Loading...
1/*
2 * SPI bus driver for the Topcliff PCH used by Intel SoCs
3 *
4 * Copyright (C) 2010 OKI SEMICONDUCTOR Co., LTD.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
18 */
19
20#include <linux/delay.h>
21#include <linux/pci.h>
22#include <linux/wait.h>
23#include <linux/spi/spi.h>
24#include <linux/interrupt.h>
25#include <linux/sched.h>
26#include <linux/spi/spidev.h>
27#include <linux/module.h>
28#include <linux/device.h>
29#include <linux/platform_device.h>
30
31#include <linux/dmaengine.h>
32#include <linux/pch_dma.h>
33
34/* Register offsets */
35#define PCH_SPCR 0x00 /* SPI control register */
36#define PCH_SPBRR 0x04 /* SPI baud rate register */
37#define PCH_SPSR 0x08 /* SPI status register */
38#define PCH_SPDWR 0x0C /* SPI write data register */
39#define PCH_SPDRR 0x10 /* SPI read data register */
40#define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
41#define PCH_SRST 0x1C /* SPI reset register */
42#define PCH_ADDRESS_SIZE 0x20
43
44#define PCH_SPSR_TFD 0x000007C0
45#define PCH_SPSR_RFD 0x0000F800
46
47#define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
48#define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
49
50#define PCH_RX_THOLD 7
51#define PCH_RX_THOLD_MAX 15
52
53#define PCH_TX_THOLD 2
54
55#define PCH_MAX_BAUDRATE 5000000
56#define PCH_MAX_FIFO_DEPTH 16
57
58#define STATUS_RUNNING 1
59#define STATUS_EXITING 2
60#define PCH_SLEEP_TIME 10
61
62#define SSN_LOW 0x02U
63#define SSN_HIGH 0x03U
64#define SSN_NO_CONTROL 0x00U
65#define PCH_MAX_CS 0xFF
66#define PCI_DEVICE_ID_GE_SPI 0x8816
67
68#define SPCR_SPE_BIT (1 << 0)
69#define SPCR_MSTR_BIT (1 << 1)
70#define SPCR_LSBF_BIT (1 << 4)
71#define SPCR_CPHA_BIT (1 << 5)
72#define SPCR_CPOL_BIT (1 << 6)
73#define SPCR_TFIE_BIT (1 << 8)
74#define SPCR_RFIE_BIT (1 << 9)
75#define SPCR_FIE_BIT (1 << 10)
76#define SPCR_ORIE_BIT (1 << 11)
77#define SPCR_MDFIE_BIT (1 << 12)
78#define SPCR_FICLR_BIT (1 << 24)
79#define SPSR_TFI_BIT (1 << 0)
80#define SPSR_RFI_BIT (1 << 1)
81#define SPSR_FI_BIT (1 << 2)
82#define SPSR_ORF_BIT (1 << 3)
83#define SPBRR_SIZE_BIT (1 << 10)
84
85#define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
86 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
87
88#define SPCR_RFIC_FIELD 20
89#define SPCR_TFIC_FIELD 16
90
91#define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
92#define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
93#define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
94
95#define PCH_CLOCK_HZ 50000000
96#define PCH_MAX_SPBR 1023
97
98/* Definition for ML7213 by OKI SEMICONDUCTOR */
99#define PCI_VENDOR_ID_ROHM 0x10DB
100#define PCI_DEVICE_ID_ML7213_SPI 0x802c
101#define PCI_DEVICE_ID_ML7223_SPI 0x800F
102
103/*
104 * Set the number of SPI instance max
105 * Intel EG20T PCH : 1ch
106 * OKI SEMICONDUCTOR ML7213 IOH : 2ch
107 * OKI SEMICONDUCTOR ML7223 IOH : 1ch
108*/
109#define PCH_SPI_MAX_DEV 2
110
111#define PCH_BUF_SIZE 4096
112#define PCH_DMA_TRANS_SIZE 12
113
114static int use_dma = 1;
115
116struct pch_spi_dma_ctrl {
117 struct dma_async_tx_descriptor *desc_tx;
118 struct dma_async_tx_descriptor *desc_rx;
119 struct pch_dma_slave param_tx;
120 struct pch_dma_slave param_rx;
121 struct dma_chan *chan_tx;
122 struct dma_chan *chan_rx;
123 struct scatterlist *sg_tx_p;
124 struct scatterlist *sg_rx_p;
125 struct scatterlist sg_tx;
126 struct scatterlist sg_rx;
127 int nent;
128 void *tx_buf_virt;
129 void *rx_buf_virt;
130 dma_addr_t tx_buf_dma;
131 dma_addr_t rx_buf_dma;
132};
133/**
134 * struct pch_spi_data - Holds the SPI channel specific details
135 * @io_remap_addr: The remapped PCI base address
136 * @master: Pointer to the SPI master structure
137 * @work: Reference to work queue handler
138 * @wk: Workqueue for carrying out execution of the
139 * requests
140 * @wait: Wait queue for waking up upon receiving an
141 * interrupt.
142 * @transfer_complete: Status of SPI Transfer
143 * @bcurrent_msg_processing: Status flag for message processing
144 * @lock: Lock for protecting this structure
145 * @queue: SPI Message queue
146 * @status: Status of the SPI driver
147 * @bpw_len: Length of data to be transferred in bits per
148 * word
149 * @transfer_active: Flag showing active transfer
150 * @tx_index: Transmit data count; for bookkeeping during
151 * transfer
152 * @rx_index: Receive data count; for bookkeeping during
153 * transfer
154 * @tx_buff: Buffer for data to be transmitted
155 * @rx_index: Buffer for Received data
156 * @n_curnt_chip: The chip number that this SPI driver currently
157 * operates on
158 * @current_chip: Reference to the current chip that this SPI
159 * driver currently operates on
160 * @current_msg: The current message that this SPI driver is
161 * handling
162 * @cur_trans: The current transfer that this SPI driver is
163 * handling
164 * @board_dat: Reference to the SPI device data structure
165 * @plat_dev: platform_device structure
166 * @ch: SPI channel number
167 * @irq_reg_sts: Status of IRQ registration
168 */
169struct pch_spi_data {
170 void __iomem *io_remap_addr;
171 unsigned long io_base_addr;
172 struct spi_master *master;
173 struct work_struct work;
174 struct workqueue_struct *wk;
175 wait_queue_head_t wait;
176 u8 transfer_complete;
177 u8 bcurrent_msg_processing;
178 spinlock_t lock;
179 struct list_head queue;
180 u8 status;
181 u32 bpw_len;
182 u8 transfer_active;
183 u32 tx_index;
184 u32 rx_index;
185 u16 *pkt_tx_buff;
186 u16 *pkt_rx_buff;
187 u8 n_curnt_chip;
188 struct spi_device *current_chip;
189 struct spi_message *current_msg;
190 struct spi_transfer *cur_trans;
191 struct pch_spi_board_data *board_dat;
192 struct platform_device *plat_dev;
193 int ch;
194 struct pch_spi_dma_ctrl dma;
195 int use_dma;
196 u8 irq_reg_sts;
197};
198
199/**
200 * struct pch_spi_board_data - Holds the SPI device specific details
201 * @pdev: Pointer to the PCI device
202 * @suspend_sts: Status of suspend
203 * @num: The number of SPI device instance
204 */
205struct pch_spi_board_data {
206 struct pci_dev *pdev;
207 u8 suspend_sts;
208 int num;
209};
210
211struct pch_pd_dev_save {
212 int num;
213 struct platform_device *pd_save[PCH_SPI_MAX_DEV];
214 struct pch_spi_board_data *board_dat;
215};
216
217static struct pci_device_id pch_spi_pcidev_id[] = {
218 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
219 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
220 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
221 { }
222};
223
224/**
225 * pch_spi_writereg() - Performs register writes
226 * @master: Pointer to struct spi_master.
227 * @idx: Register offset.
228 * @val: Value to be written to register.
229 */
230static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
231{
232 struct pch_spi_data *data = spi_master_get_devdata(master);
233 iowrite32(val, (data->io_remap_addr + idx));
234}
235
236/**
237 * pch_spi_readreg() - Performs register reads
238 * @master: Pointer to struct spi_master.
239 * @idx: Register offset.
240 */
241static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
242{
243 struct pch_spi_data *data = spi_master_get_devdata(master);
244 return ioread32(data->io_remap_addr + idx);
245}
246
247static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
248 u32 set, u32 clr)
249{
250 u32 tmp = pch_spi_readreg(master, idx);
251 tmp = (tmp & ~clr) | set;
252 pch_spi_writereg(master, idx, tmp);
253}
254
255static void pch_spi_set_master_mode(struct spi_master *master)
256{
257 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
258}
259
260/**
261 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
262 * @master: Pointer to struct spi_master.
263 */
264static void pch_spi_clear_fifo(struct spi_master *master)
265{
266 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
267 pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
268}
269
270static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
271 void __iomem *io_remap_addr)
272{
273 u32 n_read, tx_index, rx_index, bpw_len;
274 u16 *pkt_rx_buffer, *pkt_tx_buff;
275 int read_cnt;
276 u32 reg_spcr_val;
277 void __iomem *spsr;
278 void __iomem *spdrr;
279 void __iomem *spdwr;
280
281 spsr = io_remap_addr + PCH_SPSR;
282 iowrite32(reg_spsr_val, spsr);
283
284 if (data->transfer_active) {
285 rx_index = data->rx_index;
286 tx_index = data->tx_index;
287 bpw_len = data->bpw_len;
288 pkt_rx_buffer = data->pkt_rx_buff;
289 pkt_tx_buff = data->pkt_tx_buff;
290
291 spdrr = io_remap_addr + PCH_SPDRR;
292 spdwr = io_remap_addr + PCH_SPDWR;
293
294 n_read = PCH_READABLE(reg_spsr_val);
295
296 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
297 pkt_rx_buffer[rx_index++] = ioread32(spdrr);
298 if (tx_index < bpw_len)
299 iowrite32(pkt_tx_buff[tx_index++], spdwr);
300 }
301
302 /* disable RFI if not needed */
303 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
304 reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
305 reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
306
307 /* reset rx threshold */
308 reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
309 reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
310
311 iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
312 }
313
314 /* update counts */
315 data->tx_index = tx_index;
316 data->rx_index = rx_index;
317
318 }
319
320 /* if transfer complete interrupt */
321 if (reg_spsr_val & SPSR_FI_BIT) {
322 if ((tx_index == bpw_len) && (rx_index == tx_index)) {
323 /* disable interrupts */
324 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
325
326 /* transfer is completed;
327 inform pch_spi_process_messages */
328 data->transfer_complete = true;
329 data->transfer_active = false;
330 wake_up(&data->wait);
331 } else {
332 dev_err(&data->master->dev,
333 "%s : Transfer is not completed", __func__);
334 }
335 }
336}
337
338/**
339 * pch_spi_handler() - Interrupt handler
340 * @irq: The interrupt number.
341 * @dev_id: Pointer to struct pch_spi_board_data.
342 */
343static irqreturn_t pch_spi_handler(int irq, void *dev_id)
344{
345 u32 reg_spsr_val;
346 void __iomem *spsr;
347 void __iomem *io_remap_addr;
348 irqreturn_t ret = IRQ_NONE;
349 struct pch_spi_data *data = dev_id;
350 struct pch_spi_board_data *board_dat = data->board_dat;
351
352 if (board_dat->suspend_sts) {
353 dev_dbg(&board_dat->pdev->dev,
354 "%s returning due to suspend\n", __func__);
355 return IRQ_NONE;
356 }
357
358 io_remap_addr = data->io_remap_addr;
359 spsr = io_remap_addr + PCH_SPSR;
360
361 reg_spsr_val = ioread32(spsr);
362
363 if (reg_spsr_val & SPSR_ORF_BIT) {
364 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
365 if (data->current_msg->complete != 0) {
366 data->transfer_complete = true;
367 data->current_msg->status = -EIO;
368 data->current_msg->complete(data->current_msg->context);
369 data->bcurrent_msg_processing = false;
370 data->current_msg = NULL;
371 data->cur_trans = NULL;
372 }
373 }
374
375 if (data->use_dma)
376 return IRQ_NONE;
377
378 /* Check if the interrupt is for SPI device */
379 if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
380 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
381 ret = IRQ_HANDLED;
382 }
383
384 dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
385 __func__, ret);
386
387 return ret;
388}
389
390/**
391 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
392 * @master: Pointer to struct spi_master.
393 * @speed_hz: Baud rate.
394 */
395static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
396{
397 u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
398
399 /* if baud rate is less than we can support limit it */
400 if (n_spbr > PCH_MAX_SPBR)
401 n_spbr = PCH_MAX_SPBR;
402
403 pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
404}
405
406/**
407 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
408 * @master: Pointer to struct spi_master.
409 * @bits_per_word: Bits per word for SPI transfer.
410 */
411static void pch_spi_set_bits_per_word(struct spi_master *master,
412 u8 bits_per_word)
413{
414 if (bits_per_word == 8)
415 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
416 else
417 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
418}
419
420/**
421 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
422 * @spi: Pointer to struct spi_device.
423 */
424static void pch_spi_setup_transfer(struct spi_device *spi)
425{
426 u32 flags = 0;
427
428 dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
429 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
430 spi->max_speed_hz);
431 pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
432
433 /* set bits per word */
434 pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
435
436 if (!(spi->mode & SPI_LSB_FIRST))
437 flags |= SPCR_LSBF_BIT;
438 if (spi->mode & SPI_CPOL)
439 flags |= SPCR_CPOL_BIT;
440 if (spi->mode & SPI_CPHA)
441 flags |= SPCR_CPHA_BIT;
442 pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
443 (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
444
445 /* Clear the FIFO by toggling FICLR to 1 and back to 0 */
446 pch_spi_clear_fifo(spi->master);
447}
448
449/**
450 * pch_spi_reset() - Clears SPI registers
451 * @master: Pointer to struct spi_master.
452 */
453static void pch_spi_reset(struct spi_master *master)
454{
455 /* write 1 to reset SPI */
456 pch_spi_writereg(master, PCH_SRST, 0x1);
457
458 /* clear reset */
459 pch_spi_writereg(master, PCH_SRST, 0x0);
460}
461
462static int pch_spi_setup(struct spi_device *pspi)
463{
464 /* check bits per word */
465 if (pspi->bits_per_word == 0) {
466 pspi->bits_per_word = 8;
467 dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__);
468 }
469
470 if ((pspi->bits_per_word != 8) && (pspi->bits_per_word != 16)) {
471 dev_err(&pspi->dev, "%s Invalid bits per word\n", __func__);
472 return -EINVAL;
473 }
474
475 /* Check baud rate setting */
476 /* if baud rate of chip is greater than
477 max we can support,return error */
478 if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
479 pspi->max_speed_hz = PCH_MAX_BAUDRATE;
480
481 dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
482 (pspi->mode) & (SPI_CPOL | SPI_CPHA));
483
484 return 0;
485}
486
487static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
488{
489
490 struct spi_transfer *transfer;
491 struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
492 int retval;
493 unsigned long flags;
494
495 /* validate spi message and baud rate */
496 if (unlikely(list_empty(&pmsg->transfers) == 1)) {
497 dev_err(&pspi->dev, "%s list empty\n", __func__);
498 retval = -EINVAL;
499 goto err_out;
500 }
501
502 if (unlikely(pspi->max_speed_hz == 0)) {
503 dev_err(&pspi->dev, "%s pch_spi_tranfer maxspeed=%d\n",
504 __func__, pspi->max_speed_hz);
505 retval = -EINVAL;
506 goto err_out;
507 }
508
509 dev_dbg(&pspi->dev, "%s Transfer List not empty. "
510 "Transfer Speed is set.\n", __func__);
511
512 spin_lock_irqsave(&data->lock, flags);
513 /* validate Tx/Rx buffers and Transfer length */
514 list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
515 if (!transfer->tx_buf && !transfer->rx_buf) {
516 dev_err(&pspi->dev,
517 "%s Tx and Rx buffer NULL\n", __func__);
518 retval = -EINVAL;
519 goto err_return_spinlock;
520 }
521
522 if (!transfer->len) {
523 dev_err(&pspi->dev, "%s Transfer length invalid\n",
524 __func__);
525 retval = -EINVAL;
526 goto err_return_spinlock;
527 }
528
529 dev_dbg(&pspi->dev, "%s Tx/Rx buffer valid. Transfer length"
530 " valid\n", __func__);
531
532 /* if baud rate has been specified validate the same */
533 if (transfer->speed_hz > PCH_MAX_BAUDRATE)
534 transfer->speed_hz = PCH_MAX_BAUDRATE;
535
536 /* if bits per word has been specified validate the same */
537 if (transfer->bits_per_word) {
538 if ((transfer->bits_per_word != 8)
539 && (transfer->bits_per_word != 16)) {
540 retval = -EINVAL;
541 dev_err(&pspi->dev,
542 "%s Invalid bits per word\n", __func__);
543 goto err_return_spinlock;
544 }
545 }
546 }
547 spin_unlock_irqrestore(&data->lock, flags);
548
549 /* We won't process any messages if we have been asked to terminate */
550 if (data->status == STATUS_EXITING) {
551 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
552 retval = -ESHUTDOWN;
553 goto err_out;
554 }
555
556 /* If suspended ,return -EINVAL */
557 if (data->board_dat->suspend_sts) {
558 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
559 retval = -EINVAL;
560 goto err_out;
561 }
562
563 /* set status of message */
564 pmsg->actual_length = 0;
565 dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
566
567 pmsg->status = -EINPROGRESS;
568 spin_lock_irqsave(&data->lock, flags);
569 /* add message to queue */
570 list_add_tail(&pmsg->queue, &data->queue);
571 spin_unlock_irqrestore(&data->lock, flags);
572
573 dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
574
575 /* schedule work queue to run */
576 queue_work(data->wk, &data->work);
577 dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
578
579 retval = 0;
580
581err_out:
582 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
583 return retval;
584err_return_spinlock:
585 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
586 spin_unlock_irqrestore(&data->lock, flags);
587 return retval;
588}
589
590static inline void pch_spi_select_chip(struct pch_spi_data *data,
591 struct spi_device *pspi)
592{
593 if (data->current_chip != NULL) {
594 if (pspi->chip_select != data->n_curnt_chip) {
595 dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
596 data->current_chip = NULL;
597 }
598 }
599
600 data->current_chip = pspi;
601
602 data->n_curnt_chip = data->current_chip->chip_select;
603
604 dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
605 pch_spi_setup_transfer(pspi);
606}
607
608static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
609{
610 int size;
611 u32 n_writes;
612 int j;
613 struct spi_message *pmsg;
614 const u8 *tx_buf;
615 const u16 *tx_sbuf;
616
617 /* set baud rate if needed */
618 if (data->cur_trans->speed_hz) {
619 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
620 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
621 }
622
623 /* set bits per word if needed */
624 if (data->cur_trans->bits_per_word &&
625 (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
626 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
627 pch_spi_set_bits_per_word(data->master,
628 data->cur_trans->bits_per_word);
629 *bpw = data->cur_trans->bits_per_word;
630 } else {
631 *bpw = data->current_msg->spi->bits_per_word;
632 }
633
634 /* reset Tx/Rx index */
635 data->tx_index = 0;
636 data->rx_index = 0;
637
638 data->bpw_len = data->cur_trans->len / (*bpw / 8);
639
640 /* find alloc size */
641 size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
642
643 /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
644 data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
645 if (data->pkt_tx_buff != NULL) {
646 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
647 if (!data->pkt_rx_buff)
648 kfree(data->pkt_tx_buff);
649 }
650
651 if (!data->pkt_rx_buff) {
652 /* flush queue and set status of all transfers to -ENOMEM */
653 dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
654 list_for_each_entry(pmsg, data->queue.next, queue) {
655 pmsg->status = -ENOMEM;
656
657 if (pmsg->complete != 0)
658 pmsg->complete(pmsg->context);
659
660 /* delete from queue */
661 list_del_init(&pmsg->queue);
662 }
663 return;
664 }
665
666 /* copy Tx Data */
667 if (data->cur_trans->tx_buf != NULL) {
668 if (*bpw == 8) {
669 tx_buf = data->cur_trans->tx_buf;
670 for (j = 0; j < data->bpw_len; j++)
671 data->pkt_tx_buff[j] = *tx_buf++;
672 } else {
673 tx_sbuf = data->cur_trans->tx_buf;
674 for (j = 0; j < data->bpw_len; j++)
675 data->pkt_tx_buff[j] = *tx_sbuf++;
676 }
677 }
678
679 /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
680 n_writes = data->bpw_len;
681 if (n_writes > PCH_MAX_FIFO_DEPTH)
682 n_writes = PCH_MAX_FIFO_DEPTH;
683
684 dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
685 "0x2 to SSNXCR\n", __func__);
686 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
687
688 for (j = 0; j < n_writes; j++)
689 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
690
691 /* update tx_index */
692 data->tx_index = j;
693
694 /* reset transfer complete flag */
695 data->transfer_complete = false;
696 data->transfer_active = true;
697}
698
699static void pch_spi_nomore_transfer(struct pch_spi_data *data)
700{
701 struct spi_message *pmsg;
702 dev_dbg(&data->master->dev, "%s called\n", __func__);
703 /* Invoke complete callback
704 * [To the spi core..indicating end of transfer] */
705 data->current_msg->status = 0;
706
707 if (data->current_msg->complete != 0) {
708 dev_dbg(&data->master->dev,
709 "%s:Invoking callback of SPI core\n", __func__);
710 data->current_msg->complete(data->current_msg->context);
711 }
712
713 /* update status in global variable */
714 data->bcurrent_msg_processing = false;
715
716 dev_dbg(&data->master->dev,
717 "%s:data->bcurrent_msg_processing = false\n", __func__);
718
719 data->current_msg = NULL;
720 data->cur_trans = NULL;
721
722 /* check if we have items in list and not suspending
723 * return 1 if list empty */
724 if ((list_empty(&data->queue) == 0) &&
725 (!data->board_dat->suspend_sts) &&
726 (data->status != STATUS_EXITING)) {
727 /* We have some more work to do (either there is more tranint
728 * bpw;sfer requests in the current message or there are
729 *more messages)
730 */
731 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
732 queue_work(data->wk, &data->work);
733 } else if (data->board_dat->suspend_sts ||
734 data->status == STATUS_EXITING) {
735 dev_dbg(&data->master->dev,
736 "%s suspend/remove initiated, flushing queue\n",
737 __func__);
738 list_for_each_entry(pmsg, data->queue.next, queue) {
739 pmsg->status = -EIO;
740
741 if (pmsg->complete)
742 pmsg->complete(pmsg->context);
743
744 /* delete from queue */
745 list_del_init(&pmsg->queue);
746 }
747 }
748}
749
750static void pch_spi_set_ir(struct pch_spi_data *data)
751{
752 /* enable interrupts, set threshold, enable SPI */
753 if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
754 /* set receive threshold to PCH_RX_THOLD */
755 pch_spi_setclr_reg(data->master, PCH_SPCR,
756 PCH_RX_THOLD << SPCR_RFIC_FIELD |
757 SPCR_FIE_BIT | SPCR_RFIE_BIT |
758 SPCR_ORIE_BIT | SPCR_SPE_BIT,
759 MASK_RFIC_SPCR_BITS | PCH_ALL);
760 else
761 /* set receive threshold to maximum */
762 pch_spi_setclr_reg(data->master, PCH_SPCR,
763 PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
764 SPCR_FIE_BIT | SPCR_ORIE_BIT |
765 SPCR_SPE_BIT,
766 MASK_RFIC_SPCR_BITS | PCH_ALL);
767
768 /* Wait until the transfer completes; go to sleep after
769 initiating the transfer. */
770 dev_dbg(&data->master->dev,
771 "%s:waiting for transfer to get over\n", __func__);
772
773 wait_event_interruptible(data->wait, data->transfer_complete);
774
775 /* clear all interrupts */
776 pch_spi_writereg(data->master, PCH_SPSR,
777 pch_spi_readreg(data->master, PCH_SPSR));
778 /* Disable interrupts and SPI transfer */
779 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
780 /* clear FIFO */
781 pch_spi_clear_fifo(data->master);
782}
783
784static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
785{
786 int j;
787 u8 *rx_buf;
788 u16 *rx_sbuf;
789
790 /* copy Rx Data */
791 if (!data->cur_trans->rx_buf)
792 return;
793
794 if (bpw == 8) {
795 rx_buf = data->cur_trans->rx_buf;
796 for (j = 0; j < data->bpw_len; j++)
797 *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
798 } else {
799 rx_sbuf = data->cur_trans->rx_buf;
800 for (j = 0; j < data->bpw_len; j++)
801 *rx_sbuf++ = data->pkt_rx_buff[j];
802 }
803}
804
805static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
806{
807 int j;
808 u8 *rx_buf;
809 u16 *rx_sbuf;
810 const u8 *rx_dma_buf;
811 const u16 *rx_dma_sbuf;
812
813 /* copy Rx Data */
814 if (!data->cur_trans->rx_buf)
815 return;
816
817 if (bpw == 8) {
818 rx_buf = data->cur_trans->rx_buf;
819 rx_dma_buf = data->dma.rx_buf_virt;
820 for (j = 0; j < data->bpw_len; j++)
821 *rx_buf++ = *rx_dma_buf++ & 0xFF;
822 } else {
823 rx_sbuf = data->cur_trans->rx_buf;
824 rx_dma_sbuf = data->dma.rx_buf_virt;
825 for (j = 0; j < data->bpw_len; j++)
826 *rx_sbuf++ = *rx_dma_sbuf++;
827 }
828}
829
830static int pch_spi_start_transfer(struct pch_spi_data *data)
831{
832 struct pch_spi_dma_ctrl *dma;
833 unsigned long flags;
834 int rtn;
835
836 dma = &data->dma;
837
838 spin_lock_irqsave(&data->lock, flags);
839
840 /* disable interrupts, SPI set enable */
841 pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
842
843 spin_unlock_irqrestore(&data->lock, flags);
844
845 /* Wait until the transfer completes; go to sleep after
846 initiating the transfer. */
847 dev_dbg(&data->master->dev,
848 "%s:waiting for transfer to get over\n", __func__);
849 rtn = wait_event_interruptible_timeout(data->wait,
850 data->transfer_complete,
851 msecs_to_jiffies(2 * HZ));
852
853 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
854 DMA_FROM_DEVICE);
855
856 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
857 DMA_FROM_DEVICE);
858 memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
859
860 async_tx_ack(dma->desc_rx);
861 async_tx_ack(dma->desc_tx);
862 kfree(dma->sg_tx_p);
863 kfree(dma->sg_rx_p);
864
865 spin_lock_irqsave(&data->lock, flags);
866
867 /* clear fifo threshold, disable interrupts, disable SPI transfer */
868 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
869 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
870 SPCR_SPE_BIT);
871 /* clear all interrupts */
872 pch_spi_writereg(data->master, PCH_SPSR,
873 pch_spi_readreg(data->master, PCH_SPSR));
874 /* clear FIFO */
875 pch_spi_clear_fifo(data->master);
876
877 spin_unlock_irqrestore(&data->lock, flags);
878
879 return rtn;
880}
881
882static void pch_dma_rx_complete(void *arg)
883{
884 struct pch_spi_data *data = arg;
885
886 /* transfer is completed;inform pch_spi_process_messages_dma */
887 data->transfer_complete = true;
888 wake_up_interruptible(&data->wait);
889}
890
891static bool pch_spi_filter(struct dma_chan *chan, void *slave)
892{
893 struct pch_dma_slave *param = slave;
894
895 if ((chan->chan_id == param->chan_id) &&
896 (param->dma_dev == chan->device->dev)) {
897 chan->private = param;
898 return true;
899 } else {
900 return false;
901 }
902}
903
904static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
905{
906 dma_cap_mask_t mask;
907 struct dma_chan *chan;
908 struct pci_dev *dma_dev;
909 struct pch_dma_slave *param;
910 struct pch_spi_dma_ctrl *dma;
911 unsigned int width;
912
913 if (bpw == 8)
914 width = PCH_DMA_WIDTH_1_BYTE;
915 else
916 width = PCH_DMA_WIDTH_2_BYTES;
917
918 dma = &data->dma;
919 dma_cap_zero(mask);
920 dma_cap_set(DMA_SLAVE, mask);
921
922 /* Get DMA's dev information */
923 dma_dev = pci_get_bus_and_slot(2, PCI_DEVFN(12, 0));
924
925 /* Set Tx DMA */
926 param = &dma->param_tx;
927 param->dma_dev = &dma_dev->dev;
928 param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
929 param->tx_reg = data->io_base_addr + PCH_SPDWR;
930 param->width = width;
931 chan = dma_request_channel(mask, pch_spi_filter, param);
932 if (!chan) {
933 dev_err(&data->master->dev,
934 "ERROR: dma_request_channel FAILS(Tx)\n");
935 data->use_dma = 0;
936 return;
937 }
938 dma->chan_tx = chan;
939
940 /* Set Rx DMA */
941 param = &dma->param_rx;
942 param->dma_dev = &dma_dev->dev;
943 param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
944 param->rx_reg = data->io_base_addr + PCH_SPDRR;
945 param->width = width;
946 chan = dma_request_channel(mask, pch_spi_filter, param);
947 if (!chan) {
948 dev_err(&data->master->dev,
949 "ERROR: dma_request_channel FAILS(Rx)\n");
950 dma_release_channel(dma->chan_tx);
951 dma->chan_tx = NULL;
952 data->use_dma = 0;
953 return;
954 }
955 dma->chan_rx = chan;
956}
957
958static void pch_spi_release_dma(struct pch_spi_data *data)
959{
960 struct pch_spi_dma_ctrl *dma;
961
962 dma = &data->dma;
963 if (dma->chan_tx) {
964 dma_release_channel(dma->chan_tx);
965 dma->chan_tx = NULL;
966 }
967 if (dma->chan_rx) {
968 dma_release_channel(dma->chan_rx);
969 dma->chan_rx = NULL;
970 }
971 return;
972}
973
974static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
975{
976 const u8 *tx_buf;
977 const u16 *tx_sbuf;
978 u8 *tx_dma_buf;
979 u16 *tx_dma_sbuf;
980 struct scatterlist *sg;
981 struct dma_async_tx_descriptor *desc_tx;
982 struct dma_async_tx_descriptor *desc_rx;
983 int num;
984 int i;
985 int size;
986 int rem;
987 unsigned long flags;
988 struct pch_spi_dma_ctrl *dma;
989
990 dma = &data->dma;
991
992 /* set baud rate if needed */
993 if (data->cur_trans->speed_hz) {
994 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
995 spin_lock_irqsave(&data->lock, flags);
996 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
997 spin_unlock_irqrestore(&data->lock, flags);
998 }
999
1000 /* set bits per word if needed */
1001 if (data->cur_trans->bits_per_word &&
1002 (data->current_msg->spi->bits_per_word !=
1003 data->cur_trans->bits_per_word)) {
1004 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
1005 spin_lock_irqsave(&data->lock, flags);
1006 pch_spi_set_bits_per_word(data->master,
1007 data->cur_trans->bits_per_word);
1008 spin_unlock_irqrestore(&data->lock, flags);
1009 *bpw = data->cur_trans->bits_per_word;
1010 } else {
1011 *bpw = data->current_msg->spi->bits_per_word;
1012 }
1013 data->bpw_len = data->cur_trans->len / (*bpw / 8);
1014
1015 /* copy Tx Data */
1016 if (data->cur_trans->tx_buf != NULL) {
1017 if (*bpw == 8) {
1018 tx_buf = data->cur_trans->tx_buf;
1019 tx_dma_buf = dma->tx_buf_virt;
1020 for (i = 0; i < data->bpw_len; i++)
1021 *tx_dma_buf++ = *tx_buf++;
1022 } else {
1023 tx_sbuf = data->cur_trans->tx_buf;
1024 tx_dma_sbuf = dma->tx_buf_virt;
1025 for (i = 0; i < data->bpw_len; i++)
1026 *tx_dma_sbuf++ = *tx_sbuf++;
1027 }
1028 }
1029 if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
1030 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1031 size = PCH_DMA_TRANS_SIZE;
1032 rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
1033 } else {
1034 num = 1;
1035 size = data->bpw_len;
1036 rem = data->bpw_len;
1037 }
1038 dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
1039 __func__, num, size, rem);
1040 spin_lock_irqsave(&data->lock, flags);
1041
1042 /* set receive fifo threshold and transmit fifo threshold */
1043 pch_spi_setclr_reg(data->master, PCH_SPCR,
1044 ((size - 1) << SPCR_RFIC_FIELD) |
1045 (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1046 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1047
1048 spin_unlock_irqrestore(&data->lock, flags);
1049
1050 /* RX */
1051 dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1052 sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1053 /* offset, length setting */
1054 sg = dma->sg_rx_p;
1055 for (i = 0; i < num; i++, sg++) {
1056 if (i == (num - 2)) {
1057 sg->offset = size * i;
1058 sg->offset = sg->offset * (*bpw / 8);
1059 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1060 sg->offset);
1061 sg_dma_len(sg) = rem;
1062 } else if (i == (num - 1)) {
1063 sg->offset = size * (i - 1) + rem;
1064 sg->offset = sg->offset * (*bpw / 8);
1065 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1066 sg->offset);
1067 sg_dma_len(sg) = size;
1068 } else {
1069 sg->offset = size * i;
1070 sg->offset = sg->offset * (*bpw / 8);
1071 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1072 sg->offset);
1073 sg_dma_len(sg) = size;
1074 }
1075 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1076 }
1077 sg = dma->sg_rx_p;
1078 desc_rx = dma->chan_rx->device->device_prep_slave_sg(dma->chan_rx, sg,
1079 num, DMA_FROM_DEVICE,
1080 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1081 if (!desc_rx) {
1082 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1083 __func__);
1084 return;
1085 }
1086 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1087 desc_rx->callback = pch_dma_rx_complete;
1088 desc_rx->callback_param = data;
1089 dma->nent = num;
1090 dma->desc_rx = desc_rx;
1091
1092 /* TX */
1093 if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
1094 num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1095 size = PCH_DMA_TRANS_SIZE;
1096 rem = 16;
1097 } else {
1098 num = 1;
1099 size = data->bpw_len;
1100 rem = data->bpw_len;
1101 }
1102
1103 dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1104 sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1105 /* offset, length setting */
1106 sg = dma->sg_tx_p;
1107 for (i = 0; i < num; i++, sg++) {
1108 if (i == 0) {
1109 sg->offset = 0;
1110 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1111 sg->offset);
1112 sg_dma_len(sg) = rem;
1113 } else {
1114 sg->offset = rem + size * (i - 1);
1115 sg->offset = sg->offset * (*bpw / 8);
1116 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1117 sg->offset);
1118 sg_dma_len(sg) = size;
1119 }
1120 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1121 }
1122 sg = dma->sg_tx_p;
1123 desc_tx = dma->chan_tx->device->device_prep_slave_sg(dma->chan_tx,
1124 sg, num, DMA_TO_DEVICE,
1125 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1126 if (!desc_tx) {
1127 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1128 __func__);
1129 return;
1130 }
1131 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1132 desc_tx->callback = NULL;
1133 desc_tx->callback_param = data;
1134 dma->nent = num;
1135 dma->desc_tx = desc_tx;
1136
1137 dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
1138 "0x2 to SSNXCR\n", __func__);
1139
1140 spin_lock_irqsave(&data->lock, flags);
1141 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1142 desc_rx->tx_submit(desc_rx);
1143 desc_tx->tx_submit(desc_tx);
1144 spin_unlock_irqrestore(&data->lock, flags);
1145
1146 /* reset transfer complete flag */
1147 data->transfer_complete = false;
1148}
1149
1150static void pch_spi_process_messages(struct work_struct *pwork)
1151{
1152 struct spi_message *pmsg;
1153 struct pch_spi_data *data;
1154 int bpw;
1155
1156 data = container_of(pwork, struct pch_spi_data, work);
1157 dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1158
1159 spin_lock(&data->lock);
1160 /* check if suspend has been initiated;if yes flush queue */
1161 if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1162 dev_dbg(&data->master->dev, "%s suspend/remove initiated,"
1163 "flushing queue\n", __func__);
1164 list_for_each_entry(pmsg, data->queue.next, queue) {
1165 pmsg->status = -EIO;
1166
1167 if (pmsg->complete != 0) {
1168 spin_unlock(&data->lock);
1169 pmsg->complete(pmsg->context);
1170 spin_lock(&data->lock);
1171 }
1172
1173 /* delete from queue */
1174 list_del_init(&pmsg->queue);
1175 }
1176
1177 spin_unlock(&data->lock);
1178 return;
1179 }
1180
1181 data->bcurrent_msg_processing = true;
1182 dev_dbg(&data->master->dev,
1183 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1184
1185 /* Get the message from the queue and delete it from there. */
1186 data->current_msg = list_entry(data->queue.next, struct spi_message,
1187 queue);
1188
1189 list_del_init(&data->current_msg->queue);
1190
1191 data->current_msg->status = 0;
1192
1193 pch_spi_select_chip(data, data->current_msg->spi);
1194
1195 spin_unlock(&data->lock);
1196
1197 if (data->use_dma)
1198 pch_spi_request_dma(data,
1199 data->current_msg->spi->bits_per_word);
1200 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1201 do {
1202 /* If we are already processing a message get the next
1203 transfer structure from the message otherwise retrieve
1204 the 1st transfer request from the message. */
1205 spin_lock(&data->lock);
1206 if (data->cur_trans == NULL) {
1207 data->cur_trans =
1208 list_entry(data->current_msg->transfers.next,
1209 struct spi_transfer, transfer_list);
1210 dev_dbg(&data->master->dev, "%s "
1211 ":Getting 1st transfer message\n", __func__);
1212 } else {
1213 data->cur_trans =
1214 list_entry(data->cur_trans->transfer_list.next,
1215 struct spi_transfer, transfer_list);
1216 dev_dbg(&data->master->dev, "%s "
1217 ":Getting next transfer message\n", __func__);
1218 }
1219 spin_unlock(&data->lock);
1220
1221 if (data->use_dma) {
1222 pch_spi_handle_dma(data, &bpw);
1223 if (!pch_spi_start_transfer(data))
1224 goto out;
1225 pch_spi_copy_rx_data_for_dma(data, bpw);
1226 } else {
1227 pch_spi_set_tx(data, &bpw);
1228 pch_spi_set_ir(data);
1229 pch_spi_copy_rx_data(data, bpw);
1230 kfree(data->pkt_rx_buff);
1231 data->pkt_rx_buff = NULL;
1232 kfree(data->pkt_tx_buff);
1233 data->pkt_tx_buff = NULL;
1234 }
1235 /* increment message count */
1236 data->current_msg->actual_length += data->cur_trans->len;
1237
1238 dev_dbg(&data->master->dev,
1239 "%s:data->current_msg->actual_length=%d\n",
1240 __func__, data->current_msg->actual_length);
1241
1242 /* check for delay */
1243 if (data->cur_trans->delay_usecs) {
1244 dev_dbg(&data->master->dev, "%s:"
1245 "delay in usec=%d\n", __func__,
1246 data->cur_trans->delay_usecs);
1247 udelay(data->cur_trans->delay_usecs);
1248 }
1249
1250 spin_lock(&data->lock);
1251
1252 /* No more transfer in this message. */
1253 if ((data->cur_trans->transfer_list.next) ==
1254 &(data->current_msg->transfers)) {
1255 pch_spi_nomore_transfer(data);
1256 }
1257
1258 spin_unlock(&data->lock);
1259
1260 } while (data->cur_trans != NULL);
1261
1262out:
1263 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1264 if (data->use_dma)
1265 pch_spi_release_dma(data);
1266}
1267
1268static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1269 struct pch_spi_data *data)
1270{
1271 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1272
1273 /* free workqueue */
1274 if (data->wk != NULL) {
1275 destroy_workqueue(data->wk);
1276 data->wk = NULL;
1277 dev_dbg(&board_dat->pdev->dev,
1278 "%s destroy_workqueue invoked successfully\n",
1279 __func__);
1280 }
1281}
1282
1283static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1284 struct pch_spi_data *data)
1285{
1286 int retval = 0;
1287
1288 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1289
1290 /* create workqueue */
1291 data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
1292 if (!data->wk) {
1293 dev_err(&board_dat->pdev->dev,
1294 "%s create_singlet hread_workqueue failed\n", __func__);
1295 retval = -EBUSY;
1296 goto err_return;
1297 }
1298
1299 /* reset PCH SPI h/w */
1300 pch_spi_reset(data->master);
1301 dev_dbg(&board_dat->pdev->dev,
1302 "%s pch_spi_reset invoked successfully\n", __func__);
1303
1304 dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1305
1306err_return:
1307 if (retval != 0) {
1308 dev_err(&board_dat->pdev->dev,
1309 "%s FAIL:invoking pch_spi_free_resources\n", __func__);
1310 pch_spi_free_resources(board_dat, data);
1311 }
1312
1313 dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
1314
1315 return retval;
1316}
1317
1318static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1319 struct pch_spi_data *data)
1320{
1321 struct pch_spi_dma_ctrl *dma;
1322
1323 dma = &data->dma;
1324 if (dma->tx_buf_dma)
1325 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1326 dma->tx_buf_virt, dma->tx_buf_dma);
1327 if (dma->rx_buf_dma)
1328 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1329 dma->rx_buf_virt, dma->rx_buf_dma);
1330 return;
1331}
1332
1333static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1334 struct pch_spi_data *data)
1335{
1336 struct pch_spi_dma_ctrl *dma;
1337
1338 dma = &data->dma;
1339 /* Get Consistent memory for Tx DMA */
1340 dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1341 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1342 /* Get Consistent memory for Rx DMA */
1343 dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1344 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1345}
1346
1347static int __devinit pch_spi_pd_probe(struct platform_device *plat_dev)
1348{
1349 int ret;
1350 struct spi_master *master;
1351 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1352 struct pch_spi_data *data;
1353
1354 dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1355
1356 master = spi_alloc_master(&board_dat->pdev->dev,
1357 sizeof(struct pch_spi_data));
1358 if (!master) {
1359 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1360 plat_dev->id);
1361 return -ENOMEM;
1362 }
1363
1364 data = spi_master_get_devdata(master);
1365 data->master = master;
1366
1367 platform_set_drvdata(plat_dev, data);
1368
1369 /* baseaddress + address offset) */
1370 data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1371 PCH_ADDRESS_SIZE * plat_dev->id;
1372 data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0) +
1373 PCH_ADDRESS_SIZE * plat_dev->id;
1374 if (!data->io_remap_addr) {
1375 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1376 ret = -ENOMEM;
1377 goto err_pci_iomap;
1378 }
1379
1380 dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1381 plat_dev->id, data->io_remap_addr);
1382
1383 /* initialize members of SPI master */
1384 master->bus_num = -1;
1385 master->num_chipselect = PCH_MAX_CS;
1386 master->setup = pch_spi_setup;
1387 master->transfer = pch_spi_transfer;
1388
1389 data->board_dat = board_dat;
1390 data->plat_dev = plat_dev;
1391 data->n_curnt_chip = 255;
1392 data->status = STATUS_RUNNING;
1393 data->ch = plat_dev->id;
1394 data->use_dma = use_dma;
1395
1396 INIT_LIST_HEAD(&data->queue);
1397 spin_lock_init(&data->lock);
1398 INIT_WORK(&data->work, pch_spi_process_messages);
1399 init_waitqueue_head(&data->wait);
1400
1401 ret = pch_spi_get_resources(board_dat, data);
1402 if (ret) {
1403 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1404 goto err_spi_get_resources;
1405 }
1406
1407 ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1408 IRQF_SHARED, KBUILD_MODNAME, data);
1409 if (ret) {
1410 dev_err(&plat_dev->dev,
1411 "%s request_irq failed\n", __func__);
1412 goto err_request_irq;
1413 }
1414 data->irq_reg_sts = true;
1415
1416 pch_spi_set_master_mode(master);
1417
1418 ret = spi_register_master(master);
1419 if (ret != 0) {
1420 dev_err(&plat_dev->dev,
1421 "%s spi_register_master FAILED\n", __func__);
1422 goto err_spi_register_master;
1423 }
1424
1425 if (use_dma) {
1426 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1427 pch_alloc_dma_buf(board_dat, data);
1428 }
1429
1430 return 0;
1431
1432err_spi_register_master:
1433 free_irq(board_dat->pdev->irq, board_dat);
1434err_request_irq:
1435 pch_spi_free_resources(board_dat, data);
1436err_spi_get_resources:
1437 pci_iounmap(board_dat->pdev, data->io_remap_addr);
1438err_pci_iomap:
1439 spi_master_put(master);
1440
1441 return ret;
1442}
1443
1444static int __devexit pch_spi_pd_remove(struct platform_device *plat_dev)
1445{
1446 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1447 struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1448 int count;
1449 unsigned long flags;
1450
1451 dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1452 __func__, plat_dev->id, board_dat->pdev->irq);
1453
1454 if (use_dma)
1455 pch_free_dma_buf(board_dat, data);
1456
1457 /* check for any pending messages; no action is taken if the queue
1458 * is still full; but at least we tried. Unload anyway */
1459 count = 500;
1460 spin_lock_irqsave(&data->lock, flags);
1461 data->status = STATUS_EXITING;
1462 while ((list_empty(&data->queue) == 0) && --count) {
1463 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1464 __func__);
1465 spin_unlock_irqrestore(&data->lock, flags);
1466 msleep(PCH_SLEEP_TIME);
1467 spin_lock_irqsave(&data->lock, flags);
1468 }
1469 spin_unlock_irqrestore(&data->lock, flags);
1470
1471 pch_spi_free_resources(board_dat, data);
1472 /* disable interrupts & free IRQ */
1473 if (data->irq_reg_sts) {
1474 /* disable interrupts */
1475 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1476 data->irq_reg_sts = false;
1477 free_irq(board_dat->pdev->irq, data);
1478 }
1479
1480 pci_iounmap(board_dat->pdev, data->io_remap_addr);
1481 spi_unregister_master(data->master);
1482 spi_master_put(data->master);
1483 platform_set_drvdata(plat_dev, NULL);
1484
1485 return 0;
1486}
1487#ifdef CONFIG_PM
1488static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1489 pm_message_t state)
1490{
1491 u8 count;
1492 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1493 struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1494
1495 dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1496
1497 if (!board_dat) {
1498 dev_err(&pd_dev->dev,
1499 "%s pci_get_drvdata returned NULL\n", __func__);
1500 return -EFAULT;
1501 }
1502
1503 /* check if the current message is processed:
1504 Only after thats done the transfer will be suspended */
1505 count = 255;
1506 while ((--count) > 0) {
1507 if (!(data->bcurrent_msg_processing))
1508 break;
1509 msleep(PCH_SLEEP_TIME);
1510 }
1511
1512 /* Free IRQ */
1513 if (data->irq_reg_sts) {
1514 /* disable all interrupts */
1515 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1516 pch_spi_reset(data->master);
1517 free_irq(board_dat->pdev->irq, data);
1518
1519 data->irq_reg_sts = false;
1520 dev_dbg(&pd_dev->dev,
1521 "%s free_irq invoked successfully.\n", __func__);
1522 }
1523
1524 return 0;
1525}
1526
1527static int pch_spi_pd_resume(struct platform_device *pd_dev)
1528{
1529 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1530 struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1531 int retval;
1532
1533 if (!board_dat) {
1534 dev_err(&pd_dev->dev,
1535 "%s pci_get_drvdata returned NULL\n", __func__);
1536 return -EFAULT;
1537 }
1538
1539 if (!data->irq_reg_sts) {
1540 /* register IRQ */
1541 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1542 IRQF_SHARED, KBUILD_MODNAME, data);
1543 if (retval < 0) {
1544 dev_err(&pd_dev->dev,
1545 "%s request_irq failed\n", __func__);
1546 return retval;
1547 }
1548
1549 /* reset PCH SPI h/w */
1550 pch_spi_reset(data->master);
1551 pch_spi_set_master_mode(data->master);
1552 data->irq_reg_sts = true;
1553 }
1554 return 0;
1555}
1556#else
1557#define pch_spi_pd_suspend NULL
1558#define pch_spi_pd_resume NULL
1559#endif
1560
1561static struct platform_driver pch_spi_pd_driver = {
1562 .driver = {
1563 .name = "pch-spi",
1564 .owner = THIS_MODULE,
1565 },
1566 .probe = pch_spi_pd_probe,
1567 .remove = __devexit_p(pch_spi_pd_remove),
1568 .suspend = pch_spi_pd_suspend,
1569 .resume = pch_spi_pd_resume
1570};
1571
1572static int __devinit pch_spi_probe(struct pci_dev *pdev,
1573 const struct pci_device_id *id)
1574{
1575 struct pch_spi_board_data *board_dat;
1576 struct platform_device *pd_dev = NULL;
1577 int retval;
1578 int i;
1579 struct pch_pd_dev_save *pd_dev_save;
1580
1581 pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
1582 if (!pd_dev_save) {
1583 dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
1584 return -ENOMEM;
1585 }
1586
1587 board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
1588 if (!board_dat) {
1589 dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
1590 retval = -ENOMEM;
1591 goto err_no_mem;
1592 }
1593
1594 retval = pci_request_regions(pdev, KBUILD_MODNAME);
1595 if (retval) {
1596 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1597 goto pci_request_regions;
1598 }
1599
1600 board_dat->pdev = pdev;
1601 board_dat->num = id->driver_data;
1602 pd_dev_save->num = id->driver_data;
1603 pd_dev_save->board_dat = board_dat;
1604
1605 retval = pci_enable_device(pdev);
1606 if (retval) {
1607 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1608 goto pci_enable_device;
1609 }
1610
1611 for (i = 0; i < board_dat->num; i++) {
1612 pd_dev = platform_device_alloc("pch-spi", i);
1613 if (!pd_dev) {
1614 dev_err(&pdev->dev, "platform_device_alloc failed\n");
1615 goto err_platform_device;
1616 }
1617 pd_dev_save->pd_save[i] = pd_dev;
1618 pd_dev->dev.parent = &pdev->dev;
1619
1620 retval = platform_device_add_data(pd_dev, board_dat,
1621 sizeof(*board_dat));
1622 if (retval) {
1623 dev_err(&pdev->dev,
1624 "platform_device_add_data failed\n");
1625 platform_device_put(pd_dev);
1626 goto err_platform_device;
1627 }
1628
1629 retval = platform_device_add(pd_dev);
1630 if (retval) {
1631 dev_err(&pdev->dev, "platform_device_add failed\n");
1632 platform_device_put(pd_dev);
1633 goto err_platform_device;
1634 }
1635 }
1636
1637 pci_set_drvdata(pdev, pd_dev_save);
1638
1639 return 0;
1640
1641err_platform_device:
1642 pci_disable_device(pdev);
1643pci_enable_device:
1644 pci_release_regions(pdev);
1645pci_request_regions:
1646 kfree(board_dat);
1647err_no_mem:
1648 kfree(pd_dev_save);
1649
1650 return retval;
1651}
1652
1653static void __devexit pch_spi_remove(struct pci_dev *pdev)
1654{
1655 int i;
1656 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1657
1658 dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1659
1660 for (i = 0; i < pd_dev_save->num; i++)
1661 platform_device_unregister(pd_dev_save->pd_save[i]);
1662
1663 pci_disable_device(pdev);
1664 pci_release_regions(pdev);
1665 kfree(pd_dev_save->board_dat);
1666 kfree(pd_dev_save);
1667}
1668
1669#ifdef CONFIG_PM
1670static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1671{
1672 int retval;
1673 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1674
1675 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1676
1677 pd_dev_save->board_dat->suspend_sts = true;
1678
1679 /* save config space */
1680 retval = pci_save_state(pdev);
1681 if (retval == 0) {
1682 pci_enable_wake(pdev, PCI_D3hot, 0);
1683 pci_disable_device(pdev);
1684 pci_set_power_state(pdev, PCI_D3hot);
1685 } else {
1686 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1687 }
1688
1689 return retval;
1690}
1691
1692static int pch_spi_resume(struct pci_dev *pdev)
1693{
1694 int retval;
1695 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1696 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1697
1698 pci_set_power_state(pdev, PCI_D0);
1699 pci_restore_state(pdev);
1700
1701 retval = pci_enable_device(pdev);
1702 if (retval < 0) {
1703 dev_err(&pdev->dev,
1704 "%s pci_enable_device failed\n", __func__);
1705 } else {
1706 pci_enable_wake(pdev, PCI_D3hot, 0);
1707
1708 /* set suspend status to false */
1709 pd_dev_save->board_dat->suspend_sts = false;
1710 }
1711
1712 return retval;
1713}
1714#else
1715#define pch_spi_suspend NULL
1716#define pch_spi_resume NULL
1717
1718#endif
1719
1720static struct pci_driver pch_spi_pcidev = {
1721 .name = "pch_spi",
1722 .id_table = pch_spi_pcidev_id,
1723 .probe = pch_spi_probe,
1724 .remove = pch_spi_remove,
1725 .suspend = pch_spi_suspend,
1726 .resume = pch_spi_resume,
1727};
1728
1729static int __init pch_spi_init(void)
1730{
1731 int ret;
1732 ret = platform_driver_register(&pch_spi_pd_driver);
1733 if (ret)
1734 return ret;
1735
1736 ret = pci_register_driver(&pch_spi_pcidev);
1737 if (ret)
1738 return ret;
1739
1740 return 0;
1741}
1742module_init(pch_spi_init);
1743
1744static void __exit pch_spi_exit(void)
1745{
1746 pci_unregister_driver(&pch_spi_pcidev);
1747 platform_driver_unregister(&pch_spi_pd_driver);
1748}
1749module_exit(pch_spi_exit);
1750
1751module_param(use_dma, int, 0644);
1752MODULE_PARM_DESC(use_dma,
1753 "to use DMA for data transfers pass 1 else 0; default 1");
1754
1755MODULE_LICENSE("GPL");
1756MODULE_DESCRIPTION("Intel EG20T PCH/OKI SEMICONDUCTOR ML7xxx IOH SPI Driver");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * SPI bus driver for the Topcliff PCH used by Intel SoCs
4 *
5 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
6 */
7
8#include <linux/delay.h>
9#include <linux/pci.h>
10#include <linux/wait.h>
11#include <linux/spi/spi.h>
12#include <linux/interrupt.h>
13#include <linux/sched.h>
14#include <linux/spi/spidev.h>
15#include <linux/module.h>
16#include <linux/device.h>
17#include <linux/platform_device.h>
18
19#include <linux/dmaengine.h>
20#include <linux/pch_dma.h>
21
22/* Register offsets */
23#define PCH_SPCR 0x00 /* SPI control register */
24#define PCH_SPBRR 0x04 /* SPI baud rate register */
25#define PCH_SPSR 0x08 /* SPI status register */
26#define PCH_SPDWR 0x0C /* SPI write data register */
27#define PCH_SPDRR 0x10 /* SPI read data register */
28#define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
29#define PCH_SRST 0x1C /* SPI reset register */
30#define PCH_ADDRESS_SIZE 0x20
31
32#define PCH_SPSR_TFD 0x000007C0
33#define PCH_SPSR_RFD 0x0000F800
34
35#define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
36#define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
37
38#define PCH_RX_THOLD 7
39#define PCH_RX_THOLD_MAX 15
40
41#define PCH_TX_THOLD 2
42
43#define PCH_MAX_BAUDRATE 5000000
44#define PCH_MAX_FIFO_DEPTH 16
45
46#define STATUS_RUNNING 1
47#define STATUS_EXITING 2
48#define PCH_SLEEP_TIME 10
49
50#define SSN_LOW 0x02U
51#define SSN_HIGH 0x03U
52#define SSN_NO_CONTROL 0x00U
53#define PCH_MAX_CS 0xFF
54#define PCI_DEVICE_ID_GE_SPI 0x8816
55
56#define SPCR_SPE_BIT (1 << 0)
57#define SPCR_MSTR_BIT (1 << 1)
58#define SPCR_LSBF_BIT (1 << 4)
59#define SPCR_CPHA_BIT (1 << 5)
60#define SPCR_CPOL_BIT (1 << 6)
61#define SPCR_TFIE_BIT (1 << 8)
62#define SPCR_RFIE_BIT (1 << 9)
63#define SPCR_FIE_BIT (1 << 10)
64#define SPCR_ORIE_BIT (1 << 11)
65#define SPCR_MDFIE_BIT (1 << 12)
66#define SPCR_FICLR_BIT (1 << 24)
67#define SPSR_TFI_BIT (1 << 0)
68#define SPSR_RFI_BIT (1 << 1)
69#define SPSR_FI_BIT (1 << 2)
70#define SPSR_ORF_BIT (1 << 3)
71#define SPBRR_SIZE_BIT (1 << 10)
72
73#define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
74 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
75
76#define SPCR_RFIC_FIELD 20
77#define SPCR_TFIC_FIELD 16
78
79#define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
80#define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
81#define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
82
83#define PCH_CLOCK_HZ 50000000
84#define PCH_MAX_SPBR 1023
85
86/* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
87#define PCI_DEVICE_ID_ML7213_SPI 0x802c
88#define PCI_DEVICE_ID_ML7223_SPI 0x800F
89#define PCI_DEVICE_ID_ML7831_SPI 0x8816
90
91/*
92 * Set the number of SPI instance max
93 * Intel EG20T PCH : 1ch
94 * LAPIS Semiconductor ML7213 IOH : 2ch
95 * LAPIS Semiconductor ML7223 IOH : 1ch
96 * LAPIS Semiconductor ML7831 IOH : 1ch
97*/
98#define PCH_SPI_MAX_DEV 2
99
100#define PCH_BUF_SIZE 4096
101#define PCH_DMA_TRANS_SIZE 12
102
103static int use_dma = 1;
104
105struct pch_spi_dma_ctrl {
106 struct dma_async_tx_descriptor *desc_tx;
107 struct dma_async_tx_descriptor *desc_rx;
108 struct pch_dma_slave param_tx;
109 struct pch_dma_slave param_rx;
110 struct dma_chan *chan_tx;
111 struct dma_chan *chan_rx;
112 struct scatterlist *sg_tx_p;
113 struct scatterlist *sg_rx_p;
114 struct scatterlist sg_tx;
115 struct scatterlist sg_rx;
116 int nent;
117 void *tx_buf_virt;
118 void *rx_buf_virt;
119 dma_addr_t tx_buf_dma;
120 dma_addr_t rx_buf_dma;
121};
122/**
123 * struct pch_spi_data - Holds the SPI channel specific details
124 * @io_remap_addr: The remapped PCI base address
125 * @io_base_addr: Base address
126 * @master: Pointer to the SPI master structure
127 * @work: Reference to work queue handler
128 * @wait: Wait queue for waking up upon receiving an
129 * interrupt.
130 * @transfer_complete: Status of SPI Transfer
131 * @bcurrent_msg_processing: Status flag for message processing
132 * @lock: Lock for protecting this structure
133 * @queue: SPI Message queue
134 * @status: Status of the SPI driver
135 * @bpw_len: Length of data to be transferred in bits per
136 * word
137 * @transfer_active: Flag showing active transfer
138 * @tx_index: Transmit data count; for bookkeeping during
139 * transfer
140 * @rx_index: Receive data count; for bookkeeping during
141 * transfer
142 * @pkt_tx_buff: Buffer for data to be transmitted
143 * @pkt_rx_buff: Buffer for received data
144 * @n_curnt_chip: The chip number that this SPI driver currently
145 * operates on
146 * @current_chip: Reference to the current chip that this SPI
147 * driver currently operates on
148 * @current_msg: The current message that this SPI driver is
149 * handling
150 * @cur_trans: The current transfer that this SPI driver is
151 * handling
152 * @board_dat: Reference to the SPI device data structure
153 * @plat_dev: platform_device structure
154 * @ch: SPI channel number
155 * @dma: Local DMA information
156 * @use_dma: True if DMA is to be used
157 * @irq_reg_sts: Status of IRQ registration
158 * @save_total_len: Save length while data is being transferred
159 */
160struct pch_spi_data {
161 void __iomem *io_remap_addr;
162 unsigned long io_base_addr;
163 struct spi_master *master;
164 struct work_struct work;
165 wait_queue_head_t wait;
166 u8 transfer_complete;
167 u8 bcurrent_msg_processing;
168 spinlock_t lock;
169 struct list_head queue;
170 u8 status;
171 u32 bpw_len;
172 u8 transfer_active;
173 u32 tx_index;
174 u32 rx_index;
175 u16 *pkt_tx_buff;
176 u16 *pkt_rx_buff;
177 u8 n_curnt_chip;
178 struct spi_device *current_chip;
179 struct spi_message *current_msg;
180 struct spi_transfer *cur_trans;
181 struct pch_spi_board_data *board_dat;
182 struct platform_device *plat_dev;
183 int ch;
184 struct pch_spi_dma_ctrl dma;
185 int use_dma;
186 u8 irq_reg_sts;
187 int save_total_len;
188};
189
190/**
191 * struct pch_spi_board_data - Holds the SPI device specific details
192 * @pdev: Pointer to the PCI device
193 * @suspend_sts: Status of suspend
194 * @num: The number of SPI device instance
195 */
196struct pch_spi_board_data {
197 struct pci_dev *pdev;
198 u8 suspend_sts;
199 int num;
200};
201
202struct pch_pd_dev_save {
203 int num;
204 struct platform_device *pd_save[PCH_SPI_MAX_DEV];
205 struct pch_spi_board_data *board_dat;
206};
207
208static const struct pci_device_id pch_spi_pcidev_id[] = {
209 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
210 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
211 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
212 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
213 { }
214};
215
216/**
217 * pch_spi_writereg() - Performs register writes
218 * @master: Pointer to struct spi_master.
219 * @idx: Register offset.
220 * @val: Value to be written to register.
221 */
222static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
223{
224 struct pch_spi_data *data = spi_master_get_devdata(master);
225 iowrite32(val, (data->io_remap_addr + idx));
226}
227
228/**
229 * pch_spi_readreg() - Performs register reads
230 * @master: Pointer to struct spi_master.
231 * @idx: Register offset.
232 */
233static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
234{
235 struct pch_spi_data *data = spi_master_get_devdata(master);
236 return ioread32(data->io_remap_addr + idx);
237}
238
239static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
240 u32 set, u32 clr)
241{
242 u32 tmp = pch_spi_readreg(master, idx);
243 tmp = (tmp & ~clr) | set;
244 pch_spi_writereg(master, idx, tmp);
245}
246
247static void pch_spi_set_master_mode(struct spi_master *master)
248{
249 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
250}
251
252/**
253 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
254 * @master: Pointer to struct spi_master.
255 */
256static void pch_spi_clear_fifo(struct spi_master *master)
257{
258 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
259 pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
260}
261
262static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
263 void __iomem *io_remap_addr)
264{
265 u32 n_read, tx_index, rx_index, bpw_len;
266 u16 *pkt_rx_buffer, *pkt_tx_buff;
267 int read_cnt;
268 u32 reg_spcr_val;
269 void __iomem *spsr;
270 void __iomem *spdrr;
271 void __iomem *spdwr;
272
273 spsr = io_remap_addr + PCH_SPSR;
274 iowrite32(reg_spsr_val, spsr);
275
276 if (data->transfer_active) {
277 rx_index = data->rx_index;
278 tx_index = data->tx_index;
279 bpw_len = data->bpw_len;
280 pkt_rx_buffer = data->pkt_rx_buff;
281 pkt_tx_buff = data->pkt_tx_buff;
282
283 spdrr = io_remap_addr + PCH_SPDRR;
284 spdwr = io_remap_addr + PCH_SPDWR;
285
286 n_read = PCH_READABLE(reg_spsr_val);
287
288 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
289 pkt_rx_buffer[rx_index++] = ioread32(spdrr);
290 if (tx_index < bpw_len)
291 iowrite32(pkt_tx_buff[tx_index++], spdwr);
292 }
293
294 /* disable RFI if not needed */
295 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
296 reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
297 reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
298
299 /* reset rx threshold */
300 reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
301 reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
302
303 iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
304 }
305
306 /* update counts */
307 data->tx_index = tx_index;
308 data->rx_index = rx_index;
309
310 /* if transfer complete interrupt */
311 if (reg_spsr_val & SPSR_FI_BIT) {
312 if ((tx_index == bpw_len) && (rx_index == tx_index)) {
313 /* disable interrupts */
314 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
315 PCH_ALL);
316
317 /* transfer is completed;
318 inform pch_spi_process_messages */
319 data->transfer_complete = true;
320 data->transfer_active = false;
321 wake_up(&data->wait);
322 } else {
323 dev_vdbg(&data->master->dev,
324 "%s : Transfer is not completed",
325 __func__);
326 }
327 }
328 }
329}
330
331/**
332 * pch_spi_handler() - Interrupt handler
333 * @irq: The interrupt number.
334 * @dev_id: Pointer to struct pch_spi_board_data.
335 */
336static irqreturn_t pch_spi_handler(int irq, void *dev_id)
337{
338 u32 reg_spsr_val;
339 void __iomem *spsr;
340 void __iomem *io_remap_addr;
341 irqreturn_t ret = IRQ_NONE;
342 struct pch_spi_data *data = dev_id;
343 struct pch_spi_board_data *board_dat = data->board_dat;
344
345 if (board_dat->suspend_sts) {
346 dev_dbg(&board_dat->pdev->dev,
347 "%s returning due to suspend\n", __func__);
348 return IRQ_NONE;
349 }
350
351 io_remap_addr = data->io_remap_addr;
352 spsr = io_remap_addr + PCH_SPSR;
353
354 reg_spsr_val = ioread32(spsr);
355
356 if (reg_spsr_val & SPSR_ORF_BIT) {
357 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
358 if (data->current_msg->complete) {
359 data->transfer_complete = true;
360 data->current_msg->status = -EIO;
361 data->current_msg->complete(data->current_msg->context);
362 data->bcurrent_msg_processing = false;
363 data->current_msg = NULL;
364 data->cur_trans = NULL;
365 }
366 }
367
368 if (data->use_dma)
369 return IRQ_NONE;
370
371 /* Check if the interrupt is for SPI device */
372 if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
373 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
374 ret = IRQ_HANDLED;
375 }
376
377 dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
378 __func__, ret);
379
380 return ret;
381}
382
383/**
384 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
385 * @master: Pointer to struct spi_master.
386 * @speed_hz: Baud rate.
387 */
388static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
389{
390 u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
391
392 /* if baud rate is less than we can support limit it */
393 if (n_spbr > PCH_MAX_SPBR)
394 n_spbr = PCH_MAX_SPBR;
395
396 pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
397}
398
399/**
400 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
401 * @master: Pointer to struct spi_master.
402 * @bits_per_word: Bits per word for SPI transfer.
403 */
404static void pch_spi_set_bits_per_word(struct spi_master *master,
405 u8 bits_per_word)
406{
407 if (bits_per_word == 8)
408 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
409 else
410 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
411}
412
413/**
414 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
415 * @spi: Pointer to struct spi_device.
416 */
417static void pch_spi_setup_transfer(struct spi_device *spi)
418{
419 u32 flags = 0;
420
421 dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
422 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
423 spi->max_speed_hz);
424 pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
425
426 /* set bits per word */
427 pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
428
429 if (!(spi->mode & SPI_LSB_FIRST))
430 flags |= SPCR_LSBF_BIT;
431 if (spi->mode & SPI_CPOL)
432 flags |= SPCR_CPOL_BIT;
433 if (spi->mode & SPI_CPHA)
434 flags |= SPCR_CPHA_BIT;
435 pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
436 (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
437
438 /* Clear the FIFO by toggling FICLR to 1 and back to 0 */
439 pch_spi_clear_fifo(spi->master);
440}
441
442/**
443 * pch_spi_reset() - Clears SPI registers
444 * @master: Pointer to struct spi_master.
445 */
446static void pch_spi_reset(struct spi_master *master)
447{
448 /* write 1 to reset SPI */
449 pch_spi_writereg(master, PCH_SRST, 0x1);
450
451 /* clear reset */
452 pch_spi_writereg(master, PCH_SRST, 0x0);
453}
454
455static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
456{
457
458 struct spi_transfer *transfer;
459 struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
460 int retval;
461 unsigned long flags;
462
463 spin_lock_irqsave(&data->lock, flags);
464 /* validate Tx/Rx buffers and Transfer length */
465 list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
466 if (!transfer->tx_buf && !transfer->rx_buf) {
467 dev_err(&pspi->dev,
468 "%s Tx and Rx buffer NULL\n", __func__);
469 retval = -EINVAL;
470 goto err_return_spinlock;
471 }
472
473 if (!transfer->len) {
474 dev_err(&pspi->dev, "%s Transfer length invalid\n",
475 __func__);
476 retval = -EINVAL;
477 goto err_return_spinlock;
478 }
479
480 dev_dbg(&pspi->dev,
481 "%s Tx/Rx buffer valid. Transfer length valid\n",
482 __func__);
483 }
484 spin_unlock_irqrestore(&data->lock, flags);
485
486 /* We won't process any messages if we have been asked to terminate */
487 if (data->status == STATUS_EXITING) {
488 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
489 retval = -ESHUTDOWN;
490 goto err_out;
491 }
492
493 /* If suspended ,return -EINVAL */
494 if (data->board_dat->suspend_sts) {
495 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
496 retval = -EINVAL;
497 goto err_out;
498 }
499
500 /* set status of message */
501 pmsg->actual_length = 0;
502 dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
503
504 pmsg->status = -EINPROGRESS;
505 spin_lock_irqsave(&data->lock, flags);
506 /* add message to queue */
507 list_add_tail(&pmsg->queue, &data->queue);
508 spin_unlock_irqrestore(&data->lock, flags);
509
510 dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
511
512 schedule_work(&data->work);
513 dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
514
515 retval = 0;
516
517err_out:
518 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
519 return retval;
520err_return_spinlock:
521 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
522 spin_unlock_irqrestore(&data->lock, flags);
523 return retval;
524}
525
526static inline void pch_spi_select_chip(struct pch_spi_data *data,
527 struct spi_device *pspi)
528{
529 if (data->current_chip != NULL) {
530 if (pspi->chip_select != data->n_curnt_chip) {
531 dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
532 data->current_chip = NULL;
533 }
534 }
535
536 data->current_chip = pspi;
537
538 data->n_curnt_chip = data->current_chip->chip_select;
539
540 dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
541 pch_spi_setup_transfer(pspi);
542}
543
544static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
545{
546 int size;
547 u32 n_writes;
548 int j;
549 struct spi_message *pmsg, *tmp;
550 const u8 *tx_buf;
551 const u16 *tx_sbuf;
552
553 /* set baud rate if needed */
554 if (data->cur_trans->speed_hz) {
555 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
556 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
557 }
558
559 /* set bits per word if needed */
560 if (data->cur_trans->bits_per_word &&
561 (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
562 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
563 pch_spi_set_bits_per_word(data->master,
564 data->cur_trans->bits_per_word);
565 *bpw = data->cur_trans->bits_per_word;
566 } else {
567 *bpw = data->current_msg->spi->bits_per_word;
568 }
569
570 /* reset Tx/Rx index */
571 data->tx_index = 0;
572 data->rx_index = 0;
573
574 data->bpw_len = data->cur_trans->len / (*bpw / 8);
575
576 /* find alloc size */
577 size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
578
579 /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
580 data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
581 if (data->pkt_tx_buff != NULL) {
582 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
583 if (!data->pkt_rx_buff)
584 kfree(data->pkt_tx_buff);
585 }
586
587 if (!data->pkt_rx_buff) {
588 /* flush queue and set status of all transfers to -ENOMEM */
589 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
590 pmsg->status = -ENOMEM;
591
592 if (pmsg->complete)
593 pmsg->complete(pmsg->context);
594
595 /* delete from queue */
596 list_del_init(&pmsg->queue);
597 }
598 return;
599 }
600
601 /* copy Tx Data */
602 if (data->cur_trans->tx_buf != NULL) {
603 if (*bpw == 8) {
604 tx_buf = data->cur_trans->tx_buf;
605 for (j = 0; j < data->bpw_len; j++)
606 data->pkt_tx_buff[j] = *tx_buf++;
607 } else {
608 tx_sbuf = data->cur_trans->tx_buf;
609 for (j = 0; j < data->bpw_len; j++)
610 data->pkt_tx_buff[j] = *tx_sbuf++;
611 }
612 }
613
614 /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
615 n_writes = data->bpw_len;
616 if (n_writes > PCH_MAX_FIFO_DEPTH)
617 n_writes = PCH_MAX_FIFO_DEPTH;
618
619 dev_dbg(&data->master->dev,
620 "\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n",
621 __func__);
622 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
623
624 for (j = 0; j < n_writes; j++)
625 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
626
627 /* update tx_index */
628 data->tx_index = j;
629
630 /* reset transfer complete flag */
631 data->transfer_complete = false;
632 data->transfer_active = true;
633}
634
635static void pch_spi_nomore_transfer(struct pch_spi_data *data)
636{
637 struct spi_message *pmsg, *tmp;
638 dev_dbg(&data->master->dev, "%s called\n", __func__);
639 /* Invoke complete callback
640 * [To the spi core..indicating end of transfer] */
641 data->current_msg->status = 0;
642
643 if (data->current_msg->complete) {
644 dev_dbg(&data->master->dev,
645 "%s:Invoking callback of SPI core\n", __func__);
646 data->current_msg->complete(data->current_msg->context);
647 }
648
649 /* update status in global variable */
650 data->bcurrent_msg_processing = false;
651
652 dev_dbg(&data->master->dev,
653 "%s:data->bcurrent_msg_processing = false\n", __func__);
654
655 data->current_msg = NULL;
656 data->cur_trans = NULL;
657
658 /* check if we have items in list and not suspending
659 * return 1 if list empty */
660 if ((list_empty(&data->queue) == 0) &&
661 (!data->board_dat->suspend_sts) &&
662 (data->status != STATUS_EXITING)) {
663 /* We have some more work to do (either there is more tranint
664 * bpw;sfer requests in the current message or there are
665 *more messages)
666 */
667 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
668 schedule_work(&data->work);
669 } else if (data->board_dat->suspend_sts ||
670 data->status == STATUS_EXITING) {
671 dev_dbg(&data->master->dev,
672 "%s suspend/remove initiated, flushing queue\n",
673 __func__);
674 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
675 pmsg->status = -EIO;
676
677 if (pmsg->complete)
678 pmsg->complete(pmsg->context);
679
680 /* delete from queue */
681 list_del_init(&pmsg->queue);
682 }
683 }
684}
685
686static void pch_spi_set_ir(struct pch_spi_data *data)
687{
688 /* enable interrupts, set threshold, enable SPI */
689 if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
690 /* set receive threshold to PCH_RX_THOLD */
691 pch_spi_setclr_reg(data->master, PCH_SPCR,
692 PCH_RX_THOLD << SPCR_RFIC_FIELD |
693 SPCR_FIE_BIT | SPCR_RFIE_BIT |
694 SPCR_ORIE_BIT | SPCR_SPE_BIT,
695 MASK_RFIC_SPCR_BITS | PCH_ALL);
696 else
697 /* set receive threshold to maximum */
698 pch_spi_setclr_reg(data->master, PCH_SPCR,
699 PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
700 SPCR_FIE_BIT | SPCR_ORIE_BIT |
701 SPCR_SPE_BIT,
702 MASK_RFIC_SPCR_BITS | PCH_ALL);
703
704 /* Wait until the transfer completes; go to sleep after
705 initiating the transfer. */
706 dev_dbg(&data->master->dev,
707 "%s:waiting for transfer to get over\n", __func__);
708
709 wait_event_interruptible(data->wait, data->transfer_complete);
710
711 /* clear all interrupts */
712 pch_spi_writereg(data->master, PCH_SPSR,
713 pch_spi_readreg(data->master, PCH_SPSR));
714 /* Disable interrupts and SPI transfer */
715 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
716 /* clear FIFO */
717 pch_spi_clear_fifo(data->master);
718}
719
720static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
721{
722 int j;
723 u8 *rx_buf;
724 u16 *rx_sbuf;
725
726 /* copy Rx Data */
727 if (!data->cur_trans->rx_buf)
728 return;
729
730 if (bpw == 8) {
731 rx_buf = data->cur_trans->rx_buf;
732 for (j = 0; j < data->bpw_len; j++)
733 *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
734 } else {
735 rx_sbuf = data->cur_trans->rx_buf;
736 for (j = 0; j < data->bpw_len; j++)
737 *rx_sbuf++ = data->pkt_rx_buff[j];
738 }
739}
740
741static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
742{
743 int j;
744 u8 *rx_buf;
745 u16 *rx_sbuf;
746 const u8 *rx_dma_buf;
747 const u16 *rx_dma_sbuf;
748
749 /* copy Rx Data */
750 if (!data->cur_trans->rx_buf)
751 return;
752
753 if (bpw == 8) {
754 rx_buf = data->cur_trans->rx_buf;
755 rx_dma_buf = data->dma.rx_buf_virt;
756 for (j = 0; j < data->bpw_len; j++)
757 *rx_buf++ = *rx_dma_buf++ & 0xFF;
758 data->cur_trans->rx_buf = rx_buf;
759 } else {
760 rx_sbuf = data->cur_trans->rx_buf;
761 rx_dma_sbuf = data->dma.rx_buf_virt;
762 for (j = 0; j < data->bpw_len; j++)
763 *rx_sbuf++ = *rx_dma_sbuf++;
764 data->cur_trans->rx_buf = rx_sbuf;
765 }
766}
767
768static int pch_spi_start_transfer(struct pch_spi_data *data)
769{
770 struct pch_spi_dma_ctrl *dma;
771 unsigned long flags;
772 int rtn;
773
774 dma = &data->dma;
775
776 spin_lock_irqsave(&data->lock, flags);
777
778 /* disable interrupts, SPI set enable */
779 pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
780
781 spin_unlock_irqrestore(&data->lock, flags);
782
783 /* Wait until the transfer completes; go to sleep after
784 initiating the transfer. */
785 dev_dbg(&data->master->dev,
786 "%s:waiting for transfer to get over\n", __func__);
787 rtn = wait_event_interruptible_timeout(data->wait,
788 data->transfer_complete,
789 msecs_to_jiffies(2 * HZ));
790 if (!rtn)
791 dev_err(&data->master->dev,
792 "%s wait-event timeout\n", __func__);
793
794 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
795 DMA_FROM_DEVICE);
796
797 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
798 DMA_FROM_DEVICE);
799 memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
800
801 async_tx_ack(dma->desc_rx);
802 async_tx_ack(dma->desc_tx);
803 kfree(dma->sg_tx_p);
804 kfree(dma->sg_rx_p);
805
806 spin_lock_irqsave(&data->lock, flags);
807
808 /* clear fifo threshold, disable interrupts, disable SPI transfer */
809 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
810 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
811 SPCR_SPE_BIT);
812 /* clear all interrupts */
813 pch_spi_writereg(data->master, PCH_SPSR,
814 pch_spi_readreg(data->master, PCH_SPSR));
815 /* clear FIFO */
816 pch_spi_clear_fifo(data->master);
817
818 spin_unlock_irqrestore(&data->lock, flags);
819
820 return rtn;
821}
822
823static void pch_dma_rx_complete(void *arg)
824{
825 struct pch_spi_data *data = arg;
826
827 /* transfer is completed;inform pch_spi_process_messages_dma */
828 data->transfer_complete = true;
829 wake_up_interruptible(&data->wait);
830}
831
832static bool pch_spi_filter(struct dma_chan *chan, void *slave)
833{
834 struct pch_dma_slave *param = slave;
835
836 if ((chan->chan_id == param->chan_id) &&
837 (param->dma_dev == chan->device->dev)) {
838 chan->private = param;
839 return true;
840 } else {
841 return false;
842 }
843}
844
845static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
846{
847 dma_cap_mask_t mask;
848 struct dma_chan *chan;
849 struct pci_dev *dma_dev;
850 struct pch_dma_slave *param;
851 struct pch_spi_dma_ctrl *dma;
852 unsigned int width;
853
854 if (bpw == 8)
855 width = PCH_DMA_WIDTH_1_BYTE;
856 else
857 width = PCH_DMA_WIDTH_2_BYTES;
858
859 dma = &data->dma;
860 dma_cap_zero(mask);
861 dma_cap_set(DMA_SLAVE, mask);
862
863 /* Get DMA's dev information */
864 dma_dev = pci_get_slot(data->board_dat->pdev->bus,
865 PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
866
867 /* Set Tx DMA */
868 param = &dma->param_tx;
869 param->dma_dev = &dma_dev->dev;
870 param->chan_id = data->ch * 2; /* Tx = 0, 2 */
871 param->tx_reg = data->io_base_addr + PCH_SPDWR;
872 param->width = width;
873 chan = dma_request_channel(mask, pch_spi_filter, param);
874 if (!chan) {
875 dev_err(&data->master->dev,
876 "ERROR: dma_request_channel FAILS(Tx)\n");
877 data->use_dma = 0;
878 return;
879 }
880 dma->chan_tx = chan;
881
882 /* Set Rx DMA */
883 param = &dma->param_rx;
884 param->dma_dev = &dma_dev->dev;
885 param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */
886 param->rx_reg = data->io_base_addr + PCH_SPDRR;
887 param->width = width;
888 chan = dma_request_channel(mask, pch_spi_filter, param);
889 if (!chan) {
890 dev_err(&data->master->dev,
891 "ERROR: dma_request_channel FAILS(Rx)\n");
892 dma_release_channel(dma->chan_tx);
893 dma->chan_tx = NULL;
894 data->use_dma = 0;
895 return;
896 }
897 dma->chan_rx = chan;
898}
899
900static void pch_spi_release_dma(struct pch_spi_data *data)
901{
902 struct pch_spi_dma_ctrl *dma;
903
904 dma = &data->dma;
905 if (dma->chan_tx) {
906 dma_release_channel(dma->chan_tx);
907 dma->chan_tx = NULL;
908 }
909 if (dma->chan_rx) {
910 dma_release_channel(dma->chan_rx);
911 dma->chan_rx = NULL;
912 }
913}
914
915static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
916{
917 const u8 *tx_buf;
918 const u16 *tx_sbuf;
919 u8 *tx_dma_buf;
920 u16 *tx_dma_sbuf;
921 struct scatterlist *sg;
922 struct dma_async_tx_descriptor *desc_tx;
923 struct dma_async_tx_descriptor *desc_rx;
924 int num;
925 int i;
926 int size;
927 int rem;
928 int head;
929 unsigned long flags;
930 struct pch_spi_dma_ctrl *dma;
931
932 dma = &data->dma;
933
934 /* set baud rate if needed */
935 if (data->cur_trans->speed_hz) {
936 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
937 spin_lock_irqsave(&data->lock, flags);
938 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
939 spin_unlock_irqrestore(&data->lock, flags);
940 }
941
942 /* set bits per word if needed */
943 if (data->cur_trans->bits_per_word &&
944 (data->current_msg->spi->bits_per_word !=
945 data->cur_trans->bits_per_word)) {
946 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
947 spin_lock_irqsave(&data->lock, flags);
948 pch_spi_set_bits_per_word(data->master,
949 data->cur_trans->bits_per_word);
950 spin_unlock_irqrestore(&data->lock, flags);
951 *bpw = data->cur_trans->bits_per_word;
952 } else {
953 *bpw = data->current_msg->spi->bits_per_word;
954 }
955 data->bpw_len = data->cur_trans->len / (*bpw / 8);
956
957 if (data->bpw_len > PCH_BUF_SIZE) {
958 data->bpw_len = PCH_BUF_SIZE;
959 data->cur_trans->len -= PCH_BUF_SIZE;
960 }
961
962 /* copy Tx Data */
963 if (data->cur_trans->tx_buf != NULL) {
964 if (*bpw == 8) {
965 tx_buf = data->cur_trans->tx_buf;
966 tx_dma_buf = dma->tx_buf_virt;
967 for (i = 0; i < data->bpw_len; i++)
968 *tx_dma_buf++ = *tx_buf++;
969 } else {
970 tx_sbuf = data->cur_trans->tx_buf;
971 tx_dma_sbuf = dma->tx_buf_virt;
972 for (i = 0; i < data->bpw_len; i++)
973 *tx_dma_sbuf++ = *tx_sbuf++;
974 }
975 }
976
977 /* Calculate Rx parameter for DMA transmitting */
978 if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
979 if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
980 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
981 rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
982 } else {
983 num = data->bpw_len / PCH_DMA_TRANS_SIZE;
984 rem = PCH_DMA_TRANS_SIZE;
985 }
986 size = PCH_DMA_TRANS_SIZE;
987 } else {
988 num = 1;
989 size = data->bpw_len;
990 rem = data->bpw_len;
991 }
992 dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
993 __func__, num, size, rem);
994 spin_lock_irqsave(&data->lock, flags);
995
996 /* set receive fifo threshold and transmit fifo threshold */
997 pch_spi_setclr_reg(data->master, PCH_SPCR,
998 ((size - 1) << SPCR_RFIC_FIELD) |
999 (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1000 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1001
1002 spin_unlock_irqrestore(&data->lock, flags);
1003
1004 /* RX */
1005 dma->sg_rx_p = kcalloc(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC);
1006 if (!dma->sg_rx_p)
1007 return;
1008
1009 sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1010 /* offset, length setting */
1011 sg = dma->sg_rx_p;
1012 for (i = 0; i < num; i++, sg++) {
1013 if (i == (num - 2)) {
1014 sg->offset = size * i;
1015 sg->offset = sg->offset * (*bpw / 8);
1016 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1017 sg->offset);
1018 sg_dma_len(sg) = rem;
1019 } else if (i == (num - 1)) {
1020 sg->offset = size * (i - 1) + rem;
1021 sg->offset = sg->offset * (*bpw / 8);
1022 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1023 sg->offset);
1024 sg_dma_len(sg) = size;
1025 } else {
1026 sg->offset = size * i;
1027 sg->offset = sg->offset * (*bpw / 8);
1028 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1029 sg->offset);
1030 sg_dma_len(sg) = size;
1031 }
1032 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1033 }
1034 sg = dma->sg_rx_p;
1035 desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1036 num, DMA_DEV_TO_MEM,
1037 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1038 if (!desc_rx) {
1039 dev_err(&data->master->dev,
1040 "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1041 return;
1042 }
1043 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1044 desc_rx->callback = pch_dma_rx_complete;
1045 desc_rx->callback_param = data;
1046 dma->nent = num;
1047 dma->desc_rx = desc_rx;
1048
1049 /* Calculate Tx parameter for DMA transmitting */
1050 if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1051 head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1052 if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1053 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1054 rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1055 } else {
1056 num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1057 rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1058 PCH_DMA_TRANS_SIZE - head;
1059 }
1060 size = PCH_DMA_TRANS_SIZE;
1061 } else {
1062 num = 1;
1063 size = data->bpw_len;
1064 rem = data->bpw_len;
1065 head = 0;
1066 }
1067
1068 dma->sg_tx_p = kcalloc(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC);
1069 if (!dma->sg_tx_p)
1070 return;
1071
1072 sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1073 /* offset, length setting */
1074 sg = dma->sg_tx_p;
1075 for (i = 0; i < num; i++, sg++) {
1076 if (i == 0) {
1077 sg->offset = 0;
1078 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1079 sg->offset);
1080 sg_dma_len(sg) = size + head;
1081 } else if (i == (num - 1)) {
1082 sg->offset = head + size * i;
1083 sg->offset = sg->offset * (*bpw / 8);
1084 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1085 sg->offset);
1086 sg_dma_len(sg) = rem;
1087 } else {
1088 sg->offset = head + size * i;
1089 sg->offset = sg->offset * (*bpw / 8);
1090 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1091 sg->offset);
1092 sg_dma_len(sg) = size;
1093 }
1094 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1095 }
1096 sg = dma->sg_tx_p;
1097 desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1098 sg, num, DMA_MEM_TO_DEV,
1099 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1100 if (!desc_tx) {
1101 dev_err(&data->master->dev,
1102 "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1103 return;
1104 }
1105 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1106 desc_tx->callback = NULL;
1107 desc_tx->callback_param = data;
1108 dma->nent = num;
1109 dma->desc_tx = desc_tx;
1110
1111 dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1112
1113 spin_lock_irqsave(&data->lock, flags);
1114 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1115 desc_rx->tx_submit(desc_rx);
1116 desc_tx->tx_submit(desc_tx);
1117 spin_unlock_irqrestore(&data->lock, flags);
1118
1119 /* reset transfer complete flag */
1120 data->transfer_complete = false;
1121}
1122
1123static void pch_spi_process_messages(struct work_struct *pwork)
1124{
1125 struct spi_message *pmsg, *tmp;
1126 struct pch_spi_data *data;
1127 int bpw;
1128
1129 data = container_of(pwork, struct pch_spi_data, work);
1130 dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1131
1132 spin_lock(&data->lock);
1133 /* check if suspend has been initiated;if yes flush queue */
1134 if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1135 dev_dbg(&data->master->dev,
1136 "%s suspend/remove initiated, flushing queue\n", __func__);
1137 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1138 pmsg->status = -EIO;
1139
1140 if (pmsg->complete) {
1141 spin_unlock(&data->lock);
1142 pmsg->complete(pmsg->context);
1143 spin_lock(&data->lock);
1144 }
1145
1146 /* delete from queue */
1147 list_del_init(&pmsg->queue);
1148 }
1149
1150 spin_unlock(&data->lock);
1151 return;
1152 }
1153
1154 data->bcurrent_msg_processing = true;
1155 dev_dbg(&data->master->dev,
1156 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1157
1158 /* Get the message from the queue and delete it from there. */
1159 data->current_msg = list_entry(data->queue.next, struct spi_message,
1160 queue);
1161
1162 list_del_init(&data->current_msg->queue);
1163
1164 data->current_msg->status = 0;
1165
1166 pch_spi_select_chip(data, data->current_msg->spi);
1167
1168 spin_unlock(&data->lock);
1169
1170 if (data->use_dma)
1171 pch_spi_request_dma(data,
1172 data->current_msg->spi->bits_per_word);
1173 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1174 do {
1175 int cnt;
1176 /* If we are already processing a message get the next
1177 transfer structure from the message otherwise retrieve
1178 the 1st transfer request from the message. */
1179 spin_lock(&data->lock);
1180 if (data->cur_trans == NULL) {
1181 data->cur_trans =
1182 list_entry(data->current_msg->transfers.next,
1183 struct spi_transfer, transfer_list);
1184 dev_dbg(&data->master->dev,
1185 "%s :Getting 1st transfer message\n",
1186 __func__);
1187 } else {
1188 data->cur_trans =
1189 list_entry(data->cur_trans->transfer_list.next,
1190 struct spi_transfer, transfer_list);
1191 dev_dbg(&data->master->dev,
1192 "%s :Getting next transfer message\n",
1193 __func__);
1194 }
1195 spin_unlock(&data->lock);
1196
1197 if (!data->cur_trans->len)
1198 goto out;
1199 cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1200 data->save_total_len = data->cur_trans->len;
1201 if (data->use_dma) {
1202 int i;
1203 char *save_rx_buf = data->cur_trans->rx_buf;
1204 for (i = 0; i < cnt; i ++) {
1205 pch_spi_handle_dma(data, &bpw);
1206 if (!pch_spi_start_transfer(data)) {
1207 data->transfer_complete = true;
1208 data->current_msg->status = -EIO;
1209 data->current_msg->complete
1210 (data->current_msg->context);
1211 data->bcurrent_msg_processing = false;
1212 data->current_msg = NULL;
1213 data->cur_trans = NULL;
1214 goto out;
1215 }
1216 pch_spi_copy_rx_data_for_dma(data, bpw);
1217 }
1218 data->cur_trans->rx_buf = save_rx_buf;
1219 } else {
1220 pch_spi_set_tx(data, &bpw);
1221 pch_spi_set_ir(data);
1222 pch_spi_copy_rx_data(data, bpw);
1223 kfree(data->pkt_rx_buff);
1224 data->pkt_rx_buff = NULL;
1225 kfree(data->pkt_tx_buff);
1226 data->pkt_tx_buff = NULL;
1227 }
1228 /* increment message count */
1229 data->cur_trans->len = data->save_total_len;
1230 data->current_msg->actual_length += data->cur_trans->len;
1231
1232 dev_dbg(&data->master->dev,
1233 "%s:data->current_msg->actual_length=%d\n",
1234 __func__, data->current_msg->actual_length);
1235
1236 spi_transfer_delay_exec(data->cur_trans);
1237
1238 spin_lock(&data->lock);
1239
1240 /* No more transfer in this message. */
1241 if ((data->cur_trans->transfer_list.next) ==
1242 &(data->current_msg->transfers)) {
1243 pch_spi_nomore_transfer(data);
1244 }
1245
1246 spin_unlock(&data->lock);
1247
1248 } while (data->cur_trans != NULL);
1249
1250out:
1251 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1252 if (data->use_dma)
1253 pch_spi_release_dma(data);
1254}
1255
1256static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1257 struct pch_spi_data *data)
1258{
1259 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1260
1261 flush_work(&data->work);
1262}
1263
1264static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1265 struct pch_spi_data *data)
1266{
1267 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1268
1269 /* reset PCH SPI h/w */
1270 pch_spi_reset(data->master);
1271 dev_dbg(&board_dat->pdev->dev,
1272 "%s pch_spi_reset invoked successfully\n", __func__);
1273
1274 dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1275
1276 return 0;
1277}
1278
1279static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1280 struct pch_spi_data *data)
1281{
1282 struct pch_spi_dma_ctrl *dma;
1283
1284 dma = &data->dma;
1285 if (dma->tx_buf_dma)
1286 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1287 dma->tx_buf_virt, dma->tx_buf_dma);
1288 if (dma->rx_buf_dma)
1289 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1290 dma->rx_buf_virt, dma->rx_buf_dma);
1291}
1292
1293static int pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1294 struct pch_spi_data *data)
1295{
1296 struct pch_spi_dma_ctrl *dma;
1297 int ret;
1298
1299 dma = &data->dma;
1300 ret = 0;
1301 /* Get Consistent memory for Tx DMA */
1302 dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1303 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1304 if (!dma->tx_buf_virt)
1305 ret = -ENOMEM;
1306
1307 /* Get Consistent memory for Rx DMA */
1308 dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1309 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1310 if (!dma->rx_buf_virt)
1311 ret = -ENOMEM;
1312
1313 return ret;
1314}
1315
1316static int pch_spi_pd_probe(struct platform_device *plat_dev)
1317{
1318 int ret;
1319 struct spi_master *master;
1320 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1321 struct pch_spi_data *data;
1322
1323 dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1324
1325 master = spi_alloc_master(&board_dat->pdev->dev,
1326 sizeof(struct pch_spi_data));
1327 if (!master) {
1328 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1329 plat_dev->id);
1330 return -ENOMEM;
1331 }
1332
1333 data = spi_master_get_devdata(master);
1334 data->master = master;
1335
1336 platform_set_drvdata(plat_dev, data);
1337
1338 /* baseaddress + address offset) */
1339 data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1340 PCH_ADDRESS_SIZE * plat_dev->id;
1341 data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1342 if (!data->io_remap_addr) {
1343 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1344 ret = -ENOMEM;
1345 goto err_pci_iomap;
1346 }
1347 data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1348
1349 dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1350 plat_dev->id, data->io_remap_addr);
1351
1352 /* initialize members of SPI master */
1353 master->num_chipselect = PCH_MAX_CS;
1354 master->transfer = pch_spi_transfer;
1355 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1356 master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1357 master->max_speed_hz = PCH_MAX_BAUDRATE;
1358
1359 data->board_dat = board_dat;
1360 data->plat_dev = plat_dev;
1361 data->n_curnt_chip = 255;
1362 data->status = STATUS_RUNNING;
1363 data->ch = plat_dev->id;
1364 data->use_dma = use_dma;
1365
1366 INIT_LIST_HEAD(&data->queue);
1367 spin_lock_init(&data->lock);
1368 INIT_WORK(&data->work, pch_spi_process_messages);
1369 init_waitqueue_head(&data->wait);
1370
1371 ret = pch_spi_get_resources(board_dat, data);
1372 if (ret) {
1373 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1374 goto err_spi_get_resources;
1375 }
1376
1377 ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1378 IRQF_SHARED, KBUILD_MODNAME, data);
1379 if (ret) {
1380 dev_err(&plat_dev->dev,
1381 "%s request_irq failed\n", __func__);
1382 goto err_request_irq;
1383 }
1384 data->irq_reg_sts = true;
1385
1386 pch_spi_set_master_mode(master);
1387
1388 if (use_dma) {
1389 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1390 ret = pch_alloc_dma_buf(board_dat, data);
1391 if (ret)
1392 goto err_spi_register_master;
1393 }
1394
1395 ret = spi_register_master(master);
1396 if (ret != 0) {
1397 dev_err(&plat_dev->dev,
1398 "%s spi_register_master FAILED\n", __func__);
1399 goto err_spi_register_master;
1400 }
1401
1402 return 0;
1403
1404err_spi_register_master:
1405 pch_free_dma_buf(board_dat, data);
1406 free_irq(board_dat->pdev->irq, data);
1407err_request_irq:
1408 pch_spi_free_resources(board_dat, data);
1409err_spi_get_resources:
1410 pci_iounmap(board_dat->pdev, data->io_remap_addr);
1411err_pci_iomap:
1412 spi_master_put(master);
1413
1414 return ret;
1415}
1416
1417static int pch_spi_pd_remove(struct platform_device *plat_dev)
1418{
1419 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1420 struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1421 int count;
1422 unsigned long flags;
1423
1424 dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1425 __func__, plat_dev->id, board_dat->pdev->irq);
1426
1427 if (use_dma)
1428 pch_free_dma_buf(board_dat, data);
1429
1430 /* check for any pending messages; no action is taken if the queue
1431 * is still full; but at least we tried. Unload anyway */
1432 count = 500;
1433 spin_lock_irqsave(&data->lock, flags);
1434 data->status = STATUS_EXITING;
1435 while ((list_empty(&data->queue) == 0) && --count) {
1436 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1437 __func__);
1438 spin_unlock_irqrestore(&data->lock, flags);
1439 msleep(PCH_SLEEP_TIME);
1440 spin_lock_irqsave(&data->lock, flags);
1441 }
1442 spin_unlock_irqrestore(&data->lock, flags);
1443
1444 pch_spi_free_resources(board_dat, data);
1445 /* disable interrupts & free IRQ */
1446 if (data->irq_reg_sts) {
1447 /* disable interrupts */
1448 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1449 data->irq_reg_sts = false;
1450 free_irq(board_dat->pdev->irq, data);
1451 }
1452
1453 pci_iounmap(board_dat->pdev, data->io_remap_addr);
1454 spi_unregister_master(data->master);
1455
1456 return 0;
1457}
1458#ifdef CONFIG_PM
1459static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1460 pm_message_t state)
1461{
1462 u8 count;
1463 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1464 struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1465
1466 dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1467
1468 if (!board_dat) {
1469 dev_err(&pd_dev->dev,
1470 "%s pci_get_drvdata returned NULL\n", __func__);
1471 return -EFAULT;
1472 }
1473
1474 /* check if the current message is processed:
1475 Only after thats done the transfer will be suspended */
1476 count = 255;
1477 while ((--count) > 0) {
1478 if (!(data->bcurrent_msg_processing))
1479 break;
1480 msleep(PCH_SLEEP_TIME);
1481 }
1482
1483 /* Free IRQ */
1484 if (data->irq_reg_sts) {
1485 /* disable all interrupts */
1486 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1487 pch_spi_reset(data->master);
1488 free_irq(board_dat->pdev->irq, data);
1489
1490 data->irq_reg_sts = false;
1491 dev_dbg(&pd_dev->dev,
1492 "%s free_irq invoked successfully.\n", __func__);
1493 }
1494
1495 return 0;
1496}
1497
1498static int pch_spi_pd_resume(struct platform_device *pd_dev)
1499{
1500 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1501 struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1502 int retval;
1503
1504 if (!board_dat) {
1505 dev_err(&pd_dev->dev,
1506 "%s pci_get_drvdata returned NULL\n", __func__);
1507 return -EFAULT;
1508 }
1509
1510 if (!data->irq_reg_sts) {
1511 /* register IRQ */
1512 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1513 IRQF_SHARED, KBUILD_MODNAME, data);
1514 if (retval < 0) {
1515 dev_err(&pd_dev->dev,
1516 "%s request_irq failed\n", __func__);
1517 return retval;
1518 }
1519
1520 /* reset PCH SPI h/w */
1521 pch_spi_reset(data->master);
1522 pch_spi_set_master_mode(data->master);
1523 data->irq_reg_sts = true;
1524 }
1525 return 0;
1526}
1527#else
1528#define pch_spi_pd_suspend NULL
1529#define pch_spi_pd_resume NULL
1530#endif
1531
1532static struct platform_driver pch_spi_pd_driver = {
1533 .driver = {
1534 .name = "pch-spi",
1535 },
1536 .probe = pch_spi_pd_probe,
1537 .remove = pch_spi_pd_remove,
1538 .suspend = pch_spi_pd_suspend,
1539 .resume = pch_spi_pd_resume
1540};
1541
1542static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1543{
1544 struct pch_spi_board_data *board_dat;
1545 struct platform_device *pd_dev = NULL;
1546 int retval;
1547 int i;
1548 struct pch_pd_dev_save *pd_dev_save;
1549
1550 pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL);
1551 if (!pd_dev_save)
1552 return -ENOMEM;
1553
1554 board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL);
1555 if (!board_dat) {
1556 retval = -ENOMEM;
1557 goto err_no_mem;
1558 }
1559
1560 retval = pci_request_regions(pdev, KBUILD_MODNAME);
1561 if (retval) {
1562 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1563 goto pci_request_regions;
1564 }
1565
1566 board_dat->pdev = pdev;
1567 board_dat->num = id->driver_data;
1568 pd_dev_save->num = id->driver_data;
1569 pd_dev_save->board_dat = board_dat;
1570
1571 retval = pci_enable_device(pdev);
1572 if (retval) {
1573 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1574 goto pci_enable_device;
1575 }
1576
1577 for (i = 0; i < board_dat->num; i++) {
1578 pd_dev = platform_device_alloc("pch-spi", i);
1579 if (!pd_dev) {
1580 dev_err(&pdev->dev, "platform_device_alloc failed\n");
1581 retval = -ENOMEM;
1582 goto err_platform_device;
1583 }
1584 pd_dev_save->pd_save[i] = pd_dev;
1585 pd_dev->dev.parent = &pdev->dev;
1586
1587 retval = platform_device_add_data(pd_dev, board_dat,
1588 sizeof(*board_dat));
1589 if (retval) {
1590 dev_err(&pdev->dev,
1591 "platform_device_add_data failed\n");
1592 platform_device_put(pd_dev);
1593 goto err_platform_device;
1594 }
1595
1596 retval = platform_device_add(pd_dev);
1597 if (retval) {
1598 dev_err(&pdev->dev, "platform_device_add failed\n");
1599 platform_device_put(pd_dev);
1600 goto err_platform_device;
1601 }
1602 }
1603
1604 pci_set_drvdata(pdev, pd_dev_save);
1605
1606 return 0;
1607
1608err_platform_device:
1609 while (--i >= 0)
1610 platform_device_unregister(pd_dev_save->pd_save[i]);
1611 pci_disable_device(pdev);
1612pci_enable_device:
1613 pci_release_regions(pdev);
1614pci_request_regions:
1615 kfree(board_dat);
1616err_no_mem:
1617 kfree(pd_dev_save);
1618
1619 return retval;
1620}
1621
1622static void pch_spi_remove(struct pci_dev *pdev)
1623{
1624 int i;
1625 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1626
1627 dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1628
1629 for (i = 0; i < pd_dev_save->num; i++)
1630 platform_device_unregister(pd_dev_save->pd_save[i]);
1631
1632 pci_disable_device(pdev);
1633 pci_release_regions(pdev);
1634 kfree(pd_dev_save->board_dat);
1635 kfree(pd_dev_save);
1636}
1637
1638static int __maybe_unused pch_spi_suspend(struct device *dev)
1639{
1640 struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
1641
1642 dev_dbg(dev, "%s ENTRY\n", __func__);
1643
1644 pd_dev_save->board_dat->suspend_sts = true;
1645
1646 return 0;
1647}
1648
1649static int __maybe_unused pch_spi_resume(struct device *dev)
1650{
1651 struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
1652
1653 dev_dbg(dev, "%s ENTRY\n", __func__);
1654
1655 /* set suspend status to false */
1656 pd_dev_save->board_dat->suspend_sts = false;
1657
1658 return 0;
1659}
1660
1661static SIMPLE_DEV_PM_OPS(pch_spi_pm_ops, pch_spi_suspend, pch_spi_resume);
1662
1663static struct pci_driver pch_spi_pcidev_driver = {
1664 .name = "pch_spi",
1665 .id_table = pch_spi_pcidev_id,
1666 .probe = pch_spi_probe,
1667 .remove = pch_spi_remove,
1668 .driver.pm = &pch_spi_pm_ops,
1669};
1670
1671static int __init pch_spi_init(void)
1672{
1673 int ret;
1674 ret = platform_driver_register(&pch_spi_pd_driver);
1675 if (ret)
1676 return ret;
1677
1678 ret = pci_register_driver(&pch_spi_pcidev_driver);
1679 if (ret) {
1680 platform_driver_unregister(&pch_spi_pd_driver);
1681 return ret;
1682 }
1683
1684 return 0;
1685}
1686module_init(pch_spi_init);
1687
1688static void __exit pch_spi_exit(void)
1689{
1690 pci_unregister_driver(&pch_spi_pcidev_driver);
1691 platform_driver_unregister(&pch_spi_pd_driver);
1692}
1693module_exit(pch_spi_exit);
1694
1695module_param(use_dma, int, 0644);
1696MODULE_PARM_DESC(use_dma,
1697 "to use DMA for data transfers pass 1 else 0; default 1");
1698
1699MODULE_LICENSE("GPL");
1700MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1701MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1702