Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Compaq Hot Plug Controller Driver
   3 *
   4 * Copyright (C) 1995,2001 Compaq Computer Corporation
   5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
   6 * Copyright (C) 2001 IBM Corp.
   7 *
   8 * All rights reserved.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or (at
  13 * your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  18 * NON INFRINGEMENT.  See the GNU General Public License for more
  19 * details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24 *
  25 * Send feedback to <greg@kroah.com>
  26 *
  27 */
  28
  29#include <linux/module.h>
  30#include <linux/kernel.h>
  31#include <linux/types.h>
  32#include <linux/slab.h>
  33#include <linux/workqueue.h>
  34#include <linux/proc_fs.h>
  35#include <linux/pci.h>
  36#include <linux/pci_hotplug.h>
  37#include "../pci.h"
  38#include "cpqphp.h"
  39#include "cpqphp_nvram.h"
  40
  41
  42u8 cpqhp_nic_irq;
  43u8 cpqhp_disk_irq;
  44
  45static u16 unused_IRQ;
  46
  47/*
  48 * detect_HRT_floating_pointer
  49 *
  50 * find the Hot Plug Resource Table in the specified region of memory.
  51 *
  52 */
  53static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
  54{
  55	void __iomem *fp;
  56	void __iomem *endp;
  57	u8 temp1, temp2, temp3, temp4;
  58	int status = 0;
  59
  60	endp = (end - sizeof(struct hrt) + 1);
  61
  62	for (fp = begin; fp <= endp; fp += 16) {
  63		temp1 = readb(fp + SIG0);
  64		temp2 = readb(fp + SIG1);
  65		temp3 = readb(fp + SIG2);
  66		temp4 = readb(fp + SIG3);
  67		if (temp1 == '$' &&
  68		    temp2 == 'H' &&
  69		    temp3 == 'R' &&
  70		    temp4 == 'T') {
  71			status = 1;
  72			break;
  73		}
  74	}
  75
  76	if (!status)
  77		fp = NULL;
  78
  79	dbg("Discovered Hotplug Resource Table at %p\n", fp);
  80	return fp;
  81}
  82
  83
  84int cpqhp_configure_device (struct controller* ctrl, struct pci_func* func)
  85{
  86	unsigned char bus;
  87	struct pci_bus *child;
  88	int num;
  89
 
 
  90	if (func->pci_dev == NULL)
  91		func->pci_dev = pci_get_bus_and_slot(func->bus,PCI_DEVFN(func->device, func->function));
 
 
  92
  93	/* No pci device, we need to create it then */
  94	if (func->pci_dev == NULL) {
  95		dbg("INFO: pci_dev still null\n");
  96
  97		num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
  98		if (num)
  99			pci_bus_add_devices(ctrl->pci_dev->bus);
 100
 101		func->pci_dev = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, func->function));
 
 
 102		if (func->pci_dev == NULL) {
 103			dbg("ERROR: pci_dev still null\n");
 104			return 0;
 105		}
 106	}
 107
 108	if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
 109		pci_read_config_byte(func->pci_dev, PCI_SECONDARY_BUS, &bus);
 110		child = (struct pci_bus*) pci_add_new_bus(func->pci_dev->bus, (func->pci_dev), bus);
 111		pci_do_scan_bus(child);
 
 112	}
 113
 114	pci_dev_put(func->pci_dev);
 115
 
 
 116	return 0;
 117}
 118
 119
 120int cpqhp_unconfigure_device(struct pci_func* func)
 121{
 122	int j;
 123
 124	dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function);
 125
 126	for (j=0; j<8 ; j++) {
 127		struct pci_dev* temp = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, j));
 
 
 
 
 128		if (temp) {
 129			pci_dev_put(temp);
 130			pci_remove_bus_device(temp);
 131		}
 132	}
 
 133	return 0;
 134}
 135
 136static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value)
 137{
 138	u32 vendID = 0;
 139
 140	if (pci_bus_read_config_dword (bus, devfn, PCI_VENDOR_ID, &vendID) == -1)
 141		return -1;
 142	if (vendID == 0xffffffff)
 143		return -1;
 144	return pci_bus_read_config_dword (bus, devfn, offset, value);
 145}
 146
 147
 148/*
 149 * cpqhp_set_irq
 150 *
 151 * @bus_num: bus number of PCI device
 152 * @dev_num: device number of PCI device
 153 * @slot: pointer to u8 where slot number will be returned
 154 */
 155int cpqhp_set_irq (u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
 156{
 157	int rc = 0;
 158
 159	if (cpqhp_legacy_mode) {
 160		struct pci_dev *fakedev;
 161		struct pci_bus *fakebus;
 162		u16 temp_word;
 163
 164		fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
 165		fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
 166		if (!fakedev || !fakebus) {
 167			kfree(fakedev);
 168			kfree(fakebus);
 169			return -ENOMEM;
 170		}
 171
 172		fakedev->devfn = dev_num << 3;
 173		fakedev->bus = fakebus;
 174		fakebus->number = bus_num;
 175		dbg("%s: dev %d, bus %d, pin %d, num %d\n",
 176		    __func__, dev_num, bus_num, int_pin, irq_num);
 177		rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num);
 178		kfree(fakedev);
 179		kfree(fakebus);
 180		dbg("%s: rc %d\n", __func__, rc);
 181		if (!rc)
 182			return !rc;
 183
 184		/* set the Edge Level Control Register (ELCR) */
 185		temp_word = inb(0x4d0);
 186		temp_word |= inb(0x4d1) << 8;
 187
 188		temp_word |= 0x01 << irq_num;
 189
 190		/* This should only be for x86 as it sets the Edge Level
 191		 * Control Register
 192		 */
 193		outb((u8) (temp_word & 0xFF), 0x4d0); outb((u8) ((temp_word &
 194		0xFF00) >> 8), 0x4d1); rc = 0; }
 
 
 195
 196	return rc;
 197}
 198
 199
 200static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 * dev_num)
 201{
 202	u16 tdevice;
 203	u32 work;
 204	u8 tbus;
 205
 206	ctrl->pci_bus->number = bus_num;
 207
 208	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
 209		/* Scan for access first */
 210		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
 211			continue;
 212		dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
 213		/* Yep we got one. Not a bridge ? */
 214		if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
 215			*dev_num = tdevice;
 216			dbg("found it !\n");
 217			return 0;
 218		}
 219	}
 220	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
 221		/* Scan for access first */
 222		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
 223			continue;
 224		dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
 225		/* Yep we got one. bridge ? */
 226		if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
 227			pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus);
 228			/* XXX: no recursion, wtf? */
 229			dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
 230			return 0;
 231		}
 232	}
 233
 234	return -1;
 235}
 236
 237
 238static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
 239{
 240	int loop, len;
 241	u32 work;
 242	u8 tbus, tdevice, tslot;
 243
 244	len = cpqhp_routing_table_length();
 245	for (loop = 0; loop < len; ++loop) {
 246		tbus = cpqhp_routing_table->slots[loop].bus;
 247		tdevice = cpqhp_routing_table->slots[loop].devfn;
 248		tslot = cpqhp_routing_table->slots[loop].slot;
 249
 250		if (tslot == slot) {
 251			*bus_num = tbus;
 252			*dev_num = tdevice;
 253			ctrl->pci_bus->number = tbus;
 254			pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
 255			if (!nobridge || (work == 0xffffffff))
 256				return 0;
 257
 258			dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
 259			pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
 260			dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
 261
 262			if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
 263				pci_bus_read_config_byte (ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
 264				dbg("Scan bus for Non Bridge: bus %d\n", tbus);
 265				if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
 266					*bus_num = tbus;
 267					return 0;
 268				}
 269			} else
 270				return 0;
 271		}
 272	}
 273	return -1;
 274}
 275
 276
 277int cpqhp_get_bus_dev (struct controller *ctrl, u8 * bus_num, u8 * dev_num, u8 slot)
 278{
 279	/* plain (bridges allowed) */
 280	return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0);
 281}
 282
 283
 284/* More PCI configuration routines; this time centered around hotplug
 285 * controller
 286 */
 287
 288
 289/*
 290 * cpqhp_save_config
 291 *
 292 * Reads configuration for all slots in a PCI bus and saves info.
 293 *
 294 * Note:  For non-hot plug busses, the slot # saved is the device #
 295 *
 296 * returns 0 if success
 297 */
 298int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
 299{
 300	long rc;
 301	u8 class_code;
 302	u8 header_type;
 303	u32 ID;
 304	u8 secondary_bus;
 305	struct pci_func *new_slot;
 306	int sub_bus;
 307	int FirstSupported;
 308	int LastSupported;
 309	int max_functions;
 310	int function;
 311	u8 DevError;
 312	int device = 0;
 313	int cloop = 0;
 314	int stop_it;
 315	int index;
 
 316
 317	/* Decide which slots are supported */
 318
 319	if (is_hot_plug) {
 320		/*
 321		 * is_hot_plug is the slot mask
 322		 */
 323		FirstSupported = is_hot_plug >> 4;
 324		LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
 325	} else {
 326		FirstSupported = 0;
 327		LastSupported = 0x1F;
 328	}
 329
 330	/* Save PCI configuration space for all devices in supported slots */
 331	ctrl->pci_bus->number = busnumber;
 332	for (device = FirstSupported; device <= LastSupported; device++) {
 333		ID = 0xFFFFFFFF;
 334		rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
 335
 336		if (ID == 0xFFFFFFFF) {
 337			if (is_hot_plug) {
 338				/* Setup slot structure with entry for empty
 339				 * slot
 340				 */
 341				new_slot = cpqhp_slot_create(busnumber);
 342				if (new_slot == NULL)
 343					return 1;
 344
 345				new_slot->bus = (u8) busnumber;
 346				new_slot->device = (u8) device;
 347				new_slot->function = 0;
 348				new_slot->is_a_board = 0;
 349				new_slot->presence_save = 0;
 350				new_slot->switch_save = 0;
 351			}
 352			continue;
 353		}
 354
 355		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
 356		if (rc)
 357			return rc;
 358
 359		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
 360		if (rc)
 361			return rc;
 362
 363		/* If multi-function device, set max_functions to 8 */
 364		if (header_type & 0x80)
 365			max_functions = 8;
 366		else
 367			max_functions = 1;
 368
 369		function = 0;
 370
 371		do {
 372			DevError = 0;
 373			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
 374				/* Recurse the subordinate bus
 375				 * get the subordinate bus number
 376				 */
 377				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
 378				if (rc) {
 379					return rc;
 380				} else {
 381					sub_bus = (int) secondary_bus;
 382
 383					/* Save secondary bus cfg spc
 384					 * with this recursive call.
 385					 */
 386					rc = cpqhp_save_config(ctrl, sub_bus, 0);
 387					if (rc)
 388						return rc;
 389					ctrl->pci_bus->number = busnumber;
 390				}
 391			}
 392
 393			index = 0;
 394			new_slot = cpqhp_slot_find(busnumber, device, index++);
 395			while (new_slot &&
 396			       (new_slot->function != (u8) function))
 397				new_slot = cpqhp_slot_find(busnumber, device, index++);
 398
 399			if (!new_slot) {
 400				/* Setup slot structure. */
 401				new_slot = cpqhp_slot_create(busnumber);
 402				if (new_slot == NULL)
 403					return 1;
 404			}
 405
 406			new_slot->bus = (u8) busnumber;
 407			new_slot->device = (u8) device;
 408			new_slot->function = (u8) function;
 409			new_slot->is_a_board = 1;
 410			new_slot->switch_save = 0x10;
 411			/* In case of unsupported board */
 412			new_slot->status = DevError;
 413			new_slot->pci_dev = pci_get_bus_and_slot(new_slot->bus, (new_slot->device << 3) | new_slot->function);
 
 
 414
 415			for (cloop = 0; cloop < 0x20; cloop++) {
 416				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
 417				if (rc)
 418					return rc;
 419			}
 420
 421			pci_dev_put(new_slot->pci_dev);
 422
 423			function++;
 424
 425			stop_it = 0;
 426
 427			/* this loop skips to the next present function
 428			 * reading in Class Code and Header type.
 429			 */
 430			while ((function < max_functions) && (!stop_it)) {
 431				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
 432				if (ID == 0xFFFFFFFF) {
 433					function++;
 434					continue;
 435				}
 436				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
 437				if (rc)
 438					return rc;
 439
 440				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
 441				if (rc)
 442					return rc;
 443
 444				stop_it++;
 445			}
 446
 447		} while (function < max_functions);
 448	}			/* End of FOR loop */
 449
 450	return 0;
 451}
 452
 453
 454/*
 455 * cpqhp_save_slot_config
 456 *
 457 * Saves configuration info for all PCI devices in a given slot
 458 * including subordinate busses.
 459 *
 460 * returns 0 if success
 461 */
 462int cpqhp_save_slot_config (struct controller *ctrl, struct pci_func * new_slot)
 463{
 464	long rc;
 465	u8 class_code;
 466	u8 header_type;
 467	u32 ID;
 468	u8 secondary_bus;
 469	int sub_bus;
 470	int max_functions;
 471	int function = 0;
 472	int cloop = 0;
 473	int stop_it;
 474
 475	ID = 0xFFFFFFFF;
 476
 477	ctrl->pci_bus->number = new_slot->bus;
 478	pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
 479
 480	if (ID == 0xFFFFFFFF)
 481		return 2;
 482
 483	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
 484	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
 485
 486	if (header_type & 0x80)	/* Multi-function device */
 487		max_functions = 8;
 488	else
 489		max_functions = 1;
 490
 491	while (function < max_functions) {
 492		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
 493			/*  Recurse the subordinate bus */
 494			pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
 495
 496			sub_bus = (int) secondary_bus;
 497
 498			/* Save the config headers for the secondary
 499			 * bus.
 500			 */
 501			rc = cpqhp_save_config(ctrl, sub_bus, 0);
 502			if (rc)
 503				return(rc);
 504			ctrl->pci_bus->number = new_slot->bus;
 505
 506		}
 507
 508		new_slot->status = 0;
 509
 510		for (cloop = 0; cloop < 0x20; cloop++)
 511			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
 512
 513		function++;
 514
 515		stop_it = 0;
 516
 517		/* this loop skips to the next present function
 518		 * reading in the Class Code and the Header type.
 519		 */
 520		while ((function < max_functions) && (!stop_it)) {
 521			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
 522
 523			if (ID == 0xFFFFFFFF)
 524				function++;
 525			else {
 526				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
 527				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
 528				stop_it++;
 529			}
 530		}
 531
 532	}
 533
 534	return 0;
 535}
 536
 537
 538/*
 539 * cpqhp_save_base_addr_length
 540 *
 541 * Saves the length of all base address registers for the
 542 * specified slot.  this is for hot plug REPLACE
 543 *
 544 * returns 0 if success
 545 */
 546int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func * func)
 547{
 548	u8 cloop;
 549	u8 header_type;
 550	u8 secondary_bus;
 551	u8 type;
 552	int sub_bus;
 553	u32 temp_register;
 554	u32 base;
 555	u32 rc;
 556	struct pci_func *next;
 557	int index = 0;
 558	struct pci_bus *pci_bus = ctrl->pci_bus;
 559	unsigned int devfn;
 560
 561	func = cpqhp_slot_find(func->bus, func->device, index++);
 562
 563	while (func != NULL) {
 564		pci_bus->number = func->bus;
 565		devfn = PCI_DEVFN(func->device, func->function);
 566
 567		/* Check for Bridge */
 568		pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
 569
 570		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
 571			pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
 572
 573			sub_bus = (int) secondary_bus;
 574
 575			next = cpqhp_slot_list[sub_bus];
 576
 577			while (next != NULL) {
 578				rc = cpqhp_save_base_addr_length(ctrl, next);
 579				if (rc)
 580					return rc;
 581
 582				next = next->next;
 583			}
 584			pci_bus->number = func->bus;
 585
 586			/* FIXME: this loop is duplicated in the non-bridge
 587			 * case.  The two could be rolled together Figure out
 588			 * IO and memory base lengths
 589			 */
 590			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
 591				temp_register = 0xFFFFFFFF;
 592				pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
 593				pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
 594				/* If this register is implemented */
 595				if (base) {
 596					if (base & 0x01L) {
 597						/* IO base
 598						 * set base = amount of IO space
 599						 * requested
 600						 */
 601						base = base & 0xFFFFFFFE;
 602						base = (~base) + 1;
 603
 604						type = 1;
 605					} else {
 606						/* memory base */
 607						base = base & 0xFFFFFFF0;
 608						base = (~base) + 1;
 609
 610						type = 0;
 611					}
 612				} else {
 613					base = 0x0L;
 614					type = 0;
 615				}
 616
 617				/* Save information in slot structure */
 618				func->base_length[(cloop - 0x10) >> 2] =
 619				base;
 620				func->base_type[(cloop - 0x10) >> 2] = type;
 621
 622			}	/* End of base register loop */
 623
 624		} else if ((header_type & 0x7F) == 0x00) {
 625			/* Figure out IO and memory base lengths */
 626			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
 627				temp_register = 0xFFFFFFFF;
 628				pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
 629				pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
 630
 631				/* If this register is implemented */
 632				if (base) {
 633					if (base & 0x01L) {
 634						/* IO base
 635						 * base = amount of IO space
 636						 * requested
 637						 */
 638						base = base & 0xFFFFFFFE;
 639						base = (~base) + 1;
 640
 641						type = 1;
 642					} else {
 643						/* memory base
 644						 * base = amount of memory
 645						 * space requested
 646						 */
 647						base = base & 0xFFFFFFF0;
 648						base = (~base) + 1;
 649
 650						type = 0;
 651					}
 652				} else {
 653					base = 0x0L;
 654					type = 0;
 655				}
 656
 657				/* Save information in slot structure */
 658				func->base_length[(cloop - 0x10) >> 2] = base;
 659				func->base_type[(cloop - 0x10) >> 2] = type;
 660
 661			}	/* End of base register loop */
 662
 663		} else {	  /* Some other unknown header type */
 664		}
 665
 666		/* find the next device in this slot */
 667		func = cpqhp_slot_find(func->bus, func->device, index++);
 668	}
 669
 670	return(0);
 671}
 672
 673
 674/*
 675 * cpqhp_save_used_resources
 676 *
 677 * Stores used resource information for existing boards.  this is
 678 * for boards that were in the system when this driver was loaded.
 679 * this function is for hot plug ADD
 680 *
 681 * returns 0 if success
 682 */
 683int cpqhp_save_used_resources (struct controller *ctrl, struct pci_func * func)
 684{
 685	u8 cloop;
 686	u8 header_type;
 687	u8 secondary_bus;
 688	u8 temp_byte;
 689	u8 b_base;
 690	u8 b_length;
 691	u16 command;
 692	u16 save_command;
 693	u16 w_base;
 694	u16 w_length;
 695	u32 temp_register;
 696	u32 save_base;
 697	u32 base;
 698	int index = 0;
 699	struct pci_resource *mem_node;
 700	struct pci_resource *p_mem_node;
 701	struct pci_resource *io_node;
 702	struct pci_resource *bus_node;
 703	struct pci_bus *pci_bus = ctrl->pci_bus;
 704	unsigned int devfn;
 705
 706	func = cpqhp_slot_find(func->bus, func->device, index++);
 707
 708	while ((func != NULL) && func->is_a_board) {
 709		pci_bus->number = func->bus;
 710		devfn = PCI_DEVFN(func->device, func->function);
 711
 712		/* Save the command register */
 713		pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
 714
 715		/* disable card */
 716		command = 0x00;
 717		pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
 718
 719		/* Check for Bridge */
 720		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
 721
 722		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
 723			/* Clear Bridge Control Register */
 724			command = 0x00;
 725			pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
 726			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
 727			pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
 728
 729			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
 730			if (!bus_node)
 731				return -ENOMEM;
 732
 733			bus_node->base = secondary_bus;
 734			bus_node->length = temp_byte - secondary_bus + 1;
 735
 736			bus_node->next = func->bus_head;
 737			func->bus_head = bus_node;
 738
 739			/* Save IO base and Limit registers */
 740			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
 741			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
 742
 743			if ((b_base <= b_length) && (save_command & 0x01)) {
 744				io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
 745				if (!io_node)
 746					return -ENOMEM;
 747
 748				io_node->base = (b_base & 0xF0) << 8;
 749				io_node->length = (b_length - b_base + 0x10) << 8;
 750
 751				io_node->next = func->io_head;
 752				func->io_head = io_node;
 753			}
 754
 755			/* Save memory base and Limit registers */
 756			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
 757			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
 758
 759			if ((w_base <= w_length) && (save_command & 0x02)) {
 760				mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
 761				if (!mem_node)
 762					return -ENOMEM;
 763
 764				mem_node->base = w_base << 16;
 765				mem_node->length = (w_length - w_base + 0x10) << 16;
 766
 767				mem_node->next = func->mem_head;
 768				func->mem_head = mem_node;
 769			}
 770
 771			/* Save prefetchable memory base and Limit registers */
 772			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
 773			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
 774
 775			if ((w_base <= w_length) && (save_command & 0x02)) {
 776				p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
 777				if (!p_mem_node)
 778					return -ENOMEM;
 779
 780				p_mem_node->base = w_base << 16;
 781				p_mem_node->length = (w_length - w_base + 0x10) << 16;
 782
 783				p_mem_node->next = func->p_mem_head;
 784				func->p_mem_head = p_mem_node;
 785			}
 786			/* Figure out IO and memory base lengths */
 787			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
 788				pci_bus_read_config_dword (pci_bus, devfn, cloop, &save_base);
 789
 790				temp_register = 0xFFFFFFFF;
 791				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
 792				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
 793
 794				temp_register = base;
 795
 796				/* If this register is implemented */
 797				if (base) {
 798					if (((base & 0x03L) == 0x01)
 799					    && (save_command & 0x01)) {
 800						/* IO base
 801						 * set temp_register = amount
 802						 * of IO space requested
 803						 */
 804						temp_register = base & 0xFFFFFFFE;
 805						temp_register = (~temp_register) + 1;
 806
 807						io_node = kmalloc(sizeof(*io_node),
 808								GFP_KERNEL);
 809						if (!io_node)
 810							return -ENOMEM;
 811
 812						io_node->base =
 813						save_base & (~0x03L);
 814						io_node->length = temp_register;
 815
 816						io_node->next = func->io_head;
 817						func->io_head = io_node;
 818					} else
 819						if (((base & 0x0BL) == 0x08)
 820						    && (save_command & 0x02)) {
 821						/* prefetchable memory base */
 822						temp_register = base & 0xFFFFFFF0;
 823						temp_register = (~temp_register) + 1;
 824
 825						p_mem_node = kmalloc(sizeof(*p_mem_node),
 826								GFP_KERNEL);
 827						if (!p_mem_node)
 828							return -ENOMEM;
 829
 830						p_mem_node->base = save_base & (~0x0FL);
 831						p_mem_node->length = temp_register;
 832
 833						p_mem_node->next = func->p_mem_head;
 834						func->p_mem_head = p_mem_node;
 835					} else
 836						if (((base & 0x0BL) == 0x00)
 837						    && (save_command & 0x02)) {
 838						/* prefetchable memory base */
 839						temp_register = base & 0xFFFFFFF0;
 840						temp_register = (~temp_register) + 1;
 841
 842						mem_node = kmalloc(sizeof(*mem_node),
 843								GFP_KERNEL);
 844						if (!mem_node)
 845							return -ENOMEM;
 846
 847						mem_node->base = save_base & (~0x0FL);
 848						mem_node->length = temp_register;
 849
 850						mem_node->next = func->mem_head;
 851						func->mem_head = mem_node;
 852					} else
 853						return(1);
 854				}
 855			}	/* End of base register loop */
 856		/* Standard header */
 857		} else if ((header_type & 0x7F) == 0x00) {
 858			/* Figure out IO and memory base lengths */
 859			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
 860				pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
 861
 862				temp_register = 0xFFFFFFFF;
 863				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
 864				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
 865
 866				temp_register = base;
 867
 868				/* If this register is implemented */
 869				if (base) {
 870					if (((base & 0x03L) == 0x01)
 871					    && (save_command & 0x01)) {
 872						/* IO base
 873						 * set temp_register = amount
 874						 * of IO space requested
 875						 */
 876						temp_register = base & 0xFFFFFFFE;
 877						temp_register = (~temp_register) + 1;
 878
 879						io_node = kmalloc(sizeof(*io_node),
 880								GFP_KERNEL);
 881						if (!io_node)
 882							return -ENOMEM;
 883
 884						io_node->base = save_base & (~0x01L);
 885						io_node->length = temp_register;
 886
 887						io_node->next = func->io_head;
 888						func->io_head = io_node;
 889					} else
 890						if (((base & 0x0BL) == 0x08)
 891						    && (save_command & 0x02)) {
 892						/* prefetchable memory base */
 893						temp_register = base & 0xFFFFFFF0;
 894						temp_register = (~temp_register) + 1;
 895
 896						p_mem_node = kmalloc(sizeof(*p_mem_node),
 897								GFP_KERNEL);
 898						if (!p_mem_node)
 899							return -ENOMEM;
 900
 901						p_mem_node->base = save_base & (~0x0FL);
 902						p_mem_node->length = temp_register;
 903
 904						p_mem_node->next = func->p_mem_head;
 905						func->p_mem_head = p_mem_node;
 906					} else
 907						if (((base & 0x0BL) == 0x00)
 908						    && (save_command & 0x02)) {
 909						/* prefetchable memory base */
 910						temp_register = base & 0xFFFFFFF0;
 911						temp_register = (~temp_register) + 1;
 912
 913						mem_node = kmalloc(sizeof(*mem_node),
 914								GFP_KERNEL);
 915						if (!mem_node)
 916							return -ENOMEM;
 917
 918						mem_node->base = save_base & (~0x0FL);
 919						mem_node->length = temp_register;
 920
 921						mem_node->next = func->mem_head;
 922						func->mem_head = mem_node;
 923					} else
 924						return(1);
 925				}
 926			}	/* End of base register loop */
 927		}
 928
 929		/* find the next device in this slot */
 930		func = cpqhp_slot_find(func->bus, func->device, index++);
 931	}
 932
 933	return 0;
 934}
 935
 936
 937/*
 938 * cpqhp_configure_board
 939 *
 940 * Copies saved configuration information to one slot.
 941 * this is called recursively for bridge devices.
 942 * this is for hot plug REPLACE!
 943 *
 944 * returns 0 if success
 945 */
 946int cpqhp_configure_board(struct controller *ctrl, struct pci_func * func)
 947{
 948	int cloop;
 949	u8 header_type;
 950	u8 secondary_bus;
 951	int sub_bus;
 952	struct pci_func *next;
 953	u32 temp;
 954	u32 rc;
 955	int index = 0;
 956	struct pci_bus *pci_bus = ctrl->pci_bus;
 957	unsigned int devfn;
 958
 959	func = cpqhp_slot_find(func->bus, func->device, index++);
 960
 961	while (func != NULL) {
 962		pci_bus->number = func->bus;
 963		devfn = PCI_DEVFN(func->device, func->function);
 964
 965		/* Start at the top of config space so that the control
 966		 * registers are programmed last
 967		 */
 968		for (cloop = 0x3C; cloop > 0; cloop -= 4)
 969			pci_bus_write_config_dword (pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
 970
 971		pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
 972
 973		/* If this is a bridge device, restore subordinate devices */
 974		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
 975			pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
 976
 977			sub_bus = (int) secondary_bus;
 978
 979			next = cpqhp_slot_list[sub_bus];
 980
 981			while (next != NULL) {
 982				rc = cpqhp_configure_board(ctrl, next);
 983				if (rc)
 984					return rc;
 985
 986				next = next->next;
 987			}
 988		} else {
 989
 990			/* Check all the base Address Registers to make sure
 991			 * they are the same.  If not, the board is different.
 992			 */
 993
 994			for (cloop = 16; cloop < 40; cloop += 4) {
 995				pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp);
 996
 997				if (temp != func->config_space[cloop >> 2]) {
 998					dbg("Config space compare failure!!! offset = %x\n", cloop);
 999					dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
1000					dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
1001					return 1;
1002				}
1003			}
1004		}
1005
1006		func->configured = 1;
1007
1008		func = cpqhp_slot_find(func->bus, func->device, index++);
1009	}
1010
1011	return 0;
1012}
1013
1014
1015/*
1016 * cpqhp_valid_replace
1017 *
1018 * this function checks to see if a board is the same as the
1019 * one it is replacing.  this check will detect if the device's
1020 * vendor or device id's are the same
1021 *
1022 * returns 0 if the board is the same nonzero otherwise
1023 */
1024int cpqhp_valid_replace(struct controller *ctrl, struct pci_func * func)
1025{
1026	u8 cloop;
1027	u8 header_type;
1028	u8 secondary_bus;
1029	u8 type;
1030	u32 temp_register = 0;
1031	u32 base;
1032	u32 rc;
1033	struct pci_func *next;
1034	int index = 0;
1035	struct pci_bus *pci_bus = ctrl->pci_bus;
1036	unsigned int devfn;
1037
1038	if (!func->is_a_board)
1039		return(ADD_NOT_SUPPORTED);
1040
1041	func = cpqhp_slot_find(func->bus, func->device, index++);
1042
1043	while (func != NULL) {
1044		pci_bus->number = func->bus;
1045		devfn = PCI_DEVFN(func->device, func->function);
1046
1047		pci_bus_read_config_dword (pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
1048
1049		/* No adapter present */
1050		if (temp_register == 0xFFFFFFFF)
1051			return(NO_ADAPTER_PRESENT);
1052
1053		if (temp_register != func->config_space[0])
1054			return(ADAPTER_NOT_SAME);
1055
1056		/* Check for same revision number and class code */
1057		pci_bus_read_config_dword (pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
1058
1059		/* Adapter not the same */
1060		if (temp_register != func->config_space[0x08 >> 2])
1061			return(ADAPTER_NOT_SAME);
1062
1063		/* Check for Bridge */
1064		pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
1065
1066		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
1067			/* In order to continue checking, we must program the
1068			 * bus registers in the bridge to respond to accesses
1069			 * for its subordinate bus(es)
1070			 */
1071
1072			temp_register = func->config_space[0x18 >> 2];
1073			pci_bus_write_config_dword (pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
1074
1075			secondary_bus = (temp_register >> 8) & 0xFF;
1076
1077			next = cpqhp_slot_list[secondary_bus];
1078
1079			while (next != NULL) {
1080				rc = cpqhp_valid_replace(ctrl, next);
1081				if (rc)
1082					return rc;
1083
1084				next = next->next;
1085			}
1086
1087		}
1088		/* Check to see if it is a standard config header */
1089		else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
1090			/* Check subsystem vendor and ID */
1091			pci_bus_read_config_dword (pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
1092
1093			if (temp_register != func->config_space[0x2C >> 2]) {
1094				/* If it's a SMART-2 and the register isn't
1095				 * filled in, ignore the difference because
1096				 * they just have an old rev of the firmware
1097				 */
1098				if (!((func->config_space[0] == 0xAE100E11)
1099				      && (temp_register == 0x00L)))
1100					return(ADAPTER_NOT_SAME);
1101			}
1102			/* Figure out IO and memory base lengths */
1103			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1104				temp_register = 0xFFFFFFFF;
1105				pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
1106				pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
1107
1108				/* If this register is implemented */
1109				if (base) {
1110					if (base & 0x01L) {
1111						/* IO base
1112						 * set base = amount of IO
1113						 * space requested
1114						 */
1115						base = base & 0xFFFFFFFE;
1116						base = (~base) + 1;
1117
1118						type = 1;
1119					} else {
1120						/* memory base */
1121						base = base & 0xFFFFFFF0;
1122						base = (~base) + 1;
1123
1124						type = 0;
1125					}
1126				} else {
1127					base = 0x0L;
1128					type = 0;
1129				}
1130
1131				/* Check information in slot structure */
1132				if (func->base_length[(cloop - 0x10) >> 2] != base)
1133					return(ADAPTER_NOT_SAME);
1134
1135				if (func->base_type[(cloop - 0x10) >> 2] != type)
1136					return(ADAPTER_NOT_SAME);
1137
1138			}	/* End of base register loop */
1139
1140		}		/* End of (type 0 config space) else */
1141		else {
1142			/* this is not a type 0 or 1 config space header so
1143			 * we don't know how to do it
1144			 */
1145			return(DEVICE_TYPE_NOT_SUPPORTED);
1146		}
1147
1148		/* Get the next function */
1149		func = cpqhp_slot_find(func->bus, func->device, index++);
1150	}
1151
1152
1153	return 0;
1154}
1155
1156
1157/*
1158 * cpqhp_find_available_resources
1159 *
1160 * Finds available memory, IO, and IRQ resources for programming
1161 * devices which may be added to the system
1162 * this function is for hot plug ADD!
1163 *
1164 * returns 0 if success
1165 */
1166int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
1167{
1168	u8 temp;
1169	u8 populated_slot;
1170	u8 bridged_slot;
1171	void __iomem *one_slot;
1172	void __iomem *rom_resource_table;
1173	struct pci_func *func = NULL;
1174	int i = 10, index;
1175	u32 temp_dword, rc;
1176	struct pci_resource *mem_node;
1177	struct pci_resource *p_mem_node;
1178	struct pci_resource *io_node;
1179	struct pci_resource *bus_node;
1180
1181	rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
1182	dbg("rom_resource_table = %p\n", rom_resource_table);
1183
1184	if (rom_resource_table == NULL)
1185		return -ENODEV;
1186
1187	/* Sum all resources and setup resource maps */
1188	unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
1189	dbg("unused_IRQ = %x\n", unused_IRQ);
1190
1191	temp = 0;
1192	while (unused_IRQ) {
1193		if (unused_IRQ & 1) {
1194			cpqhp_disk_irq = temp;
1195			break;
1196		}
1197		unused_IRQ = unused_IRQ >> 1;
1198		temp++;
1199	}
1200
1201	dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1202	unused_IRQ = unused_IRQ >> 1;
1203	temp++;
1204
1205	while (unused_IRQ) {
1206		if (unused_IRQ & 1) {
1207			cpqhp_nic_irq = temp;
1208			break;
1209		}
1210		unused_IRQ = unused_IRQ >> 1;
1211		temp++;
1212	}
1213
1214	dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1215	unused_IRQ = readl(rom_resource_table + PCIIRQ);
1216
1217	temp = 0;
1218
1219	if (!cpqhp_nic_irq)
1220		cpqhp_nic_irq = ctrl->cfgspc_irq;
1221
1222	if (!cpqhp_disk_irq)
1223		cpqhp_disk_irq = ctrl->cfgspc_irq;
1224
1225	dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1226
1227	rc = compaq_nvram_load(rom_start, ctrl);
1228	if (rc)
1229		return rc;
1230
1231	one_slot = rom_resource_table + sizeof (struct hrt);
1232
1233	i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
1234	dbg("number_of_entries = %d\n", i);
1235
1236	if (!readb(one_slot + SECONDARY_BUS))
1237		return 1;
1238
1239	dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1240
1241	while (i && readb(one_slot + SECONDARY_BUS)) {
1242		u8 dev_func = readb(one_slot + DEV_FUNC);
1243		u8 primary_bus = readb(one_slot + PRIMARY_BUS);
1244		u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
1245		u8 max_bus = readb(one_slot + MAX_BUS);
1246		u16 io_base = readw(one_slot + IO_BASE);
1247		u16 io_length = readw(one_slot + IO_LENGTH);
1248		u16 mem_base = readw(one_slot + MEM_BASE);
1249		u16 mem_length = readw(one_slot + MEM_LENGTH);
1250		u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
1251		u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
1252
1253		dbg("%2.2x | %4.4x  | %4.4x | %4.4x   | %4.4x | %4.4x   | %4.4x |%2.2x %2.2x %2.2x\n",
1254		    dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1255		    primary_bus, secondary_bus, max_bus);
1256
1257		/* If this entry isn't for our controller's bus, ignore it */
1258		if (primary_bus != ctrl->bus) {
1259			i--;
1260			one_slot += sizeof (struct slot_rt);
1261			continue;
1262		}
1263		/* find out if this entry is for an occupied slot */
1264		ctrl->pci_bus->number = primary_bus;
1265		pci_bus_read_config_dword (ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
1266		dbg("temp_D_word = %x\n", temp_dword);
1267
1268		if (temp_dword != 0xFFFFFFFF) {
1269			index = 0;
1270			func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
1271
1272			while (func && (func->function != (dev_func & 0x07))) {
1273				dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1274				func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
1275			}
1276
1277			/* If we can't find a match, skip this table entry */
1278			if (!func) {
1279				i--;
1280				one_slot += sizeof (struct slot_rt);
1281				continue;
1282			}
1283			/* this may not work and shouldn't be used */
1284			if (secondary_bus != primary_bus)
1285				bridged_slot = 1;
1286			else
1287				bridged_slot = 0;
1288
1289			populated_slot = 1;
1290		} else {
1291			populated_slot = 0;
1292			bridged_slot = 0;
1293		}
1294
1295
1296		/* If we've got a valid IO base, use it */
1297
1298		temp_dword = io_base + io_length;
1299
1300		if ((io_base) && (temp_dword < 0x10000)) {
1301			io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
1302			if (!io_node)
1303				return -ENOMEM;
1304
1305			io_node->base = io_base;
1306			io_node->length = io_length;
1307
1308			dbg("found io_node(base, length) = %x, %x\n",
1309					io_node->base, io_node->length);
1310			dbg("populated slot =%d \n", populated_slot);
1311			if (!populated_slot) {
1312				io_node->next = ctrl->io_head;
1313				ctrl->io_head = io_node;
1314			} else {
1315				io_node->next = func->io_head;
1316				func->io_head = io_node;
1317			}
1318		}
1319
1320		/* If we've got a valid memory base, use it */
1321		temp_dword = mem_base + mem_length;
1322		if ((mem_base) && (temp_dword < 0x10000)) {
1323			mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
1324			if (!mem_node)
1325				return -ENOMEM;
1326
1327			mem_node->base = mem_base << 16;
1328
1329			mem_node->length = mem_length << 16;
1330
1331			dbg("found mem_node(base, length) = %x, %x\n",
1332					mem_node->base, mem_node->length);
1333			dbg("populated slot =%d \n", populated_slot);
1334			if (!populated_slot) {
1335				mem_node->next = ctrl->mem_head;
1336				ctrl->mem_head = mem_node;
1337			} else {
1338				mem_node->next = func->mem_head;
1339				func->mem_head = mem_node;
1340			}
1341		}
1342
1343		/* If we've got a valid prefetchable memory base, and
1344		 * the base + length isn't greater than 0xFFFF
1345		 */
1346		temp_dword = pre_mem_base + pre_mem_length;
1347		if ((pre_mem_base) && (temp_dword < 0x10000)) {
1348			p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
1349			if (!p_mem_node)
1350				return -ENOMEM;
1351
1352			p_mem_node->base = pre_mem_base << 16;
1353
1354			p_mem_node->length = pre_mem_length << 16;
1355			dbg("found p_mem_node(base, length) = %x, %x\n",
1356					p_mem_node->base, p_mem_node->length);
1357			dbg("populated slot =%d \n", populated_slot);
1358
1359			if (!populated_slot) {
1360				p_mem_node->next = ctrl->p_mem_head;
1361				ctrl->p_mem_head = p_mem_node;
1362			} else {
1363				p_mem_node->next = func->p_mem_head;
1364				func->p_mem_head = p_mem_node;
1365			}
1366		}
1367
1368		/* If we've got a valid bus number, use it
1369		 * The second condition is to ignore bus numbers on
1370		 * populated slots that don't have PCI-PCI bridges
1371		 */
1372		if (secondary_bus && (secondary_bus != primary_bus)) {
1373			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
1374			if (!bus_node)
1375				return -ENOMEM;
1376
1377			bus_node->base = secondary_bus;
1378			bus_node->length = max_bus - secondary_bus + 1;
1379			dbg("found bus_node(base, length) = %x, %x\n",
1380					bus_node->base, bus_node->length);
1381			dbg("populated slot =%d \n", populated_slot);
1382			if (!populated_slot) {
1383				bus_node->next = ctrl->bus_head;
1384				ctrl->bus_head = bus_node;
1385			} else {
1386				bus_node->next = func->bus_head;
1387				func->bus_head = bus_node;
1388			}
1389		}
1390
1391		i--;
1392		one_slot += sizeof (struct slot_rt);
1393	}
1394
1395	/* If all of the following fail, we don't have any resources for
1396	 * hot plug add
1397	 */
1398	rc = 1;
1399	rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1400	rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1401	rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1402	rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1403
1404	return rc;
1405}
1406
1407
1408/*
1409 * cpqhp_return_board_resources
1410 *
1411 * this routine returns all resources allocated to a board to
1412 * the available pool.
1413 *
1414 * returns 0 if success
1415 */
1416int cpqhp_return_board_resources(struct pci_func * func, struct resource_lists * resources)
1417{
1418	int rc = 0;
1419	struct pci_resource *node;
1420	struct pci_resource *t_node;
1421	dbg("%s\n", __func__);
1422
1423	if (!func)
1424		return 1;
1425
1426	node = func->io_head;
1427	func->io_head = NULL;
1428	while (node) {
1429		t_node = node->next;
1430		return_resource(&(resources->io_head), node);
1431		node = t_node;
1432	}
1433
1434	node = func->mem_head;
1435	func->mem_head = NULL;
1436	while (node) {
1437		t_node = node->next;
1438		return_resource(&(resources->mem_head), node);
1439		node = t_node;
1440	}
1441
1442	node = func->p_mem_head;
1443	func->p_mem_head = NULL;
1444	while (node) {
1445		t_node = node->next;
1446		return_resource(&(resources->p_mem_head), node);
1447		node = t_node;
1448	}
1449
1450	node = func->bus_head;
1451	func->bus_head = NULL;
1452	while (node) {
1453		t_node = node->next;
1454		return_resource(&(resources->bus_head), node);
1455		node = t_node;
1456	}
1457
1458	rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
1459	rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
1460	rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
1461	rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
1462
1463	return rc;
1464}
1465
1466
1467/*
1468 * cpqhp_destroy_resource_list
1469 *
1470 * Puts node back in the resource list pointed to by head
1471 */
1472void cpqhp_destroy_resource_list (struct resource_lists * resources)
1473{
1474	struct pci_resource *res, *tres;
1475
1476	res = resources->io_head;
1477	resources->io_head = NULL;
1478
1479	while (res) {
1480		tres = res;
1481		res = res->next;
1482		kfree(tres);
1483	}
1484
1485	res = resources->mem_head;
1486	resources->mem_head = NULL;
1487
1488	while (res) {
1489		tres = res;
1490		res = res->next;
1491		kfree(tres);
1492	}
1493
1494	res = resources->p_mem_head;
1495	resources->p_mem_head = NULL;
1496
1497	while (res) {
1498		tres = res;
1499		res = res->next;
1500		kfree(tres);
1501	}
1502
1503	res = resources->bus_head;
1504	resources->bus_head = NULL;
1505
1506	while (res) {
1507		tres = res;
1508		res = res->next;
1509		kfree(tres);
1510	}
1511}
1512
1513
1514/*
1515 * cpqhp_destroy_board_resources
1516 *
1517 * Puts node back in the resource list pointed to by head
1518 */
1519void cpqhp_destroy_board_resources (struct pci_func * func)
1520{
1521	struct pci_resource *res, *tres;
1522
1523	res = func->io_head;
1524	func->io_head = NULL;
1525
1526	while (res) {
1527		tres = res;
1528		res = res->next;
1529		kfree(tres);
1530	}
1531
1532	res = func->mem_head;
1533	func->mem_head = NULL;
1534
1535	while (res) {
1536		tres = res;
1537		res = res->next;
1538		kfree(tres);
1539	}
1540
1541	res = func->p_mem_head;
1542	func->p_mem_head = NULL;
1543
1544	while (res) {
1545		tres = res;
1546		res = res->next;
1547		kfree(tres);
1548	}
1549
1550	res = func->bus_head;
1551	func->bus_head = NULL;
1552
1553	while (res) {
1554		tres = res;
1555		res = res->next;
1556		kfree(tres);
1557	}
1558}
1559
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Compaq Hot Plug Controller Driver
   4 *
   5 * Copyright (C) 1995,2001 Compaq Computer Corporation
   6 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
   7 * Copyright (C) 2001 IBM Corp.
   8 *
   9 * All rights reserved.
  10 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  11 * Send feedback to <greg@kroah.com>
  12 *
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/kernel.h>
  17#include <linux/types.h>
  18#include <linux/slab.h>
  19#include <linux/workqueue.h>
  20#include <linux/proc_fs.h>
  21#include <linux/pci.h>
  22#include <linux/pci_hotplug.h>
  23#include "../pci.h"
  24#include "cpqphp.h"
  25#include "cpqphp_nvram.h"
  26
  27
  28u8 cpqhp_nic_irq;
  29u8 cpqhp_disk_irq;
  30
  31static u16 unused_IRQ;
  32
  33/*
  34 * detect_HRT_floating_pointer
  35 *
  36 * find the Hot Plug Resource Table in the specified region of memory.
  37 *
  38 */
  39static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
  40{
  41	void __iomem *fp;
  42	void __iomem *endp;
  43	u8 temp1, temp2, temp3, temp4;
  44	int status = 0;
  45
  46	endp = (end - sizeof(struct hrt) + 1);
  47
  48	for (fp = begin; fp <= endp; fp += 16) {
  49		temp1 = readb(fp + SIG0);
  50		temp2 = readb(fp + SIG1);
  51		temp3 = readb(fp + SIG2);
  52		temp4 = readb(fp + SIG3);
  53		if (temp1 == '$' &&
  54		    temp2 == 'H' &&
  55		    temp3 == 'R' &&
  56		    temp4 == 'T') {
  57			status = 1;
  58			break;
  59		}
  60	}
  61
  62	if (!status)
  63		fp = NULL;
  64
  65	dbg("Discovered Hotplug Resource Table at %p\n", fp);
  66	return fp;
  67}
  68
  69
  70int cpqhp_configure_device(struct controller *ctrl, struct pci_func *func)
  71{
 
  72	struct pci_bus *child;
  73	int num;
  74
  75	pci_lock_rescan_remove();
  76
  77	if (func->pci_dev == NULL)
  78		func->pci_dev = pci_get_domain_bus_and_slot(0, func->bus,
  79							PCI_DEVFN(func->device,
  80							func->function));
  81
  82	/* No pci device, we need to create it then */
  83	if (func->pci_dev == NULL) {
  84		dbg("INFO: pci_dev still null\n");
  85
  86		num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
  87		if (num)
  88			pci_bus_add_devices(ctrl->pci_dev->bus);
  89
  90		func->pci_dev = pci_get_domain_bus_and_slot(0, func->bus,
  91							PCI_DEVFN(func->device,
  92							func->function));
  93		if (func->pci_dev == NULL) {
  94			dbg("ERROR: pci_dev still null\n");
  95			goto out;
  96		}
  97	}
  98
  99	if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
 100		pci_hp_add_bridge(func->pci_dev);
 101		child = func->pci_dev->subordinate;
 102		if (child)
 103			pci_bus_add_devices(child);
 104	}
 105
 106	pci_dev_put(func->pci_dev);
 107
 108 out:
 109	pci_unlock_rescan_remove();
 110	return 0;
 111}
 112
 113
 114int cpqhp_unconfigure_device(struct pci_func *func)
 115{
 116	int j;
 117
 118	dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function);
 119
 120	pci_lock_rescan_remove();
 121	for (j = 0; j < 8 ; j++) {
 122		struct pci_dev *temp = pci_get_domain_bus_and_slot(0,
 123							func->bus,
 124							PCI_DEVFN(func->device,
 125							j));
 126		if (temp) {
 127			pci_dev_put(temp);
 128			pci_stop_and_remove_bus_device(temp);
 129		}
 130	}
 131	pci_unlock_rescan_remove();
 132	return 0;
 133}
 134
 135static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value)
 136{
 137	u32 vendID = 0;
 138
 139	if (pci_bus_read_config_dword(bus, devfn, PCI_VENDOR_ID, &vendID) == -1)
 140		return -1;
 141	if (vendID == 0xffffffff)
 142		return -1;
 143	return pci_bus_read_config_dword(bus, devfn, offset, value);
 144}
 145
 146
 147/*
 148 * cpqhp_set_irq
 149 *
 150 * @bus_num: bus number of PCI device
 151 * @dev_num: device number of PCI device
 152 * @slot: pointer to u8 where slot number will be returned
 153 */
 154int cpqhp_set_irq(u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
 155{
 156	int rc = 0;
 157
 158	if (cpqhp_legacy_mode) {
 159		struct pci_dev *fakedev;
 160		struct pci_bus *fakebus;
 161		u16 temp_word;
 162
 163		fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
 164		fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
 165		if (!fakedev || !fakebus) {
 166			kfree(fakedev);
 167			kfree(fakebus);
 168			return -ENOMEM;
 169		}
 170
 171		fakedev->devfn = dev_num << 3;
 172		fakedev->bus = fakebus;
 173		fakebus->number = bus_num;
 174		dbg("%s: dev %d, bus %d, pin %d, num %d\n",
 175		    __func__, dev_num, bus_num, int_pin, irq_num);
 176		rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num);
 177		kfree(fakedev);
 178		kfree(fakebus);
 179		dbg("%s: rc %d\n", __func__, rc);
 180		if (!rc)
 181			return !rc;
 182
 183		/* set the Edge Level Control Register (ELCR) */
 184		temp_word = inb(0x4d0);
 185		temp_word |= inb(0x4d1) << 8;
 186
 187		temp_word |= 0x01 << irq_num;
 188
 189		/* This should only be for x86 as it sets the Edge Level
 190		 * Control Register
 191		 */
 192		outb((u8)(temp_word & 0xFF), 0x4d0);
 193		outb((u8)((temp_word & 0xFF00) >> 8), 0x4d1);
 194		rc = 0;
 195	}
 196
 197	return rc;
 198}
 199
 200
 201static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 *dev_num)
 202{
 203	u16 tdevice;
 204	u32 work;
 205	u8 tbus;
 206
 207	ctrl->pci_bus->number = bus_num;
 208
 209	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
 210		/* Scan for access first */
 211		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
 212			continue;
 213		dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
 214		/* Yep we got one. Not a bridge ? */
 215		if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
 216			*dev_num = tdevice;
 217			dbg("found it !\n");
 218			return 0;
 219		}
 220	}
 221	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
 222		/* Scan for access first */
 223		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
 224			continue;
 225		dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
 226		/* Yep we got one. bridge ? */
 227		if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
 228			pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus);
 229			/* XXX: no recursion, wtf? */
 230			dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
 231			return 0;
 232		}
 233	}
 234
 235	return -1;
 236}
 237
 238
 239static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
 240{
 241	int loop, len;
 242	u32 work;
 243	u8 tbus, tdevice, tslot;
 244
 245	len = cpqhp_routing_table_length();
 246	for (loop = 0; loop < len; ++loop) {
 247		tbus = cpqhp_routing_table->slots[loop].bus;
 248		tdevice = cpqhp_routing_table->slots[loop].devfn;
 249		tslot = cpqhp_routing_table->slots[loop].slot;
 250
 251		if (tslot == slot) {
 252			*bus_num = tbus;
 253			*dev_num = tdevice;
 254			ctrl->pci_bus->number = tbus;
 255			pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
 256			if (!nobridge || (work == 0xffffffff))
 257				return 0;
 258
 259			dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
 260			pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
 261			dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
 262
 263			if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
 264				pci_bus_read_config_byte(ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
 265				dbg("Scan bus for Non Bridge: bus %d\n", tbus);
 266				if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
 267					*bus_num = tbus;
 268					return 0;
 269				}
 270			} else
 271				return 0;
 272		}
 273	}
 274	return -1;
 275}
 276
 277
 278int cpqhp_get_bus_dev(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot)
 279{
 280	/* plain (bridges allowed) */
 281	return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0);
 282}
 283
 284
 285/* More PCI configuration routines; this time centered around hotplug
 286 * controller
 287 */
 288
 289
 290/*
 291 * cpqhp_save_config
 292 *
 293 * Reads configuration for all slots in a PCI bus and saves info.
 294 *
 295 * Note:  For non-hot plug buses, the slot # saved is the device #
 296 *
 297 * returns 0 if success
 298 */
 299int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
 300{
 301	long rc;
 302	u8 class_code;
 303	u8 header_type;
 304	u32 ID;
 305	u8 secondary_bus;
 306	struct pci_func *new_slot;
 307	int sub_bus;
 308	int FirstSupported;
 309	int LastSupported;
 310	int max_functions;
 311	int function;
 312	u8 DevError;
 313	int device = 0;
 314	int cloop = 0;
 315	int stop_it;
 316	int index;
 317	u16 devfn;
 318
 319	/* Decide which slots are supported */
 320
 321	if (is_hot_plug) {
 322		/*
 323		 * is_hot_plug is the slot mask
 324		 */
 325		FirstSupported = is_hot_plug >> 4;
 326		LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
 327	} else {
 328		FirstSupported = 0;
 329		LastSupported = 0x1F;
 330	}
 331
 332	/* Save PCI configuration space for all devices in supported slots */
 333	ctrl->pci_bus->number = busnumber;
 334	for (device = FirstSupported; device <= LastSupported; device++) {
 335		ID = 0xFFFFFFFF;
 336		rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
 337
 338		if (ID == 0xFFFFFFFF) {
 339			if (is_hot_plug) {
 340				/* Setup slot structure with entry for empty
 341				 * slot
 342				 */
 343				new_slot = cpqhp_slot_create(busnumber);
 344				if (new_slot == NULL)
 345					return 1;
 346
 347				new_slot->bus = (u8) busnumber;
 348				new_slot->device = (u8) device;
 349				new_slot->function = 0;
 350				new_slot->is_a_board = 0;
 351				new_slot->presence_save = 0;
 352				new_slot->switch_save = 0;
 353			}
 354			continue;
 355		}
 356
 357		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
 358		if (rc)
 359			return rc;
 360
 361		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
 362		if (rc)
 363			return rc;
 364
 365		/* If multi-function device, set max_functions to 8 */
 366		if (header_type & PCI_HEADER_TYPE_MFD)
 367			max_functions = 8;
 368		else
 369			max_functions = 1;
 370
 371		function = 0;
 372
 373		do {
 374			DevError = 0;
 375			if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
 376				/* Recurse the subordinate bus
 377				 * get the subordinate bus number
 378				 */
 379				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
 380				if (rc) {
 381					return rc;
 382				} else {
 383					sub_bus = (int) secondary_bus;
 384
 385					/* Save secondary bus cfg spc
 386					 * with this recursive call.
 387					 */
 388					rc = cpqhp_save_config(ctrl, sub_bus, 0);
 389					if (rc)
 390						return rc;
 391					ctrl->pci_bus->number = busnumber;
 392				}
 393			}
 394
 395			index = 0;
 396			new_slot = cpqhp_slot_find(busnumber, device, index++);
 397			while (new_slot &&
 398			       (new_slot->function != (u8) function))
 399				new_slot = cpqhp_slot_find(busnumber, device, index++);
 400
 401			if (!new_slot) {
 402				/* Setup slot structure. */
 403				new_slot = cpqhp_slot_create(busnumber);
 404				if (new_slot == NULL)
 405					return 1;
 406			}
 407
 408			new_slot->bus = (u8) busnumber;
 409			new_slot->device = (u8) device;
 410			new_slot->function = (u8) function;
 411			new_slot->is_a_board = 1;
 412			new_slot->switch_save = 0x10;
 413			/* In case of unsupported board */
 414			new_slot->status = DevError;
 415			devfn = (new_slot->device << 3) | new_slot->function;
 416			new_slot->pci_dev = pci_get_domain_bus_and_slot(0,
 417							new_slot->bus, devfn);
 418
 419			for (cloop = 0; cloop < 0x20; cloop++) {
 420				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop]));
 421				if (rc)
 422					return rc;
 423			}
 424
 425			pci_dev_put(new_slot->pci_dev);
 426
 427			function++;
 428
 429			stop_it = 0;
 430
 431			/* this loop skips to the next present function
 432			 * reading in Class Code and Header type.
 433			 */
 434			while ((function < max_functions) && (!stop_it)) {
 435				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
 436				if (ID == 0xFFFFFFFF) {
 437					function++;
 438					continue;
 439				}
 440				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
 441				if (rc)
 442					return rc;
 443
 444				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
 445				if (rc)
 446					return rc;
 447
 448				stop_it++;
 449			}
 450
 451		} while (function < max_functions);
 452	}			/* End of FOR loop */
 453
 454	return 0;
 455}
 456
 457
 458/*
 459 * cpqhp_save_slot_config
 460 *
 461 * Saves configuration info for all PCI devices in a given slot
 462 * including subordinate buses.
 463 *
 464 * returns 0 if success
 465 */
 466int cpqhp_save_slot_config(struct controller *ctrl, struct pci_func *new_slot)
 467{
 468	long rc;
 469	u8 class_code;
 470	u8 header_type;
 471	u32 ID;
 472	u8 secondary_bus;
 473	int sub_bus;
 474	int max_functions;
 475	int function = 0;
 476	int cloop;
 477	int stop_it;
 478
 479	ID = 0xFFFFFFFF;
 480
 481	ctrl->pci_bus->number = new_slot->bus;
 482	pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
 483
 484	if (ID == 0xFFFFFFFF)
 485		return 2;
 486
 487	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
 488	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
 489
 490	if (header_type & PCI_HEADER_TYPE_MFD)
 491		max_functions = 8;
 492	else
 493		max_functions = 1;
 494
 495	while (function < max_functions) {
 496		if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
 497			/*  Recurse the subordinate bus */
 498			pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
 499
 500			sub_bus = (int) secondary_bus;
 501
 502			/* Save the config headers for the secondary
 503			 * bus.
 504			 */
 505			rc = cpqhp_save_config(ctrl, sub_bus, 0);
 506			if (rc)
 507				return(rc);
 508			ctrl->pci_bus->number = new_slot->bus;
 509
 510		}
 511
 512		new_slot->status = 0;
 513
 514		for (cloop = 0; cloop < 0x20; cloop++)
 515			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop]));
 516
 517		function++;
 518
 519		stop_it = 0;
 520
 521		/* this loop skips to the next present function
 522		 * reading in the Class Code and the Header type.
 523		 */
 524		while ((function < max_functions) && (!stop_it)) {
 525			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
 526
 527			if (ID == 0xFFFFFFFF)
 528				function++;
 529			else {
 530				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
 531				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
 532				stop_it++;
 533			}
 534		}
 535
 536	}
 537
 538	return 0;
 539}
 540
 541
 542/*
 543 * cpqhp_save_base_addr_length
 544 *
 545 * Saves the length of all base address registers for the
 546 * specified slot.  this is for hot plug REPLACE
 547 *
 548 * returns 0 if success
 549 */
 550int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func *func)
 551{
 552	u8 cloop;
 553	u8 header_type;
 554	u8 secondary_bus;
 555	u8 type;
 556	int sub_bus;
 557	u32 temp_register;
 558	u32 base;
 559	u32 rc;
 560	struct pci_func *next;
 561	int index = 0;
 562	struct pci_bus *pci_bus = ctrl->pci_bus;
 563	unsigned int devfn;
 564
 565	func = cpqhp_slot_find(func->bus, func->device, index++);
 566
 567	while (func != NULL) {
 568		pci_bus->number = func->bus;
 569		devfn = PCI_DEVFN(func->device, func->function);
 570
 571		/* Check for Bridge */
 572		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
 573
 574		if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
 575			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
 576
 577			sub_bus = (int) secondary_bus;
 578
 579			next = cpqhp_slot_list[sub_bus];
 580
 581			while (next != NULL) {
 582				rc = cpqhp_save_base_addr_length(ctrl, next);
 583				if (rc)
 584					return rc;
 585
 586				next = next->next;
 587			}
 588			pci_bus->number = func->bus;
 589
 590			/* FIXME: this loop is duplicated in the non-bridge
 591			 * case.  The two could be rolled together Figure out
 592			 * IO and memory base lengths
 593			 */
 594			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
 595				temp_register = 0xFFFFFFFF;
 596				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
 597				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
 598				/* If this register is implemented */
 599				if (base) {
 600					if (base & 0x01L) {
 601						/* IO base
 602						 * set base = amount of IO space
 603						 * requested
 604						 */
 605						base = base & 0xFFFFFFFE;
 606						base = (~base) + 1;
 607
 608						type = 1;
 609					} else {
 610						/* memory base */
 611						base = base & 0xFFFFFFF0;
 612						base = (~base) + 1;
 613
 614						type = 0;
 615					}
 616				} else {
 617					base = 0x0L;
 618					type = 0;
 619				}
 620
 621				/* Save information in slot structure */
 622				func->base_length[(cloop - 0x10) >> 2] =
 623				base;
 624				func->base_type[(cloop - 0x10) >> 2] = type;
 625
 626			}	/* End of base register loop */
 627
 628		} else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) {
 629			/* Figure out IO and memory base lengths */
 630			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
 631				temp_register = 0xFFFFFFFF;
 632				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
 633				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
 634
 635				/* If this register is implemented */
 636				if (base) {
 637					if (base & 0x01L) {
 638						/* IO base
 639						 * base = amount of IO space
 640						 * requested
 641						 */
 642						base = base & 0xFFFFFFFE;
 643						base = (~base) + 1;
 644
 645						type = 1;
 646					} else {
 647						/* memory base
 648						 * base = amount of memory
 649						 * space requested
 650						 */
 651						base = base & 0xFFFFFFF0;
 652						base = (~base) + 1;
 653
 654						type = 0;
 655					}
 656				} else {
 657					base = 0x0L;
 658					type = 0;
 659				}
 660
 661				/* Save information in slot structure */
 662				func->base_length[(cloop - 0x10) >> 2] = base;
 663				func->base_type[(cloop - 0x10) >> 2] = type;
 664
 665			}	/* End of base register loop */
 666
 667		} else {	  /* Some other unknown header type */
 668		}
 669
 670		/* find the next device in this slot */
 671		func = cpqhp_slot_find(func->bus, func->device, index++);
 672	}
 673
 674	return(0);
 675}
 676
 677
 678/*
 679 * cpqhp_save_used_resources
 680 *
 681 * Stores used resource information for existing boards.  this is
 682 * for boards that were in the system when this driver was loaded.
 683 * this function is for hot plug ADD
 684 *
 685 * returns 0 if success
 686 */
 687int cpqhp_save_used_resources(struct controller *ctrl, struct pci_func *func)
 688{
 689	u8 cloop;
 690	u8 header_type;
 691	u8 secondary_bus;
 692	u8 temp_byte;
 693	u8 b_base;
 694	u8 b_length;
 695	u16 command;
 696	u16 save_command;
 697	u16 w_base;
 698	u16 w_length;
 699	u32 temp_register;
 700	u32 save_base;
 701	u32 base;
 702	int index = 0;
 703	struct pci_resource *mem_node;
 704	struct pci_resource *p_mem_node;
 705	struct pci_resource *io_node;
 706	struct pci_resource *bus_node;
 707	struct pci_bus *pci_bus = ctrl->pci_bus;
 708	unsigned int devfn;
 709
 710	func = cpqhp_slot_find(func->bus, func->device, index++);
 711
 712	while ((func != NULL) && func->is_a_board) {
 713		pci_bus->number = func->bus;
 714		devfn = PCI_DEVFN(func->device, func->function);
 715
 716		/* Save the command register */
 717		pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
 718
 719		/* disable card */
 720		command = 0x00;
 721		pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
 722
 723		/* Check for Bridge */
 724		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
 725
 726		if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
 727			/* Clear Bridge Control Register */
 728			command = 0x00;
 729			pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
 730			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
 731			pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
 732
 733			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
 734			if (!bus_node)
 735				return -ENOMEM;
 736
 737			bus_node->base = secondary_bus;
 738			bus_node->length = temp_byte - secondary_bus + 1;
 739
 740			bus_node->next = func->bus_head;
 741			func->bus_head = bus_node;
 742
 743			/* Save IO base and Limit registers */
 744			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
 745			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
 746
 747			if ((b_base <= b_length) && (save_command & 0x01)) {
 748				io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
 749				if (!io_node)
 750					return -ENOMEM;
 751
 752				io_node->base = (b_base & 0xF0) << 8;
 753				io_node->length = (b_length - b_base + 0x10) << 8;
 754
 755				io_node->next = func->io_head;
 756				func->io_head = io_node;
 757			}
 758
 759			/* Save memory base and Limit registers */
 760			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
 761			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
 762
 763			if ((w_base <= w_length) && (save_command & 0x02)) {
 764				mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
 765				if (!mem_node)
 766					return -ENOMEM;
 767
 768				mem_node->base = w_base << 16;
 769				mem_node->length = (w_length - w_base + 0x10) << 16;
 770
 771				mem_node->next = func->mem_head;
 772				func->mem_head = mem_node;
 773			}
 774
 775			/* Save prefetchable memory base and Limit registers */
 776			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
 777			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
 778
 779			if ((w_base <= w_length) && (save_command & 0x02)) {
 780				p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
 781				if (!p_mem_node)
 782					return -ENOMEM;
 783
 784				p_mem_node->base = w_base << 16;
 785				p_mem_node->length = (w_length - w_base + 0x10) << 16;
 786
 787				p_mem_node->next = func->p_mem_head;
 788				func->p_mem_head = p_mem_node;
 789			}
 790			/* Figure out IO and memory base lengths */
 791			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
 792				pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
 793
 794				temp_register = 0xFFFFFFFF;
 795				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
 796				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
 797
 798				temp_register = base;
 799
 800				/* If this register is implemented */
 801				if (base) {
 802					if (((base & 0x03L) == 0x01)
 803					    && (save_command & 0x01)) {
 804						/* IO base
 805						 * set temp_register = amount
 806						 * of IO space requested
 807						 */
 808						temp_register = base & 0xFFFFFFFE;
 809						temp_register = (~temp_register) + 1;
 810
 811						io_node = kmalloc(sizeof(*io_node),
 812								GFP_KERNEL);
 813						if (!io_node)
 814							return -ENOMEM;
 815
 816						io_node->base =
 817						save_base & (~0x03L);
 818						io_node->length = temp_register;
 819
 820						io_node->next = func->io_head;
 821						func->io_head = io_node;
 822					} else
 823						if (((base & 0x0BL) == 0x08)
 824						    && (save_command & 0x02)) {
 825						/* prefetchable memory base */
 826						temp_register = base & 0xFFFFFFF0;
 827						temp_register = (~temp_register) + 1;
 828
 829						p_mem_node = kmalloc(sizeof(*p_mem_node),
 830								GFP_KERNEL);
 831						if (!p_mem_node)
 832							return -ENOMEM;
 833
 834						p_mem_node->base = save_base & (~0x0FL);
 835						p_mem_node->length = temp_register;
 836
 837						p_mem_node->next = func->p_mem_head;
 838						func->p_mem_head = p_mem_node;
 839					} else
 840						if (((base & 0x0BL) == 0x00)
 841						    && (save_command & 0x02)) {
 842						/* prefetchable memory base */
 843						temp_register = base & 0xFFFFFFF0;
 844						temp_register = (~temp_register) + 1;
 845
 846						mem_node = kmalloc(sizeof(*mem_node),
 847								GFP_KERNEL);
 848						if (!mem_node)
 849							return -ENOMEM;
 850
 851						mem_node->base = save_base & (~0x0FL);
 852						mem_node->length = temp_register;
 853
 854						mem_node->next = func->mem_head;
 855						func->mem_head = mem_node;
 856					} else
 857						return(1);
 858				}
 859			}	/* End of base register loop */
 860		/* Standard header */
 861		} else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) {
 862			/* Figure out IO and memory base lengths */
 863			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
 864				pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
 865
 866				temp_register = 0xFFFFFFFF;
 867				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
 868				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
 869
 870				temp_register = base;
 871
 872				/* If this register is implemented */
 873				if (base) {
 874					if (((base & 0x03L) == 0x01)
 875					    && (save_command & 0x01)) {
 876						/* IO base
 877						 * set temp_register = amount
 878						 * of IO space requested
 879						 */
 880						temp_register = base & 0xFFFFFFFE;
 881						temp_register = (~temp_register) + 1;
 882
 883						io_node = kmalloc(sizeof(*io_node),
 884								GFP_KERNEL);
 885						if (!io_node)
 886							return -ENOMEM;
 887
 888						io_node->base = save_base & (~0x01L);
 889						io_node->length = temp_register;
 890
 891						io_node->next = func->io_head;
 892						func->io_head = io_node;
 893					} else
 894						if (((base & 0x0BL) == 0x08)
 895						    && (save_command & 0x02)) {
 896						/* prefetchable memory base */
 897						temp_register = base & 0xFFFFFFF0;
 898						temp_register = (~temp_register) + 1;
 899
 900						p_mem_node = kmalloc(sizeof(*p_mem_node),
 901								GFP_KERNEL);
 902						if (!p_mem_node)
 903							return -ENOMEM;
 904
 905						p_mem_node->base = save_base & (~0x0FL);
 906						p_mem_node->length = temp_register;
 907
 908						p_mem_node->next = func->p_mem_head;
 909						func->p_mem_head = p_mem_node;
 910					} else
 911						if (((base & 0x0BL) == 0x00)
 912						    && (save_command & 0x02)) {
 913						/* prefetchable memory base */
 914						temp_register = base & 0xFFFFFFF0;
 915						temp_register = (~temp_register) + 1;
 916
 917						mem_node = kmalloc(sizeof(*mem_node),
 918								GFP_KERNEL);
 919						if (!mem_node)
 920							return -ENOMEM;
 921
 922						mem_node->base = save_base & (~0x0FL);
 923						mem_node->length = temp_register;
 924
 925						mem_node->next = func->mem_head;
 926						func->mem_head = mem_node;
 927					} else
 928						return(1);
 929				}
 930			}	/* End of base register loop */
 931		}
 932
 933		/* find the next device in this slot */
 934		func = cpqhp_slot_find(func->bus, func->device, index++);
 935	}
 936
 937	return 0;
 938}
 939
 940
 941/*
 942 * cpqhp_configure_board
 943 *
 944 * Copies saved configuration information to one slot.
 945 * this is called recursively for bridge devices.
 946 * this is for hot plug REPLACE!
 947 *
 948 * returns 0 if success
 949 */
 950int cpqhp_configure_board(struct controller *ctrl, struct pci_func *func)
 951{
 952	int cloop;
 953	u8 header_type;
 954	u8 secondary_bus;
 955	int sub_bus;
 956	struct pci_func *next;
 957	u32 temp;
 958	u32 rc;
 959	int index = 0;
 960	struct pci_bus *pci_bus = ctrl->pci_bus;
 961	unsigned int devfn;
 962
 963	func = cpqhp_slot_find(func->bus, func->device, index++);
 964
 965	while (func != NULL) {
 966		pci_bus->number = func->bus;
 967		devfn = PCI_DEVFN(func->device, func->function);
 968
 969		/* Start at the top of config space so that the control
 970		 * registers are programmed last
 971		 */
 972		for (cloop = 0x3C; cloop > 0; cloop -= 4)
 973			pci_bus_write_config_dword(pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
 974
 975		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
 976
 977		/* If this is a bridge device, restore subordinate devices */
 978		if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
 979			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
 980
 981			sub_bus = (int) secondary_bus;
 982
 983			next = cpqhp_slot_list[sub_bus];
 984
 985			while (next != NULL) {
 986				rc = cpqhp_configure_board(ctrl, next);
 987				if (rc)
 988					return rc;
 989
 990				next = next->next;
 991			}
 992		} else {
 993
 994			/* Check all the base Address Registers to make sure
 995			 * they are the same.  If not, the board is different.
 996			 */
 997
 998			for (cloop = 16; cloop < 40; cloop += 4) {
 999				pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp);
1000
1001				if (temp != func->config_space[cloop >> 2]) {
1002					dbg("Config space compare failure!!! offset = %x\n", cloop);
1003					dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
1004					dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
1005					return 1;
1006				}
1007			}
1008		}
1009
1010		func->configured = 1;
1011
1012		func = cpqhp_slot_find(func->bus, func->device, index++);
1013	}
1014
1015	return 0;
1016}
1017
1018
1019/*
1020 * cpqhp_valid_replace
1021 *
1022 * this function checks to see if a board is the same as the
1023 * one it is replacing.  this check will detect if the device's
1024 * vendor or device id's are the same
1025 *
1026 * returns 0 if the board is the same nonzero otherwise
1027 */
1028int cpqhp_valid_replace(struct controller *ctrl, struct pci_func *func)
1029{
1030	u8 cloop;
1031	u8 header_type;
1032	u8 secondary_bus;
1033	u8 type;
1034	u32 temp_register = 0;
1035	u32 base;
1036	u32 rc;
1037	struct pci_func *next;
1038	int index = 0;
1039	struct pci_bus *pci_bus = ctrl->pci_bus;
1040	unsigned int devfn;
1041
1042	if (!func->is_a_board)
1043		return(ADD_NOT_SUPPORTED);
1044
1045	func = cpqhp_slot_find(func->bus, func->device, index++);
1046
1047	while (func != NULL) {
1048		pci_bus->number = func->bus;
1049		devfn = PCI_DEVFN(func->device, func->function);
1050
1051		pci_bus_read_config_dword(pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
1052
1053		/* No adapter present */
1054		if (temp_register == 0xFFFFFFFF)
1055			return(NO_ADAPTER_PRESENT);
1056
1057		if (temp_register != func->config_space[0])
1058			return(ADAPTER_NOT_SAME);
1059
1060		/* Check for same revision number and class code */
1061		pci_bus_read_config_dword(pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
1062
1063		/* Adapter not the same */
1064		if (temp_register != func->config_space[0x08 >> 2])
1065			return(ADAPTER_NOT_SAME);
1066
1067		/* Check for Bridge */
1068		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
1069
1070		if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
1071			/* In order to continue checking, we must program the
1072			 * bus registers in the bridge to respond to accesses
1073			 * for its subordinate bus(es)
1074			 */
1075
1076			temp_register = func->config_space[0x18 >> 2];
1077			pci_bus_write_config_dword(pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
1078
1079			secondary_bus = (temp_register >> 8) & 0xFF;
1080
1081			next = cpqhp_slot_list[secondary_bus];
1082
1083			while (next != NULL) {
1084				rc = cpqhp_valid_replace(ctrl, next);
1085				if (rc)
1086					return rc;
1087
1088				next = next->next;
1089			}
1090
1091		}
1092		/* Check to see if it is a standard config header */
1093		else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) {
1094			/* Check subsystem vendor and ID */
1095			pci_bus_read_config_dword(pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
1096
1097			if (temp_register != func->config_space[0x2C >> 2]) {
1098				/* If it's a SMART-2 and the register isn't
1099				 * filled in, ignore the difference because
1100				 * they just have an old rev of the firmware
1101				 */
1102				if (!((func->config_space[0] == 0xAE100E11)
1103				      && (temp_register == 0x00L)))
1104					return(ADAPTER_NOT_SAME);
1105			}
1106			/* Figure out IO and memory base lengths */
1107			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1108				temp_register = 0xFFFFFFFF;
1109				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
1110				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
1111
1112				/* If this register is implemented */
1113				if (base) {
1114					if (base & 0x01L) {
1115						/* IO base
1116						 * set base = amount of IO
1117						 * space requested
1118						 */
1119						base = base & 0xFFFFFFFE;
1120						base = (~base) + 1;
1121
1122						type = 1;
1123					} else {
1124						/* memory base */
1125						base = base & 0xFFFFFFF0;
1126						base = (~base) + 1;
1127
1128						type = 0;
1129					}
1130				} else {
1131					base = 0x0L;
1132					type = 0;
1133				}
1134
1135				/* Check information in slot structure */
1136				if (func->base_length[(cloop - 0x10) >> 2] != base)
1137					return(ADAPTER_NOT_SAME);
1138
1139				if (func->base_type[(cloop - 0x10) >> 2] != type)
1140					return(ADAPTER_NOT_SAME);
1141
1142			}	/* End of base register loop */
1143
1144		}		/* End of (type 0 config space) else */
1145		else {
1146			/* this is not a type 0 or 1 config space header so
1147			 * we don't know how to do it
1148			 */
1149			return(DEVICE_TYPE_NOT_SUPPORTED);
1150		}
1151
1152		/* Get the next function */
1153		func = cpqhp_slot_find(func->bus, func->device, index++);
1154	}
1155
1156
1157	return 0;
1158}
1159
1160
1161/*
1162 * cpqhp_find_available_resources
1163 *
1164 * Finds available memory, IO, and IRQ resources for programming
1165 * devices which may be added to the system
1166 * this function is for hot plug ADD!
1167 *
1168 * returns 0 if success
1169 */
1170int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
1171{
1172	u8 temp;
1173	u8 populated_slot;
1174	u8 bridged_slot;
1175	void __iomem *one_slot;
1176	void __iomem *rom_resource_table;
1177	struct pci_func *func = NULL;
1178	int i = 10, index;
1179	u32 temp_dword, rc;
1180	struct pci_resource *mem_node;
1181	struct pci_resource *p_mem_node;
1182	struct pci_resource *io_node;
1183	struct pci_resource *bus_node;
1184
1185	rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
1186	dbg("rom_resource_table = %p\n", rom_resource_table);
1187
1188	if (rom_resource_table == NULL)
1189		return -ENODEV;
1190
1191	/* Sum all resources and setup resource maps */
1192	unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
1193	dbg("unused_IRQ = %x\n", unused_IRQ);
1194
1195	temp = 0;
1196	while (unused_IRQ) {
1197		if (unused_IRQ & 1) {
1198			cpqhp_disk_irq = temp;
1199			break;
1200		}
1201		unused_IRQ = unused_IRQ >> 1;
1202		temp++;
1203	}
1204
1205	dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1206	unused_IRQ = unused_IRQ >> 1;
1207	temp++;
1208
1209	while (unused_IRQ) {
1210		if (unused_IRQ & 1) {
1211			cpqhp_nic_irq = temp;
1212			break;
1213		}
1214		unused_IRQ = unused_IRQ >> 1;
1215		temp++;
1216	}
1217
1218	dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1219	unused_IRQ = readl(rom_resource_table + PCIIRQ);
1220
1221	temp = 0;
1222
1223	if (!cpqhp_nic_irq)
1224		cpqhp_nic_irq = ctrl->cfgspc_irq;
1225
1226	if (!cpqhp_disk_irq)
1227		cpqhp_disk_irq = ctrl->cfgspc_irq;
1228
1229	dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1230
1231	rc = compaq_nvram_load(rom_start, ctrl);
1232	if (rc)
1233		return rc;
1234
1235	one_slot = rom_resource_table + sizeof(struct hrt);
1236
1237	i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
1238	dbg("number_of_entries = %d\n", i);
1239
1240	if (!readb(one_slot + SECONDARY_BUS))
1241		return 1;
1242
1243	dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1244
1245	while (i && readb(one_slot + SECONDARY_BUS)) {
1246		u8 dev_func = readb(one_slot + DEV_FUNC);
1247		u8 primary_bus = readb(one_slot + PRIMARY_BUS);
1248		u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
1249		u8 max_bus = readb(one_slot + MAX_BUS);
1250		u16 io_base = readw(one_slot + IO_BASE);
1251		u16 io_length = readw(one_slot + IO_LENGTH);
1252		u16 mem_base = readw(one_slot + MEM_BASE);
1253		u16 mem_length = readw(one_slot + MEM_LENGTH);
1254		u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
1255		u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
1256
1257		dbg("%2.2x | %4.4x  | %4.4x | %4.4x   | %4.4x | %4.4x   | %4.4x |%2.2x %2.2x %2.2x\n",
1258		    dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1259		    primary_bus, secondary_bus, max_bus);
1260
1261		/* If this entry isn't for our controller's bus, ignore it */
1262		if (primary_bus != ctrl->bus) {
1263			i--;
1264			one_slot += sizeof(struct slot_rt);
1265			continue;
1266		}
1267		/* find out if this entry is for an occupied slot */
1268		ctrl->pci_bus->number = primary_bus;
1269		pci_bus_read_config_dword(ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
1270		dbg("temp_D_word = %x\n", temp_dword);
1271
1272		if (temp_dword != 0xFFFFFFFF) {
1273			index = 0;
1274			func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
1275
1276			while (func && (func->function != (dev_func & 0x07))) {
1277				dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1278				func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
1279			}
1280
1281			/* If we can't find a match, skip this table entry */
1282			if (!func) {
1283				i--;
1284				one_slot += sizeof(struct slot_rt);
1285				continue;
1286			}
1287			/* this may not work and shouldn't be used */
1288			if (secondary_bus != primary_bus)
1289				bridged_slot = 1;
1290			else
1291				bridged_slot = 0;
1292
1293			populated_slot = 1;
1294		} else {
1295			populated_slot = 0;
1296			bridged_slot = 0;
1297		}
1298
1299
1300		/* If we've got a valid IO base, use it */
1301
1302		temp_dword = io_base + io_length;
1303
1304		if ((io_base) && (temp_dword < 0x10000)) {
1305			io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
1306			if (!io_node)
1307				return -ENOMEM;
1308
1309			io_node->base = io_base;
1310			io_node->length = io_length;
1311
1312			dbg("found io_node(base, length) = %x, %x\n",
1313					io_node->base, io_node->length);
1314			dbg("populated slot =%d \n", populated_slot);
1315			if (!populated_slot) {
1316				io_node->next = ctrl->io_head;
1317				ctrl->io_head = io_node;
1318			} else {
1319				io_node->next = func->io_head;
1320				func->io_head = io_node;
1321			}
1322		}
1323
1324		/* If we've got a valid memory base, use it */
1325		temp_dword = mem_base + mem_length;
1326		if ((mem_base) && (temp_dword < 0x10000)) {
1327			mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
1328			if (!mem_node)
1329				return -ENOMEM;
1330
1331			mem_node->base = mem_base << 16;
1332
1333			mem_node->length = mem_length << 16;
1334
1335			dbg("found mem_node(base, length) = %x, %x\n",
1336					mem_node->base, mem_node->length);
1337			dbg("populated slot =%d \n", populated_slot);
1338			if (!populated_slot) {
1339				mem_node->next = ctrl->mem_head;
1340				ctrl->mem_head = mem_node;
1341			} else {
1342				mem_node->next = func->mem_head;
1343				func->mem_head = mem_node;
1344			}
1345		}
1346
1347		/* If we've got a valid prefetchable memory base, and
1348		 * the base + length isn't greater than 0xFFFF
1349		 */
1350		temp_dword = pre_mem_base + pre_mem_length;
1351		if ((pre_mem_base) && (temp_dword < 0x10000)) {
1352			p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
1353			if (!p_mem_node)
1354				return -ENOMEM;
1355
1356			p_mem_node->base = pre_mem_base << 16;
1357
1358			p_mem_node->length = pre_mem_length << 16;
1359			dbg("found p_mem_node(base, length) = %x, %x\n",
1360					p_mem_node->base, p_mem_node->length);
1361			dbg("populated slot =%d \n", populated_slot);
1362
1363			if (!populated_slot) {
1364				p_mem_node->next = ctrl->p_mem_head;
1365				ctrl->p_mem_head = p_mem_node;
1366			} else {
1367				p_mem_node->next = func->p_mem_head;
1368				func->p_mem_head = p_mem_node;
1369			}
1370		}
1371
1372		/* If we've got a valid bus number, use it
1373		 * The second condition is to ignore bus numbers on
1374		 * populated slots that don't have PCI-PCI bridges
1375		 */
1376		if (secondary_bus && (secondary_bus != primary_bus)) {
1377			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
1378			if (!bus_node)
1379				return -ENOMEM;
1380
1381			bus_node->base = secondary_bus;
1382			bus_node->length = max_bus - secondary_bus + 1;
1383			dbg("found bus_node(base, length) = %x, %x\n",
1384					bus_node->base, bus_node->length);
1385			dbg("populated slot =%d \n", populated_slot);
1386			if (!populated_slot) {
1387				bus_node->next = ctrl->bus_head;
1388				ctrl->bus_head = bus_node;
1389			} else {
1390				bus_node->next = func->bus_head;
1391				func->bus_head = bus_node;
1392			}
1393		}
1394
1395		i--;
1396		one_slot += sizeof(struct slot_rt);
1397	}
1398
1399	/* If all of the following fail, we don't have any resources for
1400	 * hot plug add
1401	 */
1402	rc = 1;
1403	rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1404	rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1405	rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1406	rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1407
1408	return rc;
1409}
1410
1411
1412/*
1413 * cpqhp_return_board_resources
1414 *
1415 * this routine returns all resources allocated to a board to
1416 * the available pool.
1417 *
1418 * returns 0 if success
1419 */
1420int cpqhp_return_board_resources(struct pci_func *func, struct resource_lists *resources)
1421{
1422	int rc = 0;
1423	struct pci_resource *node;
1424	struct pci_resource *t_node;
1425	dbg("%s\n", __func__);
1426
1427	if (!func)
1428		return 1;
1429
1430	node = func->io_head;
1431	func->io_head = NULL;
1432	while (node) {
1433		t_node = node->next;
1434		return_resource(&(resources->io_head), node);
1435		node = t_node;
1436	}
1437
1438	node = func->mem_head;
1439	func->mem_head = NULL;
1440	while (node) {
1441		t_node = node->next;
1442		return_resource(&(resources->mem_head), node);
1443		node = t_node;
1444	}
1445
1446	node = func->p_mem_head;
1447	func->p_mem_head = NULL;
1448	while (node) {
1449		t_node = node->next;
1450		return_resource(&(resources->p_mem_head), node);
1451		node = t_node;
1452	}
1453
1454	node = func->bus_head;
1455	func->bus_head = NULL;
1456	while (node) {
1457		t_node = node->next;
1458		return_resource(&(resources->bus_head), node);
1459		node = t_node;
1460	}
1461
1462	rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
1463	rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
1464	rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
1465	rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
1466
1467	return rc;
1468}
1469
1470
1471/*
1472 * cpqhp_destroy_resource_list
1473 *
1474 * Puts node back in the resource list pointed to by head
1475 */
1476void cpqhp_destroy_resource_list(struct resource_lists *resources)
1477{
1478	struct pci_resource *res, *tres;
1479
1480	res = resources->io_head;
1481	resources->io_head = NULL;
1482
1483	while (res) {
1484		tres = res;
1485		res = res->next;
1486		kfree(tres);
1487	}
1488
1489	res = resources->mem_head;
1490	resources->mem_head = NULL;
1491
1492	while (res) {
1493		tres = res;
1494		res = res->next;
1495		kfree(tres);
1496	}
1497
1498	res = resources->p_mem_head;
1499	resources->p_mem_head = NULL;
1500
1501	while (res) {
1502		tres = res;
1503		res = res->next;
1504		kfree(tres);
1505	}
1506
1507	res = resources->bus_head;
1508	resources->bus_head = NULL;
1509
1510	while (res) {
1511		tres = res;
1512		res = res->next;
1513		kfree(tres);
1514	}
1515}
1516
1517
1518/*
1519 * cpqhp_destroy_board_resources
1520 *
1521 * Puts node back in the resource list pointed to by head
1522 */
1523void cpqhp_destroy_board_resources(struct pci_func *func)
1524{
1525	struct pci_resource *res, *tres;
1526
1527	res = func->io_head;
1528	func->io_head = NULL;
1529
1530	while (res) {
1531		tres = res;
1532		res = res->next;
1533		kfree(tres);
1534	}
1535
1536	res = func->mem_head;
1537	func->mem_head = NULL;
1538
1539	while (res) {
1540		tres = res;
1541		res = res->next;
1542		kfree(tres);
1543	}
1544
1545	res = func->p_mem_head;
1546	func->p_mem_head = NULL;
1547
1548	while (res) {
1549		tres = res;
1550		res = res->next;
1551		kfree(tres);
1552	}
1553
1554	res = func->bus_head;
1555	func->bus_head = NULL;
1556
1557	while (res) {
1558		tres = res;
1559		res = res->next;
1560		kfree(tres);
1561	}
1562}