Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Compaq Hot Plug Controller Driver
   3 *
   4 * Copyright (C) 1995,2001 Compaq Computer Corporation
   5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
   6 * Copyright (C) 2001 IBM Corp.
   7 *
   8 * All rights reserved.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or (at
  13 * your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  18 * NON INFRINGEMENT.  See the GNU General Public License for more
  19 * details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24 *
  25 * Send feedback to <greg@kroah.com>
  26 *
  27 */
  28
  29#include <linux/module.h>
  30#include <linux/kernel.h>
  31#include <linux/types.h>
  32#include <linux/slab.h>
  33#include <linux/workqueue.h>
  34#include <linux/proc_fs.h>
  35#include <linux/pci.h>
  36#include <linux/pci_hotplug.h>
  37#include "../pci.h"
  38#include "cpqphp.h"
  39#include "cpqphp_nvram.h"
  40
  41
  42u8 cpqhp_nic_irq;
  43u8 cpqhp_disk_irq;
  44
  45static u16 unused_IRQ;
  46
  47/*
  48 * detect_HRT_floating_pointer
  49 *
  50 * find the Hot Plug Resource Table in the specified region of memory.
  51 *
  52 */
  53static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
  54{
  55	void __iomem *fp;
  56	void __iomem *endp;
  57	u8 temp1, temp2, temp3, temp4;
  58	int status = 0;
  59
  60	endp = (end - sizeof(struct hrt) + 1);
  61
  62	for (fp = begin; fp <= endp; fp += 16) {
  63		temp1 = readb(fp + SIG0);
  64		temp2 = readb(fp + SIG1);
  65		temp3 = readb(fp + SIG2);
  66		temp4 = readb(fp + SIG3);
  67		if (temp1 == '$' &&
  68		    temp2 == 'H' &&
  69		    temp3 == 'R' &&
  70		    temp4 == 'T') {
  71			status = 1;
  72			break;
  73		}
  74	}
  75
  76	if (!status)
  77		fp = NULL;
  78
  79	dbg("Discovered Hotplug Resource Table at %p\n", fp);
  80	return fp;
  81}
  82
  83
  84int cpqhp_configure_device (struct controller* ctrl, struct pci_func* func)
  85{
  86	unsigned char bus;
  87	struct pci_bus *child;
  88	int num;
  89
 
 
  90	if (func->pci_dev == NULL)
  91		func->pci_dev = pci_get_bus_and_slot(func->bus,PCI_DEVFN(func->device, func->function));
  92
  93	/* No pci device, we need to create it then */
  94	if (func->pci_dev == NULL) {
  95		dbg("INFO: pci_dev still null\n");
  96
  97		num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
  98		if (num)
  99			pci_bus_add_devices(ctrl->pci_dev->bus);
 100
 101		func->pci_dev = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, func->function));
 102		if (func->pci_dev == NULL) {
 103			dbg("ERROR: pci_dev still null\n");
 104			return 0;
 105		}
 106	}
 107
 108	if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
 109		pci_read_config_byte(func->pci_dev, PCI_SECONDARY_BUS, &bus);
 110		child = (struct pci_bus*) pci_add_new_bus(func->pci_dev->bus, (func->pci_dev), bus);
 111		pci_do_scan_bus(child);
 
 112	}
 113
 114	pci_dev_put(func->pci_dev);
 115
 
 
 116	return 0;
 117}
 118
 119
 120int cpqhp_unconfigure_device(struct pci_func* func)
 121{
 122	int j;
 123
 124	dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function);
 125
 126	for (j=0; j<8 ; j++) {
 127		struct pci_dev* temp = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, j));
 
 128		if (temp) {
 129			pci_dev_put(temp);
 130			pci_remove_bus_device(temp);
 131		}
 132	}
 
 133	return 0;
 134}
 135
 136static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value)
 137{
 138	u32 vendID = 0;
 139
 140	if (pci_bus_read_config_dword (bus, devfn, PCI_VENDOR_ID, &vendID) == -1)
 141		return -1;
 142	if (vendID == 0xffffffff)
 143		return -1;
 144	return pci_bus_read_config_dword (bus, devfn, offset, value);
 145}
 146
 147
 148/*
 149 * cpqhp_set_irq
 150 *
 151 * @bus_num: bus number of PCI device
 152 * @dev_num: device number of PCI device
 153 * @slot: pointer to u8 where slot number will be returned
 154 */
 155int cpqhp_set_irq (u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
 156{
 157	int rc = 0;
 158
 159	if (cpqhp_legacy_mode) {
 160		struct pci_dev *fakedev;
 161		struct pci_bus *fakebus;
 162		u16 temp_word;
 163
 164		fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
 165		fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
 166		if (!fakedev || !fakebus) {
 167			kfree(fakedev);
 168			kfree(fakebus);
 169			return -ENOMEM;
 170		}
 171
 172		fakedev->devfn = dev_num << 3;
 173		fakedev->bus = fakebus;
 174		fakebus->number = bus_num;
 175		dbg("%s: dev %d, bus %d, pin %d, num %d\n",
 176		    __func__, dev_num, bus_num, int_pin, irq_num);
 177		rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num);
 178		kfree(fakedev);
 179		kfree(fakebus);
 180		dbg("%s: rc %d\n", __func__, rc);
 181		if (!rc)
 182			return !rc;
 183
 184		/* set the Edge Level Control Register (ELCR) */
 185		temp_word = inb(0x4d0);
 186		temp_word |= inb(0x4d1) << 8;
 187
 188		temp_word |= 0x01 << irq_num;
 189
 190		/* This should only be for x86 as it sets the Edge Level
 191		 * Control Register
 192		 */
 193		outb((u8) (temp_word & 0xFF), 0x4d0); outb((u8) ((temp_word &
 194		0xFF00) >> 8), 0x4d1); rc = 0; }
 195
 196	return rc;
 197}
 198
 199
 200static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 * dev_num)
 201{
 202	u16 tdevice;
 203	u32 work;
 204	u8 tbus;
 205
 206	ctrl->pci_bus->number = bus_num;
 207
 208	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
 209		/* Scan for access first */
 210		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
 211			continue;
 212		dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
 213		/* Yep we got one. Not a bridge ? */
 214		if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
 215			*dev_num = tdevice;
 216			dbg("found it !\n");
 217			return 0;
 218		}
 219	}
 220	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
 221		/* Scan for access first */
 222		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
 223			continue;
 224		dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
 225		/* Yep we got one. bridge ? */
 226		if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
 227			pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus);
 228			/* XXX: no recursion, wtf? */
 229			dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
 230			return 0;
 231		}
 232	}
 233
 234	return -1;
 235}
 236
 237
 238static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
 239{
 240	int loop, len;
 241	u32 work;
 242	u8 tbus, tdevice, tslot;
 243
 244	len = cpqhp_routing_table_length();
 245	for (loop = 0; loop < len; ++loop) {
 246		tbus = cpqhp_routing_table->slots[loop].bus;
 247		tdevice = cpqhp_routing_table->slots[loop].devfn;
 248		tslot = cpqhp_routing_table->slots[loop].slot;
 249
 250		if (tslot == slot) {
 251			*bus_num = tbus;
 252			*dev_num = tdevice;
 253			ctrl->pci_bus->number = tbus;
 254			pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
 255			if (!nobridge || (work == 0xffffffff))
 256				return 0;
 257
 258			dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
 259			pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
 260			dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
 261
 262			if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
 263				pci_bus_read_config_byte (ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
 264				dbg("Scan bus for Non Bridge: bus %d\n", tbus);
 265				if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
 266					*bus_num = tbus;
 267					return 0;
 268				}
 269			} else
 270				return 0;
 271		}
 272	}
 273	return -1;
 274}
 275
 276
 277int cpqhp_get_bus_dev (struct controller *ctrl, u8 * bus_num, u8 * dev_num, u8 slot)
 278{
 279	/* plain (bridges allowed) */
 280	return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0);
 281}
 282
 283
 284/* More PCI configuration routines; this time centered around hotplug
 285 * controller
 286 */
 287
 288
 289/*
 290 * cpqhp_save_config
 291 *
 292 * Reads configuration for all slots in a PCI bus and saves info.
 293 *
 294 * Note:  For non-hot plug busses, the slot # saved is the device #
 295 *
 296 * returns 0 if success
 297 */
 298int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
 299{
 300	long rc;
 301	u8 class_code;
 302	u8 header_type;
 303	u32 ID;
 304	u8 secondary_bus;
 305	struct pci_func *new_slot;
 306	int sub_bus;
 307	int FirstSupported;
 308	int LastSupported;
 309	int max_functions;
 310	int function;
 311	u8 DevError;
 312	int device = 0;
 313	int cloop = 0;
 314	int stop_it;
 315	int index;
 316
 317	/* Decide which slots are supported */
 318
 319	if (is_hot_plug) {
 320		/*
 321		 * is_hot_plug is the slot mask
 322		 */
 323		FirstSupported = is_hot_plug >> 4;
 324		LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
 325	} else {
 326		FirstSupported = 0;
 327		LastSupported = 0x1F;
 328	}
 329
 330	/* Save PCI configuration space for all devices in supported slots */
 331	ctrl->pci_bus->number = busnumber;
 332	for (device = FirstSupported; device <= LastSupported; device++) {
 333		ID = 0xFFFFFFFF;
 334		rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
 335
 336		if (ID == 0xFFFFFFFF) {
 337			if (is_hot_plug) {
 338				/* Setup slot structure with entry for empty
 339				 * slot
 340				 */
 341				new_slot = cpqhp_slot_create(busnumber);
 342				if (new_slot == NULL)
 343					return 1;
 344
 345				new_slot->bus = (u8) busnumber;
 346				new_slot->device = (u8) device;
 347				new_slot->function = 0;
 348				new_slot->is_a_board = 0;
 349				new_slot->presence_save = 0;
 350				new_slot->switch_save = 0;
 351			}
 352			continue;
 353		}
 354
 355		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
 356		if (rc)
 357			return rc;
 358
 359		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
 360		if (rc)
 361			return rc;
 362
 363		/* If multi-function device, set max_functions to 8 */
 364		if (header_type & 0x80)
 365			max_functions = 8;
 366		else
 367			max_functions = 1;
 368
 369		function = 0;
 370
 371		do {
 372			DevError = 0;
 373			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
 374				/* Recurse the subordinate bus
 375				 * get the subordinate bus number
 376				 */
 377				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
 378				if (rc) {
 379					return rc;
 380				} else {
 381					sub_bus = (int) secondary_bus;
 382
 383					/* Save secondary bus cfg spc
 384					 * with this recursive call.
 385					 */
 386					rc = cpqhp_save_config(ctrl, sub_bus, 0);
 387					if (rc)
 388						return rc;
 389					ctrl->pci_bus->number = busnumber;
 390				}
 391			}
 392
 393			index = 0;
 394			new_slot = cpqhp_slot_find(busnumber, device, index++);
 395			while (new_slot &&
 396			       (new_slot->function != (u8) function))
 397				new_slot = cpqhp_slot_find(busnumber, device, index++);
 398
 399			if (!new_slot) {
 400				/* Setup slot structure. */
 401				new_slot = cpqhp_slot_create(busnumber);
 402				if (new_slot == NULL)
 403					return 1;
 404			}
 405
 406			new_slot->bus = (u8) busnumber;
 407			new_slot->device = (u8) device;
 408			new_slot->function = (u8) function;
 409			new_slot->is_a_board = 1;
 410			new_slot->switch_save = 0x10;
 411			/* In case of unsupported board */
 412			new_slot->status = DevError;
 413			new_slot->pci_dev = pci_get_bus_and_slot(new_slot->bus, (new_slot->device << 3) | new_slot->function);
 414
 415			for (cloop = 0; cloop < 0x20; cloop++) {
 416				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
 417				if (rc)
 418					return rc;
 419			}
 420
 421			pci_dev_put(new_slot->pci_dev);
 422
 423			function++;
 424
 425			stop_it = 0;
 426
 427			/* this loop skips to the next present function
 428			 * reading in Class Code and Header type.
 429			 */
 430			while ((function < max_functions) && (!stop_it)) {
 431				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
 432				if (ID == 0xFFFFFFFF) {
 433					function++;
 434					continue;
 435				}
 436				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
 437				if (rc)
 438					return rc;
 439
 440				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
 441				if (rc)
 442					return rc;
 443
 444				stop_it++;
 445			}
 446
 447		} while (function < max_functions);
 448	}			/* End of FOR loop */
 449
 450	return 0;
 451}
 452
 453
 454/*
 455 * cpqhp_save_slot_config
 456 *
 457 * Saves configuration info for all PCI devices in a given slot
 458 * including subordinate busses.
 459 *
 460 * returns 0 if success
 461 */
 462int cpqhp_save_slot_config (struct controller *ctrl, struct pci_func * new_slot)
 463{
 464	long rc;
 465	u8 class_code;
 466	u8 header_type;
 467	u32 ID;
 468	u8 secondary_bus;
 469	int sub_bus;
 470	int max_functions;
 471	int function = 0;
 472	int cloop = 0;
 473	int stop_it;
 474
 475	ID = 0xFFFFFFFF;
 476
 477	ctrl->pci_bus->number = new_slot->bus;
 478	pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
 479
 480	if (ID == 0xFFFFFFFF)
 481		return 2;
 482
 483	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
 484	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
 485
 486	if (header_type & 0x80)	/* Multi-function device */
 487		max_functions = 8;
 488	else
 489		max_functions = 1;
 490
 491	while (function < max_functions) {
 492		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
 493			/*  Recurse the subordinate bus */
 494			pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
 495
 496			sub_bus = (int) secondary_bus;
 497
 498			/* Save the config headers for the secondary
 499			 * bus.
 500			 */
 501			rc = cpqhp_save_config(ctrl, sub_bus, 0);
 502			if (rc)
 503				return(rc);
 504			ctrl->pci_bus->number = new_slot->bus;
 505
 506		}
 507
 508		new_slot->status = 0;
 509
 510		for (cloop = 0; cloop < 0x20; cloop++)
 511			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
 512
 513		function++;
 514
 515		stop_it = 0;
 516
 517		/* this loop skips to the next present function
 518		 * reading in the Class Code and the Header type.
 519		 */
 520		while ((function < max_functions) && (!stop_it)) {
 521			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
 522
 523			if (ID == 0xFFFFFFFF)
 524				function++;
 525			else {
 526				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
 527				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
 528				stop_it++;
 529			}
 530		}
 531
 532	}
 533
 534	return 0;
 535}
 536
 537
 538/*
 539 * cpqhp_save_base_addr_length
 540 *
 541 * Saves the length of all base address registers for the
 542 * specified slot.  this is for hot plug REPLACE
 543 *
 544 * returns 0 if success
 545 */
 546int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func * func)
 547{
 548	u8 cloop;
 549	u8 header_type;
 550	u8 secondary_bus;
 551	u8 type;
 552	int sub_bus;
 553	u32 temp_register;
 554	u32 base;
 555	u32 rc;
 556	struct pci_func *next;
 557	int index = 0;
 558	struct pci_bus *pci_bus = ctrl->pci_bus;
 559	unsigned int devfn;
 560
 561	func = cpqhp_slot_find(func->bus, func->device, index++);
 562
 563	while (func != NULL) {
 564		pci_bus->number = func->bus;
 565		devfn = PCI_DEVFN(func->device, func->function);
 566
 567		/* Check for Bridge */
 568		pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
 569
 570		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
 571			pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
 572
 573			sub_bus = (int) secondary_bus;
 574
 575			next = cpqhp_slot_list[sub_bus];
 576
 577			while (next != NULL) {
 578				rc = cpqhp_save_base_addr_length(ctrl, next);
 579				if (rc)
 580					return rc;
 581
 582				next = next->next;
 583			}
 584			pci_bus->number = func->bus;
 585
 586			/* FIXME: this loop is duplicated in the non-bridge
 587			 * case.  The two could be rolled together Figure out
 588			 * IO and memory base lengths
 589			 */
 590			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
 591				temp_register = 0xFFFFFFFF;
 592				pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
 593				pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
 594				/* If this register is implemented */
 595				if (base) {
 596					if (base & 0x01L) {
 597						/* IO base
 598						 * set base = amount of IO space
 599						 * requested
 600						 */
 601						base = base & 0xFFFFFFFE;
 602						base = (~base) + 1;
 603
 604						type = 1;
 605					} else {
 606						/* memory base */
 607						base = base & 0xFFFFFFF0;
 608						base = (~base) + 1;
 609
 610						type = 0;
 611					}
 612				} else {
 613					base = 0x0L;
 614					type = 0;
 615				}
 616
 617				/* Save information in slot structure */
 618				func->base_length[(cloop - 0x10) >> 2] =
 619				base;
 620				func->base_type[(cloop - 0x10) >> 2] = type;
 621
 622			}	/* End of base register loop */
 623
 624		} else if ((header_type & 0x7F) == 0x00) {
 625			/* Figure out IO and memory base lengths */
 626			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
 627				temp_register = 0xFFFFFFFF;
 628				pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
 629				pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
 630
 631				/* If this register is implemented */
 632				if (base) {
 633					if (base & 0x01L) {
 634						/* IO base
 635						 * base = amount of IO space
 636						 * requested
 637						 */
 638						base = base & 0xFFFFFFFE;
 639						base = (~base) + 1;
 640
 641						type = 1;
 642					} else {
 643						/* memory base
 644						 * base = amount of memory
 645						 * space requested
 646						 */
 647						base = base & 0xFFFFFFF0;
 648						base = (~base) + 1;
 649
 650						type = 0;
 651					}
 652				} else {
 653					base = 0x0L;
 654					type = 0;
 655				}
 656
 657				/* Save information in slot structure */
 658				func->base_length[(cloop - 0x10) >> 2] = base;
 659				func->base_type[(cloop - 0x10) >> 2] = type;
 660
 661			}	/* End of base register loop */
 662
 663		} else {	  /* Some other unknown header type */
 664		}
 665
 666		/* find the next device in this slot */
 667		func = cpqhp_slot_find(func->bus, func->device, index++);
 668	}
 669
 670	return(0);
 671}
 672
 673
 674/*
 675 * cpqhp_save_used_resources
 676 *
 677 * Stores used resource information for existing boards.  this is
 678 * for boards that were in the system when this driver was loaded.
 679 * this function is for hot plug ADD
 680 *
 681 * returns 0 if success
 682 */
 683int cpqhp_save_used_resources (struct controller *ctrl, struct pci_func * func)
 684{
 685	u8 cloop;
 686	u8 header_type;
 687	u8 secondary_bus;
 688	u8 temp_byte;
 689	u8 b_base;
 690	u8 b_length;
 691	u16 command;
 692	u16 save_command;
 693	u16 w_base;
 694	u16 w_length;
 695	u32 temp_register;
 696	u32 save_base;
 697	u32 base;
 698	int index = 0;
 699	struct pci_resource *mem_node;
 700	struct pci_resource *p_mem_node;
 701	struct pci_resource *io_node;
 702	struct pci_resource *bus_node;
 703	struct pci_bus *pci_bus = ctrl->pci_bus;
 704	unsigned int devfn;
 705
 706	func = cpqhp_slot_find(func->bus, func->device, index++);
 707
 708	while ((func != NULL) && func->is_a_board) {
 709		pci_bus->number = func->bus;
 710		devfn = PCI_DEVFN(func->device, func->function);
 711
 712		/* Save the command register */
 713		pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
 714
 715		/* disable card */
 716		command = 0x00;
 717		pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
 718
 719		/* Check for Bridge */
 720		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
 721
 722		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
 723			/* Clear Bridge Control Register */
 724			command = 0x00;
 725			pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
 726			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
 727			pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
 728
 729			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
 730			if (!bus_node)
 731				return -ENOMEM;
 732
 733			bus_node->base = secondary_bus;
 734			bus_node->length = temp_byte - secondary_bus + 1;
 735
 736			bus_node->next = func->bus_head;
 737			func->bus_head = bus_node;
 738
 739			/* Save IO base and Limit registers */
 740			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
 741			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
 742
 743			if ((b_base <= b_length) && (save_command & 0x01)) {
 744				io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
 745				if (!io_node)
 746					return -ENOMEM;
 747
 748				io_node->base = (b_base & 0xF0) << 8;
 749				io_node->length = (b_length - b_base + 0x10) << 8;
 750
 751				io_node->next = func->io_head;
 752				func->io_head = io_node;
 753			}
 754
 755			/* Save memory base and Limit registers */
 756			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
 757			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
 758
 759			if ((w_base <= w_length) && (save_command & 0x02)) {
 760				mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
 761				if (!mem_node)
 762					return -ENOMEM;
 763
 764				mem_node->base = w_base << 16;
 765				mem_node->length = (w_length - w_base + 0x10) << 16;
 766
 767				mem_node->next = func->mem_head;
 768				func->mem_head = mem_node;
 769			}
 770
 771			/* Save prefetchable memory base and Limit registers */
 772			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
 773			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
 774
 775			if ((w_base <= w_length) && (save_command & 0x02)) {
 776				p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
 777				if (!p_mem_node)
 778					return -ENOMEM;
 779
 780				p_mem_node->base = w_base << 16;
 781				p_mem_node->length = (w_length - w_base + 0x10) << 16;
 782
 783				p_mem_node->next = func->p_mem_head;
 784				func->p_mem_head = p_mem_node;
 785			}
 786			/* Figure out IO and memory base lengths */
 787			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
 788				pci_bus_read_config_dword (pci_bus, devfn, cloop, &save_base);
 789
 790				temp_register = 0xFFFFFFFF;
 791				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
 792				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
 793
 794				temp_register = base;
 795
 796				/* If this register is implemented */
 797				if (base) {
 798					if (((base & 0x03L) == 0x01)
 799					    && (save_command & 0x01)) {
 800						/* IO base
 801						 * set temp_register = amount
 802						 * of IO space requested
 803						 */
 804						temp_register = base & 0xFFFFFFFE;
 805						temp_register = (~temp_register) + 1;
 806
 807						io_node = kmalloc(sizeof(*io_node),
 808								GFP_KERNEL);
 809						if (!io_node)
 810							return -ENOMEM;
 811
 812						io_node->base =
 813						save_base & (~0x03L);
 814						io_node->length = temp_register;
 815
 816						io_node->next = func->io_head;
 817						func->io_head = io_node;
 818					} else
 819						if (((base & 0x0BL) == 0x08)
 820						    && (save_command & 0x02)) {
 821						/* prefetchable memory base */
 822						temp_register = base & 0xFFFFFFF0;
 823						temp_register = (~temp_register) + 1;
 824
 825						p_mem_node = kmalloc(sizeof(*p_mem_node),
 826								GFP_KERNEL);
 827						if (!p_mem_node)
 828							return -ENOMEM;
 829
 830						p_mem_node->base = save_base & (~0x0FL);
 831						p_mem_node->length = temp_register;
 832
 833						p_mem_node->next = func->p_mem_head;
 834						func->p_mem_head = p_mem_node;
 835					} else
 836						if (((base & 0x0BL) == 0x00)
 837						    && (save_command & 0x02)) {
 838						/* prefetchable memory base */
 839						temp_register = base & 0xFFFFFFF0;
 840						temp_register = (~temp_register) + 1;
 841
 842						mem_node = kmalloc(sizeof(*mem_node),
 843								GFP_KERNEL);
 844						if (!mem_node)
 845							return -ENOMEM;
 846
 847						mem_node->base = save_base & (~0x0FL);
 848						mem_node->length = temp_register;
 849
 850						mem_node->next = func->mem_head;
 851						func->mem_head = mem_node;
 852					} else
 853						return(1);
 854				}
 855			}	/* End of base register loop */
 856		/* Standard header */
 857		} else if ((header_type & 0x7F) == 0x00) {
 858			/* Figure out IO and memory base lengths */
 859			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
 860				pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
 861
 862				temp_register = 0xFFFFFFFF;
 863				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
 864				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
 865
 866				temp_register = base;
 867
 868				/* If this register is implemented */
 869				if (base) {
 870					if (((base & 0x03L) == 0x01)
 871					    && (save_command & 0x01)) {
 872						/* IO base
 873						 * set temp_register = amount
 874						 * of IO space requested
 875						 */
 876						temp_register = base & 0xFFFFFFFE;
 877						temp_register = (~temp_register) + 1;
 878
 879						io_node = kmalloc(sizeof(*io_node),
 880								GFP_KERNEL);
 881						if (!io_node)
 882							return -ENOMEM;
 883
 884						io_node->base = save_base & (~0x01L);
 885						io_node->length = temp_register;
 886
 887						io_node->next = func->io_head;
 888						func->io_head = io_node;
 889					} else
 890						if (((base & 0x0BL) == 0x08)
 891						    && (save_command & 0x02)) {
 892						/* prefetchable memory base */
 893						temp_register = base & 0xFFFFFFF0;
 894						temp_register = (~temp_register) + 1;
 895
 896						p_mem_node = kmalloc(sizeof(*p_mem_node),
 897								GFP_KERNEL);
 898						if (!p_mem_node)
 899							return -ENOMEM;
 900
 901						p_mem_node->base = save_base & (~0x0FL);
 902						p_mem_node->length = temp_register;
 903
 904						p_mem_node->next = func->p_mem_head;
 905						func->p_mem_head = p_mem_node;
 906					} else
 907						if (((base & 0x0BL) == 0x00)
 908						    && (save_command & 0x02)) {
 909						/* prefetchable memory base */
 910						temp_register = base & 0xFFFFFFF0;
 911						temp_register = (~temp_register) + 1;
 912
 913						mem_node = kmalloc(sizeof(*mem_node),
 914								GFP_KERNEL);
 915						if (!mem_node)
 916							return -ENOMEM;
 917
 918						mem_node->base = save_base & (~0x0FL);
 919						mem_node->length = temp_register;
 920
 921						mem_node->next = func->mem_head;
 922						func->mem_head = mem_node;
 923					} else
 924						return(1);
 925				}
 926			}	/* End of base register loop */
 927		}
 928
 929		/* find the next device in this slot */
 930		func = cpqhp_slot_find(func->bus, func->device, index++);
 931	}
 932
 933	return 0;
 934}
 935
 936
 937/*
 938 * cpqhp_configure_board
 939 *
 940 * Copies saved configuration information to one slot.
 941 * this is called recursively for bridge devices.
 942 * this is for hot plug REPLACE!
 943 *
 944 * returns 0 if success
 945 */
 946int cpqhp_configure_board(struct controller *ctrl, struct pci_func * func)
 947{
 948	int cloop;
 949	u8 header_type;
 950	u8 secondary_bus;
 951	int sub_bus;
 952	struct pci_func *next;
 953	u32 temp;
 954	u32 rc;
 955	int index = 0;
 956	struct pci_bus *pci_bus = ctrl->pci_bus;
 957	unsigned int devfn;
 958
 959	func = cpqhp_slot_find(func->bus, func->device, index++);
 960
 961	while (func != NULL) {
 962		pci_bus->number = func->bus;
 963		devfn = PCI_DEVFN(func->device, func->function);
 964
 965		/* Start at the top of config space so that the control
 966		 * registers are programmed last
 967		 */
 968		for (cloop = 0x3C; cloop > 0; cloop -= 4)
 969			pci_bus_write_config_dword (pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
 970
 971		pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
 972
 973		/* If this is a bridge device, restore subordinate devices */
 974		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
 975			pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
 976
 977			sub_bus = (int) secondary_bus;
 978
 979			next = cpqhp_slot_list[sub_bus];
 980
 981			while (next != NULL) {
 982				rc = cpqhp_configure_board(ctrl, next);
 983				if (rc)
 984					return rc;
 985
 986				next = next->next;
 987			}
 988		} else {
 989
 990			/* Check all the base Address Registers to make sure
 991			 * they are the same.  If not, the board is different.
 992			 */
 993
 994			for (cloop = 16; cloop < 40; cloop += 4) {
 995				pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp);
 996
 997				if (temp != func->config_space[cloop >> 2]) {
 998					dbg("Config space compare failure!!! offset = %x\n", cloop);
 999					dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
1000					dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
1001					return 1;
1002				}
1003			}
1004		}
1005
1006		func->configured = 1;
1007
1008		func = cpqhp_slot_find(func->bus, func->device, index++);
1009	}
1010
1011	return 0;
1012}
1013
1014
1015/*
1016 * cpqhp_valid_replace
1017 *
1018 * this function checks to see if a board is the same as the
1019 * one it is replacing.  this check will detect if the device's
1020 * vendor or device id's are the same
1021 *
1022 * returns 0 if the board is the same nonzero otherwise
1023 */
1024int cpqhp_valid_replace(struct controller *ctrl, struct pci_func * func)
1025{
1026	u8 cloop;
1027	u8 header_type;
1028	u8 secondary_bus;
1029	u8 type;
1030	u32 temp_register = 0;
1031	u32 base;
1032	u32 rc;
1033	struct pci_func *next;
1034	int index = 0;
1035	struct pci_bus *pci_bus = ctrl->pci_bus;
1036	unsigned int devfn;
1037
1038	if (!func->is_a_board)
1039		return(ADD_NOT_SUPPORTED);
1040
1041	func = cpqhp_slot_find(func->bus, func->device, index++);
1042
1043	while (func != NULL) {
1044		pci_bus->number = func->bus;
1045		devfn = PCI_DEVFN(func->device, func->function);
1046
1047		pci_bus_read_config_dword (pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
1048
1049		/* No adapter present */
1050		if (temp_register == 0xFFFFFFFF)
1051			return(NO_ADAPTER_PRESENT);
1052
1053		if (temp_register != func->config_space[0])
1054			return(ADAPTER_NOT_SAME);
1055
1056		/* Check for same revision number and class code */
1057		pci_bus_read_config_dword (pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
1058
1059		/* Adapter not the same */
1060		if (temp_register != func->config_space[0x08 >> 2])
1061			return(ADAPTER_NOT_SAME);
1062
1063		/* Check for Bridge */
1064		pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
1065
1066		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
1067			/* In order to continue checking, we must program the
1068			 * bus registers in the bridge to respond to accesses
1069			 * for its subordinate bus(es)
1070			 */
1071
1072			temp_register = func->config_space[0x18 >> 2];
1073			pci_bus_write_config_dword (pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
1074
1075			secondary_bus = (temp_register >> 8) & 0xFF;
1076
1077			next = cpqhp_slot_list[secondary_bus];
1078
1079			while (next != NULL) {
1080				rc = cpqhp_valid_replace(ctrl, next);
1081				if (rc)
1082					return rc;
1083
1084				next = next->next;
1085			}
1086
1087		}
1088		/* Check to see if it is a standard config header */
1089		else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
1090			/* Check subsystem vendor and ID */
1091			pci_bus_read_config_dword (pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
1092
1093			if (temp_register != func->config_space[0x2C >> 2]) {
1094				/* If it's a SMART-2 and the register isn't
1095				 * filled in, ignore the difference because
1096				 * they just have an old rev of the firmware
1097				 */
1098				if (!((func->config_space[0] == 0xAE100E11)
1099				      && (temp_register == 0x00L)))
1100					return(ADAPTER_NOT_SAME);
1101			}
1102			/* Figure out IO and memory base lengths */
1103			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1104				temp_register = 0xFFFFFFFF;
1105				pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
1106				pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
1107
1108				/* If this register is implemented */
1109				if (base) {
1110					if (base & 0x01L) {
1111						/* IO base
1112						 * set base = amount of IO
1113						 * space requested
1114						 */
1115						base = base & 0xFFFFFFFE;
1116						base = (~base) + 1;
1117
1118						type = 1;
1119					} else {
1120						/* memory base */
1121						base = base & 0xFFFFFFF0;
1122						base = (~base) + 1;
1123
1124						type = 0;
1125					}
1126				} else {
1127					base = 0x0L;
1128					type = 0;
1129				}
1130
1131				/* Check information in slot structure */
1132				if (func->base_length[(cloop - 0x10) >> 2] != base)
1133					return(ADAPTER_NOT_SAME);
1134
1135				if (func->base_type[(cloop - 0x10) >> 2] != type)
1136					return(ADAPTER_NOT_SAME);
1137
1138			}	/* End of base register loop */
1139
1140		}		/* End of (type 0 config space) else */
1141		else {
1142			/* this is not a type 0 or 1 config space header so
1143			 * we don't know how to do it
1144			 */
1145			return(DEVICE_TYPE_NOT_SUPPORTED);
1146		}
1147
1148		/* Get the next function */
1149		func = cpqhp_slot_find(func->bus, func->device, index++);
1150	}
1151
1152
1153	return 0;
1154}
1155
1156
1157/*
1158 * cpqhp_find_available_resources
1159 *
1160 * Finds available memory, IO, and IRQ resources for programming
1161 * devices which may be added to the system
1162 * this function is for hot plug ADD!
1163 *
1164 * returns 0 if success
1165 */
1166int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
1167{
1168	u8 temp;
1169	u8 populated_slot;
1170	u8 bridged_slot;
1171	void __iomem *one_slot;
1172	void __iomem *rom_resource_table;
1173	struct pci_func *func = NULL;
1174	int i = 10, index;
1175	u32 temp_dword, rc;
1176	struct pci_resource *mem_node;
1177	struct pci_resource *p_mem_node;
1178	struct pci_resource *io_node;
1179	struct pci_resource *bus_node;
1180
1181	rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
1182	dbg("rom_resource_table = %p\n", rom_resource_table);
1183
1184	if (rom_resource_table == NULL)
1185		return -ENODEV;
1186
1187	/* Sum all resources and setup resource maps */
1188	unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
1189	dbg("unused_IRQ = %x\n", unused_IRQ);
1190
1191	temp = 0;
1192	while (unused_IRQ) {
1193		if (unused_IRQ & 1) {
1194			cpqhp_disk_irq = temp;
1195			break;
1196		}
1197		unused_IRQ = unused_IRQ >> 1;
1198		temp++;
1199	}
1200
1201	dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1202	unused_IRQ = unused_IRQ >> 1;
1203	temp++;
1204
1205	while (unused_IRQ) {
1206		if (unused_IRQ & 1) {
1207			cpqhp_nic_irq = temp;
1208			break;
1209		}
1210		unused_IRQ = unused_IRQ >> 1;
1211		temp++;
1212	}
1213
1214	dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1215	unused_IRQ = readl(rom_resource_table + PCIIRQ);
1216
1217	temp = 0;
1218
1219	if (!cpqhp_nic_irq)
1220		cpqhp_nic_irq = ctrl->cfgspc_irq;
1221
1222	if (!cpqhp_disk_irq)
1223		cpqhp_disk_irq = ctrl->cfgspc_irq;
1224
1225	dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1226
1227	rc = compaq_nvram_load(rom_start, ctrl);
1228	if (rc)
1229		return rc;
1230
1231	one_slot = rom_resource_table + sizeof (struct hrt);
1232
1233	i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
1234	dbg("number_of_entries = %d\n", i);
1235
1236	if (!readb(one_slot + SECONDARY_BUS))
1237		return 1;
1238
1239	dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1240
1241	while (i && readb(one_slot + SECONDARY_BUS)) {
1242		u8 dev_func = readb(one_slot + DEV_FUNC);
1243		u8 primary_bus = readb(one_slot + PRIMARY_BUS);
1244		u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
1245		u8 max_bus = readb(one_slot + MAX_BUS);
1246		u16 io_base = readw(one_slot + IO_BASE);
1247		u16 io_length = readw(one_slot + IO_LENGTH);
1248		u16 mem_base = readw(one_slot + MEM_BASE);
1249		u16 mem_length = readw(one_slot + MEM_LENGTH);
1250		u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
1251		u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
1252
1253		dbg("%2.2x | %4.4x  | %4.4x | %4.4x   | %4.4x | %4.4x   | %4.4x |%2.2x %2.2x %2.2x\n",
1254		    dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1255		    primary_bus, secondary_bus, max_bus);
1256
1257		/* If this entry isn't for our controller's bus, ignore it */
1258		if (primary_bus != ctrl->bus) {
1259			i--;
1260			one_slot += sizeof (struct slot_rt);
1261			continue;
1262		}
1263		/* find out if this entry is for an occupied slot */
1264		ctrl->pci_bus->number = primary_bus;
1265		pci_bus_read_config_dword (ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
1266		dbg("temp_D_word = %x\n", temp_dword);
1267
1268		if (temp_dword != 0xFFFFFFFF) {
1269			index = 0;
1270			func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
1271
1272			while (func && (func->function != (dev_func & 0x07))) {
1273				dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1274				func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
1275			}
1276
1277			/* If we can't find a match, skip this table entry */
1278			if (!func) {
1279				i--;
1280				one_slot += sizeof (struct slot_rt);
1281				continue;
1282			}
1283			/* this may not work and shouldn't be used */
1284			if (secondary_bus != primary_bus)
1285				bridged_slot = 1;
1286			else
1287				bridged_slot = 0;
1288
1289			populated_slot = 1;
1290		} else {
1291			populated_slot = 0;
1292			bridged_slot = 0;
1293		}
1294
1295
1296		/* If we've got a valid IO base, use it */
1297
1298		temp_dword = io_base + io_length;
1299
1300		if ((io_base) && (temp_dword < 0x10000)) {
1301			io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
1302			if (!io_node)
1303				return -ENOMEM;
1304
1305			io_node->base = io_base;
1306			io_node->length = io_length;
1307
1308			dbg("found io_node(base, length) = %x, %x\n",
1309					io_node->base, io_node->length);
1310			dbg("populated slot =%d \n", populated_slot);
1311			if (!populated_slot) {
1312				io_node->next = ctrl->io_head;
1313				ctrl->io_head = io_node;
1314			} else {
1315				io_node->next = func->io_head;
1316				func->io_head = io_node;
1317			}
1318		}
1319
1320		/* If we've got a valid memory base, use it */
1321		temp_dword = mem_base + mem_length;
1322		if ((mem_base) && (temp_dword < 0x10000)) {
1323			mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
1324			if (!mem_node)
1325				return -ENOMEM;
1326
1327			mem_node->base = mem_base << 16;
1328
1329			mem_node->length = mem_length << 16;
1330
1331			dbg("found mem_node(base, length) = %x, %x\n",
1332					mem_node->base, mem_node->length);
1333			dbg("populated slot =%d \n", populated_slot);
1334			if (!populated_slot) {
1335				mem_node->next = ctrl->mem_head;
1336				ctrl->mem_head = mem_node;
1337			} else {
1338				mem_node->next = func->mem_head;
1339				func->mem_head = mem_node;
1340			}
1341		}
1342
1343		/* If we've got a valid prefetchable memory base, and
1344		 * the base + length isn't greater than 0xFFFF
1345		 */
1346		temp_dword = pre_mem_base + pre_mem_length;
1347		if ((pre_mem_base) && (temp_dword < 0x10000)) {
1348			p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
1349			if (!p_mem_node)
1350				return -ENOMEM;
1351
1352			p_mem_node->base = pre_mem_base << 16;
1353
1354			p_mem_node->length = pre_mem_length << 16;
1355			dbg("found p_mem_node(base, length) = %x, %x\n",
1356					p_mem_node->base, p_mem_node->length);
1357			dbg("populated slot =%d \n", populated_slot);
1358
1359			if (!populated_slot) {
1360				p_mem_node->next = ctrl->p_mem_head;
1361				ctrl->p_mem_head = p_mem_node;
1362			} else {
1363				p_mem_node->next = func->p_mem_head;
1364				func->p_mem_head = p_mem_node;
1365			}
1366		}
1367
1368		/* If we've got a valid bus number, use it
1369		 * The second condition is to ignore bus numbers on
1370		 * populated slots that don't have PCI-PCI bridges
1371		 */
1372		if (secondary_bus && (secondary_bus != primary_bus)) {
1373			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
1374			if (!bus_node)
1375				return -ENOMEM;
1376
1377			bus_node->base = secondary_bus;
1378			bus_node->length = max_bus - secondary_bus + 1;
1379			dbg("found bus_node(base, length) = %x, %x\n",
1380					bus_node->base, bus_node->length);
1381			dbg("populated slot =%d \n", populated_slot);
1382			if (!populated_slot) {
1383				bus_node->next = ctrl->bus_head;
1384				ctrl->bus_head = bus_node;
1385			} else {
1386				bus_node->next = func->bus_head;
1387				func->bus_head = bus_node;
1388			}
1389		}
1390
1391		i--;
1392		one_slot += sizeof (struct slot_rt);
1393	}
1394
1395	/* If all of the following fail, we don't have any resources for
1396	 * hot plug add
1397	 */
1398	rc = 1;
1399	rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1400	rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1401	rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1402	rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1403
1404	return rc;
1405}
1406
1407
1408/*
1409 * cpqhp_return_board_resources
1410 *
1411 * this routine returns all resources allocated to a board to
1412 * the available pool.
1413 *
1414 * returns 0 if success
1415 */
1416int cpqhp_return_board_resources(struct pci_func * func, struct resource_lists * resources)
1417{
1418	int rc = 0;
1419	struct pci_resource *node;
1420	struct pci_resource *t_node;
1421	dbg("%s\n", __func__);
1422
1423	if (!func)
1424		return 1;
1425
1426	node = func->io_head;
1427	func->io_head = NULL;
1428	while (node) {
1429		t_node = node->next;
1430		return_resource(&(resources->io_head), node);
1431		node = t_node;
1432	}
1433
1434	node = func->mem_head;
1435	func->mem_head = NULL;
1436	while (node) {
1437		t_node = node->next;
1438		return_resource(&(resources->mem_head), node);
1439		node = t_node;
1440	}
1441
1442	node = func->p_mem_head;
1443	func->p_mem_head = NULL;
1444	while (node) {
1445		t_node = node->next;
1446		return_resource(&(resources->p_mem_head), node);
1447		node = t_node;
1448	}
1449
1450	node = func->bus_head;
1451	func->bus_head = NULL;
1452	while (node) {
1453		t_node = node->next;
1454		return_resource(&(resources->bus_head), node);
1455		node = t_node;
1456	}
1457
1458	rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
1459	rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
1460	rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
1461	rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
1462
1463	return rc;
1464}
1465
1466
1467/*
1468 * cpqhp_destroy_resource_list
1469 *
1470 * Puts node back in the resource list pointed to by head
1471 */
1472void cpqhp_destroy_resource_list (struct resource_lists * resources)
1473{
1474	struct pci_resource *res, *tres;
1475
1476	res = resources->io_head;
1477	resources->io_head = NULL;
1478
1479	while (res) {
1480		tres = res;
1481		res = res->next;
1482		kfree(tres);
1483	}
1484
1485	res = resources->mem_head;
1486	resources->mem_head = NULL;
1487
1488	while (res) {
1489		tres = res;
1490		res = res->next;
1491		kfree(tres);
1492	}
1493
1494	res = resources->p_mem_head;
1495	resources->p_mem_head = NULL;
1496
1497	while (res) {
1498		tres = res;
1499		res = res->next;
1500		kfree(tres);
1501	}
1502
1503	res = resources->bus_head;
1504	resources->bus_head = NULL;
1505
1506	while (res) {
1507		tres = res;
1508		res = res->next;
1509		kfree(tres);
1510	}
1511}
1512
1513
1514/*
1515 * cpqhp_destroy_board_resources
1516 *
1517 * Puts node back in the resource list pointed to by head
1518 */
1519void cpqhp_destroy_board_resources (struct pci_func * func)
1520{
1521	struct pci_resource *res, *tres;
1522
1523	res = func->io_head;
1524	func->io_head = NULL;
1525
1526	while (res) {
1527		tres = res;
1528		res = res->next;
1529		kfree(tres);
1530	}
1531
1532	res = func->mem_head;
1533	func->mem_head = NULL;
1534
1535	while (res) {
1536		tres = res;
1537		res = res->next;
1538		kfree(tres);
1539	}
1540
1541	res = func->p_mem_head;
1542	func->p_mem_head = NULL;
1543
1544	while (res) {
1545		tres = res;
1546		res = res->next;
1547		kfree(tres);
1548	}
1549
1550	res = func->bus_head;
1551	func->bus_head = NULL;
1552
1553	while (res) {
1554		tres = res;
1555		res = res->next;
1556		kfree(tres);
1557	}
1558}
1559
v4.10.11
   1/*
   2 * Compaq Hot Plug Controller Driver
   3 *
   4 * Copyright (C) 1995,2001 Compaq Computer Corporation
   5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
   6 * Copyright (C) 2001 IBM Corp.
   7 *
   8 * All rights reserved.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or (at
  13 * your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  18 * NON INFRINGEMENT.  See the GNU General Public License for more
  19 * details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24 *
  25 * Send feedback to <greg@kroah.com>
  26 *
  27 */
  28
  29#include <linux/module.h>
  30#include <linux/kernel.h>
  31#include <linux/types.h>
  32#include <linux/slab.h>
  33#include <linux/workqueue.h>
  34#include <linux/proc_fs.h>
  35#include <linux/pci.h>
  36#include <linux/pci_hotplug.h>
  37#include "../pci.h"
  38#include "cpqphp.h"
  39#include "cpqphp_nvram.h"
  40
  41
  42u8 cpqhp_nic_irq;
  43u8 cpqhp_disk_irq;
  44
  45static u16 unused_IRQ;
  46
  47/*
  48 * detect_HRT_floating_pointer
  49 *
  50 * find the Hot Plug Resource Table in the specified region of memory.
  51 *
  52 */
  53static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
  54{
  55	void __iomem *fp;
  56	void __iomem *endp;
  57	u8 temp1, temp2, temp3, temp4;
  58	int status = 0;
  59
  60	endp = (end - sizeof(struct hrt) + 1);
  61
  62	for (fp = begin; fp <= endp; fp += 16) {
  63		temp1 = readb(fp + SIG0);
  64		temp2 = readb(fp + SIG1);
  65		temp3 = readb(fp + SIG2);
  66		temp4 = readb(fp + SIG3);
  67		if (temp1 == '$' &&
  68		    temp2 == 'H' &&
  69		    temp3 == 'R' &&
  70		    temp4 == 'T') {
  71			status = 1;
  72			break;
  73		}
  74	}
  75
  76	if (!status)
  77		fp = NULL;
  78
  79	dbg("Discovered Hotplug Resource Table at %p\n", fp);
  80	return fp;
  81}
  82
  83
  84int cpqhp_configure_device(struct controller *ctrl, struct pci_func *func)
  85{
 
  86	struct pci_bus *child;
  87	int num;
  88
  89	pci_lock_rescan_remove();
  90
  91	if (func->pci_dev == NULL)
  92		func->pci_dev = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, func->function));
  93
  94	/* No pci device, we need to create it then */
  95	if (func->pci_dev == NULL) {
  96		dbg("INFO: pci_dev still null\n");
  97
  98		num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
  99		if (num)
 100			pci_bus_add_devices(ctrl->pci_dev->bus);
 101
 102		func->pci_dev = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, func->function));
 103		if (func->pci_dev == NULL) {
 104			dbg("ERROR: pci_dev still null\n");
 105			goto out;
 106		}
 107	}
 108
 109	if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
 110		pci_hp_add_bridge(func->pci_dev);
 111		child = func->pci_dev->subordinate;
 112		if (child)
 113			pci_bus_add_devices(child);
 114	}
 115
 116	pci_dev_put(func->pci_dev);
 117
 118 out:
 119	pci_unlock_rescan_remove();
 120	return 0;
 121}
 122
 123
 124int cpqhp_unconfigure_device(struct pci_func *func)
 125{
 126	int j;
 127
 128	dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function);
 129
 130	pci_lock_rescan_remove();
 131	for (j = 0; j < 8 ; j++) {
 132		struct pci_dev *temp = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, j));
 133		if (temp) {
 134			pci_dev_put(temp);
 135			pci_stop_and_remove_bus_device(temp);
 136		}
 137	}
 138	pci_unlock_rescan_remove();
 139	return 0;
 140}
 141
 142static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value)
 143{
 144	u32 vendID = 0;
 145
 146	if (pci_bus_read_config_dword(bus, devfn, PCI_VENDOR_ID, &vendID) == -1)
 147		return -1;
 148	if (vendID == 0xffffffff)
 149		return -1;
 150	return pci_bus_read_config_dword(bus, devfn, offset, value);
 151}
 152
 153
 154/*
 155 * cpqhp_set_irq
 156 *
 157 * @bus_num: bus number of PCI device
 158 * @dev_num: device number of PCI device
 159 * @slot: pointer to u8 where slot number will be returned
 160 */
 161int cpqhp_set_irq(u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
 162{
 163	int rc = 0;
 164
 165	if (cpqhp_legacy_mode) {
 166		struct pci_dev *fakedev;
 167		struct pci_bus *fakebus;
 168		u16 temp_word;
 169
 170		fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
 171		fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
 172		if (!fakedev || !fakebus) {
 173			kfree(fakedev);
 174			kfree(fakebus);
 175			return -ENOMEM;
 176		}
 177
 178		fakedev->devfn = dev_num << 3;
 179		fakedev->bus = fakebus;
 180		fakebus->number = bus_num;
 181		dbg("%s: dev %d, bus %d, pin %d, num %d\n",
 182		    __func__, dev_num, bus_num, int_pin, irq_num);
 183		rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num);
 184		kfree(fakedev);
 185		kfree(fakebus);
 186		dbg("%s: rc %d\n", __func__, rc);
 187		if (!rc)
 188			return !rc;
 189
 190		/* set the Edge Level Control Register (ELCR) */
 191		temp_word = inb(0x4d0);
 192		temp_word |= inb(0x4d1) << 8;
 193
 194		temp_word |= 0x01 << irq_num;
 195
 196		/* This should only be for x86 as it sets the Edge Level
 197		 * Control Register
 198		 */
 199		outb((u8) (temp_word & 0xFF), 0x4d0); outb((u8) ((temp_word &
 200		0xFF00) >> 8), 0x4d1); rc = 0; }
 201
 202	return rc;
 203}
 204
 205
 206static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 *dev_num)
 207{
 208	u16 tdevice;
 209	u32 work;
 210	u8 tbus;
 211
 212	ctrl->pci_bus->number = bus_num;
 213
 214	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
 215		/* Scan for access first */
 216		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
 217			continue;
 218		dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
 219		/* Yep we got one. Not a bridge ? */
 220		if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
 221			*dev_num = tdevice;
 222			dbg("found it !\n");
 223			return 0;
 224		}
 225	}
 226	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
 227		/* Scan for access first */
 228		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
 229			continue;
 230		dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
 231		/* Yep we got one. bridge ? */
 232		if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
 233			pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus);
 234			/* XXX: no recursion, wtf? */
 235			dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
 236			return 0;
 237		}
 238	}
 239
 240	return -1;
 241}
 242
 243
 244static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
 245{
 246	int loop, len;
 247	u32 work;
 248	u8 tbus, tdevice, tslot;
 249
 250	len = cpqhp_routing_table_length();
 251	for (loop = 0; loop < len; ++loop) {
 252		tbus = cpqhp_routing_table->slots[loop].bus;
 253		tdevice = cpqhp_routing_table->slots[loop].devfn;
 254		tslot = cpqhp_routing_table->slots[loop].slot;
 255
 256		if (tslot == slot) {
 257			*bus_num = tbus;
 258			*dev_num = tdevice;
 259			ctrl->pci_bus->number = tbus;
 260			pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
 261			if (!nobridge || (work == 0xffffffff))
 262				return 0;
 263
 264			dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
 265			pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
 266			dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
 267
 268			if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
 269				pci_bus_read_config_byte(ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
 270				dbg("Scan bus for Non Bridge: bus %d\n", tbus);
 271				if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
 272					*bus_num = tbus;
 273					return 0;
 274				}
 275			} else
 276				return 0;
 277		}
 278	}
 279	return -1;
 280}
 281
 282
 283int cpqhp_get_bus_dev(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot)
 284{
 285	/* plain (bridges allowed) */
 286	return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0);
 287}
 288
 289
 290/* More PCI configuration routines; this time centered around hotplug
 291 * controller
 292 */
 293
 294
 295/*
 296 * cpqhp_save_config
 297 *
 298 * Reads configuration for all slots in a PCI bus and saves info.
 299 *
 300 * Note:  For non-hot plug buses, the slot # saved is the device #
 301 *
 302 * returns 0 if success
 303 */
 304int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
 305{
 306	long rc;
 307	u8 class_code;
 308	u8 header_type;
 309	u32 ID;
 310	u8 secondary_bus;
 311	struct pci_func *new_slot;
 312	int sub_bus;
 313	int FirstSupported;
 314	int LastSupported;
 315	int max_functions;
 316	int function;
 317	u8 DevError;
 318	int device = 0;
 319	int cloop = 0;
 320	int stop_it;
 321	int index;
 322
 323	/* Decide which slots are supported */
 324
 325	if (is_hot_plug) {
 326		/*
 327		 * is_hot_plug is the slot mask
 328		 */
 329		FirstSupported = is_hot_plug >> 4;
 330		LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
 331	} else {
 332		FirstSupported = 0;
 333		LastSupported = 0x1F;
 334	}
 335
 336	/* Save PCI configuration space for all devices in supported slots */
 337	ctrl->pci_bus->number = busnumber;
 338	for (device = FirstSupported; device <= LastSupported; device++) {
 339		ID = 0xFFFFFFFF;
 340		rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
 341
 342		if (ID == 0xFFFFFFFF) {
 343			if (is_hot_plug) {
 344				/* Setup slot structure with entry for empty
 345				 * slot
 346				 */
 347				new_slot = cpqhp_slot_create(busnumber);
 348				if (new_slot == NULL)
 349					return 1;
 350
 351				new_slot->bus = (u8) busnumber;
 352				new_slot->device = (u8) device;
 353				new_slot->function = 0;
 354				new_slot->is_a_board = 0;
 355				new_slot->presence_save = 0;
 356				new_slot->switch_save = 0;
 357			}
 358			continue;
 359		}
 360
 361		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
 362		if (rc)
 363			return rc;
 364
 365		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
 366		if (rc)
 367			return rc;
 368
 369		/* If multi-function device, set max_functions to 8 */
 370		if (header_type & 0x80)
 371			max_functions = 8;
 372		else
 373			max_functions = 1;
 374
 375		function = 0;
 376
 377		do {
 378			DevError = 0;
 379			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
 380				/* Recurse the subordinate bus
 381				 * get the subordinate bus number
 382				 */
 383				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
 384				if (rc) {
 385					return rc;
 386				} else {
 387					sub_bus = (int) secondary_bus;
 388
 389					/* Save secondary bus cfg spc
 390					 * with this recursive call.
 391					 */
 392					rc = cpqhp_save_config(ctrl, sub_bus, 0);
 393					if (rc)
 394						return rc;
 395					ctrl->pci_bus->number = busnumber;
 396				}
 397			}
 398
 399			index = 0;
 400			new_slot = cpqhp_slot_find(busnumber, device, index++);
 401			while (new_slot &&
 402			       (new_slot->function != (u8) function))
 403				new_slot = cpqhp_slot_find(busnumber, device, index++);
 404
 405			if (!new_slot) {
 406				/* Setup slot structure. */
 407				new_slot = cpqhp_slot_create(busnumber);
 408				if (new_slot == NULL)
 409					return 1;
 410			}
 411
 412			new_slot->bus = (u8) busnumber;
 413			new_slot->device = (u8) device;
 414			new_slot->function = (u8) function;
 415			new_slot->is_a_board = 1;
 416			new_slot->switch_save = 0x10;
 417			/* In case of unsupported board */
 418			new_slot->status = DevError;
 419			new_slot->pci_dev = pci_get_bus_and_slot(new_slot->bus, (new_slot->device << 3) | new_slot->function);
 420
 421			for (cloop = 0; cloop < 0x20; cloop++) {
 422				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop]));
 423				if (rc)
 424					return rc;
 425			}
 426
 427			pci_dev_put(new_slot->pci_dev);
 428
 429			function++;
 430
 431			stop_it = 0;
 432
 433			/* this loop skips to the next present function
 434			 * reading in Class Code and Header type.
 435			 */
 436			while ((function < max_functions) && (!stop_it)) {
 437				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
 438				if (ID == 0xFFFFFFFF) {
 439					function++;
 440					continue;
 441				}
 442				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
 443				if (rc)
 444					return rc;
 445
 446				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
 447				if (rc)
 448					return rc;
 449
 450				stop_it++;
 451			}
 452
 453		} while (function < max_functions);
 454	}			/* End of FOR loop */
 455
 456	return 0;
 457}
 458
 459
 460/*
 461 * cpqhp_save_slot_config
 462 *
 463 * Saves configuration info for all PCI devices in a given slot
 464 * including subordinate buses.
 465 *
 466 * returns 0 if success
 467 */
 468int cpqhp_save_slot_config(struct controller *ctrl, struct pci_func *new_slot)
 469{
 470	long rc;
 471	u8 class_code;
 472	u8 header_type;
 473	u32 ID;
 474	u8 secondary_bus;
 475	int sub_bus;
 476	int max_functions;
 477	int function = 0;
 478	int cloop = 0;
 479	int stop_it;
 480
 481	ID = 0xFFFFFFFF;
 482
 483	ctrl->pci_bus->number = new_slot->bus;
 484	pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
 485
 486	if (ID == 0xFFFFFFFF)
 487		return 2;
 488
 489	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
 490	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
 491
 492	if (header_type & 0x80)	/* Multi-function device */
 493		max_functions = 8;
 494	else
 495		max_functions = 1;
 496
 497	while (function < max_functions) {
 498		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
 499			/*  Recurse the subordinate bus */
 500			pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
 501
 502			sub_bus = (int) secondary_bus;
 503
 504			/* Save the config headers for the secondary
 505			 * bus.
 506			 */
 507			rc = cpqhp_save_config(ctrl, sub_bus, 0);
 508			if (rc)
 509				return(rc);
 510			ctrl->pci_bus->number = new_slot->bus;
 511
 512		}
 513
 514		new_slot->status = 0;
 515
 516		for (cloop = 0; cloop < 0x20; cloop++)
 517			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop]));
 518
 519		function++;
 520
 521		stop_it = 0;
 522
 523		/* this loop skips to the next present function
 524		 * reading in the Class Code and the Header type.
 525		 */
 526		while ((function < max_functions) && (!stop_it)) {
 527			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
 528
 529			if (ID == 0xFFFFFFFF)
 530				function++;
 531			else {
 532				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
 533				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
 534				stop_it++;
 535			}
 536		}
 537
 538	}
 539
 540	return 0;
 541}
 542
 543
 544/*
 545 * cpqhp_save_base_addr_length
 546 *
 547 * Saves the length of all base address registers for the
 548 * specified slot.  this is for hot plug REPLACE
 549 *
 550 * returns 0 if success
 551 */
 552int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func *func)
 553{
 554	u8 cloop;
 555	u8 header_type;
 556	u8 secondary_bus;
 557	u8 type;
 558	int sub_bus;
 559	u32 temp_register;
 560	u32 base;
 561	u32 rc;
 562	struct pci_func *next;
 563	int index = 0;
 564	struct pci_bus *pci_bus = ctrl->pci_bus;
 565	unsigned int devfn;
 566
 567	func = cpqhp_slot_find(func->bus, func->device, index++);
 568
 569	while (func != NULL) {
 570		pci_bus->number = func->bus;
 571		devfn = PCI_DEVFN(func->device, func->function);
 572
 573		/* Check for Bridge */
 574		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
 575
 576		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
 577			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
 578
 579			sub_bus = (int) secondary_bus;
 580
 581			next = cpqhp_slot_list[sub_bus];
 582
 583			while (next != NULL) {
 584				rc = cpqhp_save_base_addr_length(ctrl, next);
 585				if (rc)
 586					return rc;
 587
 588				next = next->next;
 589			}
 590			pci_bus->number = func->bus;
 591
 592			/* FIXME: this loop is duplicated in the non-bridge
 593			 * case.  The two could be rolled together Figure out
 594			 * IO and memory base lengths
 595			 */
 596			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
 597				temp_register = 0xFFFFFFFF;
 598				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
 599				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
 600				/* If this register is implemented */
 601				if (base) {
 602					if (base & 0x01L) {
 603						/* IO base
 604						 * set base = amount of IO space
 605						 * requested
 606						 */
 607						base = base & 0xFFFFFFFE;
 608						base = (~base) + 1;
 609
 610						type = 1;
 611					} else {
 612						/* memory base */
 613						base = base & 0xFFFFFFF0;
 614						base = (~base) + 1;
 615
 616						type = 0;
 617					}
 618				} else {
 619					base = 0x0L;
 620					type = 0;
 621				}
 622
 623				/* Save information in slot structure */
 624				func->base_length[(cloop - 0x10) >> 2] =
 625				base;
 626				func->base_type[(cloop - 0x10) >> 2] = type;
 627
 628			}	/* End of base register loop */
 629
 630		} else if ((header_type & 0x7F) == 0x00) {
 631			/* Figure out IO and memory base lengths */
 632			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
 633				temp_register = 0xFFFFFFFF;
 634				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
 635				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
 636
 637				/* If this register is implemented */
 638				if (base) {
 639					if (base & 0x01L) {
 640						/* IO base
 641						 * base = amount of IO space
 642						 * requested
 643						 */
 644						base = base & 0xFFFFFFFE;
 645						base = (~base) + 1;
 646
 647						type = 1;
 648					} else {
 649						/* memory base
 650						 * base = amount of memory
 651						 * space requested
 652						 */
 653						base = base & 0xFFFFFFF0;
 654						base = (~base) + 1;
 655
 656						type = 0;
 657					}
 658				} else {
 659					base = 0x0L;
 660					type = 0;
 661				}
 662
 663				/* Save information in slot structure */
 664				func->base_length[(cloop - 0x10) >> 2] = base;
 665				func->base_type[(cloop - 0x10) >> 2] = type;
 666
 667			}	/* End of base register loop */
 668
 669		} else {	  /* Some other unknown header type */
 670		}
 671
 672		/* find the next device in this slot */
 673		func = cpqhp_slot_find(func->bus, func->device, index++);
 674	}
 675
 676	return(0);
 677}
 678
 679
 680/*
 681 * cpqhp_save_used_resources
 682 *
 683 * Stores used resource information for existing boards.  this is
 684 * for boards that were in the system when this driver was loaded.
 685 * this function is for hot plug ADD
 686 *
 687 * returns 0 if success
 688 */
 689int cpqhp_save_used_resources(struct controller *ctrl, struct pci_func *func)
 690{
 691	u8 cloop;
 692	u8 header_type;
 693	u8 secondary_bus;
 694	u8 temp_byte;
 695	u8 b_base;
 696	u8 b_length;
 697	u16 command;
 698	u16 save_command;
 699	u16 w_base;
 700	u16 w_length;
 701	u32 temp_register;
 702	u32 save_base;
 703	u32 base;
 704	int index = 0;
 705	struct pci_resource *mem_node;
 706	struct pci_resource *p_mem_node;
 707	struct pci_resource *io_node;
 708	struct pci_resource *bus_node;
 709	struct pci_bus *pci_bus = ctrl->pci_bus;
 710	unsigned int devfn;
 711
 712	func = cpqhp_slot_find(func->bus, func->device, index++);
 713
 714	while ((func != NULL) && func->is_a_board) {
 715		pci_bus->number = func->bus;
 716		devfn = PCI_DEVFN(func->device, func->function);
 717
 718		/* Save the command register */
 719		pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
 720
 721		/* disable card */
 722		command = 0x00;
 723		pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
 724
 725		/* Check for Bridge */
 726		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
 727
 728		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
 729			/* Clear Bridge Control Register */
 730			command = 0x00;
 731			pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
 732			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
 733			pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
 734
 735			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
 736			if (!bus_node)
 737				return -ENOMEM;
 738
 739			bus_node->base = secondary_bus;
 740			bus_node->length = temp_byte - secondary_bus + 1;
 741
 742			bus_node->next = func->bus_head;
 743			func->bus_head = bus_node;
 744
 745			/* Save IO base and Limit registers */
 746			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
 747			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
 748
 749			if ((b_base <= b_length) && (save_command & 0x01)) {
 750				io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
 751				if (!io_node)
 752					return -ENOMEM;
 753
 754				io_node->base = (b_base & 0xF0) << 8;
 755				io_node->length = (b_length - b_base + 0x10) << 8;
 756
 757				io_node->next = func->io_head;
 758				func->io_head = io_node;
 759			}
 760
 761			/* Save memory base and Limit registers */
 762			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
 763			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
 764
 765			if ((w_base <= w_length) && (save_command & 0x02)) {
 766				mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
 767				if (!mem_node)
 768					return -ENOMEM;
 769
 770				mem_node->base = w_base << 16;
 771				mem_node->length = (w_length - w_base + 0x10) << 16;
 772
 773				mem_node->next = func->mem_head;
 774				func->mem_head = mem_node;
 775			}
 776
 777			/* Save prefetchable memory base and Limit registers */
 778			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
 779			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
 780
 781			if ((w_base <= w_length) && (save_command & 0x02)) {
 782				p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
 783				if (!p_mem_node)
 784					return -ENOMEM;
 785
 786				p_mem_node->base = w_base << 16;
 787				p_mem_node->length = (w_length - w_base + 0x10) << 16;
 788
 789				p_mem_node->next = func->p_mem_head;
 790				func->p_mem_head = p_mem_node;
 791			}
 792			/* Figure out IO and memory base lengths */
 793			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
 794				pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
 795
 796				temp_register = 0xFFFFFFFF;
 797				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
 798				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
 799
 800				temp_register = base;
 801
 802				/* If this register is implemented */
 803				if (base) {
 804					if (((base & 0x03L) == 0x01)
 805					    && (save_command & 0x01)) {
 806						/* IO base
 807						 * set temp_register = amount
 808						 * of IO space requested
 809						 */
 810						temp_register = base & 0xFFFFFFFE;
 811						temp_register = (~temp_register) + 1;
 812
 813						io_node = kmalloc(sizeof(*io_node),
 814								GFP_KERNEL);
 815						if (!io_node)
 816							return -ENOMEM;
 817
 818						io_node->base =
 819						save_base & (~0x03L);
 820						io_node->length = temp_register;
 821
 822						io_node->next = func->io_head;
 823						func->io_head = io_node;
 824					} else
 825						if (((base & 0x0BL) == 0x08)
 826						    && (save_command & 0x02)) {
 827						/* prefetchable memory base */
 828						temp_register = base & 0xFFFFFFF0;
 829						temp_register = (~temp_register) + 1;
 830
 831						p_mem_node = kmalloc(sizeof(*p_mem_node),
 832								GFP_KERNEL);
 833						if (!p_mem_node)
 834							return -ENOMEM;
 835
 836						p_mem_node->base = save_base & (~0x0FL);
 837						p_mem_node->length = temp_register;
 838
 839						p_mem_node->next = func->p_mem_head;
 840						func->p_mem_head = p_mem_node;
 841					} else
 842						if (((base & 0x0BL) == 0x00)
 843						    && (save_command & 0x02)) {
 844						/* prefetchable memory base */
 845						temp_register = base & 0xFFFFFFF0;
 846						temp_register = (~temp_register) + 1;
 847
 848						mem_node = kmalloc(sizeof(*mem_node),
 849								GFP_KERNEL);
 850						if (!mem_node)
 851							return -ENOMEM;
 852
 853						mem_node->base = save_base & (~0x0FL);
 854						mem_node->length = temp_register;
 855
 856						mem_node->next = func->mem_head;
 857						func->mem_head = mem_node;
 858					} else
 859						return(1);
 860				}
 861			}	/* End of base register loop */
 862		/* Standard header */
 863		} else if ((header_type & 0x7F) == 0x00) {
 864			/* Figure out IO and memory base lengths */
 865			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
 866				pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
 867
 868				temp_register = 0xFFFFFFFF;
 869				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
 870				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
 871
 872				temp_register = base;
 873
 874				/* If this register is implemented */
 875				if (base) {
 876					if (((base & 0x03L) == 0x01)
 877					    && (save_command & 0x01)) {
 878						/* IO base
 879						 * set temp_register = amount
 880						 * of IO space requested
 881						 */
 882						temp_register = base & 0xFFFFFFFE;
 883						temp_register = (~temp_register) + 1;
 884
 885						io_node = kmalloc(sizeof(*io_node),
 886								GFP_KERNEL);
 887						if (!io_node)
 888							return -ENOMEM;
 889
 890						io_node->base = save_base & (~0x01L);
 891						io_node->length = temp_register;
 892
 893						io_node->next = func->io_head;
 894						func->io_head = io_node;
 895					} else
 896						if (((base & 0x0BL) == 0x08)
 897						    && (save_command & 0x02)) {
 898						/* prefetchable memory base */
 899						temp_register = base & 0xFFFFFFF0;
 900						temp_register = (~temp_register) + 1;
 901
 902						p_mem_node = kmalloc(sizeof(*p_mem_node),
 903								GFP_KERNEL);
 904						if (!p_mem_node)
 905							return -ENOMEM;
 906
 907						p_mem_node->base = save_base & (~0x0FL);
 908						p_mem_node->length = temp_register;
 909
 910						p_mem_node->next = func->p_mem_head;
 911						func->p_mem_head = p_mem_node;
 912					} else
 913						if (((base & 0x0BL) == 0x00)
 914						    && (save_command & 0x02)) {
 915						/* prefetchable memory base */
 916						temp_register = base & 0xFFFFFFF0;
 917						temp_register = (~temp_register) + 1;
 918
 919						mem_node = kmalloc(sizeof(*mem_node),
 920								GFP_KERNEL);
 921						if (!mem_node)
 922							return -ENOMEM;
 923
 924						mem_node->base = save_base & (~0x0FL);
 925						mem_node->length = temp_register;
 926
 927						mem_node->next = func->mem_head;
 928						func->mem_head = mem_node;
 929					} else
 930						return(1);
 931				}
 932			}	/* End of base register loop */
 933		}
 934
 935		/* find the next device in this slot */
 936		func = cpqhp_slot_find(func->bus, func->device, index++);
 937	}
 938
 939	return 0;
 940}
 941
 942
 943/*
 944 * cpqhp_configure_board
 945 *
 946 * Copies saved configuration information to one slot.
 947 * this is called recursively for bridge devices.
 948 * this is for hot plug REPLACE!
 949 *
 950 * returns 0 if success
 951 */
 952int cpqhp_configure_board(struct controller *ctrl, struct pci_func *func)
 953{
 954	int cloop;
 955	u8 header_type;
 956	u8 secondary_bus;
 957	int sub_bus;
 958	struct pci_func *next;
 959	u32 temp;
 960	u32 rc;
 961	int index = 0;
 962	struct pci_bus *pci_bus = ctrl->pci_bus;
 963	unsigned int devfn;
 964
 965	func = cpqhp_slot_find(func->bus, func->device, index++);
 966
 967	while (func != NULL) {
 968		pci_bus->number = func->bus;
 969		devfn = PCI_DEVFN(func->device, func->function);
 970
 971		/* Start at the top of config space so that the control
 972		 * registers are programmed last
 973		 */
 974		for (cloop = 0x3C; cloop > 0; cloop -= 4)
 975			pci_bus_write_config_dword(pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
 976
 977		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
 978
 979		/* If this is a bridge device, restore subordinate devices */
 980		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
 981			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
 982
 983			sub_bus = (int) secondary_bus;
 984
 985			next = cpqhp_slot_list[sub_bus];
 986
 987			while (next != NULL) {
 988				rc = cpqhp_configure_board(ctrl, next);
 989				if (rc)
 990					return rc;
 991
 992				next = next->next;
 993			}
 994		} else {
 995
 996			/* Check all the base Address Registers to make sure
 997			 * they are the same.  If not, the board is different.
 998			 */
 999
1000			for (cloop = 16; cloop < 40; cloop += 4) {
1001				pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp);
1002
1003				if (temp != func->config_space[cloop >> 2]) {
1004					dbg("Config space compare failure!!! offset = %x\n", cloop);
1005					dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
1006					dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
1007					return 1;
1008				}
1009			}
1010		}
1011
1012		func->configured = 1;
1013
1014		func = cpqhp_slot_find(func->bus, func->device, index++);
1015	}
1016
1017	return 0;
1018}
1019
1020
1021/*
1022 * cpqhp_valid_replace
1023 *
1024 * this function checks to see if a board is the same as the
1025 * one it is replacing.  this check will detect if the device's
1026 * vendor or device id's are the same
1027 *
1028 * returns 0 if the board is the same nonzero otherwise
1029 */
1030int cpqhp_valid_replace(struct controller *ctrl, struct pci_func *func)
1031{
1032	u8 cloop;
1033	u8 header_type;
1034	u8 secondary_bus;
1035	u8 type;
1036	u32 temp_register = 0;
1037	u32 base;
1038	u32 rc;
1039	struct pci_func *next;
1040	int index = 0;
1041	struct pci_bus *pci_bus = ctrl->pci_bus;
1042	unsigned int devfn;
1043
1044	if (!func->is_a_board)
1045		return(ADD_NOT_SUPPORTED);
1046
1047	func = cpqhp_slot_find(func->bus, func->device, index++);
1048
1049	while (func != NULL) {
1050		pci_bus->number = func->bus;
1051		devfn = PCI_DEVFN(func->device, func->function);
1052
1053		pci_bus_read_config_dword(pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
1054
1055		/* No adapter present */
1056		if (temp_register == 0xFFFFFFFF)
1057			return(NO_ADAPTER_PRESENT);
1058
1059		if (temp_register != func->config_space[0])
1060			return(ADAPTER_NOT_SAME);
1061
1062		/* Check for same revision number and class code */
1063		pci_bus_read_config_dword(pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
1064
1065		/* Adapter not the same */
1066		if (temp_register != func->config_space[0x08 >> 2])
1067			return(ADAPTER_NOT_SAME);
1068
1069		/* Check for Bridge */
1070		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
1071
1072		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
1073			/* In order to continue checking, we must program the
1074			 * bus registers in the bridge to respond to accesses
1075			 * for its subordinate bus(es)
1076			 */
1077
1078			temp_register = func->config_space[0x18 >> 2];
1079			pci_bus_write_config_dword(pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
1080
1081			secondary_bus = (temp_register >> 8) & 0xFF;
1082
1083			next = cpqhp_slot_list[secondary_bus];
1084
1085			while (next != NULL) {
1086				rc = cpqhp_valid_replace(ctrl, next);
1087				if (rc)
1088					return rc;
1089
1090				next = next->next;
1091			}
1092
1093		}
1094		/* Check to see if it is a standard config header */
1095		else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
1096			/* Check subsystem vendor and ID */
1097			pci_bus_read_config_dword(pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
1098
1099			if (temp_register != func->config_space[0x2C >> 2]) {
1100				/* If it's a SMART-2 and the register isn't
1101				 * filled in, ignore the difference because
1102				 * they just have an old rev of the firmware
1103				 */
1104				if (!((func->config_space[0] == 0xAE100E11)
1105				      && (temp_register == 0x00L)))
1106					return(ADAPTER_NOT_SAME);
1107			}
1108			/* Figure out IO and memory base lengths */
1109			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1110				temp_register = 0xFFFFFFFF;
1111				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
1112				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
1113
1114				/* If this register is implemented */
1115				if (base) {
1116					if (base & 0x01L) {
1117						/* IO base
1118						 * set base = amount of IO
1119						 * space requested
1120						 */
1121						base = base & 0xFFFFFFFE;
1122						base = (~base) + 1;
1123
1124						type = 1;
1125					} else {
1126						/* memory base */
1127						base = base & 0xFFFFFFF0;
1128						base = (~base) + 1;
1129
1130						type = 0;
1131					}
1132				} else {
1133					base = 0x0L;
1134					type = 0;
1135				}
1136
1137				/* Check information in slot structure */
1138				if (func->base_length[(cloop - 0x10) >> 2] != base)
1139					return(ADAPTER_NOT_SAME);
1140
1141				if (func->base_type[(cloop - 0x10) >> 2] != type)
1142					return(ADAPTER_NOT_SAME);
1143
1144			}	/* End of base register loop */
1145
1146		}		/* End of (type 0 config space) else */
1147		else {
1148			/* this is not a type 0 or 1 config space header so
1149			 * we don't know how to do it
1150			 */
1151			return(DEVICE_TYPE_NOT_SUPPORTED);
1152		}
1153
1154		/* Get the next function */
1155		func = cpqhp_slot_find(func->bus, func->device, index++);
1156	}
1157
1158
1159	return 0;
1160}
1161
1162
1163/*
1164 * cpqhp_find_available_resources
1165 *
1166 * Finds available memory, IO, and IRQ resources for programming
1167 * devices which may be added to the system
1168 * this function is for hot plug ADD!
1169 *
1170 * returns 0 if success
1171 */
1172int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
1173{
1174	u8 temp;
1175	u8 populated_slot;
1176	u8 bridged_slot;
1177	void __iomem *one_slot;
1178	void __iomem *rom_resource_table;
1179	struct pci_func *func = NULL;
1180	int i = 10, index;
1181	u32 temp_dword, rc;
1182	struct pci_resource *mem_node;
1183	struct pci_resource *p_mem_node;
1184	struct pci_resource *io_node;
1185	struct pci_resource *bus_node;
1186
1187	rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
1188	dbg("rom_resource_table = %p\n", rom_resource_table);
1189
1190	if (rom_resource_table == NULL)
1191		return -ENODEV;
1192
1193	/* Sum all resources and setup resource maps */
1194	unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
1195	dbg("unused_IRQ = %x\n", unused_IRQ);
1196
1197	temp = 0;
1198	while (unused_IRQ) {
1199		if (unused_IRQ & 1) {
1200			cpqhp_disk_irq = temp;
1201			break;
1202		}
1203		unused_IRQ = unused_IRQ >> 1;
1204		temp++;
1205	}
1206
1207	dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1208	unused_IRQ = unused_IRQ >> 1;
1209	temp++;
1210
1211	while (unused_IRQ) {
1212		if (unused_IRQ & 1) {
1213			cpqhp_nic_irq = temp;
1214			break;
1215		}
1216		unused_IRQ = unused_IRQ >> 1;
1217		temp++;
1218	}
1219
1220	dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1221	unused_IRQ = readl(rom_resource_table + PCIIRQ);
1222
1223	temp = 0;
1224
1225	if (!cpqhp_nic_irq)
1226		cpqhp_nic_irq = ctrl->cfgspc_irq;
1227
1228	if (!cpqhp_disk_irq)
1229		cpqhp_disk_irq = ctrl->cfgspc_irq;
1230
1231	dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1232
1233	rc = compaq_nvram_load(rom_start, ctrl);
1234	if (rc)
1235		return rc;
1236
1237	one_slot = rom_resource_table + sizeof(struct hrt);
1238
1239	i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
1240	dbg("number_of_entries = %d\n", i);
1241
1242	if (!readb(one_slot + SECONDARY_BUS))
1243		return 1;
1244
1245	dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1246
1247	while (i && readb(one_slot + SECONDARY_BUS)) {
1248		u8 dev_func = readb(one_slot + DEV_FUNC);
1249		u8 primary_bus = readb(one_slot + PRIMARY_BUS);
1250		u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
1251		u8 max_bus = readb(one_slot + MAX_BUS);
1252		u16 io_base = readw(one_slot + IO_BASE);
1253		u16 io_length = readw(one_slot + IO_LENGTH);
1254		u16 mem_base = readw(one_slot + MEM_BASE);
1255		u16 mem_length = readw(one_slot + MEM_LENGTH);
1256		u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
1257		u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
1258
1259		dbg("%2.2x | %4.4x  | %4.4x | %4.4x   | %4.4x | %4.4x   | %4.4x |%2.2x %2.2x %2.2x\n",
1260		    dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1261		    primary_bus, secondary_bus, max_bus);
1262
1263		/* If this entry isn't for our controller's bus, ignore it */
1264		if (primary_bus != ctrl->bus) {
1265			i--;
1266			one_slot += sizeof(struct slot_rt);
1267			continue;
1268		}
1269		/* find out if this entry is for an occupied slot */
1270		ctrl->pci_bus->number = primary_bus;
1271		pci_bus_read_config_dword(ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
1272		dbg("temp_D_word = %x\n", temp_dword);
1273
1274		if (temp_dword != 0xFFFFFFFF) {
1275			index = 0;
1276			func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
1277
1278			while (func && (func->function != (dev_func & 0x07))) {
1279				dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1280				func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
1281			}
1282
1283			/* If we can't find a match, skip this table entry */
1284			if (!func) {
1285				i--;
1286				one_slot += sizeof(struct slot_rt);
1287				continue;
1288			}
1289			/* this may not work and shouldn't be used */
1290			if (secondary_bus != primary_bus)
1291				bridged_slot = 1;
1292			else
1293				bridged_slot = 0;
1294
1295			populated_slot = 1;
1296		} else {
1297			populated_slot = 0;
1298			bridged_slot = 0;
1299		}
1300
1301
1302		/* If we've got a valid IO base, use it */
1303
1304		temp_dword = io_base + io_length;
1305
1306		if ((io_base) && (temp_dword < 0x10000)) {
1307			io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
1308			if (!io_node)
1309				return -ENOMEM;
1310
1311			io_node->base = io_base;
1312			io_node->length = io_length;
1313
1314			dbg("found io_node(base, length) = %x, %x\n",
1315					io_node->base, io_node->length);
1316			dbg("populated slot =%d \n", populated_slot);
1317			if (!populated_slot) {
1318				io_node->next = ctrl->io_head;
1319				ctrl->io_head = io_node;
1320			} else {
1321				io_node->next = func->io_head;
1322				func->io_head = io_node;
1323			}
1324		}
1325
1326		/* If we've got a valid memory base, use it */
1327		temp_dword = mem_base + mem_length;
1328		if ((mem_base) && (temp_dword < 0x10000)) {
1329			mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
1330			if (!mem_node)
1331				return -ENOMEM;
1332
1333			mem_node->base = mem_base << 16;
1334
1335			mem_node->length = mem_length << 16;
1336
1337			dbg("found mem_node(base, length) = %x, %x\n",
1338					mem_node->base, mem_node->length);
1339			dbg("populated slot =%d \n", populated_slot);
1340			if (!populated_slot) {
1341				mem_node->next = ctrl->mem_head;
1342				ctrl->mem_head = mem_node;
1343			} else {
1344				mem_node->next = func->mem_head;
1345				func->mem_head = mem_node;
1346			}
1347		}
1348
1349		/* If we've got a valid prefetchable memory base, and
1350		 * the base + length isn't greater than 0xFFFF
1351		 */
1352		temp_dword = pre_mem_base + pre_mem_length;
1353		if ((pre_mem_base) && (temp_dword < 0x10000)) {
1354			p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
1355			if (!p_mem_node)
1356				return -ENOMEM;
1357
1358			p_mem_node->base = pre_mem_base << 16;
1359
1360			p_mem_node->length = pre_mem_length << 16;
1361			dbg("found p_mem_node(base, length) = %x, %x\n",
1362					p_mem_node->base, p_mem_node->length);
1363			dbg("populated slot =%d \n", populated_slot);
1364
1365			if (!populated_slot) {
1366				p_mem_node->next = ctrl->p_mem_head;
1367				ctrl->p_mem_head = p_mem_node;
1368			} else {
1369				p_mem_node->next = func->p_mem_head;
1370				func->p_mem_head = p_mem_node;
1371			}
1372		}
1373
1374		/* If we've got a valid bus number, use it
1375		 * The second condition is to ignore bus numbers on
1376		 * populated slots that don't have PCI-PCI bridges
1377		 */
1378		if (secondary_bus && (secondary_bus != primary_bus)) {
1379			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
1380			if (!bus_node)
1381				return -ENOMEM;
1382
1383			bus_node->base = secondary_bus;
1384			bus_node->length = max_bus - secondary_bus + 1;
1385			dbg("found bus_node(base, length) = %x, %x\n",
1386					bus_node->base, bus_node->length);
1387			dbg("populated slot =%d \n", populated_slot);
1388			if (!populated_slot) {
1389				bus_node->next = ctrl->bus_head;
1390				ctrl->bus_head = bus_node;
1391			} else {
1392				bus_node->next = func->bus_head;
1393				func->bus_head = bus_node;
1394			}
1395		}
1396
1397		i--;
1398		one_slot += sizeof(struct slot_rt);
1399	}
1400
1401	/* If all of the following fail, we don't have any resources for
1402	 * hot plug add
1403	 */
1404	rc = 1;
1405	rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1406	rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1407	rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1408	rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1409
1410	return rc;
1411}
1412
1413
1414/*
1415 * cpqhp_return_board_resources
1416 *
1417 * this routine returns all resources allocated to a board to
1418 * the available pool.
1419 *
1420 * returns 0 if success
1421 */
1422int cpqhp_return_board_resources(struct pci_func *func, struct resource_lists *resources)
1423{
1424	int rc = 0;
1425	struct pci_resource *node;
1426	struct pci_resource *t_node;
1427	dbg("%s\n", __func__);
1428
1429	if (!func)
1430		return 1;
1431
1432	node = func->io_head;
1433	func->io_head = NULL;
1434	while (node) {
1435		t_node = node->next;
1436		return_resource(&(resources->io_head), node);
1437		node = t_node;
1438	}
1439
1440	node = func->mem_head;
1441	func->mem_head = NULL;
1442	while (node) {
1443		t_node = node->next;
1444		return_resource(&(resources->mem_head), node);
1445		node = t_node;
1446	}
1447
1448	node = func->p_mem_head;
1449	func->p_mem_head = NULL;
1450	while (node) {
1451		t_node = node->next;
1452		return_resource(&(resources->p_mem_head), node);
1453		node = t_node;
1454	}
1455
1456	node = func->bus_head;
1457	func->bus_head = NULL;
1458	while (node) {
1459		t_node = node->next;
1460		return_resource(&(resources->bus_head), node);
1461		node = t_node;
1462	}
1463
1464	rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
1465	rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
1466	rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
1467	rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
1468
1469	return rc;
1470}
1471
1472
1473/*
1474 * cpqhp_destroy_resource_list
1475 *
1476 * Puts node back in the resource list pointed to by head
1477 */
1478void cpqhp_destroy_resource_list(struct resource_lists *resources)
1479{
1480	struct pci_resource *res, *tres;
1481
1482	res = resources->io_head;
1483	resources->io_head = NULL;
1484
1485	while (res) {
1486		tres = res;
1487		res = res->next;
1488		kfree(tres);
1489	}
1490
1491	res = resources->mem_head;
1492	resources->mem_head = NULL;
1493
1494	while (res) {
1495		tres = res;
1496		res = res->next;
1497		kfree(tres);
1498	}
1499
1500	res = resources->p_mem_head;
1501	resources->p_mem_head = NULL;
1502
1503	while (res) {
1504		tres = res;
1505		res = res->next;
1506		kfree(tres);
1507	}
1508
1509	res = resources->bus_head;
1510	resources->bus_head = NULL;
1511
1512	while (res) {
1513		tres = res;
1514		res = res->next;
1515		kfree(tres);
1516	}
1517}
1518
1519
1520/*
1521 * cpqhp_destroy_board_resources
1522 *
1523 * Puts node back in the resource list pointed to by head
1524 */
1525void cpqhp_destroy_board_resources(struct pci_func *func)
1526{
1527	struct pci_resource *res, *tres;
1528
1529	res = func->io_head;
1530	func->io_head = NULL;
1531
1532	while (res) {
1533		tres = res;
1534		res = res->next;
1535		kfree(tres);
1536	}
1537
1538	res = func->mem_head;
1539	func->mem_head = NULL;
1540
1541	while (res) {
1542		tres = res;
1543		res = res->next;
1544		kfree(tres);
1545	}
1546
1547	res = func->p_mem_head;
1548	func->p_mem_head = NULL;
1549
1550	while (res) {
1551		tres = res;
1552		res = res->next;
1553		kfree(tres);
1554	}
1555
1556	res = func->bus_head;
1557	func->bus_head = NULL;
1558
1559	while (res) {
1560		tres = res;
1561		res = res->next;
1562		kfree(tres);
1563	}
1564}