Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * SPI bus driver for the Topcliff PCH used by Intel SoCs
   3 *
   4 * Copyright (C) 2010 OKI SEMICONDUCTOR Co., LTD.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; version 2 of the License.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307, USA.
  18 */
  19
  20#include <linux/delay.h>
  21#include <linux/pci.h>
  22#include <linux/wait.h>
  23#include <linux/spi/spi.h>
  24#include <linux/interrupt.h>
  25#include <linux/sched.h>
  26#include <linux/spi/spidev.h>
  27#include <linux/module.h>
  28#include <linux/device.h>
  29#include <linux/platform_device.h>
  30
  31#include <linux/dmaengine.h>
  32#include <linux/pch_dma.h>
  33
  34/* Register offsets */
  35#define PCH_SPCR		0x00	/* SPI control register */
  36#define PCH_SPBRR		0x04	/* SPI baud rate register */
  37#define PCH_SPSR		0x08	/* SPI status register */
  38#define PCH_SPDWR		0x0C	/* SPI write data register */
  39#define PCH_SPDRR		0x10	/* SPI read data register */
  40#define PCH_SSNXCR		0x18	/* SSN Expand Control Register */
  41#define PCH_SRST		0x1C	/* SPI reset register */
  42#define PCH_ADDRESS_SIZE	0x20
  43
  44#define PCH_SPSR_TFD		0x000007C0
  45#define PCH_SPSR_RFD		0x0000F800
  46
  47#define PCH_READABLE(x)		(((x) & PCH_SPSR_RFD)>>11)
  48#define PCH_WRITABLE(x)		(((x) & PCH_SPSR_TFD)>>6)
  49
  50#define PCH_RX_THOLD		7
  51#define PCH_RX_THOLD_MAX	15
  52
  53#define PCH_TX_THOLD		2
  54
  55#define PCH_MAX_BAUDRATE	5000000
  56#define PCH_MAX_FIFO_DEPTH	16
  57
  58#define STATUS_RUNNING		1
  59#define STATUS_EXITING		2
  60#define PCH_SLEEP_TIME		10
  61
  62#define SSN_LOW			0x02U
  63#define SSN_HIGH		0x03U
  64#define SSN_NO_CONTROL		0x00U
  65#define PCH_MAX_CS		0xFF
  66#define PCI_DEVICE_ID_GE_SPI	0x8816
  67
  68#define SPCR_SPE_BIT		(1 << 0)
  69#define SPCR_MSTR_BIT		(1 << 1)
  70#define SPCR_LSBF_BIT		(1 << 4)
  71#define SPCR_CPHA_BIT		(1 << 5)
  72#define SPCR_CPOL_BIT		(1 << 6)
  73#define SPCR_TFIE_BIT		(1 << 8)
  74#define SPCR_RFIE_BIT		(1 << 9)
  75#define SPCR_FIE_BIT		(1 << 10)
  76#define SPCR_ORIE_BIT		(1 << 11)
  77#define SPCR_MDFIE_BIT		(1 << 12)
  78#define SPCR_FICLR_BIT		(1 << 24)
  79#define SPSR_TFI_BIT		(1 << 0)
  80#define SPSR_RFI_BIT		(1 << 1)
  81#define SPSR_FI_BIT		(1 << 2)
  82#define SPSR_ORF_BIT		(1 << 3)
  83#define SPBRR_SIZE_BIT		(1 << 10)
  84
  85#define PCH_ALL			(SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
  86				SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
  87
  88#define SPCR_RFIC_FIELD		20
  89#define SPCR_TFIC_FIELD		16
  90
  91#define MASK_SPBRR_SPBR_BITS	((1 << 10) - 1)
  92#define MASK_RFIC_SPCR_BITS	(0xf << SPCR_RFIC_FIELD)
  93#define MASK_TFIC_SPCR_BITS	(0xf << SPCR_TFIC_FIELD)
  94
  95#define PCH_CLOCK_HZ		50000000
  96#define PCH_MAX_SPBR		1023
  97
  98/* Definition for ML7213 by OKI SEMICONDUCTOR */
  99#define PCI_VENDOR_ID_ROHM		0x10DB
 100#define PCI_DEVICE_ID_ML7213_SPI	0x802c
 101#define PCI_DEVICE_ID_ML7223_SPI	0x800F
 
 102
 103/*
 104 * Set the number of SPI instance max
 105 * Intel EG20T PCH :		1ch
 106 * OKI SEMICONDUCTOR ML7213 IOH :	2ch
 107 * OKI SEMICONDUCTOR ML7223 IOH :	1ch
 
 108*/
 109#define PCH_SPI_MAX_DEV			2
 110
 111#define PCH_BUF_SIZE		4096
 112#define PCH_DMA_TRANS_SIZE	12
 113
 114static int use_dma = 1;
 115
 116struct pch_spi_dma_ctrl {
 
 117	struct dma_async_tx_descriptor	*desc_tx;
 118	struct dma_async_tx_descriptor	*desc_rx;
 119	struct pch_dma_slave		param_tx;
 120	struct pch_dma_slave		param_rx;
 121	struct dma_chan		*chan_tx;
 122	struct dma_chan		*chan_rx;
 123	struct scatterlist		*sg_tx_p;
 124	struct scatterlist		*sg_rx_p;
 125	struct scatterlist		sg_tx;
 126	struct scatterlist		sg_rx;
 127	int				nent;
 128	void				*tx_buf_virt;
 129	void				*rx_buf_virt;
 130	dma_addr_t			tx_buf_dma;
 131	dma_addr_t			rx_buf_dma;
 132};
 133/**
 134 * struct pch_spi_data - Holds the SPI channel specific details
 135 * @io_remap_addr:		The remapped PCI base address
 136 * @master:			Pointer to the SPI master structure
 
 137 * @work:			Reference to work queue handler
 138 * @wk:				Workqueue for carrying out execution of the
 139 *				requests
 140 * @wait:			Wait queue for waking up upon receiving an
 141 *				interrupt.
 142 * @transfer_complete:		Status of SPI Transfer
 143 * @bcurrent_msg_processing:	Status flag for message processing
 144 * @lock:			Lock for protecting this structure
 145 * @queue:			SPI Message queue
 146 * @status:			Status of the SPI driver
 147 * @bpw_len:			Length of data to be transferred in bits per
 148 *				word
 149 * @transfer_active:		Flag showing active transfer
 150 * @tx_index:			Transmit data count; for bookkeeping during
 151 *				transfer
 152 * @rx_index:			Receive data count; for bookkeeping during
 153 *				transfer
 154 * @tx_buff:			Buffer for data to be transmitted
 155 * @rx_index:			Buffer for Received data
 156 * @n_curnt_chip:		The chip number that this SPI driver currently
 157 *				operates on
 158 * @current_chip:		Reference to the current chip that this SPI
 159 *				driver currently operates on
 160 * @current_msg:		The current message that this SPI driver is
 161 *				handling
 162 * @cur_trans:			The current transfer that this SPI driver is
 163 *				handling
 164 * @board_dat:			Reference to the SPI device data structure
 165 * @plat_dev:			platform_device structure
 166 * @ch:				SPI channel number
 
 
 167 * @irq_reg_sts:		Status of IRQ registration
 
 168 */
 169struct pch_spi_data {
 170	void __iomem *io_remap_addr;
 171	unsigned long io_base_addr;
 172	struct spi_master *master;
 173	struct work_struct work;
 174	struct workqueue_struct *wk;
 175	wait_queue_head_t wait;
 176	u8 transfer_complete;
 177	u8 bcurrent_msg_processing;
 178	spinlock_t lock;
 179	struct list_head queue;
 180	u8 status;
 181	u32 bpw_len;
 182	u8 transfer_active;
 183	u32 tx_index;
 184	u32 rx_index;
 185	u16 *pkt_tx_buff;
 186	u16 *pkt_rx_buff;
 187	u8 n_curnt_chip;
 188	struct spi_device *current_chip;
 189	struct spi_message *current_msg;
 190	struct spi_transfer *cur_trans;
 191	struct pch_spi_board_data *board_dat;
 192	struct platform_device	*plat_dev;
 193	int ch;
 194	struct pch_spi_dma_ctrl dma;
 195	int use_dma;
 196	u8 irq_reg_sts;
 
 197};
 198
 199/**
 200 * struct pch_spi_board_data - Holds the SPI device specific details
 201 * @pdev:		Pointer to the PCI device
 202 * @suspend_sts:	Status of suspend
 203 * @num:		The number of SPI device instance
 204 */
 205struct pch_spi_board_data {
 206	struct pci_dev *pdev;
 207	u8 suspend_sts;
 208	int num;
 209};
 210
 211struct pch_pd_dev_save {
 212	int num;
 213	struct platform_device *pd_save[PCH_SPI_MAX_DEV];
 214	struct pch_spi_board_data *board_dat;
 215};
 216
 217static struct pci_device_id pch_spi_pcidev_id[] = {
 218	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
 219	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
 220	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
 
 221	{ }
 222};
 223
 224/**
 225 * pch_spi_writereg() - Performs  register writes
 226 * @master:	Pointer to struct spi_master.
 227 * @idx:	Register offset.
 228 * @val:	Value to be written to register.
 229 */
 230static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
 231{
 232	struct pch_spi_data *data = spi_master_get_devdata(master);
 233	iowrite32(val, (data->io_remap_addr + idx));
 234}
 235
 236/**
 237 * pch_spi_readreg() - Performs register reads
 238 * @master:	Pointer to struct spi_master.
 239 * @idx:	Register offset.
 240 */
 241static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
 242{
 243	struct pch_spi_data *data = spi_master_get_devdata(master);
 244	return ioread32(data->io_remap_addr + idx);
 245}
 246
 247static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
 248				      u32 set, u32 clr)
 249{
 250	u32 tmp = pch_spi_readreg(master, idx);
 251	tmp = (tmp & ~clr) | set;
 252	pch_spi_writereg(master, idx, tmp);
 253}
 254
 255static void pch_spi_set_master_mode(struct spi_master *master)
 256{
 257	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
 258}
 259
 260/**
 261 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
 262 * @master:	Pointer to struct spi_master.
 263 */
 264static void pch_spi_clear_fifo(struct spi_master *master)
 265{
 266	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
 267	pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
 268}
 269
 270static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
 271				void __iomem *io_remap_addr)
 272{
 273	u32 n_read, tx_index, rx_index, bpw_len;
 274	u16 *pkt_rx_buffer, *pkt_tx_buff;
 275	int read_cnt;
 276	u32 reg_spcr_val;
 277	void __iomem *spsr;
 278	void __iomem *spdrr;
 279	void __iomem *spdwr;
 280
 281	spsr = io_remap_addr + PCH_SPSR;
 282	iowrite32(reg_spsr_val, spsr);
 283
 284	if (data->transfer_active) {
 285		rx_index = data->rx_index;
 286		tx_index = data->tx_index;
 287		bpw_len = data->bpw_len;
 288		pkt_rx_buffer = data->pkt_rx_buff;
 289		pkt_tx_buff = data->pkt_tx_buff;
 290
 291		spdrr = io_remap_addr + PCH_SPDRR;
 292		spdwr = io_remap_addr + PCH_SPDWR;
 293
 294		n_read = PCH_READABLE(reg_spsr_val);
 295
 296		for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
 297			pkt_rx_buffer[rx_index++] = ioread32(spdrr);
 298			if (tx_index < bpw_len)
 299				iowrite32(pkt_tx_buff[tx_index++], spdwr);
 300		}
 301
 302		/* disable RFI if not needed */
 303		if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
 304			reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
 305			reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
 306
 307			/* reset rx threshold */
 308			reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
 309			reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
 310
 311			iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
 312		}
 313
 314		/* update counts */
 315		data->tx_index = tx_index;
 316		data->rx_index = rx_index;
 317
 318	}
 319
 320	/* if transfer complete interrupt */
 321	if (reg_spsr_val & SPSR_FI_BIT) {
 322		if ((tx_index == bpw_len) && (rx_index == tx_index)) {
 323			/* disable interrupts */
 324			pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
 325
 326			/* transfer is completed;
 327			   inform pch_spi_process_messages */
 328			data->transfer_complete = true;
 329			data->transfer_active = false;
 330			wake_up(&data->wait);
 331		} else {
 332			dev_err(&data->master->dev,
 333				"%s : Transfer is not completed", __func__);
 
 334		}
 335	}
 336}
 337
 338/**
 339 * pch_spi_handler() - Interrupt handler
 340 * @irq:	The interrupt number.
 341 * @dev_id:	Pointer to struct pch_spi_board_data.
 342 */
 343static irqreturn_t pch_spi_handler(int irq, void *dev_id)
 344{
 345	u32 reg_spsr_val;
 346	void __iomem *spsr;
 347	void __iomem *io_remap_addr;
 348	irqreturn_t ret = IRQ_NONE;
 349	struct pch_spi_data *data = dev_id;
 350	struct pch_spi_board_data *board_dat = data->board_dat;
 351
 352	if (board_dat->suspend_sts) {
 353		dev_dbg(&board_dat->pdev->dev,
 354			"%s returning due to suspend\n", __func__);
 355		return IRQ_NONE;
 356	}
 357
 358	io_remap_addr = data->io_remap_addr;
 359	spsr = io_remap_addr + PCH_SPSR;
 360
 361	reg_spsr_val = ioread32(spsr);
 362
 363	if (reg_spsr_val & SPSR_ORF_BIT) {
 364		dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
 365		if (data->current_msg->complete != 0) {
 366			data->transfer_complete = true;
 367			data->current_msg->status = -EIO;
 368			data->current_msg->complete(data->current_msg->context);
 369			data->bcurrent_msg_processing = false;
 370			data->current_msg = NULL;
 371			data->cur_trans = NULL;
 372		}
 373	}
 374
 375	if (data->use_dma)
 376		return IRQ_NONE;
 377
 378	/* Check if the interrupt is for SPI device */
 379	if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
 380		pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
 381		ret = IRQ_HANDLED;
 382	}
 383
 384	dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
 385		__func__, ret);
 386
 387	return ret;
 388}
 389
 390/**
 391 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
 392 * @master:	Pointer to struct spi_master.
 393 * @speed_hz:	Baud rate.
 394 */
 395static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
 396{
 397	u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
 398
 399	/* if baud rate is less than we can support limit it */
 400	if (n_spbr > PCH_MAX_SPBR)
 401		n_spbr = PCH_MAX_SPBR;
 402
 403	pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
 404}
 405
 406/**
 407 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
 408 * @master:		Pointer to struct spi_master.
 409 * @bits_per_word:	Bits per word for SPI transfer.
 410 */
 411static void pch_spi_set_bits_per_word(struct spi_master *master,
 412				      u8 bits_per_word)
 413{
 414	if (bits_per_word == 8)
 415		pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
 416	else
 417		pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
 418}
 419
 420/**
 421 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
 422 * @spi:	Pointer to struct spi_device.
 423 */
 424static void pch_spi_setup_transfer(struct spi_device *spi)
 425{
 426	u32 flags = 0;
 427
 428	dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
 429		__func__, pch_spi_readreg(spi->master, PCH_SPBRR),
 430		spi->max_speed_hz);
 431	pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
 432
 433	/* set bits per word */
 434	pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
 435
 436	if (!(spi->mode & SPI_LSB_FIRST))
 437		flags |= SPCR_LSBF_BIT;
 438	if (spi->mode & SPI_CPOL)
 439		flags |= SPCR_CPOL_BIT;
 440	if (spi->mode & SPI_CPHA)
 441		flags |= SPCR_CPHA_BIT;
 442	pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
 443			   (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
 444
 445	/* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
 446	pch_spi_clear_fifo(spi->master);
 447}
 448
 449/**
 450 * pch_spi_reset() - Clears SPI registers
 451 * @master:	Pointer to struct spi_master.
 452 */
 453static void pch_spi_reset(struct spi_master *master)
 454{
 455	/* write 1 to reset SPI */
 456	pch_spi_writereg(master, PCH_SRST, 0x1);
 457
 458	/* clear reset */
 459	pch_spi_writereg(master, PCH_SRST, 0x0);
 460}
 461
 462static int pch_spi_setup(struct spi_device *pspi)
 463{
 464	/* check bits per word */
 465	if (pspi->bits_per_word == 0) {
 466		pspi->bits_per_word = 8;
 467		dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__);
 468	}
 469
 470	if ((pspi->bits_per_word != 8) && (pspi->bits_per_word != 16)) {
 471		dev_err(&pspi->dev, "%s Invalid bits per word\n", __func__);
 472		return -EINVAL;
 473	}
 474
 475	/* Check baud rate setting */
 476	/* if baud rate of chip is greater than
 477	   max we can support,return error */
 478	if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
 479		pspi->max_speed_hz = PCH_MAX_BAUDRATE;
 480
 481	dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
 482		(pspi->mode) & (SPI_CPOL | SPI_CPHA));
 483
 484	return 0;
 485}
 486
 487static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
 488{
 489
 490	struct spi_transfer *transfer;
 491	struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
 492	int retval;
 493	unsigned long flags;
 494
 495	/* validate spi message and baud rate */
 496	if (unlikely(list_empty(&pmsg->transfers) == 1)) {
 497		dev_err(&pspi->dev, "%s list empty\n", __func__);
 498		retval = -EINVAL;
 499		goto err_out;
 500	}
 501
 502	if (unlikely(pspi->max_speed_hz == 0)) {
 503		dev_err(&pspi->dev, "%s pch_spi_tranfer maxspeed=%d\n",
 504			__func__, pspi->max_speed_hz);
 505		retval = -EINVAL;
 506		goto err_out;
 507	}
 508
 509	dev_dbg(&pspi->dev, "%s Transfer List not empty. "
 510		"Transfer Speed is set.\n", __func__);
 511
 512	spin_lock_irqsave(&data->lock, flags);
 513	/* validate Tx/Rx buffers and Transfer length */
 514	list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
 515		if (!transfer->tx_buf && !transfer->rx_buf) {
 516			dev_err(&pspi->dev,
 517				"%s Tx and Rx buffer NULL\n", __func__);
 518			retval = -EINVAL;
 519			goto err_return_spinlock;
 520		}
 521
 522		if (!transfer->len) {
 523			dev_err(&pspi->dev, "%s Transfer length invalid\n",
 524				__func__);
 525			retval = -EINVAL;
 526			goto err_return_spinlock;
 527		}
 528
 529		dev_dbg(&pspi->dev, "%s Tx/Rx buffer valid. Transfer length"
 530			" valid\n", __func__);
 531
 532		/* if baud rate has been specified validate the same */
 533		if (transfer->speed_hz > PCH_MAX_BAUDRATE)
 534			transfer->speed_hz = PCH_MAX_BAUDRATE;
 535
 536		/* if bits per word has been specified validate the same */
 537		if (transfer->bits_per_word) {
 538			if ((transfer->bits_per_word != 8)
 539			    && (transfer->bits_per_word != 16)) {
 540				retval = -EINVAL;
 541				dev_err(&pspi->dev,
 542					"%s Invalid bits per word\n", __func__);
 543				goto err_return_spinlock;
 544			}
 545		}
 546	}
 547	spin_unlock_irqrestore(&data->lock, flags);
 548
 549	/* We won't process any messages if we have been asked to terminate */
 550	if (data->status == STATUS_EXITING) {
 551		dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
 552		retval = -ESHUTDOWN;
 553		goto err_out;
 554	}
 555
 556	/* If suspended ,return -EINVAL */
 557	if (data->board_dat->suspend_sts) {
 558		dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
 559		retval = -EINVAL;
 560		goto err_out;
 561	}
 562
 563	/* set status of message */
 564	pmsg->actual_length = 0;
 565	dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
 566
 567	pmsg->status = -EINPROGRESS;
 568	spin_lock_irqsave(&data->lock, flags);
 569	/* add message to queue */
 570	list_add_tail(&pmsg->queue, &data->queue);
 571	spin_unlock_irqrestore(&data->lock, flags);
 572
 573	dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
 574
 575	/* schedule work queue to run */
 576	queue_work(data->wk, &data->work);
 577	dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
 578
 579	retval = 0;
 580
 581err_out:
 582	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
 583	return retval;
 584err_return_spinlock:
 585	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
 586	spin_unlock_irqrestore(&data->lock, flags);
 587	return retval;
 588}
 589
 590static inline void pch_spi_select_chip(struct pch_spi_data *data,
 591				       struct spi_device *pspi)
 592{
 593	if (data->current_chip != NULL) {
 594		if (pspi->chip_select != data->n_curnt_chip) {
 595			dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
 596			data->current_chip = NULL;
 597		}
 598	}
 599
 600	data->current_chip = pspi;
 601
 602	data->n_curnt_chip = data->current_chip->chip_select;
 603
 604	dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
 605	pch_spi_setup_transfer(pspi);
 606}
 607
 608static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
 609{
 610	int size;
 611	u32 n_writes;
 612	int j;
 613	struct spi_message *pmsg;
 614	const u8 *tx_buf;
 615	const u16 *tx_sbuf;
 616
 617	/* set baud rate if needed */
 618	if (data->cur_trans->speed_hz) {
 619		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
 620		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
 621	}
 622
 623	/* set bits per word if needed */
 624	if (data->cur_trans->bits_per_word &&
 625	    (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
 626		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
 627		pch_spi_set_bits_per_word(data->master,
 628					  data->cur_trans->bits_per_word);
 629		*bpw = data->cur_trans->bits_per_word;
 630	} else {
 631		*bpw = data->current_msg->spi->bits_per_word;
 632	}
 633
 634	/* reset Tx/Rx index */
 635	data->tx_index = 0;
 636	data->rx_index = 0;
 637
 638	data->bpw_len = data->cur_trans->len / (*bpw / 8);
 639
 640	/* find alloc size */
 641	size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
 642
 643	/* allocate memory for pkt_tx_buff & pkt_rx_buffer */
 644	data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
 645	if (data->pkt_tx_buff != NULL) {
 646		data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
 647		if (!data->pkt_rx_buff)
 648			kfree(data->pkt_tx_buff);
 
 
 649	}
 650
 651	if (!data->pkt_rx_buff) {
 652		/* flush queue and set status of all transfers to -ENOMEM */
 653		dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
 654		list_for_each_entry(pmsg, data->queue.next, queue) {
 655			pmsg->status = -ENOMEM;
 656
 657			if (pmsg->complete != 0)
 658				pmsg->complete(pmsg->context);
 659
 660			/* delete from queue */
 661			list_del_init(&pmsg->queue);
 662		}
 663		return;
 664	}
 665
 666	/* copy Tx Data */
 667	if (data->cur_trans->tx_buf != NULL) {
 668		if (*bpw == 8) {
 669			tx_buf = data->cur_trans->tx_buf;
 670			for (j = 0; j < data->bpw_len; j++)
 671				data->pkt_tx_buff[j] = *tx_buf++;
 672		} else {
 673			tx_sbuf = data->cur_trans->tx_buf;
 674			for (j = 0; j < data->bpw_len; j++)
 675				data->pkt_tx_buff[j] = *tx_sbuf++;
 676		}
 677	}
 678
 679	/* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
 680	n_writes = data->bpw_len;
 681	if (n_writes > PCH_MAX_FIFO_DEPTH)
 682		n_writes = PCH_MAX_FIFO_DEPTH;
 683
 684	dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
 685		"0x2 to SSNXCR\n", __func__);
 686	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
 
 687
 688	for (j = 0; j < n_writes; j++)
 689		pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
 690
 691	/* update tx_index */
 692	data->tx_index = j;
 693
 694	/* reset transfer complete flag */
 695	data->transfer_complete = false;
 696	data->transfer_active = true;
 697}
 698
 699static void pch_spi_nomore_transfer(struct pch_spi_data *data)
 700{
 701	struct spi_message *pmsg;
 702	dev_dbg(&data->master->dev, "%s called\n", __func__);
 703	/* Invoke complete callback
 704	 * [To the spi core..indicating end of transfer] */
 705	data->current_msg->status = 0;
 706
 707	if (data->current_msg->complete != 0) {
 708		dev_dbg(&data->master->dev,
 709			"%s:Invoking callback of SPI core\n", __func__);
 710		data->current_msg->complete(data->current_msg->context);
 711	}
 712
 713	/* update status in global variable */
 714	data->bcurrent_msg_processing = false;
 715
 716	dev_dbg(&data->master->dev,
 717		"%s:data->bcurrent_msg_processing = false\n", __func__);
 718
 719	data->current_msg = NULL;
 720	data->cur_trans = NULL;
 721
 722	/* check if we have items in list and not suspending
 723	 * return 1 if list empty */
 724	if ((list_empty(&data->queue) == 0) &&
 725	    (!data->board_dat->suspend_sts) &&
 726	    (data->status != STATUS_EXITING)) {
 727		/* We have some more work to do (either there is more tranint
 728		 * bpw;sfer requests in the current message or there are
 729		 *more messages)
 730		 */
 731		dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
 732		queue_work(data->wk, &data->work);
 733	} else if (data->board_dat->suspend_sts ||
 734		   data->status == STATUS_EXITING) {
 735		dev_dbg(&data->master->dev,
 736			"%s suspend/remove initiated, flushing queue\n",
 737			__func__);
 738		list_for_each_entry(pmsg, data->queue.next, queue) {
 739			pmsg->status = -EIO;
 740
 741			if (pmsg->complete)
 742				pmsg->complete(pmsg->context);
 743
 744			/* delete from queue */
 745			list_del_init(&pmsg->queue);
 746		}
 747	}
 748}
 749
 750static void pch_spi_set_ir(struct pch_spi_data *data)
 751{
 752	/* enable interrupts, set threshold, enable SPI */
 753	if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
 754		/* set receive threshold to PCH_RX_THOLD */
 755		pch_spi_setclr_reg(data->master, PCH_SPCR,
 756				   PCH_RX_THOLD << SPCR_RFIC_FIELD |
 757				   SPCR_FIE_BIT | SPCR_RFIE_BIT |
 758				   SPCR_ORIE_BIT | SPCR_SPE_BIT,
 759				   MASK_RFIC_SPCR_BITS | PCH_ALL);
 760	else
 761		/* set receive threshold to maximum */
 762		pch_spi_setclr_reg(data->master, PCH_SPCR,
 763				   PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
 764				   SPCR_FIE_BIT | SPCR_ORIE_BIT |
 765				   SPCR_SPE_BIT,
 766				   MASK_RFIC_SPCR_BITS | PCH_ALL);
 767
 768	/* Wait until the transfer completes; go to sleep after
 769				 initiating the transfer. */
 770	dev_dbg(&data->master->dev,
 771		"%s:waiting for transfer to get over\n", __func__);
 772
 773	wait_event_interruptible(data->wait, data->transfer_complete);
 774
 775	/* clear all interrupts */
 776	pch_spi_writereg(data->master, PCH_SPSR,
 777			 pch_spi_readreg(data->master, PCH_SPSR));
 778	/* Disable interrupts and SPI transfer */
 779	pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
 780	/* clear FIFO */
 781	pch_spi_clear_fifo(data->master);
 782}
 783
 784static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
 785{
 786	int j;
 787	u8 *rx_buf;
 788	u16 *rx_sbuf;
 789
 790	/* copy Rx Data */
 791	if (!data->cur_trans->rx_buf)
 792		return;
 793
 794	if (bpw == 8) {
 795		rx_buf = data->cur_trans->rx_buf;
 796		for (j = 0; j < data->bpw_len; j++)
 797			*rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
 798	} else {
 799		rx_sbuf = data->cur_trans->rx_buf;
 800		for (j = 0; j < data->bpw_len; j++)
 801			*rx_sbuf++ = data->pkt_rx_buff[j];
 802	}
 803}
 804
 805static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
 806{
 807	int j;
 808	u8 *rx_buf;
 809	u16 *rx_sbuf;
 810	const u8 *rx_dma_buf;
 811	const u16 *rx_dma_sbuf;
 812
 813	/* copy Rx Data */
 814	if (!data->cur_trans->rx_buf)
 815		return;
 816
 817	if (bpw == 8) {
 818		rx_buf = data->cur_trans->rx_buf;
 819		rx_dma_buf = data->dma.rx_buf_virt;
 820		for (j = 0; j < data->bpw_len; j++)
 821			*rx_buf++ = *rx_dma_buf++ & 0xFF;
 
 822	} else {
 823		rx_sbuf = data->cur_trans->rx_buf;
 824		rx_dma_sbuf = data->dma.rx_buf_virt;
 825		for (j = 0; j < data->bpw_len; j++)
 826			*rx_sbuf++ = *rx_dma_sbuf++;
 
 827	}
 828}
 829
 830static int pch_spi_start_transfer(struct pch_spi_data *data)
 831{
 832	struct pch_spi_dma_ctrl *dma;
 833	unsigned long flags;
 834	int rtn;
 835
 836	dma = &data->dma;
 837
 838	spin_lock_irqsave(&data->lock, flags);
 839
 840	/* disable interrupts, SPI set enable */
 841	pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
 842
 843	spin_unlock_irqrestore(&data->lock, flags);
 844
 845	/* Wait until the transfer completes; go to sleep after
 846				 initiating the transfer. */
 847	dev_dbg(&data->master->dev,
 848		"%s:waiting for transfer to get over\n", __func__);
 849	rtn = wait_event_interruptible_timeout(data->wait,
 850					       data->transfer_complete,
 851					       msecs_to_jiffies(2 * HZ));
 
 
 
 852
 853	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
 854			    DMA_FROM_DEVICE);
 855
 856	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
 857			    DMA_FROM_DEVICE);
 858	memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
 859
 860	async_tx_ack(dma->desc_rx);
 861	async_tx_ack(dma->desc_tx);
 862	kfree(dma->sg_tx_p);
 863	kfree(dma->sg_rx_p);
 864
 865	spin_lock_irqsave(&data->lock, flags);
 866
 867	/* clear fifo threshold, disable interrupts, disable SPI transfer */
 868	pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
 869			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
 870			   SPCR_SPE_BIT);
 871	/* clear all interrupts */
 872	pch_spi_writereg(data->master, PCH_SPSR,
 873			 pch_spi_readreg(data->master, PCH_SPSR));
 874	/* clear FIFO */
 875	pch_spi_clear_fifo(data->master);
 876
 877	spin_unlock_irqrestore(&data->lock, flags);
 878
 879	return rtn;
 880}
 881
 882static void pch_dma_rx_complete(void *arg)
 883{
 884	struct pch_spi_data *data = arg;
 885
 886	/* transfer is completed;inform pch_spi_process_messages_dma */
 887	data->transfer_complete = true;
 888	wake_up_interruptible(&data->wait);
 889}
 890
 891static bool pch_spi_filter(struct dma_chan *chan, void *slave)
 892{
 893	struct pch_dma_slave *param = slave;
 894
 895	if ((chan->chan_id == param->chan_id) &&
 896	    (param->dma_dev == chan->device->dev)) {
 897		chan->private = param;
 898		return true;
 899	} else {
 900		return false;
 901	}
 902}
 903
 904static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
 905{
 906	dma_cap_mask_t mask;
 907	struct dma_chan *chan;
 908	struct pci_dev *dma_dev;
 909	struct pch_dma_slave *param;
 910	struct pch_spi_dma_ctrl *dma;
 911	unsigned int width;
 912
 913	if (bpw == 8)
 914		width = PCH_DMA_WIDTH_1_BYTE;
 915	else
 916		width = PCH_DMA_WIDTH_2_BYTES;
 917
 918	dma = &data->dma;
 919	dma_cap_zero(mask);
 920	dma_cap_set(DMA_SLAVE, mask);
 921
 922	/* Get DMA's dev information */
 923	dma_dev = pci_get_bus_and_slot(2, PCI_DEVFN(12, 0));
 
 924
 925	/* Set Tx DMA */
 926	param = &dma->param_tx;
 927	param->dma_dev = &dma_dev->dev;
 928	param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
 929	param->tx_reg = data->io_base_addr + PCH_SPDWR;
 930	param->width = width;
 931	chan = dma_request_channel(mask, pch_spi_filter, param);
 932	if (!chan) {
 933		dev_err(&data->master->dev,
 934			"ERROR: dma_request_channel FAILS(Tx)\n");
 935		data->use_dma = 0;
 936		return;
 937	}
 938	dma->chan_tx = chan;
 939
 940	/* Set Rx DMA */
 941	param = &dma->param_rx;
 942	param->dma_dev = &dma_dev->dev;
 943	param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
 944	param->rx_reg = data->io_base_addr + PCH_SPDRR;
 945	param->width = width;
 946	chan = dma_request_channel(mask, pch_spi_filter, param);
 947	if (!chan) {
 948		dev_err(&data->master->dev,
 949			"ERROR: dma_request_channel FAILS(Rx)\n");
 950		dma_release_channel(dma->chan_tx);
 951		dma->chan_tx = NULL;
 952		data->use_dma = 0;
 953		return;
 954	}
 955	dma->chan_rx = chan;
 
 
 
 
 
 
 956}
 957
 958static void pch_spi_release_dma(struct pch_spi_data *data)
 959{
 960	struct pch_spi_dma_ctrl *dma;
 961
 962	dma = &data->dma;
 963	if (dma->chan_tx) {
 964		dma_release_channel(dma->chan_tx);
 965		dma->chan_tx = NULL;
 966	}
 967	if (dma->chan_rx) {
 968		dma_release_channel(dma->chan_rx);
 969		dma->chan_rx = NULL;
 970	}
 971	return;
 
 972}
 973
 974static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
 975{
 976	const u8 *tx_buf;
 977	const u16 *tx_sbuf;
 978	u8 *tx_dma_buf;
 979	u16 *tx_dma_sbuf;
 980	struct scatterlist *sg;
 981	struct dma_async_tx_descriptor *desc_tx;
 982	struct dma_async_tx_descriptor *desc_rx;
 983	int num;
 984	int i;
 985	int size;
 986	int rem;
 
 987	unsigned long flags;
 988	struct pch_spi_dma_ctrl *dma;
 989
 990	dma = &data->dma;
 991
 992	/* set baud rate if needed */
 993	if (data->cur_trans->speed_hz) {
 994		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
 995		spin_lock_irqsave(&data->lock, flags);
 996		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
 997		spin_unlock_irqrestore(&data->lock, flags);
 998	}
 999
1000	/* set bits per word if needed */
1001	if (data->cur_trans->bits_per_word &&
1002	    (data->current_msg->spi->bits_per_word !=
1003	     data->cur_trans->bits_per_word)) {
1004		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
1005		spin_lock_irqsave(&data->lock, flags);
1006		pch_spi_set_bits_per_word(data->master,
1007					  data->cur_trans->bits_per_word);
1008		spin_unlock_irqrestore(&data->lock, flags);
1009		*bpw = data->cur_trans->bits_per_word;
1010	} else {
1011		*bpw = data->current_msg->spi->bits_per_word;
1012	}
1013	data->bpw_len = data->cur_trans->len / (*bpw / 8);
1014
 
 
 
 
 
1015	/* copy Tx Data */
1016	if (data->cur_trans->tx_buf != NULL) {
1017		if (*bpw == 8) {
1018			tx_buf = data->cur_trans->tx_buf;
1019			tx_dma_buf = dma->tx_buf_virt;
1020			for (i = 0; i < data->bpw_len; i++)
1021				*tx_dma_buf++ = *tx_buf++;
1022		} else {
1023			tx_sbuf = data->cur_trans->tx_buf;
1024			tx_dma_sbuf = dma->tx_buf_virt;
1025			for (i = 0; i < data->bpw_len; i++)
1026				*tx_dma_sbuf++ = *tx_sbuf++;
1027		}
1028	}
 
 
1029	if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
1030		num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
 
 
 
 
 
 
1031		size = PCH_DMA_TRANS_SIZE;
1032		rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
1033	} else {
1034		num = 1;
1035		size = data->bpw_len;
1036		rem = data->bpw_len;
1037	}
1038	dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
1039		__func__, num, size, rem);
1040	spin_lock_irqsave(&data->lock, flags);
1041
1042	/* set receive fifo threshold and transmit fifo threshold */
1043	pch_spi_setclr_reg(data->master, PCH_SPCR,
1044			   ((size - 1) << SPCR_RFIC_FIELD) |
1045			   (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1046			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1047
1048	spin_unlock_irqrestore(&data->lock, flags);
1049
1050	/* RX */
1051	dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
 
 
 
1052	sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1053	/* offset, length setting */
1054	sg = dma->sg_rx_p;
1055	for (i = 0; i < num; i++, sg++) {
1056		if (i == (num - 2)) {
1057			sg->offset = size * i;
1058			sg->offset = sg->offset * (*bpw / 8);
1059			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1060				    sg->offset);
1061			sg_dma_len(sg) = rem;
1062		} else if (i == (num - 1)) {
1063			sg->offset = size * (i - 1) + rem;
1064			sg->offset = sg->offset * (*bpw / 8);
1065			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1066				    sg->offset);
1067			sg_dma_len(sg) = size;
1068		} else {
1069			sg->offset = size * i;
1070			sg->offset = sg->offset * (*bpw / 8);
1071			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1072				    sg->offset);
1073			sg_dma_len(sg) = size;
1074		}
1075		sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1076	}
1077	sg = dma->sg_rx_p;
1078	desc_rx = dma->chan_rx->device->device_prep_slave_sg(dma->chan_rx, sg,
1079					num, DMA_FROM_DEVICE,
1080					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1081	if (!desc_rx) {
1082		dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1083			__func__);
1084		return;
1085	}
1086	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1087	desc_rx->callback = pch_dma_rx_complete;
1088	desc_rx->callback_param = data;
1089	dma->nent = num;
1090	dma->desc_rx = desc_rx;
1091
1092	/* TX */
1093	if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
1094		num = data->bpw_len / PCH_DMA_TRANS_SIZE;
 
 
 
 
 
 
 
 
1095		size = PCH_DMA_TRANS_SIZE;
1096		rem = 16;
1097	} else {
1098		num = 1;
1099		size = data->bpw_len;
1100		rem = data->bpw_len;
 
1101	}
1102
1103	dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
 
 
 
1104	sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1105	/* offset, length setting */
1106	sg = dma->sg_tx_p;
1107	for (i = 0; i < num; i++, sg++) {
1108		if (i == 0) {
1109			sg->offset = 0;
 
 
 
 
 
 
1110			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1111				    sg->offset);
1112			sg_dma_len(sg) = rem;
1113		} else {
1114			sg->offset = rem + size * (i - 1);
1115			sg->offset = sg->offset * (*bpw / 8);
1116			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1117				    sg->offset);
1118			sg_dma_len(sg) = size;
1119		}
1120		sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1121	}
1122	sg = dma->sg_tx_p;
1123	desc_tx = dma->chan_tx->device->device_prep_slave_sg(dma->chan_tx,
1124					sg, num, DMA_TO_DEVICE,
1125					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1126	if (!desc_tx) {
1127		dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1128			__func__);
1129		return;
1130	}
1131	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1132	desc_tx->callback = NULL;
1133	desc_tx->callback_param = data;
1134	dma->nent = num;
1135	dma->desc_tx = desc_tx;
1136
1137	dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
1138		"0x2 to SSNXCR\n", __func__);
1139
1140	spin_lock_irqsave(&data->lock, flags);
1141	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1142	desc_rx->tx_submit(desc_rx);
1143	desc_tx->tx_submit(desc_tx);
1144	spin_unlock_irqrestore(&data->lock, flags);
1145
1146	/* reset transfer complete flag */
1147	data->transfer_complete = false;
1148}
1149
1150static void pch_spi_process_messages(struct work_struct *pwork)
1151{
1152	struct spi_message *pmsg;
1153	struct pch_spi_data *data;
1154	int bpw;
1155
1156	data = container_of(pwork, struct pch_spi_data, work);
1157	dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1158
1159	spin_lock(&data->lock);
1160	/* check if suspend has been initiated;if yes flush queue */
1161	if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1162		dev_dbg(&data->master->dev, "%s suspend/remove initiated,"
1163			"flushing queue\n", __func__);
1164		list_for_each_entry(pmsg, data->queue.next, queue) {
1165			pmsg->status = -EIO;
1166
1167			if (pmsg->complete != 0) {
1168				spin_unlock(&data->lock);
1169				pmsg->complete(pmsg->context);
1170				spin_lock(&data->lock);
1171			}
1172
1173			/* delete from queue */
1174			list_del_init(&pmsg->queue);
1175		}
1176
1177		spin_unlock(&data->lock);
1178		return;
1179	}
1180
1181	data->bcurrent_msg_processing = true;
1182	dev_dbg(&data->master->dev,
1183		"%s Set data->bcurrent_msg_processing= true\n", __func__);
1184
1185	/* Get the message from the queue and delete it from there. */
1186	data->current_msg = list_entry(data->queue.next, struct spi_message,
1187					queue);
1188
1189	list_del_init(&data->current_msg->queue);
1190
1191	data->current_msg->status = 0;
1192
1193	pch_spi_select_chip(data, data->current_msg->spi);
1194
1195	spin_unlock(&data->lock);
1196
1197	if (data->use_dma)
1198		pch_spi_request_dma(data,
1199				    data->current_msg->spi->bits_per_word);
1200	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1201	do {
 
1202		/* If we are already processing a message get the next
1203		transfer structure from the message otherwise retrieve
1204		the 1st transfer request from the message. */
1205		spin_lock(&data->lock);
1206		if (data->cur_trans == NULL) {
1207			data->cur_trans =
1208				list_entry(data->current_msg->transfers.next,
1209					   struct spi_transfer, transfer_list);
1210			dev_dbg(&data->master->dev, "%s "
1211				":Getting 1st transfer message\n", __func__);
 
1212		} else {
1213			data->cur_trans =
1214				list_entry(data->cur_trans->transfer_list.next,
1215					   struct spi_transfer, transfer_list);
1216			dev_dbg(&data->master->dev, "%s "
1217				":Getting next transfer message\n", __func__);
 
1218		}
1219		spin_unlock(&data->lock);
1220
 
 
 
 
1221		if (data->use_dma) {
1222			pch_spi_handle_dma(data, &bpw);
1223			if (!pch_spi_start_transfer(data))
1224				goto out;
1225			pch_spi_copy_rx_data_for_dma(data, bpw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1226		} else {
1227			pch_spi_set_tx(data, &bpw);
1228			pch_spi_set_ir(data);
1229			pch_spi_copy_rx_data(data, bpw);
1230			kfree(data->pkt_rx_buff);
1231			data->pkt_rx_buff = NULL;
1232			kfree(data->pkt_tx_buff);
1233			data->pkt_tx_buff = NULL;
1234		}
1235		/* increment message count */
 
1236		data->current_msg->actual_length += data->cur_trans->len;
1237
1238		dev_dbg(&data->master->dev,
1239			"%s:data->current_msg->actual_length=%d\n",
1240			__func__, data->current_msg->actual_length);
1241
1242		/* check for delay */
1243		if (data->cur_trans->delay_usecs) {
1244			dev_dbg(&data->master->dev, "%s:"
1245				"delay in usec=%d\n", __func__,
1246				data->cur_trans->delay_usecs);
1247			udelay(data->cur_trans->delay_usecs);
1248		}
1249
1250		spin_lock(&data->lock);
1251
1252		/* No more transfer in this message. */
1253		if ((data->cur_trans->transfer_list.next) ==
1254		    &(data->current_msg->transfers)) {
1255			pch_spi_nomore_transfer(data);
1256		}
1257
1258		spin_unlock(&data->lock);
1259
1260	} while (data->cur_trans != NULL);
1261
1262out:
1263	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1264	if (data->use_dma)
1265		pch_spi_release_dma(data);
1266}
1267
1268static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1269				   struct pch_spi_data *data)
1270{
1271	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1272
1273	/* free workqueue */
1274	if (data->wk != NULL) {
1275		destroy_workqueue(data->wk);
1276		data->wk = NULL;
1277		dev_dbg(&board_dat->pdev->dev,
1278			"%s destroy_workqueue invoked successfully\n",
1279			__func__);
1280	}
1281}
1282
1283static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1284				 struct pch_spi_data *data)
1285{
1286	int retval = 0;
1287
1288	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1289
1290	/* create workqueue */
1291	data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
1292	if (!data->wk) {
1293		dev_err(&board_dat->pdev->dev,
1294			"%s create_singlet hread_workqueue failed\n", __func__);
1295		retval = -EBUSY;
1296		goto err_return;
1297	}
1298
1299	/* reset PCH SPI h/w */
1300	pch_spi_reset(data->master);
1301	dev_dbg(&board_dat->pdev->dev,
1302		"%s pch_spi_reset invoked successfully\n", __func__);
1303
1304	dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1305
1306err_return:
1307	if (retval != 0) {
1308		dev_err(&board_dat->pdev->dev,
1309			"%s FAIL:invoking pch_spi_free_resources\n", __func__);
1310		pch_spi_free_resources(board_dat, data);
1311	}
1312
1313	dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
1314
1315	return retval;
1316}
1317
1318static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1319			     struct pch_spi_data *data)
1320{
1321	struct pch_spi_dma_ctrl *dma;
1322
1323	dma = &data->dma;
1324	if (dma->tx_buf_dma)
1325		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1326				  dma->tx_buf_virt, dma->tx_buf_dma);
1327	if (dma->rx_buf_dma)
1328		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1329				  dma->rx_buf_virt, dma->rx_buf_dma);
1330	return;
1331}
1332
1333static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1334			      struct pch_spi_data *data)
1335{
1336	struct pch_spi_dma_ctrl *dma;
 
1337
1338	dma = &data->dma;
 
1339	/* Get Consistent memory for Tx DMA */
1340	dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1341				PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
 
 
 
1342	/* Get Consistent memory for Rx DMA */
1343	dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1344				PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
 
 
 
 
1345}
1346
1347static int __devinit pch_spi_pd_probe(struct platform_device *plat_dev)
1348{
1349	int ret;
1350	struct spi_master *master;
1351	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1352	struct pch_spi_data *data;
1353
1354	dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1355
1356	master = spi_alloc_master(&board_dat->pdev->dev,
1357				  sizeof(struct pch_spi_data));
1358	if (!master) {
1359		dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1360			plat_dev->id);
1361		return -ENOMEM;
1362	}
1363
1364	data = spi_master_get_devdata(master);
1365	data->master = master;
1366
1367	platform_set_drvdata(plat_dev, data);
1368
1369	/* baseaddress + address offset) */
1370	data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1371					 PCH_ADDRESS_SIZE * plat_dev->id;
1372	data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0) +
1373					 PCH_ADDRESS_SIZE * plat_dev->id;
1374	if (!data->io_remap_addr) {
1375		dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1376		ret = -ENOMEM;
1377		goto err_pci_iomap;
1378	}
 
1379
1380	dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1381		plat_dev->id, data->io_remap_addr);
1382
1383	/* initialize members of SPI master */
1384	master->bus_num = -1;
1385	master->num_chipselect = PCH_MAX_CS;
1386	master->setup = pch_spi_setup;
1387	master->transfer = pch_spi_transfer;
 
 
1388
1389	data->board_dat = board_dat;
1390	data->plat_dev = plat_dev;
1391	data->n_curnt_chip = 255;
1392	data->status = STATUS_RUNNING;
1393	data->ch = plat_dev->id;
1394	data->use_dma = use_dma;
1395
1396	INIT_LIST_HEAD(&data->queue);
1397	spin_lock_init(&data->lock);
1398	INIT_WORK(&data->work, pch_spi_process_messages);
1399	init_waitqueue_head(&data->wait);
1400
1401	ret = pch_spi_get_resources(board_dat, data);
1402	if (ret) {
1403		dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1404		goto err_spi_get_resources;
1405	}
1406
1407	ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1408			  IRQF_SHARED, KBUILD_MODNAME, data);
1409	if (ret) {
1410		dev_err(&plat_dev->dev,
1411			"%s request_irq failed\n", __func__);
1412		goto err_request_irq;
1413	}
1414	data->irq_reg_sts = true;
1415
1416	pch_spi_set_master_mode(master);
1417
1418	ret = spi_register_master(master);
1419	if (ret != 0) {
1420		dev_err(&plat_dev->dev,
1421			"%s spi_register_master FAILED\n", __func__);
1422		goto err_spi_register_master;
1423	}
1424
1425	if (use_dma) {
1426		dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1427		pch_alloc_dma_buf(board_dat, data);
 
 
 
 
 
 
 
 
 
1428	}
1429
1430	return 0;
1431
1432err_spi_register_master:
1433	free_irq(board_dat->pdev->irq, board_dat);
 
1434err_request_irq:
1435	pch_spi_free_resources(board_dat, data);
1436err_spi_get_resources:
1437	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1438err_pci_iomap:
1439	spi_master_put(master);
1440
1441	return ret;
1442}
1443
1444static int __devexit pch_spi_pd_remove(struct platform_device *plat_dev)
1445{
1446	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1447	struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1448	int count;
1449	unsigned long flags;
1450
1451	dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1452		__func__, plat_dev->id, board_dat->pdev->irq);
1453
1454	if (use_dma)
1455		pch_free_dma_buf(board_dat, data);
1456
1457	/* check for any pending messages; no action is taken if the queue
1458	 * is still full; but at least we tried.  Unload anyway */
1459	count = 500;
1460	spin_lock_irqsave(&data->lock, flags);
1461	data->status = STATUS_EXITING;
1462	while ((list_empty(&data->queue) == 0) && --count) {
1463		dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1464			__func__);
1465		spin_unlock_irqrestore(&data->lock, flags);
1466		msleep(PCH_SLEEP_TIME);
1467		spin_lock_irqsave(&data->lock, flags);
1468	}
1469	spin_unlock_irqrestore(&data->lock, flags);
1470
1471	pch_spi_free_resources(board_dat, data);
1472	/* disable interrupts & free IRQ */
1473	if (data->irq_reg_sts) {
1474		/* disable interrupts */
1475		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1476		data->irq_reg_sts = false;
1477		free_irq(board_dat->pdev->irq, data);
1478	}
1479
1480	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1481	spi_unregister_master(data->master);
1482	spi_master_put(data->master);
1483	platform_set_drvdata(plat_dev, NULL);
1484
1485	return 0;
1486}
1487#ifdef CONFIG_PM
1488static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1489			      pm_message_t state)
1490{
1491	u8 count;
1492	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1493	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1494
1495	dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1496
1497	if (!board_dat) {
1498		dev_err(&pd_dev->dev,
1499			"%s pci_get_drvdata returned NULL\n", __func__);
1500		return -EFAULT;
1501	}
1502
1503	/* check if the current message is processed:
1504	   Only after thats done the transfer will be suspended */
1505	count = 255;
1506	while ((--count) > 0) {
1507		if (!(data->bcurrent_msg_processing))
1508			break;
1509		msleep(PCH_SLEEP_TIME);
1510	}
1511
1512	/* Free IRQ */
1513	if (data->irq_reg_sts) {
1514		/* disable all interrupts */
1515		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1516		pch_spi_reset(data->master);
1517		free_irq(board_dat->pdev->irq, data);
1518
1519		data->irq_reg_sts = false;
1520		dev_dbg(&pd_dev->dev,
1521			"%s free_irq invoked successfully.\n", __func__);
1522	}
1523
1524	return 0;
1525}
1526
1527static int pch_spi_pd_resume(struct platform_device *pd_dev)
1528{
1529	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1530	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1531	int retval;
1532
1533	if (!board_dat) {
1534		dev_err(&pd_dev->dev,
1535			"%s pci_get_drvdata returned NULL\n", __func__);
1536		return -EFAULT;
1537	}
1538
1539	if (!data->irq_reg_sts) {
1540		/* register IRQ */
1541		retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1542				     IRQF_SHARED, KBUILD_MODNAME, data);
1543		if (retval < 0) {
1544			dev_err(&pd_dev->dev,
1545				"%s request_irq failed\n", __func__);
1546			return retval;
1547		}
1548
1549		/* reset PCH SPI h/w */
1550		pch_spi_reset(data->master);
1551		pch_spi_set_master_mode(data->master);
1552		data->irq_reg_sts = true;
1553	}
1554	return 0;
1555}
1556#else
1557#define pch_spi_pd_suspend NULL
1558#define pch_spi_pd_resume NULL
1559#endif
1560
1561static struct platform_driver pch_spi_pd_driver = {
1562	.driver = {
1563		.name = "pch-spi",
1564		.owner = THIS_MODULE,
1565	},
1566	.probe = pch_spi_pd_probe,
1567	.remove = __devexit_p(pch_spi_pd_remove),
1568	.suspend = pch_spi_pd_suspend,
1569	.resume = pch_spi_pd_resume
1570};
1571
1572static int __devinit pch_spi_probe(struct pci_dev *pdev,
1573				   const struct pci_device_id *id)
1574{
1575	struct pch_spi_board_data *board_dat;
1576	struct platform_device *pd_dev = NULL;
1577	int retval;
1578	int i;
1579	struct pch_pd_dev_save *pd_dev_save;
1580
1581	pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
1582	if (!pd_dev_save) {
1583		dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
1584		return -ENOMEM;
1585	}
1586
1587	board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
1588	if (!board_dat) {
1589		dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
1590		retval = -ENOMEM;
1591		goto err_no_mem;
1592	}
1593
1594	retval = pci_request_regions(pdev, KBUILD_MODNAME);
1595	if (retval) {
1596		dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1597		goto pci_request_regions;
1598	}
1599
1600	board_dat->pdev = pdev;
1601	board_dat->num = id->driver_data;
1602	pd_dev_save->num = id->driver_data;
1603	pd_dev_save->board_dat = board_dat;
1604
1605	retval = pci_enable_device(pdev);
1606	if (retval) {
1607		dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1608		goto pci_enable_device;
1609	}
1610
1611	for (i = 0; i < board_dat->num; i++) {
1612		pd_dev = platform_device_alloc("pch-spi", i);
1613		if (!pd_dev) {
1614			dev_err(&pdev->dev, "platform_device_alloc failed\n");
 
1615			goto err_platform_device;
1616		}
1617		pd_dev_save->pd_save[i] = pd_dev;
1618		pd_dev->dev.parent = &pdev->dev;
1619
1620		retval = platform_device_add_data(pd_dev, board_dat,
1621						  sizeof(*board_dat));
1622		if (retval) {
1623			dev_err(&pdev->dev,
1624				"platform_device_add_data failed\n");
1625			platform_device_put(pd_dev);
1626			goto err_platform_device;
1627		}
1628
1629		retval = platform_device_add(pd_dev);
1630		if (retval) {
1631			dev_err(&pdev->dev, "platform_device_add failed\n");
1632			platform_device_put(pd_dev);
1633			goto err_platform_device;
1634		}
1635	}
1636
1637	pci_set_drvdata(pdev, pd_dev_save);
1638
1639	return 0;
1640
1641err_platform_device:
 
 
1642	pci_disable_device(pdev);
1643pci_enable_device:
1644	pci_release_regions(pdev);
1645pci_request_regions:
1646	kfree(board_dat);
1647err_no_mem:
1648	kfree(pd_dev_save);
1649
1650	return retval;
1651}
1652
1653static void __devexit pch_spi_remove(struct pci_dev *pdev)
1654{
1655	int i;
1656	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1657
1658	dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1659
1660	for (i = 0; i < pd_dev_save->num; i++)
1661		platform_device_unregister(pd_dev_save->pd_save[i]);
1662
1663	pci_disable_device(pdev);
1664	pci_release_regions(pdev);
1665	kfree(pd_dev_save->board_dat);
1666	kfree(pd_dev_save);
1667}
1668
1669#ifdef CONFIG_PM
1670static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1671{
1672	int retval;
1673	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1674
1675	dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1676
1677	pd_dev_save->board_dat->suspend_sts = true;
1678
1679	/* save config space */
1680	retval = pci_save_state(pdev);
1681	if (retval == 0) {
1682		pci_enable_wake(pdev, PCI_D3hot, 0);
1683		pci_disable_device(pdev);
1684		pci_set_power_state(pdev, PCI_D3hot);
1685	} else {
1686		dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1687	}
1688
1689	return retval;
1690}
1691
1692static int pch_spi_resume(struct pci_dev *pdev)
1693{
1694	int retval;
1695	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1696	dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1697
1698	pci_set_power_state(pdev, PCI_D0);
1699	pci_restore_state(pdev);
1700
1701	retval = pci_enable_device(pdev);
1702	if (retval < 0) {
1703		dev_err(&pdev->dev,
1704			"%s pci_enable_device failed\n", __func__);
1705	} else {
1706		pci_enable_wake(pdev, PCI_D3hot, 0);
1707
1708		/* set suspend status to false */
1709		pd_dev_save->board_dat->suspend_sts = false;
1710	}
1711
1712	return retval;
1713}
1714#else
1715#define pch_spi_suspend NULL
1716#define pch_spi_resume NULL
1717
1718#endif
1719
1720static struct pci_driver pch_spi_pcidev = {
1721	.name = "pch_spi",
1722	.id_table = pch_spi_pcidev_id,
1723	.probe = pch_spi_probe,
1724	.remove = pch_spi_remove,
1725	.suspend = pch_spi_suspend,
1726	.resume = pch_spi_resume,
1727};
1728
1729static int __init pch_spi_init(void)
1730{
1731	int ret;
1732	ret = platform_driver_register(&pch_spi_pd_driver);
1733	if (ret)
1734		return ret;
1735
1736	ret = pci_register_driver(&pch_spi_pcidev);
1737	if (ret)
 
1738		return ret;
 
1739
1740	return 0;
1741}
1742module_init(pch_spi_init);
1743
1744static void __exit pch_spi_exit(void)
1745{
1746	pci_unregister_driver(&pch_spi_pcidev);
1747	platform_driver_unregister(&pch_spi_pd_driver);
1748}
1749module_exit(pch_spi_exit);
1750
1751module_param(use_dma, int, 0644);
1752MODULE_PARM_DESC(use_dma,
1753		 "to use DMA for data transfers pass 1 else 0; default 1");
1754
1755MODULE_LICENSE("GPL");
1756MODULE_DESCRIPTION("Intel EG20T PCH/OKI SEMICONDUCTOR ML7xxx IOH SPI Driver");
 
 
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * SPI bus driver for the Topcliff PCH used by Intel SoCs
   4 *
   5 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/delay.h>
   9#include <linux/pci.h>
  10#include <linux/wait.h>
  11#include <linux/spi/spi.h>
  12#include <linux/interrupt.h>
  13#include <linux/sched.h>
  14#include <linux/spi/spidev.h>
  15#include <linux/module.h>
  16#include <linux/device.h>
  17#include <linux/platform_device.h>
  18
  19#include <linux/dmaengine.h>
  20#include <linux/pch_dma.h>
  21
  22/* Register offsets */
  23#define PCH_SPCR		0x00	/* SPI control register */
  24#define PCH_SPBRR		0x04	/* SPI baud rate register */
  25#define PCH_SPSR		0x08	/* SPI status register */
  26#define PCH_SPDWR		0x0C	/* SPI write data register */
  27#define PCH_SPDRR		0x10	/* SPI read data register */
  28#define PCH_SSNXCR		0x18	/* SSN Expand Control Register */
  29#define PCH_SRST		0x1C	/* SPI reset register */
  30#define PCH_ADDRESS_SIZE	0x20
  31
  32#define PCH_SPSR_TFD		0x000007C0
  33#define PCH_SPSR_RFD		0x0000F800
  34
  35#define PCH_READABLE(x)		(((x) & PCH_SPSR_RFD)>>11)
  36#define PCH_WRITABLE(x)		(((x) & PCH_SPSR_TFD)>>6)
  37
  38#define PCH_RX_THOLD		7
  39#define PCH_RX_THOLD_MAX	15
  40
  41#define PCH_TX_THOLD		2
  42
  43#define PCH_MAX_BAUDRATE	5000000
  44#define PCH_MAX_FIFO_DEPTH	16
  45
  46#define STATUS_RUNNING		1
  47#define STATUS_EXITING		2
  48#define PCH_SLEEP_TIME		10
  49
  50#define SSN_LOW			0x02U
  51#define SSN_HIGH		0x03U
  52#define SSN_NO_CONTROL		0x00U
  53#define PCH_MAX_CS		0xFF
  54#define PCI_DEVICE_ID_GE_SPI	0x8816
  55
  56#define SPCR_SPE_BIT		(1 << 0)
  57#define SPCR_MSTR_BIT		(1 << 1)
  58#define SPCR_LSBF_BIT		(1 << 4)
  59#define SPCR_CPHA_BIT		(1 << 5)
  60#define SPCR_CPOL_BIT		(1 << 6)
  61#define SPCR_TFIE_BIT		(1 << 8)
  62#define SPCR_RFIE_BIT		(1 << 9)
  63#define SPCR_FIE_BIT		(1 << 10)
  64#define SPCR_ORIE_BIT		(1 << 11)
  65#define SPCR_MDFIE_BIT		(1 << 12)
  66#define SPCR_FICLR_BIT		(1 << 24)
  67#define SPSR_TFI_BIT		(1 << 0)
  68#define SPSR_RFI_BIT		(1 << 1)
  69#define SPSR_FI_BIT		(1 << 2)
  70#define SPSR_ORF_BIT		(1 << 3)
  71#define SPBRR_SIZE_BIT		(1 << 10)
  72
  73#define PCH_ALL			(SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
  74				SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
  75
  76#define SPCR_RFIC_FIELD		20
  77#define SPCR_TFIC_FIELD		16
  78
  79#define MASK_SPBRR_SPBR_BITS	((1 << 10) - 1)
  80#define MASK_RFIC_SPCR_BITS	(0xf << SPCR_RFIC_FIELD)
  81#define MASK_TFIC_SPCR_BITS	(0xf << SPCR_TFIC_FIELD)
  82
  83#define PCH_CLOCK_HZ		50000000
  84#define PCH_MAX_SPBR		1023
  85
  86/* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
 
  87#define PCI_DEVICE_ID_ML7213_SPI	0x802c
  88#define PCI_DEVICE_ID_ML7223_SPI	0x800F
  89#define PCI_DEVICE_ID_ML7831_SPI	0x8816
  90
  91/*
  92 * Set the number of SPI instance max
  93 * Intel EG20T PCH :		1ch
  94 * LAPIS Semiconductor ML7213 IOH :	2ch
  95 * LAPIS Semiconductor ML7223 IOH :	1ch
  96 * LAPIS Semiconductor ML7831 IOH :	1ch
  97*/
  98#define PCH_SPI_MAX_DEV			2
  99
 100#define PCH_BUF_SIZE		4096
 101#define PCH_DMA_TRANS_SIZE	12
 102
 103static int use_dma = 1;
 104
 105struct pch_spi_dma_ctrl {
 106	struct pci_dev		*dma_dev;
 107	struct dma_async_tx_descriptor	*desc_tx;
 108	struct dma_async_tx_descriptor	*desc_rx;
 109	struct pch_dma_slave		param_tx;
 110	struct pch_dma_slave		param_rx;
 111	struct dma_chan		*chan_tx;
 112	struct dma_chan		*chan_rx;
 113	struct scatterlist		*sg_tx_p;
 114	struct scatterlist		*sg_rx_p;
 115	struct scatterlist		sg_tx;
 116	struct scatterlist		sg_rx;
 117	int				nent;
 118	void				*tx_buf_virt;
 119	void				*rx_buf_virt;
 120	dma_addr_t			tx_buf_dma;
 121	dma_addr_t			rx_buf_dma;
 122};
 123/**
 124 * struct pch_spi_data - Holds the SPI channel specific details
 125 * @io_remap_addr:		The remapped PCI base address
 126 * @io_base_addr:		Base address
 127 * @host:			Pointer to the SPI controller structure
 128 * @work:			Reference to work queue handler
 
 
 129 * @wait:			Wait queue for waking up upon receiving an
 130 *				interrupt.
 131 * @transfer_complete:		Status of SPI Transfer
 132 * @bcurrent_msg_processing:	Status flag for message processing
 133 * @lock:			Lock for protecting this structure
 134 * @queue:			SPI Message queue
 135 * @status:			Status of the SPI driver
 136 * @bpw_len:			Length of data to be transferred in bits per
 137 *				word
 138 * @transfer_active:		Flag showing active transfer
 139 * @tx_index:			Transmit data count; for bookkeeping during
 140 *				transfer
 141 * @rx_index:			Receive data count; for bookkeeping during
 142 *				transfer
 143 * @pkt_tx_buff:		Buffer for data to be transmitted
 144 * @pkt_rx_buff:		Buffer for received data
 145 * @n_curnt_chip:		The chip number that this SPI driver currently
 146 *				operates on
 147 * @current_chip:		Reference to the current chip that this SPI
 148 *				driver currently operates on
 149 * @current_msg:		The current message that this SPI driver is
 150 *				handling
 151 * @cur_trans:			The current transfer that this SPI driver is
 152 *				handling
 153 * @board_dat:			Reference to the SPI device data structure
 154 * @plat_dev:			platform_device structure
 155 * @ch:				SPI channel number
 156 * @dma:			Local DMA information
 157 * @use_dma:			True if DMA is to be used
 158 * @irq_reg_sts:		Status of IRQ registration
 159 * @save_total_len:		Save length while data is being transferred
 160 */
 161struct pch_spi_data {
 162	void __iomem *io_remap_addr;
 163	unsigned long io_base_addr;
 164	struct spi_controller *host;
 165	struct work_struct work;
 
 166	wait_queue_head_t wait;
 167	u8 transfer_complete;
 168	u8 bcurrent_msg_processing;
 169	spinlock_t lock;
 170	struct list_head queue;
 171	u8 status;
 172	u32 bpw_len;
 173	u8 transfer_active;
 174	u32 tx_index;
 175	u32 rx_index;
 176	u16 *pkt_tx_buff;
 177	u16 *pkt_rx_buff;
 178	u8 n_curnt_chip;
 179	struct spi_device *current_chip;
 180	struct spi_message *current_msg;
 181	struct spi_transfer *cur_trans;
 182	struct pch_spi_board_data *board_dat;
 183	struct platform_device	*plat_dev;
 184	int ch;
 185	struct pch_spi_dma_ctrl dma;
 186	int use_dma;
 187	u8 irq_reg_sts;
 188	int save_total_len;
 189};
 190
 191/**
 192 * struct pch_spi_board_data - Holds the SPI device specific details
 193 * @pdev:		Pointer to the PCI device
 194 * @suspend_sts:	Status of suspend
 195 * @num:		The number of SPI device instance
 196 */
 197struct pch_spi_board_data {
 198	struct pci_dev *pdev;
 199	u8 suspend_sts;
 200	int num;
 201};
 202
 203struct pch_pd_dev_save {
 204	int num;
 205	struct platform_device *pd_save[PCH_SPI_MAX_DEV];
 206	struct pch_spi_board_data *board_dat;
 207};
 208
 209static const struct pci_device_id pch_spi_pcidev_id[] = {
 210	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
 211	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
 212	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
 213	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
 214	{ }
 215};
 216
 217/**
 218 * pch_spi_writereg() - Performs  register writes
 219 * @host:	Pointer to struct spi_controller.
 220 * @idx:	Register offset.
 221 * @val:	Value to be written to register.
 222 */
 223static inline void pch_spi_writereg(struct spi_controller *host, int idx, u32 val)
 224{
 225	struct pch_spi_data *data = spi_controller_get_devdata(host);
 226	iowrite32(val, (data->io_remap_addr + idx));
 227}
 228
 229/**
 230 * pch_spi_readreg() - Performs register reads
 231 * @host:	Pointer to struct spi_controller.
 232 * @idx:	Register offset.
 233 */
 234static inline u32 pch_spi_readreg(struct spi_controller *host, int idx)
 235{
 236	struct pch_spi_data *data = spi_controller_get_devdata(host);
 237	return ioread32(data->io_remap_addr + idx);
 238}
 239
 240static inline void pch_spi_setclr_reg(struct spi_controller *host, int idx,
 241				      u32 set, u32 clr)
 242{
 243	u32 tmp = pch_spi_readreg(host, idx);
 244	tmp = (tmp & ~clr) | set;
 245	pch_spi_writereg(host, idx, tmp);
 246}
 247
 248static void pch_spi_set_host_mode(struct spi_controller *host)
 249{
 250	pch_spi_setclr_reg(host, PCH_SPCR, SPCR_MSTR_BIT, 0);
 251}
 252
 253/**
 254 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
 255 * @host:	Pointer to struct spi_controller.
 256 */
 257static void pch_spi_clear_fifo(struct spi_controller *host)
 258{
 259	pch_spi_setclr_reg(host, PCH_SPCR, SPCR_FICLR_BIT, 0);
 260	pch_spi_setclr_reg(host, PCH_SPCR, 0, SPCR_FICLR_BIT);
 261}
 262
 263static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
 264				void __iomem *io_remap_addr)
 265{
 266	u32 n_read, tx_index, rx_index, bpw_len;
 267	u16 *pkt_rx_buffer, *pkt_tx_buff;
 268	int read_cnt;
 269	u32 reg_spcr_val;
 270	void __iomem *spsr;
 271	void __iomem *spdrr;
 272	void __iomem *spdwr;
 273
 274	spsr = io_remap_addr + PCH_SPSR;
 275	iowrite32(reg_spsr_val, spsr);
 276
 277	if (data->transfer_active) {
 278		rx_index = data->rx_index;
 279		tx_index = data->tx_index;
 280		bpw_len = data->bpw_len;
 281		pkt_rx_buffer = data->pkt_rx_buff;
 282		pkt_tx_buff = data->pkt_tx_buff;
 283
 284		spdrr = io_remap_addr + PCH_SPDRR;
 285		spdwr = io_remap_addr + PCH_SPDWR;
 286
 287		n_read = PCH_READABLE(reg_spsr_val);
 288
 289		for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
 290			pkt_rx_buffer[rx_index++] = ioread32(spdrr);
 291			if (tx_index < bpw_len)
 292				iowrite32(pkt_tx_buff[tx_index++], spdwr);
 293		}
 294
 295		/* disable RFI if not needed */
 296		if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
 297			reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
 298			reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
 299
 300			/* reset rx threshold */
 301			reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
 302			reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
 303
 304			iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
 305		}
 306
 307		/* update counts */
 308		data->tx_index = tx_index;
 309		data->rx_index = rx_index;
 310
 311		/* if transfer complete interrupt */
 312		if (reg_spsr_val & SPSR_FI_BIT) {
 313			if ((tx_index == bpw_len) && (rx_index == tx_index)) {
 314				/* disable interrupts */
 315				pch_spi_setclr_reg(data->host, PCH_SPCR, 0,
 316						   PCH_ALL);
 317
 318				/* transfer is completed;
 319				   inform pch_spi_process_messages */
 320				data->transfer_complete = true;
 321				data->transfer_active = false;
 322				wake_up(&data->wait);
 323			} else {
 324				dev_vdbg(&data->host->dev,
 325					"%s : Transfer is not completed",
 326					__func__);
 327			}
 328		}
 329	}
 330}
 331
 332/**
 333 * pch_spi_handler() - Interrupt handler
 334 * @irq:	The interrupt number.
 335 * @dev_id:	Pointer to struct pch_spi_board_data.
 336 */
 337static irqreturn_t pch_spi_handler(int irq, void *dev_id)
 338{
 339	u32 reg_spsr_val;
 340	void __iomem *spsr;
 341	void __iomem *io_remap_addr;
 342	irqreturn_t ret = IRQ_NONE;
 343	struct pch_spi_data *data = dev_id;
 344	struct pch_spi_board_data *board_dat = data->board_dat;
 345
 346	if (board_dat->suspend_sts) {
 347		dev_dbg(&board_dat->pdev->dev,
 348			"%s returning due to suspend\n", __func__);
 349		return IRQ_NONE;
 350	}
 351
 352	io_remap_addr = data->io_remap_addr;
 353	spsr = io_remap_addr + PCH_SPSR;
 354
 355	reg_spsr_val = ioread32(spsr);
 356
 357	if (reg_spsr_val & SPSR_ORF_BIT) {
 358		dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
 359		if (data->current_msg->complete) {
 360			data->transfer_complete = true;
 361			data->current_msg->status = -EIO;
 362			data->current_msg->complete(data->current_msg->context);
 363			data->bcurrent_msg_processing = false;
 364			data->current_msg = NULL;
 365			data->cur_trans = NULL;
 366		}
 367	}
 368
 369	if (data->use_dma)
 370		return IRQ_NONE;
 371
 372	/* Check if the interrupt is for SPI device */
 373	if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
 374		pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
 375		ret = IRQ_HANDLED;
 376	}
 377
 378	dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
 379		__func__, ret);
 380
 381	return ret;
 382}
 383
 384/**
 385 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
 386 * @host:	Pointer to struct spi_controller.
 387 * @speed_hz:	Baud rate.
 388 */
 389static void pch_spi_set_baud_rate(struct spi_controller *host, u32 speed_hz)
 390{
 391	u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
 392
 393	/* if baud rate is less than we can support limit it */
 394	if (n_spbr > PCH_MAX_SPBR)
 395		n_spbr = PCH_MAX_SPBR;
 396
 397	pch_spi_setclr_reg(host, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
 398}
 399
 400/**
 401 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
 402 * @host:		Pointer to struct spi_controller.
 403 * @bits_per_word:	Bits per word for SPI transfer.
 404 */
 405static void pch_spi_set_bits_per_word(struct spi_controller *host,
 406				      u8 bits_per_word)
 407{
 408	if (bits_per_word == 8)
 409		pch_spi_setclr_reg(host, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
 410	else
 411		pch_spi_setclr_reg(host, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
 412}
 413
 414/**
 415 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
 416 * @spi:	Pointer to struct spi_device.
 417 */
 418static void pch_spi_setup_transfer(struct spi_device *spi)
 419{
 420	u32 flags = 0;
 421
 422	dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
 423		__func__, pch_spi_readreg(spi->controller, PCH_SPBRR),
 424		spi->max_speed_hz);
 425	pch_spi_set_baud_rate(spi->controller, spi->max_speed_hz);
 426
 427	/* set bits per word */
 428	pch_spi_set_bits_per_word(spi->controller, spi->bits_per_word);
 429
 430	if (!(spi->mode & SPI_LSB_FIRST))
 431		flags |= SPCR_LSBF_BIT;
 432	if (spi->mode & SPI_CPOL)
 433		flags |= SPCR_CPOL_BIT;
 434	if (spi->mode & SPI_CPHA)
 435		flags |= SPCR_CPHA_BIT;
 436	pch_spi_setclr_reg(spi->controller, PCH_SPCR, flags,
 437			   (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
 438
 439	/* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
 440	pch_spi_clear_fifo(spi->controller);
 441}
 442
 443/**
 444 * pch_spi_reset() - Clears SPI registers
 445 * @host:	Pointer to struct spi_controller.
 446 */
 447static void pch_spi_reset(struct spi_controller *host)
 448{
 449	/* write 1 to reset SPI */
 450	pch_spi_writereg(host, PCH_SRST, 0x1);
 451
 452	/* clear reset */
 453	pch_spi_writereg(host, PCH_SRST, 0x0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 454}
 455
 456static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
 457{
 458	struct pch_spi_data *data = spi_controller_get_devdata(pspi->controller);
 
 
 459	int retval;
 460	unsigned long flags;
 461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 462	/* We won't process any messages if we have been asked to terminate */
 463	if (data->status == STATUS_EXITING) {
 464		dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
 465		retval = -ESHUTDOWN;
 466		goto err_out;
 467	}
 468
 469	/* If suspended ,return -EINVAL */
 470	if (data->board_dat->suspend_sts) {
 471		dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
 472		retval = -EINVAL;
 473		goto err_out;
 474	}
 475
 476	/* set status of message */
 477	pmsg->actual_length = 0;
 478	dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
 479
 480	pmsg->status = -EINPROGRESS;
 481	spin_lock_irqsave(&data->lock, flags);
 482	/* add message to queue */
 483	list_add_tail(&pmsg->queue, &data->queue);
 484	spin_unlock_irqrestore(&data->lock, flags);
 485
 486	dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
 487
 488	schedule_work(&data->work);
 
 489	dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
 490
 491	retval = 0;
 492
 493err_out:
 494	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
 495	return retval;
 
 
 
 
 496}
 497
 498static inline void pch_spi_select_chip(struct pch_spi_data *data,
 499				       struct spi_device *pspi)
 500{
 501	if (data->current_chip != NULL) {
 502		if (spi_get_chipselect(pspi, 0) != data->n_curnt_chip) {
 503			dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
 504			data->current_chip = NULL;
 505		}
 506	}
 507
 508	data->current_chip = pspi;
 509
 510	data->n_curnt_chip = spi_get_chipselect(data->current_chip, 0);
 511
 512	dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
 513	pch_spi_setup_transfer(pspi);
 514}
 515
 516static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
 517{
 518	int size;
 519	u32 n_writes;
 520	int j;
 521	struct spi_message *pmsg, *tmp;
 522	const u8 *tx_buf;
 523	const u16 *tx_sbuf;
 524
 525	/* set baud rate if needed */
 526	if (data->cur_trans->speed_hz) {
 527		dev_dbg(&data->host->dev, "%s:setting baud rate\n", __func__);
 528		pch_spi_set_baud_rate(data->host, data->cur_trans->speed_hz);
 529	}
 530
 531	/* set bits per word if needed */
 532	if (data->cur_trans->bits_per_word &&
 533	    (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
 534		dev_dbg(&data->host->dev, "%s:set bits per word\n", __func__);
 535		pch_spi_set_bits_per_word(data->host,
 536					  data->cur_trans->bits_per_word);
 537		*bpw = data->cur_trans->bits_per_word;
 538	} else {
 539		*bpw = data->current_msg->spi->bits_per_word;
 540	}
 541
 542	/* reset Tx/Rx index */
 543	data->tx_index = 0;
 544	data->rx_index = 0;
 545
 546	data->bpw_len = data->cur_trans->len / (*bpw / 8);
 547
 548	/* find alloc size */
 549	size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
 550
 551	/* allocate memory for pkt_tx_buff & pkt_rx_buffer */
 552	data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
 553	if (data->pkt_tx_buff != NULL) {
 554		data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
 555		if (!data->pkt_rx_buff) {
 556			kfree(data->pkt_tx_buff);
 557			data->pkt_tx_buff = NULL;
 558		}
 559	}
 560
 561	if (!data->pkt_rx_buff) {
 562		/* flush queue and set status of all transfers to -ENOMEM */
 563		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
 
 564			pmsg->status = -ENOMEM;
 565
 566			if (pmsg->complete)
 567				pmsg->complete(pmsg->context);
 568
 569			/* delete from queue */
 570			list_del_init(&pmsg->queue);
 571		}
 572		return;
 573	}
 574
 575	/* copy Tx Data */
 576	if (data->cur_trans->tx_buf != NULL) {
 577		if (*bpw == 8) {
 578			tx_buf = data->cur_trans->tx_buf;
 579			for (j = 0; j < data->bpw_len; j++)
 580				data->pkt_tx_buff[j] = *tx_buf++;
 581		} else {
 582			tx_sbuf = data->cur_trans->tx_buf;
 583			for (j = 0; j < data->bpw_len; j++)
 584				data->pkt_tx_buff[j] = *tx_sbuf++;
 585		}
 586	}
 587
 588	/* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
 589	n_writes = data->bpw_len;
 590	if (n_writes > PCH_MAX_FIFO_DEPTH)
 591		n_writes = PCH_MAX_FIFO_DEPTH;
 592
 593	dev_dbg(&data->host->dev,
 594		"\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n",
 595		__func__);
 596	pch_spi_writereg(data->host, PCH_SSNXCR, SSN_LOW);
 597
 598	for (j = 0; j < n_writes; j++)
 599		pch_spi_writereg(data->host, PCH_SPDWR, data->pkt_tx_buff[j]);
 600
 601	/* update tx_index */
 602	data->tx_index = j;
 603
 604	/* reset transfer complete flag */
 605	data->transfer_complete = false;
 606	data->transfer_active = true;
 607}
 608
 609static void pch_spi_nomore_transfer(struct pch_spi_data *data)
 610{
 611	struct spi_message *pmsg, *tmp;
 612	dev_dbg(&data->host->dev, "%s called\n", __func__);
 613	/* Invoke complete callback
 614	 * [To the spi core..indicating end of transfer] */
 615	data->current_msg->status = 0;
 616
 617	if (data->current_msg->complete) {
 618		dev_dbg(&data->host->dev,
 619			"%s:Invoking callback of SPI core\n", __func__);
 620		data->current_msg->complete(data->current_msg->context);
 621	}
 622
 623	/* update status in global variable */
 624	data->bcurrent_msg_processing = false;
 625
 626	dev_dbg(&data->host->dev,
 627		"%s:data->bcurrent_msg_processing = false\n", __func__);
 628
 629	data->current_msg = NULL;
 630	data->cur_trans = NULL;
 631
 632	/* check if we have items in list and not suspending
 633	 * return 1 if list empty */
 634	if ((list_empty(&data->queue) == 0) &&
 635	    (!data->board_dat->suspend_sts) &&
 636	    (data->status != STATUS_EXITING)) {
 637		/* We have some more work to do (either there is more tranint
 638		 * bpw;sfer requests in the current message or there are
 639		 *more messages)
 640		 */
 641		dev_dbg(&data->host->dev, "%s:Invoke queue_work\n", __func__);
 642		schedule_work(&data->work);
 643	} else if (data->board_dat->suspend_sts ||
 644		   data->status == STATUS_EXITING) {
 645		dev_dbg(&data->host->dev,
 646			"%s suspend/remove initiated, flushing queue\n",
 647			__func__);
 648		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
 649			pmsg->status = -EIO;
 650
 651			if (pmsg->complete)
 652				pmsg->complete(pmsg->context);
 653
 654			/* delete from queue */
 655			list_del_init(&pmsg->queue);
 656		}
 657	}
 658}
 659
 660static void pch_spi_set_ir(struct pch_spi_data *data)
 661{
 662	/* enable interrupts, set threshold, enable SPI */
 663	if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
 664		/* set receive threshold to PCH_RX_THOLD */
 665		pch_spi_setclr_reg(data->host, PCH_SPCR,
 666				   PCH_RX_THOLD << SPCR_RFIC_FIELD |
 667				   SPCR_FIE_BIT | SPCR_RFIE_BIT |
 668				   SPCR_ORIE_BIT | SPCR_SPE_BIT,
 669				   MASK_RFIC_SPCR_BITS | PCH_ALL);
 670	else
 671		/* set receive threshold to maximum */
 672		pch_spi_setclr_reg(data->host, PCH_SPCR,
 673				   PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
 674				   SPCR_FIE_BIT | SPCR_ORIE_BIT |
 675				   SPCR_SPE_BIT,
 676				   MASK_RFIC_SPCR_BITS | PCH_ALL);
 677
 678	/* Wait until the transfer completes; go to sleep after
 679				 initiating the transfer. */
 680	dev_dbg(&data->host->dev,
 681		"%s:waiting for transfer to get over\n", __func__);
 682
 683	wait_event_interruptible(data->wait, data->transfer_complete);
 684
 685	/* clear all interrupts */
 686	pch_spi_writereg(data->host, PCH_SPSR,
 687			 pch_spi_readreg(data->host, PCH_SPSR));
 688	/* Disable interrupts and SPI transfer */
 689	pch_spi_setclr_reg(data->host, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
 690	/* clear FIFO */
 691	pch_spi_clear_fifo(data->host);
 692}
 693
 694static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
 695{
 696	int j;
 697	u8 *rx_buf;
 698	u16 *rx_sbuf;
 699
 700	/* copy Rx Data */
 701	if (!data->cur_trans->rx_buf)
 702		return;
 703
 704	if (bpw == 8) {
 705		rx_buf = data->cur_trans->rx_buf;
 706		for (j = 0; j < data->bpw_len; j++)
 707			*rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
 708	} else {
 709		rx_sbuf = data->cur_trans->rx_buf;
 710		for (j = 0; j < data->bpw_len; j++)
 711			*rx_sbuf++ = data->pkt_rx_buff[j];
 712	}
 713}
 714
 715static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
 716{
 717	int j;
 718	u8 *rx_buf;
 719	u16 *rx_sbuf;
 720	const u8 *rx_dma_buf;
 721	const u16 *rx_dma_sbuf;
 722
 723	/* copy Rx Data */
 724	if (!data->cur_trans->rx_buf)
 725		return;
 726
 727	if (bpw == 8) {
 728		rx_buf = data->cur_trans->rx_buf;
 729		rx_dma_buf = data->dma.rx_buf_virt;
 730		for (j = 0; j < data->bpw_len; j++)
 731			*rx_buf++ = *rx_dma_buf++ & 0xFF;
 732		data->cur_trans->rx_buf = rx_buf;
 733	} else {
 734		rx_sbuf = data->cur_trans->rx_buf;
 735		rx_dma_sbuf = data->dma.rx_buf_virt;
 736		for (j = 0; j < data->bpw_len; j++)
 737			*rx_sbuf++ = *rx_dma_sbuf++;
 738		data->cur_trans->rx_buf = rx_sbuf;
 739	}
 740}
 741
 742static int pch_spi_start_transfer(struct pch_spi_data *data)
 743{
 744	struct pch_spi_dma_ctrl *dma;
 745	unsigned long flags;
 746	int rtn;
 747
 748	dma = &data->dma;
 749
 750	spin_lock_irqsave(&data->lock, flags);
 751
 752	/* disable interrupts, SPI set enable */
 753	pch_spi_setclr_reg(data->host, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
 754
 755	spin_unlock_irqrestore(&data->lock, flags);
 756
 757	/* Wait until the transfer completes; go to sleep after
 758				 initiating the transfer. */
 759	dev_dbg(&data->host->dev,
 760		"%s:waiting for transfer to get over\n", __func__);
 761	rtn = wait_event_interruptible_timeout(data->wait,
 762					       data->transfer_complete,
 763					       msecs_to_jiffies(2 * HZ));
 764	if (!rtn)
 765		dev_err(&data->host->dev,
 766			"%s wait-event timeout\n", __func__);
 767
 768	dma_sync_sg_for_cpu(&data->host->dev, dma->sg_rx_p, dma->nent,
 769			    DMA_FROM_DEVICE);
 770
 771	dma_sync_sg_for_cpu(&data->host->dev, dma->sg_tx_p, dma->nent,
 772			    DMA_FROM_DEVICE);
 773	memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
 774
 775	async_tx_ack(dma->desc_rx);
 776	async_tx_ack(dma->desc_tx);
 777	kfree(dma->sg_tx_p);
 778	kfree(dma->sg_rx_p);
 779
 780	spin_lock_irqsave(&data->lock, flags);
 781
 782	/* clear fifo threshold, disable interrupts, disable SPI transfer */
 783	pch_spi_setclr_reg(data->host, PCH_SPCR, 0,
 784			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
 785			   SPCR_SPE_BIT);
 786	/* clear all interrupts */
 787	pch_spi_writereg(data->host, PCH_SPSR,
 788			 pch_spi_readreg(data->host, PCH_SPSR));
 789	/* clear FIFO */
 790	pch_spi_clear_fifo(data->host);
 791
 792	spin_unlock_irqrestore(&data->lock, flags);
 793
 794	return rtn;
 795}
 796
 797static void pch_dma_rx_complete(void *arg)
 798{
 799	struct pch_spi_data *data = arg;
 800
 801	/* transfer is completed;inform pch_spi_process_messages_dma */
 802	data->transfer_complete = true;
 803	wake_up_interruptible(&data->wait);
 804}
 805
 806static bool pch_spi_filter(struct dma_chan *chan, void *slave)
 807{
 808	struct pch_dma_slave *param = slave;
 809
 810	if ((chan->chan_id == param->chan_id) &&
 811	    (param->dma_dev == chan->device->dev)) {
 812		chan->private = param;
 813		return true;
 814	} else {
 815		return false;
 816	}
 817}
 818
 819static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
 820{
 821	dma_cap_mask_t mask;
 822	struct dma_chan *chan;
 823	struct pci_dev *dma_dev;
 824	struct pch_dma_slave *param;
 825	struct pch_spi_dma_ctrl *dma;
 826	unsigned int width;
 827
 828	if (bpw == 8)
 829		width = PCH_DMA_WIDTH_1_BYTE;
 830	else
 831		width = PCH_DMA_WIDTH_2_BYTES;
 832
 833	dma = &data->dma;
 834	dma_cap_zero(mask);
 835	dma_cap_set(DMA_SLAVE, mask);
 836
 837	/* Get DMA's dev information */
 838	dma_dev = pci_get_slot(data->board_dat->pdev->bus,
 839			PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
 840
 841	/* Set Tx DMA */
 842	param = &dma->param_tx;
 843	param->dma_dev = &dma_dev->dev;
 844	param->chan_id = data->ch * 2; /* Tx = 0, 2 */
 845	param->tx_reg = data->io_base_addr + PCH_SPDWR;
 846	param->width = width;
 847	chan = dma_request_channel(mask, pch_spi_filter, param);
 848	if (!chan) {
 849		dev_err(&data->host->dev,
 850			"ERROR: dma_request_channel FAILS(Tx)\n");
 851		goto out;
 
 852	}
 853	dma->chan_tx = chan;
 854
 855	/* Set Rx DMA */
 856	param = &dma->param_rx;
 857	param->dma_dev = &dma_dev->dev;
 858	param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */
 859	param->rx_reg = data->io_base_addr + PCH_SPDRR;
 860	param->width = width;
 861	chan = dma_request_channel(mask, pch_spi_filter, param);
 862	if (!chan) {
 863		dev_err(&data->host->dev,
 864			"ERROR: dma_request_channel FAILS(Rx)\n");
 865		dma_release_channel(dma->chan_tx);
 866		dma->chan_tx = NULL;
 867		goto out;
 
 868	}
 869	dma->chan_rx = chan;
 870
 871	dma->dma_dev = dma_dev;
 872	return;
 873out:
 874	pci_dev_put(dma_dev);
 875	data->use_dma = 0;
 876}
 877
 878static void pch_spi_release_dma(struct pch_spi_data *data)
 879{
 880	struct pch_spi_dma_ctrl *dma;
 881
 882	dma = &data->dma;
 883	if (dma->chan_tx) {
 884		dma_release_channel(dma->chan_tx);
 885		dma->chan_tx = NULL;
 886	}
 887	if (dma->chan_rx) {
 888		dma_release_channel(dma->chan_rx);
 889		dma->chan_rx = NULL;
 890	}
 891
 892	pci_dev_put(dma->dma_dev);
 893}
 894
 895static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
 896{
 897	const u8 *tx_buf;
 898	const u16 *tx_sbuf;
 899	u8 *tx_dma_buf;
 900	u16 *tx_dma_sbuf;
 901	struct scatterlist *sg;
 902	struct dma_async_tx_descriptor *desc_tx;
 903	struct dma_async_tx_descriptor *desc_rx;
 904	int num;
 905	int i;
 906	int size;
 907	int rem;
 908	int head;
 909	unsigned long flags;
 910	struct pch_spi_dma_ctrl *dma;
 911
 912	dma = &data->dma;
 913
 914	/* set baud rate if needed */
 915	if (data->cur_trans->speed_hz) {
 916		dev_dbg(&data->host->dev, "%s:setting baud rate\n", __func__);
 917		spin_lock_irqsave(&data->lock, flags);
 918		pch_spi_set_baud_rate(data->host, data->cur_trans->speed_hz);
 919		spin_unlock_irqrestore(&data->lock, flags);
 920	}
 921
 922	/* set bits per word if needed */
 923	if (data->cur_trans->bits_per_word &&
 924	    (data->current_msg->spi->bits_per_word !=
 925	     data->cur_trans->bits_per_word)) {
 926		dev_dbg(&data->host->dev, "%s:set bits per word\n", __func__);
 927		spin_lock_irqsave(&data->lock, flags);
 928		pch_spi_set_bits_per_word(data->host,
 929					  data->cur_trans->bits_per_word);
 930		spin_unlock_irqrestore(&data->lock, flags);
 931		*bpw = data->cur_trans->bits_per_word;
 932	} else {
 933		*bpw = data->current_msg->spi->bits_per_word;
 934	}
 935	data->bpw_len = data->cur_trans->len / (*bpw / 8);
 936
 937	if (data->bpw_len > PCH_BUF_SIZE) {
 938		data->bpw_len = PCH_BUF_SIZE;
 939		data->cur_trans->len -= PCH_BUF_SIZE;
 940	}
 941
 942	/* copy Tx Data */
 943	if (data->cur_trans->tx_buf != NULL) {
 944		if (*bpw == 8) {
 945			tx_buf = data->cur_trans->tx_buf;
 946			tx_dma_buf = dma->tx_buf_virt;
 947			for (i = 0; i < data->bpw_len; i++)
 948				*tx_dma_buf++ = *tx_buf++;
 949		} else {
 950			tx_sbuf = data->cur_trans->tx_buf;
 951			tx_dma_sbuf = dma->tx_buf_virt;
 952			for (i = 0; i < data->bpw_len; i++)
 953				*tx_dma_sbuf++ = *tx_sbuf++;
 954		}
 955	}
 956
 957	/* Calculate Rx parameter for DMA transmitting */
 958	if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
 959		if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
 960			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
 961			rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
 962		} else {
 963			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
 964			rem = PCH_DMA_TRANS_SIZE;
 965		}
 966		size = PCH_DMA_TRANS_SIZE;
 
 967	} else {
 968		num = 1;
 969		size = data->bpw_len;
 970		rem = data->bpw_len;
 971	}
 972	dev_dbg(&data->host->dev, "%s num=%d size=%d rem=%d\n",
 973		__func__, num, size, rem);
 974	spin_lock_irqsave(&data->lock, flags);
 975
 976	/* set receive fifo threshold and transmit fifo threshold */
 977	pch_spi_setclr_reg(data->host, PCH_SPCR,
 978			   ((size - 1) << SPCR_RFIC_FIELD) |
 979			   (PCH_TX_THOLD << SPCR_TFIC_FIELD),
 980			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
 981
 982	spin_unlock_irqrestore(&data->lock, flags);
 983
 984	/* RX */
 985	dma->sg_rx_p = kmalloc_array(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC);
 986	if (!dma->sg_rx_p)
 987		return;
 988
 989	sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
 990	/* offset, length setting */
 991	sg = dma->sg_rx_p;
 992	for (i = 0; i < num; i++, sg++) {
 993		if (i == (num - 2)) {
 994			sg->offset = size * i;
 995			sg->offset = sg->offset * (*bpw / 8);
 996			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
 997				    sg->offset);
 998			sg_dma_len(sg) = rem;
 999		} else if (i == (num - 1)) {
1000			sg->offset = size * (i - 1) + rem;
1001			sg->offset = sg->offset * (*bpw / 8);
1002			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1003				    sg->offset);
1004			sg_dma_len(sg) = size;
1005		} else {
1006			sg->offset = size * i;
1007			sg->offset = sg->offset * (*bpw / 8);
1008			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1009				    sg->offset);
1010			sg_dma_len(sg) = size;
1011		}
1012		sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1013	}
1014	sg = dma->sg_rx_p;
1015	desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1016					num, DMA_DEV_TO_MEM,
1017					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1018	if (!desc_rx) {
1019		dev_err(&data->host->dev,
1020			"%s:dmaengine_prep_slave_sg Failed\n", __func__);
1021		return;
1022	}
1023	dma_sync_sg_for_device(&data->host->dev, sg, num, DMA_FROM_DEVICE);
1024	desc_rx->callback = pch_dma_rx_complete;
1025	desc_rx->callback_param = data;
1026	dma->nent = num;
1027	dma->desc_rx = desc_rx;
1028
1029	/* Calculate Tx parameter for DMA transmitting */
1030	if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1031		head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1032		if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1033			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1034			rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1035		} else {
1036			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1037			rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1038			      PCH_DMA_TRANS_SIZE - head;
1039		}
1040		size = PCH_DMA_TRANS_SIZE;
 
1041	} else {
1042		num = 1;
1043		size = data->bpw_len;
1044		rem = data->bpw_len;
1045		head = 0;
1046	}
1047
1048	dma->sg_tx_p = kmalloc_array(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC);
1049	if (!dma->sg_tx_p)
1050		return;
1051
1052	sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1053	/* offset, length setting */
1054	sg = dma->sg_tx_p;
1055	for (i = 0; i < num; i++, sg++) {
1056		if (i == 0) {
1057			sg->offset = 0;
1058			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1059				    sg->offset);
1060			sg_dma_len(sg) = size + head;
1061		} else if (i == (num - 1)) {
1062			sg->offset = head + size * i;
1063			sg->offset = sg->offset * (*bpw / 8);
1064			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1065				    sg->offset);
1066			sg_dma_len(sg) = rem;
1067		} else {
1068			sg->offset = head + size * i;
1069			sg->offset = sg->offset * (*bpw / 8);
1070			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1071				    sg->offset);
1072			sg_dma_len(sg) = size;
1073		}
1074		sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1075	}
1076	sg = dma->sg_tx_p;
1077	desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1078					sg, num, DMA_MEM_TO_DEV,
1079					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1080	if (!desc_tx) {
1081		dev_err(&data->host->dev,
1082			"%s:dmaengine_prep_slave_sg Failed\n", __func__);
1083		return;
1084	}
1085	dma_sync_sg_for_device(&data->host->dev, sg, num, DMA_TO_DEVICE);
1086	desc_tx->callback = NULL;
1087	desc_tx->callback_param = data;
1088	dma->nent = num;
1089	dma->desc_tx = desc_tx;
1090
1091	dev_dbg(&data->host->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
 
1092
1093	spin_lock_irqsave(&data->lock, flags);
1094	pch_spi_writereg(data->host, PCH_SSNXCR, SSN_LOW);
1095	desc_rx->tx_submit(desc_rx);
1096	desc_tx->tx_submit(desc_tx);
1097	spin_unlock_irqrestore(&data->lock, flags);
1098
1099	/* reset transfer complete flag */
1100	data->transfer_complete = false;
1101}
1102
1103static void pch_spi_process_messages(struct work_struct *pwork)
1104{
1105	struct spi_message *pmsg, *tmp;
1106	struct pch_spi_data *data;
1107	int bpw;
1108
1109	data = container_of(pwork, struct pch_spi_data, work);
1110	dev_dbg(&data->host->dev, "%s data initialized\n", __func__);
1111
1112	spin_lock(&data->lock);
1113	/* check if suspend has been initiated;if yes flush queue */
1114	if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1115		dev_dbg(&data->host->dev,
1116			"%s suspend/remove initiated, flushing queue\n", __func__);
1117		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1118			pmsg->status = -EIO;
1119
1120			if (pmsg->complete) {
1121				spin_unlock(&data->lock);
1122				pmsg->complete(pmsg->context);
1123				spin_lock(&data->lock);
1124			}
1125
1126			/* delete from queue */
1127			list_del_init(&pmsg->queue);
1128		}
1129
1130		spin_unlock(&data->lock);
1131		return;
1132	}
1133
1134	data->bcurrent_msg_processing = true;
1135	dev_dbg(&data->host->dev,
1136		"%s Set data->bcurrent_msg_processing= true\n", __func__);
1137
1138	/* Get the message from the queue and delete it from there. */
1139	data->current_msg = list_entry(data->queue.next, struct spi_message,
1140					queue);
1141
1142	list_del_init(&data->current_msg->queue);
1143
1144	data->current_msg->status = 0;
1145
1146	pch_spi_select_chip(data, data->current_msg->spi);
1147
1148	spin_unlock(&data->lock);
1149
1150	if (data->use_dma)
1151		pch_spi_request_dma(data,
1152				    data->current_msg->spi->bits_per_word);
1153	pch_spi_writereg(data->host, PCH_SSNXCR, SSN_NO_CONTROL);
1154	do {
1155		int cnt;
1156		/* If we are already processing a message get the next
1157		transfer structure from the message otherwise retrieve
1158		the 1st transfer request from the message. */
1159		spin_lock(&data->lock);
1160		if (data->cur_trans == NULL) {
1161			data->cur_trans =
1162				list_entry(data->current_msg->transfers.next,
1163					   struct spi_transfer, transfer_list);
1164			dev_dbg(&data->host->dev,
1165				"%s :Getting 1st transfer message\n",
1166				__func__);
1167		} else {
1168			data->cur_trans =
1169				list_entry(data->cur_trans->transfer_list.next,
1170					   struct spi_transfer, transfer_list);
1171			dev_dbg(&data->host->dev,
1172				"%s :Getting next transfer message\n",
1173				__func__);
1174		}
1175		spin_unlock(&data->lock);
1176
1177		if (!data->cur_trans->len)
1178			goto out;
1179		cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1180		data->save_total_len = data->cur_trans->len;
1181		if (data->use_dma) {
1182			int i;
1183			char *save_rx_buf = data->cur_trans->rx_buf;
1184
1185			for (i = 0; i < cnt; i++) {
1186				pch_spi_handle_dma(data, &bpw);
1187				if (!pch_spi_start_transfer(data)) {
1188					data->transfer_complete = true;
1189					data->current_msg->status = -EIO;
1190					data->current_msg->complete
1191						   (data->current_msg->context);
1192					data->bcurrent_msg_processing = false;
1193					data->current_msg = NULL;
1194					data->cur_trans = NULL;
1195					goto out;
1196				}
1197				pch_spi_copy_rx_data_for_dma(data, bpw);
1198			}
1199			data->cur_trans->rx_buf = save_rx_buf;
1200		} else {
1201			pch_spi_set_tx(data, &bpw);
1202			pch_spi_set_ir(data);
1203			pch_spi_copy_rx_data(data, bpw);
1204			kfree(data->pkt_rx_buff);
1205			data->pkt_rx_buff = NULL;
1206			kfree(data->pkt_tx_buff);
1207			data->pkt_tx_buff = NULL;
1208		}
1209		/* increment message count */
1210		data->cur_trans->len = data->save_total_len;
1211		data->current_msg->actual_length += data->cur_trans->len;
1212
1213		dev_dbg(&data->host->dev,
1214			"%s:data->current_msg->actual_length=%d\n",
1215			__func__, data->current_msg->actual_length);
1216
1217		spi_transfer_delay_exec(data->cur_trans);
 
 
 
 
 
 
1218
1219		spin_lock(&data->lock);
1220
1221		/* No more transfer in this message. */
1222		if ((data->cur_trans->transfer_list.next) ==
1223		    &(data->current_msg->transfers)) {
1224			pch_spi_nomore_transfer(data);
1225		}
1226
1227		spin_unlock(&data->lock);
1228
1229	} while (data->cur_trans != NULL);
1230
1231out:
1232	pch_spi_writereg(data->host, PCH_SSNXCR, SSN_HIGH);
1233	if (data->use_dma)
1234		pch_spi_release_dma(data);
1235}
1236
1237static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1238				   struct pch_spi_data *data)
1239{
1240	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1241
1242	flush_work(&data->work);
 
 
 
 
 
 
 
1243}
1244
1245static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1246				 struct pch_spi_data *data)
1247{
 
 
1248	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1249
 
 
 
 
 
 
 
 
 
1250	/* reset PCH SPI h/w */
1251	pch_spi_reset(data->host);
1252	dev_dbg(&board_dat->pdev->dev,
1253		"%s pch_spi_reset invoked successfully\n", __func__);
1254
1255	dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1256
1257	return 0;
 
 
 
 
 
 
 
 
 
1258}
1259
1260static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1261			     struct pch_spi_data *data)
1262{
1263	struct pch_spi_dma_ctrl *dma;
1264
1265	dma = &data->dma;
1266	if (dma->tx_buf_dma)
1267		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1268				  dma->tx_buf_virt, dma->tx_buf_dma);
1269	if (dma->rx_buf_dma)
1270		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1271				  dma->rx_buf_virt, dma->rx_buf_dma);
 
1272}
1273
1274static int pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1275			      struct pch_spi_data *data)
1276{
1277	struct pch_spi_dma_ctrl *dma;
1278	int ret;
1279
1280	dma = &data->dma;
1281	ret = 0;
1282	/* Get Consistent memory for Tx DMA */
1283	dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1284				PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1285	if (!dma->tx_buf_virt)
1286		ret = -ENOMEM;
1287
1288	/* Get Consistent memory for Rx DMA */
1289	dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1290				PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1291	if (!dma->rx_buf_virt)
1292		ret = -ENOMEM;
1293
1294	return ret;
1295}
1296
1297static int pch_spi_pd_probe(struct platform_device *plat_dev)
1298{
1299	int ret;
1300	struct spi_controller *host;
1301	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1302	struct pch_spi_data *data;
1303
1304	dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1305
1306	host = spi_alloc_host(&board_dat->pdev->dev,
1307				  sizeof(struct pch_spi_data));
1308	if (!host) {
1309		dev_err(&plat_dev->dev, "spi_alloc_host[%d] failed.\n",
1310			plat_dev->id);
1311		return -ENOMEM;
1312	}
1313
1314	data = spi_controller_get_devdata(host);
1315	data->host = host;
1316
1317	platform_set_drvdata(plat_dev, data);
1318
1319	/* baseaddress + address offset) */
1320	data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1321					 PCH_ADDRESS_SIZE * plat_dev->id;
1322	data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
 
1323	if (!data->io_remap_addr) {
1324		dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1325		ret = -ENOMEM;
1326		goto err_pci_iomap;
1327	}
1328	data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1329
1330	dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1331		plat_dev->id, data->io_remap_addr);
1332
1333	/* initialize members of SPI host */
1334	host->num_chipselect = PCH_MAX_CS;
1335	host->transfer = pch_spi_transfer;
1336	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1337	host->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1338	host->max_speed_hz = PCH_MAX_BAUDRATE;
1339	host->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1340
1341	data->board_dat = board_dat;
1342	data->plat_dev = plat_dev;
1343	data->n_curnt_chip = 255;
1344	data->status = STATUS_RUNNING;
1345	data->ch = plat_dev->id;
1346	data->use_dma = use_dma;
1347
1348	INIT_LIST_HEAD(&data->queue);
1349	spin_lock_init(&data->lock);
1350	INIT_WORK(&data->work, pch_spi_process_messages);
1351	init_waitqueue_head(&data->wait);
1352
1353	ret = pch_spi_get_resources(board_dat, data);
1354	if (ret) {
1355		dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1356		goto err_spi_get_resources;
1357	}
1358
1359	ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1360			  IRQF_SHARED, KBUILD_MODNAME, data);
1361	if (ret) {
1362		dev_err(&plat_dev->dev,
1363			"%s request_irq failed\n", __func__);
1364		goto err_request_irq;
1365	}
1366	data->irq_reg_sts = true;
1367
1368	pch_spi_set_host_mode(host);
 
 
 
 
 
 
 
1369
1370	if (use_dma) {
1371		dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1372		ret = pch_alloc_dma_buf(board_dat, data);
1373		if (ret)
1374			goto err_spi_register_controller;
1375	}
1376
1377	ret = spi_register_controller(host);
1378	if (ret != 0) {
1379		dev_err(&plat_dev->dev,
1380			"%s spi_register_controller FAILED\n", __func__);
1381		goto err_spi_register_controller;
1382	}
1383
1384	return 0;
1385
1386err_spi_register_controller:
1387	pch_free_dma_buf(board_dat, data);
1388	free_irq(board_dat->pdev->irq, data);
1389err_request_irq:
1390	pch_spi_free_resources(board_dat, data);
1391err_spi_get_resources:
1392	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1393err_pci_iomap:
1394	spi_controller_put(host);
1395
1396	return ret;
1397}
1398
1399static void pch_spi_pd_remove(struct platform_device *plat_dev)
1400{
1401	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1402	struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1403	int count;
1404	unsigned long flags;
1405
1406	dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1407		__func__, plat_dev->id, board_dat->pdev->irq);
1408
1409	if (use_dma)
1410		pch_free_dma_buf(board_dat, data);
1411
1412	/* check for any pending messages; no action is taken if the queue
1413	 * is still full; but at least we tried.  Unload anyway */
1414	count = 500;
1415	spin_lock_irqsave(&data->lock, flags);
1416	data->status = STATUS_EXITING;
1417	while ((list_empty(&data->queue) == 0) && --count) {
1418		dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1419			__func__);
1420		spin_unlock_irqrestore(&data->lock, flags);
1421		msleep(PCH_SLEEP_TIME);
1422		spin_lock_irqsave(&data->lock, flags);
1423	}
1424	spin_unlock_irqrestore(&data->lock, flags);
1425
1426	pch_spi_free_resources(board_dat, data);
1427	/* disable interrupts & free IRQ */
1428	if (data->irq_reg_sts) {
1429		/* disable interrupts */
1430		pch_spi_setclr_reg(data->host, PCH_SPCR, 0, PCH_ALL);
1431		data->irq_reg_sts = false;
1432		free_irq(board_dat->pdev->irq, data);
1433	}
1434
1435	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1436	spi_unregister_controller(data->host);
 
 
 
 
1437}
1438#ifdef CONFIG_PM
1439static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1440			      pm_message_t state)
1441{
1442	u8 count;
1443	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1444	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1445
1446	dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1447
1448	if (!board_dat) {
1449		dev_err(&pd_dev->dev,
1450			"%s pci_get_drvdata returned NULL\n", __func__);
1451		return -EFAULT;
1452	}
1453
1454	/* check if the current message is processed:
1455	   Only after thats done the transfer will be suspended */
1456	count = 255;
1457	while ((--count) > 0) {
1458		if (!(data->bcurrent_msg_processing))
1459			break;
1460		msleep(PCH_SLEEP_TIME);
1461	}
1462
1463	/* Free IRQ */
1464	if (data->irq_reg_sts) {
1465		/* disable all interrupts */
1466		pch_spi_setclr_reg(data->host, PCH_SPCR, 0, PCH_ALL);
1467		pch_spi_reset(data->host);
1468		free_irq(board_dat->pdev->irq, data);
1469
1470		data->irq_reg_sts = false;
1471		dev_dbg(&pd_dev->dev,
1472			"%s free_irq invoked successfully.\n", __func__);
1473	}
1474
1475	return 0;
1476}
1477
1478static int pch_spi_pd_resume(struct platform_device *pd_dev)
1479{
1480	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1481	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1482	int retval;
1483
1484	if (!board_dat) {
1485		dev_err(&pd_dev->dev,
1486			"%s pci_get_drvdata returned NULL\n", __func__);
1487		return -EFAULT;
1488	}
1489
1490	if (!data->irq_reg_sts) {
1491		/* register IRQ */
1492		retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1493				     IRQF_SHARED, KBUILD_MODNAME, data);
1494		if (retval < 0) {
1495			dev_err(&pd_dev->dev,
1496				"%s request_irq failed\n", __func__);
1497			return retval;
1498		}
1499
1500		/* reset PCH SPI h/w */
1501		pch_spi_reset(data->host);
1502		pch_spi_set_host_mode(data->host);
1503		data->irq_reg_sts = true;
1504	}
1505	return 0;
1506}
1507#else
1508#define pch_spi_pd_suspend NULL
1509#define pch_spi_pd_resume NULL
1510#endif
1511
1512static struct platform_driver pch_spi_pd_driver = {
1513	.driver = {
1514		.name = "pch-spi",
 
1515	},
1516	.probe = pch_spi_pd_probe,
1517	.remove_new = pch_spi_pd_remove,
1518	.suspend = pch_spi_pd_suspend,
1519	.resume = pch_spi_pd_resume
1520};
1521
1522static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
 
1523{
1524	struct pch_spi_board_data *board_dat;
1525	struct platform_device *pd_dev = NULL;
1526	int retval;
1527	int i;
1528	struct pch_pd_dev_save *pd_dev_save;
1529
1530	pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL);
1531	if (!pd_dev_save)
 
1532		return -ENOMEM;
 
1533
1534	board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL);
1535	if (!board_dat) {
 
1536		retval = -ENOMEM;
1537		goto err_no_mem;
1538	}
1539
1540	retval = pci_request_regions(pdev, KBUILD_MODNAME);
1541	if (retval) {
1542		dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1543		goto pci_request_regions;
1544	}
1545
1546	board_dat->pdev = pdev;
1547	board_dat->num = id->driver_data;
1548	pd_dev_save->num = id->driver_data;
1549	pd_dev_save->board_dat = board_dat;
1550
1551	retval = pci_enable_device(pdev);
1552	if (retval) {
1553		dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1554		goto pci_enable_device;
1555	}
1556
1557	for (i = 0; i < board_dat->num; i++) {
1558		pd_dev = platform_device_alloc("pch-spi", i);
1559		if (!pd_dev) {
1560			dev_err(&pdev->dev, "platform_device_alloc failed\n");
1561			retval = -ENOMEM;
1562			goto err_platform_device;
1563		}
1564		pd_dev_save->pd_save[i] = pd_dev;
1565		pd_dev->dev.parent = &pdev->dev;
1566
1567		retval = platform_device_add_data(pd_dev, board_dat,
1568						  sizeof(*board_dat));
1569		if (retval) {
1570			dev_err(&pdev->dev,
1571				"platform_device_add_data failed\n");
1572			platform_device_put(pd_dev);
1573			goto err_platform_device;
1574		}
1575
1576		retval = platform_device_add(pd_dev);
1577		if (retval) {
1578			dev_err(&pdev->dev, "platform_device_add failed\n");
1579			platform_device_put(pd_dev);
1580			goto err_platform_device;
1581		}
1582	}
1583
1584	pci_set_drvdata(pdev, pd_dev_save);
1585
1586	return 0;
1587
1588err_platform_device:
1589	while (--i >= 0)
1590		platform_device_unregister(pd_dev_save->pd_save[i]);
1591	pci_disable_device(pdev);
1592pci_enable_device:
1593	pci_release_regions(pdev);
1594pci_request_regions:
1595	kfree(board_dat);
1596err_no_mem:
1597	kfree(pd_dev_save);
1598
1599	return retval;
1600}
1601
1602static void pch_spi_remove(struct pci_dev *pdev)
1603{
1604	int i;
1605	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1606
1607	dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1608
1609	for (i = 0; i < pd_dev_save->num; i++)
1610		platform_device_unregister(pd_dev_save->pd_save[i]);
1611
1612	pci_disable_device(pdev);
1613	pci_release_regions(pdev);
1614	kfree(pd_dev_save->board_dat);
1615	kfree(pd_dev_save);
1616}
1617
1618static int __maybe_unused pch_spi_suspend(struct device *dev)
 
1619{
1620	struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
 
1621
1622	dev_dbg(dev, "%s ENTRY\n", __func__);
1623
1624	pd_dev_save->board_dat->suspend_sts = true;
1625
1626	return 0;
 
 
 
 
 
 
 
 
 
 
1627}
1628
1629static int __maybe_unused pch_spi_resume(struct device *dev)
1630{
1631	struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
 
 
1632
1633	dev_dbg(dev, "%s ENTRY\n", __func__);
 
1634
1635	/* set suspend status to false */
1636	pd_dev_save->board_dat->suspend_sts = false;
 
 
 
 
 
 
 
 
1637
1638	return 0;
1639}
 
 
 
1640
1641static SIMPLE_DEV_PM_OPS(pch_spi_pm_ops, pch_spi_suspend, pch_spi_resume);
1642
1643static struct pci_driver pch_spi_pcidev_driver = {
1644	.name = "pch_spi",
1645	.id_table = pch_spi_pcidev_id,
1646	.probe = pch_spi_probe,
1647	.remove = pch_spi_remove,
1648	.driver.pm = &pch_spi_pm_ops,
 
1649};
1650
1651static int __init pch_spi_init(void)
1652{
1653	int ret;
1654	ret = platform_driver_register(&pch_spi_pd_driver);
1655	if (ret)
1656		return ret;
1657
1658	ret = pci_register_driver(&pch_spi_pcidev_driver);
1659	if (ret) {
1660		platform_driver_unregister(&pch_spi_pd_driver);
1661		return ret;
1662	}
1663
1664	return 0;
1665}
1666module_init(pch_spi_init);
1667
1668static void __exit pch_spi_exit(void)
1669{
1670	pci_unregister_driver(&pch_spi_pcidev_driver);
1671	platform_driver_unregister(&pch_spi_pd_driver);
1672}
1673module_exit(pch_spi_exit);
1674
1675module_param(use_dma, int, 0644);
1676MODULE_PARM_DESC(use_dma,
1677		 "to use DMA for data transfers pass 1 else 0; default 1");
1678
1679MODULE_LICENSE("GPL");
1680MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1681MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1682