Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * nvmem framework core.
   4 *
   5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
   6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
   7 */
   8
   9#include <linux/device.h>
  10#include <linux/export.h>
  11#include <linux/fs.h>
  12#include <linux/idr.h>
  13#include <linux/init.h>
  14#include <linux/kref.h>
  15#include <linux/module.h>
  16#include <linux/nvmem-consumer.h>
  17#include <linux/nvmem-provider.h>
  18#include <linux/gpio/consumer.h>
  19#include <linux/of.h>
  20#include <linux/slab.h>
  21
  22struct nvmem_device {
  23	struct module		*owner;
  24	struct device		dev;
  25	int			stride;
  26	int			word_size;
  27	int			id;
  28	struct kref		refcnt;
  29	size_t			size;
  30	bool			read_only;
  31	bool			root_only;
  32	int			flags;
  33	enum nvmem_type		type;
  34	struct bin_attribute	eeprom;
  35	struct device		*base_dev;
  36	struct list_head	cells;
  37	const struct nvmem_keepout *keepout;
  38	unsigned int		nkeepout;
  39	nvmem_reg_read_t	reg_read;
  40	nvmem_reg_write_t	reg_write;
  41	nvmem_cell_post_process_t cell_post_process;
  42	struct gpio_desc	*wp_gpio;
  43	void *priv;
  44};
  45
  46#define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
  47
  48#define FLAG_COMPAT		BIT(0)
  49struct nvmem_cell_entry {
  50	const char		*name;
  51	int			offset;
  52	int			bytes;
  53	int			bit_offset;
  54	int			nbits;
  55	struct device_node	*np;
  56	struct nvmem_device	*nvmem;
  57	struct list_head	node;
  58};
  59
  60struct nvmem_cell {
  61	struct nvmem_cell_entry *entry;
  62	const char		*id;
  63};
  64
  65static DEFINE_MUTEX(nvmem_mutex);
  66static DEFINE_IDA(nvmem_ida);
  67
  68static DEFINE_MUTEX(nvmem_cell_mutex);
  69static LIST_HEAD(nvmem_cell_tables);
  70
  71static DEFINE_MUTEX(nvmem_lookup_mutex);
  72static LIST_HEAD(nvmem_lookup_list);
  73
  74static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
  75
  76static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
  77			    void *val, size_t bytes)
  78{
  79	if (nvmem->reg_read)
  80		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
  81
  82	return -EINVAL;
  83}
  84
  85static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
  86			     void *val, size_t bytes)
  87{
  88	int ret;
  89
  90	if (nvmem->reg_write) {
  91		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
  92		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
  93		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
  94		return ret;
  95	}
  96
  97	return -EINVAL;
  98}
  99
 100static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
 101				      unsigned int offset, void *val,
 102				      size_t bytes, int write)
 103{
 104
 105	unsigned int end = offset + bytes;
 106	unsigned int kend, ksize;
 107	const struct nvmem_keepout *keepout = nvmem->keepout;
 108	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
 109	int rc;
 110
 111	/*
 112	 * Skip all keepouts before the range being accessed.
 113	 * Keepouts are sorted.
 114	 */
 115	while ((keepout < keepoutend) && (keepout->end <= offset))
 116		keepout++;
 117
 118	while ((offset < end) && (keepout < keepoutend)) {
 119		/* Access the valid portion before the keepout. */
 120		if (offset < keepout->start) {
 121			kend = min(end, keepout->start);
 122			ksize = kend - offset;
 123			if (write)
 124				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
 125			else
 126				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
 127
 128			if (rc)
 129				return rc;
 130
 131			offset += ksize;
 132			val += ksize;
 133		}
 134
 135		/*
 136		 * Now we're aligned to the start of this keepout zone. Go
 137		 * through it.
 138		 */
 139		kend = min(end, keepout->end);
 140		ksize = kend - offset;
 141		if (!write)
 142			memset(val, keepout->value, ksize);
 143
 144		val += ksize;
 145		offset += ksize;
 146		keepout++;
 147	}
 148
 149	/*
 150	 * If we ran out of keepouts but there's still stuff to do, send it
 151	 * down directly
 152	 */
 153	if (offset < end) {
 154		ksize = end - offset;
 155		if (write)
 156			return __nvmem_reg_write(nvmem, offset, val, ksize);
 157		else
 158			return __nvmem_reg_read(nvmem, offset, val, ksize);
 159	}
 160
 161	return 0;
 162}
 163
 164static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
 165			  void *val, size_t bytes)
 166{
 167	if (!nvmem->nkeepout)
 168		return __nvmem_reg_read(nvmem, offset, val, bytes);
 169
 170	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
 171}
 172
 173static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
 174			   void *val, size_t bytes)
 175{
 176	if (!nvmem->nkeepout)
 177		return __nvmem_reg_write(nvmem, offset, val, bytes);
 178
 179	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
 180}
 181
 182#ifdef CONFIG_NVMEM_SYSFS
 183static const char * const nvmem_type_str[] = {
 184	[NVMEM_TYPE_UNKNOWN] = "Unknown",
 185	[NVMEM_TYPE_EEPROM] = "EEPROM",
 186	[NVMEM_TYPE_OTP] = "OTP",
 187	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
 188	[NVMEM_TYPE_FRAM] = "FRAM",
 189};
 190
 191#ifdef CONFIG_DEBUG_LOCK_ALLOC
 192static struct lock_class_key eeprom_lock_key;
 193#endif
 194
 195static ssize_t type_show(struct device *dev,
 196			 struct device_attribute *attr, char *buf)
 197{
 198	struct nvmem_device *nvmem = to_nvmem_device(dev);
 199
 200	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
 201}
 202
 203static DEVICE_ATTR_RO(type);
 204
 205static struct attribute *nvmem_attrs[] = {
 206	&dev_attr_type.attr,
 207	NULL,
 208};
 209
 210static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
 211				   struct bin_attribute *attr, char *buf,
 212				   loff_t pos, size_t count)
 213{
 214	struct device *dev;
 215	struct nvmem_device *nvmem;
 216	int rc;
 217
 218	if (attr->private)
 219		dev = attr->private;
 220	else
 221		dev = kobj_to_dev(kobj);
 222	nvmem = to_nvmem_device(dev);
 223
 224	/* Stop the user from reading */
 225	if (pos >= nvmem->size)
 226		return 0;
 227
 228	if (!IS_ALIGNED(pos, nvmem->stride))
 229		return -EINVAL;
 230
 231	if (count < nvmem->word_size)
 232		return -EINVAL;
 233
 234	if (pos + count > nvmem->size)
 235		count = nvmem->size - pos;
 236
 237	count = round_down(count, nvmem->word_size);
 238
 239	if (!nvmem->reg_read)
 240		return -EPERM;
 241
 242	rc = nvmem_reg_read(nvmem, pos, buf, count);
 243
 244	if (rc)
 245		return rc;
 246
 247	return count;
 248}
 249
 250static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
 251				    struct bin_attribute *attr, char *buf,
 252				    loff_t pos, size_t count)
 253{
 254	struct device *dev;
 255	struct nvmem_device *nvmem;
 256	int rc;
 257
 258	if (attr->private)
 259		dev = attr->private;
 260	else
 261		dev = kobj_to_dev(kobj);
 262	nvmem = to_nvmem_device(dev);
 263
 264	/* Stop the user from writing */
 265	if (pos >= nvmem->size)
 266		return -EFBIG;
 267
 268	if (!IS_ALIGNED(pos, nvmem->stride))
 269		return -EINVAL;
 270
 271	if (count < nvmem->word_size)
 272		return -EINVAL;
 273
 274	if (pos + count > nvmem->size)
 275		count = nvmem->size - pos;
 276
 277	count = round_down(count, nvmem->word_size);
 278
 279	if (!nvmem->reg_write)
 280		return -EPERM;
 281
 282	rc = nvmem_reg_write(nvmem, pos, buf, count);
 283
 284	if (rc)
 285		return rc;
 286
 287	return count;
 288}
 289
 290static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
 291{
 292	umode_t mode = 0400;
 293
 294	if (!nvmem->root_only)
 295		mode |= 0044;
 296
 297	if (!nvmem->read_only)
 298		mode |= 0200;
 299
 300	if (!nvmem->reg_write)
 301		mode &= ~0200;
 302
 303	if (!nvmem->reg_read)
 304		mode &= ~0444;
 305
 306	return mode;
 307}
 308
 309static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
 310					 struct bin_attribute *attr, int i)
 311{
 312	struct device *dev = kobj_to_dev(kobj);
 313	struct nvmem_device *nvmem = to_nvmem_device(dev);
 314
 315	attr->size = nvmem->size;
 316
 317	return nvmem_bin_attr_get_umode(nvmem);
 318}
 319
 320/* default read/write permissions */
 321static struct bin_attribute bin_attr_rw_nvmem = {
 322	.attr	= {
 323		.name	= "nvmem",
 324		.mode	= 0644,
 325	},
 326	.read	= bin_attr_nvmem_read,
 327	.write	= bin_attr_nvmem_write,
 328};
 329
 330static struct bin_attribute *nvmem_bin_attributes[] = {
 331	&bin_attr_rw_nvmem,
 332	NULL,
 333};
 334
 335static const struct attribute_group nvmem_bin_group = {
 336	.bin_attrs	= nvmem_bin_attributes,
 337	.attrs		= nvmem_attrs,
 338	.is_bin_visible = nvmem_bin_attr_is_visible,
 339};
 340
 341static const struct attribute_group *nvmem_dev_groups[] = {
 342	&nvmem_bin_group,
 343	NULL,
 344};
 345
 346static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
 347	.attr	= {
 348		.name	= "eeprom",
 349	},
 350	.read	= bin_attr_nvmem_read,
 351	.write	= bin_attr_nvmem_write,
 352};
 353
 354/*
 355 * nvmem_setup_compat() - Create an additional binary entry in
 356 * drivers sys directory, to be backwards compatible with the older
 357 * drivers/misc/eeprom drivers.
 358 */
 359static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
 360				    const struct nvmem_config *config)
 361{
 362	int rval;
 363
 364	if (!config->compat)
 365		return 0;
 366
 367	if (!config->base_dev)
 368		return -EINVAL;
 369
 370	if (config->type == NVMEM_TYPE_FRAM)
 371		bin_attr_nvmem_eeprom_compat.attr.name = "fram";
 372
 373	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
 374	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
 375	nvmem->eeprom.size = nvmem->size;
 376#ifdef CONFIG_DEBUG_LOCK_ALLOC
 377	nvmem->eeprom.attr.key = &eeprom_lock_key;
 378#endif
 379	nvmem->eeprom.private = &nvmem->dev;
 380	nvmem->base_dev = config->base_dev;
 381
 382	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
 383	if (rval) {
 384		dev_err(&nvmem->dev,
 385			"Failed to create eeprom binary file %d\n", rval);
 386		return rval;
 387	}
 388
 389	nvmem->flags |= FLAG_COMPAT;
 390
 391	return 0;
 392}
 393
 394static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
 395			      const struct nvmem_config *config)
 396{
 397	if (config->compat)
 398		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
 399}
 400
 401#else /* CONFIG_NVMEM_SYSFS */
 402
 403static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
 404				    const struct nvmem_config *config)
 405{
 406	return -ENOSYS;
 407}
 408static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
 409				      const struct nvmem_config *config)
 410{
 411}
 412
 413#endif /* CONFIG_NVMEM_SYSFS */
 414
 415static void nvmem_release(struct device *dev)
 416{
 417	struct nvmem_device *nvmem = to_nvmem_device(dev);
 418
 419	ida_free(&nvmem_ida, nvmem->id);
 420	gpiod_put(nvmem->wp_gpio);
 421	kfree(nvmem);
 422}
 423
 424static const struct device_type nvmem_provider_type = {
 425	.release	= nvmem_release,
 426};
 427
 428static struct bus_type nvmem_bus_type = {
 429	.name		= "nvmem",
 430};
 431
 432static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
 433{
 434	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
 435	mutex_lock(&nvmem_mutex);
 436	list_del(&cell->node);
 437	mutex_unlock(&nvmem_mutex);
 438	of_node_put(cell->np);
 439	kfree_const(cell->name);
 440	kfree(cell);
 441}
 442
 443static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
 444{
 445	struct nvmem_cell_entry *cell, *p;
 446
 447	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
 448		nvmem_cell_entry_drop(cell);
 449}
 450
 451static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
 452{
 453	mutex_lock(&nvmem_mutex);
 454	list_add_tail(&cell->node, &cell->nvmem->cells);
 455	mutex_unlock(&nvmem_mutex);
 456	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
 457}
 458
 459static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
 460						     const struct nvmem_cell_info *info,
 461						     struct nvmem_cell_entry *cell)
 462{
 463	cell->nvmem = nvmem;
 464	cell->offset = info->offset;
 465	cell->bytes = info->bytes;
 466	cell->name = info->name;
 467
 468	cell->bit_offset = info->bit_offset;
 469	cell->nbits = info->nbits;
 470	cell->np = info->np;
 471
 472	if (cell->nbits)
 473		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
 474					   BITS_PER_BYTE);
 475
 476	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
 477		dev_err(&nvmem->dev,
 478			"cell %s unaligned to nvmem stride %d\n",
 479			cell->name ?: "<unknown>", nvmem->stride);
 480		return -EINVAL;
 481	}
 482
 483	return 0;
 484}
 485
 486static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
 487					       const struct nvmem_cell_info *info,
 488					       struct nvmem_cell_entry *cell)
 489{
 490	int err;
 491
 492	err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
 493	if (err)
 494		return err;
 495
 496	cell->name = kstrdup_const(info->name, GFP_KERNEL);
 497	if (!cell->name)
 498		return -ENOMEM;
 499
 500	return 0;
 501}
 502
 503/**
 504 * nvmem_add_cells() - Add cell information to an nvmem device
 505 *
 506 * @nvmem: nvmem device to add cells to.
 507 * @info: nvmem cell info to add to the device
 508 * @ncells: number of cells in info
 509 *
 510 * Return: 0 or negative error code on failure.
 511 */
 512static int nvmem_add_cells(struct nvmem_device *nvmem,
 513		    const struct nvmem_cell_info *info,
 514		    int ncells)
 515{
 516	struct nvmem_cell_entry **cells;
 517	int i, rval;
 518
 519	cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
 520	if (!cells)
 521		return -ENOMEM;
 522
 523	for (i = 0; i < ncells; i++) {
 524		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
 525		if (!cells[i]) {
 526			rval = -ENOMEM;
 527			goto err;
 528		}
 529
 530		rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, &info[i], cells[i]);
 531		if (rval) {
 532			kfree(cells[i]);
 533			goto err;
 534		}
 535
 536		nvmem_cell_entry_add(cells[i]);
 537	}
 538
 539	/* remove tmp array */
 540	kfree(cells);
 541
 542	return 0;
 543err:
 544	while (i--)
 545		nvmem_cell_entry_drop(cells[i]);
 546
 547	kfree(cells);
 548
 549	return rval;
 550}
 551
 552/**
 553 * nvmem_register_notifier() - Register a notifier block for nvmem events.
 554 *
 555 * @nb: notifier block to be called on nvmem events.
 556 *
 557 * Return: 0 on success, negative error number on failure.
 558 */
 559int nvmem_register_notifier(struct notifier_block *nb)
 560{
 561	return blocking_notifier_chain_register(&nvmem_notifier, nb);
 562}
 563EXPORT_SYMBOL_GPL(nvmem_register_notifier);
 564
 565/**
 566 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
 567 *
 568 * @nb: notifier block to be unregistered.
 569 *
 570 * Return: 0 on success, negative error number on failure.
 571 */
 572int nvmem_unregister_notifier(struct notifier_block *nb)
 573{
 574	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
 575}
 576EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
 577
 578static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
 579{
 580	const struct nvmem_cell_info *info;
 581	struct nvmem_cell_table *table;
 582	struct nvmem_cell_entry *cell;
 583	int rval = 0, i;
 584
 585	mutex_lock(&nvmem_cell_mutex);
 586	list_for_each_entry(table, &nvmem_cell_tables, node) {
 587		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
 588			for (i = 0; i < table->ncells; i++) {
 589				info = &table->cells[i];
 590
 591				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
 592				if (!cell) {
 593					rval = -ENOMEM;
 594					goto out;
 595				}
 596
 597				rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
 598				if (rval) {
 599					kfree(cell);
 600					goto out;
 601				}
 602
 603				nvmem_cell_entry_add(cell);
 604			}
 605		}
 606	}
 607
 608out:
 609	mutex_unlock(&nvmem_cell_mutex);
 610	return rval;
 611}
 612
 613static struct nvmem_cell_entry *
 614nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
 615{
 616	struct nvmem_cell_entry *iter, *cell = NULL;
 617
 618	mutex_lock(&nvmem_mutex);
 619	list_for_each_entry(iter, &nvmem->cells, node) {
 620		if (strcmp(cell_id, iter->name) == 0) {
 621			cell = iter;
 622			break;
 623		}
 624	}
 625	mutex_unlock(&nvmem_mutex);
 626
 627	return cell;
 628}
 629
 630static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
 631{
 632	unsigned int cur = 0;
 633	const struct nvmem_keepout *keepout = nvmem->keepout;
 634	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
 635
 636	while (keepout < keepoutend) {
 637		/* Ensure keepouts are sorted and don't overlap. */
 638		if (keepout->start < cur) {
 639			dev_err(&nvmem->dev,
 640				"Keepout regions aren't sorted or overlap.\n");
 641
 642			return -ERANGE;
 643		}
 644
 645		if (keepout->end < keepout->start) {
 646			dev_err(&nvmem->dev,
 647				"Invalid keepout region.\n");
 648
 649			return -EINVAL;
 650		}
 651
 652		/*
 653		 * Validate keepouts (and holes between) don't violate
 654		 * word_size constraints.
 655		 */
 656		if ((keepout->end - keepout->start < nvmem->word_size) ||
 657		    ((keepout->start != cur) &&
 658		     (keepout->start - cur < nvmem->word_size))) {
 659
 660			dev_err(&nvmem->dev,
 661				"Keepout regions violate word_size constraints.\n");
 662
 663			return -ERANGE;
 664		}
 665
 666		/* Validate keepouts don't violate stride (alignment). */
 667		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
 668		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
 669
 670			dev_err(&nvmem->dev,
 671				"Keepout regions violate stride.\n");
 672
 673			return -EINVAL;
 674		}
 675
 676		cur = keepout->end;
 677		keepout++;
 678	}
 679
 680	return 0;
 681}
 682
 683static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
 684{
 685	struct device_node *parent, *child;
 686	struct device *dev = &nvmem->dev;
 687	struct nvmem_cell_entry *cell;
 688	const __be32 *addr;
 689	int len;
 690
 691	parent = dev->of_node;
 692
 693	for_each_child_of_node(parent, child) {
 694		addr = of_get_property(child, "reg", &len);
 695		if (!addr)
 696			continue;
 697		if (len < 2 * sizeof(u32)) {
 698			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
 699			of_node_put(child);
 700			return -EINVAL;
 701		}
 702
 703		cell = kzalloc(sizeof(*cell), GFP_KERNEL);
 704		if (!cell) {
 705			of_node_put(child);
 706			return -ENOMEM;
 707		}
 708
 709		cell->nvmem = nvmem;
 710		cell->offset = be32_to_cpup(addr++);
 711		cell->bytes = be32_to_cpup(addr);
 712		cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
 713
 714		addr = of_get_property(child, "bits", &len);
 715		if (addr && len == (2 * sizeof(u32))) {
 716			cell->bit_offset = be32_to_cpup(addr++);
 717			cell->nbits = be32_to_cpup(addr);
 718		}
 719
 720		if (cell->nbits)
 721			cell->bytes = DIV_ROUND_UP(
 722					cell->nbits + cell->bit_offset,
 723					BITS_PER_BYTE);
 724
 725		if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
 726			dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
 727				cell->name, nvmem->stride);
 728			/* Cells already added will be freed later. */
 729			kfree_const(cell->name);
 730			kfree(cell);
 731			of_node_put(child);
 732			return -EINVAL;
 733		}
 734
 735		cell->np = of_node_get(child);
 736		nvmem_cell_entry_add(cell);
 737	}
 738
 739	return 0;
 740}
 741
 742/**
 743 * nvmem_register() - Register a nvmem device for given nvmem_config.
 744 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
 745 *
 746 * @config: nvmem device configuration with which nvmem device is created.
 747 *
 748 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
 749 * on success.
 750 */
 751
 752struct nvmem_device *nvmem_register(const struct nvmem_config *config)
 753{
 754	struct nvmem_device *nvmem;
 755	int rval;
 756
 757	if (!config->dev)
 758		return ERR_PTR(-EINVAL);
 759
 760	if (!config->reg_read && !config->reg_write)
 761		return ERR_PTR(-EINVAL);
 762
 763	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
 764	if (!nvmem)
 765		return ERR_PTR(-ENOMEM);
 766
 767	rval  = ida_alloc(&nvmem_ida, GFP_KERNEL);
 768	if (rval < 0) {
 769		kfree(nvmem);
 770		return ERR_PTR(rval);
 771	}
 772
 773	nvmem->id = rval;
 774
 775	nvmem->dev.type = &nvmem_provider_type;
 776	nvmem->dev.bus = &nvmem_bus_type;
 777	nvmem->dev.parent = config->dev;
 778
 779	device_initialize(&nvmem->dev);
 780
 781	if (!config->ignore_wp)
 782		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
 783						    GPIOD_OUT_HIGH);
 784	if (IS_ERR(nvmem->wp_gpio)) {
 785		rval = PTR_ERR(nvmem->wp_gpio);
 786		nvmem->wp_gpio = NULL;
 787		goto err_put_device;
 788	}
 789
 790	kref_init(&nvmem->refcnt);
 791	INIT_LIST_HEAD(&nvmem->cells);
 792
 793	nvmem->owner = config->owner;
 794	if (!nvmem->owner && config->dev->driver)
 795		nvmem->owner = config->dev->driver->owner;
 796	nvmem->stride = config->stride ?: 1;
 797	nvmem->word_size = config->word_size ?: 1;
 798	nvmem->size = config->size;
 799	nvmem->root_only = config->root_only;
 800	nvmem->priv = config->priv;
 801	nvmem->type = config->type;
 802	nvmem->reg_read = config->reg_read;
 803	nvmem->reg_write = config->reg_write;
 804	nvmem->cell_post_process = config->cell_post_process;
 805	nvmem->keepout = config->keepout;
 806	nvmem->nkeepout = config->nkeepout;
 807	if (config->of_node)
 808		nvmem->dev.of_node = config->of_node;
 809	else if (!config->no_of_node)
 810		nvmem->dev.of_node = config->dev->of_node;
 811
 812	switch (config->id) {
 813	case NVMEM_DEVID_NONE:
 814		rval = dev_set_name(&nvmem->dev, "%s", config->name);
 815		break;
 816	case NVMEM_DEVID_AUTO:
 817		rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
 818		break;
 819	default:
 820		rval = dev_set_name(&nvmem->dev, "%s%d",
 821			     config->name ? : "nvmem",
 822			     config->name ? config->id : nvmem->id);
 823		break;
 824	}
 825
 826	if (rval)
 827		goto err_put_device;
 828
 829	nvmem->read_only = device_property_present(config->dev, "read-only") ||
 830			   config->read_only || !nvmem->reg_write;
 831
 832#ifdef CONFIG_NVMEM_SYSFS
 833	nvmem->dev.groups = nvmem_dev_groups;
 834#endif
 835
 836	if (nvmem->nkeepout) {
 837		rval = nvmem_validate_keepouts(nvmem);
 838		if (rval)
 839			goto err_put_device;
 840	}
 841
 842	if (config->compat) {
 843		rval = nvmem_sysfs_setup_compat(nvmem, config);
 844		if (rval)
 845			goto err_put_device;
 846	}
 847
 848	if (config->cells) {
 849		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
 850		if (rval)
 851			goto err_remove_cells;
 852	}
 853
 854	rval = nvmem_add_cells_from_table(nvmem);
 855	if (rval)
 856		goto err_remove_cells;
 857
 858	rval = nvmem_add_cells_from_of(nvmem);
 859	if (rval)
 860		goto err_remove_cells;
 861
 862	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
 863
 864	rval = device_add(&nvmem->dev);
 865	if (rval)
 866		goto err_remove_cells;
 867
 868	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
 869
 870	return nvmem;
 871
 872err_remove_cells:
 873	nvmem_device_remove_all_cells(nvmem);
 874	if (config->compat)
 875		nvmem_sysfs_remove_compat(nvmem, config);
 876err_put_device:
 877	put_device(&nvmem->dev);
 878
 879	return ERR_PTR(rval);
 880}
 881EXPORT_SYMBOL_GPL(nvmem_register);
 882
 883static void nvmem_device_release(struct kref *kref)
 884{
 885	struct nvmem_device *nvmem;
 886
 887	nvmem = container_of(kref, struct nvmem_device, refcnt);
 888
 889	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
 890
 891	if (nvmem->flags & FLAG_COMPAT)
 892		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
 893
 894	nvmem_device_remove_all_cells(nvmem);
 895	device_unregister(&nvmem->dev);
 896}
 897
 898/**
 899 * nvmem_unregister() - Unregister previously registered nvmem device
 900 *
 901 * @nvmem: Pointer to previously registered nvmem device.
 902 */
 903void nvmem_unregister(struct nvmem_device *nvmem)
 904{
 905	if (nvmem)
 906		kref_put(&nvmem->refcnt, nvmem_device_release);
 907}
 908EXPORT_SYMBOL_GPL(nvmem_unregister);
 909
 910static void devm_nvmem_unregister(void *nvmem)
 911{
 912	nvmem_unregister(nvmem);
 913}
 914
 915/**
 916 * devm_nvmem_register() - Register a managed nvmem device for given
 917 * nvmem_config.
 918 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
 919 *
 920 * @dev: Device that uses the nvmem device.
 921 * @config: nvmem device configuration with which nvmem device is created.
 922 *
 923 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
 924 * on success.
 925 */
 926struct nvmem_device *devm_nvmem_register(struct device *dev,
 927					 const struct nvmem_config *config)
 928{
 929	struct nvmem_device *nvmem;
 930	int ret;
 931
 932	nvmem = nvmem_register(config);
 933	if (IS_ERR(nvmem))
 934		return nvmem;
 935
 936	ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
 937	if (ret)
 938		return ERR_PTR(ret);
 939
 940	return nvmem;
 941}
 942EXPORT_SYMBOL_GPL(devm_nvmem_register);
 943
 944static struct nvmem_device *__nvmem_device_get(void *data,
 945			int (*match)(struct device *dev, const void *data))
 946{
 947	struct nvmem_device *nvmem = NULL;
 948	struct device *dev;
 949
 950	mutex_lock(&nvmem_mutex);
 951	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
 952	if (dev)
 953		nvmem = to_nvmem_device(dev);
 954	mutex_unlock(&nvmem_mutex);
 955	if (!nvmem)
 956		return ERR_PTR(-EPROBE_DEFER);
 957
 958	if (!try_module_get(nvmem->owner)) {
 959		dev_err(&nvmem->dev,
 960			"could not increase module refcount for cell %s\n",
 961			nvmem_dev_name(nvmem));
 962
 963		put_device(&nvmem->dev);
 964		return ERR_PTR(-EINVAL);
 965	}
 966
 967	kref_get(&nvmem->refcnt);
 968
 969	return nvmem;
 970}
 971
 972static void __nvmem_device_put(struct nvmem_device *nvmem)
 973{
 974	put_device(&nvmem->dev);
 975	module_put(nvmem->owner);
 976	kref_put(&nvmem->refcnt, nvmem_device_release);
 977}
 978
 979#if IS_ENABLED(CONFIG_OF)
 980/**
 981 * of_nvmem_device_get() - Get nvmem device from a given id
 982 *
 983 * @np: Device tree node that uses the nvmem device.
 984 * @id: nvmem name from nvmem-names property.
 985 *
 986 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
 987 * on success.
 988 */
 989struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
 990{
 991
 992	struct device_node *nvmem_np;
 993	struct nvmem_device *nvmem;
 994	int index = 0;
 995
 996	if (id)
 997		index = of_property_match_string(np, "nvmem-names", id);
 998
 999	nvmem_np = of_parse_phandle(np, "nvmem", index);
1000	if (!nvmem_np)
1001		return ERR_PTR(-ENOENT);
1002
1003	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1004	of_node_put(nvmem_np);
1005	return nvmem;
1006}
1007EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1008#endif
1009
1010/**
1011 * nvmem_device_get() - Get nvmem device from a given id
1012 *
1013 * @dev: Device that uses the nvmem device.
1014 * @dev_name: name of the requested nvmem device.
1015 *
1016 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1017 * on success.
1018 */
1019struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1020{
1021	if (dev->of_node) { /* try dt first */
1022		struct nvmem_device *nvmem;
1023
1024		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1025
1026		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1027			return nvmem;
1028
1029	}
1030
1031	return __nvmem_device_get((void *)dev_name, device_match_name);
1032}
1033EXPORT_SYMBOL_GPL(nvmem_device_get);
1034
1035/**
1036 * nvmem_device_find() - Find nvmem device with matching function
1037 *
1038 * @data: Data to pass to match function
1039 * @match: Callback function to check device
1040 *
1041 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1042 * on success.
1043 */
1044struct nvmem_device *nvmem_device_find(void *data,
1045			int (*match)(struct device *dev, const void *data))
1046{
1047	return __nvmem_device_get(data, match);
1048}
1049EXPORT_SYMBOL_GPL(nvmem_device_find);
1050
1051static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1052{
1053	struct nvmem_device **nvmem = res;
1054
1055	if (WARN_ON(!nvmem || !*nvmem))
1056		return 0;
1057
1058	return *nvmem == data;
1059}
1060
1061static void devm_nvmem_device_release(struct device *dev, void *res)
1062{
1063	nvmem_device_put(*(struct nvmem_device **)res);
1064}
1065
1066/**
1067 * devm_nvmem_device_put() - put alredy got nvmem device
1068 *
1069 * @dev: Device that uses the nvmem device.
1070 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1071 * that needs to be released.
1072 */
1073void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1074{
1075	int ret;
1076
1077	ret = devres_release(dev, devm_nvmem_device_release,
1078			     devm_nvmem_device_match, nvmem);
1079
1080	WARN_ON(ret);
1081}
1082EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1083
1084/**
1085 * nvmem_device_put() - put alredy got nvmem device
1086 *
1087 * @nvmem: pointer to nvmem device that needs to be released.
1088 */
1089void nvmem_device_put(struct nvmem_device *nvmem)
1090{
1091	__nvmem_device_put(nvmem);
1092}
1093EXPORT_SYMBOL_GPL(nvmem_device_put);
1094
1095/**
1096 * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1097 *
1098 * @dev: Device that requests the nvmem device.
1099 * @id: name id for the requested nvmem device.
1100 *
1101 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1102 * on success.  The nvmem_cell will be freed by the automatically once the
1103 * device is freed.
1104 */
1105struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1106{
1107	struct nvmem_device **ptr, *nvmem;
1108
1109	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1110	if (!ptr)
1111		return ERR_PTR(-ENOMEM);
1112
1113	nvmem = nvmem_device_get(dev, id);
1114	if (!IS_ERR(nvmem)) {
1115		*ptr = nvmem;
1116		devres_add(dev, ptr);
1117	} else {
1118		devres_free(ptr);
1119	}
1120
1121	return nvmem;
1122}
1123EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1124
1125static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry, const char *id)
1126{
1127	struct nvmem_cell *cell;
1128	const char *name = NULL;
1129
1130	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1131	if (!cell)
1132		return ERR_PTR(-ENOMEM);
1133
1134	if (id) {
1135		name = kstrdup_const(id, GFP_KERNEL);
1136		if (!name) {
1137			kfree(cell);
1138			return ERR_PTR(-ENOMEM);
1139		}
1140	}
1141
1142	cell->id = name;
1143	cell->entry = entry;
1144
1145	return cell;
1146}
1147
1148static struct nvmem_cell *
1149nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1150{
1151	struct nvmem_cell_entry *cell_entry;
1152	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1153	struct nvmem_cell_lookup *lookup;
1154	struct nvmem_device *nvmem;
1155	const char *dev_id;
1156
1157	if (!dev)
1158		return ERR_PTR(-EINVAL);
1159
1160	dev_id = dev_name(dev);
1161
1162	mutex_lock(&nvmem_lookup_mutex);
1163
1164	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1165		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1166		    (strcmp(lookup->con_id, con_id) == 0)) {
1167			/* This is the right entry. */
1168			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1169						   device_match_name);
1170			if (IS_ERR(nvmem)) {
1171				/* Provider may not be registered yet. */
1172				cell = ERR_CAST(nvmem);
1173				break;
1174			}
1175
1176			cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1177								   lookup->cell_name);
1178			if (!cell_entry) {
1179				__nvmem_device_put(nvmem);
1180				cell = ERR_PTR(-ENOENT);
1181			} else {
1182				cell = nvmem_create_cell(cell_entry, con_id);
1183				if (IS_ERR(cell))
1184					__nvmem_device_put(nvmem);
1185			}
1186			break;
1187		}
1188	}
1189
1190	mutex_unlock(&nvmem_lookup_mutex);
1191	return cell;
1192}
1193
1194#if IS_ENABLED(CONFIG_OF)
1195static struct nvmem_cell_entry *
1196nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1197{
1198	struct nvmem_cell_entry *iter, *cell = NULL;
1199
1200	mutex_lock(&nvmem_mutex);
1201	list_for_each_entry(iter, &nvmem->cells, node) {
1202		if (np == iter->np) {
1203			cell = iter;
1204			break;
1205		}
1206	}
1207	mutex_unlock(&nvmem_mutex);
1208
1209	return cell;
1210}
1211
1212/**
1213 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1214 *
1215 * @np: Device tree node that uses the nvmem cell.
1216 * @id: nvmem cell name from nvmem-cell-names property, or NULL
1217 *      for the cell at index 0 (the lone cell with no accompanying
1218 *      nvmem-cell-names property).
1219 *
1220 * Return: Will be an ERR_PTR() on error or a valid pointer
1221 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1222 * nvmem_cell_put().
1223 */
1224struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1225{
1226	struct device_node *cell_np, *nvmem_np;
1227	struct nvmem_device *nvmem;
1228	struct nvmem_cell_entry *cell_entry;
1229	struct nvmem_cell *cell;
1230	int index = 0;
1231
1232	/* if cell name exists, find index to the name */
1233	if (id)
1234		index = of_property_match_string(np, "nvmem-cell-names", id);
1235
1236	cell_np = of_parse_phandle(np, "nvmem-cells", index);
1237	if (!cell_np)
1238		return ERR_PTR(-ENOENT);
1239
1240	nvmem_np = of_get_parent(cell_np);
1241	if (!nvmem_np) {
1242		of_node_put(cell_np);
1243		return ERR_PTR(-EINVAL);
1244	}
1245
1246	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1247	of_node_put(nvmem_np);
1248	if (IS_ERR(nvmem)) {
1249		of_node_put(cell_np);
1250		return ERR_CAST(nvmem);
1251	}
1252
1253	cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1254	of_node_put(cell_np);
1255	if (!cell_entry) {
1256		__nvmem_device_put(nvmem);
1257		return ERR_PTR(-ENOENT);
1258	}
1259
1260	cell = nvmem_create_cell(cell_entry, id);
1261	if (IS_ERR(cell))
1262		__nvmem_device_put(nvmem);
1263
1264	return cell;
1265}
1266EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1267#endif
1268
1269/**
1270 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1271 *
1272 * @dev: Device that requests the nvmem cell.
1273 * @id: nvmem cell name to get (this corresponds with the name from the
1274 *      nvmem-cell-names property for DT systems and with the con_id from
1275 *      the lookup entry for non-DT systems).
1276 *
1277 * Return: Will be an ERR_PTR() on error or a valid pointer
1278 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1279 * nvmem_cell_put().
1280 */
1281struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1282{
1283	struct nvmem_cell *cell;
1284
1285	if (dev->of_node) { /* try dt first */
1286		cell = of_nvmem_cell_get(dev->of_node, id);
1287		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1288			return cell;
1289	}
1290
1291	/* NULL cell id only allowed for device tree; invalid otherwise */
1292	if (!id)
1293		return ERR_PTR(-EINVAL);
1294
1295	return nvmem_cell_get_from_lookup(dev, id);
1296}
1297EXPORT_SYMBOL_GPL(nvmem_cell_get);
1298
1299static void devm_nvmem_cell_release(struct device *dev, void *res)
1300{
1301	nvmem_cell_put(*(struct nvmem_cell **)res);
1302}
1303
1304/**
1305 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1306 *
1307 * @dev: Device that requests the nvmem cell.
1308 * @id: nvmem cell name id to get.
1309 *
1310 * Return: Will be an ERR_PTR() on error or a valid pointer
1311 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1312 * automatically once the device is freed.
1313 */
1314struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1315{
1316	struct nvmem_cell **ptr, *cell;
1317
1318	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1319	if (!ptr)
1320		return ERR_PTR(-ENOMEM);
1321
1322	cell = nvmem_cell_get(dev, id);
1323	if (!IS_ERR(cell)) {
1324		*ptr = cell;
1325		devres_add(dev, ptr);
1326	} else {
1327		devres_free(ptr);
1328	}
1329
1330	return cell;
1331}
1332EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1333
1334static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1335{
1336	struct nvmem_cell **c = res;
1337
1338	if (WARN_ON(!c || !*c))
1339		return 0;
1340
1341	return *c == data;
1342}
1343
1344/**
1345 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1346 * from devm_nvmem_cell_get.
1347 *
1348 * @dev: Device that requests the nvmem cell.
1349 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1350 */
1351void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1352{
1353	int ret;
1354
1355	ret = devres_release(dev, devm_nvmem_cell_release,
1356				devm_nvmem_cell_match, cell);
1357
1358	WARN_ON(ret);
1359}
1360EXPORT_SYMBOL(devm_nvmem_cell_put);
1361
1362/**
1363 * nvmem_cell_put() - Release previously allocated nvmem cell.
1364 *
1365 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1366 */
1367void nvmem_cell_put(struct nvmem_cell *cell)
1368{
1369	struct nvmem_device *nvmem = cell->entry->nvmem;
1370
1371	if (cell->id)
1372		kfree_const(cell->id);
1373
1374	kfree(cell);
1375	__nvmem_device_put(nvmem);
1376}
1377EXPORT_SYMBOL_GPL(nvmem_cell_put);
1378
1379static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1380{
1381	u8 *p, *b;
1382	int i, extra, bit_offset = cell->bit_offset;
1383
1384	p = b = buf;
1385	if (bit_offset) {
1386		/* First shift */
1387		*b++ >>= bit_offset;
1388
1389		/* setup rest of the bytes if any */
1390		for (i = 1; i < cell->bytes; i++) {
1391			/* Get bits from next byte and shift them towards msb */
1392			*p |= *b << (BITS_PER_BYTE - bit_offset);
1393
1394			p = b;
1395			*b++ >>= bit_offset;
1396		}
1397	} else {
1398		/* point to the msb */
1399		p += cell->bytes - 1;
1400	}
1401
1402	/* result fits in less bytes */
1403	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1404	while (--extra >= 0)
1405		*p-- = 0;
1406
1407	/* clear msb bits if any leftover in the last byte */
1408	if (cell->nbits % BITS_PER_BYTE)
1409		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1410}
1411
1412static int __nvmem_cell_read(struct nvmem_device *nvmem,
1413		      struct nvmem_cell_entry *cell,
1414		      void *buf, size_t *len, const char *id)
1415{
1416	int rc;
1417
1418	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1419
1420	if (rc)
1421		return rc;
1422
1423	/* shift bits in-place */
1424	if (cell->bit_offset || cell->nbits)
1425		nvmem_shift_read_buffer_in_place(cell, buf);
1426
1427	if (nvmem->cell_post_process) {
1428		rc = nvmem->cell_post_process(nvmem->priv, id,
1429					      cell->offset, buf, cell->bytes);
1430		if (rc)
1431			return rc;
1432	}
1433
1434	if (len)
1435		*len = cell->bytes;
1436
1437	return 0;
1438}
1439
1440/**
1441 * nvmem_cell_read() - Read a given nvmem cell
1442 *
1443 * @cell: nvmem cell to be read.
1444 * @len: pointer to length of cell which will be populated on successful read;
1445 *	 can be NULL.
1446 *
1447 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1448 * buffer should be freed by the consumer with a kfree().
1449 */
1450void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1451{
1452	struct nvmem_device *nvmem = cell->entry->nvmem;
1453	u8 *buf;
1454	int rc;
1455
1456	if (!nvmem)
1457		return ERR_PTR(-EINVAL);
1458
1459	buf = kzalloc(cell->entry->bytes, GFP_KERNEL);
1460	if (!buf)
1461		return ERR_PTR(-ENOMEM);
1462
1463	rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id);
1464	if (rc) {
1465		kfree(buf);
1466		return ERR_PTR(rc);
1467	}
1468
1469	return buf;
1470}
1471EXPORT_SYMBOL_GPL(nvmem_cell_read);
1472
1473static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1474					     u8 *_buf, int len)
1475{
1476	struct nvmem_device *nvmem = cell->nvmem;
1477	int i, rc, nbits, bit_offset = cell->bit_offset;
1478	u8 v, *p, *buf, *b, pbyte, pbits;
1479
1480	nbits = cell->nbits;
1481	buf = kzalloc(cell->bytes, GFP_KERNEL);
1482	if (!buf)
1483		return ERR_PTR(-ENOMEM);
1484
1485	memcpy(buf, _buf, len);
1486	p = b = buf;
1487
1488	if (bit_offset) {
1489		pbyte = *b;
1490		*b <<= bit_offset;
1491
1492		/* setup the first byte with lsb bits from nvmem */
1493		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1494		if (rc)
1495			goto err;
1496		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1497
1498		/* setup rest of the byte if any */
1499		for (i = 1; i < cell->bytes; i++) {
1500			/* Get last byte bits and shift them towards lsb */
1501			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1502			pbyte = *b;
1503			p = b;
1504			*b <<= bit_offset;
1505			*b++ |= pbits;
1506		}
1507	}
1508
1509	/* if it's not end on byte boundary */
1510	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1511		/* setup the last byte with msb bits from nvmem */
1512		rc = nvmem_reg_read(nvmem,
1513				    cell->offset + cell->bytes - 1, &v, 1);
1514		if (rc)
1515			goto err;
1516		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1517
1518	}
1519
1520	return buf;
1521err:
1522	kfree(buf);
1523	return ERR_PTR(rc);
1524}
1525
1526static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1527{
1528	struct nvmem_device *nvmem = cell->nvmem;
1529	int rc;
1530
1531	if (!nvmem || nvmem->read_only ||
1532	    (cell->bit_offset == 0 && len != cell->bytes))
1533		return -EINVAL;
1534
1535	if (cell->bit_offset || cell->nbits) {
1536		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1537		if (IS_ERR(buf))
1538			return PTR_ERR(buf);
1539	}
1540
1541	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1542
1543	/* free the tmp buffer */
1544	if (cell->bit_offset || cell->nbits)
1545		kfree(buf);
1546
1547	if (rc)
1548		return rc;
1549
1550	return len;
1551}
1552
1553/**
1554 * nvmem_cell_write() - Write to a given nvmem cell
1555 *
1556 * @cell: nvmem cell to be written.
1557 * @buf: Buffer to be written.
1558 * @len: length of buffer to be written to nvmem cell.
1559 *
1560 * Return: length of bytes written or negative on failure.
1561 */
1562int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1563{
1564	return __nvmem_cell_entry_write(cell->entry, buf, len);
1565}
1566
1567EXPORT_SYMBOL_GPL(nvmem_cell_write);
1568
1569static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1570				  void *val, size_t count)
1571{
1572	struct nvmem_cell *cell;
1573	void *buf;
1574	size_t len;
1575
1576	cell = nvmem_cell_get(dev, cell_id);
1577	if (IS_ERR(cell))
1578		return PTR_ERR(cell);
1579
1580	buf = nvmem_cell_read(cell, &len);
1581	if (IS_ERR(buf)) {
1582		nvmem_cell_put(cell);
1583		return PTR_ERR(buf);
1584	}
1585	if (len != count) {
1586		kfree(buf);
1587		nvmem_cell_put(cell);
1588		return -EINVAL;
1589	}
1590	memcpy(val, buf, count);
1591	kfree(buf);
1592	nvmem_cell_put(cell);
1593
1594	return 0;
1595}
1596
1597/**
1598 * nvmem_cell_read_u8() - Read a cell value as a u8
1599 *
1600 * @dev: Device that requests the nvmem cell.
1601 * @cell_id: Name of nvmem cell to read.
1602 * @val: pointer to output value.
1603 *
1604 * Return: 0 on success or negative errno.
1605 */
1606int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1607{
1608	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1609}
1610EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1611
1612/**
1613 * nvmem_cell_read_u16() - Read a cell value as a u16
1614 *
1615 * @dev: Device that requests the nvmem cell.
1616 * @cell_id: Name of nvmem cell to read.
1617 * @val: pointer to output value.
1618 *
1619 * Return: 0 on success or negative errno.
1620 */
1621int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1622{
1623	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1624}
1625EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1626
1627/**
1628 * nvmem_cell_read_u32() - Read a cell value as a u32
1629 *
1630 * @dev: Device that requests the nvmem cell.
1631 * @cell_id: Name of nvmem cell to read.
1632 * @val: pointer to output value.
1633 *
1634 * Return: 0 on success or negative errno.
1635 */
1636int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1637{
1638	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1639}
1640EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1641
1642/**
1643 * nvmem_cell_read_u64() - Read a cell value as a u64
1644 *
1645 * @dev: Device that requests the nvmem cell.
1646 * @cell_id: Name of nvmem cell to read.
1647 * @val: pointer to output value.
1648 *
1649 * Return: 0 on success or negative errno.
1650 */
1651int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1652{
1653	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1654}
1655EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1656
1657static const void *nvmem_cell_read_variable_common(struct device *dev,
1658						   const char *cell_id,
1659						   size_t max_len, size_t *len)
1660{
1661	struct nvmem_cell *cell;
1662	int nbits;
1663	void *buf;
1664
1665	cell = nvmem_cell_get(dev, cell_id);
1666	if (IS_ERR(cell))
1667		return cell;
1668
1669	nbits = cell->entry->nbits;
1670	buf = nvmem_cell_read(cell, len);
1671	nvmem_cell_put(cell);
1672	if (IS_ERR(buf))
1673		return buf;
1674
1675	/*
1676	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1677	 * the length of the real data. Throw away the extra junk.
1678	 */
1679	if (nbits)
1680		*len = DIV_ROUND_UP(nbits, 8);
1681
1682	if (*len > max_len) {
1683		kfree(buf);
1684		return ERR_PTR(-ERANGE);
1685	}
1686
1687	return buf;
1688}
1689
1690/**
1691 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1692 *
1693 * @dev: Device that requests the nvmem cell.
1694 * @cell_id: Name of nvmem cell to read.
1695 * @val: pointer to output value.
1696 *
1697 * Return: 0 on success or negative errno.
1698 */
1699int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1700				    u32 *val)
1701{
1702	size_t len;
1703	const u8 *buf;
1704	int i;
1705
1706	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1707	if (IS_ERR(buf))
1708		return PTR_ERR(buf);
1709
1710	/* Copy w/ implicit endian conversion */
1711	*val = 0;
1712	for (i = 0; i < len; i++)
1713		*val |= buf[i] << (8 * i);
1714
1715	kfree(buf);
1716
1717	return 0;
1718}
1719EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1720
1721/**
1722 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1723 *
1724 * @dev: Device that requests the nvmem cell.
1725 * @cell_id: Name of nvmem cell to read.
1726 * @val: pointer to output value.
1727 *
1728 * Return: 0 on success or negative errno.
1729 */
1730int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1731				    u64 *val)
1732{
1733	size_t len;
1734	const u8 *buf;
1735	int i;
1736
1737	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1738	if (IS_ERR(buf))
1739		return PTR_ERR(buf);
1740
1741	/* Copy w/ implicit endian conversion */
1742	*val = 0;
1743	for (i = 0; i < len; i++)
1744		*val |= (uint64_t)buf[i] << (8 * i);
1745
1746	kfree(buf);
1747
1748	return 0;
1749}
1750EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1751
1752/**
1753 * nvmem_device_cell_read() - Read a given nvmem device and cell
1754 *
1755 * @nvmem: nvmem device to read from.
1756 * @info: nvmem cell info to be read.
1757 * @buf: buffer pointer which will be populated on successful read.
1758 *
1759 * Return: length of successful bytes read on success and negative
1760 * error code on error.
1761 */
1762ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1763			   struct nvmem_cell_info *info, void *buf)
1764{
1765	struct nvmem_cell_entry cell;
1766	int rc;
1767	ssize_t len;
1768
1769	if (!nvmem)
1770		return -EINVAL;
1771
1772	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1773	if (rc)
1774		return rc;
1775
1776	rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL);
1777	if (rc)
1778		return rc;
1779
1780	return len;
1781}
1782EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1783
1784/**
1785 * nvmem_device_cell_write() - Write cell to a given nvmem device
1786 *
1787 * @nvmem: nvmem device to be written to.
1788 * @info: nvmem cell info to be written.
1789 * @buf: buffer to be written to cell.
1790 *
1791 * Return: length of bytes written or negative error code on failure.
1792 */
1793int nvmem_device_cell_write(struct nvmem_device *nvmem,
1794			    struct nvmem_cell_info *info, void *buf)
1795{
1796	struct nvmem_cell_entry cell;
1797	int rc;
1798
1799	if (!nvmem)
1800		return -EINVAL;
1801
1802	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1803	if (rc)
1804		return rc;
1805
1806	return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
1807}
1808EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1809
1810/**
1811 * nvmem_device_read() - Read from a given nvmem device
1812 *
1813 * @nvmem: nvmem device to read from.
1814 * @offset: offset in nvmem device.
1815 * @bytes: number of bytes to read.
1816 * @buf: buffer pointer which will be populated on successful read.
1817 *
1818 * Return: length of successful bytes read on success and negative
1819 * error code on error.
1820 */
1821int nvmem_device_read(struct nvmem_device *nvmem,
1822		      unsigned int offset,
1823		      size_t bytes, void *buf)
1824{
1825	int rc;
1826
1827	if (!nvmem)
1828		return -EINVAL;
1829
1830	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1831
1832	if (rc)
1833		return rc;
1834
1835	return bytes;
1836}
1837EXPORT_SYMBOL_GPL(nvmem_device_read);
1838
1839/**
1840 * nvmem_device_write() - Write cell to a given nvmem device
1841 *
1842 * @nvmem: nvmem device to be written to.
1843 * @offset: offset in nvmem device.
1844 * @bytes: number of bytes to write.
1845 * @buf: buffer to be written.
1846 *
1847 * Return: length of bytes written or negative error code on failure.
1848 */
1849int nvmem_device_write(struct nvmem_device *nvmem,
1850		       unsigned int offset,
1851		       size_t bytes, void *buf)
1852{
1853	int rc;
1854
1855	if (!nvmem)
1856		return -EINVAL;
1857
1858	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1859
1860	if (rc)
1861		return rc;
1862
1863
1864	return bytes;
1865}
1866EXPORT_SYMBOL_GPL(nvmem_device_write);
1867
1868/**
1869 * nvmem_add_cell_table() - register a table of cell info entries
1870 *
1871 * @table: table of cell info entries
1872 */
1873void nvmem_add_cell_table(struct nvmem_cell_table *table)
1874{
1875	mutex_lock(&nvmem_cell_mutex);
1876	list_add_tail(&table->node, &nvmem_cell_tables);
1877	mutex_unlock(&nvmem_cell_mutex);
1878}
1879EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1880
1881/**
1882 * nvmem_del_cell_table() - remove a previously registered cell info table
1883 *
1884 * @table: table of cell info entries
1885 */
1886void nvmem_del_cell_table(struct nvmem_cell_table *table)
1887{
1888	mutex_lock(&nvmem_cell_mutex);
1889	list_del(&table->node);
1890	mutex_unlock(&nvmem_cell_mutex);
1891}
1892EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1893
1894/**
1895 * nvmem_add_cell_lookups() - register a list of cell lookup entries
1896 *
1897 * @entries: array of cell lookup entries
1898 * @nentries: number of cell lookup entries in the array
1899 */
1900void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1901{
1902	int i;
1903
1904	mutex_lock(&nvmem_lookup_mutex);
1905	for (i = 0; i < nentries; i++)
1906		list_add_tail(&entries[i].node, &nvmem_lookup_list);
1907	mutex_unlock(&nvmem_lookup_mutex);
1908}
1909EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1910
1911/**
1912 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1913 *                            entries
1914 *
1915 * @entries: array of cell lookup entries
1916 * @nentries: number of cell lookup entries in the array
1917 */
1918void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1919{
1920	int i;
1921
1922	mutex_lock(&nvmem_lookup_mutex);
1923	for (i = 0; i < nentries; i++)
1924		list_del(&entries[i].node);
1925	mutex_unlock(&nvmem_lookup_mutex);
1926}
1927EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1928
1929/**
1930 * nvmem_dev_name() - Get the name of a given nvmem device.
1931 *
1932 * @nvmem: nvmem device.
1933 *
1934 * Return: name of the nvmem device.
1935 */
1936const char *nvmem_dev_name(struct nvmem_device *nvmem)
1937{
1938	return dev_name(&nvmem->dev);
1939}
1940EXPORT_SYMBOL_GPL(nvmem_dev_name);
1941
1942static int __init nvmem_init(void)
1943{
1944	return bus_register(&nvmem_bus_type);
1945}
1946
1947static void __exit nvmem_exit(void)
1948{
1949	bus_unregister(&nvmem_bus_type);
1950}
1951
1952subsys_initcall(nvmem_init);
1953module_exit(nvmem_exit);
1954
1955MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1956MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1957MODULE_DESCRIPTION("nvmem Driver Core");
1958MODULE_LICENSE("GPL v2");