Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2010 Red Hat, Inc.
   4 * Copyright (C) 2016-2019 Christoph Hellwig.
   5 */
   6#include <linux/module.h>
   7#include <linux/compiler.h>
   8#include <linux/fs.h>
   9#include <linux/iomap.h>
  10#include <linux/pagemap.h>
  11#include <linux/uio.h>
  12#include <linux/buffer_head.h>
  13#include <linux/dax.h>
  14#include <linux/writeback.h>
  15#include <linux/list_sort.h>
  16#include <linux/swap.h>
  17#include <linux/bio.h>
  18#include <linux/sched/signal.h>
  19#include <linux/migrate.h>
  20#include "trace.h"
  21
  22#include "../internal.h"
  23
  24/*
  25 * Structure allocated for each page when block size < PAGE_SIZE to track
  26 * sub-page uptodate status and I/O completions.
  27 */
  28struct iomap_page {
  29	atomic_t		read_count;
  30	atomic_t		write_count;
  31	spinlock_t		uptodate_lock;
  32	DECLARE_BITMAP(uptodate, PAGE_SIZE / 512);
  33};
  34
  35static inline struct iomap_page *to_iomap_page(struct page *page)
  36{
  37	if (page_has_private(page))
  38		return (struct iomap_page *)page_private(page);
  39	return NULL;
  40}
  41
  42static struct bio_set iomap_ioend_bioset;
  43
  44static struct iomap_page *
  45iomap_page_create(struct inode *inode, struct page *page)
  46{
  47	struct iomap_page *iop = to_iomap_page(page);
  48
  49	if (iop || i_blocksize(inode) == PAGE_SIZE)
  50		return iop;
  51
  52	iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL);
  53	atomic_set(&iop->read_count, 0);
  54	atomic_set(&iop->write_count, 0);
  55	spin_lock_init(&iop->uptodate_lock);
  56	bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE);
  57
  58	/*
  59	 * migrate_page_move_mapping() assumes that pages with private data have
  60	 * their count elevated by 1.
  61	 */
  62	attach_page_private(page, iop);
  63	return iop;
  64}
  65
  66static void
  67iomap_page_release(struct page *page)
  68{
  69	struct iomap_page *iop = detach_page_private(page);
  70
  71	if (!iop)
  72		return;
  73	WARN_ON_ONCE(atomic_read(&iop->read_count));
  74	WARN_ON_ONCE(atomic_read(&iop->write_count));
  75	kfree(iop);
  76}
  77
  78/*
  79 * Calculate the range inside the page that we actually need to read.
  80 */
  81static void
  82iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
  83		loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
  84{
  85	loff_t orig_pos = *pos;
  86	loff_t isize = i_size_read(inode);
  87	unsigned block_bits = inode->i_blkbits;
  88	unsigned block_size = (1 << block_bits);
  89	unsigned poff = offset_in_page(*pos);
  90	unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
  91	unsigned first = poff >> block_bits;
  92	unsigned last = (poff + plen - 1) >> block_bits;
  93
  94	/*
  95	 * If the block size is smaller than the page size we need to check the
  96	 * per-block uptodate status and adjust the offset and length if needed
  97	 * to avoid reading in already uptodate ranges.
  98	 */
  99	if (iop) {
 100		unsigned int i;
 101
 102		/* move forward for each leading block marked uptodate */
 103		for (i = first; i <= last; i++) {
 104			if (!test_bit(i, iop->uptodate))
 105				break;
 106			*pos += block_size;
 107			poff += block_size;
 108			plen -= block_size;
 109			first++;
 110		}
 111
 112		/* truncate len if we find any trailing uptodate block(s) */
 113		for ( ; i <= last; i++) {
 114			if (test_bit(i, iop->uptodate)) {
 115				plen -= (last - i + 1) * block_size;
 116				last = i - 1;
 117				break;
 118			}
 119		}
 120	}
 121
 122	/*
 123	 * If the extent spans the block that contains the i_size we need to
 124	 * handle both halves separately so that we properly zero data in the
 125	 * page cache for blocks that are entirely outside of i_size.
 126	 */
 127	if (orig_pos <= isize && orig_pos + length > isize) {
 128		unsigned end = offset_in_page(isize - 1) >> block_bits;
 129
 130		if (first <= end && last > end)
 131			plen -= (last - end) * block_size;
 132	}
 133
 134	*offp = poff;
 135	*lenp = plen;
 136}
 137
 138static void
 139iomap_iop_set_range_uptodate(struct page *page, unsigned off, unsigned len)
 140{
 141	struct iomap_page *iop = to_iomap_page(page);
 142	struct inode *inode = page->mapping->host;
 143	unsigned first = off >> inode->i_blkbits;
 144	unsigned last = (off + len - 1) >> inode->i_blkbits;
 145	bool uptodate = true;
 146	unsigned long flags;
 147	unsigned int i;
 148
 149	spin_lock_irqsave(&iop->uptodate_lock, flags);
 150	for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) {
 151		if (i >= first && i <= last)
 152			set_bit(i, iop->uptodate);
 153		else if (!test_bit(i, iop->uptodate))
 154			uptodate = false;
 155	}
 156
 157	if (uptodate)
 158		SetPageUptodate(page);
 159	spin_unlock_irqrestore(&iop->uptodate_lock, flags);
 160}
 161
 162static void
 163iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
 164{
 165	if (PageError(page))
 166		return;
 167
 168	if (page_has_private(page))
 169		iomap_iop_set_range_uptodate(page, off, len);
 170	else
 171		SetPageUptodate(page);
 172}
 173
 174static void
 175iomap_read_finish(struct iomap_page *iop, struct page *page)
 176{
 177	if (!iop || atomic_dec_and_test(&iop->read_count))
 178		unlock_page(page);
 179}
 180
 181static void
 182iomap_read_page_end_io(struct bio_vec *bvec, int error)
 183{
 184	struct page *page = bvec->bv_page;
 185	struct iomap_page *iop = to_iomap_page(page);
 186
 187	if (unlikely(error)) {
 188		ClearPageUptodate(page);
 189		SetPageError(page);
 190	} else {
 191		iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
 192	}
 193
 194	iomap_read_finish(iop, page);
 195}
 196
 197static void
 198iomap_read_end_io(struct bio *bio)
 199{
 200	int error = blk_status_to_errno(bio->bi_status);
 201	struct bio_vec *bvec;
 202	struct bvec_iter_all iter_all;
 203
 204	bio_for_each_segment_all(bvec, bio, iter_all)
 205		iomap_read_page_end_io(bvec, error);
 206	bio_put(bio);
 207}
 208
 209struct iomap_readpage_ctx {
 210	struct page		*cur_page;
 211	bool			cur_page_in_bio;
 212	struct bio		*bio;
 213	struct readahead_control *rac;
 214};
 215
 216static void
 217iomap_read_inline_data(struct inode *inode, struct page *page,
 218		struct iomap *iomap)
 219{
 220	size_t size = i_size_read(inode);
 221	void *addr;
 222
 223	if (PageUptodate(page))
 224		return;
 225
 226	BUG_ON(page->index);
 227	BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
 228
 229	addr = kmap_atomic(page);
 230	memcpy(addr, iomap->inline_data, size);
 231	memset(addr + size, 0, PAGE_SIZE - size);
 232	kunmap_atomic(addr);
 233	SetPageUptodate(page);
 234}
 235
 236static inline bool iomap_block_needs_zeroing(struct inode *inode,
 237		struct iomap *iomap, loff_t pos)
 238{
 239	return iomap->type != IOMAP_MAPPED ||
 240		(iomap->flags & IOMAP_F_NEW) ||
 241		pos >= i_size_read(inode);
 242}
 243
 244static loff_t
 245iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
 246		struct iomap *iomap, struct iomap *srcmap)
 247{
 248	struct iomap_readpage_ctx *ctx = data;
 249	struct page *page = ctx->cur_page;
 250	struct iomap_page *iop = iomap_page_create(inode, page);
 251	bool same_page = false, is_contig = false;
 252	loff_t orig_pos = pos;
 253	unsigned poff, plen;
 254	sector_t sector;
 255
 256	if (iomap->type == IOMAP_INLINE) {
 257		WARN_ON_ONCE(pos);
 258		iomap_read_inline_data(inode, page, iomap);
 259		return PAGE_SIZE;
 260	}
 261
 262	/* zero post-eof blocks as the page may be mapped */
 263	iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
 264	if (plen == 0)
 265		goto done;
 266
 267	if (iomap_block_needs_zeroing(inode, iomap, pos)) {
 268		zero_user(page, poff, plen);
 269		iomap_set_range_uptodate(page, poff, plen);
 270		goto done;
 271	}
 272
 273	ctx->cur_page_in_bio = true;
 274
 275	/*
 276	 * Try to merge into a previous segment if we can.
 277	 */
 278	sector = iomap_sector(iomap, pos);
 279	if (ctx->bio && bio_end_sector(ctx->bio) == sector)
 280		is_contig = true;
 281
 282	if (is_contig &&
 283	    __bio_try_merge_page(ctx->bio, page, plen, poff, &same_page)) {
 284		if (!same_page && iop)
 285			atomic_inc(&iop->read_count);
 286		goto done;
 287	}
 288
 289	/*
 290	 * If we start a new segment we need to increase the read count, and we
 291	 * need to do so before submitting any previous full bio to make sure
 292	 * that we don't prematurely unlock the page.
 293	 */
 294	if (iop)
 295		atomic_inc(&iop->read_count);
 296
 297	if (!ctx->bio || !is_contig || bio_full(ctx->bio, plen)) {
 298		gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
 299		gfp_t orig_gfp = gfp;
 300		int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
 301
 302		if (ctx->bio)
 303			submit_bio(ctx->bio);
 304
 305		if (ctx->rac) /* same as readahead_gfp_mask */
 306			gfp |= __GFP_NORETRY | __GFP_NOWARN;
 307		ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
 308		/*
 309		 * If the bio_alloc fails, try it again for a single page to
 310		 * avoid having to deal with partial page reads.  This emulates
 311		 * what do_mpage_readpage does.
 312		 */
 313		if (!ctx->bio)
 314			ctx->bio = bio_alloc(orig_gfp, 1);
 315		ctx->bio->bi_opf = REQ_OP_READ;
 316		if (ctx->rac)
 317			ctx->bio->bi_opf |= REQ_RAHEAD;
 318		ctx->bio->bi_iter.bi_sector = sector;
 319		bio_set_dev(ctx->bio, iomap->bdev);
 320		ctx->bio->bi_end_io = iomap_read_end_io;
 321	}
 322
 323	bio_add_page(ctx->bio, page, plen, poff);
 324done:
 325	/*
 326	 * Move the caller beyond our range so that it keeps making progress.
 327	 * For that we have to include any leading non-uptodate ranges, but
 328	 * we can skip trailing ones as they will be handled in the next
 329	 * iteration.
 330	 */
 331	return pos - orig_pos + plen;
 332}
 333
 334int
 335iomap_readpage(struct page *page, const struct iomap_ops *ops)
 336{
 337	struct iomap_readpage_ctx ctx = { .cur_page = page };
 338	struct inode *inode = page->mapping->host;
 339	unsigned poff;
 340	loff_t ret;
 341
 342	trace_iomap_readpage(page->mapping->host, 1);
 343
 344	for (poff = 0; poff < PAGE_SIZE; poff += ret) {
 345		ret = iomap_apply(inode, page_offset(page) + poff,
 346				PAGE_SIZE - poff, 0, ops, &ctx,
 347				iomap_readpage_actor);
 348		if (ret <= 0) {
 349			WARN_ON_ONCE(ret == 0);
 350			SetPageError(page);
 351			break;
 352		}
 353	}
 354
 355	if (ctx.bio) {
 356		submit_bio(ctx.bio);
 357		WARN_ON_ONCE(!ctx.cur_page_in_bio);
 358	} else {
 359		WARN_ON_ONCE(ctx.cur_page_in_bio);
 360		unlock_page(page);
 361	}
 362
 363	/*
 364	 * Just like mpage_readahead and block_read_full_page we always
 365	 * return 0 and just mark the page as PageError on errors.  This
 366	 * should be cleaned up all through the stack eventually.
 367	 */
 368	return 0;
 369}
 370EXPORT_SYMBOL_GPL(iomap_readpage);
 371
 372static loff_t
 373iomap_readahead_actor(struct inode *inode, loff_t pos, loff_t length,
 374		void *data, struct iomap *iomap, struct iomap *srcmap)
 375{
 376	struct iomap_readpage_ctx *ctx = data;
 377	loff_t done, ret;
 378
 379	for (done = 0; done < length; done += ret) {
 380		if (ctx->cur_page && offset_in_page(pos + done) == 0) {
 381			if (!ctx->cur_page_in_bio)
 382				unlock_page(ctx->cur_page);
 383			put_page(ctx->cur_page);
 384			ctx->cur_page = NULL;
 385		}
 386		if (!ctx->cur_page) {
 387			ctx->cur_page = readahead_page(ctx->rac);
 388			ctx->cur_page_in_bio = false;
 389		}
 390		ret = iomap_readpage_actor(inode, pos + done, length - done,
 391				ctx, iomap, srcmap);
 392	}
 393
 394	return done;
 395}
 396
 397/**
 398 * iomap_readahead - Attempt to read pages from a file.
 399 * @rac: Describes the pages to be read.
 400 * @ops: The operations vector for the filesystem.
 401 *
 402 * This function is for filesystems to call to implement their readahead
 403 * address_space operation.
 404 *
 405 * Context: The @ops callbacks may submit I/O (eg to read the addresses of
 406 * blocks from disc), and may wait for it.  The caller may be trying to
 407 * access a different page, and so sleeping excessively should be avoided.
 408 * It may allocate memory, but should avoid costly allocations.  This
 409 * function is called with memalloc_nofs set, so allocations will not cause
 410 * the filesystem to be reentered.
 411 */
 412void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
 413{
 414	struct inode *inode = rac->mapping->host;
 415	loff_t pos = readahead_pos(rac);
 416	loff_t length = readahead_length(rac);
 417	struct iomap_readpage_ctx ctx = {
 418		.rac	= rac,
 419	};
 420
 421	trace_iomap_readahead(inode, readahead_count(rac));
 422
 423	while (length > 0) {
 424		loff_t ret = iomap_apply(inode, pos, length, 0, ops,
 425				&ctx, iomap_readahead_actor);
 426		if (ret <= 0) {
 427			WARN_ON_ONCE(ret == 0);
 428			break;
 429		}
 430		pos += ret;
 431		length -= ret;
 432	}
 433
 434	if (ctx.bio)
 435		submit_bio(ctx.bio);
 436	if (ctx.cur_page) {
 437		if (!ctx.cur_page_in_bio)
 438			unlock_page(ctx.cur_page);
 439		put_page(ctx.cur_page);
 440	}
 441}
 442EXPORT_SYMBOL_GPL(iomap_readahead);
 443
 444/*
 445 * iomap_is_partially_uptodate checks whether blocks within a page are
 446 * uptodate or not.
 447 *
 448 * Returns true if all blocks which correspond to a file portion
 449 * we want to read within the page are uptodate.
 450 */
 451int
 452iomap_is_partially_uptodate(struct page *page, unsigned long from,
 453		unsigned long count)
 454{
 455	struct iomap_page *iop = to_iomap_page(page);
 456	struct inode *inode = page->mapping->host;
 457	unsigned len, first, last;
 458	unsigned i;
 459
 460	/* Limit range to one page */
 461	len = min_t(unsigned, PAGE_SIZE - from, count);
 462
 463	/* First and last blocks in range within page */
 464	first = from >> inode->i_blkbits;
 465	last = (from + len - 1) >> inode->i_blkbits;
 466
 467	if (iop) {
 468		for (i = first; i <= last; i++)
 469			if (!test_bit(i, iop->uptodate))
 470				return 0;
 471		return 1;
 472	}
 473
 474	return 0;
 475}
 476EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
 477
 478int
 479iomap_releasepage(struct page *page, gfp_t gfp_mask)
 480{
 481	trace_iomap_releasepage(page->mapping->host, page_offset(page),
 482			PAGE_SIZE);
 483
 484	/*
 485	 * mm accommodates an old ext3 case where clean pages might not have had
 486	 * the dirty bit cleared. Thus, it can send actual dirty pages to
 487	 * ->releasepage() via shrink_active_list(), skip those here.
 488	 */
 489	if (PageDirty(page) || PageWriteback(page))
 490		return 0;
 491	iomap_page_release(page);
 492	return 1;
 493}
 494EXPORT_SYMBOL_GPL(iomap_releasepage);
 495
 496void
 497iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
 498{
 499	trace_iomap_invalidatepage(page->mapping->host, offset, len);
 500
 501	/*
 502	 * If we are invalidating the entire page, clear the dirty state from it
 503	 * and release it to avoid unnecessary buildup of the LRU.
 504	 */
 505	if (offset == 0 && len == PAGE_SIZE) {
 506		WARN_ON_ONCE(PageWriteback(page));
 507		cancel_dirty_page(page);
 508		iomap_page_release(page);
 509	}
 510}
 511EXPORT_SYMBOL_GPL(iomap_invalidatepage);
 512
 513#ifdef CONFIG_MIGRATION
 514int
 515iomap_migrate_page(struct address_space *mapping, struct page *newpage,
 516		struct page *page, enum migrate_mode mode)
 517{
 518	int ret;
 519
 520	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
 521	if (ret != MIGRATEPAGE_SUCCESS)
 522		return ret;
 523
 524	if (page_has_private(page))
 525		attach_page_private(newpage, detach_page_private(page));
 526
 527	if (mode != MIGRATE_SYNC_NO_COPY)
 528		migrate_page_copy(newpage, page);
 529	else
 530		migrate_page_states(newpage, page);
 531	return MIGRATEPAGE_SUCCESS;
 532}
 533EXPORT_SYMBOL_GPL(iomap_migrate_page);
 534#endif /* CONFIG_MIGRATION */
 535
 536enum {
 537	IOMAP_WRITE_F_UNSHARE		= (1 << 0),
 538};
 539
 540static void
 541iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
 542{
 543	loff_t i_size = i_size_read(inode);
 544
 545	/*
 546	 * Only truncate newly allocated pages beyoned EOF, even if the
 547	 * write started inside the existing inode size.
 548	 */
 549	if (pos + len > i_size)
 550		truncate_pagecache_range(inode, max(pos, i_size), pos + len);
 551}
 552
 553static int
 554iomap_read_page_sync(loff_t block_start, struct page *page, unsigned poff,
 555		unsigned plen, struct iomap *iomap)
 556{
 557	struct bio_vec bvec;
 558	struct bio bio;
 559
 560	bio_init(&bio, &bvec, 1);
 561	bio.bi_opf = REQ_OP_READ;
 562	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
 563	bio_set_dev(&bio, iomap->bdev);
 564	__bio_add_page(&bio, page, plen, poff);
 565	return submit_bio_wait(&bio);
 566}
 567
 568static int
 569__iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, int flags,
 570		struct page *page, struct iomap *srcmap)
 571{
 572	struct iomap_page *iop = iomap_page_create(inode, page);
 573	loff_t block_size = i_blocksize(inode);
 574	loff_t block_start = pos & ~(block_size - 1);
 575	loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1);
 576	unsigned from = offset_in_page(pos), to = from + len, poff, plen;
 577	int status;
 578
 579	if (PageUptodate(page))
 580		return 0;
 581
 582	do {
 583		iomap_adjust_read_range(inode, iop, &block_start,
 584				block_end - block_start, &poff, &plen);
 585		if (plen == 0)
 586			break;
 587
 588		if (!(flags & IOMAP_WRITE_F_UNSHARE) &&
 589		    (from <= poff || from >= poff + plen) &&
 590		    (to <= poff || to >= poff + plen))
 591			continue;
 592
 593		if (iomap_block_needs_zeroing(inode, srcmap, block_start)) {
 594			if (WARN_ON_ONCE(flags & IOMAP_WRITE_F_UNSHARE))
 595				return -EIO;
 596			zero_user_segments(page, poff, from, to, poff + plen);
 597			iomap_set_range_uptodate(page, poff, plen);
 598			continue;
 599		}
 600
 601		status = iomap_read_page_sync(block_start, page, poff, plen,
 602				srcmap);
 603		if (status)
 604			return status;
 605	} while ((block_start += plen) < block_end);
 606
 607	return 0;
 608}
 609
 610static int
 611iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
 612		struct page **pagep, struct iomap *iomap, struct iomap *srcmap)
 613{
 614	const struct iomap_page_ops *page_ops = iomap->page_ops;
 615	struct page *page;
 616	int status = 0;
 617
 618	BUG_ON(pos + len > iomap->offset + iomap->length);
 619	if (srcmap != iomap)
 620		BUG_ON(pos + len > srcmap->offset + srcmap->length);
 621
 622	if (fatal_signal_pending(current))
 623		return -EINTR;
 624
 625	if (page_ops && page_ops->page_prepare) {
 626		status = page_ops->page_prepare(inode, pos, len, iomap);
 627		if (status)
 628			return status;
 629	}
 630
 631	page = grab_cache_page_write_begin(inode->i_mapping, pos >> PAGE_SHIFT,
 632			AOP_FLAG_NOFS);
 633	if (!page) {
 634		status = -ENOMEM;
 635		goto out_no_page;
 636	}
 637
 638	if (srcmap->type == IOMAP_INLINE)
 639		iomap_read_inline_data(inode, page, srcmap);
 640	else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
 641		status = __block_write_begin_int(page, pos, len, NULL, srcmap);
 642	else
 643		status = __iomap_write_begin(inode, pos, len, flags, page,
 644				srcmap);
 645
 646	if (unlikely(status))
 647		goto out_unlock;
 648
 649	*pagep = page;
 650	return 0;
 651
 652out_unlock:
 653	unlock_page(page);
 654	put_page(page);
 655	iomap_write_failed(inode, pos, len);
 656
 657out_no_page:
 658	if (page_ops && page_ops->page_done)
 659		page_ops->page_done(inode, pos, 0, NULL, iomap);
 660	return status;
 661}
 662
 663int
 664iomap_set_page_dirty(struct page *page)
 665{
 666	struct address_space *mapping = page_mapping(page);
 667	int newly_dirty;
 668
 669	if (unlikely(!mapping))
 670		return !TestSetPageDirty(page);
 671
 672	/*
 673	 * Lock out page->mem_cgroup migration to keep PageDirty
 674	 * synchronized with per-memcg dirty page counters.
 675	 */
 676	lock_page_memcg(page);
 677	newly_dirty = !TestSetPageDirty(page);
 678	if (newly_dirty)
 679		__set_page_dirty(page, mapping, 0);
 680	unlock_page_memcg(page);
 681
 682	if (newly_dirty)
 683		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 684	return newly_dirty;
 685}
 686EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
 687
 688static int
 689__iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
 690		unsigned copied, struct page *page)
 691{
 692	flush_dcache_page(page);
 693
 694	/*
 695	 * The blocks that were entirely written will now be uptodate, so we
 696	 * don't have to worry about a readpage reading them and overwriting a
 697	 * partial write.  However if we have encountered a short write and only
 698	 * partially written into a block, it will not be marked uptodate, so a
 699	 * readpage might come in and destroy our partial write.
 700	 *
 701	 * Do the simplest thing, and just treat any short write to a non
 702	 * uptodate page as a zero-length write, and force the caller to redo
 703	 * the whole thing.
 704	 */
 705	if (unlikely(copied < len && !PageUptodate(page)))
 706		return 0;
 707	iomap_set_range_uptodate(page, offset_in_page(pos), len);
 708	iomap_set_page_dirty(page);
 709	return copied;
 710}
 711
 712static int
 713iomap_write_end_inline(struct inode *inode, struct page *page,
 714		struct iomap *iomap, loff_t pos, unsigned copied)
 715{
 716	void *addr;
 717
 718	WARN_ON_ONCE(!PageUptodate(page));
 719	BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
 720
 721	addr = kmap_atomic(page);
 722	memcpy(iomap->inline_data + pos, addr + pos, copied);
 723	kunmap_atomic(addr);
 724
 725	mark_inode_dirty(inode);
 726	return copied;
 727}
 728
 729static int
 730iomap_write_end(struct inode *inode, loff_t pos, unsigned len, unsigned copied,
 731		struct page *page, struct iomap *iomap, struct iomap *srcmap)
 732{
 733	const struct iomap_page_ops *page_ops = iomap->page_ops;
 734	loff_t old_size = inode->i_size;
 735	int ret;
 736
 737	if (srcmap->type == IOMAP_INLINE) {
 738		ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
 739	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
 740		ret = block_write_end(NULL, inode->i_mapping, pos, len, copied,
 741				page, NULL);
 742	} else {
 743		ret = __iomap_write_end(inode, pos, len, copied, page);
 744	}
 745
 746	/*
 747	 * Update the in-memory inode size after copying the data into the page
 748	 * cache.  It's up to the file system to write the updated size to disk,
 749	 * preferably after I/O completion so that no stale data is exposed.
 750	 */
 751	if (pos + ret > old_size) {
 752		i_size_write(inode, pos + ret);
 753		iomap->flags |= IOMAP_F_SIZE_CHANGED;
 754	}
 755	unlock_page(page);
 756
 757	if (old_size < pos)
 758		pagecache_isize_extended(inode, old_size, pos);
 759	if (page_ops && page_ops->page_done)
 760		page_ops->page_done(inode, pos, ret, page, iomap);
 761	put_page(page);
 762
 763	if (ret < len)
 764		iomap_write_failed(inode, pos, len);
 765	return ret;
 766}
 767
 768static loff_t
 769iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
 770		struct iomap *iomap, struct iomap *srcmap)
 771{
 772	struct iov_iter *i = data;
 773	long status = 0;
 774	ssize_t written = 0;
 775
 776	do {
 777		struct page *page;
 778		unsigned long offset;	/* Offset into pagecache page */
 779		unsigned long bytes;	/* Bytes to write to page */
 780		size_t copied;		/* Bytes copied from user */
 781
 782		offset = offset_in_page(pos);
 783		bytes = min_t(unsigned long, PAGE_SIZE - offset,
 784						iov_iter_count(i));
 785again:
 786		if (bytes > length)
 787			bytes = length;
 788
 789		/*
 790		 * Bring in the user page that we will copy from _first_.
 791		 * Otherwise there's a nasty deadlock on copying from the
 792		 * same page as we're writing to, without it being marked
 793		 * up-to-date.
 794		 *
 795		 * Not only is this an optimisation, but it is also required
 796		 * to check that the address is actually valid, when atomic
 797		 * usercopies are used, below.
 798		 */
 799		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
 800			status = -EFAULT;
 801			break;
 802		}
 803
 804		status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap,
 805				srcmap);
 806		if (unlikely(status))
 807			break;
 808
 809		if (mapping_writably_mapped(inode->i_mapping))
 810			flush_dcache_page(page);
 811
 812		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
 813
 814		flush_dcache_page(page);
 815
 816		status = iomap_write_end(inode, pos, bytes, copied, page, iomap,
 817				srcmap);
 818		if (unlikely(status < 0))
 819			break;
 820		copied = status;
 821
 822		cond_resched();
 823
 824		iov_iter_advance(i, copied);
 825		if (unlikely(copied == 0)) {
 826			/*
 827			 * If we were unable to copy any data at all, we must
 828			 * fall back to a single segment length write.
 829			 *
 830			 * If we didn't fallback here, we could livelock
 831			 * because not all segments in the iov can be copied at
 832			 * once without a pagefault.
 833			 */
 834			bytes = min_t(unsigned long, PAGE_SIZE - offset,
 835						iov_iter_single_seg_count(i));
 836			goto again;
 837		}
 838		pos += copied;
 839		written += copied;
 840		length -= copied;
 841
 842		balance_dirty_pages_ratelimited(inode->i_mapping);
 843	} while (iov_iter_count(i) && length);
 844
 845	return written ? written : status;
 846}
 847
 848ssize_t
 849iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
 850		const struct iomap_ops *ops)
 851{
 852	struct inode *inode = iocb->ki_filp->f_mapping->host;
 853	loff_t pos = iocb->ki_pos, ret = 0, written = 0;
 854
 855	while (iov_iter_count(iter)) {
 856		ret = iomap_apply(inode, pos, iov_iter_count(iter),
 857				IOMAP_WRITE, ops, iter, iomap_write_actor);
 858		if (ret <= 0)
 859			break;
 860		pos += ret;
 861		written += ret;
 862	}
 863
 864	return written ? written : ret;
 865}
 866EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
 867
 868static loff_t
 869iomap_unshare_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
 870		struct iomap *iomap, struct iomap *srcmap)
 871{
 872	long status = 0;
 873	loff_t written = 0;
 874
 875	/* don't bother with blocks that are not shared to start with */
 876	if (!(iomap->flags & IOMAP_F_SHARED))
 877		return length;
 878	/* don't bother with holes or unwritten extents */
 879	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
 880		return length;
 881
 882	do {
 883		unsigned long offset = offset_in_page(pos);
 884		unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
 885		struct page *page;
 886
 887		status = iomap_write_begin(inode, pos, bytes,
 888				IOMAP_WRITE_F_UNSHARE, &page, iomap, srcmap);
 889		if (unlikely(status))
 890			return status;
 891
 892		status = iomap_write_end(inode, pos, bytes, bytes, page, iomap,
 893				srcmap);
 894		if (unlikely(status <= 0)) {
 895			if (WARN_ON_ONCE(status == 0))
 896				return -EIO;
 897			return status;
 898		}
 899
 900		cond_resched();
 901
 902		pos += status;
 903		written += status;
 904		length -= status;
 905
 906		balance_dirty_pages_ratelimited(inode->i_mapping);
 907	} while (length);
 908
 909	return written;
 910}
 911
 912int
 913iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
 914		const struct iomap_ops *ops)
 915{
 916	loff_t ret;
 917
 918	while (len) {
 919		ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
 920				iomap_unshare_actor);
 921		if (ret <= 0)
 922			return ret;
 923		pos += ret;
 924		len -= ret;
 925	}
 926
 927	return 0;
 928}
 929EXPORT_SYMBOL_GPL(iomap_file_unshare);
 930
 931static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
 932		unsigned bytes, struct iomap *iomap, struct iomap *srcmap)
 933{
 934	struct page *page;
 935	int status;
 936
 937	status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, srcmap);
 938	if (status)
 939		return status;
 940
 941	zero_user(page, offset, bytes);
 942	mark_page_accessed(page);
 943
 944	return iomap_write_end(inode, pos, bytes, bytes, page, iomap, srcmap);
 945}
 946
 947static loff_t
 948iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
 949		void *data, struct iomap *iomap, struct iomap *srcmap)
 950{
 951	bool *did_zero = data;
 952	loff_t written = 0;
 953	int status;
 954
 955	/* already zeroed?  we're done. */
 956	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
 957		return count;
 958
 959	do {
 960		unsigned offset, bytes;
 961
 962		offset = offset_in_page(pos);
 963		bytes = min_t(loff_t, PAGE_SIZE - offset, count);
 964
 965		if (IS_DAX(inode))
 966			status = dax_iomap_zero(pos, offset, bytes, iomap);
 967		else
 968			status = iomap_zero(inode, pos, offset, bytes, iomap,
 969					srcmap);
 970		if (status < 0)
 971			return status;
 972
 973		pos += bytes;
 974		count -= bytes;
 975		written += bytes;
 976		if (did_zero)
 977			*did_zero = true;
 978	} while (count > 0);
 979
 980	return written;
 981}
 982
 983int
 984iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
 985		const struct iomap_ops *ops)
 986{
 987	loff_t ret;
 988
 989	while (len > 0) {
 990		ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
 991				ops, did_zero, iomap_zero_range_actor);
 992		if (ret <= 0)
 993			return ret;
 994
 995		pos += ret;
 996		len -= ret;
 997	}
 998
 999	return 0;
1000}
1001EXPORT_SYMBOL_GPL(iomap_zero_range);
1002
1003int
1004iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1005		const struct iomap_ops *ops)
1006{
1007	unsigned int blocksize = i_blocksize(inode);
1008	unsigned int off = pos & (blocksize - 1);
1009
1010	/* Block boundary? Nothing to do */
1011	if (!off)
1012		return 0;
1013	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1014}
1015EXPORT_SYMBOL_GPL(iomap_truncate_page);
1016
1017static loff_t
1018iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
1019		void *data, struct iomap *iomap, struct iomap *srcmap)
1020{
1021	struct page *page = data;
1022	int ret;
1023
1024	if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
1025		ret = __block_write_begin_int(page, pos, length, NULL, iomap);
1026		if (ret)
1027			return ret;
1028		block_commit_write(page, 0, length);
1029	} else {
1030		WARN_ON_ONCE(!PageUptodate(page));
1031		iomap_page_create(inode, page);
1032		set_page_dirty(page);
1033	}
1034
1035	return length;
1036}
1037
1038vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1039{
1040	struct page *page = vmf->page;
1041	struct inode *inode = file_inode(vmf->vma->vm_file);
1042	unsigned long length;
1043	loff_t offset;
1044	ssize_t ret;
1045
1046	lock_page(page);
1047	ret = page_mkwrite_check_truncate(page, inode);
1048	if (ret < 0)
1049		goto out_unlock;
1050	length = ret;
1051
1052	offset = page_offset(page);
1053	while (length > 0) {
1054		ret = iomap_apply(inode, offset, length,
1055				IOMAP_WRITE | IOMAP_FAULT, ops, page,
1056				iomap_page_mkwrite_actor);
1057		if (unlikely(ret <= 0))
1058			goto out_unlock;
1059		offset += ret;
1060		length -= ret;
1061	}
1062
1063	wait_for_stable_page(page);
1064	return VM_FAULT_LOCKED;
1065out_unlock:
1066	unlock_page(page);
1067	return block_page_mkwrite_return(ret);
1068}
1069EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1070
1071static void
1072iomap_finish_page_writeback(struct inode *inode, struct page *page,
1073		int error)
1074{
1075	struct iomap_page *iop = to_iomap_page(page);
1076
1077	if (error) {
1078		SetPageError(page);
1079		mapping_set_error(inode->i_mapping, -EIO);
1080	}
1081
1082	WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop);
1083	WARN_ON_ONCE(iop && atomic_read(&iop->write_count) <= 0);
1084
1085	if (!iop || atomic_dec_and_test(&iop->write_count))
1086		end_page_writeback(page);
1087}
1088
1089/*
1090 * We're now finished for good with this ioend structure.  Update the page
1091 * state, release holds on bios, and finally free up memory.  Do not use the
1092 * ioend after this.
1093 */
1094static void
1095iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1096{
1097	struct inode *inode = ioend->io_inode;
1098	struct bio *bio = &ioend->io_inline_bio;
1099	struct bio *last = ioend->io_bio, *next;
1100	u64 start = bio->bi_iter.bi_sector;
1101	loff_t offset = ioend->io_offset;
1102	bool quiet = bio_flagged(bio, BIO_QUIET);
1103
1104	for (bio = &ioend->io_inline_bio; bio; bio = next) {
1105		struct bio_vec *bv;
1106		struct bvec_iter_all iter_all;
1107
1108		/*
1109		 * For the last bio, bi_private points to the ioend, so we
1110		 * need to explicitly end the iteration here.
1111		 */
1112		if (bio == last)
1113			next = NULL;
1114		else
1115			next = bio->bi_private;
1116
1117		/* walk each page on bio, ending page IO on them */
1118		bio_for_each_segment_all(bv, bio, iter_all)
1119			iomap_finish_page_writeback(inode, bv->bv_page, error);
1120		bio_put(bio);
1121	}
1122	/* The ioend has been freed by bio_put() */
1123
1124	if (unlikely(error && !quiet)) {
1125		printk_ratelimited(KERN_ERR
1126"%s: writeback error on inode %lu, offset %lld, sector %llu",
1127			inode->i_sb->s_id, inode->i_ino, offset, start);
1128	}
1129}
1130
1131void
1132iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1133{
1134	struct list_head tmp;
1135
1136	list_replace_init(&ioend->io_list, &tmp);
1137	iomap_finish_ioend(ioend, error);
1138
1139	while (!list_empty(&tmp)) {
1140		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1141		list_del_init(&ioend->io_list);
1142		iomap_finish_ioend(ioend, error);
1143	}
1144}
1145EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1146
1147/*
1148 * We can merge two adjacent ioends if they have the same set of work to do.
1149 */
1150static bool
1151iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1152{
1153	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1154		return false;
1155	if ((ioend->io_flags & IOMAP_F_SHARED) ^
1156	    (next->io_flags & IOMAP_F_SHARED))
1157		return false;
1158	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1159	    (next->io_type == IOMAP_UNWRITTEN))
1160		return false;
1161	if (ioend->io_offset + ioend->io_size != next->io_offset)
1162		return false;
1163	return true;
1164}
1165
1166void
1167iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends,
1168		void (*merge_private)(struct iomap_ioend *ioend,
1169				struct iomap_ioend *next))
1170{
1171	struct iomap_ioend *next;
1172
1173	INIT_LIST_HEAD(&ioend->io_list);
1174
1175	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1176			io_list))) {
1177		if (!iomap_ioend_can_merge(ioend, next))
1178			break;
1179		list_move_tail(&next->io_list, &ioend->io_list);
1180		ioend->io_size += next->io_size;
1181		if (next->io_private && merge_private)
1182			merge_private(ioend, next);
1183	}
1184}
1185EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1186
1187static int
1188iomap_ioend_compare(void *priv, struct list_head *a, struct list_head *b)
1189{
1190	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1191	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1192
1193	if (ia->io_offset < ib->io_offset)
1194		return -1;
1195	if (ia->io_offset > ib->io_offset)
1196		return 1;
1197	return 0;
1198}
1199
1200void
1201iomap_sort_ioends(struct list_head *ioend_list)
1202{
1203	list_sort(NULL, ioend_list, iomap_ioend_compare);
1204}
1205EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1206
1207static void iomap_writepage_end_bio(struct bio *bio)
1208{
1209	struct iomap_ioend *ioend = bio->bi_private;
1210
1211	iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1212}
1213
1214/*
1215 * Submit the final bio for an ioend.
1216 *
1217 * If @error is non-zero, it means that we have a situation where some part of
1218 * the submission process has failed after we have marked paged for writeback
1219 * and unlocked them.  In this situation, we need to fail the bio instead of
1220 * submitting it.  This typically only happens on a filesystem shutdown.
1221 */
1222static int
1223iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1224		int error)
1225{
1226	ioend->io_bio->bi_private = ioend;
1227	ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1228
1229	if (wpc->ops->prepare_ioend)
1230		error = wpc->ops->prepare_ioend(ioend, error);
1231	if (error) {
1232		/*
1233		 * If we are failing the IO now, just mark the ioend with an
1234		 * error and finish it.  This will run IO completion immediately
1235		 * as there is only one reference to the ioend at this point in
1236		 * time.
1237		 */
1238		ioend->io_bio->bi_status = errno_to_blk_status(error);
1239		bio_endio(ioend->io_bio);
1240		return error;
1241	}
1242
1243	submit_bio(ioend->io_bio);
1244	return 0;
1245}
1246
1247static struct iomap_ioend *
1248iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1249		loff_t offset, sector_t sector, struct writeback_control *wbc)
1250{
1251	struct iomap_ioend *ioend;
1252	struct bio *bio;
1253
1254	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &iomap_ioend_bioset);
1255	bio_set_dev(bio, wpc->iomap.bdev);
1256	bio->bi_iter.bi_sector = sector;
1257	bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
1258	bio->bi_write_hint = inode->i_write_hint;
1259	wbc_init_bio(wbc, bio);
1260
1261	ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1262	INIT_LIST_HEAD(&ioend->io_list);
1263	ioend->io_type = wpc->iomap.type;
1264	ioend->io_flags = wpc->iomap.flags;
1265	ioend->io_inode = inode;
1266	ioend->io_size = 0;
1267	ioend->io_offset = offset;
1268	ioend->io_private = NULL;
1269	ioend->io_bio = bio;
1270	return ioend;
1271}
1272
1273/*
1274 * Allocate a new bio, and chain the old bio to the new one.
1275 *
1276 * Note that we have to do perform the chaining in this unintuitive order
1277 * so that the bi_private linkage is set up in the right direction for the
1278 * traversal in iomap_finish_ioend().
1279 */
1280static struct bio *
1281iomap_chain_bio(struct bio *prev)
1282{
1283	struct bio *new;
1284
1285	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
1286	bio_copy_dev(new, prev);/* also copies over blkcg information */
1287	new->bi_iter.bi_sector = bio_end_sector(prev);
1288	new->bi_opf = prev->bi_opf;
1289	new->bi_write_hint = prev->bi_write_hint;
1290
1291	bio_chain(prev, new);
1292	bio_get(prev);		/* for iomap_finish_ioend */
1293	submit_bio(prev);
1294	return new;
1295}
1296
1297static bool
1298iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1299		sector_t sector)
1300{
1301	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1302	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
1303		return false;
1304	if (wpc->iomap.type != wpc->ioend->io_type)
1305		return false;
1306	if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1307		return false;
1308	if (sector != bio_end_sector(wpc->ioend->io_bio))
1309		return false;
1310	return true;
1311}
1312
1313/*
1314 * Test to see if we have an existing ioend structure that we could append to
1315 * first, otherwise finish off the current ioend and start another.
1316 */
1317static void
1318iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page,
1319		struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
1320		struct writeback_control *wbc, struct list_head *iolist)
1321{
1322	sector_t sector = iomap_sector(&wpc->iomap, offset);
1323	unsigned len = i_blocksize(inode);
1324	unsigned poff = offset & (PAGE_SIZE - 1);
1325	bool merged, same_page = false;
1326
1327	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, offset, sector)) {
1328		if (wpc->ioend)
1329			list_add(&wpc->ioend->io_list, iolist);
1330		wpc->ioend = iomap_alloc_ioend(inode, wpc, offset, sector, wbc);
1331	}
1332
1333	merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff,
1334			&same_page);
1335	if (iop && !same_page)
1336		atomic_inc(&iop->write_count);
1337
1338	if (!merged) {
1339		if (bio_full(wpc->ioend->io_bio, len)) {
1340			wpc->ioend->io_bio =
1341				iomap_chain_bio(wpc->ioend->io_bio);
1342		}
1343		bio_add_page(wpc->ioend->io_bio, page, len, poff);
1344	}
1345
1346	wpc->ioend->io_size += len;
1347	wbc_account_cgroup_owner(wbc, page, len);
1348}
1349
1350/*
1351 * We implement an immediate ioend submission policy here to avoid needing to
1352 * chain multiple ioends and hence nest mempool allocations which can violate
1353 * forward progress guarantees we need to provide. The current ioend we are
1354 * adding blocks to is cached on the writepage context, and if the new block
1355 * does not append to the cached ioend it will create a new ioend and cache that
1356 * instead.
1357 *
1358 * If a new ioend is created and cached, the old ioend is returned and queued
1359 * locally for submission once the entire page is processed or an error has been
1360 * detected.  While ioends are submitted immediately after they are completed,
1361 * batching optimisations are provided by higher level block plugging.
1362 *
1363 * At the end of a writeback pass, there will be a cached ioend remaining on the
1364 * writepage context that the caller will need to submit.
1365 */
1366static int
1367iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1368		struct writeback_control *wbc, struct inode *inode,
1369		struct page *page, u64 end_offset)
1370{
1371	struct iomap_page *iop = to_iomap_page(page);
1372	struct iomap_ioend *ioend, *next;
1373	unsigned len = i_blocksize(inode);
1374	u64 file_offset; /* file offset of page */
1375	int error = 0, count = 0, i;
1376	LIST_HEAD(submit_list);
1377
1378	WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop);
1379	WARN_ON_ONCE(iop && atomic_read(&iop->write_count) != 0);
1380
1381	/*
1382	 * Walk through the page to find areas to write back. If we run off the
1383	 * end of the current map or find the current map invalid, grab a new
1384	 * one.
1385	 */
1386	for (i = 0, file_offset = page_offset(page);
1387	     i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
1388	     i++, file_offset += len) {
1389		if (iop && !test_bit(i, iop->uptodate))
1390			continue;
1391
1392		error = wpc->ops->map_blocks(wpc, inode, file_offset);
1393		if (error)
1394			break;
1395		if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1396			continue;
1397		if (wpc->iomap.type == IOMAP_HOLE)
1398			continue;
1399		iomap_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
1400				 &submit_list);
1401		count++;
1402	}
1403
1404	WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1405	WARN_ON_ONCE(!PageLocked(page));
1406	WARN_ON_ONCE(PageWriteback(page));
1407
1408	/*
1409	 * We cannot cancel the ioend directly here on error.  We may have
1410	 * already set other pages under writeback and hence we have to run I/O
1411	 * completion to mark the error state of the pages under writeback
1412	 * appropriately.
1413	 */
1414	if (unlikely(error)) {
1415		if (!count) {
1416			/*
1417			 * If the current page hasn't been added to ioend, it
1418			 * won't be affected by I/O completions and we must
1419			 * discard and unlock it right here.
1420			 */
1421			if (wpc->ops->discard_page)
1422				wpc->ops->discard_page(page);
1423			ClearPageUptodate(page);
1424			unlock_page(page);
1425			goto done;
1426		}
1427
1428		/*
1429		 * If the page was not fully cleaned, we need to ensure that the
1430		 * higher layers come back to it correctly.  That means we need
1431		 * to keep the page dirty, and for WB_SYNC_ALL writeback we need
1432		 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
1433		 * so another attempt to write this page in this writeback sweep
1434		 * will be made.
1435		 */
1436		set_page_writeback_keepwrite(page);
1437	} else {
1438		clear_page_dirty_for_io(page);
1439		set_page_writeback(page);
1440	}
1441
1442	unlock_page(page);
1443
1444	/*
1445	 * Preserve the original error if there was one, otherwise catch
1446	 * submission errors here and propagate into subsequent ioend
1447	 * submissions.
1448	 */
1449	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1450		int error2;
1451
1452		list_del_init(&ioend->io_list);
1453		error2 = iomap_submit_ioend(wpc, ioend, error);
1454		if (error2 && !error)
1455			error = error2;
1456	}
1457
1458	/*
1459	 * We can end up here with no error and nothing to write only if we race
1460	 * with a partial page truncate on a sub-page block sized filesystem.
1461	 */
1462	if (!count)
1463		end_page_writeback(page);
1464done:
1465	mapping_set_error(page->mapping, error);
1466	return error;
1467}
1468
1469/*
1470 * Write out a dirty page.
1471 *
1472 * For delalloc space on the page we need to allocate space and flush it.
1473 * For unwritten space on the page we need to start the conversion to
1474 * regular allocated space.
1475 */
1476static int
1477iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
1478{
1479	struct iomap_writepage_ctx *wpc = data;
1480	struct inode *inode = page->mapping->host;
1481	pgoff_t end_index;
1482	u64 end_offset;
1483	loff_t offset;
1484
1485	trace_iomap_writepage(inode, page_offset(page), PAGE_SIZE);
1486
1487	/*
1488	 * Refuse to write the page out if we are called from reclaim context.
1489	 *
1490	 * This avoids stack overflows when called from deeply used stacks in
1491	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1492	 * allow reclaim from kswapd as the stack usage there is relatively low.
1493	 *
1494	 * This should never happen except in the case of a VM regression so
1495	 * warn about it.
1496	 */
1497	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1498			PF_MEMALLOC))
1499		goto redirty;
1500
1501	/*
1502	 * Given that we do not allow direct reclaim to call us, we should
1503	 * never be called in a recursive filesystem reclaim context.
1504	 */
1505	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1506		goto redirty;
1507
1508	/*
1509	 * Is this page beyond the end of the file?
1510	 *
1511	 * The page index is less than the end_index, adjust the end_offset
1512	 * to the highest offset that this page should represent.
1513	 * -----------------------------------------------------
1514	 * |			file mapping	       | <EOF> |
1515	 * -----------------------------------------------------
1516	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1517	 * ^--------------------------------^----------|--------
1518	 * |     desired writeback range    |      see else    |
1519	 * ---------------------------------^------------------|
1520	 */
1521	offset = i_size_read(inode);
1522	end_index = offset >> PAGE_SHIFT;
1523	if (page->index < end_index)
1524		end_offset = (loff_t)(page->index + 1) << PAGE_SHIFT;
1525	else {
1526		/*
1527		 * Check whether the page to write out is beyond or straddles
1528		 * i_size or not.
1529		 * -------------------------------------------------------
1530		 * |		file mapping		        | <EOF>  |
1531		 * -------------------------------------------------------
1532		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1533		 * ^--------------------------------^-----------|---------
1534		 * |				    |      Straddles     |
1535		 * ---------------------------------^-----------|--------|
1536		 */
1537		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1538
1539		/*
1540		 * Skip the page if it is fully outside i_size, e.g. due to a
1541		 * truncate operation that is in progress. We must redirty the
1542		 * page so that reclaim stops reclaiming it. Otherwise
1543		 * iomap_vm_releasepage() is called on it and gets confused.
1544		 *
1545		 * Note that the end_index is unsigned long, it would overflow
1546		 * if the given offset is greater than 16TB on 32-bit system
1547		 * and if we do check the page is fully outside i_size or not
1548		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1549		 * will be evaluated to 0.  Hence this page will be redirtied
1550		 * and be written out repeatedly which would result in an
1551		 * infinite loop, the user program that perform this operation
1552		 * will hang.  Instead, we can verify this situation by checking
1553		 * if the page to write is totally beyond the i_size or if it's
1554		 * offset is just equal to the EOF.
1555		 */
1556		if (page->index > end_index ||
1557		    (page->index == end_index && offset_into_page == 0))
1558			goto redirty;
1559
1560		/*
1561		 * The page straddles i_size.  It must be zeroed out on each
1562		 * and every writepage invocation because it may be mmapped.
1563		 * "A file is mapped in multiples of the page size.  For a file
1564		 * that is not a multiple of the page size, the remaining
1565		 * memory is zeroed when mapped, and writes to that region are
1566		 * not written out to the file."
1567		 */
1568		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1569
1570		/* Adjust the end_offset to the end of file */
1571		end_offset = offset;
1572	}
1573
1574	return iomap_writepage_map(wpc, wbc, inode, page, end_offset);
1575
1576redirty:
1577	redirty_page_for_writepage(wbc, page);
1578	unlock_page(page);
1579	return 0;
1580}
1581
1582int
1583iomap_writepage(struct page *page, struct writeback_control *wbc,
1584		struct iomap_writepage_ctx *wpc,
1585		const struct iomap_writeback_ops *ops)
1586{
1587	int ret;
1588
1589	wpc->ops = ops;
1590	ret = iomap_do_writepage(page, wbc, wpc);
1591	if (!wpc->ioend)
1592		return ret;
1593	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1594}
1595EXPORT_SYMBOL_GPL(iomap_writepage);
1596
1597int
1598iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1599		struct iomap_writepage_ctx *wpc,
1600		const struct iomap_writeback_ops *ops)
1601{
1602	int			ret;
1603
1604	wpc->ops = ops;
1605	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1606	if (!wpc->ioend)
1607		return ret;
1608	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1609}
1610EXPORT_SYMBOL_GPL(iomap_writepages);
1611
1612static int __init iomap_init(void)
1613{
1614	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1615			   offsetof(struct iomap_ioend, io_inline_bio),
1616			   BIOSET_NEED_BVECS);
1617}
1618fs_initcall(iomap_init);