Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * PRU-ICSS remoteproc driver for various TI SoCs
  4 *
  5 * Copyright (C) 2014-2020 Texas Instruments Incorporated - https://www.ti.com/
  6 *
  7 * Author(s):
  8 *	Suman Anna <s-anna@ti.com>
  9 *	Andrew F. Davis <afd@ti.com>
 10 *	Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> for Texas Instruments
 11 */
 12
 13#include <linux/bitops.h>
 14#include <linux/debugfs.h>
 15#include <linux/irqdomain.h>
 16#include <linux/module.h>
 17#include <linux/of_device.h>
 18#include <linux/of_irq.h>
 19#include <linux/pruss_driver.h>
 20#include <linux/remoteproc.h>
 21
 22#include "remoteproc_internal.h"
 23#include "remoteproc_elf_helpers.h"
 24#include "pru_rproc.h"
 25
 26/* PRU_ICSS_PRU_CTRL registers */
 27#define PRU_CTRL_CTRL		0x0000
 28#define PRU_CTRL_STS		0x0004
 29#define PRU_CTRL_WAKEUP_EN	0x0008
 30#define PRU_CTRL_CYCLE		0x000C
 31#define PRU_CTRL_STALL		0x0010
 32#define PRU_CTRL_CTBIR0		0x0020
 33#define PRU_CTRL_CTBIR1		0x0024
 34#define PRU_CTRL_CTPPR0		0x0028
 35#define PRU_CTRL_CTPPR1		0x002C
 36
 37/* CTRL register bit-fields */
 38#define CTRL_CTRL_SOFT_RST_N	BIT(0)
 39#define CTRL_CTRL_EN		BIT(1)
 40#define CTRL_CTRL_SLEEPING	BIT(2)
 41#define CTRL_CTRL_CTR_EN	BIT(3)
 42#define CTRL_CTRL_SINGLE_STEP	BIT(8)
 43#define CTRL_CTRL_RUNSTATE	BIT(15)
 44
 45/* PRU_ICSS_PRU_DEBUG registers */
 46#define PRU_DEBUG_GPREG(x)	(0x0000 + (x) * 4)
 47#define PRU_DEBUG_CT_REG(x)	(0x0080 + (x) * 4)
 48
 49/* PRU/RTU/Tx_PRU Core IRAM address masks */
 50#define PRU_IRAM_ADDR_MASK	0x3ffff
 51#define PRU0_IRAM_ADDR_MASK	0x34000
 52#define PRU1_IRAM_ADDR_MASK	0x38000
 53#define RTU0_IRAM_ADDR_MASK	0x4000
 54#define RTU1_IRAM_ADDR_MASK	0x6000
 55#define TX_PRU0_IRAM_ADDR_MASK	0xa000
 56#define TX_PRU1_IRAM_ADDR_MASK	0xc000
 57
 58/* PRU device addresses for various type of PRU RAMs */
 59#define PRU_IRAM_DA	0	/* Instruction RAM */
 60#define PRU_PDRAM_DA	0	/* Primary Data RAM */
 61#define PRU_SDRAM_DA	0x2000	/* Secondary Data RAM */
 62#define PRU_SHRDRAM_DA	0x10000 /* Shared Data RAM */
 63
 64#define MAX_PRU_SYS_EVENTS 160
 65
 66/**
 67 * enum pru_iomem - PRU core memory/register range identifiers
 68 *
 69 * @PRU_IOMEM_IRAM: PRU Instruction RAM range
 70 * @PRU_IOMEM_CTRL: PRU Control register range
 71 * @PRU_IOMEM_DEBUG: PRU Debug register range
 72 * @PRU_IOMEM_MAX: just keep this one at the end
 73 */
 74enum pru_iomem {
 75	PRU_IOMEM_IRAM = 0,
 76	PRU_IOMEM_CTRL,
 77	PRU_IOMEM_DEBUG,
 78	PRU_IOMEM_MAX,
 79};
 80
 81/**
 82 * enum pru_type - PRU core type identifier
 83 *
 84 * @PRU_TYPE_PRU: Programmable Real-time Unit
 85 * @PRU_TYPE_RTU: Auxiliary Programmable Real-Time Unit
 86 * @PRU_TYPE_TX_PRU: Transmit Programmable Real-Time Unit
 87 * @PRU_TYPE_MAX: just keep this one at the end
 88 */
 89enum pru_type {
 90	PRU_TYPE_PRU = 0,
 91	PRU_TYPE_RTU,
 92	PRU_TYPE_TX_PRU,
 93	PRU_TYPE_MAX,
 94};
 95
 96/**
 97 * struct pru_private_data - device data for a PRU core
 98 * @type: type of the PRU core (PRU, RTU, Tx_PRU)
 99 * @is_k3: flag used to identify the need for special load handling
100 */
101struct pru_private_data {
102	enum pru_type type;
103	unsigned int is_k3 : 1;
104};
105
106/**
107 * struct pru_rproc - PRU remoteproc structure
108 * @id: id of the PRU core within the PRUSS
109 * @dev: PRU core device pointer
110 * @pruss: back-reference to parent PRUSS structure
111 * @rproc: remoteproc pointer for this PRU core
112 * @data: PRU core specific data
113 * @mem_regions: data for each of the PRU memory regions
114 * @fw_name: name of firmware image used during loading
115 * @mapped_irq: virtual interrupt numbers of created fw specific mapping
116 * @pru_interrupt_map: pointer to interrupt mapping description (firmware)
117 * @pru_interrupt_map_sz: pru_interrupt_map size
118 * @dbg_single_step: debug state variable to set PRU into single step mode
119 * @dbg_continuous: debug state variable to restore PRU execution mode
120 * @evt_count: number of mapped events
121 */
122struct pru_rproc {
123	int id;
124	struct device *dev;
125	struct pruss *pruss;
126	struct rproc *rproc;
127	const struct pru_private_data *data;
128	struct pruss_mem_region mem_regions[PRU_IOMEM_MAX];
129	const char *fw_name;
130	unsigned int *mapped_irq;
131	struct pru_irq_rsc *pru_interrupt_map;
132	size_t pru_interrupt_map_sz;
133	u32 dbg_single_step;
134	u32 dbg_continuous;
135	u8 evt_count;
136};
137
138static inline u32 pru_control_read_reg(struct pru_rproc *pru, unsigned int reg)
139{
140	return readl_relaxed(pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
141}
142
143static inline
144void pru_control_write_reg(struct pru_rproc *pru, unsigned int reg, u32 val)
145{
146	writel_relaxed(val, pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
147}
148
149static inline u32 pru_debug_read_reg(struct pru_rproc *pru, unsigned int reg)
150{
151	return readl_relaxed(pru->mem_regions[PRU_IOMEM_DEBUG].va + reg);
152}
153
154static int regs_show(struct seq_file *s, void *data)
155{
156	struct rproc *rproc = s->private;
157	struct pru_rproc *pru = rproc->priv;
158	int i, nregs = 32;
159	u32 pru_sts;
160	int pru_is_running;
161
162	seq_puts(s, "============== Control Registers ==============\n");
163	seq_printf(s, "CTRL      := 0x%08x\n",
164		   pru_control_read_reg(pru, PRU_CTRL_CTRL));
165	pru_sts = pru_control_read_reg(pru, PRU_CTRL_STS);
166	seq_printf(s, "STS (PC)  := 0x%08x (0x%08x)\n", pru_sts, pru_sts << 2);
167	seq_printf(s, "WAKEUP_EN := 0x%08x\n",
168		   pru_control_read_reg(pru, PRU_CTRL_WAKEUP_EN));
169	seq_printf(s, "CYCLE     := 0x%08x\n",
170		   pru_control_read_reg(pru, PRU_CTRL_CYCLE));
171	seq_printf(s, "STALL     := 0x%08x\n",
172		   pru_control_read_reg(pru, PRU_CTRL_STALL));
173	seq_printf(s, "CTBIR0    := 0x%08x\n",
174		   pru_control_read_reg(pru, PRU_CTRL_CTBIR0));
175	seq_printf(s, "CTBIR1    := 0x%08x\n",
176		   pru_control_read_reg(pru, PRU_CTRL_CTBIR1));
177	seq_printf(s, "CTPPR0    := 0x%08x\n",
178		   pru_control_read_reg(pru, PRU_CTRL_CTPPR0));
179	seq_printf(s, "CTPPR1    := 0x%08x\n",
180		   pru_control_read_reg(pru, PRU_CTRL_CTPPR1));
181
182	seq_puts(s, "=============== Debug Registers ===============\n");
183	pru_is_running = pru_control_read_reg(pru, PRU_CTRL_CTRL) &
184				CTRL_CTRL_RUNSTATE;
185	if (pru_is_running) {
186		seq_puts(s, "PRU is executing, cannot print/access debug registers.\n");
187		return 0;
188	}
189
190	for (i = 0; i < nregs; i++) {
191		seq_printf(s, "GPREG%-2d := 0x%08x\tCT_REG%-2d := 0x%08x\n",
192			   i, pru_debug_read_reg(pru, PRU_DEBUG_GPREG(i)),
193			   i, pru_debug_read_reg(pru, PRU_DEBUG_CT_REG(i)));
194	}
195
196	return 0;
197}
198DEFINE_SHOW_ATTRIBUTE(regs);
199
200/*
201 * Control PRU single-step mode
202 *
203 * This is a debug helper function used for controlling the single-step
204 * mode of the PRU. The PRU Debug registers are not accessible when the
205 * PRU is in RUNNING state.
206 *
207 * Writing a non-zero value sets the PRU into single-step mode irrespective
208 * of its previous state. The PRU mode is saved only on the first set into
209 * a single-step mode. Writing a zero value will restore the PRU into its
210 * original mode.
211 */
212static int pru_rproc_debug_ss_set(void *data, u64 val)
213{
214	struct rproc *rproc = data;
215	struct pru_rproc *pru = rproc->priv;
216	u32 reg_val;
217
218	val = val ? 1 : 0;
219	if (!val && !pru->dbg_single_step)
220		return 0;
221
222	reg_val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
223
224	if (val && !pru->dbg_single_step)
225		pru->dbg_continuous = reg_val;
226
227	if (val)
228		reg_val |= CTRL_CTRL_SINGLE_STEP | CTRL_CTRL_EN;
229	else
230		reg_val = pru->dbg_continuous;
231
232	pru->dbg_single_step = val;
233	pru_control_write_reg(pru, PRU_CTRL_CTRL, reg_val);
234
235	return 0;
236}
237
238static int pru_rproc_debug_ss_get(void *data, u64 *val)
239{
240	struct rproc *rproc = data;
241	struct pru_rproc *pru = rproc->priv;
242
243	*val = pru->dbg_single_step;
244
245	return 0;
246}
247DEFINE_DEBUGFS_ATTRIBUTE(pru_rproc_debug_ss_fops, pru_rproc_debug_ss_get,
248			 pru_rproc_debug_ss_set, "%llu\n");
249
250/*
251 * Create PRU-specific debugfs entries
252 *
253 * The entries are created only if the parent remoteproc debugfs directory
254 * exists, and will be cleaned up by the remoteproc core.
255 */
256static void pru_rproc_create_debug_entries(struct rproc *rproc)
257{
258	if (!rproc->dbg_dir)
259		return;
260
261	debugfs_create_file("regs", 0400, rproc->dbg_dir,
262			    rproc, &regs_fops);
263	debugfs_create_file("single_step", 0600, rproc->dbg_dir,
264			    rproc, &pru_rproc_debug_ss_fops);
265}
266
267static void pru_dispose_irq_mapping(struct pru_rproc *pru)
268{
269	if (!pru->mapped_irq)
270		return;
271
272	while (pru->evt_count) {
273		pru->evt_count--;
274		if (pru->mapped_irq[pru->evt_count] > 0)
275			irq_dispose_mapping(pru->mapped_irq[pru->evt_count]);
276	}
277
278	kfree(pru->mapped_irq);
279	pru->mapped_irq = NULL;
280}
281
282/*
283 * Parse the custom PRU interrupt map resource and configure the INTC
284 * appropriately.
285 */
286static int pru_handle_intrmap(struct rproc *rproc)
287{
288	struct device *dev = rproc->dev.parent;
289	struct pru_rproc *pru = rproc->priv;
290	struct pru_irq_rsc *rsc = pru->pru_interrupt_map;
291	struct irq_fwspec fwspec;
292	struct device_node *parent, *irq_parent;
293	int i, ret = 0;
294
295	/* not having pru_interrupt_map is not an error */
296	if (!rsc)
297		return 0;
298
299	/* currently supporting only type 0 */
300	if (rsc->type != 0) {
301		dev_err(dev, "unsupported rsc type: %d\n", rsc->type);
302		return -EINVAL;
303	}
304
305	if (rsc->num_evts > MAX_PRU_SYS_EVENTS)
306		return -EINVAL;
307
308	if (sizeof(*rsc) + rsc->num_evts * sizeof(struct pruss_int_map) !=
309	    pru->pru_interrupt_map_sz)
310		return -EINVAL;
311
312	pru->evt_count = rsc->num_evts;
313	pru->mapped_irq = kcalloc(pru->evt_count, sizeof(unsigned int),
314				  GFP_KERNEL);
315	if (!pru->mapped_irq) {
316		pru->evt_count = 0;
317		return -ENOMEM;
318	}
319
320	/*
321	 * parse and fill in system event to interrupt channel and
322	 * channel-to-host mapping. The interrupt controller to be used
323	 * for these mappings for a given PRU remoteproc is always its
324	 * corresponding sibling PRUSS INTC node.
325	 */
326	parent = of_get_parent(dev_of_node(pru->dev));
327	if (!parent) {
328		kfree(pru->mapped_irq);
329		pru->mapped_irq = NULL;
330		pru->evt_count = 0;
331		return -ENODEV;
332	}
333
334	irq_parent = of_get_child_by_name(parent, "interrupt-controller");
335	of_node_put(parent);
336	if (!irq_parent) {
337		kfree(pru->mapped_irq);
338		pru->mapped_irq = NULL;
339		pru->evt_count = 0;
340		return -ENODEV;
341	}
342
343	fwspec.fwnode = of_node_to_fwnode(irq_parent);
344	fwspec.param_count = 3;
345	for (i = 0; i < pru->evt_count; i++) {
346		fwspec.param[0] = rsc->pru_intc_map[i].event;
347		fwspec.param[1] = rsc->pru_intc_map[i].chnl;
348		fwspec.param[2] = rsc->pru_intc_map[i].host;
349
350		dev_dbg(dev, "mapping%d: event %d, chnl %d, host %d\n",
351			i, fwspec.param[0], fwspec.param[1], fwspec.param[2]);
352
353		pru->mapped_irq[i] = irq_create_fwspec_mapping(&fwspec);
354		if (!pru->mapped_irq[i]) {
355			dev_err(dev, "failed to get virq for fw mapping %d: event %d chnl %d host %d\n",
356				i, fwspec.param[0], fwspec.param[1],
357				fwspec.param[2]);
358			ret = -EINVAL;
359			goto map_fail;
360		}
361	}
362	of_node_put(irq_parent);
363
364	return ret;
365
366map_fail:
367	pru_dispose_irq_mapping(pru);
368	of_node_put(irq_parent);
369
370	return ret;
371}
372
373static int pru_rproc_start(struct rproc *rproc)
374{
375	struct device *dev = &rproc->dev;
376	struct pru_rproc *pru = rproc->priv;
377	const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
378	u32 val;
379	int ret;
380
381	dev_dbg(dev, "starting %s%d: entry-point = 0x%llx\n",
382		names[pru->data->type], pru->id, (rproc->bootaddr >> 2));
383
384	ret = pru_handle_intrmap(rproc);
385	/*
386	 * reset references to pru interrupt map - they will stop being valid
387	 * after rproc_start returns
388	 */
389	pru->pru_interrupt_map = NULL;
390	pru->pru_interrupt_map_sz = 0;
391	if (ret)
392		return ret;
393
394	val = CTRL_CTRL_EN | ((rproc->bootaddr >> 2) << 16);
395	pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
396
397	return 0;
398}
399
400static int pru_rproc_stop(struct rproc *rproc)
401{
402	struct device *dev = &rproc->dev;
403	struct pru_rproc *pru = rproc->priv;
404	const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
405	u32 val;
406
407	dev_dbg(dev, "stopping %s%d\n", names[pru->data->type], pru->id);
408
409	val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
410	val &= ~CTRL_CTRL_EN;
411	pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
412
413	/* dispose irq mapping - new firmware can provide new mapping */
414	pru_dispose_irq_mapping(pru);
415
416	return 0;
417}
418
419/*
420 * Convert PRU device address (data spaces only) to kernel virtual address.
421 *
422 * Each PRU has access to all data memories within the PRUSS, accessible at
423 * different ranges. So, look through both its primary and secondary Data
424 * RAMs as well as any shared Data RAM to convert a PRU device address to
425 * kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data
426 * RAM1 is primary Data RAM for PRU1.
427 */
428static void *pru_d_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
429{
430	struct pruss_mem_region dram0, dram1, shrd_ram;
431	struct pruss *pruss = pru->pruss;
432	u32 offset;
433	void *va = NULL;
434
435	if (len == 0)
436		return NULL;
437
438	dram0 = pruss->mem_regions[PRUSS_MEM_DRAM0];
439	dram1 = pruss->mem_regions[PRUSS_MEM_DRAM1];
440	/* PRU1 has its local RAM addresses reversed */
441	if (pru->id == 1)
442		swap(dram0, dram1);
443	shrd_ram = pruss->mem_regions[PRUSS_MEM_SHRD_RAM2];
444
445	if (da >= PRU_PDRAM_DA && da + len <= PRU_PDRAM_DA + dram0.size) {
446		offset = da - PRU_PDRAM_DA;
447		va = (__force void *)(dram0.va + offset);
448	} else if (da >= PRU_SDRAM_DA &&
449		   da + len <= PRU_SDRAM_DA + dram1.size) {
450		offset = da - PRU_SDRAM_DA;
451		va = (__force void *)(dram1.va + offset);
452	} else if (da >= PRU_SHRDRAM_DA &&
453		   da + len <= PRU_SHRDRAM_DA + shrd_ram.size) {
454		offset = da - PRU_SHRDRAM_DA;
455		va = (__force void *)(shrd_ram.va + offset);
456	}
457
458	return va;
459}
460
461/*
462 * Convert PRU device address (instruction space) to kernel virtual address.
463 *
464 * A PRU does not have an unified address space. Each PRU has its very own
465 * private Instruction RAM, and its device address is identical to that of
466 * its primary Data RAM device address.
467 */
468static void *pru_i_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
469{
470	u32 offset;
471	void *va = NULL;
472
473	if (len == 0)
474		return NULL;
475
476	/*
477	 * GNU binutils do not support multiple address spaces. The GNU
478	 * linker's default linker script places IRAM at an arbitrary high
479	 * offset, in order to differentiate it from DRAM. Hence we need to
480	 * strip the artificial offset in the IRAM addresses coming from the
481	 * ELF file.
482	 *
483	 * The TI proprietary linker would never set those higher IRAM address
484	 * bits anyway. PRU architecture limits the program counter to 16-bit
485	 * word-address range. This in turn corresponds to 18-bit IRAM
486	 * byte-address range for ELF.
487	 *
488	 * Two more bits are added just in case to make the final 20-bit mask.
489	 * Idea is to have a safeguard in case TI decides to add banking
490	 * in future SoCs.
491	 */
492	da &= 0xfffff;
493
494	if (da >= PRU_IRAM_DA &&
495	    da + len <= PRU_IRAM_DA + pru->mem_regions[PRU_IOMEM_IRAM].size) {
496		offset = da - PRU_IRAM_DA;
497		va = (__force void *)(pru->mem_regions[PRU_IOMEM_IRAM].va +
498				      offset);
499	}
500
501	return va;
502}
503
504/*
505 * Provide address translations for only PRU Data RAMs through the remoteproc
506 * core for any PRU client drivers. The PRU Instruction RAM access is restricted
507 * only to the PRU loader code.
508 */
509static void *pru_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
510{
511	struct pru_rproc *pru = rproc->priv;
512
513	return pru_d_da_to_va(pru, da, len);
514}
515
516/* PRU-specific address translator used by PRU loader. */
517static void *pru_da_to_va(struct rproc *rproc, u64 da, size_t len, bool is_iram)
518{
519	struct pru_rproc *pru = rproc->priv;
520	void *va;
521
522	if (is_iram)
523		va = pru_i_da_to_va(pru, da, len);
524	else
525		va = pru_d_da_to_va(pru, da, len);
526
527	return va;
528}
529
530static struct rproc_ops pru_rproc_ops = {
531	.start		= pru_rproc_start,
532	.stop		= pru_rproc_stop,
533	.da_to_va	= pru_rproc_da_to_va,
534};
535
536/*
537 * Custom memory copy implementation for ICSSG PRU/RTU/Tx_PRU Cores
538 *
539 * The ICSSG PRU/RTU/Tx_PRU cores have a memory copying issue with IRAM
540 * memories, that is not seen on previous generation SoCs. The data is reflected
541 * properly in the IRAM memories only for integer (4-byte) copies. Any unaligned
542 * copies result in all the other pre-existing bytes zeroed out within that
543 * 4-byte boundary, thereby resulting in wrong text/code in the IRAMs. Also, the
544 * IRAM memory port interface does not allow any 8-byte copies (as commonly used
545 * by ARM64 memcpy implementation) and throws an exception. The DRAM memory
546 * ports do not show this behavior.
547 */
548static int pru_rproc_memcpy(void *dest, const void *src, size_t count)
549{
550	const u32 *s = src;
551	u32 *d = dest;
552	size_t size = count / 4;
553	u32 *tmp_src = NULL;
554
555	/*
556	 * TODO: relax limitation of 4-byte aligned dest addresses and copy
557	 * sizes
558	 */
559	if ((long)dest % 4 || count % 4)
560		return -EINVAL;
561
562	/* src offsets in ELF firmware image can be non-aligned */
563	if ((long)src % 4) {
564		tmp_src = kmemdup(src, count, GFP_KERNEL);
565		if (!tmp_src)
566			return -ENOMEM;
567		s = tmp_src;
568	}
569
570	while (size--)
571		*d++ = *s++;
572
573	kfree(tmp_src);
574
575	return 0;
576}
577
578static int
579pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw)
580{
581	struct pru_rproc *pru = rproc->priv;
582	struct device *dev = &rproc->dev;
583	struct elf32_hdr *ehdr;
584	struct elf32_phdr *phdr;
585	int i, ret = 0;
586	const u8 *elf_data = fw->data;
587
588	ehdr = (struct elf32_hdr *)elf_data;
589	phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);
590
591	/* go through the available ELF segments */
592	for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
593		u32 da = phdr->p_paddr;
594		u32 memsz = phdr->p_memsz;
595		u32 filesz = phdr->p_filesz;
596		u32 offset = phdr->p_offset;
597		bool is_iram;
598		void *ptr;
599
600		if (phdr->p_type != PT_LOAD || !filesz)
601			continue;
602
603		dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
604			phdr->p_type, da, memsz, filesz);
605
606		if (filesz > memsz) {
607			dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
608				filesz, memsz);
609			ret = -EINVAL;
610			break;
611		}
612
613		if (offset + filesz > fw->size) {
614			dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n",
615				offset + filesz, fw->size);
616			ret = -EINVAL;
617			break;
618		}
619
620		/* grab the kernel address for this device address */
621		is_iram = phdr->p_flags & PF_X;
622		ptr = pru_da_to_va(rproc, da, memsz, is_iram);
623		if (!ptr) {
624			dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
625			ret = -EINVAL;
626			break;
627		}
628
629		if (pru->data->is_k3) {
630			ret = pru_rproc_memcpy(ptr, elf_data + phdr->p_offset,
631					       filesz);
632			if (ret) {
633				dev_err(dev, "PRU memory copy failed for da 0x%x memsz 0x%x\n",
634					da, memsz);
635				break;
636			}
637		} else {
638			memcpy(ptr, elf_data + phdr->p_offset, filesz);
639		}
640
641		/* skip the memzero logic performed by remoteproc ELF loader */
642	}
643
644	return ret;
645}
646
647static const void *
648pru_rproc_find_interrupt_map(struct device *dev, const struct firmware *fw)
649{
650	struct elf32_shdr *shdr, *name_table_shdr;
651	const char *name_table;
652	const u8 *elf_data = fw->data;
653	struct elf32_hdr *ehdr = (struct elf32_hdr *)elf_data;
654	u16 shnum = ehdr->e_shnum;
655	u16 shstrndx = ehdr->e_shstrndx;
656	int i;
657
658	/* first, get the section header */
659	shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
660	/* compute name table section header entry in shdr array */
661	name_table_shdr = shdr + shstrndx;
662	/* finally, compute the name table section address in elf */
663	name_table = elf_data + name_table_shdr->sh_offset;
664
665	for (i = 0; i < shnum; i++, shdr++) {
666		u32 size = shdr->sh_size;
667		u32 offset = shdr->sh_offset;
668		u32 name = shdr->sh_name;
669
670		if (strcmp(name_table + name, ".pru_irq_map"))
671			continue;
672
673		/* make sure we have the entire irq map */
674		if (offset + size > fw->size || offset + size < size) {
675			dev_err(dev, ".pru_irq_map section truncated\n");
676			return ERR_PTR(-EINVAL);
677		}
678
679		/* make sure irq map has at least the header */
680		if (sizeof(struct pru_irq_rsc) > size) {
681			dev_err(dev, "header-less .pru_irq_map section\n");
682			return ERR_PTR(-EINVAL);
683		}
684
685		return shdr;
686	}
687
688	dev_dbg(dev, "no .pru_irq_map section found for this fw\n");
689
690	return NULL;
691}
692
693/*
694 * Use a custom parse_fw callback function for dealing with PRU firmware
695 * specific sections.
696 *
697 * The firmware blob can contain optional ELF sections: .resource_table section
698 * and .pru_irq_map one. The second one contains the PRUSS interrupt mapping
699 * description, which needs to be setup before powering on the PRU core. To
700 * avoid RAM wastage this ELF section is not mapped to any ELF segment (by the
701 * firmware linker) and therefore is not loaded to PRU memory.
702 */
703static int pru_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw)
704{
705	struct device *dev = &rproc->dev;
706	struct pru_rproc *pru = rproc->priv;
707	const u8 *elf_data = fw->data;
708	const void *shdr;
709	u8 class = fw_elf_get_class(fw);
710	u64 sh_offset;
711	int ret;
712
713	/* load optional rsc table */
714	ret = rproc_elf_load_rsc_table(rproc, fw);
715	if (ret == -EINVAL)
716		dev_dbg(&rproc->dev, "no resource table found for this fw\n");
717	else if (ret)
718		return ret;
719
720	/* find .pru_interrupt_map section, not having it is not an error */
721	shdr = pru_rproc_find_interrupt_map(dev, fw);
722	if (IS_ERR(shdr))
723		return PTR_ERR(shdr);
724
725	if (!shdr)
726		return 0;
727
728	/* preserve pointer to PRU interrupt map together with it size */
729	sh_offset = elf_shdr_get_sh_offset(class, shdr);
730	pru->pru_interrupt_map = (struct pru_irq_rsc *)(elf_data + sh_offset);
731	pru->pru_interrupt_map_sz = elf_shdr_get_sh_size(class, shdr);
732
733	return 0;
734}
735
736/*
737 * Compute PRU id based on the IRAM addresses. The PRU IRAMs are
738 * always at a particular offset within the PRUSS address space.
739 */
740static int pru_rproc_set_id(struct pru_rproc *pru)
741{
742	int ret = 0;
743
744	switch (pru->mem_regions[PRU_IOMEM_IRAM].pa & PRU_IRAM_ADDR_MASK) {
745	case TX_PRU0_IRAM_ADDR_MASK:
746		fallthrough;
747	case RTU0_IRAM_ADDR_MASK:
748		fallthrough;
749	case PRU0_IRAM_ADDR_MASK:
750		pru->id = 0;
751		break;
752	case TX_PRU1_IRAM_ADDR_MASK:
753		fallthrough;
754	case RTU1_IRAM_ADDR_MASK:
755		fallthrough;
756	case PRU1_IRAM_ADDR_MASK:
757		pru->id = 1;
758		break;
759	default:
760		ret = -EINVAL;
761	}
762
763	return ret;
764}
765
766static int pru_rproc_probe(struct platform_device *pdev)
767{
768	struct device *dev = &pdev->dev;
769	struct device_node *np = dev->of_node;
770	struct platform_device *ppdev = to_platform_device(dev->parent);
771	struct pru_rproc *pru;
772	const char *fw_name;
773	struct rproc *rproc = NULL;
774	struct resource *res;
775	int i, ret;
776	const struct pru_private_data *data;
777	const char *mem_names[PRU_IOMEM_MAX] = { "iram", "control", "debug" };
778
779	data = of_device_get_match_data(&pdev->dev);
780	if (!data)
781		return -ENODEV;
782
783	ret = of_property_read_string(np, "firmware-name", &fw_name);
784	if (ret) {
785		dev_err(dev, "unable to retrieve firmware-name %d\n", ret);
786		return ret;
787	}
788
789	rproc = devm_rproc_alloc(dev, pdev->name, &pru_rproc_ops, fw_name,
790				 sizeof(*pru));
791	if (!rproc) {
792		dev_err(dev, "rproc_alloc failed\n");
793		return -ENOMEM;
794	}
795	/* use a custom load function to deal with PRU-specific quirks */
796	rproc->ops->load = pru_rproc_load_elf_segments;
797
798	/* use a custom parse function to deal with PRU-specific resources */
799	rproc->ops->parse_fw = pru_rproc_parse_fw;
800
801	/* error recovery is not supported for PRUs */
802	rproc->recovery_disabled = true;
803
804	/*
805	 * rproc_add will auto-boot the processor normally, but this is not
806	 * desired with PRU client driven boot-flow methodology. A PRU
807	 * application/client driver will boot the corresponding PRU
808	 * remote-processor as part of its state machine either through the
809	 * remoteproc sysfs interface or through the equivalent kernel API.
810	 */
811	rproc->auto_boot = false;
812
813	pru = rproc->priv;
814	pru->dev = dev;
815	pru->data = data;
816	pru->pruss = platform_get_drvdata(ppdev);
817	pru->rproc = rproc;
818	pru->fw_name = fw_name;
819
820	for (i = 0; i < ARRAY_SIZE(mem_names); i++) {
821		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
822						   mem_names[i]);
823		pru->mem_regions[i].va = devm_ioremap_resource(dev, res);
824		if (IS_ERR(pru->mem_regions[i].va)) {
825			dev_err(dev, "failed to parse and map memory resource %d %s\n",
826				i, mem_names[i]);
827			ret = PTR_ERR(pru->mem_regions[i].va);
828			return ret;
829		}
830		pru->mem_regions[i].pa = res->start;
831		pru->mem_regions[i].size = resource_size(res);
832
833		dev_dbg(dev, "memory %8s: pa %pa size 0x%zx va %pK\n",
834			mem_names[i], &pru->mem_regions[i].pa,
835			pru->mem_regions[i].size, pru->mem_regions[i].va);
836	}
837
838	ret = pru_rproc_set_id(pru);
839	if (ret < 0)
840		return ret;
841
842	platform_set_drvdata(pdev, rproc);
843
844	ret = devm_rproc_add(dev, pru->rproc);
845	if (ret) {
846		dev_err(dev, "rproc_add failed: %d\n", ret);
847		return ret;
848	}
849
850	pru_rproc_create_debug_entries(rproc);
851
852	dev_dbg(dev, "PRU rproc node %pOF probed successfully\n", np);
853
854	return 0;
855}
856
857static int pru_rproc_remove(struct platform_device *pdev)
858{
859	struct device *dev = &pdev->dev;
860	struct rproc *rproc = platform_get_drvdata(pdev);
861
862	dev_dbg(dev, "%s: removing rproc %s\n", __func__, rproc->name);
863
864	return 0;
865}
866
867static const struct pru_private_data pru_data = {
868	.type = PRU_TYPE_PRU,
869};
870
871static const struct pru_private_data k3_pru_data = {
872	.type = PRU_TYPE_PRU,
873	.is_k3 = 1,
874};
875
876static const struct pru_private_data k3_rtu_data = {
877	.type = PRU_TYPE_RTU,
878	.is_k3 = 1,
879};
880
881static const struct pru_private_data k3_tx_pru_data = {
882	.type = PRU_TYPE_TX_PRU,
883	.is_k3 = 1,
884};
885
886static const struct of_device_id pru_rproc_match[] = {
887	{ .compatible = "ti,am3356-pru",	.data = &pru_data },
888	{ .compatible = "ti,am4376-pru",	.data = &pru_data },
889	{ .compatible = "ti,am5728-pru",	.data = &pru_data },
890	{ .compatible = "ti,am642-pru",		.data = &k3_pru_data },
891	{ .compatible = "ti,am642-rtu",		.data = &k3_rtu_data },
892	{ .compatible = "ti,am642-tx-pru",	.data = &k3_tx_pru_data },
893	{ .compatible = "ti,k2g-pru",		.data = &pru_data },
894	{ .compatible = "ti,am654-pru",		.data = &k3_pru_data },
895	{ .compatible = "ti,am654-rtu",		.data = &k3_rtu_data },
896	{ .compatible = "ti,am654-tx-pru",	.data = &k3_tx_pru_data },
897	{ .compatible = "ti,j721e-pru",		.data = &k3_pru_data },
898	{ .compatible = "ti,j721e-rtu",		.data = &k3_rtu_data },
899	{ .compatible = "ti,j721e-tx-pru",	.data = &k3_tx_pru_data },
900	{ .compatible = "ti,am625-pru",		.data = &k3_pru_data },
901	{},
902};
903MODULE_DEVICE_TABLE(of, pru_rproc_match);
904
905static struct platform_driver pru_rproc_driver = {
906	.driver = {
907		.name   = "pru-rproc",
908		.of_match_table = pru_rproc_match,
909		.suppress_bind_attrs = true,
910	},
911	.probe  = pru_rproc_probe,
912	.remove = pru_rproc_remove,
913};
914module_platform_driver(pru_rproc_driver);
915
916MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
917MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
918MODULE_AUTHOR("Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>");
919MODULE_DESCRIPTION("PRU-ICSS Remote Processor Driver");
920MODULE_LICENSE("GPL v2");