Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2010 Red Hat, Inc.
   4 * Copyright (C) 2016-2023 Christoph Hellwig.
   5 */
   6#include <linux/module.h>
   7#include <linux/compiler.h>
   8#include <linux/fs.h>
   9#include <linux/iomap.h>
  10#include <linux/pagemap.h>
  11#include <linux/uio.h>
  12#include <linux/buffer_head.h>
  13#include <linux/dax.h>
  14#include <linux/writeback.h>
  15#include <linux/list_sort.h>
  16#include <linux/swap.h>
  17#include <linux/bio.h>
  18#include <linux/sched/signal.h>
  19#include <linux/migrate.h>
  20#include "trace.h"
  21
  22#include "../internal.h"
  23
  24#define IOEND_BATCH_SIZE	4096
  25
  26typedef int (*iomap_punch_t)(struct inode *inode, loff_t offset, loff_t length);
  27/*
  28 * Structure allocated for each folio to track per-block uptodate, dirty state
  29 * and I/O completions.
  30 */
  31struct iomap_folio_state {
  32	spinlock_t		state_lock;
  33	unsigned int		read_bytes_pending;
  34	atomic_t		write_bytes_pending;
  35
  36	/*
  37	 * Each block has two bits in this bitmap:
  38	 * Bits [0..blocks_per_folio) has the uptodate status.
  39	 * Bits [b_p_f...(2*b_p_f))   has the dirty status.
  40	 */
  41	unsigned long		state[];
  42};
  43
  44static struct bio_set iomap_ioend_bioset;
  45
  46static inline bool ifs_is_fully_uptodate(struct folio *folio,
  47		struct iomap_folio_state *ifs)
  48{
  49	struct inode *inode = folio->mapping->host;
  50
  51	return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio));
  52}
  53
  54static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs,
  55		unsigned int block)
  56{
  57	return test_bit(block, ifs->state);
  58}
  59
  60static bool ifs_set_range_uptodate(struct folio *folio,
  61		struct iomap_folio_state *ifs, size_t off, size_t len)
  62{
  63	struct inode *inode = folio->mapping->host;
  64	unsigned int first_blk = off >> inode->i_blkbits;
  65	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
  66	unsigned int nr_blks = last_blk - first_blk + 1;
  67
  68	bitmap_set(ifs->state, first_blk, nr_blks);
  69	return ifs_is_fully_uptodate(folio, ifs);
  70}
  71
  72static void iomap_set_range_uptodate(struct folio *folio, size_t off,
  73		size_t len)
  74{
  75	struct iomap_folio_state *ifs = folio->private;
  76	unsigned long flags;
  77	bool uptodate = true;
  78
  79	if (ifs) {
  80		spin_lock_irqsave(&ifs->state_lock, flags);
  81		uptodate = ifs_set_range_uptodate(folio, ifs, off, len);
  82		spin_unlock_irqrestore(&ifs->state_lock, flags);
  83	}
  84
  85	if (uptodate)
  86		folio_mark_uptodate(folio);
  87}
  88
  89static inline bool ifs_block_is_dirty(struct folio *folio,
  90		struct iomap_folio_state *ifs, int block)
  91{
  92	struct inode *inode = folio->mapping->host;
  93	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
  94
  95	return test_bit(block + blks_per_folio, ifs->state);
  96}
  97
  98static unsigned ifs_find_dirty_range(struct folio *folio,
  99		struct iomap_folio_state *ifs, u64 *range_start, u64 range_end)
 100{
 101	struct inode *inode = folio->mapping->host;
 102	unsigned start_blk =
 103		offset_in_folio(folio, *range_start) >> inode->i_blkbits;
 104	unsigned end_blk = min_not_zero(
 105		offset_in_folio(folio, range_end) >> inode->i_blkbits,
 106		i_blocks_per_folio(inode, folio));
 107	unsigned nblks = 1;
 108
 109	while (!ifs_block_is_dirty(folio, ifs, start_blk))
 110		if (++start_blk == end_blk)
 111			return 0;
 112
 113	while (start_blk + nblks < end_blk) {
 114		if (!ifs_block_is_dirty(folio, ifs, start_blk + nblks))
 115			break;
 116		nblks++;
 117	}
 118
 119	*range_start = folio_pos(folio) + (start_blk << inode->i_blkbits);
 120	return nblks << inode->i_blkbits;
 121}
 122
 123static unsigned iomap_find_dirty_range(struct folio *folio, u64 *range_start,
 124		u64 range_end)
 125{
 126	struct iomap_folio_state *ifs = folio->private;
 127
 128	if (*range_start >= range_end)
 129		return 0;
 130
 131	if (ifs)
 132		return ifs_find_dirty_range(folio, ifs, range_start, range_end);
 133	return range_end - *range_start;
 134}
 135
 136static void ifs_clear_range_dirty(struct folio *folio,
 137		struct iomap_folio_state *ifs, size_t off, size_t len)
 138{
 139	struct inode *inode = folio->mapping->host;
 140	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
 141	unsigned int first_blk = (off >> inode->i_blkbits);
 142	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
 143	unsigned int nr_blks = last_blk - first_blk + 1;
 144	unsigned long flags;
 145
 146	spin_lock_irqsave(&ifs->state_lock, flags);
 147	bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks);
 148	spin_unlock_irqrestore(&ifs->state_lock, flags);
 149}
 150
 151static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len)
 152{
 153	struct iomap_folio_state *ifs = folio->private;
 154
 155	if (ifs)
 156		ifs_clear_range_dirty(folio, ifs, off, len);
 157}
 158
 159static void ifs_set_range_dirty(struct folio *folio,
 160		struct iomap_folio_state *ifs, size_t off, size_t len)
 161{
 162	struct inode *inode = folio->mapping->host;
 163	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
 164	unsigned int first_blk = (off >> inode->i_blkbits);
 165	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
 166	unsigned int nr_blks = last_blk - first_blk + 1;
 167	unsigned long flags;
 168
 169	spin_lock_irqsave(&ifs->state_lock, flags);
 170	bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks);
 171	spin_unlock_irqrestore(&ifs->state_lock, flags);
 172}
 173
 174static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len)
 175{
 176	struct iomap_folio_state *ifs = folio->private;
 177
 178	if (ifs)
 179		ifs_set_range_dirty(folio, ifs, off, len);
 180}
 181
 182static struct iomap_folio_state *ifs_alloc(struct inode *inode,
 183		struct folio *folio, unsigned int flags)
 184{
 185	struct iomap_folio_state *ifs = folio->private;
 186	unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
 187	gfp_t gfp;
 188
 189	if (ifs || nr_blocks <= 1)
 190		return ifs;
 191
 192	if (flags & IOMAP_NOWAIT)
 193		gfp = GFP_NOWAIT;
 194	else
 195		gfp = GFP_NOFS | __GFP_NOFAIL;
 196
 197	/*
 198	 * ifs->state tracks two sets of state flags when the
 199	 * filesystem block size is smaller than the folio size.
 200	 * The first state tracks per-block uptodate and the
 201	 * second tracks per-block dirty state.
 202	 */
 203	ifs = kzalloc(struct_size(ifs, state,
 204		      BITS_TO_LONGS(2 * nr_blocks)), gfp);
 205	if (!ifs)
 206		return ifs;
 207
 208	spin_lock_init(&ifs->state_lock);
 209	if (folio_test_uptodate(folio))
 210		bitmap_set(ifs->state, 0, nr_blocks);
 211	if (folio_test_dirty(folio))
 212		bitmap_set(ifs->state, nr_blocks, nr_blocks);
 213	folio_attach_private(folio, ifs);
 214
 215	return ifs;
 216}
 217
 218static void ifs_free(struct folio *folio)
 219{
 220	struct iomap_folio_state *ifs = folio_detach_private(folio);
 221
 222	if (!ifs)
 223		return;
 224	WARN_ON_ONCE(ifs->read_bytes_pending != 0);
 225	WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending));
 226	WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) !=
 227			folio_test_uptodate(folio));
 228	kfree(ifs);
 229}
 230
 231/*
 232 * Calculate the range inside the folio that we actually need to read.
 233 */
 234static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
 235		loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
 236{
 237	struct iomap_folio_state *ifs = folio->private;
 238	loff_t orig_pos = *pos;
 239	loff_t isize = i_size_read(inode);
 240	unsigned block_bits = inode->i_blkbits;
 241	unsigned block_size = (1 << block_bits);
 242	size_t poff = offset_in_folio(folio, *pos);
 243	size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
 244	unsigned first = poff >> block_bits;
 245	unsigned last = (poff + plen - 1) >> block_bits;
 246
 247	/*
 248	 * If the block size is smaller than the page size, we need to check the
 249	 * per-block uptodate status and adjust the offset and length if needed
 250	 * to avoid reading in already uptodate ranges.
 251	 */
 252	if (ifs) {
 253		unsigned int i;
 254
 255		/* move forward for each leading block marked uptodate */
 256		for (i = first; i <= last; i++) {
 257			if (!ifs_block_is_uptodate(ifs, i))
 258				break;
 259			*pos += block_size;
 260			poff += block_size;
 261			plen -= block_size;
 262			first++;
 263		}
 264
 265		/* truncate len if we find any trailing uptodate block(s) */
 266		for ( ; i <= last; i++) {
 267			if (ifs_block_is_uptodate(ifs, i)) {
 268				plen -= (last - i + 1) * block_size;
 269				last = i - 1;
 270				break;
 271			}
 272		}
 273	}
 274
 275	/*
 276	 * If the extent spans the block that contains the i_size, we need to
 277	 * handle both halves separately so that we properly zero data in the
 278	 * page cache for blocks that are entirely outside of i_size.
 279	 */
 280	if (orig_pos <= isize && orig_pos + length > isize) {
 281		unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
 282
 283		if (first <= end && last > end)
 284			plen -= (last - end) * block_size;
 285	}
 286
 287	*offp = poff;
 288	*lenp = plen;
 289}
 290
 291static void iomap_finish_folio_read(struct folio *folio, size_t off,
 292		size_t len, int error)
 293{
 294	struct iomap_folio_state *ifs = folio->private;
 295	bool uptodate = !error;
 296	bool finished = true;
 297
 298	if (ifs) {
 299		unsigned long flags;
 300
 301		spin_lock_irqsave(&ifs->state_lock, flags);
 302		if (!error)
 303			uptodate = ifs_set_range_uptodate(folio, ifs, off, len);
 304		ifs->read_bytes_pending -= len;
 305		finished = !ifs->read_bytes_pending;
 306		spin_unlock_irqrestore(&ifs->state_lock, flags);
 307	}
 308
 309	if (error)
 310		folio_set_error(folio);
 311	if (finished)
 312		folio_end_read(folio, uptodate);
 313}
 314
 315static void iomap_read_end_io(struct bio *bio)
 316{
 317	int error = blk_status_to_errno(bio->bi_status);
 318	struct folio_iter fi;
 319
 320	bio_for_each_folio_all(fi, bio)
 321		iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error);
 322	bio_put(bio);
 323}
 324
 325struct iomap_readpage_ctx {
 326	struct folio		*cur_folio;
 327	bool			cur_folio_in_bio;
 328	struct bio		*bio;
 329	struct readahead_control *rac;
 330};
 331
 332/**
 333 * iomap_read_inline_data - copy inline data into the page cache
 334 * @iter: iteration structure
 335 * @folio: folio to copy to
 336 *
 337 * Copy the inline data in @iter into @folio and zero out the rest of the folio.
 338 * Only a single IOMAP_INLINE extent is allowed at the end of each file.
 339 * Returns zero for success to complete the read, or the usual negative errno.
 340 */
 341static int iomap_read_inline_data(const struct iomap_iter *iter,
 342		struct folio *folio)
 343{
 344	const struct iomap *iomap = iomap_iter_srcmap(iter);
 345	size_t size = i_size_read(iter->inode) - iomap->offset;
 346	size_t offset = offset_in_folio(folio, iomap->offset);
 347
 348	if (folio_test_uptodate(folio))
 349		return 0;
 350
 351	if (WARN_ON_ONCE(size > iomap->length))
 352		return -EIO;
 353	if (offset > 0)
 354		ifs_alloc(iter->inode, folio, iter->flags);
 355
 356	folio_fill_tail(folio, offset, iomap->inline_data, size);
 357	iomap_set_range_uptodate(folio, offset, folio_size(folio) - offset);
 358	return 0;
 359}
 360
 361static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
 362		loff_t pos)
 363{
 364	const struct iomap *srcmap = iomap_iter_srcmap(iter);
 365
 366	return srcmap->type != IOMAP_MAPPED ||
 367		(srcmap->flags & IOMAP_F_NEW) ||
 368		pos >= i_size_read(iter->inode);
 369}
 370
 371static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
 372		struct iomap_readpage_ctx *ctx, loff_t offset)
 373{
 374	const struct iomap *iomap = &iter->iomap;
 375	loff_t pos = iter->pos + offset;
 376	loff_t length = iomap_length(iter) - offset;
 377	struct folio *folio = ctx->cur_folio;
 378	struct iomap_folio_state *ifs;
 379	loff_t orig_pos = pos;
 380	size_t poff, plen;
 381	sector_t sector;
 382
 383	if (iomap->type == IOMAP_INLINE)
 384		return iomap_read_inline_data(iter, folio);
 385
 386	/* zero post-eof blocks as the page may be mapped */
 387	ifs = ifs_alloc(iter->inode, folio, iter->flags);
 388	iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen);
 389	if (plen == 0)
 390		goto done;
 391
 392	if (iomap_block_needs_zeroing(iter, pos)) {
 393		folio_zero_range(folio, poff, plen);
 394		iomap_set_range_uptodate(folio, poff, plen);
 395		goto done;
 396	}
 397
 398	ctx->cur_folio_in_bio = true;
 399	if (ifs) {
 400		spin_lock_irq(&ifs->state_lock);
 401		ifs->read_bytes_pending += plen;
 402		spin_unlock_irq(&ifs->state_lock);
 403	}
 404
 405	sector = iomap_sector(iomap, pos);
 406	if (!ctx->bio ||
 407	    bio_end_sector(ctx->bio) != sector ||
 408	    !bio_add_folio(ctx->bio, folio, plen, poff)) {
 409		gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
 410		gfp_t orig_gfp = gfp;
 411		unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
 412
 413		if (ctx->bio)
 414			submit_bio(ctx->bio);
 415
 416		if (ctx->rac) /* same as readahead_gfp_mask */
 417			gfp |= __GFP_NORETRY | __GFP_NOWARN;
 418		ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs),
 419				     REQ_OP_READ, gfp);
 420		/*
 421		 * If the bio_alloc fails, try it again for a single page to
 422		 * avoid having to deal with partial page reads.  This emulates
 423		 * what do_mpage_read_folio does.
 424		 */
 425		if (!ctx->bio) {
 426			ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ,
 427					     orig_gfp);
 428		}
 429		if (ctx->rac)
 430			ctx->bio->bi_opf |= REQ_RAHEAD;
 431		ctx->bio->bi_iter.bi_sector = sector;
 432		ctx->bio->bi_end_io = iomap_read_end_io;
 433		bio_add_folio_nofail(ctx->bio, folio, plen, poff);
 434	}
 435
 436done:
 437	/*
 438	 * Move the caller beyond our range so that it keeps making progress.
 439	 * For that, we have to include any leading non-uptodate ranges, but
 440	 * we can skip trailing ones as they will be handled in the next
 441	 * iteration.
 442	 */
 443	return pos - orig_pos + plen;
 444}
 445
 446int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops)
 447{
 448	struct iomap_iter iter = {
 449		.inode		= folio->mapping->host,
 450		.pos		= folio_pos(folio),
 451		.len		= folio_size(folio),
 452	};
 453	struct iomap_readpage_ctx ctx = {
 454		.cur_folio	= folio,
 455	};
 456	int ret;
 457
 458	trace_iomap_readpage(iter.inode, 1);
 459
 460	while ((ret = iomap_iter(&iter, ops)) > 0)
 461		iter.processed = iomap_readpage_iter(&iter, &ctx, 0);
 462
 463	if (ret < 0)
 464		folio_set_error(folio);
 465
 466	if (ctx.bio) {
 467		submit_bio(ctx.bio);
 468		WARN_ON_ONCE(!ctx.cur_folio_in_bio);
 469	} else {
 470		WARN_ON_ONCE(ctx.cur_folio_in_bio);
 471		folio_unlock(folio);
 472	}
 473
 474	/*
 475	 * Just like mpage_readahead and block_read_full_folio, we always
 476	 * return 0 and just set the folio error flag on errors.  This
 477	 * should be cleaned up throughout the stack eventually.
 478	 */
 479	return 0;
 480}
 481EXPORT_SYMBOL_GPL(iomap_read_folio);
 482
 483static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
 484		struct iomap_readpage_ctx *ctx)
 485{
 486	loff_t length = iomap_length(iter);
 487	loff_t done, ret;
 488
 489	for (done = 0; done < length; done += ret) {
 490		if (ctx->cur_folio &&
 491		    offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) {
 492			if (!ctx->cur_folio_in_bio)
 493				folio_unlock(ctx->cur_folio);
 494			ctx->cur_folio = NULL;
 495		}
 496		if (!ctx->cur_folio) {
 497			ctx->cur_folio = readahead_folio(ctx->rac);
 498			ctx->cur_folio_in_bio = false;
 499		}
 500		ret = iomap_readpage_iter(iter, ctx, done);
 501		if (ret <= 0)
 502			return ret;
 503	}
 504
 505	return done;
 506}
 507
 508/**
 509 * iomap_readahead - Attempt to read pages from a file.
 510 * @rac: Describes the pages to be read.
 511 * @ops: The operations vector for the filesystem.
 512 *
 513 * This function is for filesystems to call to implement their readahead
 514 * address_space operation.
 515 *
 516 * Context: The @ops callbacks may submit I/O (eg to read the addresses of
 517 * blocks from disc), and may wait for it.  The caller may be trying to
 518 * access a different page, and so sleeping excessively should be avoided.
 519 * It may allocate memory, but should avoid costly allocations.  This
 520 * function is called with memalloc_nofs set, so allocations will not cause
 521 * the filesystem to be reentered.
 522 */
 523void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
 524{
 525	struct iomap_iter iter = {
 526		.inode	= rac->mapping->host,
 527		.pos	= readahead_pos(rac),
 528		.len	= readahead_length(rac),
 529	};
 530	struct iomap_readpage_ctx ctx = {
 531		.rac	= rac,
 532	};
 533
 534	trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
 535
 536	while (iomap_iter(&iter, ops) > 0)
 537		iter.processed = iomap_readahead_iter(&iter, &ctx);
 538
 539	if (ctx.bio)
 540		submit_bio(ctx.bio);
 541	if (ctx.cur_folio) {
 542		if (!ctx.cur_folio_in_bio)
 543			folio_unlock(ctx.cur_folio);
 544	}
 545}
 546EXPORT_SYMBOL_GPL(iomap_readahead);
 547
 548/*
 549 * iomap_is_partially_uptodate checks whether blocks within a folio are
 550 * uptodate or not.
 551 *
 552 * Returns true if all blocks which correspond to the specified part
 553 * of the folio are uptodate.
 554 */
 555bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
 556{
 557	struct iomap_folio_state *ifs = folio->private;
 558	struct inode *inode = folio->mapping->host;
 559	unsigned first, last, i;
 560
 561	if (!ifs)
 562		return false;
 563
 564	/* Caller's range may extend past the end of this folio */
 565	count = min(folio_size(folio) - from, count);
 566
 567	/* First and last blocks in range within folio */
 568	first = from >> inode->i_blkbits;
 569	last = (from + count - 1) >> inode->i_blkbits;
 570
 571	for (i = first; i <= last; i++)
 572		if (!ifs_block_is_uptodate(ifs, i))
 573			return false;
 574	return true;
 575}
 576EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
 577
 578/**
 579 * iomap_get_folio - get a folio reference for writing
 580 * @iter: iteration structure
 581 * @pos: start offset of write
 582 * @len: Suggested size of folio to create.
 583 *
 584 * Returns a locked reference to the folio at @pos, or an error pointer if the
 585 * folio could not be obtained.
 586 */
 587struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len)
 588{
 589	fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS;
 590
 591	if (iter->flags & IOMAP_NOWAIT)
 592		fgp |= FGP_NOWAIT;
 593	fgp |= fgf_set_order(len);
 594
 595	return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
 596			fgp, mapping_gfp_mask(iter->inode->i_mapping));
 597}
 598EXPORT_SYMBOL_GPL(iomap_get_folio);
 599
 600bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags)
 601{
 602	trace_iomap_release_folio(folio->mapping->host, folio_pos(folio),
 603			folio_size(folio));
 604
 605	/*
 606	 * If the folio is dirty, we refuse to release our metadata because
 607	 * it may be partially dirty.  Once we track per-block dirty state,
 608	 * we can release the metadata if every block is dirty.
 609	 */
 610	if (folio_test_dirty(folio))
 611		return false;
 612	ifs_free(folio);
 613	return true;
 614}
 615EXPORT_SYMBOL_GPL(iomap_release_folio);
 616
 617void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
 618{
 619	trace_iomap_invalidate_folio(folio->mapping->host,
 620					folio_pos(folio) + offset, len);
 621
 622	/*
 623	 * If we're invalidating the entire folio, clear the dirty state
 624	 * from it and release it to avoid unnecessary buildup of the LRU.
 625	 */
 626	if (offset == 0 && len == folio_size(folio)) {
 627		WARN_ON_ONCE(folio_test_writeback(folio));
 628		folio_cancel_dirty(folio);
 629		ifs_free(folio);
 630	}
 631}
 632EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
 633
 634bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio)
 635{
 636	struct inode *inode = mapping->host;
 637	size_t len = folio_size(folio);
 638
 639	ifs_alloc(inode, folio, 0);
 640	iomap_set_range_dirty(folio, 0, len);
 641	return filemap_dirty_folio(mapping, folio);
 642}
 643EXPORT_SYMBOL_GPL(iomap_dirty_folio);
 644
 645static void
 646iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
 647{
 648	loff_t i_size = i_size_read(inode);
 649
 650	/*
 651	 * Only truncate newly allocated pages beyoned EOF, even if the
 652	 * write started inside the existing inode size.
 653	 */
 654	if (pos + len > i_size)
 655		truncate_pagecache_range(inode, max(pos, i_size),
 656					 pos + len - 1);
 657}
 658
 659static int iomap_read_folio_sync(loff_t block_start, struct folio *folio,
 660		size_t poff, size_t plen, const struct iomap *iomap)
 661{
 662	struct bio_vec bvec;
 663	struct bio bio;
 664
 665	bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ);
 666	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
 667	bio_add_folio_nofail(&bio, folio, plen, poff);
 668	return submit_bio_wait(&bio);
 669}
 670
 671static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
 672		size_t len, struct folio *folio)
 673{
 674	const struct iomap *srcmap = iomap_iter_srcmap(iter);
 675	struct iomap_folio_state *ifs;
 676	loff_t block_size = i_blocksize(iter->inode);
 677	loff_t block_start = round_down(pos, block_size);
 678	loff_t block_end = round_up(pos + len, block_size);
 679	unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio);
 680	size_t from = offset_in_folio(folio, pos), to = from + len;
 681	size_t poff, plen;
 682
 683	/*
 684	 * If the write or zeroing completely overlaps the current folio, then
 685	 * entire folio will be dirtied so there is no need for
 686	 * per-block state tracking structures to be attached to this folio.
 687	 * For the unshare case, we must read in the ondisk contents because we
 688	 * are not changing pagecache contents.
 689	 */
 690	if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) &&
 691	    pos + len >= folio_pos(folio) + folio_size(folio))
 692		return 0;
 693
 694	ifs = ifs_alloc(iter->inode, folio, iter->flags);
 695	if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1)
 696		return -EAGAIN;
 697
 698	if (folio_test_uptodate(folio))
 699		return 0;
 700	folio_clear_error(folio);
 701
 702	do {
 703		iomap_adjust_read_range(iter->inode, folio, &block_start,
 704				block_end - block_start, &poff, &plen);
 705		if (plen == 0)
 706			break;
 707
 708		if (!(iter->flags & IOMAP_UNSHARE) &&
 709		    (from <= poff || from >= poff + plen) &&
 710		    (to <= poff || to >= poff + plen))
 711			continue;
 712
 713		if (iomap_block_needs_zeroing(iter, block_start)) {
 714			if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
 715				return -EIO;
 716			folio_zero_segments(folio, poff, from, to, poff + plen);
 717		} else {
 718			int status;
 719
 720			if (iter->flags & IOMAP_NOWAIT)
 721				return -EAGAIN;
 722
 723			status = iomap_read_folio_sync(block_start, folio,
 724					poff, plen, srcmap);
 725			if (status)
 726				return status;
 727		}
 728		iomap_set_range_uptodate(folio, poff, plen);
 729	} while ((block_start += plen) < block_end);
 730
 731	return 0;
 732}
 733
 734static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos,
 735		size_t len)
 736{
 737	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
 738
 739	if (folio_ops && folio_ops->get_folio)
 740		return folio_ops->get_folio(iter, pos, len);
 741	else
 742		return iomap_get_folio(iter, pos, len);
 743}
 744
 745static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret,
 746		struct folio *folio)
 747{
 748	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
 749
 750	if (folio_ops && folio_ops->put_folio) {
 751		folio_ops->put_folio(iter->inode, pos, ret, folio);
 752	} else {
 753		folio_unlock(folio);
 754		folio_put(folio);
 755	}
 756}
 757
 758static int iomap_write_begin_inline(const struct iomap_iter *iter,
 759		struct folio *folio)
 760{
 761	/* needs more work for the tailpacking case; disable for now */
 762	if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
 763		return -EIO;
 764	return iomap_read_inline_data(iter, folio);
 765}
 766
 767static int iomap_write_begin(struct iomap_iter *iter, loff_t pos,
 768		size_t len, struct folio **foliop)
 769{
 770	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
 771	const struct iomap *srcmap = iomap_iter_srcmap(iter);
 772	struct folio *folio;
 773	int status = 0;
 774
 775	BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
 776	if (srcmap != &iter->iomap)
 777		BUG_ON(pos + len > srcmap->offset + srcmap->length);
 778
 779	if (fatal_signal_pending(current))
 780		return -EINTR;
 781
 782	if (!mapping_large_folio_support(iter->inode->i_mapping))
 783		len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
 784
 785	folio = __iomap_get_folio(iter, pos, len);
 786	if (IS_ERR(folio))
 787		return PTR_ERR(folio);
 788
 789	/*
 790	 * Now we have a locked folio, before we do anything with it we need to
 791	 * check that the iomap we have cached is not stale. The inode extent
 792	 * mapping can change due to concurrent IO in flight (e.g.
 793	 * IOMAP_UNWRITTEN state can change and memory reclaim could have
 794	 * reclaimed a previously partially written page at this index after IO
 795	 * completion before this write reaches this file offset) and hence we
 796	 * could do the wrong thing here (zero a page range incorrectly or fail
 797	 * to zero) and corrupt data.
 798	 */
 799	if (folio_ops && folio_ops->iomap_valid) {
 800		bool iomap_valid = folio_ops->iomap_valid(iter->inode,
 801							 &iter->iomap);
 802		if (!iomap_valid) {
 803			iter->iomap.flags |= IOMAP_F_STALE;
 804			status = 0;
 805			goto out_unlock;
 806		}
 807	}
 808
 809	if (pos + len > folio_pos(folio) + folio_size(folio))
 810		len = folio_pos(folio) + folio_size(folio) - pos;
 811
 812	if (srcmap->type == IOMAP_INLINE)
 813		status = iomap_write_begin_inline(iter, folio);
 814	else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
 815		status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
 816	else
 817		status = __iomap_write_begin(iter, pos, len, folio);
 818
 819	if (unlikely(status))
 820		goto out_unlock;
 821
 822	*foliop = folio;
 823	return 0;
 824
 825out_unlock:
 826	__iomap_put_folio(iter, pos, 0, folio);
 827	iomap_write_failed(iter->inode, pos, len);
 828
 829	return status;
 830}
 831
 832static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
 833		size_t copied, struct folio *folio)
 834{
 835	flush_dcache_folio(folio);
 836
 837	/*
 838	 * The blocks that were entirely written will now be uptodate, so we
 839	 * don't have to worry about a read_folio reading them and overwriting a
 840	 * partial write.  However, if we've encountered a short write and only
 841	 * partially written into a block, it will not be marked uptodate, so a
 842	 * read_folio might come in and destroy our partial write.
 843	 *
 844	 * Do the simplest thing and just treat any short write to a
 845	 * non-uptodate page as a zero-length write, and force the caller to
 846	 * redo the whole thing.
 847	 */
 848	if (unlikely(copied < len && !folio_test_uptodate(folio)))
 849		return 0;
 850	iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len);
 851	iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied);
 852	filemap_dirty_folio(inode->i_mapping, folio);
 853	return copied;
 854}
 855
 856static size_t iomap_write_end_inline(const struct iomap_iter *iter,
 857		struct folio *folio, loff_t pos, size_t copied)
 858{
 859	const struct iomap *iomap = &iter->iomap;
 860	void *addr;
 861
 862	WARN_ON_ONCE(!folio_test_uptodate(folio));
 863	BUG_ON(!iomap_inline_data_valid(iomap));
 864
 865	flush_dcache_folio(folio);
 866	addr = kmap_local_folio(folio, pos);
 867	memcpy(iomap_inline_data(iomap, pos), addr, copied);
 868	kunmap_local(addr);
 869
 870	mark_inode_dirty(iter->inode);
 871	return copied;
 872}
 873
 874/* Returns the number of bytes copied.  May be 0.  Cannot be an errno. */
 875static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
 876		size_t copied, struct folio *folio)
 877{
 878	const struct iomap *srcmap = iomap_iter_srcmap(iter);
 879	loff_t old_size = iter->inode->i_size;
 880	size_t ret;
 881
 882	if (srcmap->type == IOMAP_INLINE) {
 883		ret = iomap_write_end_inline(iter, folio, pos, copied);
 884	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
 885		ret = block_write_end(NULL, iter->inode->i_mapping, pos, len,
 886				copied, &folio->page, NULL);
 887	} else {
 888		ret = __iomap_write_end(iter->inode, pos, len, copied, folio);
 889	}
 890
 891	/*
 892	 * Update the in-memory inode size after copying the data into the page
 893	 * cache.  It's up to the file system to write the updated size to disk,
 894	 * preferably after I/O completion so that no stale data is exposed.
 895	 */
 896	if (pos + ret > old_size) {
 897		i_size_write(iter->inode, pos + ret);
 898		iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
 899	}
 900	__iomap_put_folio(iter, pos, ret, folio);
 901
 902	if (old_size < pos)
 903		pagecache_isize_extended(iter->inode, old_size, pos);
 904	if (ret < len)
 905		iomap_write_failed(iter->inode, pos + ret, len - ret);
 906	return ret;
 907}
 908
 909static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
 910{
 911	loff_t length = iomap_length(iter);
 912	size_t chunk = PAGE_SIZE << MAX_PAGECACHE_ORDER;
 913	loff_t pos = iter->pos;
 914	ssize_t written = 0;
 915	long status = 0;
 916	struct address_space *mapping = iter->inode->i_mapping;
 917	unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0;
 918
 919	do {
 920		struct folio *folio;
 921		size_t offset;		/* Offset into folio */
 922		size_t bytes;		/* Bytes to write to folio */
 923		size_t copied;		/* Bytes copied from user */
 924
 925		bytes = iov_iter_count(i);
 926retry:
 927		offset = pos & (chunk - 1);
 928		bytes = min(chunk - offset, bytes);
 929		status = balance_dirty_pages_ratelimited_flags(mapping,
 930							       bdp_flags);
 931		if (unlikely(status))
 932			break;
 933
 934		if (bytes > length)
 935			bytes = length;
 936
 937		/*
 938		 * Bring in the user page that we'll copy from _first_.
 939		 * Otherwise there's a nasty deadlock on copying from the
 940		 * same page as we're writing to, without it being marked
 941		 * up-to-date.
 942		 *
 943		 * For async buffered writes the assumption is that the user
 944		 * page has already been faulted in. This can be optimized by
 945		 * faulting the user page.
 946		 */
 947		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
 948			status = -EFAULT;
 949			break;
 950		}
 951
 952		status = iomap_write_begin(iter, pos, bytes, &folio);
 953		if (unlikely(status))
 954			break;
 955		if (iter->iomap.flags & IOMAP_F_STALE)
 956			break;
 957
 958		offset = offset_in_folio(folio, pos);
 959		if (bytes > folio_size(folio) - offset)
 960			bytes = folio_size(folio) - offset;
 961
 962		if (mapping_writably_mapped(mapping))
 963			flush_dcache_folio(folio);
 964
 965		copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
 966		status = iomap_write_end(iter, pos, bytes, copied, folio);
 967
 968		if (unlikely(copied != status))
 969			iov_iter_revert(i, copied - status);
 970
 971		cond_resched();
 972		if (unlikely(status == 0)) {
 973			/*
 974			 * A short copy made iomap_write_end() reject the
 975			 * thing entirely.  Might be memory poisoning
 976			 * halfway through, might be a race with munmap,
 977			 * might be severe memory pressure.
 978			 */
 979			if (chunk > PAGE_SIZE)
 980				chunk /= 2;
 981			if (copied) {
 982				bytes = copied;
 983				goto retry;
 984			}
 985		} else {
 986			pos += status;
 987			written += status;
 988			length -= status;
 989		}
 990	} while (iov_iter_count(i) && length);
 991
 992	if (status == -EAGAIN) {
 993		iov_iter_revert(i, written);
 994		return -EAGAIN;
 995	}
 996	return written ? written : status;
 997}
 998
 999ssize_t
1000iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
1001		const struct iomap_ops *ops)
1002{
1003	struct iomap_iter iter = {
1004		.inode		= iocb->ki_filp->f_mapping->host,
1005		.pos		= iocb->ki_pos,
1006		.len		= iov_iter_count(i),
1007		.flags		= IOMAP_WRITE,
1008	};
1009	ssize_t ret;
1010
1011	if (iocb->ki_flags & IOCB_NOWAIT)
1012		iter.flags |= IOMAP_NOWAIT;
1013
1014	while ((ret = iomap_iter(&iter, ops)) > 0)
1015		iter.processed = iomap_write_iter(&iter, i);
1016
1017	if (unlikely(iter.pos == iocb->ki_pos))
1018		return ret;
1019	ret = iter.pos - iocb->ki_pos;
1020	iocb->ki_pos = iter.pos;
1021	return ret;
1022}
1023EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
1024
1025static int iomap_write_delalloc_ifs_punch(struct inode *inode,
1026		struct folio *folio, loff_t start_byte, loff_t end_byte,
1027		iomap_punch_t punch)
1028{
1029	unsigned int first_blk, last_blk, i;
1030	loff_t last_byte;
1031	u8 blkbits = inode->i_blkbits;
1032	struct iomap_folio_state *ifs;
1033	int ret = 0;
1034
1035	/*
1036	 * When we have per-block dirty tracking, there can be
1037	 * blocks within a folio which are marked uptodate
1038	 * but not dirty. In that case it is necessary to punch
1039	 * out such blocks to avoid leaking any delalloc blocks.
1040	 */
1041	ifs = folio->private;
1042	if (!ifs)
1043		return ret;
1044
1045	last_byte = min_t(loff_t, end_byte - 1,
1046			folio_pos(folio) + folio_size(folio) - 1);
1047	first_blk = offset_in_folio(folio, start_byte) >> blkbits;
1048	last_blk = offset_in_folio(folio, last_byte) >> blkbits;
1049	for (i = first_blk; i <= last_blk; i++) {
1050		if (!ifs_block_is_dirty(folio, ifs, i)) {
1051			ret = punch(inode, folio_pos(folio) + (i << blkbits),
1052				    1 << blkbits);
1053			if (ret)
1054				return ret;
1055		}
1056	}
1057
1058	return ret;
1059}
1060
1061
1062static int iomap_write_delalloc_punch(struct inode *inode, struct folio *folio,
1063		loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1064		iomap_punch_t punch)
1065{
1066	int ret = 0;
1067
1068	if (!folio_test_dirty(folio))
1069		return ret;
1070
1071	/* if dirty, punch up to offset */
1072	if (start_byte > *punch_start_byte) {
1073		ret = punch(inode, *punch_start_byte,
1074				start_byte - *punch_start_byte);
1075		if (ret)
1076			return ret;
1077	}
1078
1079	/* Punch non-dirty blocks within folio */
1080	ret = iomap_write_delalloc_ifs_punch(inode, folio, start_byte,
1081			end_byte, punch);
1082	if (ret)
1083		return ret;
1084
1085	/*
1086	 * Make sure the next punch start is correctly bound to
1087	 * the end of this data range, not the end of the folio.
1088	 */
1089	*punch_start_byte = min_t(loff_t, end_byte,
1090				folio_pos(folio) + folio_size(folio));
1091
1092	return ret;
1093}
1094
1095/*
1096 * Scan the data range passed to us for dirty page cache folios. If we find a
1097 * dirty folio, punch out the preceding range and update the offset from which
1098 * the next punch will start from.
1099 *
1100 * We can punch out storage reservations under clean pages because they either
1101 * contain data that has been written back - in which case the delalloc punch
1102 * over that range is a no-op - or they have been read faults in which case they
1103 * contain zeroes and we can remove the delalloc backing range and any new
1104 * writes to those pages will do the normal hole filling operation...
1105 *
1106 * This makes the logic simple: we only need to keep the delalloc extents only
1107 * over the dirty ranges of the page cache.
1108 *
1109 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1110 * simplify range iterations.
1111 */
1112static int iomap_write_delalloc_scan(struct inode *inode,
1113		loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1114		iomap_punch_t punch)
1115{
1116	while (start_byte < end_byte) {
1117		struct folio	*folio;
1118		int ret;
1119
1120		/* grab locked page */
1121		folio = filemap_lock_folio(inode->i_mapping,
1122				start_byte >> PAGE_SHIFT);
1123		if (IS_ERR(folio)) {
1124			start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) +
1125					PAGE_SIZE;
1126			continue;
1127		}
1128
1129		ret = iomap_write_delalloc_punch(inode, folio, punch_start_byte,
1130						 start_byte, end_byte, punch);
1131		if (ret) {
1132			folio_unlock(folio);
1133			folio_put(folio);
1134			return ret;
1135		}
1136
1137		/* move offset to start of next folio in range */
1138		start_byte = folio_next_index(folio) << PAGE_SHIFT;
1139		folio_unlock(folio);
1140		folio_put(folio);
1141	}
1142	return 0;
1143}
1144
1145/*
1146 * Punch out all the delalloc blocks in the range given except for those that
1147 * have dirty data still pending in the page cache - those are going to be
1148 * written and so must still retain the delalloc backing for writeback.
1149 *
1150 * As we are scanning the page cache for data, we don't need to reimplement the
1151 * wheel - mapping_seek_hole_data() does exactly what we need to identify the
1152 * start and end of data ranges correctly even for sub-folio block sizes. This
1153 * byte range based iteration is especially convenient because it means we
1154 * don't have to care about variable size folios, nor where the start or end of
1155 * the data range lies within a folio, if they lie within the same folio or even
1156 * if there are multiple discontiguous data ranges within the folio.
1157 *
1158 * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so
1159 * can return data ranges that exist in the cache beyond EOF. e.g. a page fault
1160 * spanning EOF will initialise the post-EOF data to zeroes and mark it up to
1161 * date. A write page fault can then mark it dirty. If we then fail a write()
1162 * beyond EOF into that up to date cached range, we allocate a delalloc block
1163 * beyond EOF and then have to punch it out. Because the range is up to date,
1164 * mapping_seek_hole_data() will return it, and we will skip the punch because
1165 * the folio is dirty. THis is incorrect - we always need to punch out delalloc
1166 * beyond EOF in this case as writeback will never write back and covert that
1167 * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF,
1168 * resulting in always punching out the range from the EOF to the end of the
1169 * range the iomap spans.
1170 *
1171 * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it
1172 * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA
1173 * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte)
1174 * returns the end of the data range (data_end). Using closed intervals would
1175 * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose
1176 * the code to subtle off-by-one bugs....
1177 */
1178static int iomap_write_delalloc_release(struct inode *inode,
1179		loff_t start_byte, loff_t end_byte, iomap_punch_t punch)
1180{
1181	loff_t punch_start_byte = start_byte;
1182	loff_t scan_end_byte = min(i_size_read(inode), end_byte);
1183	int error = 0;
1184
1185	/*
1186	 * Lock the mapping to avoid races with page faults re-instantiating
1187	 * folios and dirtying them via ->page_mkwrite whilst we walk the
1188	 * cache and perform delalloc extent removal. Failing to do this can
1189	 * leave dirty pages with no space reservation in the cache.
1190	 */
1191	filemap_invalidate_lock(inode->i_mapping);
1192	while (start_byte < scan_end_byte) {
1193		loff_t		data_end;
1194
1195		start_byte = mapping_seek_hole_data(inode->i_mapping,
1196				start_byte, scan_end_byte, SEEK_DATA);
1197		/*
1198		 * If there is no more data to scan, all that is left is to
1199		 * punch out the remaining range.
1200		 */
1201		if (start_byte == -ENXIO || start_byte == scan_end_byte)
1202			break;
1203		if (start_byte < 0) {
1204			error = start_byte;
1205			goto out_unlock;
1206		}
1207		WARN_ON_ONCE(start_byte < punch_start_byte);
1208		WARN_ON_ONCE(start_byte > scan_end_byte);
1209
1210		/*
1211		 * We find the end of this contiguous cached data range by
1212		 * seeking from start_byte to the beginning of the next hole.
1213		 */
1214		data_end = mapping_seek_hole_data(inode->i_mapping, start_byte,
1215				scan_end_byte, SEEK_HOLE);
1216		if (data_end < 0) {
1217			error = data_end;
1218			goto out_unlock;
1219		}
1220		WARN_ON_ONCE(data_end <= start_byte);
1221		WARN_ON_ONCE(data_end > scan_end_byte);
1222
1223		error = iomap_write_delalloc_scan(inode, &punch_start_byte,
1224				start_byte, data_end, punch);
1225		if (error)
1226			goto out_unlock;
1227
1228		/* The next data search starts at the end of this one. */
1229		start_byte = data_end;
1230	}
1231
1232	if (punch_start_byte < end_byte)
1233		error = punch(inode, punch_start_byte,
1234				end_byte - punch_start_byte);
1235out_unlock:
1236	filemap_invalidate_unlock(inode->i_mapping);
1237	return error;
1238}
1239
1240/*
1241 * When a short write occurs, the filesystem may need to remove reserved space
1242 * that was allocated in ->iomap_begin from it's ->iomap_end method. For
1243 * filesystems that use delayed allocation, we need to punch out delalloc
1244 * extents from the range that are not dirty in the page cache. As the write can
1245 * race with page faults, there can be dirty pages over the delalloc extent
1246 * outside the range of a short write but still within the delalloc extent
1247 * allocated for this iomap.
1248 *
1249 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1250 * simplify range iterations.
1251 *
1252 * The punch() callback *must* only punch delalloc extents in the range passed
1253 * to it. It must skip over all other types of extents in the range and leave
1254 * them completely unchanged. It must do this punch atomically with respect to
1255 * other extent modifications.
1256 *
1257 * The punch() callback may be called with a folio locked to prevent writeback
1258 * extent allocation racing at the edge of the range we are currently punching.
1259 * The locked folio may or may not cover the range being punched, so it is not
1260 * safe for the punch() callback to lock folios itself.
1261 *
1262 * Lock order is:
1263 *
1264 * inode->i_rwsem (shared or exclusive)
1265 *   inode->i_mapping->invalidate_lock (exclusive)
1266 *     folio_lock()
1267 *       ->punch
1268 *         internal filesystem allocation lock
1269 */
1270int iomap_file_buffered_write_punch_delalloc(struct inode *inode,
1271		struct iomap *iomap, loff_t pos, loff_t length,
1272		ssize_t written, iomap_punch_t punch)
1273{
1274	loff_t			start_byte;
1275	loff_t			end_byte;
1276	unsigned int		blocksize = i_blocksize(inode);
1277
1278	if (iomap->type != IOMAP_DELALLOC)
1279		return 0;
1280
1281	/* If we didn't reserve the blocks, we're not allowed to punch them. */
1282	if (!(iomap->flags & IOMAP_F_NEW))
1283		return 0;
1284
1285	/*
1286	 * start_byte refers to the first unused block after a short write. If
1287	 * nothing was written, round offset down to point at the first block in
1288	 * the range.
1289	 */
1290	if (unlikely(!written))
1291		start_byte = round_down(pos, blocksize);
1292	else
1293		start_byte = round_up(pos + written, blocksize);
1294	end_byte = round_up(pos + length, blocksize);
1295
1296	/* Nothing to do if we've written the entire delalloc extent */
1297	if (start_byte >= end_byte)
1298		return 0;
1299
1300	return iomap_write_delalloc_release(inode, start_byte, end_byte,
1301					punch);
1302}
1303EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc);
1304
1305static loff_t iomap_unshare_iter(struct iomap_iter *iter)
1306{
1307	struct iomap *iomap = &iter->iomap;
1308	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1309	loff_t pos = iter->pos;
1310	loff_t length = iomap_length(iter);
1311	loff_t written = 0;
1312
1313	/* don't bother with blocks that are not shared to start with */
1314	if (!(iomap->flags & IOMAP_F_SHARED))
1315		return length;
1316	/* don't bother with holes or unwritten extents */
1317	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1318		return length;
1319
1320	do {
1321		struct folio *folio;
1322		int status;
1323		size_t offset;
1324		size_t bytes = min_t(u64, SIZE_MAX, length);
1325
1326		status = iomap_write_begin(iter, pos, bytes, &folio);
1327		if (unlikely(status))
1328			return status;
1329		if (iomap->flags & IOMAP_F_STALE)
1330			break;
1331
1332		offset = offset_in_folio(folio, pos);
1333		if (bytes > folio_size(folio) - offset)
1334			bytes = folio_size(folio) - offset;
1335
1336		bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
1337		if (WARN_ON_ONCE(bytes == 0))
1338			return -EIO;
1339
1340		cond_resched();
1341
1342		pos += bytes;
1343		written += bytes;
1344		length -= bytes;
1345
1346		balance_dirty_pages_ratelimited(iter->inode->i_mapping);
1347	} while (length > 0);
1348
1349	return written;
1350}
1351
1352int
1353iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1354		const struct iomap_ops *ops)
1355{
1356	struct iomap_iter iter = {
1357		.inode		= inode,
1358		.pos		= pos,
1359		.len		= len,
1360		.flags		= IOMAP_WRITE | IOMAP_UNSHARE,
1361	};
1362	int ret;
1363
1364	while ((ret = iomap_iter(&iter, ops)) > 0)
1365		iter.processed = iomap_unshare_iter(&iter);
1366	return ret;
1367}
1368EXPORT_SYMBOL_GPL(iomap_file_unshare);
1369
1370static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
1371{
1372	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1373	loff_t pos = iter->pos;
1374	loff_t length = iomap_length(iter);
1375	loff_t written = 0;
1376
1377	/* already zeroed?  we're done. */
1378	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1379		return length;
1380
1381	do {
1382		struct folio *folio;
1383		int status;
1384		size_t offset;
1385		size_t bytes = min_t(u64, SIZE_MAX, length);
1386
1387		status = iomap_write_begin(iter, pos, bytes, &folio);
1388		if (status)
1389			return status;
1390		if (iter->iomap.flags & IOMAP_F_STALE)
1391			break;
1392
1393		offset = offset_in_folio(folio, pos);
1394		if (bytes > folio_size(folio) - offset)
1395			bytes = folio_size(folio) - offset;
1396
1397		folio_zero_range(folio, offset, bytes);
1398		folio_mark_accessed(folio);
1399
1400		bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
1401		if (WARN_ON_ONCE(bytes == 0))
1402			return -EIO;
1403
1404		pos += bytes;
1405		length -= bytes;
1406		written += bytes;
1407	} while (length > 0);
1408
1409	if (did_zero)
1410		*did_zero = true;
1411	return written;
1412}
1413
1414int
1415iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1416		const struct iomap_ops *ops)
1417{
1418	struct iomap_iter iter = {
1419		.inode		= inode,
1420		.pos		= pos,
1421		.len		= len,
1422		.flags		= IOMAP_ZERO,
1423	};
1424	int ret;
1425
1426	while ((ret = iomap_iter(&iter, ops)) > 0)
1427		iter.processed = iomap_zero_iter(&iter, did_zero);
1428	return ret;
1429}
1430EXPORT_SYMBOL_GPL(iomap_zero_range);
1431
1432int
1433iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1434		const struct iomap_ops *ops)
1435{
1436	unsigned int blocksize = i_blocksize(inode);
1437	unsigned int off = pos & (blocksize - 1);
1438
1439	/* Block boundary? Nothing to do */
1440	if (!off)
1441		return 0;
1442	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1443}
1444EXPORT_SYMBOL_GPL(iomap_truncate_page);
1445
1446static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter,
1447		struct folio *folio)
1448{
1449	loff_t length = iomap_length(iter);
1450	int ret;
1451
1452	if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
1453		ret = __block_write_begin_int(folio, iter->pos, length, NULL,
1454					      &iter->iomap);
1455		if (ret)
1456			return ret;
1457		block_commit_write(&folio->page, 0, length);
1458	} else {
1459		WARN_ON_ONCE(!folio_test_uptodate(folio));
1460		folio_mark_dirty(folio);
1461	}
1462
1463	return length;
1464}
1465
1466vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1467{
1468	struct iomap_iter iter = {
1469		.inode		= file_inode(vmf->vma->vm_file),
1470		.flags		= IOMAP_WRITE | IOMAP_FAULT,
1471	};
1472	struct folio *folio = page_folio(vmf->page);
1473	ssize_t ret;
1474
1475	folio_lock(folio);
1476	ret = folio_mkwrite_check_truncate(folio, iter.inode);
1477	if (ret < 0)
1478		goto out_unlock;
1479	iter.pos = folio_pos(folio);
1480	iter.len = ret;
1481	while ((ret = iomap_iter(&iter, ops)) > 0)
1482		iter.processed = iomap_folio_mkwrite_iter(&iter, folio);
1483
1484	if (ret < 0)
1485		goto out_unlock;
1486	folio_wait_stable(folio);
1487	return VM_FAULT_LOCKED;
1488out_unlock:
1489	folio_unlock(folio);
1490	return vmf_fs_error(ret);
1491}
1492EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1493
1494static void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
1495		size_t len)
1496{
1497	struct iomap_folio_state *ifs = folio->private;
1498
1499	WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs);
1500	WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0);
1501
1502	if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending))
1503		folio_end_writeback(folio);
1504}
1505
1506/*
1507 * We're now finished for good with this ioend structure.  Update the page
1508 * state, release holds on bios, and finally free up memory.  Do not use the
1509 * ioend after this.
1510 */
1511static u32
1512iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1513{
1514	struct inode *inode = ioend->io_inode;
1515	struct bio *bio = &ioend->io_bio;
1516	struct folio_iter fi;
1517	u32 folio_count = 0;
1518
1519	if (error) {
1520		mapping_set_error(inode->i_mapping, error);
1521		if (!bio_flagged(bio, BIO_QUIET)) {
1522			pr_err_ratelimited(
1523"%s: writeback error on inode %lu, offset %lld, sector %llu",
1524				inode->i_sb->s_id, inode->i_ino,
1525				ioend->io_offset, ioend->io_sector);
1526		}
1527	}
1528
1529	/* walk all folios in bio, ending page IO on them */
1530	bio_for_each_folio_all(fi, bio) {
1531		if (error)
1532			folio_set_error(fi.folio);
1533		iomap_finish_folio_write(inode, fi.folio, fi.length);
1534		folio_count++;
1535	}
1536
1537	bio_put(bio);	/* frees the ioend */
1538	return folio_count;
1539}
1540
1541/*
1542 * Ioend completion routine for merged bios. This can only be called from task
1543 * contexts as merged ioends can be of unbound length. Hence we have to break up
1544 * the writeback completions into manageable chunks to avoid long scheduler
1545 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get
1546 * good batch processing throughput without creating adverse scheduler latency
1547 * conditions.
1548 */
1549void
1550iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1551{
1552	struct list_head tmp;
1553	u32 completions;
1554
1555	might_sleep();
1556
1557	list_replace_init(&ioend->io_list, &tmp);
1558	completions = iomap_finish_ioend(ioend, error);
1559
1560	while (!list_empty(&tmp)) {
1561		if (completions > IOEND_BATCH_SIZE * 8) {
1562			cond_resched();
1563			completions = 0;
1564		}
1565		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1566		list_del_init(&ioend->io_list);
1567		completions += iomap_finish_ioend(ioend, error);
1568	}
1569}
1570EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1571
1572/*
1573 * We can merge two adjacent ioends if they have the same set of work to do.
1574 */
1575static bool
1576iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1577{
1578	if (ioend->io_bio.bi_status != next->io_bio.bi_status)
1579		return false;
1580	if ((ioend->io_flags & IOMAP_F_SHARED) ^
1581	    (next->io_flags & IOMAP_F_SHARED))
1582		return false;
1583	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1584	    (next->io_type == IOMAP_UNWRITTEN))
1585		return false;
1586	if (ioend->io_offset + ioend->io_size != next->io_offset)
1587		return false;
1588	/*
1589	 * Do not merge physically discontiguous ioends. The filesystem
1590	 * completion functions will have to iterate the physical
1591	 * discontiguities even if we merge the ioends at a logical level, so
1592	 * we don't gain anything by merging physical discontiguities here.
1593	 *
1594	 * We cannot use bio->bi_iter.bi_sector here as it is modified during
1595	 * submission so does not point to the start sector of the bio at
1596	 * completion.
1597	 */
1598	if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector)
1599		return false;
1600	return true;
1601}
1602
1603void
1604iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
1605{
1606	struct iomap_ioend *next;
1607
1608	INIT_LIST_HEAD(&ioend->io_list);
1609
1610	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1611			io_list))) {
1612		if (!iomap_ioend_can_merge(ioend, next))
1613			break;
1614		list_move_tail(&next->io_list, &ioend->io_list);
1615		ioend->io_size += next->io_size;
1616	}
1617}
1618EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1619
1620static int
1621iomap_ioend_compare(void *priv, const struct list_head *a,
1622		const struct list_head *b)
1623{
1624	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1625	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1626
1627	if (ia->io_offset < ib->io_offset)
1628		return -1;
1629	if (ia->io_offset > ib->io_offset)
1630		return 1;
1631	return 0;
1632}
1633
1634void
1635iomap_sort_ioends(struct list_head *ioend_list)
1636{
1637	list_sort(NULL, ioend_list, iomap_ioend_compare);
1638}
1639EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1640
1641static void iomap_writepage_end_bio(struct bio *bio)
1642{
1643	iomap_finish_ioend(iomap_ioend_from_bio(bio),
1644			blk_status_to_errno(bio->bi_status));
1645}
1646
1647/*
1648 * Submit the final bio for an ioend.
1649 *
1650 * If @error is non-zero, it means that we have a situation where some part of
1651 * the submission process has failed after we've marked pages for writeback.
1652 * We cannot cancel ioend directly in that case, so call the bio end I/O handler
1653 * with the error status here to run the normal I/O completion handler to clear
1654 * the writeback bit and let the file system proess the errors.
1655 */
1656static int iomap_submit_ioend(struct iomap_writepage_ctx *wpc, int error)
1657{
1658	if (!wpc->ioend)
1659		return error;
1660
1661	/*
1662	 * Let the file systems prepare the I/O submission and hook in an I/O
1663	 * comletion handler.  This also needs to happen in case after a
1664	 * failure happened so that the file system end I/O handler gets called
1665	 * to clean up.
1666	 */
1667	if (wpc->ops->prepare_ioend)
1668		error = wpc->ops->prepare_ioend(wpc->ioend, error);
1669
1670	if (error) {
1671		wpc->ioend->io_bio.bi_status = errno_to_blk_status(error);
1672		bio_endio(&wpc->ioend->io_bio);
1673	} else {
1674		submit_bio(&wpc->ioend->io_bio);
1675	}
1676
1677	wpc->ioend = NULL;
1678	return error;
1679}
1680
1681static struct iomap_ioend *iomap_alloc_ioend(struct iomap_writepage_ctx *wpc,
1682		struct writeback_control *wbc, struct inode *inode, loff_t pos)
1683{
1684	struct iomap_ioend *ioend;
1685	struct bio *bio;
1686
1687	bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS,
1688			       REQ_OP_WRITE | wbc_to_write_flags(wbc),
1689			       GFP_NOFS, &iomap_ioend_bioset);
1690	bio->bi_iter.bi_sector = iomap_sector(&wpc->iomap, pos);
1691	bio->bi_end_io = iomap_writepage_end_bio;
1692	wbc_init_bio(wbc, bio);
1693	bio->bi_write_hint = inode->i_write_hint;
1694
1695	ioend = iomap_ioend_from_bio(bio);
1696	INIT_LIST_HEAD(&ioend->io_list);
1697	ioend->io_type = wpc->iomap.type;
1698	ioend->io_flags = wpc->iomap.flags;
1699	ioend->io_inode = inode;
1700	ioend->io_size = 0;
1701	ioend->io_offset = pos;
1702	ioend->io_sector = bio->bi_iter.bi_sector;
1703
1704	wpc->nr_folios = 0;
1705	return ioend;
1706}
1707
1708static bool iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t pos)
1709{
1710	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1711	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
1712		return false;
1713	if (wpc->iomap.type != wpc->ioend->io_type)
1714		return false;
1715	if (pos != wpc->ioend->io_offset + wpc->ioend->io_size)
1716		return false;
1717	if (iomap_sector(&wpc->iomap, pos) !=
1718	    bio_end_sector(&wpc->ioend->io_bio))
1719		return false;
1720	/*
1721	 * Limit ioend bio chain lengths to minimise IO completion latency. This
1722	 * also prevents long tight loops ending page writeback on all the
1723	 * folios in the ioend.
1724	 */
1725	if (wpc->nr_folios >= IOEND_BATCH_SIZE)
1726		return false;
1727	return true;
1728}
1729
1730/*
1731 * Test to see if we have an existing ioend structure that we could append to
1732 * first; otherwise finish off the current ioend and start another.
1733 *
1734 * If a new ioend is created and cached, the old ioend is submitted to the block
1735 * layer instantly.  Batching optimisations are provided by higher level block
1736 * plugging.
1737 *
1738 * At the end of a writeback pass, there will be a cached ioend remaining on the
1739 * writepage context that the caller will need to submit.
1740 */
1741static int iomap_add_to_ioend(struct iomap_writepage_ctx *wpc,
1742		struct writeback_control *wbc, struct folio *folio,
1743		struct inode *inode, loff_t pos, unsigned len)
1744{
1745	struct iomap_folio_state *ifs = folio->private;
1746	size_t poff = offset_in_folio(folio, pos);
1747	int error;
1748
1749	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos)) {
1750new_ioend:
1751		error = iomap_submit_ioend(wpc, 0);
1752		if (error)
1753			return error;
1754		wpc->ioend = iomap_alloc_ioend(wpc, wbc, inode, pos);
1755	}
1756
1757	if (!bio_add_folio(&wpc->ioend->io_bio, folio, len, poff))
1758		goto new_ioend;
1759
1760	if (ifs)
1761		atomic_add(len, &ifs->write_bytes_pending);
1762	wpc->ioend->io_size += len;
1763	wbc_account_cgroup_owner(wbc, &folio->page, len);
1764	return 0;
1765}
1766
1767static int iomap_writepage_map_blocks(struct iomap_writepage_ctx *wpc,
1768		struct writeback_control *wbc, struct folio *folio,
1769		struct inode *inode, u64 pos, unsigned dirty_len,
1770		unsigned *count)
1771{
1772	int error;
1773
1774	do {
1775		unsigned map_len;
1776
1777		error = wpc->ops->map_blocks(wpc, inode, pos, dirty_len);
1778		if (error)
1779			break;
1780		trace_iomap_writepage_map(inode, pos, dirty_len, &wpc->iomap);
1781
1782		map_len = min_t(u64, dirty_len,
1783			wpc->iomap.offset + wpc->iomap.length - pos);
1784		WARN_ON_ONCE(!folio->private && map_len < dirty_len);
1785
1786		switch (wpc->iomap.type) {
1787		case IOMAP_INLINE:
1788			WARN_ON_ONCE(1);
1789			error = -EIO;
1790			break;
1791		case IOMAP_HOLE:
1792			break;
1793		default:
1794			error = iomap_add_to_ioend(wpc, wbc, folio, inode, pos,
1795					map_len);
1796			if (!error)
1797				(*count)++;
1798			break;
1799		}
1800		dirty_len -= map_len;
1801		pos += map_len;
1802	} while (dirty_len && !error);
1803
1804	/*
1805	 * We cannot cancel the ioend directly here on error.  We may have
1806	 * already set other pages under writeback and hence we have to run I/O
1807	 * completion to mark the error state of the pages under writeback
1808	 * appropriately.
1809	 *
1810	 * Just let the file system know what portion of the folio failed to
1811	 * map.
1812	 */
1813	if (error && wpc->ops->discard_folio)
1814		wpc->ops->discard_folio(folio, pos);
1815	return error;
1816}
1817
1818/*
1819 * Check interaction of the folio with the file end.
1820 *
1821 * If the folio is entirely beyond i_size, return false.  If it straddles
1822 * i_size, adjust end_pos and zero all data beyond i_size.
1823 */
1824static bool iomap_writepage_handle_eof(struct folio *folio, struct inode *inode,
1825		u64 *end_pos)
1826{
1827	u64 isize = i_size_read(inode);
1828
1829	if (*end_pos > isize) {
1830		size_t poff = offset_in_folio(folio, isize);
1831		pgoff_t end_index = isize >> PAGE_SHIFT;
1832
1833		/*
1834		 * If the folio is entirely ouside of i_size, skip it.
1835		 *
1836		 * This can happen due to a truncate operation that is in
1837		 * progress and in that case truncate will finish it off once
1838		 * we've dropped the folio lock.
1839		 *
1840		 * Note that the pgoff_t used for end_index is an unsigned long.
1841		 * If the given offset is greater than 16TB on a 32-bit system,
1842		 * then if we checked if the folio is fully outside i_size with
1843		 * "if (folio->index >= end_index + 1)", "end_index + 1" would
1844		 * overflow and evaluate to 0.  Hence this folio would be
1845		 * redirtied and written out repeatedly, which would result in
1846		 * an infinite loop; the user program performing this operation
1847		 * would hang.  Instead, we can detect this situation by
1848		 * checking if the folio is totally beyond i_size or if its
1849		 * offset is just equal to the EOF.
1850		 */
1851		if (folio->index > end_index ||
1852		    (folio->index == end_index && poff == 0))
1853			return false;
1854
1855		/*
1856		 * The folio straddles i_size.
1857		 *
1858		 * It must be zeroed out on each and every writepage invocation
1859		 * because it may be mmapped:
1860		 *
1861		 *    A file is mapped in multiples of the page size.  For a
1862		 *    file that is not a multiple of the page size, the
1863		 *    remaining memory is zeroed when mapped, and writes to that
1864		 *    region are not written out to the file.
1865		 *
1866		 * Also adjust the writeback range to skip all blocks entirely
1867		 * beyond i_size.
1868		 */
1869		folio_zero_segment(folio, poff, folio_size(folio));
1870		*end_pos = round_up(isize, i_blocksize(inode));
1871	}
1872
1873	return true;
1874}
1875
1876static int iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1877		struct writeback_control *wbc, struct folio *folio)
1878{
1879	struct iomap_folio_state *ifs = folio->private;
1880	struct inode *inode = folio->mapping->host;
1881	u64 pos = folio_pos(folio);
1882	u64 end_pos = pos + folio_size(folio);
1883	unsigned count = 0;
1884	int error = 0;
1885	u32 rlen;
1886
1887	WARN_ON_ONCE(!folio_test_locked(folio));
1888	WARN_ON_ONCE(folio_test_dirty(folio));
1889	WARN_ON_ONCE(folio_test_writeback(folio));
1890
1891	trace_iomap_writepage(inode, pos, folio_size(folio));
1892
1893	if (!iomap_writepage_handle_eof(folio, inode, &end_pos)) {
1894		folio_unlock(folio);
1895		return 0;
1896	}
1897	WARN_ON_ONCE(end_pos <= pos);
1898
1899	if (i_blocks_per_folio(inode, folio) > 1) {
1900		if (!ifs) {
1901			ifs = ifs_alloc(inode, folio, 0);
1902			iomap_set_range_dirty(folio, 0, end_pos - pos);
1903		}
1904
1905		/*
1906		 * Keep the I/O completion handler from clearing the writeback
1907		 * bit until we have submitted all blocks by adding a bias to
1908		 * ifs->write_bytes_pending, which is dropped after submitting
1909		 * all blocks.
1910		 */
1911		WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending) != 0);
1912		atomic_inc(&ifs->write_bytes_pending);
1913	}
1914
1915	/*
1916	 * Set the writeback bit ASAP, as the I/O completion for the single
1917	 * block per folio case happen hit as soon as we're submitting the bio.
1918	 */
1919	folio_start_writeback(folio);
1920
1921	/*
1922	 * Walk through the folio to find dirty areas to write back.
1923	 */
1924	while ((rlen = iomap_find_dirty_range(folio, &pos, end_pos))) {
1925		error = iomap_writepage_map_blocks(wpc, wbc, folio, inode,
1926				pos, rlen, &count);
1927		if (error)
1928			break;
1929		pos += rlen;
1930	}
1931
1932	if (count)
1933		wpc->nr_folios++;
1934
1935	/*
1936	 * We can have dirty bits set past end of file in page_mkwrite path
1937	 * while mapping the last partial folio. Hence it's better to clear
1938	 * all the dirty bits in the folio here.
1939	 */
1940	iomap_clear_range_dirty(folio, 0, folio_size(folio));
1941
1942	/*
1943	 * Usually the writeback bit is cleared by the I/O completion handler.
1944	 * But we may end up either not actually writing any blocks, or (when
1945	 * there are multiple blocks in a folio) all I/O might have finished
1946	 * already at this point.  In that case we need to clear the writeback
1947	 * bit ourselves right after unlocking the page.
1948	 */
1949	folio_unlock(folio);
1950	if (ifs) {
1951		if (atomic_dec_and_test(&ifs->write_bytes_pending))
1952			folio_end_writeback(folio);
1953	} else {
1954		if (!count)
1955			folio_end_writeback(folio);
1956	}
1957	mapping_set_error(inode->i_mapping, error);
1958	return error;
1959}
1960
1961static int iomap_do_writepage(struct folio *folio,
1962		struct writeback_control *wbc, void *data)
1963{
1964	return iomap_writepage_map(data, wbc, folio);
1965}
1966
1967int
1968iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1969		struct iomap_writepage_ctx *wpc,
1970		const struct iomap_writeback_ops *ops)
1971{
1972	int			ret;
1973
1974	/*
1975	 * Writeback from reclaim context should never happen except in the case
1976	 * of a VM regression so warn about it and refuse to write the data.
1977	 */
1978	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC | PF_KSWAPD)) ==
1979			PF_MEMALLOC))
1980		return -EIO;
1981
1982	wpc->ops = ops;
1983	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1984	return iomap_submit_ioend(wpc, ret);
1985}
1986EXPORT_SYMBOL_GPL(iomap_writepages);
1987
1988static int __init iomap_init(void)
1989{
1990	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1991			   offsetof(struct iomap_ioend, io_bio),
1992			   BIOSET_NEED_BVECS);
1993}
1994fs_initcall(iomap_init);