Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * PRU-ICSS remoteproc driver for various TI SoCs
   4 *
   5 * Copyright (C) 2014-2022 Texas Instruments Incorporated - https://www.ti.com/
   6 *
   7 * Author(s):
   8 *	Suman Anna <s-anna@ti.com>
   9 *	Andrew F. Davis <afd@ti.com>
  10 *	Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> for Texas Instruments
  11 *	Puranjay Mohan <p-mohan@ti.com>
  12 *	Md Danish Anwar <danishanwar@ti.com>
  13 */
  14
  15#include <linux/bitops.h>
  16#include <linux/debugfs.h>
  17#include <linux/irqdomain.h>
  18#include <linux/module.h>
  19#include <linux/of.h>
  20#include <linux/of_irq.h>
  21#include <linux/platform_device.h>
  22#include <linux/remoteproc/pruss.h>
  23#include <linux/pruss_driver.h>
  24#include <linux/remoteproc.h>
  25
  26#include "remoteproc_internal.h"
  27#include "remoteproc_elf_helpers.h"
  28#include "pru_rproc.h"
  29
  30/* PRU_ICSS_PRU_CTRL registers */
  31#define PRU_CTRL_CTRL		0x0000
  32#define PRU_CTRL_STS		0x0004
  33#define PRU_CTRL_WAKEUP_EN	0x0008
  34#define PRU_CTRL_CYCLE		0x000C
  35#define PRU_CTRL_STALL		0x0010
  36#define PRU_CTRL_CTBIR0		0x0020
  37#define PRU_CTRL_CTBIR1		0x0024
  38#define PRU_CTRL_CTPPR0		0x0028
  39#define PRU_CTRL_CTPPR1		0x002C
  40
  41/* CTRL register bit-fields */
  42#define CTRL_CTRL_SOFT_RST_N	BIT(0)
  43#define CTRL_CTRL_EN		BIT(1)
  44#define CTRL_CTRL_SLEEPING	BIT(2)
  45#define CTRL_CTRL_CTR_EN	BIT(3)
  46#define CTRL_CTRL_SINGLE_STEP	BIT(8)
  47#define CTRL_CTRL_RUNSTATE	BIT(15)
  48
  49/* PRU_ICSS_PRU_DEBUG registers */
  50#define PRU_DEBUG_GPREG(x)	(0x0000 + (x) * 4)
  51#define PRU_DEBUG_CT_REG(x)	(0x0080 + (x) * 4)
  52
  53/* PRU/RTU/Tx_PRU Core IRAM address masks */
  54#define PRU_IRAM_ADDR_MASK	0x3ffff
  55#define PRU0_IRAM_ADDR_MASK	0x34000
  56#define PRU1_IRAM_ADDR_MASK	0x38000
  57#define RTU0_IRAM_ADDR_MASK	0x4000
  58#define RTU1_IRAM_ADDR_MASK	0x6000
  59#define TX_PRU0_IRAM_ADDR_MASK	0xa000
  60#define TX_PRU1_IRAM_ADDR_MASK	0xc000
  61
  62/* PRU device addresses for various type of PRU RAMs */
  63#define PRU_IRAM_DA	0	/* Instruction RAM */
  64#define PRU_PDRAM_DA	0	/* Primary Data RAM */
  65#define PRU_SDRAM_DA	0x2000	/* Secondary Data RAM */
  66#define PRU_SHRDRAM_DA	0x10000 /* Shared Data RAM */
  67
  68#define MAX_PRU_SYS_EVENTS 160
  69
  70/**
  71 * enum pru_iomem - PRU core memory/register range identifiers
  72 *
  73 * @PRU_IOMEM_IRAM: PRU Instruction RAM range
  74 * @PRU_IOMEM_CTRL: PRU Control register range
  75 * @PRU_IOMEM_DEBUG: PRU Debug register range
  76 * @PRU_IOMEM_MAX: just keep this one at the end
  77 */
  78enum pru_iomem {
  79	PRU_IOMEM_IRAM = 0,
  80	PRU_IOMEM_CTRL,
  81	PRU_IOMEM_DEBUG,
  82	PRU_IOMEM_MAX,
  83};
  84
  85/**
  86 * struct pru_private_data - device data for a PRU core
  87 * @type: type of the PRU core (PRU, RTU, Tx_PRU)
  88 * @is_k3: flag used to identify the need for special load handling
  89 */
  90struct pru_private_data {
  91	enum pru_type type;
  92	unsigned int is_k3 : 1;
  93};
  94
  95/**
  96 * struct pru_rproc - PRU remoteproc structure
  97 * @id: id of the PRU core within the PRUSS
  98 * @dev: PRU core device pointer
  99 * @pruss: back-reference to parent PRUSS structure
 100 * @rproc: remoteproc pointer for this PRU core
 101 * @data: PRU core specific data
 102 * @mem_regions: data for each of the PRU memory regions
 103 * @client_np: client device node
 104 * @lock: mutex to protect client usage
 105 * @fw_name: name of firmware image used during loading
 106 * @mapped_irq: virtual interrupt numbers of created fw specific mapping
 107 * @pru_interrupt_map: pointer to interrupt mapping description (firmware)
 108 * @pru_interrupt_map_sz: pru_interrupt_map size
 109 * @rmw_lock: lock for read, modify, write operations on registers
 110 * @dbg_single_step: debug state variable to set PRU into single step mode
 111 * @dbg_continuous: debug state variable to restore PRU execution mode
 112 * @evt_count: number of mapped events
 113 * @gpmux_save: saved value for gpmux config
 114 */
 115struct pru_rproc {
 116	int id;
 117	struct device *dev;
 118	struct pruss *pruss;
 119	struct rproc *rproc;
 120	const struct pru_private_data *data;
 121	struct pruss_mem_region mem_regions[PRU_IOMEM_MAX];
 122	struct device_node *client_np;
 123	struct mutex lock;
 124	const char *fw_name;
 125	unsigned int *mapped_irq;
 126	struct pru_irq_rsc *pru_interrupt_map;
 127	size_t pru_interrupt_map_sz;
 128	spinlock_t rmw_lock;
 129	u32 dbg_single_step;
 130	u32 dbg_continuous;
 131	u8 evt_count;
 132	u8 gpmux_save;
 133};
 134
 135static inline u32 pru_control_read_reg(struct pru_rproc *pru, unsigned int reg)
 136{
 137	return readl_relaxed(pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
 138}
 139
 140static inline
 141void pru_control_write_reg(struct pru_rproc *pru, unsigned int reg, u32 val)
 142{
 143	writel_relaxed(val, pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
 144}
 145
 146static inline
 147void pru_control_set_reg(struct pru_rproc *pru, unsigned int reg,
 148			 u32 mask, u32 set)
 149{
 150	u32 val;
 151	unsigned long flags;
 152
 153	spin_lock_irqsave(&pru->rmw_lock, flags);
 154
 155	val = pru_control_read_reg(pru, reg);
 156	val &= ~mask;
 157	val |= (set & mask);
 158	pru_control_write_reg(pru, reg, val);
 159
 160	spin_unlock_irqrestore(&pru->rmw_lock, flags);
 161}
 162
 163/**
 164 * pru_rproc_set_firmware() - set firmware for a PRU core
 165 * @rproc: the rproc instance of the PRU
 166 * @fw_name: the new firmware name, or NULL if default is desired
 167 *
 168 * Return: 0 on success, or errno in error case.
 169 */
 170static int pru_rproc_set_firmware(struct rproc *rproc, const char *fw_name)
 171{
 172	struct pru_rproc *pru = rproc->priv;
 173
 174	if (!fw_name)
 175		fw_name = pru->fw_name;
 176
 177	return rproc_set_firmware(rproc, fw_name);
 178}
 179
 180static struct rproc *__pru_rproc_get(struct device_node *np, int index)
 181{
 182	struct rproc *rproc;
 183	phandle rproc_phandle;
 184	int ret;
 185
 186	ret = of_property_read_u32_index(np, "ti,prus", index, &rproc_phandle);
 187	if (ret)
 188		return ERR_PTR(ret);
 189
 190	rproc = rproc_get_by_phandle(rproc_phandle);
 191	if (!rproc) {
 192		ret = -EPROBE_DEFER;
 193		return ERR_PTR(ret);
 194	}
 195
 196	/* make sure it is PRU rproc */
 197	if (!is_pru_rproc(rproc->dev.parent)) {
 198		rproc_put(rproc);
 199		return ERR_PTR(-ENODEV);
 200	}
 201
 202	return rproc;
 203}
 204
 205/**
 206 * pru_rproc_get() - get the PRU rproc instance from a device node
 207 * @np: the user/client device node
 208 * @index: index to use for the ti,prus property
 209 * @pru_id: optional pointer to return the PRU remoteproc processor id
 210 *
 211 * This function looks through a client device node's "ti,prus" property at
 212 * index @index and returns the rproc handle for a valid PRU remote processor if
 213 * found. The function allows only one user to own the PRU rproc resource at a
 214 * time. Caller must call pru_rproc_put() when done with using the rproc, not
 215 * required if the function returns a failure.
 216 *
 217 * When optional @pru_id pointer is passed the PRU remoteproc processor id is
 218 * returned.
 219 *
 220 * Return: rproc handle on success, and an ERR_PTR on failure using one
 221 * of the following error values
 222 *    -ENODEV if device is not found
 223 *    -EBUSY if PRU is already acquired by anyone
 224 *    -EPROBE_DEFER is PRU device is not probed yet
 225 */
 226struct rproc *pru_rproc_get(struct device_node *np, int index,
 227			    enum pruss_pru_id *pru_id)
 228{
 229	struct rproc *rproc;
 230	struct pru_rproc *pru;
 231	struct device *dev;
 232	const char *fw_name;
 233	int ret;
 234	u32 mux;
 235
 236	rproc = __pru_rproc_get(np, index);
 237	if (IS_ERR(rproc))
 238		return rproc;
 239
 240	pru = rproc->priv;
 241	dev = &rproc->dev;
 242
 243	mutex_lock(&pru->lock);
 244
 245	if (pru->client_np) {
 246		mutex_unlock(&pru->lock);
 247		ret = -EBUSY;
 248		goto err_no_rproc_handle;
 249	}
 250
 251	pru->client_np = np;
 252	rproc->sysfs_read_only = true;
 253
 254	mutex_unlock(&pru->lock);
 255
 256	if (pru_id)
 257		*pru_id = pru->id;
 258
 259	ret = pruss_cfg_get_gpmux(pru->pruss, pru->id, &pru->gpmux_save);
 260	if (ret) {
 261		dev_err(dev, "failed to get cfg gpmux: %d\n", ret);
 262		goto err;
 263	}
 264
 265	/* An error here is acceptable for backward compatibility */
 266	ret = of_property_read_u32_index(np, "ti,pruss-gp-mux-sel", index,
 267					 &mux);
 268	if (!ret) {
 269		ret = pruss_cfg_set_gpmux(pru->pruss, pru->id, mux);
 270		if (ret) {
 271			dev_err(dev, "failed to set cfg gpmux: %d\n", ret);
 272			goto err;
 273		}
 274	}
 275
 276	ret = of_property_read_string_index(np, "firmware-name", index,
 277					    &fw_name);
 278	if (!ret) {
 279		ret = pru_rproc_set_firmware(rproc, fw_name);
 280		if (ret) {
 281			dev_err(dev, "failed to set firmware: %d\n", ret);
 282			goto err;
 283		}
 284	}
 285
 286	return rproc;
 287
 288err_no_rproc_handle:
 289	rproc_put(rproc);
 290	return ERR_PTR(ret);
 291
 292err:
 293	pru_rproc_put(rproc);
 294	return ERR_PTR(ret);
 295}
 296EXPORT_SYMBOL_GPL(pru_rproc_get);
 297
 298/**
 299 * pru_rproc_put() - release the PRU rproc resource
 300 * @rproc: the rproc resource to release
 301 *
 302 * Releases the PRU rproc resource and makes it available to other
 303 * users.
 304 */
 305void pru_rproc_put(struct rproc *rproc)
 306{
 307	struct pru_rproc *pru;
 308
 309	if (IS_ERR_OR_NULL(rproc) || !is_pru_rproc(rproc->dev.parent))
 310		return;
 311
 312	pru = rproc->priv;
 313
 314	pruss_cfg_set_gpmux(pru->pruss, pru->id, pru->gpmux_save);
 315
 316	pru_rproc_set_firmware(rproc, NULL);
 317
 318	mutex_lock(&pru->lock);
 319
 320	if (!pru->client_np) {
 321		mutex_unlock(&pru->lock);
 322		return;
 323	}
 324
 325	pru->client_np = NULL;
 326	rproc->sysfs_read_only = false;
 327	mutex_unlock(&pru->lock);
 328
 329	rproc_put(rproc);
 330}
 331EXPORT_SYMBOL_GPL(pru_rproc_put);
 332
 333/**
 334 * pru_rproc_set_ctable() - set the constant table index for the PRU
 335 * @rproc: the rproc instance of the PRU
 336 * @c: constant table index to set
 337 * @addr: physical address to set it to
 338 *
 339 * Return: 0 on success, or errno in error case.
 340 */
 341int pru_rproc_set_ctable(struct rproc *rproc, enum pru_ctable_idx c, u32 addr)
 342{
 343	struct pru_rproc *pru = rproc->priv;
 344	unsigned int reg;
 345	u32 mask, set;
 346	u16 idx;
 347	u16 idx_mask;
 348
 349	if (IS_ERR_OR_NULL(rproc))
 350		return -EINVAL;
 351
 352	if (!rproc->dev.parent || !is_pru_rproc(rproc->dev.parent))
 353		return -ENODEV;
 354
 355	/* pointer is 16 bit and index is 8-bit so mask out the rest */
 356	idx_mask = (c >= PRU_C28) ? 0xFFFF : 0xFF;
 357
 358	/* ctable uses bit 8 and upwards only */
 359	idx = (addr >> 8) & idx_mask;
 360
 361	/* configurable ctable (i.e. C24) starts at PRU_CTRL_CTBIR0 */
 362	reg = PRU_CTRL_CTBIR0 + 4 * (c >> 1);
 363	mask = idx_mask << (16 * (c & 1));
 364	set = idx << (16 * (c & 1));
 365
 366	pru_control_set_reg(pru, reg, mask, set);
 367
 368	return 0;
 369}
 370EXPORT_SYMBOL_GPL(pru_rproc_set_ctable);
 371
 372static inline u32 pru_debug_read_reg(struct pru_rproc *pru, unsigned int reg)
 373{
 374	return readl_relaxed(pru->mem_regions[PRU_IOMEM_DEBUG].va + reg);
 375}
 376
 377static int regs_show(struct seq_file *s, void *data)
 378{
 379	struct rproc *rproc = s->private;
 380	struct pru_rproc *pru = rproc->priv;
 381	int i, nregs = 32;
 382	u32 pru_sts;
 383	int pru_is_running;
 384
 385	seq_puts(s, "============== Control Registers ==============\n");
 386	seq_printf(s, "CTRL      := 0x%08x\n",
 387		   pru_control_read_reg(pru, PRU_CTRL_CTRL));
 388	pru_sts = pru_control_read_reg(pru, PRU_CTRL_STS);
 389	seq_printf(s, "STS (PC)  := 0x%08x (0x%08x)\n", pru_sts, pru_sts << 2);
 390	seq_printf(s, "WAKEUP_EN := 0x%08x\n",
 391		   pru_control_read_reg(pru, PRU_CTRL_WAKEUP_EN));
 392	seq_printf(s, "CYCLE     := 0x%08x\n",
 393		   pru_control_read_reg(pru, PRU_CTRL_CYCLE));
 394	seq_printf(s, "STALL     := 0x%08x\n",
 395		   pru_control_read_reg(pru, PRU_CTRL_STALL));
 396	seq_printf(s, "CTBIR0    := 0x%08x\n",
 397		   pru_control_read_reg(pru, PRU_CTRL_CTBIR0));
 398	seq_printf(s, "CTBIR1    := 0x%08x\n",
 399		   pru_control_read_reg(pru, PRU_CTRL_CTBIR1));
 400	seq_printf(s, "CTPPR0    := 0x%08x\n",
 401		   pru_control_read_reg(pru, PRU_CTRL_CTPPR0));
 402	seq_printf(s, "CTPPR1    := 0x%08x\n",
 403		   pru_control_read_reg(pru, PRU_CTRL_CTPPR1));
 404
 405	seq_puts(s, "=============== Debug Registers ===============\n");
 406	pru_is_running = pru_control_read_reg(pru, PRU_CTRL_CTRL) &
 407				CTRL_CTRL_RUNSTATE;
 408	if (pru_is_running) {
 409		seq_puts(s, "PRU is executing, cannot print/access debug registers.\n");
 410		return 0;
 411	}
 412
 413	for (i = 0; i < nregs; i++) {
 414		seq_printf(s, "GPREG%-2d := 0x%08x\tCT_REG%-2d := 0x%08x\n",
 415			   i, pru_debug_read_reg(pru, PRU_DEBUG_GPREG(i)),
 416			   i, pru_debug_read_reg(pru, PRU_DEBUG_CT_REG(i)));
 417	}
 418
 419	return 0;
 420}
 421DEFINE_SHOW_ATTRIBUTE(regs);
 422
 423/*
 424 * Control PRU single-step mode
 425 *
 426 * This is a debug helper function used for controlling the single-step
 427 * mode of the PRU. The PRU Debug registers are not accessible when the
 428 * PRU is in RUNNING state.
 429 *
 430 * Writing a non-zero value sets the PRU into single-step mode irrespective
 431 * of its previous state. The PRU mode is saved only on the first set into
 432 * a single-step mode. Writing a zero value will restore the PRU into its
 433 * original mode.
 434 */
 435static int pru_rproc_debug_ss_set(void *data, u64 val)
 436{
 437	struct rproc *rproc = data;
 438	struct pru_rproc *pru = rproc->priv;
 439	u32 reg_val;
 440
 441	val = val ? 1 : 0;
 442	if (!val && !pru->dbg_single_step)
 443		return 0;
 444
 445	reg_val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
 446
 447	if (val && !pru->dbg_single_step)
 448		pru->dbg_continuous = reg_val;
 449
 450	if (val)
 451		reg_val |= CTRL_CTRL_SINGLE_STEP | CTRL_CTRL_EN;
 452	else
 453		reg_val = pru->dbg_continuous;
 454
 455	pru->dbg_single_step = val;
 456	pru_control_write_reg(pru, PRU_CTRL_CTRL, reg_val);
 457
 458	return 0;
 459}
 460
 461static int pru_rproc_debug_ss_get(void *data, u64 *val)
 462{
 463	struct rproc *rproc = data;
 464	struct pru_rproc *pru = rproc->priv;
 465
 466	*val = pru->dbg_single_step;
 467
 468	return 0;
 469}
 470DEFINE_DEBUGFS_ATTRIBUTE(pru_rproc_debug_ss_fops, pru_rproc_debug_ss_get,
 471			 pru_rproc_debug_ss_set, "%llu\n");
 472
 473/*
 474 * Create PRU-specific debugfs entries
 475 *
 476 * The entries are created only if the parent remoteproc debugfs directory
 477 * exists, and will be cleaned up by the remoteproc core.
 478 */
 479static void pru_rproc_create_debug_entries(struct rproc *rproc)
 480{
 481	if (!rproc->dbg_dir)
 482		return;
 483
 484	debugfs_create_file("regs", 0400, rproc->dbg_dir,
 485			    rproc, &regs_fops);
 486	debugfs_create_file("single_step", 0600, rproc->dbg_dir,
 487			    rproc, &pru_rproc_debug_ss_fops);
 488}
 489
 490static void pru_dispose_irq_mapping(struct pru_rproc *pru)
 491{
 492	if (!pru->mapped_irq)
 493		return;
 494
 495	while (pru->evt_count) {
 496		pru->evt_count--;
 497		if (pru->mapped_irq[pru->evt_count] > 0)
 498			irq_dispose_mapping(pru->mapped_irq[pru->evt_count]);
 499	}
 500
 501	kfree(pru->mapped_irq);
 502	pru->mapped_irq = NULL;
 503}
 504
 505/*
 506 * Parse the custom PRU interrupt map resource and configure the INTC
 507 * appropriately.
 508 */
 509static int pru_handle_intrmap(struct rproc *rproc)
 510{
 511	struct device *dev = rproc->dev.parent;
 512	struct pru_rproc *pru = rproc->priv;
 513	struct pru_irq_rsc *rsc = pru->pru_interrupt_map;
 514	struct irq_fwspec fwspec;
 515	struct device_node *parent, *irq_parent;
 516	int i, ret = 0;
 517
 518	/* not having pru_interrupt_map is not an error */
 519	if (!rsc)
 520		return 0;
 521
 522	/* currently supporting only type 0 */
 523	if (rsc->type != 0) {
 524		dev_err(dev, "unsupported rsc type: %d\n", rsc->type);
 525		return -EINVAL;
 526	}
 527
 528	if (rsc->num_evts > MAX_PRU_SYS_EVENTS)
 529		return -EINVAL;
 530
 531	if (sizeof(*rsc) + rsc->num_evts * sizeof(struct pruss_int_map) !=
 532	    pru->pru_interrupt_map_sz)
 533		return -EINVAL;
 534
 535	pru->evt_count = rsc->num_evts;
 536	pru->mapped_irq = kcalloc(pru->evt_count, sizeof(unsigned int),
 537				  GFP_KERNEL);
 538	if (!pru->mapped_irq) {
 539		pru->evt_count = 0;
 540		return -ENOMEM;
 541	}
 542
 543	/*
 544	 * parse and fill in system event to interrupt channel and
 545	 * channel-to-host mapping. The interrupt controller to be used
 546	 * for these mappings for a given PRU remoteproc is always its
 547	 * corresponding sibling PRUSS INTC node.
 548	 */
 549	parent = of_get_parent(dev_of_node(pru->dev));
 550	if (!parent) {
 551		kfree(pru->mapped_irq);
 552		pru->mapped_irq = NULL;
 553		pru->evt_count = 0;
 554		return -ENODEV;
 555	}
 556
 557	irq_parent = of_get_child_by_name(parent, "interrupt-controller");
 558	of_node_put(parent);
 559	if (!irq_parent) {
 560		kfree(pru->mapped_irq);
 561		pru->mapped_irq = NULL;
 562		pru->evt_count = 0;
 563		return -ENODEV;
 564	}
 565
 566	fwspec.fwnode = of_node_to_fwnode(irq_parent);
 567	fwspec.param_count = 3;
 568	for (i = 0; i < pru->evt_count; i++) {
 569		fwspec.param[0] = rsc->pru_intc_map[i].event;
 570		fwspec.param[1] = rsc->pru_intc_map[i].chnl;
 571		fwspec.param[2] = rsc->pru_intc_map[i].host;
 572
 573		dev_dbg(dev, "mapping%d: event %d, chnl %d, host %d\n",
 574			i, fwspec.param[0], fwspec.param[1], fwspec.param[2]);
 575
 576		pru->mapped_irq[i] = irq_create_fwspec_mapping(&fwspec);
 577		if (!pru->mapped_irq[i]) {
 578			dev_err(dev, "failed to get virq for fw mapping %d: event %d chnl %d host %d\n",
 579				i, fwspec.param[0], fwspec.param[1],
 580				fwspec.param[2]);
 581			ret = -EINVAL;
 582			goto map_fail;
 583		}
 584	}
 585	of_node_put(irq_parent);
 586
 587	return ret;
 588
 589map_fail:
 590	pru_dispose_irq_mapping(pru);
 591	of_node_put(irq_parent);
 592
 593	return ret;
 594}
 595
 596static int pru_rproc_start(struct rproc *rproc)
 597{
 598	struct device *dev = &rproc->dev;
 599	struct pru_rproc *pru = rproc->priv;
 600	const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
 601	u32 val;
 602	int ret;
 603
 604	dev_dbg(dev, "starting %s%d: entry-point = 0x%llx\n",
 605		names[pru->data->type], pru->id, (rproc->bootaddr >> 2));
 606
 607	ret = pru_handle_intrmap(rproc);
 608	/*
 609	 * reset references to pru interrupt map - they will stop being valid
 610	 * after rproc_start returns
 611	 */
 612	pru->pru_interrupt_map = NULL;
 613	pru->pru_interrupt_map_sz = 0;
 614	if (ret)
 615		return ret;
 616
 617	val = CTRL_CTRL_EN | ((rproc->bootaddr >> 2) << 16);
 618	pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
 619
 620	return 0;
 621}
 622
 623static int pru_rproc_stop(struct rproc *rproc)
 624{
 625	struct device *dev = &rproc->dev;
 626	struct pru_rproc *pru = rproc->priv;
 627	const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
 628	u32 val;
 629
 630	dev_dbg(dev, "stopping %s%d\n", names[pru->data->type], pru->id);
 631
 632	val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
 633	val &= ~CTRL_CTRL_EN;
 634	pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
 635
 636	/* dispose irq mapping - new firmware can provide new mapping */
 637	pru_dispose_irq_mapping(pru);
 638
 639	return 0;
 640}
 641
 642/*
 643 * Convert PRU device address (data spaces only) to kernel virtual address.
 644 *
 645 * Each PRU has access to all data memories within the PRUSS, accessible at
 646 * different ranges. So, look through both its primary and secondary Data
 647 * RAMs as well as any shared Data RAM to convert a PRU device address to
 648 * kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data
 649 * RAM1 is primary Data RAM for PRU1.
 650 */
 651static void *pru_d_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
 652{
 653	struct pruss_mem_region dram0, dram1, shrd_ram;
 654	struct pruss *pruss = pru->pruss;
 655	u32 offset;
 656	void *va = NULL;
 657
 658	if (len == 0)
 659		return NULL;
 660
 661	dram0 = pruss->mem_regions[PRUSS_MEM_DRAM0];
 662	dram1 = pruss->mem_regions[PRUSS_MEM_DRAM1];
 663	/* PRU1 has its local RAM addresses reversed */
 664	if (pru->id == PRUSS_PRU1)
 665		swap(dram0, dram1);
 666	shrd_ram = pruss->mem_regions[PRUSS_MEM_SHRD_RAM2];
 667
 668	if (da + len <= PRU_PDRAM_DA + dram0.size) {
 669		offset = da - PRU_PDRAM_DA;
 670		va = (__force void *)(dram0.va + offset);
 671	} else if (da >= PRU_SDRAM_DA &&
 672		   da + len <= PRU_SDRAM_DA + dram1.size) {
 673		offset = da - PRU_SDRAM_DA;
 674		va = (__force void *)(dram1.va + offset);
 675	} else if (da >= PRU_SHRDRAM_DA &&
 676		   da + len <= PRU_SHRDRAM_DA + shrd_ram.size) {
 677		offset = da - PRU_SHRDRAM_DA;
 678		va = (__force void *)(shrd_ram.va + offset);
 679	}
 680
 681	return va;
 682}
 683
 684/*
 685 * Convert PRU device address (instruction space) to kernel virtual address.
 686 *
 687 * A PRU does not have an unified address space. Each PRU has its very own
 688 * private Instruction RAM, and its device address is identical to that of
 689 * its primary Data RAM device address.
 690 */
 691static void *pru_i_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
 692{
 693	u32 offset;
 694	void *va = NULL;
 695
 696	if (len == 0)
 697		return NULL;
 698
 699	/*
 700	 * GNU binutils do not support multiple address spaces. The GNU
 701	 * linker's default linker script places IRAM at an arbitrary high
 702	 * offset, in order to differentiate it from DRAM. Hence we need to
 703	 * strip the artificial offset in the IRAM addresses coming from the
 704	 * ELF file.
 705	 *
 706	 * The TI proprietary linker would never set those higher IRAM address
 707	 * bits anyway. PRU architecture limits the program counter to 16-bit
 708	 * word-address range. This in turn corresponds to 18-bit IRAM
 709	 * byte-address range for ELF.
 710	 *
 711	 * Two more bits are added just in case to make the final 20-bit mask.
 712	 * Idea is to have a safeguard in case TI decides to add banking
 713	 * in future SoCs.
 714	 */
 715	da &= 0xfffff;
 716
 717	if (da + len <= PRU_IRAM_DA + pru->mem_regions[PRU_IOMEM_IRAM].size) {
 718		offset = da - PRU_IRAM_DA;
 719		va = (__force void *)(pru->mem_regions[PRU_IOMEM_IRAM].va +
 720				      offset);
 721	}
 722
 723	return va;
 724}
 725
 726/*
 727 * Provide address translations for only PRU Data RAMs through the remoteproc
 728 * core for any PRU client drivers. The PRU Instruction RAM access is restricted
 729 * only to the PRU loader code.
 730 */
 731static void *pru_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
 732{
 733	struct pru_rproc *pru = rproc->priv;
 734
 735	return pru_d_da_to_va(pru, da, len);
 736}
 737
 738/* PRU-specific address translator used by PRU loader. */
 739static void *pru_da_to_va(struct rproc *rproc, u64 da, size_t len, bool is_iram)
 740{
 741	struct pru_rproc *pru = rproc->priv;
 742	void *va;
 743
 744	if (is_iram)
 745		va = pru_i_da_to_va(pru, da, len);
 746	else
 747		va = pru_d_da_to_va(pru, da, len);
 748
 749	return va;
 750}
 751
 752static struct rproc_ops pru_rproc_ops = {
 753	.start		= pru_rproc_start,
 754	.stop		= pru_rproc_stop,
 755	.da_to_va	= pru_rproc_da_to_va,
 756};
 757
 758/*
 759 * Custom memory copy implementation for ICSSG PRU/RTU/Tx_PRU Cores
 760 *
 761 * The ICSSG PRU/RTU/Tx_PRU cores have a memory copying issue with IRAM
 762 * memories, that is not seen on previous generation SoCs. The data is reflected
 763 * properly in the IRAM memories only for integer (4-byte) copies. Any unaligned
 764 * copies result in all the other pre-existing bytes zeroed out within that
 765 * 4-byte boundary, thereby resulting in wrong text/code in the IRAMs. Also, the
 766 * IRAM memory port interface does not allow any 8-byte copies (as commonly used
 767 * by ARM64 memcpy implementation) and throws an exception. The DRAM memory
 768 * ports do not show this behavior.
 769 */
 770static int pru_rproc_memcpy(void *dest, const void *src, size_t count)
 771{
 772	const u32 *s = src;
 773	u32 *d = dest;
 774	size_t size = count / 4;
 775	u32 *tmp_src = NULL;
 776
 777	/*
 778	 * TODO: relax limitation of 4-byte aligned dest addresses and copy
 779	 * sizes
 780	 */
 781	if ((long)dest % 4 || count % 4)
 782		return -EINVAL;
 783
 784	/* src offsets in ELF firmware image can be non-aligned */
 785	if ((long)src % 4) {
 786		tmp_src = kmemdup(src, count, GFP_KERNEL);
 787		if (!tmp_src)
 788			return -ENOMEM;
 789		s = tmp_src;
 790	}
 791
 792	while (size--)
 793		*d++ = *s++;
 794
 795	kfree(tmp_src);
 796
 797	return 0;
 798}
 799
 800static int
 801pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw)
 802{
 803	struct pru_rproc *pru = rproc->priv;
 804	struct device *dev = &rproc->dev;
 805	struct elf32_hdr *ehdr;
 806	struct elf32_phdr *phdr;
 807	int i, ret = 0;
 808	const u8 *elf_data = fw->data;
 809
 810	ehdr = (struct elf32_hdr *)elf_data;
 811	phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);
 812
 813	/* go through the available ELF segments */
 814	for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
 815		u32 da = phdr->p_paddr;
 816		u32 memsz = phdr->p_memsz;
 817		u32 filesz = phdr->p_filesz;
 818		u32 offset = phdr->p_offset;
 819		bool is_iram;
 820		void *ptr;
 821
 822		if (phdr->p_type != PT_LOAD || !filesz)
 823			continue;
 824
 825		dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
 826			phdr->p_type, da, memsz, filesz);
 827
 828		if (filesz > memsz) {
 829			dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
 830				filesz, memsz);
 831			ret = -EINVAL;
 832			break;
 833		}
 834
 835		if (offset + filesz > fw->size) {
 836			dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n",
 837				offset + filesz, fw->size);
 838			ret = -EINVAL;
 839			break;
 840		}
 841
 842		/* grab the kernel address for this device address */
 843		is_iram = phdr->p_flags & PF_X;
 844		ptr = pru_da_to_va(rproc, da, memsz, is_iram);
 845		if (!ptr) {
 846			dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
 847			ret = -EINVAL;
 848			break;
 849		}
 850
 851		if (pru->data->is_k3) {
 852			ret = pru_rproc_memcpy(ptr, elf_data + phdr->p_offset,
 853					       filesz);
 854			if (ret) {
 855				dev_err(dev, "PRU memory copy failed for da 0x%x memsz 0x%x\n",
 856					da, memsz);
 857				break;
 858			}
 859		} else {
 860			memcpy(ptr, elf_data + phdr->p_offset, filesz);
 861		}
 862
 863		/* skip the memzero logic performed by remoteproc ELF loader */
 864	}
 865
 866	return ret;
 867}
 868
 869static const void *
 870pru_rproc_find_interrupt_map(struct device *dev, const struct firmware *fw)
 871{
 872	struct elf32_shdr *shdr, *name_table_shdr;
 873	const char *name_table;
 874	const u8 *elf_data = fw->data;
 875	struct elf32_hdr *ehdr = (struct elf32_hdr *)elf_data;
 876	u16 shnum = ehdr->e_shnum;
 877	u16 shstrndx = ehdr->e_shstrndx;
 878	int i;
 879
 880	/* first, get the section header */
 881	shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
 882	/* compute name table section header entry in shdr array */
 883	name_table_shdr = shdr + shstrndx;
 884	/* finally, compute the name table section address in elf */
 885	name_table = elf_data + name_table_shdr->sh_offset;
 886
 887	for (i = 0; i < shnum; i++, shdr++) {
 888		u32 size = shdr->sh_size;
 889		u32 offset = shdr->sh_offset;
 890		u32 name = shdr->sh_name;
 891
 892		if (strcmp(name_table + name, ".pru_irq_map"))
 893			continue;
 894
 895		/* make sure we have the entire irq map */
 896		if (offset + size > fw->size || offset + size < size) {
 897			dev_err(dev, ".pru_irq_map section truncated\n");
 898			return ERR_PTR(-EINVAL);
 899		}
 900
 901		/* make sure irq map has at least the header */
 902		if (sizeof(struct pru_irq_rsc) > size) {
 903			dev_err(dev, "header-less .pru_irq_map section\n");
 904			return ERR_PTR(-EINVAL);
 905		}
 906
 907		return shdr;
 908	}
 909
 910	dev_dbg(dev, "no .pru_irq_map section found for this fw\n");
 911
 912	return NULL;
 913}
 914
 915/*
 916 * Use a custom parse_fw callback function for dealing with PRU firmware
 917 * specific sections.
 918 *
 919 * The firmware blob can contain optional ELF sections: .resource_table section
 920 * and .pru_irq_map one. The second one contains the PRUSS interrupt mapping
 921 * description, which needs to be setup before powering on the PRU core. To
 922 * avoid RAM wastage this ELF section is not mapped to any ELF segment (by the
 923 * firmware linker) and therefore is not loaded to PRU memory.
 924 */
 925static int pru_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw)
 926{
 927	struct device *dev = &rproc->dev;
 928	struct pru_rproc *pru = rproc->priv;
 929	const u8 *elf_data = fw->data;
 930	const void *shdr;
 931	u8 class = fw_elf_get_class(fw);
 932	u64 sh_offset;
 933	int ret;
 934
 935	/* load optional rsc table */
 936	ret = rproc_elf_load_rsc_table(rproc, fw);
 937	if (ret == -EINVAL)
 938		dev_dbg(&rproc->dev, "no resource table found for this fw\n");
 939	else if (ret)
 940		return ret;
 941
 942	/* find .pru_interrupt_map section, not having it is not an error */
 943	shdr = pru_rproc_find_interrupt_map(dev, fw);
 944	if (IS_ERR(shdr))
 945		return PTR_ERR(shdr);
 946
 947	if (!shdr)
 948		return 0;
 949
 950	/* preserve pointer to PRU interrupt map together with it size */
 951	sh_offset = elf_shdr_get_sh_offset(class, shdr);
 952	pru->pru_interrupt_map = (struct pru_irq_rsc *)(elf_data + sh_offset);
 953	pru->pru_interrupt_map_sz = elf_shdr_get_sh_size(class, shdr);
 954
 955	return 0;
 956}
 957
 958/*
 959 * Compute PRU id based on the IRAM addresses. The PRU IRAMs are
 960 * always at a particular offset within the PRUSS address space.
 961 */
 962static int pru_rproc_set_id(struct pru_rproc *pru)
 963{
 964	int ret = 0;
 965
 966	switch (pru->mem_regions[PRU_IOMEM_IRAM].pa & PRU_IRAM_ADDR_MASK) {
 967	case TX_PRU0_IRAM_ADDR_MASK:
 968		fallthrough;
 969	case RTU0_IRAM_ADDR_MASK:
 970		fallthrough;
 971	case PRU0_IRAM_ADDR_MASK:
 972		pru->id = PRUSS_PRU0;
 973		break;
 974	case TX_PRU1_IRAM_ADDR_MASK:
 975		fallthrough;
 976	case RTU1_IRAM_ADDR_MASK:
 977		fallthrough;
 978	case PRU1_IRAM_ADDR_MASK:
 979		pru->id = PRUSS_PRU1;
 980		break;
 981	default:
 982		ret = -EINVAL;
 983	}
 984
 985	return ret;
 986}
 987
 988static int pru_rproc_probe(struct platform_device *pdev)
 989{
 990	struct device *dev = &pdev->dev;
 991	struct device_node *np = dev->of_node;
 992	struct platform_device *ppdev = to_platform_device(dev->parent);
 993	struct pru_rproc *pru;
 994	const char *fw_name;
 995	struct rproc *rproc = NULL;
 996	struct resource *res;
 997	int i, ret;
 998	const struct pru_private_data *data;
 999	const char *mem_names[PRU_IOMEM_MAX] = { "iram", "control", "debug" };
1000
1001	data = of_device_get_match_data(&pdev->dev);
1002	if (!data)
1003		return -ENODEV;
1004
1005	ret = of_property_read_string(np, "firmware-name", &fw_name);
1006	if (ret) {
1007		dev_err(dev, "unable to retrieve firmware-name %d\n", ret);
1008		return ret;
1009	}
1010
1011	rproc = devm_rproc_alloc(dev, pdev->name, &pru_rproc_ops, fw_name,
1012				 sizeof(*pru));
1013	if (!rproc) {
1014		dev_err(dev, "rproc_alloc failed\n");
1015		return -ENOMEM;
1016	}
1017	/* use a custom load function to deal with PRU-specific quirks */
1018	rproc->ops->load = pru_rproc_load_elf_segments;
1019
1020	/* use a custom parse function to deal with PRU-specific resources */
1021	rproc->ops->parse_fw = pru_rproc_parse_fw;
1022
1023	/* error recovery is not supported for PRUs */
1024	rproc->recovery_disabled = true;
1025
1026	/*
1027	 * rproc_add will auto-boot the processor normally, but this is not
1028	 * desired with PRU client driven boot-flow methodology. A PRU
1029	 * application/client driver will boot the corresponding PRU
1030	 * remote-processor as part of its state machine either through the
1031	 * remoteproc sysfs interface or through the equivalent kernel API.
1032	 */
1033	rproc->auto_boot = false;
1034
1035	pru = rproc->priv;
1036	pru->dev = dev;
1037	pru->data = data;
1038	pru->pruss = platform_get_drvdata(ppdev);
1039	pru->rproc = rproc;
1040	pru->fw_name = fw_name;
1041	pru->client_np = NULL;
1042	spin_lock_init(&pru->rmw_lock);
1043	mutex_init(&pru->lock);
1044
1045	for (i = 0; i < ARRAY_SIZE(mem_names); i++) {
1046		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1047						   mem_names[i]);
1048		pru->mem_regions[i].va = devm_ioremap_resource(dev, res);
1049		if (IS_ERR(pru->mem_regions[i].va)) {
1050			dev_err(dev, "failed to parse and map memory resource %d %s\n",
1051				i, mem_names[i]);
1052			ret = PTR_ERR(pru->mem_regions[i].va);
1053			return ret;
1054		}
1055		pru->mem_regions[i].pa = res->start;
1056		pru->mem_regions[i].size = resource_size(res);
1057
1058		dev_dbg(dev, "memory %8s: pa %pa size 0x%zx va %pK\n",
1059			mem_names[i], &pru->mem_regions[i].pa,
1060			pru->mem_regions[i].size, pru->mem_regions[i].va);
1061	}
1062
1063	ret = pru_rproc_set_id(pru);
1064	if (ret < 0)
1065		return ret;
1066
1067	platform_set_drvdata(pdev, rproc);
1068
1069	ret = devm_rproc_add(dev, pru->rproc);
1070	if (ret) {
1071		dev_err(dev, "rproc_add failed: %d\n", ret);
1072		return ret;
1073	}
1074
1075	pru_rproc_create_debug_entries(rproc);
1076
1077	dev_dbg(dev, "PRU rproc node %pOF probed successfully\n", np);
1078
1079	return 0;
1080}
1081
1082static void pru_rproc_remove(struct platform_device *pdev)
1083{
1084	struct device *dev = &pdev->dev;
1085	struct rproc *rproc = platform_get_drvdata(pdev);
1086
1087	dev_dbg(dev, "%s: removing rproc %s\n", __func__, rproc->name);
1088}
1089
1090static const struct pru_private_data pru_data = {
1091	.type = PRU_TYPE_PRU,
1092};
1093
1094static const struct pru_private_data k3_pru_data = {
1095	.type = PRU_TYPE_PRU,
1096	.is_k3 = 1,
1097};
1098
1099static const struct pru_private_data k3_rtu_data = {
1100	.type = PRU_TYPE_RTU,
1101	.is_k3 = 1,
1102};
1103
1104static const struct pru_private_data k3_tx_pru_data = {
1105	.type = PRU_TYPE_TX_PRU,
1106	.is_k3 = 1,
1107};
1108
1109static const struct of_device_id pru_rproc_match[] = {
1110	{ .compatible = "ti,am3356-pru",	.data = &pru_data },
1111	{ .compatible = "ti,am4376-pru",	.data = &pru_data },
1112	{ .compatible = "ti,am5728-pru",	.data = &pru_data },
1113	{ .compatible = "ti,am642-pru",		.data = &k3_pru_data },
1114	{ .compatible = "ti,am642-rtu",		.data = &k3_rtu_data },
1115	{ .compatible = "ti,am642-tx-pru",	.data = &k3_tx_pru_data },
1116	{ .compatible = "ti,k2g-pru",		.data = &pru_data },
1117	{ .compatible = "ti,am654-pru",		.data = &k3_pru_data },
1118	{ .compatible = "ti,am654-rtu",		.data = &k3_rtu_data },
1119	{ .compatible = "ti,am654-tx-pru",	.data = &k3_tx_pru_data },
1120	{ .compatible = "ti,j721e-pru",		.data = &k3_pru_data },
1121	{ .compatible = "ti,j721e-rtu",		.data = &k3_rtu_data },
1122	{ .compatible = "ti,j721e-tx-pru",	.data = &k3_tx_pru_data },
1123	{ .compatible = "ti,am625-pru",		.data = &k3_pru_data },
1124	{},
1125};
1126MODULE_DEVICE_TABLE(of, pru_rproc_match);
1127
1128static struct platform_driver pru_rproc_driver = {
1129	.driver = {
1130		.name   = PRU_RPROC_DRVNAME,
1131		.of_match_table = pru_rproc_match,
1132		.suppress_bind_attrs = true,
1133	},
1134	.probe  = pru_rproc_probe,
1135	.remove_new = pru_rproc_remove,
1136};
1137module_platform_driver(pru_rproc_driver);
1138
1139MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
1140MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
1141MODULE_AUTHOR("Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>");
1142MODULE_AUTHOR("Puranjay Mohan <p-mohan@ti.com>");
1143MODULE_AUTHOR("Md Danish Anwar <danishanwar@ti.com>");
1144MODULE_DESCRIPTION("PRU-ICSS Remote Processor Driver");
1145MODULE_LICENSE("GPL v2");