Loading...
1/*
2 * Compaq Hot Plug Controller Driver
3 *
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
7 *
8 * All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT. See the GNU General Public License for more
19 * details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Send feedback to <greg@kroah.com>
26 *
27 */
28
29#include <linux/module.h>
30#include <linux/kernel.h>
31#include <linux/types.h>
32#include <linux/slab.h>
33#include <linux/workqueue.h>
34#include <linux/proc_fs.h>
35#include <linux/pci.h>
36#include <linux/pci_hotplug.h>
37#include "../pci.h"
38#include "cpqphp.h"
39#include "cpqphp_nvram.h"
40
41
42u8 cpqhp_nic_irq;
43u8 cpqhp_disk_irq;
44
45static u16 unused_IRQ;
46
47/*
48 * detect_HRT_floating_pointer
49 *
50 * find the Hot Plug Resource Table in the specified region of memory.
51 *
52 */
53static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
54{
55 void __iomem *fp;
56 void __iomem *endp;
57 u8 temp1, temp2, temp3, temp4;
58 int status = 0;
59
60 endp = (end - sizeof(struct hrt) + 1);
61
62 for (fp = begin; fp <= endp; fp += 16) {
63 temp1 = readb(fp + SIG0);
64 temp2 = readb(fp + SIG1);
65 temp3 = readb(fp + SIG2);
66 temp4 = readb(fp + SIG3);
67 if (temp1 == '$' &&
68 temp2 == 'H' &&
69 temp3 == 'R' &&
70 temp4 == 'T') {
71 status = 1;
72 break;
73 }
74 }
75
76 if (!status)
77 fp = NULL;
78
79 dbg("Discovered Hotplug Resource Table at %p\n", fp);
80 return fp;
81}
82
83
84int cpqhp_configure_device (struct controller* ctrl, struct pci_func* func)
85{
86 unsigned char bus;
87 struct pci_bus *child;
88 int num;
89
90 if (func->pci_dev == NULL)
91 func->pci_dev = pci_get_bus_and_slot(func->bus,PCI_DEVFN(func->device, func->function));
92
93 /* No pci device, we need to create it then */
94 if (func->pci_dev == NULL) {
95 dbg("INFO: pci_dev still null\n");
96
97 num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
98 if (num)
99 pci_bus_add_devices(ctrl->pci_dev->bus);
100
101 func->pci_dev = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, func->function));
102 if (func->pci_dev == NULL) {
103 dbg("ERROR: pci_dev still null\n");
104 return 0;
105 }
106 }
107
108 if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
109 pci_read_config_byte(func->pci_dev, PCI_SECONDARY_BUS, &bus);
110 child = (struct pci_bus*) pci_add_new_bus(func->pci_dev->bus, (func->pci_dev), bus);
111 pci_do_scan_bus(child);
112 }
113
114 pci_dev_put(func->pci_dev);
115
116 return 0;
117}
118
119
120int cpqhp_unconfigure_device(struct pci_func* func)
121{
122 int j;
123
124 dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function);
125
126 for (j=0; j<8 ; j++) {
127 struct pci_dev* temp = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, j));
128 if (temp) {
129 pci_dev_put(temp);
130 pci_remove_bus_device(temp);
131 }
132 }
133 return 0;
134}
135
136static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value)
137{
138 u32 vendID = 0;
139
140 if (pci_bus_read_config_dword (bus, devfn, PCI_VENDOR_ID, &vendID) == -1)
141 return -1;
142 if (vendID == 0xffffffff)
143 return -1;
144 return pci_bus_read_config_dword (bus, devfn, offset, value);
145}
146
147
148/*
149 * cpqhp_set_irq
150 *
151 * @bus_num: bus number of PCI device
152 * @dev_num: device number of PCI device
153 * @slot: pointer to u8 where slot number will be returned
154 */
155int cpqhp_set_irq (u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
156{
157 int rc = 0;
158
159 if (cpqhp_legacy_mode) {
160 struct pci_dev *fakedev;
161 struct pci_bus *fakebus;
162 u16 temp_word;
163
164 fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
165 fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
166 if (!fakedev || !fakebus) {
167 kfree(fakedev);
168 kfree(fakebus);
169 return -ENOMEM;
170 }
171
172 fakedev->devfn = dev_num << 3;
173 fakedev->bus = fakebus;
174 fakebus->number = bus_num;
175 dbg("%s: dev %d, bus %d, pin %d, num %d\n",
176 __func__, dev_num, bus_num, int_pin, irq_num);
177 rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num);
178 kfree(fakedev);
179 kfree(fakebus);
180 dbg("%s: rc %d\n", __func__, rc);
181 if (!rc)
182 return !rc;
183
184 /* set the Edge Level Control Register (ELCR) */
185 temp_word = inb(0x4d0);
186 temp_word |= inb(0x4d1) << 8;
187
188 temp_word |= 0x01 << irq_num;
189
190 /* This should only be for x86 as it sets the Edge Level
191 * Control Register
192 */
193 outb((u8) (temp_word & 0xFF), 0x4d0); outb((u8) ((temp_word &
194 0xFF00) >> 8), 0x4d1); rc = 0; }
195
196 return rc;
197}
198
199
200static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 * dev_num)
201{
202 u16 tdevice;
203 u32 work;
204 u8 tbus;
205
206 ctrl->pci_bus->number = bus_num;
207
208 for (tdevice = 0; tdevice < 0xFF; tdevice++) {
209 /* Scan for access first */
210 if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
211 continue;
212 dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
213 /* Yep we got one. Not a bridge ? */
214 if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
215 *dev_num = tdevice;
216 dbg("found it !\n");
217 return 0;
218 }
219 }
220 for (tdevice = 0; tdevice < 0xFF; tdevice++) {
221 /* Scan for access first */
222 if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
223 continue;
224 dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
225 /* Yep we got one. bridge ? */
226 if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
227 pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus);
228 /* XXX: no recursion, wtf? */
229 dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
230 return 0;
231 }
232 }
233
234 return -1;
235}
236
237
238static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
239{
240 int loop, len;
241 u32 work;
242 u8 tbus, tdevice, tslot;
243
244 len = cpqhp_routing_table_length();
245 for (loop = 0; loop < len; ++loop) {
246 tbus = cpqhp_routing_table->slots[loop].bus;
247 tdevice = cpqhp_routing_table->slots[loop].devfn;
248 tslot = cpqhp_routing_table->slots[loop].slot;
249
250 if (tslot == slot) {
251 *bus_num = tbus;
252 *dev_num = tdevice;
253 ctrl->pci_bus->number = tbus;
254 pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
255 if (!nobridge || (work == 0xffffffff))
256 return 0;
257
258 dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
259 pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
260 dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
261
262 if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
263 pci_bus_read_config_byte (ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
264 dbg("Scan bus for Non Bridge: bus %d\n", tbus);
265 if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
266 *bus_num = tbus;
267 return 0;
268 }
269 } else
270 return 0;
271 }
272 }
273 return -1;
274}
275
276
277int cpqhp_get_bus_dev (struct controller *ctrl, u8 * bus_num, u8 * dev_num, u8 slot)
278{
279 /* plain (bridges allowed) */
280 return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0);
281}
282
283
284/* More PCI configuration routines; this time centered around hotplug
285 * controller
286 */
287
288
289/*
290 * cpqhp_save_config
291 *
292 * Reads configuration for all slots in a PCI bus and saves info.
293 *
294 * Note: For non-hot plug busses, the slot # saved is the device #
295 *
296 * returns 0 if success
297 */
298int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
299{
300 long rc;
301 u8 class_code;
302 u8 header_type;
303 u32 ID;
304 u8 secondary_bus;
305 struct pci_func *new_slot;
306 int sub_bus;
307 int FirstSupported;
308 int LastSupported;
309 int max_functions;
310 int function;
311 u8 DevError;
312 int device = 0;
313 int cloop = 0;
314 int stop_it;
315 int index;
316
317 /* Decide which slots are supported */
318
319 if (is_hot_plug) {
320 /*
321 * is_hot_plug is the slot mask
322 */
323 FirstSupported = is_hot_plug >> 4;
324 LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
325 } else {
326 FirstSupported = 0;
327 LastSupported = 0x1F;
328 }
329
330 /* Save PCI configuration space for all devices in supported slots */
331 ctrl->pci_bus->number = busnumber;
332 for (device = FirstSupported; device <= LastSupported; device++) {
333 ID = 0xFFFFFFFF;
334 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
335
336 if (ID == 0xFFFFFFFF) {
337 if (is_hot_plug) {
338 /* Setup slot structure with entry for empty
339 * slot
340 */
341 new_slot = cpqhp_slot_create(busnumber);
342 if (new_slot == NULL)
343 return 1;
344
345 new_slot->bus = (u8) busnumber;
346 new_slot->device = (u8) device;
347 new_slot->function = 0;
348 new_slot->is_a_board = 0;
349 new_slot->presence_save = 0;
350 new_slot->switch_save = 0;
351 }
352 continue;
353 }
354
355 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
356 if (rc)
357 return rc;
358
359 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
360 if (rc)
361 return rc;
362
363 /* If multi-function device, set max_functions to 8 */
364 if (header_type & 0x80)
365 max_functions = 8;
366 else
367 max_functions = 1;
368
369 function = 0;
370
371 do {
372 DevError = 0;
373 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
374 /* Recurse the subordinate bus
375 * get the subordinate bus number
376 */
377 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
378 if (rc) {
379 return rc;
380 } else {
381 sub_bus = (int) secondary_bus;
382
383 /* Save secondary bus cfg spc
384 * with this recursive call.
385 */
386 rc = cpqhp_save_config(ctrl, sub_bus, 0);
387 if (rc)
388 return rc;
389 ctrl->pci_bus->number = busnumber;
390 }
391 }
392
393 index = 0;
394 new_slot = cpqhp_slot_find(busnumber, device, index++);
395 while (new_slot &&
396 (new_slot->function != (u8) function))
397 new_slot = cpqhp_slot_find(busnumber, device, index++);
398
399 if (!new_slot) {
400 /* Setup slot structure. */
401 new_slot = cpqhp_slot_create(busnumber);
402 if (new_slot == NULL)
403 return 1;
404 }
405
406 new_slot->bus = (u8) busnumber;
407 new_slot->device = (u8) device;
408 new_slot->function = (u8) function;
409 new_slot->is_a_board = 1;
410 new_slot->switch_save = 0x10;
411 /* In case of unsupported board */
412 new_slot->status = DevError;
413 new_slot->pci_dev = pci_get_bus_and_slot(new_slot->bus, (new_slot->device << 3) | new_slot->function);
414
415 for (cloop = 0; cloop < 0x20; cloop++) {
416 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
417 if (rc)
418 return rc;
419 }
420
421 pci_dev_put(new_slot->pci_dev);
422
423 function++;
424
425 stop_it = 0;
426
427 /* this loop skips to the next present function
428 * reading in Class Code and Header type.
429 */
430 while ((function < max_functions) && (!stop_it)) {
431 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
432 if (ID == 0xFFFFFFFF) {
433 function++;
434 continue;
435 }
436 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
437 if (rc)
438 return rc;
439
440 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
441 if (rc)
442 return rc;
443
444 stop_it++;
445 }
446
447 } while (function < max_functions);
448 } /* End of FOR loop */
449
450 return 0;
451}
452
453
454/*
455 * cpqhp_save_slot_config
456 *
457 * Saves configuration info for all PCI devices in a given slot
458 * including subordinate busses.
459 *
460 * returns 0 if success
461 */
462int cpqhp_save_slot_config (struct controller *ctrl, struct pci_func * new_slot)
463{
464 long rc;
465 u8 class_code;
466 u8 header_type;
467 u32 ID;
468 u8 secondary_bus;
469 int sub_bus;
470 int max_functions;
471 int function = 0;
472 int cloop = 0;
473 int stop_it;
474
475 ID = 0xFFFFFFFF;
476
477 ctrl->pci_bus->number = new_slot->bus;
478 pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
479
480 if (ID == 0xFFFFFFFF)
481 return 2;
482
483 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
484 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
485
486 if (header_type & 0x80) /* Multi-function device */
487 max_functions = 8;
488 else
489 max_functions = 1;
490
491 while (function < max_functions) {
492 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
493 /* Recurse the subordinate bus */
494 pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
495
496 sub_bus = (int) secondary_bus;
497
498 /* Save the config headers for the secondary
499 * bus.
500 */
501 rc = cpqhp_save_config(ctrl, sub_bus, 0);
502 if (rc)
503 return(rc);
504 ctrl->pci_bus->number = new_slot->bus;
505
506 }
507
508 new_slot->status = 0;
509
510 for (cloop = 0; cloop < 0x20; cloop++)
511 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
512
513 function++;
514
515 stop_it = 0;
516
517 /* this loop skips to the next present function
518 * reading in the Class Code and the Header type.
519 */
520 while ((function < max_functions) && (!stop_it)) {
521 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
522
523 if (ID == 0xFFFFFFFF)
524 function++;
525 else {
526 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
527 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
528 stop_it++;
529 }
530 }
531
532 }
533
534 return 0;
535}
536
537
538/*
539 * cpqhp_save_base_addr_length
540 *
541 * Saves the length of all base address registers for the
542 * specified slot. this is for hot plug REPLACE
543 *
544 * returns 0 if success
545 */
546int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func * func)
547{
548 u8 cloop;
549 u8 header_type;
550 u8 secondary_bus;
551 u8 type;
552 int sub_bus;
553 u32 temp_register;
554 u32 base;
555 u32 rc;
556 struct pci_func *next;
557 int index = 0;
558 struct pci_bus *pci_bus = ctrl->pci_bus;
559 unsigned int devfn;
560
561 func = cpqhp_slot_find(func->bus, func->device, index++);
562
563 while (func != NULL) {
564 pci_bus->number = func->bus;
565 devfn = PCI_DEVFN(func->device, func->function);
566
567 /* Check for Bridge */
568 pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
569
570 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
571 pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
572
573 sub_bus = (int) secondary_bus;
574
575 next = cpqhp_slot_list[sub_bus];
576
577 while (next != NULL) {
578 rc = cpqhp_save_base_addr_length(ctrl, next);
579 if (rc)
580 return rc;
581
582 next = next->next;
583 }
584 pci_bus->number = func->bus;
585
586 /* FIXME: this loop is duplicated in the non-bridge
587 * case. The two could be rolled together Figure out
588 * IO and memory base lengths
589 */
590 for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
591 temp_register = 0xFFFFFFFF;
592 pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
593 pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
594 /* If this register is implemented */
595 if (base) {
596 if (base & 0x01L) {
597 /* IO base
598 * set base = amount of IO space
599 * requested
600 */
601 base = base & 0xFFFFFFFE;
602 base = (~base) + 1;
603
604 type = 1;
605 } else {
606 /* memory base */
607 base = base & 0xFFFFFFF0;
608 base = (~base) + 1;
609
610 type = 0;
611 }
612 } else {
613 base = 0x0L;
614 type = 0;
615 }
616
617 /* Save information in slot structure */
618 func->base_length[(cloop - 0x10) >> 2] =
619 base;
620 func->base_type[(cloop - 0x10) >> 2] = type;
621
622 } /* End of base register loop */
623
624 } else if ((header_type & 0x7F) == 0x00) {
625 /* Figure out IO and memory base lengths */
626 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
627 temp_register = 0xFFFFFFFF;
628 pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
629 pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
630
631 /* If this register is implemented */
632 if (base) {
633 if (base & 0x01L) {
634 /* IO base
635 * base = amount of IO space
636 * requested
637 */
638 base = base & 0xFFFFFFFE;
639 base = (~base) + 1;
640
641 type = 1;
642 } else {
643 /* memory base
644 * base = amount of memory
645 * space requested
646 */
647 base = base & 0xFFFFFFF0;
648 base = (~base) + 1;
649
650 type = 0;
651 }
652 } else {
653 base = 0x0L;
654 type = 0;
655 }
656
657 /* Save information in slot structure */
658 func->base_length[(cloop - 0x10) >> 2] = base;
659 func->base_type[(cloop - 0x10) >> 2] = type;
660
661 } /* End of base register loop */
662
663 } else { /* Some other unknown header type */
664 }
665
666 /* find the next device in this slot */
667 func = cpqhp_slot_find(func->bus, func->device, index++);
668 }
669
670 return(0);
671}
672
673
674/*
675 * cpqhp_save_used_resources
676 *
677 * Stores used resource information for existing boards. this is
678 * for boards that were in the system when this driver was loaded.
679 * this function is for hot plug ADD
680 *
681 * returns 0 if success
682 */
683int cpqhp_save_used_resources (struct controller *ctrl, struct pci_func * func)
684{
685 u8 cloop;
686 u8 header_type;
687 u8 secondary_bus;
688 u8 temp_byte;
689 u8 b_base;
690 u8 b_length;
691 u16 command;
692 u16 save_command;
693 u16 w_base;
694 u16 w_length;
695 u32 temp_register;
696 u32 save_base;
697 u32 base;
698 int index = 0;
699 struct pci_resource *mem_node;
700 struct pci_resource *p_mem_node;
701 struct pci_resource *io_node;
702 struct pci_resource *bus_node;
703 struct pci_bus *pci_bus = ctrl->pci_bus;
704 unsigned int devfn;
705
706 func = cpqhp_slot_find(func->bus, func->device, index++);
707
708 while ((func != NULL) && func->is_a_board) {
709 pci_bus->number = func->bus;
710 devfn = PCI_DEVFN(func->device, func->function);
711
712 /* Save the command register */
713 pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
714
715 /* disable card */
716 command = 0x00;
717 pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
718
719 /* Check for Bridge */
720 pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
721
722 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
723 /* Clear Bridge Control Register */
724 command = 0x00;
725 pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
726 pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
727 pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
728
729 bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
730 if (!bus_node)
731 return -ENOMEM;
732
733 bus_node->base = secondary_bus;
734 bus_node->length = temp_byte - secondary_bus + 1;
735
736 bus_node->next = func->bus_head;
737 func->bus_head = bus_node;
738
739 /* Save IO base and Limit registers */
740 pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
741 pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
742
743 if ((b_base <= b_length) && (save_command & 0x01)) {
744 io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
745 if (!io_node)
746 return -ENOMEM;
747
748 io_node->base = (b_base & 0xF0) << 8;
749 io_node->length = (b_length - b_base + 0x10) << 8;
750
751 io_node->next = func->io_head;
752 func->io_head = io_node;
753 }
754
755 /* Save memory base and Limit registers */
756 pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
757 pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
758
759 if ((w_base <= w_length) && (save_command & 0x02)) {
760 mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
761 if (!mem_node)
762 return -ENOMEM;
763
764 mem_node->base = w_base << 16;
765 mem_node->length = (w_length - w_base + 0x10) << 16;
766
767 mem_node->next = func->mem_head;
768 func->mem_head = mem_node;
769 }
770
771 /* Save prefetchable memory base and Limit registers */
772 pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
773 pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
774
775 if ((w_base <= w_length) && (save_command & 0x02)) {
776 p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
777 if (!p_mem_node)
778 return -ENOMEM;
779
780 p_mem_node->base = w_base << 16;
781 p_mem_node->length = (w_length - w_base + 0x10) << 16;
782
783 p_mem_node->next = func->p_mem_head;
784 func->p_mem_head = p_mem_node;
785 }
786 /* Figure out IO and memory base lengths */
787 for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
788 pci_bus_read_config_dword (pci_bus, devfn, cloop, &save_base);
789
790 temp_register = 0xFFFFFFFF;
791 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
792 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
793
794 temp_register = base;
795
796 /* If this register is implemented */
797 if (base) {
798 if (((base & 0x03L) == 0x01)
799 && (save_command & 0x01)) {
800 /* IO base
801 * set temp_register = amount
802 * of IO space requested
803 */
804 temp_register = base & 0xFFFFFFFE;
805 temp_register = (~temp_register) + 1;
806
807 io_node = kmalloc(sizeof(*io_node),
808 GFP_KERNEL);
809 if (!io_node)
810 return -ENOMEM;
811
812 io_node->base =
813 save_base & (~0x03L);
814 io_node->length = temp_register;
815
816 io_node->next = func->io_head;
817 func->io_head = io_node;
818 } else
819 if (((base & 0x0BL) == 0x08)
820 && (save_command & 0x02)) {
821 /* prefetchable memory base */
822 temp_register = base & 0xFFFFFFF0;
823 temp_register = (~temp_register) + 1;
824
825 p_mem_node = kmalloc(sizeof(*p_mem_node),
826 GFP_KERNEL);
827 if (!p_mem_node)
828 return -ENOMEM;
829
830 p_mem_node->base = save_base & (~0x0FL);
831 p_mem_node->length = temp_register;
832
833 p_mem_node->next = func->p_mem_head;
834 func->p_mem_head = p_mem_node;
835 } else
836 if (((base & 0x0BL) == 0x00)
837 && (save_command & 0x02)) {
838 /* prefetchable memory base */
839 temp_register = base & 0xFFFFFFF0;
840 temp_register = (~temp_register) + 1;
841
842 mem_node = kmalloc(sizeof(*mem_node),
843 GFP_KERNEL);
844 if (!mem_node)
845 return -ENOMEM;
846
847 mem_node->base = save_base & (~0x0FL);
848 mem_node->length = temp_register;
849
850 mem_node->next = func->mem_head;
851 func->mem_head = mem_node;
852 } else
853 return(1);
854 }
855 } /* End of base register loop */
856 /* Standard header */
857 } else if ((header_type & 0x7F) == 0x00) {
858 /* Figure out IO and memory base lengths */
859 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
860 pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
861
862 temp_register = 0xFFFFFFFF;
863 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
864 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
865
866 temp_register = base;
867
868 /* If this register is implemented */
869 if (base) {
870 if (((base & 0x03L) == 0x01)
871 && (save_command & 0x01)) {
872 /* IO base
873 * set temp_register = amount
874 * of IO space requested
875 */
876 temp_register = base & 0xFFFFFFFE;
877 temp_register = (~temp_register) + 1;
878
879 io_node = kmalloc(sizeof(*io_node),
880 GFP_KERNEL);
881 if (!io_node)
882 return -ENOMEM;
883
884 io_node->base = save_base & (~0x01L);
885 io_node->length = temp_register;
886
887 io_node->next = func->io_head;
888 func->io_head = io_node;
889 } else
890 if (((base & 0x0BL) == 0x08)
891 && (save_command & 0x02)) {
892 /* prefetchable memory base */
893 temp_register = base & 0xFFFFFFF0;
894 temp_register = (~temp_register) + 1;
895
896 p_mem_node = kmalloc(sizeof(*p_mem_node),
897 GFP_KERNEL);
898 if (!p_mem_node)
899 return -ENOMEM;
900
901 p_mem_node->base = save_base & (~0x0FL);
902 p_mem_node->length = temp_register;
903
904 p_mem_node->next = func->p_mem_head;
905 func->p_mem_head = p_mem_node;
906 } else
907 if (((base & 0x0BL) == 0x00)
908 && (save_command & 0x02)) {
909 /* prefetchable memory base */
910 temp_register = base & 0xFFFFFFF0;
911 temp_register = (~temp_register) + 1;
912
913 mem_node = kmalloc(sizeof(*mem_node),
914 GFP_KERNEL);
915 if (!mem_node)
916 return -ENOMEM;
917
918 mem_node->base = save_base & (~0x0FL);
919 mem_node->length = temp_register;
920
921 mem_node->next = func->mem_head;
922 func->mem_head = mem_node;
923 } else
924 return(1);
925 }
926 } /* End of base register loop */
927 }
928
929 /* find the next device in this slot */
930 func = cpqhp_slot_find(func->bus, func->device, index++);
931 }
932
933 return 0;
934}
935
936
937/*
938 * cpqhp_configure_board
939 *
940 * Copies saved configuration information to one slot.
941 * this is called recursively for bridge devices.
942 * this is for hot plug REPLACE!
943 *
944 * returns 0 if success
945 */
946int cpqhp_configure_board(struct controller *ctrl, struct pci_func * func)
947{
948 int cloop;
949 u8 header_type;
950 u8 secondary_bus;
951 int sub_bus;
952 struct pci_func *next;
953 u32 temp;
954 u32 rc;
955 int index = 0;
956 struct pci_bus *pci_bus = ctrl->pci_bus;
957 unsigned int devfn;
958
959 func = cpqhp_slot_find(func->bus, func->device, index++);
960
961 while (func != NULL) {
962 pci_bus->number = func->bus;
963 devfn = PCI_DEVFN(func->device, func->function);
964
965 /* Start at the top of config space so that the control
966 * registers are programmed last
967 */
968 for (cloop = 0x3C; cloop > 0; cloop -= 4)
969 pci_bus_write_config_dword (pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
970
971 pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
972
973 /* If this is a bridge device, restore subordinate devices */
974 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
975 pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
976
977 sub_bus = (int) secondary_bus;
978
979 next = cpqhp_slot_list[sub_bus];
980
981 while (next != NULL) {
982 rc = cpqhp_configure_board(ctrl, next);
983 if (rc)
984 return rc;
985
986 next = next->next;
987 }
988 } else {
989
990 /* Check all the base Address Registers to make sure
991 * they are the same. If not, the board is different.
992 */
993
994 for (cloop = 16; cloop < 40; cloop += 4) {
995 pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp);
996
997 if (temp != func->config_space[cloop >> 2]) {
998 dbg("Config space compare failure!!! offset = %x\n", cloop);
999 dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
1000 dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
1001 return 1;
1002 }
1003 }
1004 }
1005
1006 func->configured = 1;
1007
1008 func = cpqhp_slot_find(func->bus, func->device, index++);
1009 }
1010
1011 return 0;
1012}
1013
1014
1015/*
1016 * cpqhp_valid_replace
1017 *
1018 * this function checks to see if a board is the same as the
1019 * one it is replacing. this check will detect if the device's
1020 * vendor or device id's are the same
1021 *
1022 * returns 0 if the board is the same nonzero otherwise
1023 */
1024int cpqhp_valid_replace(struct controller *ctrl, struct pci_func * func)
1025{
1026 u8 cloop;
1027 u8 header_type;
1028 u8 secondary_bus;
1029 u8 type;
1030 u32 temp_register = 0;
1031 u32 base;
1032 u32 rc;
1033 struct pci_func *next;
1034 int index = 0;
1035 struct pci_bus *pci_bus = ctrl->pci_bus;
1036 unsigned int devfn;
1037
1038 if (!func->is_a_board)
1039 return(ADD_NOT_SUPPORTED);
1040
1041 func = cpqhp_slot_find(func->bus, func->device, index++);
1042
1043 while (func != NULL) {
1044 pci_bus->number = func->bus;
1045 devfn = PCI_DEVFN(func->device, func->function);
1046
1047 pci_bus_read_config_dword (pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
1048
1049 /* No adapter present */
1050 if (temp_register == 0xFFFFFFFF)
1051 return(NO_ADAPTER_PRESENT);
1052
1053 if (temp_register != func->config_space[0])
1054 return(ADAPTER_NOT_SAME);
1055
1056 /* Check for same revision number and class code */
1057 pci_bus_read_config_dword (pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
1058
1059 /* Adapter not the same */
1060 if (temp_register != func->config_space[0x08 >> 2])
1061 return(ADAPTER_NOT_SAME);
1062
1063 /* Check for Bridge */
1064 pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
1065
1066 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
1067 /* In order to continue checking, we must program the
1068 * bus registers in the bridge to respond to accesses
1069 * for its subordinate bus(es)
1070 */
1071
1072 temp_register = func->config_space[0x18 >> 2];
1073 pci_bus_write_config_dword (pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
1074
1075 secondary_bus = (temp_register >> 8) & 0xFF;
1076
1077 next = cpqhp_slot_list[secondary_bus];
1078
1079 while (next != NULL) {
1080 rc = cpqhp_valid_replace(ctrl, next);
1081 if (rc)
1082 return rc;
1083
1084 next = next->next;
1085 }
1086
1087 }
1088 /* Check to see if it is a standard config header */
1089 else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
1090 /* Check subsystem vendor and ID */
1091 pci_bus_read_config_dword (pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
1092
1093 if (temp_register != func->config_space[0x2C >> 2]) {
1094 /* If it's a SMART-2 and the register isn't
1095 * filled in, ignore the difference because
1096 * they just have an old rev of the firmware
1097 */
1098 if (!((func->config_space[0] == 0xAE100E11)
1099 && (temp_register == 0x00L)))
1100 return(ADAPTER_NOT_SAME);
1101 }
1102 /* Figure out IO and memory base lengths */
1103 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1104 temp_register = 0xFFFFFFFF;
1105 pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
1106 pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
1107
1108 /* If this register is implemented */
1109 if (base) {
1110 if (base & 0x01L) {
1111 /* IO base
1112 * set base = amount of IO
1113 * space requested
1114 */
1115 base = base & 0xFFFFFFFE;
1116 base = (~base) + 1;
1117
1118 type = 1;
1119 } else {
1120 /* memory base */
1121 base = base & 0xFFFFFFF0;
1122 base = (~base) + 1;
1123
1124 type = 0;
1125 }
1126 } else {
1127 base = 0x0L;
1128 type = 0;
1129 }
1130
1131 /* Check information in slot structure */
1132 if (func->base_length[(cloop - 0x10) >> 2] != base)
1133 return(ADAPTER_NOT_SAME);
1134
1135 if (func->base_type[(cloop - 0x10) >> 2] != type)
1136 return(ADAPTER_NOT_SAME);
1137
1138 } /* End of base register loop */
1139
1140 } /* End of (type 0 config space) else */
1141 else {
1142 /* this is not a type 0 or 1 config space header so
1143 * we don't know how to do it
1144 */
1145 return(DEVICE_TYPE_NOT_SUPPORTED);
1146 }
1147
1148 /* Get the next function */
1149 func = cpqhp_slot_find(func->bus, func->device, index++);
1150 }
1151
1152
1153 return 0;
1154}
1155
1156
1157/*
1158 * cpqhp_find_available_resources
1159 *
1160 * Finds available memory, IO, and IRQ resources for programming
1161 * devices which may be added to the system
1162 * this function is for hot plug ADD!
1163 *
1164 * returns 0 if success
1165 */
1166int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
1167{
1168 u8 temp;
1169 u8 populated_slot;
1170 u8 bridged_slot;
1171 void __iomem *one_slot;
1172 void __iomem *rom_resource_table;
1173 struct pci_func *func = NULL;
1174 int i = 10, index;
1175 u32 temp_dword, rc;
1176 struct pci_resource *mem_node;
1177 struct pci_resource *p_mem_node;
1178 struct pci_resource *io_node;
1179 struct pci_resource *bus_node;
1180
1181 rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
1182 dbg("rom_resource_table = %p\n", rom_resource_table);
1183
1184 if (rom_resource_table == NULL)
1185 return -ENODEV;
1186
1187 /* Sum all resources and setup resource maps */
1188 unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
1189 dbg("unused_IRQ = %x\n", unused_IRQ);
1190
1191 temp = 0;
1192 while (unused_IRQ) {
1193 if (unused_IRQ & 1) {
1194 cpqhp_disk_irq = temp;
1195 break;
1196 }
1197 unused_IRQ = unused_IRQ >> 1;
1198 temp++;
1199 }
1200
1201 dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1202 unused_IRQ = unused_IRQ >> 1;
1203 temp++;
1204
1205 while (unused_IRQ) {
1206 if (unused_IRQ & 1) {
1207 cpqhp_nic_irq = temp;
1208 break;
1209 }
1210 unused_IRQ = unused_IRQ >> 1;
1211 temp++;
1212 }
1213
1214 dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1215 unused_IRQ = readl(rom_resource_table + PCIIRQ);
1216
1217 temp = 0;
1218
1219 if (!cpqhp_nic_irq)
1220 cpqhp_nic_irq = ctrl->cfgspc_irq;
1221
1222 if (!cpqhp_disk_irq)
1223 cpqhp_disk_irq = ctrl->cfgspc_irq;
1224
1225 dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1226
1227 rc = compaq_nvram_load(rom_start, ctrl);
1228 if (rc)
1229 return rc;
1230
1231 one_slot = rom_resource_table + sizeof (struct hrt);
1232
1233 i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
1234 dbg("number_of_entries = %d\n", i);
1235
1236 if (!readb(one_slot + SECONDARY_BUS))
1237 return 1;
1238
1239 dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1240
1241 while (i && readb(one_slot + SECONDARY_BUS)) {
1242 u8 dev_func = readb(one_slot + DEV_FUNC);
1243 u8 primary_bus = readb(one_slot + PRIMARY_BUS);
1244 u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
1245 u8 max_bus = readb(one_slot + MAX_BUS);
1246 u16 io_base = readw(one_slot + IO_BASE);
1247 u16 io_length = readw(one_slot + IO_LENGTH);
1248 u16 mem_base = readw(one_slot + MEM_BASE);
1249 u16 mem_length = readw(one_slot + MEM_LENGTH);
1250 u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
1251 u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
1252
1253 dbg("%2.2x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x |%2.2x %2.2x %2.2x\n",
1254 dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1255 primary_bus, secondary_bus, max_bus);
1256
1257 /* If this entry isn't for our controller's bus, ignore it */
1258 if (primary_bus != ctrl->bus) {
1259 i--;
1260 one_slot += sizeof (struct slot_rt);
1261 continue;
1262 }
1263 /* find out if this entry is for an occupied slot */
1264 ctrl->pci_bus->number = primary_bus;
1265 pci_bus_read_config_dword (ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
1266 dbg("temp_D_word = %x\n", temp_dword);
1267
1268 if (temp_dword != 0xFFFFFFFF) {
1269 index = 0;
1270 func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
1271
1272 while (func && (func->function != (dev_func & 0x07))) {
1273 dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1274 func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
1275 }
1276
1277 /* If we can't find a match, skip this table entry */
1278 if (!func) {
1279 i--;
1280 one_slot += sizeof (struct slot_rt);
1281 continue;
1282 }
1283 /* this may not work and shouldn't be used */
1284 if (secondary_bus != primary_bus)
1285 bridged_slot = 1;
1286 else
1287 bridged_slot = 0;
1288
1289 populated_slot = 1;
1290 } else {
1291 populated_slot = 0;
1292 bridged_slot = 0;
1293 }
1294
1295
1296 /* If we've got a valid IO base, use it */
1297
1298 temp_dword = io_base + io_length;
1299
1300 if ((io_base) && (temp_dword < 0x10000)) {
1301 io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
1302 if (!io_node)
1303 return -ENOMEM;
1304
1305 io_node->base = io_base;
1306 io_node->length = io_length;
1307
1308 dbg("found io_node(base, length) = %x, %x\n",
1309 io_node->base, io_node->length);
1310 dbg("populated slot =%d \n", populated_slot);
1311 if (!populated_slot) {
1312 io_node->next = ctrl->io_head;
1313 ctrl->io_head = io_node;
1314 } else {
1315 io_node->next = func->io_head;
1316 func->io_head = io_node;
1317 }
1318 }
1319
1320 /* If we've got a valid memory base, use it */
1321 temp_dword = mem_base + mem_length;
1322 if ((mem_base) && (temp_dword < 0x10000)) {
1323 mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
1324 if (!mem_node)
1325 return -ENOMEM;
1326
1327 mem_node->base = mem_base << 16;
1328
1329 mem_node->length = mem_length << 16;
1330
1331 dbg("found mem_node(base, length) = %x, %x\n",
1332 mem_node->base, mem_node->length);
1333 dbg("populated slot =%d \n", populated_slot);
1334 if (!populated_slot) {
1335 mem_node->next = ctrl->mem_head;
1336 ctrl->mem_head = mem_node;
1337 } else {
1338 mem_node->next = func->mem_head;
1339 func->mem_head = mem_node;
1340 }
1341 }
1342
1343 /* If we've got a valid prefetchable memory base, and
1344 * the base + length isn't greater than 0xFFFF
1345 */
1346 temp_dword = pre_mem_base + pre_mem_length;
1347 if ((pre_mem_base) && (temp_dword < 0x10000)) {
1348 p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
1349 if (!p_mem_node)
1350 return -ENOMEM;
1351
1352 p_mem_node->base = pre_mem_base << 16;
1353
1354 p_mem_node->length = pre_mem_length << 16;
1355 dbg("found p_mem_node(base, length) = %x, %x\n",
1356 p_mem_node->base, p_mem_node->length);
1357 dbg("populated slot =%d \n", populated_slot);
1358
1359 if (!populated_slot) {
1360 p_mem_node->next = ctrl->p_mem_head;
1361 ctrl->p_mem_head = p_mem_node;
1362 } else {
1363 p_mem_node->next = func->p_mem_head;
1364 func->p_mem_head = p_mem_node;
1365 }
1366 }
1367
1368 /* If we've got a valid bus number, use it
1369 * The second condition is to ignore bus numbers on
1370 * populated slots that don't have PCI-PCI bridges
1371 */
1372 if (secondary_bus && (secondary_bus != primary_bus)) {
1373 bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
1374 if (!bus_node)
1375 return -ENOMEM;
1376
1377 bus_node->base = secondary_bus;
1378 bus_node->length = max_bus - secondary_bus + 1;
1379 dbg("found bus_node(base, length) = %x, %x\n",
1380 bus_node->base, bus_node->length);
1381 dbg("populated slot =%d \n", populated_slot);
1382 if (!populated_slot) {
1383 bus_node->next = ctrl->bus_head;
1384 ctrl->bus_head = bus_node;
1385 } else {
1386 bus_node->next = func->bus_head;
1387 func->bus_head = bus_node;
1388 }
1389 }
1390
1391 i--;
1392 one_slot += sizeof (struct slot_rt);
1393 }
1394
1395 /* If all of the following fail, we don't have any resources for
1396 * hot plug add
1397 */
1398 rc = 1;
1399 rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1400 rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1401 rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1402 rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1403
1404 return rc;
1405}
1406
1407
1408/*
1409 * cpqhp_return_board_resources
1410 *
1411 * this routine returns all resources allocated to a board to
1412 * the available pool.
1413 *
1414 * returns 0 if success
1415 */
1416int cpqhp_return_board_resources(struct pci_func * func, struct resource_lists * resources)
1417{
1418 int rc = 0;
1419 struct pci_resource *node;
1420 struct pci_resource *t_node;
1421 dbg("%s\n", __func__);
1422
1423 if (!func)
1424 return 1;
1425
1426 node = func->io_head;
1427 func->io_head = NULL;
1428 while (node) {
1429 t_node = node->next;
1430 return_resource(&(resources->io_head), node);
1431 node = t_node;
1432 }
1433
1434 node = func->mem_head;
1435 func->mem_head = NULL;
1436 while (node) {
1437 t_node = node->next;
1438 return_resource(&(resources->mem_head), node);
1439 node = t_node;
1440 }
1441
1442 node = func->p_mem_head;
1443 func->p_mem_head = NULL;
1444 while (node) {
1445 t_node = node->next;
1446 return_resource(&(resources->p_mem_head), node);
1447 node = t_node;
1448 }
1449
1450 node = func->bus_head;
1451 func->bus_head = NULL;
1452 while (node) {
1453 t_node = node->next;
1454 return_resource(&(resources->bus_head), node);
1455 node = t_node;
1456 }
1457
1458 rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
1459 rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
1460 rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
1461 rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
1462
1463 return rc;
1464}
1465
1466
1467/*
1468 * cpqhp_destroy_resource_list
1469 *
1470 * Puts node back in the resource list pointed to by head
1471 */
1472void cpqhp_destroy_resource_list (struct resource_lists * resources)
1473{
1474 struct pci_resource *res, *tres;
1475
1476 res = resources->io_head;
1477 resources->io_head = NULL;
1478
1479 while (res) {
1480 tres = res;
1481 res = res->next;
1482 kfree(tres);
1483 }
1484
1485 res = resources->mem_head;
1486 resources->mem_head = NULL;
1487
1488 while (res) {
1489 tres = res;
1490 res = res->next;
1491 kfree(tres);
1492 }
1493
1494 res = resources->p_mem_head;
1495 resources->p_mem_head = NULL;
1496
1497 while (res) {
1498 tres = res;
1499 res = res->next;
1500 kfree(tres);
1501 }
1502
1503 res = resources->bus_head;
1504 resources->bus_head = NULL;
1505
1506 while (res) {
1507 tres = res;
1508 res = res->next;
1509 kfree(tres);
1510 }
1511}
1512
1513
1514/*
1515 * cpqhp_destroy_board_resources
1516 *
1517 * Puts node back in the resource list pointed to by head
1518 */
1519void cpqhp_destroy_board_resources (struct pci_func * func)
1520{
1521 struct pci_resource *res, *tres;
1522
1523 res = func->io_head;
1524 func->io_head = NULL;
1525
1526 while (res) {
1527 tres = res;
1528 res = res->next;
1529 kfree(tres);
1530 }
1531
1532 res = func->mem_head;
1533 func->mem_head = NULL;
1534
1535 while (res) {
1536 tres = res;
1537 res = res->next;
1538 kfree(tres);
1539 }
1540
1541 res = func->p_mem_head;
1542 func->p_mem_head = NULL;
1543
1544 while (res) {
1545 tres = res;
1546 res = res->next;
1547 kfree(tres);
1548 }
1549
1550 res = func->bus_head;
1551 func->bus_head = NULL;
1552
1553 while (res) {
1554 tres = res;
1555 res = res->next;
1556 kfree(tres);
1557 }
1558}
1559
1/*
2 * Compaq Hot Plug Controller Driver
3 *
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
7 *
8 * All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT. See the GNU General Public License for more
19 * details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Send feedback to <greg@kroah.com>
26 *
27 */
28
29#include <linux/module.h>
30#include <linux/kernel.h>
31#include <linux/types.h>
32#include <linux/slab.h>
33#include <linux/workqueue.h>
34#include <linux/proc_fs.h>
35#include <linux/pci.h>
36#include <linux/pci_hotplug.h>
37#include "../pci.h"
38#include "cpqphp.h"
39#include "cpqphp_nvram.h"
40
41
42u8 cpqhp_nic_irq;
43u8 cpqhp_disk_irq;
44
45static u16 unused_IRQ;
46
47/*
48 * detect_HRT_floating_pointer
49 *
50 * find the Hot Plug Resource Table in the specified region of memory.
51 *
52 */
53static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
54{
55 void __iomem *fp;
56 void __iomem *endp;
57 u8 temp1, temp2, temp3, temp4;
58 int status = 0;
59
60 endp = (end - sizeof(struct hrt) + 1);
61
62 for (fp = begin; fp <= endp; fp += 16) {
63 temp1 = readb(fp + SIG0);
64 temp2 = readb(fp + SIG1);
65 temp3 = readb(fp + SIG2);
66 temp4 = readb(fp + SIG3);
67 if (temp1 == '$' &&
68 temp2 == 'H' &&
69 temp3 == 'R' &&
70 temp4 == 'T') {
71 status = 1;
72 break;
73 }
74 }
75
76 if (!status)
77 fp = NULL;
78
79 dbg("Discovered Hotplug Resource Table at %p\n", fp);
80 return fp;
81}
82
83
84int cpqhp_configure_device(struct controller *ctrl, struct pci_func *func)
85{
86 struct pci_bus *child;
87 int num;
88
89 pci_lock_rescan_remove();
90
91 if (func->pci_dev == NULL)
92 func->pci_dev = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, func->function));
93
94 /* No pci device, we need to create it then */
95 if (func->pci_dev == NULL) {
96 dbg("INFO: pci_dev still null\n");
97
98 num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
99 if (num)
100 pci_bus_add_devices(ctrl->pci_dev->bus);
101
102 func->pci_dev = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, func->function));
103 if (func->pci_dev == NULL) {
104 dbg("ERROR: pci_dev still null\n");
105 goto out;
106 }
107 }
108
109 if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
110 pci_hp_add_bridge(func->pci_dev);
111 child = func->pci_dev->subordinate;
112 if (child)
113 pci_bus_add_devices(child);
114 }
115
116 pci_dev_put(func->pci_dev);
117
118 out:
119 pci_unlock_rescan_remove();
120 return 0;
121}
122
123
124int cpqhp_unconfigure_device(struct pci_func *func)
125{
126 int j;
127
128 dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function);
129
130 pci_lock_rescan_remove();
131 for (j = 0; j < 8 ; j++) {
132 struct pci_dev *temp = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, j));
133 if (temp) {
134 pci_dev_put(temp);
135 pci_stop_and_remove_bus_device(temp);
136 }
137 }
138 pci_unlock_rescan_remove();
139 return 0;
140}
141
142static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value)
143{
144 u32 vendID = 0;
145
146 if (pci_bus_read_config_dword(bus, devfn, PCI_VENDOR_ID, &vendID) == -1)
147 return -1;
148 if (vendID == 0xffffffff)
149 return -1;
150 return pci_bus_read_config_dword(bus, devfn, offset, value);
151}
152
153
154/*
155 * cpqhp_set_irq
156 *
157 * @bus_num: bus number of PCI device
158 * @dev_num: device number of PCI device
159 * @slot: pointer to u8 where slot number will be returned
160 */
161int cpqhp_set_irq(u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
162{
163 int rc = 0;
164
165 if (cpqhp_legacy_mode) {
166 struct pci_dev *fakedev;
167 struct pci_bus *fakebus;
168 u16 temp_word;
169
170 fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
171 fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
172 if (!fakedev || !fakebus) {
173 kfree(fakedev);
174 kfree(fakebus);
175 return -ENOMEM;
176 }
177
178 fakedev->devfn = dev_num << 3;
179 fakedev->bus = fakebus;
180 fakebus->number = bus_num;
181 dbg("%s: dev %d, bus %d, pin %d, num %d\n",
182 __func__, dev_num, bus_num, int_pin, irq_num);
183 rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num);
184 kfree(fakedev);
185 kfree(fakebus);
186 dbg("%s: rc %d\n", __func__, rc);
187 if (!rc)
188 return !rc;
189
190 /* set the Edge Level Control Register (ELCR) */
191 temp_word = inb(0x4d0);
192 temp_word |= inb(0x4d1) << 8;
193
194 temp_word |= 0x01 << irq_num;
195
196 /* This should only be for x86 as it sets the Edge Level
197 * Control Register
198 */
199 outb((u8) (temp_word & 0xFF), 0x4d0); outb((u8) ((temp_word &
200 0xFF00) >> 8), 0x4d1); rc = 0; }
201
202 return rc;
203}
204
205
206static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 *dev_num)
207{
208 u16 tdevice;
209 u32 work;
210 u8 tbus;
211
212 ctrl->pci_bus->number = bus_num;
213
214 for (tdevice = 0; tdevice < 0xFF; tdevice++) {
215 /* Scan for access first */
216 if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
217 continue;
218 dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
219 /* Yep we got one. Not a bridge ? */
220 if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
221 *dev_num = tdevice;
222 dbg("found it !\n");
223 return 0;
224 }
225 }
226 for (tdevice = 0; tdevice < 0xFF; tdevice++) {
227 /* Scan for access first */
228 if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
229 continue;
230 dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
231 /* Yep we got one. bridge ? */
232 if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
233 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus);
234 /* XXX: no recursion, wtf? */
235 dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
236 return 0;
237 }
238 }
239
240 return -1;
241}
242
243
244static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
245{
246 int loop, len;
247 u32 work;
248 u8 tbus, tdevice, tslot;
249
250 len = cpqhp_routing_table_length();
251 for (loop = 0; loop < len; ++loop) {
252 tbus = cpqhp_routing_table->slots[loop].bus;
253 tdevice = cpqhp_routing_table->slots[loop].devfn;
254 tslot = cpqhp_routing_table->slots[loop].slot;
255
256 if (tslot == slot) {
257 *bus_num = tbus;
258 *dev_num = tdevice;
259 ctrl->pci_bus->number = tbus;
260 pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
261 if (!nobridge || (work == 0xffffffff))
262 return 0;
263
264 dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
265 pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
266 dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
267
268 if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
269 pci_bus_read_config_byte(ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
270 dbg("Scan bus for Non Bridge: bus %d\n", tbus);
271 if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
272 *bus_num = tbus;
273 return 0;
274 }
275 } else
276 return 0;
277 }
278 }
279 return -1;
280}
281
282
283int cpqhp_get_bus_dev(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot)
284{
285 /* plain (bridges allowed) */
286 return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0);
287}
288
289
290/* More PCI configuration routines; this time centered around hotplug
291 * controller
292 */
293
294
295/*
296 * cpqhp_save_config
297 *
298 * Reads configuration for all slots in a PCI bus and saves info.
299 *
300 * Note: For non-hot plug buses, the slot # saved is the device #
301 *
302 * returns 0 if success
303 */
304int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
305{
306 long rc;
307 u8 class_code;
308 u8 header_type;
309 u32 ID;
310 u8 secondary_bus;
311 struct pci_func *new_slot;
312 int sub_bus;
313 int FirstSupported;
314 int LastSupported;
315 int max_functions;
316 int function;
317 u8 DevError;
318 int device = 0;
319 int cloop = 0;
320 int stop_it;
321 int index;
322
323 /* Decide which slots are supported */
324
325 if (is_hot_plug) {
326 /*
327 * is_hot_plug is the slot mask
328 */
329 FirstSupported = is_hot_plug >> 4;
330 LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
331 } else {
332 FirstSupported = 0;
333 LastSupported = 0x1F;
334 }
335
336 /* Save PCI configuration space for all devices in supported slots */
337 ctrl->pci_bus->number = busnumber;
338 for (device = FirstSupported; device <= LastSupported; device++) {
339 ID = 0xFFFFFFFF;
340 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
341
342 if (ID == 0xFFFFFFFF) {
343 if (is_hot_plug) {
344 /* Setup slot structure with entry for empty
345 * slot
346 */
347 new_slot = cpqhp_slot_create(busnumber);
348 if (new_slot == NULL)
349 return 1;
350
351 new_slot->bus = (u8) busnumber;
352 new_slot->device = (u8) device;
353 new_slot->function = 0;
354 new_slot->is_a_board = 0;
355 new_slot->presence_save = 0;
356 new_slot->switch_save = 0;
357 }
358 continue;
359 }
360
361 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
362 if (rc)
363 return rc;
364
365 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
366 if (rc)
367 return rc;
368
369 /* If multi-function device, set max_functions to 8 */
370 if (header_type & 0x80)
371 max_functions = 8;
372 else
373 max_functions = 1;
374
375 function = 0;
376
377 do {
378 DevError = 0;
379 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
380 /* Recurse the subordinate bus
381 * get the subordinate bus number
382 */
383 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
384 if (rc) {
385 return rc;
386 } else {
387 sub_bus = (int) secondary_bus;
388
389 /* Save secondary bus cfg spc
390 * with this recursive call.
391 */
392 rc = cpqhp_save_config(ctrl, sub_bus, 0);
393 if (rc)
394 return rc;
395 ctrl->pci_bus->number = busnumber;
396 }
397 }
398
399 index = 0;
400 new_slot = cpqhp_slot_find(busnumber, device, index++);
401 while (new_slot &&
402 (new_slot->function != (u8) function))
403 new_slot = cpqhp_slot_find(busnumber, device, index++);
404
405 if (!new_slot) {
406 /* Setup slot structure. */
407 new_slot = cpqhp_slot_create(busnumber);
408 if (new_slot == NULL)
409 return 1;
410 }
411
412 new_slot->bus = (u8) busnumber;
413 new_slot->device = (u8) device;
414 new_slot->function = (u8) function;
415 new_slot->is_a_board = 1;
416 new_slot->switch_save = 0x10;
417 /* In case of unsupported board */
418 new_slot->status = DevError;
419 new_slot->pci_dev = pci_get_bus_and_slot(new_slot->bus, (new_slot->device << 3) | new_slot->function);
420
421 for (cloop = 0; cloop < 0x20; cloop++) {
422 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop]));
423 if (rc)
424 return rc;
425 }
426
427 pci_dev_put(new_slot->pci_dev);
428
429 function++;
430
431 stop_it = 0;
432
433 /* this loop skips to the next present function
434 * reading in Class Code and Header type.
435 */
436 while ((function < max_functions) && (!stop_it)) {
437 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
438 if (ID == 0xFFFFFFFF) {
439 function++;
440 continue;
441 }
442 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
443 if (rc)
444 return rc;
445
446 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
447 if (rc)
448 return rc;
449
450 stop_it++;
451 }
452
453 } while (function < max_functions);
454 } /* End of FOR loop */
455
456 return 0;
457}
458
459
460/*
461 * cpqhp_save_slot_config
462 *
463 * Saves configuration info for all PCI devices in a given slot
464 * including subordinate buses.
465 *
466 * returns 0 if success
467 */
468int cpqhp_save_slot_config(struct controller *ctrl, struct pci_func *new_slot)
469{
470 long rc;
471 u8 class_code;
472 u8 header_type;
473 u32 ID;
474 u8 secondary_bus;
475 int sub_bus;
476 int max_functions;
477 int function = 0;
478 int cloop = 0;
479 int stop_it;
480
481 ID = 0xFFFFFFFF;
482
483 ctrl->pci_bus->number = new_slot->bus;
484 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
485
486 if (ID == 0xFFFFFFFF)
487 return 2;
488
489 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
490 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
491
492 if (header_type & 0x80) /* Multi-function device */
493 max_functions = 8;
494 else
495 max_functions = 1;
496
497 while (function < max_functions) {
498 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
499 /* Recurse the subordinate bus */
500 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
501
502 sub_bus = (int) secondary_bus;
503
504 /* Save the config headers for the secondary
505 * bus.
506 */
507 rc = cpqhp_save_config(ctrl, sub_bus, 0);
508 if (rc)
509 return(rc);
510 ctrl->pci_bus->number = new_slot->bus;
511
512 }
513
514 new_slot->status = 0;
515
516 for (cloop = 0; cloop < 0x20; cloop++)
517 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop]));
518
519 function++;
520
521 stop_it = 0;
522
523 /* this loop skips to the next present function
524 * reading in the Class Code and the Header type.
525 */
526 while ((function < max_functions) && (!stop_it)) {
527 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
528
529 if (ID == 0xFFFFFFFF)
530 function++;
531 else {
532 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
533 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
534 stop_it++;
535 }
536 }
537
538 }
539
540 return 0;
541}
542
543
544/*
545 * cpqhp_save_base_addr_length
546 *
547 * Saves the length of all base address registers for the
548 * specified slot. this is for hot plug REPLACE
549 *
550 * returns 0 if success
551 */
552int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func *func)
553{
554 u8 cloop;
555 u8 header_type;
556 u8 secondary_bus;
557 u8 type;
558 int sub_bus;
559 u32 temp_register;
560 u32 base;
561 u32 rc;
562 struct pci_func *next;
563 int index = 0;
564 struct pci_bus *pci_bus = ctrl->pci_bus;
565 unsigned int devfn;
566
567 func = cpqhp_slot_find(func->bus, func->device, index++);
568
569 while (func != NULL) {
570 pci_bus->number = func->bus;
571 devfn = PCI_DEVFN(func->device, func->function);
572
573 /* Check for Bridge */
574 pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
575
576 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
577 pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
578
579 sub_bus = (int) secondary_bus;
580
581 next = cpqhp_slot_list[sub_bus];
582
583 while (next != NULL) {
584 rc = cpqhp_save_base_addr_length(ctrl, next);
585 if (rc)
586 return rc;
587
588 next = next->next;
589 }
590 pci_bus->number = func->bus;
591
592 /* FIXME: this loop is duplicated in the non-bridge
593 * case. The two could be rolled together Figure out
594 * IO and memory base lengths
595 */
596 for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
597 temp_register = 0xFFFFFFFF;
598 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
599 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
600 /* If this register is implemented */
601 if (base) {
602 if (base & 0x01L) {
603 /* IO base
604 * set base = amount of IO space
605 * requested
606 */
607 base = base & 0xFFFFFFFE;
608 base = (~base) + 1;
609
610 type = 1;
611 } else {
612 /* memory base */
613 base = base & 0xFFFFFFF0;
614 base = (~base) + 1;
615
616 type = 0;
617 }
618 } else {
619 base = 0x0L;
620 type = 0;
621 }
622
623 /* Save information in slot structure */
624 func->base_length[(cloop - 0x10) >> 2] =
625 base;
626 func->base_type[(cloop - 0x10) >> 2] = type;
627
628 } /* End of base register loop */
629
630 } else if ((header_type & 0x7F) == 0x00) {
631 /* Figure out IO and memory base lengths */
632 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
633 temp_register = 0xFFFFFFFF;
634 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
635 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
636
637 /* If this register is implemented */
638 if (base) {
639 if (base & 0x01L) {
640 /* IO base
641 * base = amount of IO space
642 * requested
643 */
644 base = base & 0xFFFFFFFE;
645 base = (~base) + 1;
646
647 type = 1;
648 } else {
649 /* memory base
650 * base = amount of memory
651 * space requested
652 */
653 base = base & 0xFFFFFFF0;
654 base = (~base) + 1;
655
656 type = 0;
657 }
658 } else {
659 base = 0x0L;
660 type = 0;
661 }
662
663 /* Save information in slot structure */
664 func->base_length[(cloop - 0x10) >> 2] = base;
665 func->base_type[(cloop - 0x10) >> 2] = type;
666
667 } /* End of base register loop */
668
669 } else { /* Some other unknown header type */
670 }
671
672 /* find the next device in this slot */
673 func = cpqhp_slot_find(func->bus, func->device, index++);
674 }
675
676 return(0);
677}
678
679
680/*
681 * cpqhp_save_used_resources
682 *
683 * Stores used resource information for existing boards. this is
684 * for boards that were in the system when this driver was loaded.
685 * this function is for hot plug ADD
686 *
687 * returns 0 if success
688 */
689int cpqhp_save_used_resources(struct controller *ctrl, struct pci_func *func)
690{
691 u8 cloop;
692 u8 header_type;
693 u8 secondary_bus;
694 u8 temp_byte;
695 u8 b_base;
696 u8 b_length;
697 u16 command;
698 u16 save_command;
699 u16 w_base;
700 u16 w_length;
701 u32 temp_register;
702 u32 save_base;
703 u32 base;
704 int index = 0;
705 struct pci_resource *mem_node;
706 struct pci_resource *p_mem_node;
707 struct pci_resource *io_node;
708 struct pci_resource *bus_node;
709 struct pci_bus *pci_bus = ctrl->pci_bus;
710 unsigned int devfn;
711
712 func = cpqhp_slot_find(func->bus, func->device, index++);
713
714 while ((func != NULL) && func->is_a_board) {
715 pci_bus->number = func->bus;
716 devfn = PCI_DEVFN(func->device, func->function);
717
718 /* Save the command register */
719 pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
720
721 /* disable card */
722 command = 0x00;
723 pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
724
725 /* Check for Bridge */
726 pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
727
728 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
729 /* Clear Bridge Control Register */
730 command = 0x00;
731 pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
732 pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
733 pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
734
735 bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
736 if (!bus_node)
737 return -ENOMEM;
738
739 bus_node->base = secondary_bus;
740 bus_node->length = temp_byte - secondary_bus + 1;
741
742 bus_node->next = func->bus_head;
743 func->bus_head = bus_node;
744
745 /* Save IO base and Limit registers */
746 pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
747 pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
748
749 if ((b_base <= b_length) && (save_command & 0x01)) {
750 io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
751 if (!io_node)
752 return -ENOMEM;
753
754 io_node->base = (b_base & 0xF0) << 8;
755 io_node->length = (b_length - b_base + 0x10) << 8;
756
757 io_node->next = func->io_head;
758 func->io_head = io_node;
759 }
760
761 /* Save memory base and Limit registers */
762 pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
763 pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
764
765 if ((w_base <= w_length) && (save_command & 0x02)) {
766 mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
767 if (!mem_node)
768 return -ENOMEM;
769
770 mem_node->base = w_base << 16;
771 mem_node->length = (w_length - w_base + 0x10) << 16;
772
773 mem_node->next = func->mem_head;
774 func->mem_head = mem_node;
775 }
776
777 /* Save prefetchable memory base and Limit registers */
778 pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
779 pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
780
781 if ((w_base <= w_length) && (save_command & 0x02)) {
782 p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
783 if (!p_mem_node)
784 return -ENOMEM;
785
786 p_mem_node->base = w_base << 16;
787 p_mem_node->length = (w_length - w_base + 0x10) << 16;
788
789 p_mem_node->next = func->p_mem_head;
790 func->p_mem_head = p_mem_node;
791 }
792 /* Figure out IO and memory base lengths */
793 for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
794 pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
795
796 temp_register = 0xFFFFFFFF;
797 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
798 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
799
800 temp_register = base;
801
802 /* If this register is implemented */
803 if (base) {
804 if (((base & 0x03L) == 0x01)
805 && (save_command & 0x01)) {
806 /* IO base
807 * set temp_register = amount
808 * of IO space requested
809 */
810 temp_register = base & 0xFFFFFFFE;
811 temp_register = (~temp_register) + 1;
812
813 io_node = kmalloc(sizeof(*io_node),
814 GFP_KERNEL);
815 if (!io_node)
816 return -ENOMEM;
817
818 io_node->base =
819 save_base & (~0x03L);
820 io_node->length = temp_register;
821
822 io_node->next = func->io_head;
823 func->io_head = io_node;
824 } else
825 if (((base & 0x0BL) == 0x08)
826 && (save_command & 0x02)) {
827 /* prefetchable memory base */
828 temp_register = base & 0xFFFFFFF0;
829 temp_register = (~temp_register) + 1;
830
831 p_mem_node = kmalloc(sizeof(*p_mem_node),
832 GFP_KERNEL);
833 if (!p_mem_node)
834 return -ENOMEM;
835
836 p_mem_node->base = save_base & (~0x0FL);
837 p_mem_node->length = temp_register;
838
839 p_mem_node->next = func->p_mem_head;
840 func->p_mem_head = p_mem_node;
841 } else
842 if (((base & 0x0BL) == 0x00)
843 && (save_command & 0x02)) {
844 /* prefetchable memory base */
845 temp_register = base & 0xFFFFFFF0;
846 temp_register = (~temp_register) + 1;
847
848 mem_node = kmalloc(sizeof(*mem_node),
849 GFP_KERNEL);
850 if (!mem_node)
851 return -ENOMEM;
852
853 mem_node->base = save_base & (~0x0FL);
854 mem_node->length = temp_register;
855
856 mem_node->next = func->mem_head;
857 func->mem_head = mem_node;
858 } else
859 return(1);
860 }
861 } /* End of base register loop */
862 /* Standard header */
863 } else if ((header_type & 0x7F) == 0x00) {
864 /* Figure out IO and memory base lengths */
865 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
866 pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
867
868 temp_register = 0xFFFFFFFF;
869 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
870 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
871
872 temp_register = base;
873
874 /* If this register is implemented */
875 if (base) {
876 if (((base & 0x03L) == 0x01)
877 && (save_command & 0x01)) {
878 /* IO base
879 * set temp_register = amount
880 * of IO space requested
881 */
882 temp_register = base & 0xFFFFFFFE;
883 temp_register = (~temp_register) + 1;
884
885 io_node = kmalloc(sizeof(*io_node),
886 GFP_KERNEL);
887 if (!io_node)
888 return -ENOMEM;
889
890 io_node->base = save_base & (~0x01L);
891 io_node->length = temp_register;
892
893 io_node->next = func->io_head;
894 func->io_head = io_node;
895 } else
896 if (((base & 0x0BL) == 0x08)
897 && (save_command & 0x02)) {
898 /* prefetchable memory base */
899 temp_register = base & 0xFFFFFFF0;
900 temp_register = (~temp_register) + 1;
901
902 p_mem_node = kmalloc(sizeof(*p_mem_node),
903 GFP_KERNEL);
904 if (!p_mem_node)
905 return -ENOMEM;
906
907 p_mem_node->base = save_base & (~0x0FL);
908 p_mem_node->length = temp_register;
909
910 p_mem_node->next = func->p_mem_head;
911 func->p_mem_head = p_mem_node;
912 } else
913 if (((base & 0x0BL) == 0x00)
914 && (save_command & 0x02)) {
915 /* prefetchable memory base */
916 temp_register = base & 0xFFFFFFF0;
917 temp_register = (~temp_register) + 1;
918
919 mem_node = kmalloc(sizeof(*mem_node),
920 GFP_KERNEL);
921 if (!mem_node)
922 return -ENOMEM;
923
924 mem_node->base = save_base & (~0x0FL);
925 mem_node->length = temp_register;
926
927 mem_node->next = func->mem_head;
928 func->mem_head = mem_node;
929 } else
930 return(1);
931 }
932 } /* End of base register loop */
933 }
934
935 /* find the next device in this slot */
936 func = cpqhp_slot_find(func->bus, func->device, index++);
937 }
938
939 return 0;
940}
941
942
943/*
944 * cpqhp_configure_board
945 *
946 * Copies saved configuration information to one slot.
947 * this is called recursively for bridge devices.
948 * this is for hot plug REPLACE!
949 *
950 * returns 0 if success
951 */
952int cpqhp_configure_board(struct controller *ctrl, struct pci_func *func)
953{
954 int cloop;
955 u8 header_type;
956 u8 secondary_bus;
957 int sub_bus;
958 struct pci_func *next;
959 u32 temp;
960 u32 rc;
961 int index = 0;
962 struct pci_bus *pci_bus = ctrl->pci_bus;
963 unsigned int devfn;
964
965 func = cpqhp_slot_find(func->bus, func->device, index++);
966
967 while (func != NULL) {
968 pci_bus->number = func->bus;
969 devfn = PCI_DEVFN(func->device, func->function);
970
971 /* Start at the top of config space so that the control
972 * registers are programmed last
973 */
974 for (cloop = 0x3C; cloop > 0; cloop -= 4)
975 pci_bus_write_config_dword(pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
976
977 pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
978
979 /* If this is a bridge device, restore subordinate devices */
980 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
981 pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
982
983 sub_bus = (int) secondary_bus;
984
985 next = cpqhp_slot_list[sub_bus];
986
987 while (next != NULL) {
988 rc = cpqhp_configure_board(ctrl, next);
989 if (rc)
990 return rc;
991
992 next = next->next;
993 }
994 } else {
995
996 /* Check all the base Address Registers to make sure
997 * they are the same. If not, the board is different.
998 */
999
1000 for (cloop = 16; cloop < 40; cloop += 4) {
1001 pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp);
1002
1003 if (temp != func->config_space[cloop >> 2]) {
1004 dbg("Config space compare failure!!! offset = %x\n", cloop);
1005 dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
1006 dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
1007 return 1;
1008 }
1009 }
1010 }
1011
1012 func->configured = 1;
1013
1014 func = cpqhp_slot_find(func->bus, func->device, index++);
1015 }
1016
1017 return 0;
1018}
1019
1020
1021/*
1022 * cpqhp_valid_replace
1023 *
1024 * this function checks to see if a board is the same as the
1025 * one it is replacing. this check will detect if the device's
1026 * vendor or device id's are the same
1027 *
1028 * returns 0 if the board is the same nonzero otherwise
1029 */
1030int cpqhp_valid_replace(struct controller *ctrl, struct pci_func *func)
1031{
1032 u8 cloop;
1033 u8 header_type;
1034 u8 secondary_bus;
1035 u8 type;
1036 u32 temp_register = 0;
1037 u32 base;
1038 u32 rc;
1039 struct pci_func *next;
1040 int index = 0;
1041 struct pci_bus *pci_bus = ctrl->pci_bus;
1042 unsigned int devfn;
1043
1044 if (!func->is_a_board)
1045 return(ADD_NOT_SUPPORTED);
1046
1047 func = cpqhp_slot_find(func->bus, func->device, index++);
1048
1049 while (func != NULL) {
1050 pci_bus->number = func->bus;
1051 devfn = PCI_DEVFN(func->device, func->function);
1052
1053 pci_bus_read_config_dword(pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
1054
1055 /* No adapter present */
1056 if (temp_register == 0xFFFFFFFF)
1057 return(NO_ADAPTER_PRESENT);
1058
1059 if (temp_register != func->config_space[0])
1060 return(ADAPTER_NOT_SAME);
1061
1062 /* Check for same revision number and class code */
1063 pci_bus_read_config_dword(pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
1064
1065 /* Adapter not the same */
1066 if (temp_register != func->config_space[0x08 >> 2])
1067 return(ADAPTER_NOT_SAME);
1068
1069 /* Check for Bridge */
1070 pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
1071
1072 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
1073 /* In order to continue checking, we must program the
1074 * bus registers in the bridge to respond to accesses
1075 * for its subordinate bus(es)
1076 */
1077
1078 temp_register = func->config_space[0x18 >> 2];
1079 pci_bus_write_config_dword(pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
1080
1081 secondary_bus = (temp_register >> 8) & 0xFF;
1082
1083 next = cpqhp_slot_list[secondary_bus];
1084
1085 while (next != NULL) {
1086 rc = cpqhp_valid_replace(ctrl, next);
1087 if (rc)
1088 return rc;
1089
1090 next = next->next;
1091 }
1092
1093 }
1094 /* Check to see if it is a standard config header */
1095 else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
1096 /* Check subsystem vendor and ID */
1097 pci_bus_read_config_dword(pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
1098
1099 if (temp_register != func->config_space[0x2C >> 2]) {
1100 /* If it's a SMART-2 and the register isn't
1101 * filled in, ignore the difference because
1102 * they just have an old rev of the firmware
1103 */
1104 if (!((func->config_space[0] == 0xAE100E11)
1105 && (temp_register == 0x00L)))
1106 return(ADAPTER_NOT_SAME);
1107 }
1108 /* Figure out IO and memory base lengths */
1109 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1110 temp_register = 0xFFFFFFFF;
1111 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
1112 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
1113
1114 /* If this register is implemented */
1115 if (base) {
1116 if (base & 0x01L) {
1117 /* IO base
1118 * set base = amount of IO
1119 * space requested
1120 */
1121 base = base & 0xFFFFFFFE;
1122 base = (~base) + 1;
1123
1124 type = 1;
1125 } else {
1126 /* memory base */
1127 base = base & 0xFFFFFFF0;
1128 base = (~base) + 1;
1129
1130 type = 0;
1131 }
1132 } else {
1133 base = 0x0L;
1134 type = 0;
1135 }
1136
1137 /* Check information in slot structure */
1138 if (func->base_length[(cloop - 0x10) >> 2] != base)
1139 return(ADAPTER_NOT_SAME);
1140
1141 if (func->base_type[(cloop - 0x10) >> 2] != type)
1142 return(ADAPTER_NOT_SAME);
1143
1144 } /* End of base register loop */
1145
1146 } /* End of (type 0 config space) else */
1147 else {
1148 /* this is not a type 0 or 1 config space header so
1149 * we don't know how to do it
1150 */
1151 return(DEVICE_TYPE_NOT_SUPPORTED);
1152 }
1153
1154 /* Get the next function */
1155 func = cpqhp_slot_find(func->bus, func->device, index++);
1156 }
1157
1158
1159 return 0;
1160}
1161
1162
1163/*
1164 * cpqhp_find_available_resources
1165 *
1166 * Finds available memory, IO, and IRQ resources for programming
1167 * devices which may be added to the system
1168 * this function is for hot plug ADD!
1169 *
1170 * returns 0 if success
1171 */
1172int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
1173{
1174 u8 temp;
1175 u8 populated_slot;
1176 u8 bridged_slot;
1177 void __iomem *one_slot;
1178 void __iomem *rom_resource_table;
1179 struct pci_func *func = NULL;
1180 int i = 10, index;
1181 u32 temp_dword, rc;
1182 struct pci_resource *mem_node;
1183 struct pci_resource *p_mem_node;
1184 struct pci_resource *io_node;
1185 struct pci_resource *bus_node;
1186
1187 rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
1188 dbg("rom_resource_table = %p\n", rom_resource_table);
1189
1190 if (rom_resource_table == NULL)
1191 return -ENODEV;
1192
1193 /* Sum all resources and setup resource maps */
1194 unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
1195 dbg("unused_IRQ = %x\n", unused_IRQ);
1196
1197 temp = 0;
1198 while (unused_IRQ) {
1199 if (unused_IRQ & 1) {
1200 cpqhp_disk_irq = temp;
1201 break;
1202 }
1203 unused_IRQ = unused_IRQ >> 1;
1204 temp++;
1205 }
1206
1207 dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1208 unused_IRQ = unused_IRQ >> 1;
1209 temp++;
1210
1211 while (unused_IRQ) {
1212 if (unused_IRQ & 1) {
1213 cpqhp_nic_irq = temp;
1214 break;
1215 }
1216 unused_IRQ = unused_IRQ >> 1;
1217 temp++;
1218 }
1219
1220 dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1221 unused_IRQ = readl(rom_resource_table + PCIIRQ);
1222
1223 temp = 0;
1224
1225 if (!cpqhp_nic_irq)
1226 cpqhp_nic_irq = ctrl->cfgspc_irq;
1227
1228 if (!cpqhp_disk_irq)
1229 cpqhp_disk_irq = ctrl->cfgspc_irq;
1230
1231 dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1232
1233 rc = compaq_nvram_load(rom_start, ctrl);
1234 if (rc)
1235 return rc;
1236
1237 one_slot = rom_resource_table + sizeof(struct hrt);
1238
1239 i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
1240 dbg("number_of_entries = %d\n", i);
1241
1242 if (!readb(one_slot + SECONDARY_BUS))
1243 return 1;
1244
1245 dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1246
1247 while (i && readb(one_slot + SECONDARY_BUS)) {
1248 u8 dev_func = readb(one_slot + DEV_FUNC);
1249 u8 primary_bus = readb(one_slot + PRIMARY_BUS);
1250 u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
1251 u8 max_bus = readb(one_slot + MAX_BUS);
1252 u16 io_base = readw(one_slot + IO_BASE);
1253 u16 io_length = readw(one_slot + IO_LENGTH);
1254 u16 mem_base = readw(one_slot + MEM_BASE);
1255 u16 mem_length = readw(one_slot + MEM_LENGTH);
1256 u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
1257 u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
1258
1259 dbg("%2.2x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x |%2.2x %2.2x %2.2x\n",
1260 dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1261 primary_bus, secondary_bus, max_bus);
1262
1263 /* If this entry isn't for our controller's bus, ignore it */
1264 if (primary_bus != ctrl->bus) {
1265 i--;
1266 one_slot += sizeof(struct slot_rt);
1267 continue;
1268 }
1269 /* find out if this entry is for an occupied slot */
1270 ctrl->pci_bus->number = primary_bus;
1271 pci_bus_read_config_dword(ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
1272 dbg("temp_D_word = %x\n", temp_dword);
1273
1274 if (temp_dword != 0xFFFFFFFF) {
1275 index = 0;
1276 func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
1277
1278 while (func && (func->function != (dev_func & 0x07))) {
1279 dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1280 func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
1281 }
1282
1283 /* If we can't find a match, skip this table entry */
1284 if (!func) {
1285 i--;
1286 one_slot += sizeof(struct slot_rt);
1287 continue;
1288 }
1289 /* this may not work and shouldn't be used */
1290 if (secondary_bus != primary_bus)
1291 bridged_slot = 1;
1292 else
1293 bridged_slot = 0;
1294
1295 populated_slot = 1;
1296 } else {
1297 populated_slot = 0;
1298 bridged_slot = 0;
1299 }
1300
1301
1302 /* If we've got a valid IO base, use it */
1303
1304 temp_dword = io_base + io_length;
1305
1306 if ((io_base) && (temp_dword < 0x10000)) {
1307 io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
1308 if (!io_node)
1309 return -ENOMEM;
1310
1311 io_node->base = io_base;
1312 io_node->length = io_length;
1313
1314 dbg("found io_node(base, length) = %x, %x\n",
1315 io_node->base, io_node->length);
1316 dbg("populated slot =%d \n", populated_slot);
1317 if (!populated_slot) {
1318 io_node->next = ctrl->io_head;
1319 ctrl->io_head = io_node;
1320 } else {
1321 io_node->next = func->io_head;
1322 func->io_head = io_node;
1323 }
1324 }
1325
1326 /* If we've got a valid memory base, use it */
1327 temp_dword = mem_base + mem_length;
1328 if ((mem_base) && (temp_dword < 0x10000)) {
1329 mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
1330 if (!mem_node)
1331 return -ENOMEM;
1332
1333 mem_node->base = mem_base << 16;
1334
1335 mem_node->length = mem_length << 16;
1336
1337 dbg("found mem_node(base, length) = %x, %x\n",
1338 mem_node->base, mem_node->length);
1339 dbg("populated slot =%d \n", populated_slot);
1340 if (!populated_slot) {
1341 mem_node->next = ctrl->mem_head;
1342 ctrl->mem_head = mem_node;
1343 } else {
1344 mem_node->next = func->mem_head;
1345 func->mem_head = mem_node;
1346 }
1347 }
1348
1349 /* If we've got a valid prefetchable memory base, and
1350 * the base + length isn't greater than 0xFFFF
1351 */
1352 temp_dword = pre_mem_base + pre_mem_length;
1353 if ((pre_mem_base) && (temp_dword < 0x10000)) {
1354 p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
1355 if (!p_mem_node)
1356 return -ENOMEM;
1357
1358 p_mem_node->base = pre_mem_base << 16;
1359
1360 p_mem_node->length = pre_mem_length << 16;
1361 dbg("found p_mem_node(base, length) = %x, %x\n",
1362 p_mem_node->base, p_mem_node->length);
1363 dbg("populated slot =%d \n", populated_slot);
1364
1365 if (!populated_slot) {
1366 p_mem_node->next = ctrl->p_mem_head;
1367 ctrl->p_mem_head = p_mem_node;
1368 } else {
1369 p_mem_node->next = func->p_mem_head;
1370 func->p_mem_head = p_mem_node;
1371 }
1372 }
1373
1374 /* If we've got a valid bus number, use it
1375 * The second condition is to ignore bus numbers on
1376 * populated slots that don't have PCI-PCI bridges
1377 */
1378 if (secondary_bus && (secondary_bus != primary_bus)) {
1379 bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
1380 if (!bus_node)
1381 return -ENOMEM;
1382
1383 bus_node->base = secondary_bus;
1384 bus_node->length = max_bus - secondary_bus + 1;
1385 dbg("found bus_node(base, length) = %x, %x\n",
1386 bus_node->base, bus_node->length);
1387 dbg("populated slot =%d \n", populated_slot);
1388 if (!populated_slot) {
1389 bus_node->next = ctrl->bus_head;
1390 ctrl->bus_head = bus_node;
1391 } else {
1392 bus_node->next = func->bus_head;
1393 func->bus_head = bus_node;
1394 }
1395 }
1396
1397 i--;
1398 one_slot += sizeof(struct slot_rt);
1399 }
1400
1401 /* If all of the following fail, we don't have any resources for
1402 * hot plug add
1403 */
1404 rc = 1;
1405 rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1406 rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1407 rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1408 rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1409
1410 return rc;
1411}
1412
1413
1414/*
1415 * cpqhp_return_board_resources
1416 *
1417 * this routine returns all resources allocated to a board to
1418 * the available pool.
1419 *
1420 * returns 0 if success
1421 */
1422int cpqhp_return_board_resources(struct pci_func *func, struct resource_lists *resources)
1423{
1424 int rc = 0;
1425 struct pci_resource *node;
1426 struct pci_resource *t_node;
1427 dbg("%s\n", __func__);
1428
1429 if (!func)
1430 return 1;
1431
1432 node = func->io_head;
1433 func->io_head = NULL;
1434 while (node) {
1435 t_node = node->next;
1436 return_resource(&(resources->io_head), node);
1437 node = t_node;
1438 }
1439
1440 node = func->mem_head;
1441 func->mem_head = NULL;
1442 while (node) {
1443 t_node = node->next;
1444 return_resource(&(resources->mem_head), node);
1445 node = t_node;
1446 }
1447
1448 node = func->p_mem_head;
1449 func->p_mem_head = NULL;
1450 while (node) {
1451 t_node = node->next;
1452 return_resource(&(resources->p_mem_head), node);
1453 node = t_node;
1454 }
1455
1456 node = func->bus_head;
1457 func->bus_head = NULL;
1458 while (node) {
1459 t_node = node->next;
1460 return_resource(&(resources->bus_head), node);
1461 node = t_node;
1462 }
1463
1464 rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
1465 rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
1466 rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
1467 rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
1468
1469 return rc;
1470}
1471
1472
1473/*
1474 * cpqhp_destroy_resource_list
1475 *
1476 * Puts node back in the resource list pointed to by head
1477 */
1478void cpqhp_destroy_resource_list(struct resource_lists *resources)
1479{
1480 struct pci_resource *res, *tres;
1481
1482 res = resources->io_head;
1483 resources->io_head = NULL;
1484
1485 while (res) {
1486 tres = res;
1487 res = res->next;
1488 kfree(tres);
1489 }
1490
1491 res = resources->mem_head;
1492 resources->mem_head = NULL;
1493
1494 while (res) {
1495 tres = res;
1496 res = res->next;
1497 kfree(tres);
1498 }
1499
1500 res = resources->p_mem_head;
1501 resources->p_mem_head = NULL;
1502
1503 while (res) {
1504 tres = res;
1505 res = res->next;
1506 kfree(tres);
1507 }
1508
1509 res = resources->bus_head;
1510 resources->bus_head = NULL;
1511
1512 while (res) {
1513 tres = res;
1514 res = res->next;
1515 kfree(tres);
1516 }
1517}
1518
1519
1520/*
1521 * cpqhp_destroy_board_resources
1522 *
1523 * Puts node back in the resource list pointed to by head
1524 */
1525void cpqhp_destroy_board_resources(struct pci_func *func)
1526{
1527 struct pci_resource *res, *tres;
1528
1529 res = func->io_head;
1530 func->io_head = NULL;
1531
1532 while (res) {
1533 tres = res;
1534 res = res->next;
1535 kfree(tres);
1536 }
1537
1538 res = func->mem_head;
1539 func->mem_head = NULL;
1540
1541 while (res) {
1542 tres = res;
1543 res = res->next;
1544 kfree(tres);
1545 }
1546
1547 res = func->p_mem_head;
1548 func->p_mem_head = NULL;
1549
1550 while (res) {
1551 tres = res;
1552 res = res->next;
1553 kfree(tres);
1554 }
1555
1556 res = func->bus_head;
1557 func->bus_head = NULL;
1558
1559 while (res) {
1560 tres = res;
1561 res = res->next;
1562 kfree(tres);
1563 }
1564}