Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * nvmem framework core.
   4 *
   5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
   6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
   7 */
   8
   9#include <linux/device.h>
  10#include <linux/export.h>
  11#include <linux/fs.h>
  12#include <linux/idr.h>
  13#include <linux/init.h>
  14#include <linux/kref.h>
  15#include <linux/module.h>
  16#include <linux/nvmem-consumer.h>
  17#include <linux/nvmem-provider.h>
  18#include <linux/gpio/consumer.h>
  19#include <linux/of.h>
  20#include <linux/slab.h>
  21
  22#include "internals.h"
  23
  24#define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
  25
  26#define FLAG_COMPAT		BIT(0)
  27struct nvmem_cell_entry {
  28	const char		*name;
  29	int			offset;
  30	size_t			raw_len;
  31	int			bytes;
  32	int			bit_offset;
  33	int			nbits;
  34	nvmem_cell_post_process_t read_post_process;
  35	void			*priv;
  36	struct device_node	*np;
  37	struct nvmem_device	*nvmem;
  38	struct list_head	node;
  39};
  40
  41struct nvmem_cell {
  42	struct nvmem_cell_entry *entry;
  43	const char		*id;
  44	int			index;
  45};
  46
  47static DEFINE_MUTEX(nvmem_mutex);
  48static DEFINE_IDA(nvmem_ida);
  49
  50static DEFINE_MUTEX(nvmem_cell_mutex);
  51static LIST_HEAD(nvmem_cell_tables);
  52
  53static DEFINE_MUTEX(nvmem_lookup_mutex);
  54static LIST_HEAD(nvmem_lookup_list);
  55
  56static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
  57
  58static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
  59			    void *val, size_t bytes)
  60{
  61	if (nvmem->reg_read)
  62		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
  63
  64	return -EINVAL;
  65}
  66
  67static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
  68			     void *val, size_t bytes)
  69{
  70	int ret;
  71
  72	if (nvmem->reg_write) {
  73		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
  74		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
  75		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
  76		return ret;
  77	}
  78
  79	return -EINVAL;
  80}
  81
  82static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
  83				      unsigned int offset, void *val,
  84				      size_t bytes, int write)
  85{
  86
  87	unsigned int end = offset + bytes;
  88	unsigned int kend, ksize;
  89	const struct nvmem_keepout *keepout = nvmem->keepout;
  90	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
  91	int rc;
  92
  93	/*
  94	 * Skip all keepouts before the range being accessed.
  95	 * Keepouts are sorted.
  96	 */
  97	while ((keepout < keepoutend) && (keepout->end <= offset))
  98		keepout++;
  99
 100	while ((offset < end) && (keepout < keepoutend)) {
 101		/* Access the valid portion before the keepout. */
 102		if (offset < keepout->start) {
 103			kend = min(end, keepout->start);
 104			ksize = kend - offset;
 105			if (write)
 106				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
 107			else
 108				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
 109
 110			if (rc)
 111				return rc;
 112
 113			offset += ksize;
 114			val += ksize;
 115		}
 116
 117		/*
 118		 * Now we're aligned to the start of this keepout zone. Go
 119		 * through it.
 120		 */
 121		kend = min(end, keepout->end);
 122		ksize = kend - offset;
 123		if (!write)
 124			memset(val, keepout->value, ksize);
 125
 126		val += ksize;
 127		offset += ksize;
 128		keepout++;
 129	}
 130
 131	/*
 132	 * If we ran out of keepouts but there's still stuff to do, send it
 133	 * down directly
 134	 */
 135	if (offset < end) {
 136		ksize = end - offset;
 137		if (write)
 138			return __nvmem_reg_write(nvmem, offset, val, ksize);
 139		else
 140			return __nvmem_reg_read(nvmem, offset, val, ksize);
 141	}
 142
 143	return 0;
 144}
 145
 146static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
 147			  void *val, size_t bytes)
 148{
 149	if (!nvmem->nkeepout)
 150		return __nvmem_reg_read(nvmem, offset, val, bytes);
 151
 152	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
 153}
 154
 155static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
 156			   void *val, size_t bytes)
 157{
 158	if (!nvmem->nkeepout)
 159		return __nvmem_reg_write(nvmem, offset, val, bytes);
 160
 161	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
 162}
 163
 164#ifdef CONFIG_NVMEM_SYSFS
 165static const char * const nvmem_type_str[] = {
 166	[NVMEM_TYPE_UNKNOWN] = "Unknown",
 167	[NVMEM_TYPE_EEPROM] = "EEPROM",
 168	[NVMEM_TYPE_OTP] = "OTP",
 169	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
 170	[NVMEM_TYPE_FRAM] = "FRAM",
 171};
 172
 173#ifdef CONFIG_DEBUG_LOCK_ALLOC
 174static struct lock_class_key eeprom_lock_key;
 175#endif
 176
 177static ssize_t type_show(struct device *dev,
 178			 struct device_attribute *attr, char *buf)
 179{
 180	struct nvmem_device *nvmem = to_nvmem_device(dev);
 181
 182	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
 183}
 184
 185static DEVICE_ATTR_RO(type);
 186
 187static struct attribute *nvmem_attrs[] = {
 188	&dev_attr_type.attr,
 189	NULL,
 190};
 191
 192static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
 193				   struct bin_attribute *attr, char *buf,
 194				   loff_t pos, size_t count)
 195{
 196	struct device *dev;
 197	struct nvmem_device *nvmem;
 198	int rc;
 199
 200	if (attr->private)
 201		dev = attr->private;
 202	else
 203		dev = kobj_to_dev(kobj);
 204	nvmem = to_nvmem_device(dev);
 205
 206	/* Stop the user from reading */
 207	if (pos >= nvmem->size)
 208		return 0;
 209
 210	if (!IS_ALIGNED(pos, nvmem->stride))
 211		return -EINVAL;
 212
 213	if (count < nvmem->word_size)
 214		return -EINVAL;
 215
 216	if (pos + count > nvmem->size)
 217		count = nvmem->size - pos;
 218
 219	count = round_down(count, nvmem->word_size);
 220
 221	if (!nvmem->reg_read)
 222		return -EPERM;
 223
 224	rc = nvmem_reg_read(nvmem, pos, buf, count);
 225
 226	if (rc)
 227		return rc;
 228
 229	return count;
 230}
 231
 232static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
 233				    struct bin_attribute *attr, char *buf,
 234				    loff_t pos, size_t count)
 235{
 236	struct device *dev;
 237	struct nvmem_device *nvmem;
 238	int rc;
 239
 240	if (attr->private)
 241		dev = attr->private;
 242	else
 243		dev = kobj_to_dev(kobj);
 244	nvmem = to_nvmem_device(dev);
 245
 246	/* Stop the user from writing */
 247	if (pos >= nvmem->size)
 248		return -EFBIG;
 249
 250	if (!IS_ALIGNED(pos, nvmem->stride))
 251		return -EINVAL;
 252
 253	if (count < nvmem->word_size)
 254		return -EINVAL;
 255
 256	if (pos + count > nvmem->size)
 257		count = nvmem->size - pos;
 258
 259	count = round_down(count, nvmem->word_size);
 260
 261	if (!nvmem->reg_write)
 262		return -EPERM;
 263
 264	rc = nvmem_reg_write(nvmem, pos, buf, count);
 265
 266	if (rc)
 267		return rc;
 268
 269	return count;
 270}
 271
 272static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
 273{
 274	umode_t mode = 0400;
 275
 276	if (!nvmem->root_only)
 277		mode |= 0044;
 278
 279	if (!nvmem->read_only)
 280		mode |= 0200;
 281
 282	if (!nvmem->reg_write)
 283		mode &= ~0200;
 284
 285	if (!nvmem->reg_read)
 286		mode &= ~0444;
 287
 288	return mode;
 289}
 290
 291static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
 292					 struct bin_attribute *attr, int i)
 293{
 294	struct device *dev = kobj_to_dev(kobj);
 295	struct nvmem_device *nvmem = to_nvmem_device(dev);
 296
 297	attr->size = nvmem->size;
 298
 299	return nvmem_bin_attr_get_umode(nvmem);
 300}
 301
 302static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
 303					    const char *id, int index);
 304
 305static ssize_t nvmem_cell_attr_read(struct file *filp, struct kobject *kobj,
 306				    struct bin_attribute *attr, char *buf,
 307				    loff_t pos, size_t count)
 308{
 309	struct nvmem_cell_entry *entry;
 310	struct nvmem_cell *cell = NULL;
 311	size_t cell_sz, read_len;
 312	void *content;
 313
 314	entry = attr->private;
 315	cell = nvmem_create_cell(entry, entry->name, 0);
 316	if (IS_ERR(cell))
 317		return PTR_ERR(cell);
 318
 319	if (!cell)
 320		return -EINVAL;
 321
 322	content = nvmem_cell_read(cell, &cell_sz);
 323	if (IS_ERR(content)) {
 324		read_len = PTR_ERR(content);
 325		goto destroy_cell;
 326	}
 327
 328	read_len = min_t(unsigned int, cell_sz - pos, count);
 329	memcpy(buf, content + pos, read_len);
 330	kfree(content);
 331
 332destroy_cell:
 333	kfree_const(cell->id);
 334	kfree(cell);
 335
 336	return read_len;
 337}
 338
 339/* default read/write permissions */
 340static struct bin_attribute bin_attr_rw_nvmem = {
 341	.attr	= {
 342		.name	= "nvmem",
 343		.mode	= 0644,
 344	},
 345	.read	= bin_attr_nvmem_read,
 346	.write	= bin_attr_nvmem_write,
 347};
 348
 349static struct bin_attribute *nvmem_bin_attributes[] = {
 350	&bin_attr_rw_nvmem,
 351	NULL,
 352};
 353
 354static const struct attribute_group nvmem_bin_group = {
 355	.bin_attrs	= nvmem_bin_attributes,
 356	.attrs		= nvmem_attrs,
 357	.is_bin_visible = nvmem_bin_attr_is_visible,
 358};
 359
 360/* Cell attributes will be dynamically allocated */
 361static struct attribute_group nvmem_cells_group = {
 362	.name		= "cells",
 363};
 364
 365static const struct attribute_group *nvmem_dev_groups[] = {
 366	&nvmem_bin_group,
 367	NULL,
 368};
 369
 370static const struct attribute_group *nvmem_cells_groups[] = {
 371	&nvmem_cells_group,
 372	NULL,
 373};
 374
 375static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
 376	.attr	= {
 377		.name	= "eeprom",
 378	},
 379	.read	= bin_attr_nvmem_read,
 380	.write	= bin_attr_nvmem_write,
 381};
 382
 383/*
 384 * nvmem_setup_compat() - Create an additional binary entry in
 385 * drivers sys directory, to be backwards compatible with the older
 386 * drivers/misc/eeprom drivers.
 387 */
 388static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
 389				    const struct nvmem_config *config)
 390{
 391	int rval;
 392
 393	if (!config->compat)
 394		return 0;
 395
 396	if (!config->base_dev)
 397		return -EINVAL;
 398
 399	if (config->type == NVMEM_TYPE_FRAM)
 400		bin_attr_nvmem_eeprom_compat.attr.name = "fram";
 401
 402	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
 403	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
 404	nvmem->eeprom.size = nvmem->size;
 405#ifdef CONFIG_DEBUG_LOCK_ALLOC
 406	nvmem->eeprom.attr.key = &eeprom_lock_key;
 407#endif
 408	nvmem->eeprom.private = &nvmem->dev;
 409	nvmem->base_dev = config->base_dev;
 410
 411	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
 412	if (rval) {
 413		dev_err(&nvmem->dev,
 414			"Failed to create eeprom binary file %d\n", rval);
 415		return rval;
 416	}
 417
 418	nvmem->flags |= FLAG_COMPAT;
 419
 420	return 0;
 421}
 422
 423static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
 424			      const struct nvmem_config *config)
 425{
 426	if (config->compat)
 427		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
 428}
 429
 430static int nvmem_populate_sysfs_cells(struct nvmem_device *nvmem)
 431{
 432	struct bin_attribute **cells_attrs, *attrs;
 433	struct nvmem_cell_entry *entry;
 434	unsigned int ncells = 0, i = 0;
 435	int ret = 0;
 436
 437	mutex_lock(&nvmem_mutex);
 438
 439	if (list_empty(&nvmem->cells) || nvmem->sysfs_cells_populated) {
 440		nvmem_cells_group.bin_attrs = NULL;
 441		goto unlock_mutex;
 442	}
 443
 444	/* Allocate an array of attributes with a sentinel */
 445	ncells = list_count_nodes(&nvmem->cells);
 446	cells_attrs = devm_kcalloc(&nvmem->dev, ncells + 1,
 447				   sizeof(struct bin_attribute *), GFP_KERNEL);
 448	if (!cells_attrs) {
 449		ret = -ENOMEM;
 450		goto unlock_mutex;
 451	}
 452
 453	attrs = devm_kcalloc(&nvmem->dev, ncells, sizeof(struct bin_attribute), GFP_KERNEL);
 454	if (!attrs) {
 455		ret = -ENOMEM;
 456		goto unlock_mutex;
 457	}
 458
 459	/* Initialize each attribute to take the name and size of the cell */
 460	list_for_each_entry(entry, &nvmem->cells, node) {
 461		sysfs_bin_attr_init(&attrs[i]);
 462		attrs[i].attr.name = devm_kasprintf(&nvmem->dev, GFP_KERNEL,
 463						    "%s@%x,%x", entry->name,
 464						    entry->offset,
 465						    entry->bit_offset);
 466		attrs[i].attr.mode = 0444;
 467		attrs[i].size = entry->bytes;
 468		attrs[i].read = &nvmem_cell_attr_read;
 469		attrs[i].private = entry;
 470		if (!attrs[i].attr.name) {
 471			ret = -ENOMEM;
 472			goto unlock_mutex;
 473		}
 474
 475		cells_attrs[i] = &attrs[i];
 476		i++;
 477	}
 478
 479	nvmem_cells_group.bin_attrs = cells_attrs;
 480
 481	ret = devm_device_add_groups(&nvmem->dev, nvmem_cells_groups);
 482	if (ret)
 483		goto unlock_mutex;
 484
 485	nvmem->sysfs_cells_populated = true;
 486
 487unlock_mutex:
 488	mutex_unlock(&nvmem_mutex);
 489
 490	return ret;
 491}
 492
 493#else /* CONFIG_NVMEM_SYSFS */
 494
 495static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
 496				    const struct nvmem_config *config)
 497{
 498	return -ENOSYS;
 499}
 500static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
 501				      const struct nvmem_config *config)
 502{
 503}
 504
 505#endif /* CONFIG_NVMEM_SYSFS */
 506
 507static void nvmem_release(struct device *dev)
 508{
 509	struct nvmem_device *nvmem = to_nvmem_device(dev);
 510
 511	ida_free(&nvmem_ida, nvmem->id);
 512	gpiod_put(nvmem->wp_gpio);
 513	kfree(nvmem);
 514}
 515
 516static const struct device_type nvmem_provider_type = {
 517	.release	= nvmem_release,
 518};
 519
 520static struct bus_type nvmem_bus_type = {
 521	.name		= "nvmem",
 522};
 523
 524static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
 525{
 526	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
 527	mutex_lock(&nvmem_mutex);
 528	list_del(&cell->node);
 529	mutex_unlock(&nvmem_mutex);
 530	of_node_put(cell->np);
 531	kfree_const(cell->name);
 532	kfree(cell);
 533}
 534
 535static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
 536{
 537	struct nvmem_cell_entry *cell, *p;
 538
 539	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
 540		nvmem_cell_entry_drop(cell);
 541}
 542
 543static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
 544{
 545	mutex_lock(&nvmem_mutex);
 546	list_add_tail(&cell->node, &cell->nvmem->cells);
 547	mutex_unlock(&nvmem_mutex);
 548	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
 549}
 550
 551static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
 552						     const struct nvmem_cell_info *info,
 553						     struct nvmem_cell_entry *cell)
 554{
 555	cell->nvmem = nvmem;
 556	cell->offset = info->offset;
 557	cell->raw_len = info->raw_len ?: info->bytes;
 558	cell->bytes = info->bytes;
 559	cell->name = info->name;
 560	cell->read_post_process = info->read_post_process;
 561	cell->priv = info->priv;
 562
 563	cell->bit_offset = info->bit_offset;
 564	cell->nbits = info->nbits;
 565	cell->np = info->np;
 566
 567	if (cell->nbits)
 568		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
 569					   BITS_PER_BYTE);
 570
 571	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
 572		dev_err(&nvmem->dev,
 573			"cell %s unaligned to nvmem stride %d\n",
 574			cell->name ?: "<unknown>", nvmem->stride);
 575		return -EINVAL;
 576	}
 577
 578	return 0;
 579}
 580
 581static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
 582					       const struct nvmem_cell_info *info,
 583					       struct nvmem_cell_entry *cell)
 584{
 585	int err;
 586
 587	err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
 588	if (err)
 589		return err;
 590
 591	cell->name = kstrdup_const(info->name, GFP_KERNEL);
 592	if (!cell->name)
 593		return -ENOMEM;
 594
 595	return 0;
 596}
 597
 598/**
 599 * nvmem_add_one_cell() - Add one cell information to an nvmem device
 600 *
 601 * @nvmem: nvmem device to add cells to.
 602 * @info: nvmem cell info to add to the device
 603 *
 604 * Return: 0 or negative error code on failure.
 605 */
 606int nvmem_add_one_cell(struct nvmem_device *nvmem,
 607		       const struct nvmem_cell_info *info)
 608{
 609	struct nvmem_cell_entry *cell;
 610	int rval;
 611
 612	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
 613	if (!cell)
 614		return -ENOMEM;
 615
 616	rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
 617	if (rval) {
 618		kfree(cell);
 619		return rval;
 620	}
 621
 622	nvmem_cell_entry_add(cell);
 623
 624	return 0;
 625}
 626EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
 627
 628/**
 629 * nvmem_add_cells() - Add cell information to an nvmem device
 630 *
 631 * @nvmem: nvmem device to add cells to.
 632 * @info: nvmem cell info to add to the device
 633 * @ncells: number of cells in info
 634 *
 635 * Return: 0 or negative error code on failure.
 636 */
 637static int nvmem_add_cells(struct nvmem_device *nvmem,
 638		    const struct nvmem_cell_info *info,
 639		    int ncells)
 640{
 641	int i, rval;
 642
 643	for (i = 0; i < ncells; i++) {
 644		rval = nvmem_add_one_cell(nvmem, &info[i]);
 645		if (rval)
 646			return rval;
 647	}
 648
 649	return 0;
 650}
 651
 652/**
 653 * nvmem_register_notifier() - Register a notifier block for nvmem events.
 654 *
 655 * @nb: notifier block to be called on nvmem events.
 656 *
 657 * Return: 0 on success, negative error number on failure.
 658 */
 659int nvmem_register_notifier(struct notifier_block *nb)
 660{
 661	return blocking_notifier_chain_register(&nvmem_notifier, nb);
 662}
 663EXPORT_SYMBOL_GPL(nvmem_register_notifier);
 664
 665/**
 666 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
 667 *
 668 * @nb: notifier block to be unregistered.
 669 *
 670 * Return: 0 on success, negative error number on failure.
 671 */
 672int nvmem_unregister_notifier(struct notifier_block *nb)
 673{
 674	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
 675}
 676EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
 677
 678static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
 679{
 680	const struct nvmem_cell_info *info;
 681	struct nvmem_cell_table *table;
 682	struct nvmem_cell_entry *cell;
 683	int rval = 0, i;
 684
 685	mutex_lock(&nvmem_cell_mutex);
 686	list_for_each_entry(table, &nvmem_cell_tables, node) {
 687		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
 688			for (i = 0; i < table->ncells; i++) {
 689				info = &table->cells[i];
 690
 691				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
 692				if (!cell) {
 693					rval = -ENOMEM;
 694					goto out;
 695				}
 696
 697				rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
 698				if (rval) {
 699					kfree(cell);
 700					goto out;
 701				}
 702
 703				nvmem_cell_entry_add(cell);
 704			}
 705		}
 706	}
 707
 708out:
 709	mutex_unlock(&nvmem_cell_mutex);
 710	return rval;
 711}
 712
 713static struct nvmem_cell_entry *
 714nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
 715{
 716	struct nvmem_cell_entry *iter, *cell = NULL;
 717
 718	mutex_lock(&nvmem_mutex);
 719	list_for_each_entry(iter, &nvmem->cells, node) {
 720		if (strcmp(cell_id, iter->name) == 0) {
 721			cell = iter;
 722			break;
 723		}
 724	}
 725	mutex_unlock(&nvmem_mutex);
 726
 727	return cell;
 728}
 729
 730static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
 731{
 732	unsigned int cur = 0;
 733	const struct nvmem_keepout *keepout = nvmem->keepout;
 734	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
 735
 736	while (keepout < keepoutend) {
 737		/* Ensure keepouts are sorted and don't overlap. */
 738		if (keepout->start < cur) {
 739			dev_err(&nvmem->dev,
 740				"Keepout regions aren't sorted or overlap.\n");
 741
 742			return -ERANGE;
 743		}
 744
 745		if (keepout->end < keepout->start) {
 746			dev_err(&nvmem->dev,
 747				"Invalid keepout region.\n");
 748
 749			return -EINVAL;
 750		}
 751
 752		/*
 753		 * Validate keepouts (and holes between) don't violate
 754		 * word_size constraints.
 755		 */
 756		if ((keepout->end - keepout->start < nvmem->word_size) ||
 757		    ((keepout->start != cur) &&
 758		     (keepout->start - cur < nvmem->word_size))) {
 759
 760			dev_err(&nvmem->dev,
 761				"Keepout regions violate word_size constraints.\n");
 762
 763			return -ERANGE;
 764		}
 765
 766		/* Validate keepouts don't violate stride (alignment). */
 767		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
 768		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
 769
 770			dev_err(&nvmem->dev,
 771				"Keepout regions violate stride.\n");
 772
 773			return -EINVAL;
 774		}
 775
 776		cur = keepout->end;
 777		keepout++;
 778	}
 779
 780	return 0;
 781}
 782
 783static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
 784{
 785	struct device *dev = &nvmem->dev;
 786	struct device_node *child;
 787	const __be32 *addr;
 788	int len, ret;
 789
 790	for_each_child_of_node(np, child) {
 791		struct nvmem_cell_info info = {0};
 792
 793		addr = of_get_property(child, "reg", &len);
 794		if (!addr)
 795			continue;
 796		if (len < 2 * sizeof(u32)) {
 797			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
 798			of_node_put(child);
 799			return -EINVAL;
 800		}
 801
 802		info.offset = be32_to_cpup(addr++);
 803		info.bytes = be32_to_cpup(addr);
 804		info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
 805
 806		addr = of_get_property(child, "bits", &len);
 807		if (addr && len == (2 * sizeof(u32))) {
 808			info.bit_offset = be32_to_cpup(addr++);
 809			info.nbits = be32_to_cpup(addr);
 810			if (info.bit_offset >= BITS_PER_BYTE || info.nbits < 1) {
 811				dev_err(dev, "nvmem: invalid bits on %pOF\n", child);
 812				of_node_put(child);
 813				return -EINVAL;
 814			}
 815		}
 816
 817		info.np = of_node_get(child);
 818
 819		if (nvmem->fixup_dt_cell_info)
 820			nvmem->fixup_dt_cell_info(nvmem, &info);
 821
 822		ret = nvmem_add_one_cell(nvmem, &info);
 823		kfree(info.name);
 824		if (ret) {
 825			of_node_put(child);
 826			return ret;
 827		}
 828	}
 829
 830	return 0;
 831}
 832
 833static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
 834{
 835	return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
 836}
 837
 838static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
 839{
 840	struct device_node *layout_np;
 841	int err = 0;
 842
 843	layout_np = of_nvmem_layout_get_container(nvmem);
 844	if (!layout_np)
 845		return 0;
 846
 847	if (of_device_is_compatible(layout_np, "fixed-layout"))
 848		err = nvmem_add_cells_from_dt(nvmem, layout_np);
 849
 850	of_node_put(layout_np);
 851
 852	return err;
 853}
 854
 855int nvmem_layout_register(struct nvmem_layout *layout)
 856{
 857	int ret;
 858
 859	if (!layout->add_cells)
 860		return -EINVAL;
 861
 862	/* Populate the cells */
 863	ret = layout->add_cells(layout);
 864	if (ret)
 865		return ret;
 866
 867#ifdef CONFIG_NVMEM_SYSFS
 868	ret = nvmem_populate_sysfs_cells(layout->nvmem);
 869	if (ret) {
 870		nvmem_device_remove_all_cells(layout->nvmem);
 871		return ret;
 872	}
 873#endif
 874
 875	return 0;
 876}
 877EXPORT_SYMBOL_GPL(nvmem_layout_register);
 878
 879void nvmem_layout_unregister(struct nvmem_layout *layout)
 880{
 881	/* Keep the API even with an empty stub in case we need it later */
 882}
 883EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
 884
 885/**
 886 * nvmem_register() - Register a nvmem device for given nvmem_config.
 887 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
 888 *
 889 * @config: nvmem device configuration with which nvmem device is created.
 890 *
 891 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
 892 * on success.
 893 */
 894
 895struct nvmem_device *nvmem_register(const struct nvmem_config *config)
 896{
 897	struct nvmem_device *nvmem;
 898	int rval;
 899
 900	if (!config->dev)
 901		return ERR_PTR(-EINVAL);
 902
 903	if (!config->reg_read && !config->reg_write)
 904		return ERR_PTR(-EINVAL);
 905
 906	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
 907	if (!nvmem)
 908		return ERR_PTR(-ENOMEM);
 909
 910	rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
 911	if (rval < 0) {
 912		kfree(nvmem);
 913		return ERR_PTR(rval);
 914	}
 915
 916	nvmem->id = rval;
 917
 918	nvmem->dev.type = &nvmem_provider_type;
 919	nvmem->dev.bus = &nvmem_bus_type;
 920	nvmem->dev.parent = config->dev;
 921
 922	device_initialize(&nvmem->dev);
 923
 924	if (!config->ignore_wp)
 925		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
 926						    GPIOD_OUT_HIGH);
 927	if (IS_ERR(nvmem->wp_gpio)) {
 928		rval = PTR_ERR(nvmem->wp_gpio);
 929		nvmem->wp_gpio = NULL;
 930		goto err_put_device;
 931	}
 932
 933	kref_init(&nvmem->refcnt);
 934	INIT_LIST_HEAD(&nvmem->cells);
 935	nvmem->fixup_dt_cell_info = config->fixup_dt_cell_info;
 936
 937	nvmem->owner = config->owner;
 938	if (!nvmem->owner && config->dev->driver)
 939		nvmem->owner = config->dev->driver->owner;
 940	nvmem->stride = config->stride ?: 1;
 941	nvmem->word_size = config->word_size ?: 1;
 942	nvmem->size = config->size;
 943	nvmem->root_only = config->root_only;
 944	nvmem->priv = config->priv;
 945	nvmem->type = config->type;
 946	nvmem->reg_read = config->reg_read;
 947	nvmem->reg_write = config->reg_write;
 948	nvmem->keepout = config->keepout;
 949	nvmem->nkeepout = config->nkeepout;
 950	if (config->of_node)
 951		nvmem->dev.of_node = config->of_node;
 952	else
 953		nvmem->dev.of_node = config->dev->of_node;
 954
 955	switch (config->id) {
 956	case NVMEM_DEVID_NONE:
 957		rval = dev_set_name(&nvmem->dev, "%s", config->name);
 958		break;
 959	case NVMEM_DEVID_AUTO:
 960		rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
 961		break;
 962	default:
 963		rval = dev_set_name(&nvmem->dev, "%s%d",
 964			     config->name ? : "nvmem",
 965			     config->name ? config->id : nvmem->id);
 966		break;
 967	}
 968
 969	if (rval)
 970		goto err_put_device;
 971
 972	nvmem->read_only = device_property_present(config->dev, "read-only") ||
 973			   config->read_only || !nvmem->reg_write;
 974
 975#ifdef CONFIG_NVMEM_SYSFS
 976	nvmem->dev.groups = nvmem_dev_groups;
 977#endif
 978
 979	if (nvmem->nkeepout) {
 980		rval = nvmem_validate_keepouts(nvmem);
 981		if (rval)
 982			goto err_put_device;
 983	}
 984
 985	if (config->compat) {
 986		rval = nvmem_sysfs_setup_compat(nvmem, config);
 987		if (rval)
 988			goto err_put_device;
 989	}
 990
 991	if (config->cells) {
 992		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
 993		if (rval)
 994			goto err_remove_cells;
 995	}
 996
 997	rval = nvmem_add_cells_from_table(nvmem);
 998	if (rval)
 999		goto err_remove_cells;
1000
1001	if (config->add_legacy_fixed_of_cells) {
1002		rval = nvmem_add_cells_from_legacy_of(nvmem);
1003		if (rval)
1004			goto err_remove_cells;
1005	}
1006
1007	rval = nvmem_add_cells_from_fixed_layout(nvmem);
1008	if (rval)
1009		goto err_remove_cells;
1010
1011	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1012
1013	rval = device_add(&nvmem->dev);
1014	if (rval)
1015		goto err_remove_cells;
1016
1017	rval = nvmem_populate_layout(nvmem);
1018	if (rval)
1019		goto err_remove_dev;
1020
1021#ifdef CONFIG_NVMEM_SYSFS
1022	rval = nvmem_populate_sysfs_cells(nvmem);
1023	if (rval)
1024		goto err_destroy_layout;
1025#endif
1026
1027	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1028
1029	return nvmem;
1030
1031#ifdef CONFIG_NVMEM_SYSFS
1032err_destroy_layout:
1033	nvmem_destroy_layout(nvmem);
1034#endif
1035err_remove_dev:
1036	device_del(&nvmem->dev);
1037err_remove_cells:
1038	nvmem_device_remove_all_cells(nvmem);
1039	if (config->compat)
1040		nvmem_sysfs_remove_compat(nvmem, config);
1041err_put_device:
1042	put_device(&nvmem->dev);
1043
1044	return ERR_PTR(rval);
1045}
1046EXPORT_SYMBOL_GPL(nvmem_register);
1047
1048static void nvmem_device_release(struct kref *kref)
1049{
1050	struct nvmem_device *nvmem;
1051
1052	nvmem = container_of(kref, struct nvmem_device, refcnt);
1053
1054	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1055
1056	if (nvmem->flags & FLAG_COMPAT)
1057		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1058
1059	nvmem_device_remove_all_cells(nvmem);
1060	nvmem_destroy_layout(nvmem);
1061	device_unregister(&nvmem->dev);
1062}
1063
1064/**
1065 * nvmem_unregister() - Unregister previously registered nvmem device
1066 *
1067 * @nvmem: Pointer to previously registered nvmem device.
1068 */
1069void nvmem_unregister(struct nvmem_device *nvmem)
1070{
1071	if (nvmem)
1072		kref_put(&nvmem->refcnt, nvmem_device_release);
1073}
1074EXPORT_SYMBOL_GPL(nvmem_unregister);
1075
1076static void devm_nvmem_unregister(void *nvmem)
1077{
1078	nvmem_unregister(nvmem);
1079}
1080
1081/**
1082 * devm_nvmem_register() - Register a managed nvmem device for given
1083 * nvmem_config.
1084 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1085 *
1086 * @dev: Device that uses the nvmem device.
1087 * @config: nvmem device configuration with which nvmem device is created.
1088 *
1089 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1090 * on success.
1091 */
1092struct nvmem_device *devm_nvmem_register(struct device *dev,
1093					 const struct nvmem_config *config)
1094{
1095	struct nvmem_device *nvmem;
1096	int ret;
1097
1098	nvmem = nvmem_register(config);
1099	if (IS_ERR(nvmem))
1100		return nvmem;
1101
1102	ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1103	if (ret)
1104		return ERR_PTR(ret);
1105
1106	return nvmem;
1107}
1108EXPORT_SYMBOL_GPL(devm_nvmem_register);
1109
1110static struct nvmem_device *__nvmem_device_get(void *data,
1111			int (*match)(struct device *dev, const void *data))
1112{
1113	struct nvmem_device *nvmem = NULL;
1114	struct device *dev;
1115
1116	mutex_lock(&nvmem_mutex);
1117	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1118	if (dev)
1119		nvmem = to_nvmem_device(dev);
1120	mutex_unlock(&nvmem_mutex);
1121	if (!nvmem)
1122		return ERR_PTR(-EPROBE_DEFER);
1123
1124	if (!try_module_get(nvmem->owner)) {
1125		dev_err(&nvmem->dev,
1126			"could not increase module refcount for cell %s\n",
1127			nvmem_dev_name(nvmem));
1128
1129		put_device(&nvmem->dev);
1130		return ERR_PTR(-EINVAL);
1131	}
1132
1133	kref_get(&nvmem->refcnt);
1134
1135	return nvmem;
1136}
1137
1138static void __nvmem_device_put(struct nvmem_device *nvmem)
1139{
1140	put_device(&nvmem->dev);
1141	module_put(nvmem->owner);
1142	kref_put(&nvmem->refcnt, nvmem_device_release);
1143}
1144
1145#if IS_ENABLED(CONFIG_OF)
1146/**
1147 * of_nvmem_device_get() - Get nvmem device from a given id
1148 *
1149 * @np: Device tree node that uses the nvmem device.
1150 * @id: nvmem name from nvmem-names property.
1151 *
1152 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1153 * on success.
1154 */
1155struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1156{
1157
1158	struct device_node *nvmem_np;
1159	struct nvmem_device *nvmem;
1160	int index = 0;
1161
1162	if (id)
1163		index = of_property_match_string(np, "nvmem-names", id);
1164
1165	nvmem_np = of_parse_phandle(np, "nvmem", index);
1166	if (!nvmem_np)
1167		return ERR_PTR(-ENOENT);
1168
1169	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1170	of_node_put(nvmem_np);
1171	return nvmem;
1172}
1173EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1174#endif
1175
1176/**
1177 * nvmem_device_get() - Get nvmem device from a given id
1178 *
1179 * @dev: Device that uses the nvmem device.
1180 * @dev_name: name of the requested nvmem device.
1181 *
1182 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1183 * on success.
1184 */
1185struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1186{
1187	if (dev->of_node) { /* try dt first */
1188		struct nvmem_device *nvmem;
1189
1190		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1191
1192		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1193			return nvmem;
1194
1195	}
1196
1197	return __nvmem_device_get((void *)dev_name, device_match_name);
1198}
1199EXPORT_SYMBOL_GPL(nvmem_device_get);
1200
1201/**
1202 * nvmem_device_find() - Find nvmem device with matching function
1203 *
1204 * @data: Data to pass to match function
1205 * @match: Callback function to check device
1206 *
1207 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1208 * on success.
1209 */
1210struct nvmem_device *nvmem_device_find(void *data,
1211			int (*match)(struct device *dev, const void *data))
1212{
1213	return __nvmem_device_get(data, match);
1214}
1215EXPORT_SYMBOL_GPL(nvmem_device_find);
1216
1217static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1218{
1219	struct nvmem_device **nvmem = res;
1220
1221	if (WARN_ON(!nvmem || !*nvmem))
1222		return 0;
1223
1224	return *nvmem == data;
1225}
1226
1227static void devm_nvmem_device_release(struct device *dev, void *res)
1228{
1229	nvmem_device_put(*(struct nvmem_device **)res);
1230}
1231
1232/**
1233 * devm_nvmem_device_put() - put alredy got nvmem device
1234 *
1235 * @dev: Device that uses the nvmem device.
1236 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1237 * that needs to be released.
1238 */
1239void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1240{
1241	int ret;
1242
1243	ret = devres_release(dev, devm_nvmem_device_release,
1244			     devm_nvmem_device_match, nvmem);
1245
1246	WARN_ON(ret);
1247}
1248EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1249
1250/**
1251 * nvmem_device_put() - put alredy got nvmem device
1252 *
1253 * @nvmem: pointer to nvmem device that needs to be released.
1254 */
1255void nvmem_device_put(struct nvmem_device *nvmem)
1256{
1257	__nvmem_device_put(nvmem);
1258}
1259EXPORT_SYMBOL_GPL(nvmem_device_put);
1260
1261/**
1262 * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1263 *
1264 * @dev: Device that requests the nvmem device.
1265 * @id: name id for the requested nvmem device.
1266 *
1267 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1268 * on success.  The nvmem_cell will be freed by the automatically once the
1269 * device is freed.
1270 */
1271struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1272{
1273	struct nvmem_device **ptr, *nvmem;
1274
1275	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1276	if (!ptr)
1277		return ERR_PTR(-ENOMEM);
1278
1279	nvmem = nvmem_device_get(dev, id);
1280	if (!IS_ERR(nvmem)) {
1281		*ptr = nvmem;
1282		devres_add(dev, ptr);
1283	} else {
1284		devres_free(ptr);
1285	}
1286
1287	return nvmem;
1288}
1289EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1290
1291static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1292					    const char *id, int index)
1293{
1294	struct nvmem_cell *cell;
1295	const char *name = NULL;
1296
1297	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1298	if (!cell)
1299		return ERR_PTR(-ENOMEM);
1300
1301	if (id) {
1302		name = kstrdup_const(id, GFP_KERNEL);
1303		if (!name) {
1304			kfree(cell);
1305			return ERR_PTR(-ENOMEM);
1306		}
1307	}
1308
1309	cell->id = name;
1310	cell->entry = entry;
1311	cell->index = index;
1312
1313	return cell;
1314}
1315
1316static struct nvmem_cell *
1317nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1318{
1319	struct nvmem_cell_entry *cell_entry;
1320	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1321	struct nvmem_cell_lookup *lookup;
1322	struct nvmem_device *nvmem;
1323	const char *dev_id;
1324
1325	if (!dev)
1326		return ERR_PTR(-EINVAL);
1327
1328	dev_id = dev_name(dev);
1329
1330	mutex_lock(&nvmem_lookup_mutex);
1331
1332	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1333		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1334		    (strcmp(lookup->con_id, con_id) == 0)) {
1335			/* This is the right entry. */
1336			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1337						   device_match_name);
1338			if (IS_ERR(nvmem)) {
1339				/* Provider may not be registered yet. */
1340				cell = ERR_CAST(nvmem);
1341				break;
1342			}
1343
1344			cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1345								   lookup->cell_name);
1346			if (!cell_entry) {
1347				__nvmem_device_put(nvmem);
1348				cell = ERR_PTR(-ENOENT);
1349			} else {
1350				cell = nvmem_create_cell(cell_entry, con_id, 0);
1351				if (IS_ERR(cell))
1352					__nvmem_device_put(nvmem);
1353			}
1354			break;
1355		}
1356	}
1357
1358	mutex_unlock(&nvmem_lookup_mutex);
1359	return cell;
1360}
1361
1362static void nvmem_layout_module_put(struct nvmem_device *nvmem)
1363{
1364	if (nvmem->layout && nvmem->layout->dev.driver)
1365		module_put(nvmem->layout->dev.driver->owner);
1366}
1367
1368#if IS_ENABLED(CONFIG_OF)
1369static struct nvmem_cell_entry *
1370nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1371{
1372	struct nvmem_cell_entry *iter, *cell = NULL;
1373
1374	mutex_lock(&nvmem_mutex);
1375	list_for_each_entry(iter, &nvmem->cells, node) {
1376		if (np == iter->np) {
1377			cell = iter;
1378			break;
1379		}
1380	}
1381	mutex_unlock(&nvmem_mutex);
1382
1383	return cell;
1384}
1385
1386static int nvmem_layout_module_get_optional(struct nvmem_device *nvmem)
1387{
1388	if (!nvmem->layout)
1389		return 0;
1390
1391	if (!nvmem->layout->dev.driver ||
1392	    !try_module_get(nvmem->layout->dev.driver->owner))
1393		return -EPROBE_DEFER;
1394
1395	return 0;
1396}
1397
1398/**
1399 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1400 *
1401 * @np: Device tree node that uses the nvmem cell.
1402 * @id: nvmem cell name from nvmem-cell-names property, or NULL
1403 *      for the cell at index 0 (the lone cell with no accompanying
1404 *      nvmem-cell-names property).
1405 *
1406 * Return: Will be an ERR_PTR() on error or a valid pointer
1407 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1408 * nvmem_cell_put().
1409 */
1410struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1411{
1412	struct device_node *cell_np, *nvmem_np;
1413	struct nvmem_device *nvmem;
1414	struct nvmem_cell_entry *cell_entry;
1415	struct nvmem_cell *cell;
1416	struct of_phandle_args cell_spec;
1417	int index = 0;
1418	int cell_index = 0;
1419	int ret;
1420
1421	/* if cell name exists, find index to the name */
1422	if (id)
1423		index = of_property_match_string(np, "nvmem-cell-names", id);
1424
1425	ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1426						  "#nvmem-cell-cells",
1427						  index, &cell_spec);
1428	if (ret)
1429		return ERR_PTR(-ENOENT);
1430
1431	if (cell_spec.args_count > 1)
1432		return ERR_PTR(-EINVAL);
1433
1434	cell_np = cell_spec.np;
1435	if (cell_spec.args_count)
1436		cell_index = cell_spec.args[0];
1437
1438	nvmem_np = of_get_parent(cell_np);
1439	if (!nvmem_np) {
1440		of_node_put(cell_np);
1441		return ERR_PTR(-EINVAL);
1442	}
1443
1444	/* nvmem layouts produce cells within the nvmem-layout container */
1445	if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1446		nvmem_np = of_get_next_parent(nvmem_np);
1447		if (!nvmem_np) {
1448			of_node_put(cell_np);
1449			return ERR_PTR(-EINVAL);
1450		}
1451	}
1452
1453	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1454	of_node_put(nvmem_np);
1455	if (IS_ERR(nvmem)) {
1456		of_node_put(cell_np);
1457		return ERR_CAST(nvmem);
1458	}
1459
1460	ret = nvmem_layout_module_get_optional(nvmem);
1461	if (ret) {
1462		of_node_put(cell_np);
1463		__nvmem_device_put(nvmem);
1464		return ERR_PTR(ret);
1465	}
1466
1467	cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1468	of_node_put(cell_np);
1469	if (!cell_entry) {
1470		__nvmem_device_put(nvmem);
1471		nvmem_layout_module_put(nvmem);
1472		if (nvmem->layout)
1473			return ERR_PTR(-EPROBE_DEFER);
1474		else
1475			return ERR_PTR(-ENOENT);
1476	}
1477
1478	cell = nvmem_create_cell(cell_entry, id, cell_index);
1479	if (IS_ERR(cell)) {
1480		__nvmem_device_put(nvmem);
1481		nvmem_layout_module_put(nvmem);
1482	}
1483
1484	return cell;
1485}
1486EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1487#endif
1488
1489/**
1490 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1491 *
1492 * @dev: Device that requests the nvmem cell.
1493 * @id: nvmem cell name to get (this corresponds with the name from the
1494 *      nvmem-cell-names property for DT systems and with the con_id from
1495 *      the lookup entry for non-DT systems).
1496 *
1497 * Return: Will be an ERR_PTR() on error or a valid pointer
1498 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1499 * nvmem_cell_put().
1500 */
1501struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1502{
1503	struct nvmem_cell *cell;
1504
1505	if (dev->of_node) { /* try dt first */
1506		cell = of_nvmem_cell_get(dev->of_node, id);
1507		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1508			return cell;
1509	}
1510
1511	/* NULL cell id only allowed for device tree; invalid otherwise */
1512	if (!id)
1513		return ERR_PTR(-EINVAL);
1514
1515	return nvmem_cell_get_from_lookup(dev, id);
1516}
1517EXPORT_SYMBOL_GPL(nvmem_cell_get);
1518
1519static void devm_nvmem_cell_release(struct device *dev, void *res)
1520{
1521	nvmem_cell_put(*(struct nvmem_cell **)res);
1522}
1523
1524/**
1525 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1526 *
1527 * @dev: Device that requests the nvmem cell.
1528 * @id: nvmem cell name id to get.
1529 *
1530 * Return: Will be an ERR_PTR() on error or a valid pointer
1531 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1532 * automatically once the device is freed.
1533 */
1534struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1535{
1536	struct nvmem_cell **ptr, *cell;
1537
1538	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1539	if (!ptr)
1540		return ERR_PTR(-ENOMEM);
1541
1542	cell = nvmem_cell_get(dev, id);
1543	if (!IS_ERR(cell)) {
1544		*ptr = cell;
1545		devres_add(dev, ptr);
1546	} else {
1547		devres_free(ptr);
1548	}
1549
1550	return cell;
1551}
1552EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1553
1554static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1555{
1556	struct nvmem_cell **c = res;
1557
1558	if (WARN_ON(!c || !*c))
1559		return 0;
1560
1561	return *c == data;
1562}
1563
1564/**
1565 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1566 * from devm_nvmem_cell_get.
1567 *
1568 * @dev: Device that requests the nvmem cell.
1569 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1570 */
1571void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1572{
1573	int ret;
1574
1575	ret = devres_release(dev, devm_nvmem_cell_release,
1576				devm_nvmem_cell_match, cell);
1577
1578	WARN_ON(ret);
1579}
1580EXPORT_SYMBOL(devm_nvmem_cell_put);
1581
1582/**
1583 * nvmem_cell_put() - Release previously allocated nvmem cell.
1584 *
1585 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1586 */
1587void nvmem_cell_put(struct nvmem_cell *cell)
1588{
1589	struct nvmem_device *nvmem = cell->entry->nvmem;
1590
1591	if (cell->id)
1592		kfree_const(cell->id);
1593
1594	kfree(cell);
1595	__nvmem_device_put(nvmem);
1596	nvmem_layout_module_put(nvmem);
1597}
1598EXPORT_SYMBOL_GPL(nvmem_cell_put);
1599
1600static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1601{
1602	u8 *p, *b;
1603	int i, extra, bit_offset = cell->bit_offset;
1604
1605	p = b = buf;
1606	if (bit_offset) {
1607		/* First shift */
1608		*b++ >>= bit_offset;
1609
1610		/* setup rest of the bytes if any */
1611		for (i = 1; i < cell->bytes; i++) {
1612			/* Get bits from next byte and shift them towards msb */
1613			*p |= *b << (BITS_PER_BYTE - bit_offset);
1614
1615			p = b;
1616			*b++ >>= bit_offset;
1617		}
1618	} else {
1619		/* point to the msb */
1620		p += cell->bytes - 1;
1621	}
1622
1623	/* result fits in less bytes */
1624	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1625	while (--extra >= 0)
1626		*p-- = 0;
1627
1628	/* clear msb bits if any leftover in the last byte */
1629	if (cell->nbits % BITS_PER_BYTE)
1630		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1631}
1632
1633static int __nvmem_cell_read(struct nvmem_device *nvmem,
1634			     struct nvmem_cell_entry *cell,
1635			     void *buf, size_t *len, const char *id, int index)
1636{
1637	int rc;
1638
1639	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1640
1641	if (rc)
1642		return rc;
1643
1644	/* shift bits in-place */
1645	if (cell->bit_offset || cell->nbits)
1646		nvmem_shift_read_buffer_in_place(cell, buf);
1647
1648	if (cell->read_post_process) {
1649		rc = cell->read_post_process(cell->priv, id, index,
1650					     cell->offset, buf, cell->raw_len);
1651		if (rc)
1652			return rc;
1653	}
1654
1655	if (len)
1656		*len = cell->bytes;
1657
1658	return 0;
1659}
1660
1661/**
1662 * nvmem_cell_read() - Read a given nvmem cell
1663 *
1664 * @cell: nvmem cell to be read.
1665 * @len: pointer to length of cell which will be populated on successful read;
1666 *	 can be NULL.
1667 *
1668 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1669 * buffer should be freed by the consumer with a kfree().
1670 */
1671void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1672{
1673	struct nvmem_cell_entry *entry = cell->entry;
1674	struct nvmem_device *nvmem = entry->nvmem;
1675	u8 *buf;
1676	int rc;
1677
1678	if (!nvmem)
1679		return ERR_PTR(-EINVAL);
1680
1681	buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1682	if (!buf)
1683		return ERR_PTR(-ENOMEM);
1684
1685	rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1686	if (rc) {
1687		kfree(buf);
1688		return ERR_PTR(rc);
1689	}
1690
1691	return buf;
1692}
1693EXPORT_SYMBOL_GPL(nvmem_cell_read);
1694
1695static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1696					     u8 *_buf, int len)
1697{
1698	struct nvmem_device *nvmem = cell->nvmem;
1699	int i, rc, nbits, bit_offset = cell->bit_offset;
1700	u8 v, *p, *buf, *b, pbyte, pbits;
1701
1702	nbits = cell->nbits;
1703	buf = kzalloc(cell->bytes, GFP_KERNEL);
1704	if (!buf)
1705		return ERR_PTR(-ENOMEM);
1706
1707	memcpy(buf, _buf, len);
1708	p = b = buf;
1709
1710	if (bit_offset) {
1711		pbyte = *b;
1712		*b <<= bit_offset;
1713
1714		/* setup the first byte with lsb bits from nvmem */
1715		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1716		if (rc)
1717			goto err;
1718		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1719
1720		/* setup rest of the byte if any */
1721		for (i = 1; i < cell->bytes; i++) {
1722			/* Get last byte bits and shift them towards lsb */
1723			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1724			pbyte = *b;
1725			p = b;
1726			*b <<= bit_offset;
1727			*b++ |= pbits;
1728		}
1729	}
1730
1731	/* if it's not end on byte boundary */
1732	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1733		/* setup the last byte with msb bits from nvmem */
1734		rc = nvmem_reg_read(nvmem,
1735				    cell->offset + cell->bytes - 1, &v, 1);
1736		if (rc)
1737			goto err;
1738		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1739
1740	}
1741
1742	return buf;
1743err:
1744	kfree(buf);
1745	return ERR_PTR(rc);
1746}
1747
1748static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1749{
1750	struct nvmem_device *nvmem = cell->nvmem;
1751	int rc;
1752
1753	if (!nvmem || nvmem->read_only ||
1754	    (cell->bit_offset == 0 && len != cell->bytes))
1755		return -EINVAL;
1756
1757	/*
1758	 * Any cells which have a read_post_process hook are read-only because
1759	 * we cannot reverse the operation and it might affect other cells,
1760	 * too.
1761	 */
1762	if (cell->read_post_process)
1763		return -EINVAL;
1764
1765	if (cell->bit_offset || cell->nbits) {
1766		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1767		if (IS_ERR(buf))
1768			return PTR_ERR(buf);
1769	}
1770
1771	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1772
1773	/* free the tmp buffer */
1774	if (cell->bit_offset || cell->nbits)
1775		kfree(buf);
1776
1777	if (rc)
1778		return rc;
1779
1780	return len;
1781}
1782
1783/**
1784 * nvmem_cell_write() - Write to a given nvmem cell
1785 *
1786 * @cell: nvmem cell to be written.
1787 * @buf: Buffer to be written.
1788 * @len: length of buffer to be written to nvmem cell.
1789 *
1790 * Return: length of bytes written or negative on failure.
1791 */
1792int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1793{
1794	return __nvmem_cell_entry_write(cell->entry, buf, len);
1795}
1796
1797EXPORT_SYMBOL_GPL(nvmem_cell_write);
1798
1799static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1800				  void *val, size_t count)
1801{
1802	struct nvmem_cell *cell;
1803	void *buf;
1804	size_t len;
1805
1806	cell = nvmem_cell_get(dev, cell_id);
1807	if (IS_ERR(cell))
1808		return PTR_ERR(cell);
1809
1810	buf = nvmem_cell_read(cell, &len);
1811	if (IS_ERR(buf)) {
1812		nvmem_cell_put(cell);
1813		return PTR_ERR(buf);
1814	}
1815	if (len != count) {
1816		kfree(buf);
1817		nvmem_cell_put(cell);
1818		return -EINVAL;
1819	}
1820	memcpy(val, buf, count);
1821	kfree(buf);
1822	nvmem_cell_put(cell);
1823
1824	return 0;
1825}
1826
1827/**
1828 * nvmem_cell_read_u8() - Read a cell value as a u8
1829 *
1830 * @dev: Device that requests the nvmem cell.
1831 * @cell_id: Name of nvmem cell to read.
1832 * @val: pointer to output value.
1833 *
1834 * Return: 0 on success or negative errno.
1835 */
1836int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1837{
1838	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1839}
1840EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1841
1842/**
1843 * nvmem_cell_read_u16() - Read a cell value as a u16
1844 *
1845 * @dev: Device that requests the nvmem cell.
1846 * @cell_id: Name of nvmem cell to read.
1847 * @val: pointer to output value.
1848 *
1849 * Return: 0 on success or negative errno.
1850 */
1851int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1852{
1853	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1854}
1855EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1856
1857/**
1858 * nvmem_cell_read_u32() - Read a cell value as a u32
1859 *
1860 * @dev: Device that requests the nvmem cell.
1861 * @cell_id: Name of nvmem cell to read.
1862 * @val: pointer to output value.
1863 *
1864 * Return: 0 on success or negative errno.
1865 */
1866int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1867{
1868	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1869}
1870EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1871
1872/**
1873 * nvmem_cell_read_u64() - Read a cell value as a u64
1874 *
1875 * @dev: Device that requests the nvmem cell.
1876 * @cell_id: Name of nvmem cell to read.
1877 * @val: pointer to output value.
1878 *
1879 * Return: 0 on success or negative errno.
1880 */
1881int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1882{
1883	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1884}
1885EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1886
1887static const void *nvmem_cell_read_variable_common(struct device *dev,
1888						   const char *cell_id,
1889						   size_t max_len, size_t *len)
1890{
1891	struct nvmem_cell *cell;
1892	int nbits;
1893	void *buf;
1894
1895	cell = nvmem_cell_get(dev, cell_id);
1896	if (IS_ERR(cell))
1897		return cell;
1898
1899	nbits = cell->entry->nbits;
1900	buf = nvmem_cell_read(cell, len);
1901	nvmem_cell_put(cell);
1902	if (IS_ERR(buf))
1903		return buf;
1904
1905	/*
1906	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1907	 * the length of the real data. Throw away the extra junk.
1908	 */
1909	if (nbits)
1910		*len = DIV_ROUND_UP(nbits, 8);
1911
1912	if (*len > max_len) {
1913		kfree(buf);
1914		return ERR_PTR(-ERANGE);
1915	}
1916
1917	return buf;
1918}
1919
1920/**
1921 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1922 *
1923 * @dev: Device that requests the nvmem cell.
1924 * @cell_id: Name of nvmem cell to read.
1925 * @val: pointer to output value.
1926 *
1927 * Return: 0 on success or negative errno.
1928 */
1929int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1930				    u32 *val)
1931{
1932	size_t len;
1933	const u8 *buf;
1934	int i;
1935
1936	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1937	if (IS_ERR(buf))
1938		return PTR_ERR(buf);
1939
1940	/* Copy w/ implicit endian conversion */
1941	*val = 0;
1942	for (i = 0; i < len; i++)
1943		*val |= buf[i] << (8 * i);
1944
1945	kfree(buf);
1946
1947	return 0;
1948}
1949EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1950
1951/**
1952 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1953 *
1954 * @dev: Device that requests the nvmem cell.
1955 * @cell_id: Name of nvmem cell to read.
1956 * @val: pointer to output value.
1957 *
1958 * Return: 0 on success or negative errno.
1959 */
1960int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1961				    u64 *val)
1962{
1963	size_t len;
1964	const u8 *buf;
1965	int i;
1966
1967	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1968	if (IS_ERR(buf))
1969		return PTR_ERR(buf);
1970
1971	/* Copy w/ implicit endian conversion */
1972	*val = 0;
1973	for (i = 0; i < len; i++)
1974		*val |= (uint64_t)buf[i] << (8 * i);
1975
1976	kfree(buf);
1977
1978	return 0;
1979}
1980EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1981
1982/**
1983 * nvmem_device_cell_read() - Read a given nvmem device and cell
1984 *
1985 * @nvmem: nvmem device to read from.
1986 * @info: nvmem cell info to be read.
1987 * @buf: buffer pointer which will be populated on successful read.
1988 *
1989 * Return: length of successful bytes read on success and negative
1990 * error code on error.
1991 */
1992ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1993			   struct nvmem_cell_info *info, void *buf)
1994{
1995	struct nvmem_cell_entry cell;
1996	int rc;
1997	ssize_t len;
1998
1999	if (!nvmem)
2000		return -EINVAL;
2001
2002	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2003	if (rc)
2004		return rc;
2005
2006	rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
2007	if (rc)
2008		return rc;
2009
2010	return len;
2011}
2012EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
2013
2014/**
2015 * nvmem_device_cell_write() - Write cell to a given nvmem device
2016 *
2017 * @nvmem: nvmem device to be written to.
2018 * @info: nvmem cell info to be written.
2019 * @buf: buffer to be written to cell.
2020 *
2021 * Return: length of bytes written or negative error code on failure.
2022 */
2023int nvmem_device_cell_write(struct nvmem_device *nvmem,
2024			    struct nvmem_cell_info *info, void *buf)
2025{
2026	struct nvmem_cell_entry cell;
2027	int rc;
2028
2029	if (!nvmem)
2030		return -EINVAL;
2031
2032	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2033	if (rc)
2034		return rc;
2035
2036	return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
2037}
2038EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
2039
2040/**
2041 * nvmem_device_read() - Read from a given nvmem device
2042 *
2043 * @nvmem: nvmem device to read from.
2044 * @offset: offset in nvmem device.
2045 * @bytes: number of bytes to read.
2046 * @buf: buffer pointer which will be populated on successful read.
2047 *
2048 * Return: length of successful bytes read on success and negative
2049 * error code on error.
2050 */
2051int nvmem_device_read(struct nvmem_device *nvmem,
2052		      unsigned int offset,
2053		      size_t bytes, void *buf)
2054{
2055	int rc;
2056
2057	if (!nvmem)
2058		return -EINVAL;
2059
2060	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2061
2062	if (rc)
2063		return rc;
2064
2065	return bytes;
2066}
2067EXPORT_SYMBOL_GPL(nvmem_device_read);
2068
2069/**
2070 * nvmem_device_write() - Write cell to a given nvmem device
2071 *
2072 * @nvmem: nvmem device to be written to.
2073 * @offset: offset in nvmem device.
2074 * @bytes: number of bytes to write.
2075 * @buf: buffer to be written.
2076 *
2077 * Return: length of bytes written or negative error code on failure.
2078 */
2079int nvmem_device_write(struct nvmem_device *nvmem,
2080		       unsigned int offset,
2081		       size_t bytes, void *buf)
2082{
2083	int rc;
2084
2085	if (!nvmem)
2086		return -EINVAL;
2087
2088	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2089
2090	if (rc)
2091		return rc;
2092
2093
2094	return bytes;
2095}
2096EXPORT_SYMBOL_GPL(nvmem_device_write);
2097
2098/**
2099 * nvmem_add_cell_table() - register a table of cell info entries
2100 *
2101 * @table: table of cell info entries
2102 */
2103void nvmem_add_cell_table(struct nvmem_cell_table *table)
2104{
2105	mutex_lock(&nvmem_cell_mutex);
2106	list_add_tail(&table->node, &nvmem_cell_tables);
2107	mutex_unlock(&nvmem_cell_mutex);
2108}
2109EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2110
2111/**
2112 * nvmem_del_cell_table() - remove a previously registered cell info table
2113 *
2114 * @table: table of cell info entries
2115 */
2116void nvmem_del_cell_table(struct nvmem_cell_table *table)
2117{
2118	mutex_lock(&nvmem_cell_mutex);
2119	list_del(&table->node);
2120	mutex_unlock(&nvmem_cell_mutex);
2121}
2122EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2123
2124/**
2125 * nvmem_add_cell_lookups() - register a list of cell lookup entries
2126 *
2127 * @entries: array of cell lookup entries
2128 * @nentries: number of cell lookup entries in the array
2129 */
2130void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2131{
2132	int i;
2133
2134	mutex_lock(&nvmem_lookup_mutex);
2135	for (i = 0; i < nentries; i++)
2136		list_add_tail(&entries[i].node, &nvmem_lookup_list);
2137	mutex_unlock(&nvmem_lookup_mutex);
2138}
2139EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2140
2141/**
2142 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2143 *                            entries
2144 *
2145 * @entries: array of cell lookup entries
2146 * @nentries: number of cell lookup entries in the array
2147 */
2148void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2149{
2150	int i;
2151
2152	mutex_lock(&nvmem_lookup_mutex);
2153	for (i = 0; i < nentries; i++)
2154		list_del(&entries[i].node);
2155	mutex_unlock(&nvmem_lookup_mutex);
2156}
2157EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2158
2159/**
2160 * nvmem_dev_name() - Get the name of a given nvmem device.
2161 *
2162 * @nvmem: nvmem device.
2163 *
2164 * Return: name of the nvmem device.
2165 */
2166const char *nvmem_dev_name(struct nvmem_device *nvmem)
2167{
2168	return dev_name(&nvmem->dev);
2169}
2170EXPORT_SYMBOL_GPL(nvmem_dev_name);
2171
2172/**
2173 * nvmem_dev_size() - Get the size of a given nvmem device.
2174 *
2175 * @nvmem: nvmem device.
2176 *
2177 * Return: size of the nvmem device.
2178 */
2179size_t nvmem_dev_size(struct nvmem_device *nvmem)
2180{
2181	return nvmem->size;
2182}
2183EXPORT_SYMBOL_GPL(nvmem_dev_size);
2184
2185static int __init nvmem_init(void)
2186{
2187	int ret;
2188
2189	ret = bus_register(&nvmem_bus_type);
2190	if (ret)
2191		return ret;
2192
2193	ret = nvmem_layout_bus_register();
2194	if (ret)
2195		bus_unregister(&nvmem_bus_type);
2196
2197	return ret;
2198}
2199
2200static void __exit nvmem_exit(void)
2201{
2202	nvmem_layout_bus_unregister();
2203	bus_unregister(&nvmem_bus_type);
2204}
2205
2206subsys_initcall(nvmem_init);
2207module_exit(nvmem_exit);
2208
2209MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2210MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2211MODULE_DESCRIPTION("nvmem Driver Core");