF_buildCTable_wksp_tables*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(U32)); nodeElt* const huffNode0 = wksp_tables->huffNodeTbl; nodeElt* const huffNode = huffNode0+1; int nonNullRank; /* safety checks */ if (wkspSize < sizeof(HUF_buildCTable_wksp_tables)) return ERROR(workSpace_tooSmall); if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT; if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge); ZSTD_memset(huffNode0, 0, sizeof(huffNodeTable)); /* sort, decreasing order */ HUF_sort(huffNode, count, maxSymbolValue, wksp_tables->rankPosition); /* build tree */ nonNullRank = HUF_buildTree(huffNode, maxSymbolValue); /* enforce maxTableLog */ maxNbBits = HUF_setMaxHeight(huffNode, (U32)nonNullRank, maxNbBits); if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC); /* check fit into table */ HUF_buildCTableFromTree(CTable, huffNode, nonNullRank, maxSymbolValue, maxNbBits); return maxNbBits; } size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) { HUF_CElt const* ct = CTable + 1; size_t nbBits = 0; int s; for (s = 0; s <= (int)maxSymbolValue; ++s) { nbBits += HUF_getNbBits(ct[s]) * count[s]; } return nbBits >> 3; } int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) { HUF_CElt const* ct = CTable + 1; int bad = 0; int s; for (s = 0; s <= (int)maxSymbolValue; ++s) { bad |= (count[s] != 0) & (HUF_getNbBits(ct[s]) == 0); } return !bad; } size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); } /* HUF_CStream_t: * Huffman uses its own BIT_CStream_t implementation. * There are three major differences from BIT_CStream_t: * 1. HUF_addBits() takes a HUF_CElt (size_t) which is * the pair (nbBits, value) in the format: * format: * - Bits [0, 4) = nbBits * - Bits [4, 64 - nbBits) = 0 * - Bits [64 - nbBits, 64) = value * 2. The bitContainer is built from the upper bits and * right shifted. E.g. to add a new value of N bits * you right shift the bitContainer by N, then or in * the new value into the N upper bits. * 3. The bitstream has two bit containers. You can add * bits to the second container and merge them into * the first container. */ #define HUF_BITS_IN_CONTAINER (sizeof(size_t) * 8) typedef struct { size_t bitContainer[2]; size_t bitPos[2]; BYTE* startPtr; BYTE* ptr; BYTE* endPtr; } HUF_CStream_t; /*! HUF_initCStream(): * Initializes the bitstream. * @returns 0 or an error code. */ static size_t HUF_initCStream(HUF_CStream_t* bitC, void* startPtr, size_t dstCapacity) { ZSTD_memset(bitC, 0, sizeof(*bitC)); bitC->startPtr = (BYTE*)startPtr; bitC->ptr = bitC->startPtr; bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->bitContainer[0]); if (dstCapacity <= sizeof(bitC->bitContainer[0])) return ERROR(dstSize_tooSmall); return 0; } /*! HUF_addBits(): * Adds the symbol stored in HUF_CElt elt to the bitstream. * * @param elt The element we're adding. This is a (nbBits, value) pair. * See the HUF_CStream_t docs for the format. * @param idx Insert into the bitstream at this idx. * @param kFast This is a template parameter. If the bitstream is guaranteed * to have at least 4 unused bits after this call it may be 1, * otherwise it must be 0. HUF_addBits() is faster when fast is set. */ FORCE_INLINE_TEMPLATE void HUF_addBits(HUF_CStream_t* bitC, HUF_CElt elt, int idx, int kFast) { assert(idx <= 1); assert(HUF_getNbBits(elt) <= HUF_TABLELOG_ABSOLUTEMAX); /* This is efficient on x86-64 with BMI2 because shrx * only reads the low 6 bits of the register. The compiler * knows this and elides the mask. When fast is set, * every operation can use the same value loaded from elt. */ bitC->bitContainer[idx] >>= HUF_getNbBits(elt); bitC->bitContainer[idx] |= kFast ? HUF_getValueFast(elt) : HUF_getValue(elt); /* We only read the low 8 bits of bitC->bitPos[idx] so it * doesn't matter that the high bits have noise from the value. */ bitC->bitPos[idx] += HUF_getNbBitsFast(elt); assert((bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER); /* The last 4-bits of elt are dirty if fast is set, * so we must not be overwriting bits that have already been * inserted into the bit container. */ #if DEBUGLEVEL >= 1 { size_t const nbBits = HUF_getNbBits(elt); size_t const dirtyBits = nbBits == 0 ? 0 : BIT_highbit32((U32)nbBits) + 1; (void)dirtyBits; /* Middle bits are 0. */ assert(((elt >> dirtyBits) << (dirtyBits + nbBits)) == 0); /* We didn't overwrite any bits in the bit container. */ assert(!kFast || (bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER); (void)dirtyBits; } #endif } FORCE_INLINE_TEMPLATE void HUF_zeroIndex1(HUF_CStream_t* bitC) { bitC->bitContainer[1] = 0; bitC->bitPos[1] = 0; } /*! HUF_mergeIndex1() : * Merges the bit container @ index 1 into the bit container @ index 0 * and zeros the bit container @ index 1. */ FORCE_INLINE_TEMPLATE void HUF_mergeIndex1(HUF_CStream_t* bitC) { assert((bitC->bitPos[1] & 0xFF) < HUF_BITS_IN_CONTAINER); bitC->bitContainer[0] >>= (bitC->bitPos[1] & 0xFF); bitC->bitContainer[0] |= bitC->bitContainer[1]; bitC->bitPos[0] += bitC->bitPos[1]; assert((bitC->bitPos[0] & 0xFF) <= HUF_BITS_IN_CONTAINER); } /*! HUF_flushBits() : * Flushes the bits in the bit container @ index 0. * * @post bitPos will be < 8. * @param kFast If kFast is set then we must know a-priori that * the bit container will not overflow. */ FORCE_INLINE_TEMPLATE void HUF_flushBits(HUF_CStream_t* bitC, int kFast) { /* The upper bits of bitPos are noisy, so we must mask by 0xFF. */ size_t const nbBits = bitC->bitPos[0] & 0xFF; size_t const nbBytes = nbBits >> 3; /* The top nbBits bits of bitContainer are the ones we need. */ size_t const bitContainer = bitC->bitContainer[0] >> (HUF_BITS_IN_CONTAINER - nbBits); /* Mask bitPos to account for the bytes we consumed. */ bitC->bitPos[0] &= 7; assert(nbBits > 0); assert(nbBits <= sizeof(bitC->bitContainer[0]) * 8); assert(bitC->ptr <= bitC->endPtr); MEM_writeLEST(bitC->ptr, bitContainer); bitC->ptr += nbBytes; assert(!kFast || bitC->ptr <= bitC->endPtr); if (!kFast && bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr; /* bitContainer doesn't need to be modified because the leftover * bits are already the top bitPos bits. And we don't care about * noise in the lower values. */ } /*! HUF_endMark() * @returns The Huffman stream end mark: A 1-bit value = 1. */ static HUF_CElt HUF_endMark(void) { HUF_CElt endMark; HUF_setNbBits(&endMark, 1); HUF_setValue(&endMark, 1); return endMark; } /*! HUF_closeCStream() : * @return Size of CStream, in bytes, * or 0 if it could not fit into dstBuffer */ static size_t HUF_closeCStream(HUF_CStream_t* bitC) { HUF_addBits(bitC, HUF_endMark(), /* idx */ 0, /* kFast */ 0); HUF_flushBits(bitC, /* kFast */ 0); { size_t const nbBits = bitC->bitPos[0] & 0xFF; if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */ return (bitC->ptr - bitC->startPtr) + (nbBits > 0); } } FORCE_INLINE_TEMPLATE void HUF_encodeSymbol(HUF_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable, int idx, int fast) { HUF_addBits(bitCPtr, CTable[symbol], idx, fast); } FORCE_INLINE_TEMPLATE void HUF_compress1X_usingCTable_internal_body_loop(HUF_CStream_t* bitC, const BYTE* ip, size_t srcSize, const HUF_CElt* ct, int kUnroll, int kFastFlush, int kLastFast) { /* Join to kUnroll */ int n = (int)srcSize; int rem = n % kUnroll; if (rem > 0) { for (; rem > 0; --rem) { HUF_encodeSymbol(bitC, ip[--n], ct, 0, /* fast */ 0); } HUF_flushBits(bitC, kFastFlush); } assert(n % kUnroll == 0); /* Join to 2 * kUnroll */ if (n % (2 * kUnroll)) { int u; for (u = 1; u < kUnroll; ++u) { HUF_encodeSymbol(bitC, ip[n - u], ct, 0, 1); } HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, 0, kLastFast); HUF_flushBits(bitC, kFastFlush); n -= kUnroll; } assert(n % (2 * kUnroll) == 0); for (; n>0; n-= 2 * kUnroll) { /* Encode kUnroll symbols into the bitstream @ index 0. */ int u; for (u = 1; u < kUnroll; ++u) { HUF_encodeSymbol(bitC, ip[n - u], ct, /* idx */ 0, /* fast */ 1); } HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, /* idx */ 0, /* fast */ kLastFast); HUF_flushBits(bitC, kFastFlush); /* Encode kUnroll symbols into the bitstream @ index 1. * This allows us to start filling the bit container * without any data dependencies. */ HUF_zeroIndex1(bitC); for (u = 1; u < kUnroll; ++u) { HUF_encodeSymbol(bitC, ip[n - kUnroll - u], ct, /* idx */ 1, /* fast */ 1); } HUF_encodeSymbol(bitC, ip[n - kUnroll - kUnroll], ct, /* idx */ 1, /* fast */ kLastFast); /* Merge bitstream @ index 1 into the bitstream @ index 0 */ HUF_mergeIndex1(bitC); HUF_flushBits(bitC, kFastFlush); } assert(n == 0); } /* * Returns a tight upper bound on the output space needed by Huffman * with 8 bytes buffer to handle over-writes. If the output is at least * this large we don't need to do bounds checks during Huffman encoding. */ static size_t HUF_tightCompressBound(size_t srcSize, size_t tableLog) { return ((srcSize * tableLog) >> 3) + 8; } FORCE_INLINE_TEMPLATE size_t HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable) { U32 const tableLog = (U32)CTable[0]; HUF_CElt const* ct = CTable + 1; const BYTE* ip = (const BYTE*) src; BYTE* const ostart = (BYTE*)dst; BYTE* const oend = ostart + dstSize; BYTE* op = ostart; HUF_CStream_t bitC; /* init */ if (dstSize < 8) return 0; /* not enough space to compress */ { size_t const initErr = HUF_initCStream(&bitC, op, (size_t)(oend-op)); if (HUF_isError(initErr)) return 0; } if (dstSize < HUF_tightCompressBound(srcSize, (size_t)tableLog) || tableLog > 11) HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ MEM_32bits() ? 2 : 4, /* kFast */ 0, /* kLastFast */ 0); else { if (MEM_32bits()) { switch (tableLog) { case 11: HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 2, /* kFastFlush */ 1, /* kLastFast */ 0); break; case 10: ZSTD_FALLTHROUGH; case 9: ZSTD_FALLTHROUGH; case 8: HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 2, /* kFastFlush */ 1, /* kLastFast */ 1); break; case 7: ZSTD_FALLTHROUGH; default: HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 3, /* kFastFlush */ 1, /* kLastFast */ 1); break; } } else { switch (tableLog) { case 11: HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 5, /* kFastFlush */ 1, /* kLastFast */ 0); break; case 10: HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 5, /* kFastFlush */ 1, /* kLastFast */ 1); break; case 9: HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 6, /* kFastFlush */ 1, /* kLastFast */ 0); break; case 8: HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 7, /* kFastFlush */ 1, /* kLastFast */ 0); break; case 7: HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 8, /* kFastFlush */ 1, /* kLastFast */ 0); break; case 6: ZSTD_FALLTHROUGH; default: HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 9, /* kFastFlush */ 1, /* kLastFast */ 1); break; } } } assert(bitC.ptr <= bitC.endPtr); return HUF_closeCStream(&bitC); } #if DYNAMIC_BMI2 static BMI2_TARGET_ATTRIBUTE size_t HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable) { return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable); } static size_t HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable) { return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable); } static size_t HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, const int bmi2) { if (bmi2) { return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable); } return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable); } #else static size_t HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, const int bmi2) { (void)bmi2; return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable); } #endif size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable) { return HUF_compress1X_usingCTable_bmi2(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0); } size_t HUF_compress1X_usingCTable_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2) { return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, bmi2); } static size_t HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2) { size_t const segmentSize = (srcSize+3)/4; /* first 3 segments */ const BYTE* ip = (const BYTE*) src; const BYTE* const iend = ip + srcSize; BYTE* const ostart = (BYTE*) dst; BYTE* const oend = ostart + dstSize; BYTE* op = ostart; if (dstSize < 6 + 1 + 1 + 1 + 8) return 0; /* minimum space to compress successfully */ if (srcSize < 12) return 0; /* no saving possible : too small input */ op += 6; /* jumpTable */ assert(op <= oend); { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) ); if (cSize == 0 || cSize > 65535) return 0; MEM_writeLE16(ostart, (U16)cSize); op += cSize; } ip += segmentSize; assert(op <= oend); { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) ); if (cSize == 0 || cSize > 65535) return 0; MEM_writeLE16(ostart+2, (U16)cSize); op += cSize; } ip += segmentSize; assert(op <= oend); { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) ); if (cSize == 0 || cSize > 65535) return 0; MEM_writeLE16(ostart+4, (U16)cSize); op += cSize; } ip += segmentSize; assert(op <= oend); assert(ip <= iend); { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, (size_t)(iend-ip), CTable, bmi2) ); if (cSize == 0 || cSize > 65535) return 0; op += cSize; } return (size_t)(op-ostart); } size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable) { return HUF_compress4X_usingCTable_bmi2(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0); } size_t HUF_compress4X_usingCTable_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2) { return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, bmi2); } typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e; static size_t HUF_compressCTable_internal( BYTE* const ostart, BYTE* op, BYTE* const oend, const void* src, size_t srcSize, HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int bmi2) { size_t const cSize = (nbStreams==HUF_singleStream) ? HUF_compress1X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2) : HUF_compress4X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2); if (HUF_isError(cSize)) { return cSize; } if (cSize==0) { return 0; } /* uncompressible */ op += cSize; /* check compressibility */ assert(op >= ostart); if ((size_t)(op-ostart) >= srcSize-1) { return 0; } return (size_t)(op-ostart); } typedef struct { unsigned count[HUF_SYMBOLVALUE_MAX + 1]; HUF_CElt CTable[HUF_CTABLE_SIZE_ST(HUF_SYMBOLVALUE_MAX)]; union { HUF_buildCTable_wksp_tables buildCTable_wksp; HUF_WriteCTableWksp writeCTable_wksp; U32 hist_wksp[HIST_WKSP_SIZE_U32]; } wksps; } HUF_compress_tables_t; #define SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE 4096 #define SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO 10 /* Must be >= 2 */ /* HUF_compress_internal() : * `workSpace_align4` must be aligned on 4-bytes boundaries, * and occupies the same space as a table of HUF_WORKSPACE_SIZE_U64 unsigned */ static size_t HUF_compress_internal (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog, HUF_nbStreams_e nbStreams, void* workSpace, size_t wkspSize, HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat, const int bmi2, unsigned suspectUncompressible) { HUF_compress_tables_t* const table = (HUF_compress_tables_t*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(size_t)); BYTE* const ostart = (BYTE*)dst; BYTE* const oend = ostart + dstSize; BYTE* op = ostart; HUF_STATIC_ASSERT(sizeof(*table) + HUF_WORKSPACE_MAX_ALIGNMENT <= HUF_WORKSPACE_SIZE); /* checks & inits */ if (wkspSize < sizeof(*table)) return ERROR(workSpace_tooSmall); if (!srcSize) return 0; /* Uncompressed */ if (!dstSize) return 0; /* cannot fit anything within dst budget */ if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong); /* current block size limit */ if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge); if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge); if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX; if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT; /* Heuristic : If old table is valid, use it for small inputs */ if (preferRepeat && repeat && *repeat == HUF_repeat_valid) { return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, nbStreams, oldHufTable, bmi2); } /* If uncompressible data is suspected, do a smaller sampling first */ DEBUG_STATIC_ASSERT(SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO >= 2); if (suspectUncompressible && srcSize >= (SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE * SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO)) { size_t largestTotal = 0; { unsigned maxSymbolValueBegin = maxSymbolValue; CHECK_V_F(largestBegin, HIST_count_simple (table->count, &maxSymbolValueBegin, (const BYTE*)src, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) ); largestTotal += largestBegin; } { unsigned maxSymbolValueEnd = maxSymbolValue; CHECK_V_F(largestEnd, HIST_count_simple (table->count, &maxSymbolValueEnd, (const BYTE*)src + srcSize - SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) ); largestTotal += largestEnd; } if (largestTotal <= ((2 * SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) >> 7)+4) return 0; /* heuristic : probably not compressible enough */ } /* Scan input and build symbol stats */ { CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, table->wksps.hist_wksp, sizeof(table->wksps.hist_wksp)) ); if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; } /* single symbol, rle */ if (largest <= (srcSize >> 7)+4) return 0; /* heuristic : probably not compressible enough */ } /* Check validity of previous table */ if ( repeat && *repeat == HUF_repeat_check && !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) { *repeat = HUF_repeat_none; } /* Heuristic : use existing table for small inputs */ if (preferRepeat && repeat && *repeat != HUF_repeat_none) { return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, nbStreams, oldHufTable, bmi2); } /* Build Huffman Tree */ huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue); { size_t const maxBits = HUF_buildCTable_wksp(table->CTable, table->count, maxSymbolValue, huffLog, &table->wksps.buildCTable_wksp, sizeof(table->wksps.buildCTable_wksp)); CHECK_F(maxBits); huffLog = (U32)maxBits; } /* Zero unused symbols in CTable, so we can check it for validity */ { size_t const ctableSize = HUF_CTABLE_SIZE_ST(maxSymbolValue); size_t const unusedSize = sizeof(table->CTable) - ctableSize * sizeof(HUF_CElt); ZSTD_memset(table->CTable + ctableSize, 0, unusedSize); } /* Write table description header */ { CHECK_V_F(hSize, HUF_writeCTable_wksp(op, dstSize, table->CTable, maxSymbolValue, huffLog, &table->wksps.writeCTable_wksp, sizeof(table->wksps.writeCTable_wksp)) ); /* Check if using previous huffman table is beneficial */ if (repeat && *repeat != HUF_repeat_none) { size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue); size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue); if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) { return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, nbStreams, oldHufTable, bmi2); } } /* Use the new huffman table */ if (hSize + 12ul >= srcSize) { return 0; } op += hSize; if (repeat) { *repeat = HUF_repeat_none; } if (oldHufTable) ZSTD_memcpy(oldHufTable, table->CTable, sizeof(table->CTable)); /* Save new table */ } return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, nbStreams, table->CTable, bmi2); } size_t HUF_compress1X_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog, void* workSpace, size_t wkspSize) { return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, HUF_singleStream, workSpace, wkspSize, NULL, NULL, 0, 0 /*bmi2*/, 0); } size_t HUF_compress1X_repeat (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog, void* workSpace, size_t wkspSize, HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2, unsigned suspectUncompressible) { return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, HUF_singleStream, workSpace, wkspSize, hufTable, repeat, preferRepeat, bmi2, suspectUncompressible); } /* HUF_compress4X_repeat(): * compress input using 4 streams. * provide workspace to generate compression tables */ size_t HUF_compress4X_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog, void* workSpace, size_t wkspSize) { return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, HUF_fourStreams, workSpace, wkspSize, NULL, NULL, 0, 0 /*bmi2*/, 0); } /* HUF_compress4X_repeat(): * compress input using 4 streams. * consider skipping quickly * re-use an existing huffman compression table */ size_t HUF_compress4X_repeat (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog, void* workSpace, size_t wkspSize, HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2, unsigned suspectUncompressible) { return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, HUF_fourStreams, workSpace, wkspSize, hufTable, repeat, preferRepeat, bmi2, suspectUncompressible); } |