Loading...
1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <asm/unaligned.h>
18#include "hw.h"
19#include "ar9002_phy.h"
20
21#define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
22
23static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
24{
25 return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
26}
27
28static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
29{
30 return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
31}
32
33static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
34{
35 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
36 struct ath_common *common = ath9k_hw_common(ah);
37 u16 *eep_data;
38 int addr, eep_start_loc = AR9287_EEP_START_LOC;
39 eep_data = (u16 *)eep;
40
41 for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
42 if (!ath9k_hw_nvram_read(common, addr + eep_start_loc,
43 eep_data)) {
44 ath_dbg(common, ATH_DBG_EEPROM,
45 "Unable to read eeprom region\n");
46 return false;
47 }
48 eep_data++;
49 }
50
51 return true;
52}
53
54static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw *ah)
55{
56 u16 *eep_data = (u16 *)&ah->eeprom.map9287;
57
58 ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
59 AR9287_HTC_EEP_START_LOC,
60 SIZE_EEPROM_AR9287);
61 return true;
62}
63
64static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
65{
66 struct ath_common *common = ath9k_hw_common(ah);
67
68 if (!ath9k_hw_use_flash(ah)) {
69 ath_dbg(common, ATH_DBG_EEPROM,
70 "Reading from EEPROM, not flash\n");
71 }
72
73 if (common->bus_ops->ath_bus_type == ATH_USB)
74 return __ath9k_hw_usb_ar9287_fill_eeprom(ah);
75 else
76 return __ath9k_hw_ar9287_fill_eeprom(ah);
77}
78
79static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
80{
81 u32 sum = 0, el, integer;
82 u16 temp, word, magic, magic2, *eepdata;
83 int i, addr;
84 bool need_swap = false;
85 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
86 struct ath_common *common = ath9k_hw_common(ah);
87
88 if (!ath9k_hw_use_flash(ah)) {
89 if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
90 &magic)) {
91 ath_err(common, "Reading Magic # failed\n");
92 return false;
93 }
94
95 ath_dbg(common, ATH_DBG_EEPROM,
96 "Read Magic = 0x%04X\n", magic);
97
98 if (magic != AR5416_EEPROM_MAGIC) {
99 magic2 = swab16(magic);
100
101 if (magic2 == AR5416_EEPROM_MAGIC) {
102 need_swap = true;
103 eepdata = (u16 *)(&ah->eeprom);
104
105 for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
106 temp = swab16(*eepdata);
107 *eepdata = temp;
108 eepdata++;
109 }
110 } else {
111 ath_err(common,
112 "Invalid EEPROM Magic. Endianness mismatch.\n");
113 return -EINVAL;
114 }
115 }
116 }
117
118 ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
119 need_swap ? "True" : "False");
120
121 if (need_swap)
122 el = swab16(ah->eeprom.map9287.baseEepHeader.length);
123 else
124 el = ah->eeprom.map9287.baseEepHeader.length;
125
126 if (el > sizeof(struct ar9287_eeprom))
127 el = sizeof(struct ar9287_eeprom) / sizeof(u16);
128 else
129 el = el / sizeof(u16);
130
131 eepdata = (u16 *)(&ah->eeprom);
132
133 for (i = 0; i < el; i++)
134 sum ^= *eepdata++;
135
136 if (need_swap) {
137 word = swab16(eep->baseEepHeader.length);
138 eep->baseEepHeader.length = word;
139
140 word = swab16(eep->baseEepHeader.checksum);
141 eep->baseEepHeader.checksum = word;
142
143 word = swab16(eep->baseEepHeader.version);
144 eep->baseEepHeader.version = word;
145
146 word = swab16(eep->baseEepHeader.regDmn[0]);
147 eep->baseEepHeader.regDmn[0] = word;
148
149 word = swab16(eep->baseEepHeader.regDmn[1]);
150 eep->baseEepHeader.regDmn[1] = word;
151
152 word = swab16(eep->baseEepHeader.rfSilent);
153 eep->baseEepHeader.rfSilent = word;
154
155 word = swab16(eep->baseEepHeader.blueToothOptions);
156 eep->baseEepHeader.blueToothOptions = word;
157
158 word = swab16(eep->baseEepHeader.deviceCap);
159 eep->baseEepHeader.deviceCap = word;
160
161 integer = swab32(eep->modalHeader.antCtrlCommon);
162 eep->modalHeader.antCtrlCommon = integer;
163
164 for (i = 0; i < AR9287_MAX_CHAINS; i++) {
165 integer = swab32(eep->modalHeader.antCtrlChain[i]);
166 eep->modalHeader.antCtrlChain[i] = integer;
167 }
168
169 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
170 word = swab16(eep->modalHeader.spurChans[i].spurChan);
171 eep->modalHeader.spurChans[i].spurChan = word;
172 }
173 }
174
175 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
176 || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
177 ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
178 sum, ah->eep_ops->get_eeprom_ver(ah));
179 return -EINVAL;
180 }
181
182 return 0;
183}
184
185static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
186 enum eeprom_param param)
187{
188 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
189 struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
190 struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
191 u16 ver_minor;
192
193 ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
194
195 switch (param) {
196 case EEP_NFTHRESH_2:
197 return pModal->noiseFloorThreshCh[0];
198 case EEP_MAC_LSW:
199 return get_unaligned_be16(pBase->macAddr);
200 case EEP_MAC_MID:
201 return get_unaligned_be16(pBase->macAddr + 2);
202 case EEP_MAC_MSW:
203 return get_unaligned_be16(pBase->macAddr + 4);
204 case EEP_REG_0:
205 return pBase->regDmn[0];
206 case EEP_REG_1:
207 return pBase->regDmn[1];
208 case EEP_OP_CAP:
209 return pBase->deviceCap;
210 case EEP_OP_MODE:
211 return pBase->opCapFlags;
212 case EEP_RF_SILENT:
213 return pBase->rfSilent;
214 case EEP_MINOR_REV:
215 return ver_minor;
216 case EEP_TX_MASK:
217 return pBase->txMask;
218 case EEP_RX_MASK:
219 return pBase->rxMask;
220 case EEP_DEV_TYPE:
221 return pBase->deviceType;
222 case EEP_OL_PWRCTRL:
223 return pBase->openLoopPwrCntl;
224 case EEP_TEMPSENSE_SLOPE:
225 if (ver_minor >= AR9287_EEP_MINOR_VER_2)
226 return pBase->tempSensSlope;
227 else
228 return 0;
229 case EEP_TEMPSENSE_SLOPE_PAL_ON:
230 if (ver_minor >= AR9287_EEP_MINOR_VER_3)
231 return pBase->tempSensSlopePalOn;
232 else
233 return 0;
234 default:
235 return 0;
236 }
237}
238
239static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
240 struct ath9k_channel *chan,
241 struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
242 u8 *pCalChans, u16 availPiers, int8_t *pPwr)
243{
244 u16 idxL = 0, idxR = 0, numPiers;
245 bool match;
246 struct chan_centers centers;
247
248 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
249
250 for (numPiers = 0; numPiers < availPiers; numPiers++) {
251 if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
252 break;
253 }
254
255 match = ath9k_hw_get_lower_upper_index(
256 (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
257 pCalChans, numPiers, &idxL, &idxR);
258
259 if (match) {
260 *pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
261 } else {
262 *pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
263 (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
264 }
265
266}
267
268static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
269 int32_t txPower, u16 chain)
270{
271 u32 tmpVal;
272 u32 a;
273
274 /* Enable OLPC for chain 0 */
275
276 tmpVal = REG_READ(ah, 0xa270);
277 tmpVal = tmpVal & 0xFCFFFFFF;
278 tmpVal = tmpVal | (0x3 << 24);
279 REG_WRITE(ah, 0xa270, tmpVal);
280
281 /* Enable OLPC for chain 1 */
282
283 tmpVal = REG_READ(ah, 0xb270);
284 tmpVal = tmpVal & 0xFCFFFFFF;
285 tmpVal = tmpVal | (0x3 << 24);
286 REG_WRITE(ah, 0xb270, tmpVal);
287
288 /* Write the OLPC ref power for chain 0 */
289
290 if (chain == 0) {
291 tmpVal = REG_READ(ah, 0xa398);
292 tmpVal = tmpVal & 0xff00ffff;
293 a = (txPower)&0xff;
294 tmpVal = tmpVal | (a << 16);
295 REG_WRITE(ah, 0xa398, tmpVal);
296 }
297
298 /* Write the OLPC ref power for chain 1 */
299
300 if (chain == 1) {
301 tmpVal = REG_READ(ah, 0xb398);
302 tmpVal = tmpVal & 0xff00ffff;
303 a = (txPower)&0xff;
304 tmpVal = tmpVal | (a << 16);
305 REG_WRITE(ah, 0xb398, tmpVal);
306 }
307}
308
309static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
310 struct ath9k_channel *chan,
311 int16_t *pTxPowerIndexOffset)
312{
313 struct cal_data_per_freq_ar9287 *pRawDataset;
314 struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
315 u8 *pCalBChans = NULL;
316 u16 pdGainOverlap_t2;
317 u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
318 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
319 u16 numPiers = 0, i, j;
320 u16 numXpdGain, xpdMask;
321 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
322 u32 reg32, regOffset, regChainOffset, regval;
323 int16_t diff = 0;
324 struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
325
326 xpdMask = pEepData->modalHeader.xpdGain;
327
328 if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
329 AR9287_EEP_MINOR_VER_2)
330 pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
331 else
332 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
333 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
334
335 if (IS_CHAN_2GHZ(chan)) {
336 pCalBChans = pEepData->calFreqPier2G;
337 numPiers = AR9287_NUM_2G_CAL_PIERS;
338 if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
339 pRawDatasetOpenLoop =
340 (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
341 ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
342 }
343 }
344
345 numXpdGain = 0;
346
347 /* Calculate the value of xpdgains from the xpdGain Mask */
348 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
349 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
350 if (numXpdGain >= AR5416_NUM_PD_GAINS)
351 break;
352 xpdGainValues[numXpdGain] =
353 (u16)(AR5416_PD_GAINS_IN_MASK-i);
354 numXpdGain++;
355 }
356 }
357
358 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
359 (numXpdGain - 1) & 0x3);
360 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
361 xpdGainValues[0]);
362 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
363 xpdGainValues[1]);
364 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
365 xpdGainValues[2]);
366
367 for (i = 0; i < AR9287_MAX_CHAINS; i++) {
368 regChainOffset = i * 0x1000;
369
370 if (pEepData->baseEepHeader.txMask & (1 << i)) {
371 pRawDatasetOpenLoop =
372 (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
373
374 if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
375 int8_t txPower;
376 ar9287_eeprom_get_tx_gain_index(ah, chan,
377 pRawDatasetOpenLoop,
378 pCalBChans, numPiers,
379 &txPower);
380 ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
381 } else {
382 pRawDataset =
383 (struct cal_data_per_freq_ar9287 *)
384 pEepData->calPierData2G[i];
385
386 ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
387 pRawDataset,
388 pCalBChans, numPiers,
389 pdGainOverlap_t2,
390 gainBoundaries,
391 pdadcValues,
392 numXpdGain);
393 }
394
395 ENABLE_REGWRITE_BUFFER(ah);
396
397 if (i == 0) {
398 if (!ath9k_hw_ar9287_get_eeprom(ah,
399 EEP_OL_PWRCTRL)) {
400
401 regval = SM(pdGainOverlap_t2,
402 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
403 | SM(gainBoundaries[0],
404 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
405 | SM(gainBoundaries[1],
406 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
407 | SM(gainBoundaries[2],
408 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
409 | SM(gainBoundaries[3],
410 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
411
412 REG_WRITE(ah,
413 AR_PHY_TPCRG5 + regChainOffset,
414 regval);
415 }
416 }
417
418 if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
419 pEepData->baseEepHeader.pwrTableOffset) {
420 diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
421 (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
422 diff *= 2;
423
424 for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
425 pdadcValues[j] = pdadcValues[j+diff];
426
427 for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
428 j < AR5416_NUM_PDADC_VALUES; j++)
429 pdadcValues[j] =
430 pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
431 }
432
433 if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
434 regOffset = AR_PHY_BASE +
435 (672 << 2) + regChainOffset;
436
437 for (j = 0; j < 32; j++) {
438 reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
439
440 REG_WRITE(ah, regOffset, reg32);
441 regOffset += 4;
442 }
443 }
444 REGWRITE_BUFFER_FLUSH(ah);
445 }
446 }
447
448 *pTxPowerIndexOffset = 0;
449}
450
451static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
452 struct ath9k_channel *chan,
453 int16_t *ratesArray,
454 u16 cfgCtl,
455 u16 AntennaReduction,
456 u16 twiceMaxRegulatoryPower,
457 u16 powerLimit)
458{
459#define CMP_CTL \
460 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
461 pEepData->ctlIndex[i])
462
463#define CMP_NO_CTL \
464 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
465 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
466
467#define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6
468#define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10
469
470 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
471 u16 twiceMaxEdgePower = MAX_RATE_POWER;
472 static const u16 tpScaleReductionTable[5] =
473 { 0, 3, 6, 9, MAX_RATE_POWER };
474 int i;
475 int16_t twiceLargestAntenna;
476 struct cal_ctl_data_ar9287 *rep;
477 struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
478 targetPowerCck = {0, {0, 0, 0, 0} };
479 struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
480 targetPowerCckExt = {0, {0, 0, 0, 0} };
481 struct cal_target_power_ht targetPowerHt20,
482 targetPowerHt40 = {0, {0, 0, 0, 0} };
483 u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
484 static const u16 ctlModesFor11g[] = {
485 CTL_11B, CTL_11G, CTL_2GHT20,
486 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
487 };
488 u16 numCtlModes = 0;
489 const u16 *pCtlMode = NULL;
490 u16 ctlMode, freq;
491 struct chan_centers centers;
492 int tx_chainmask;
493 u16 twiceMinEdgePower;
494 struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
495 tx_chainmask = ah->txchainmask;
496
497 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
498
499 /* Compute TxPower reduction due to Antenna Gain */
500 twiceLargestAntenna = max(pEepData->modalHeader.antennaGainCh[0],
501 pEepData->modalHeader.antennaGainCh[1]);
502 twiceLargestAntenna = (int16_t)min((AntennaReduction) -
503 twiceLargestAntenna, 0);
504
505 /*
506 * scaledPower is the minimum of the user input power level
507 * and the regulatory allowed power level.
508 */
509 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
510
511 if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX)
512 maxRegAllowedPower -=
513 (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
514
515 scaledPower = min(powerLimit, maxRegAllowedPower);
516
517 /*
518 * Reduce scaled Power by number of chains active
519 * to get the per chain tx power level.
520 */
521 switch (ar5416_get_ntxchains(tx_chainmask)) {
522 case 1:
523 break;
524 case 2:
525 if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
526 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
527 else
528 scaledPower = 0;
529 break;
530 case 3:
531 if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
532 scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
533 else
534 scaledPower = 0;
535 break;
536 }
537 scaledPower = max((u16)0, scaledPower);
538
539 /*
540 * Get TX power from EEPROM.
541 */
542 if (IS_CHAN_2GHZ(chan)) {
543 /* CTL_11B, CTL_11G, CTL_2GHT20 */
544 numCtlModes =
545 ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
546
547 pCtlMode = ctlModesFor11g;
548
549 ath9k_hw_get_legacy_target_powers(ah, chan,
550 pEepData->calTargetPowerCck,
551 AR9287_NUM_2G_CCK_TARGET_POWERS,
552 &targetPowerCck, 4, false);
553 ath9k_hw_get_legacy_target_powers(ah, chan,
554 pEepData->calTargetPower2G,
555 AR9287_NUM_2G_20_TARGET_POWERS,
556 &targetPowerOfdm, 4, false);
557 ath9k_hw_get_target_powers(ah, chan,
558 pEepData->calTargetPower2GHT20,
559 AR9287_NUM_2G_20_TARGET_POWERS,
560 &targetPowerHt20, 8, false);
561
562 if (IS_CHAN_HT40(chan)) {
563 /* All 2G CTLs */
564 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
565 ath9k_hw_get_target_powers(ah, chan,
566 pEepData->calTargetPower2GHT40,
567 AR9287_NUM_2G_40_TARGET_POWERS,
568 &targetPowerHt40, 8, true);
569 ath9k_hw_get_legacy_target_powers(ah, chan,
570 pEepData->calTargetPowerCck,
571 AR9287_NUM_2G_CCK_TARGET_POWERS,
572 &targetPowerCckExt, 4, true);
573 ath9k_hw_get_legacy_target_powers(ah, chan,
574 pEepData->calTargetPower2G,
575 AR9287_NUM_2G_20_TARGET_POWERS,
576 &targetPowerOfdmExt, 4, true);
577 }
578 }
579
580 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
581 bool isHt40CtlMode =
582 (pCtlMode[ctlMode] == CTL_2GHT40) ? true : false;
583
584 if (isHt40CtlMode)
585 freq = centers.synth_center;
586 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
587 freq = centers.ext_center;
588 else
589 freq = centers.ctl_center;
590
591 /* Walk through the CTL indices stored in EEPROM */
592 for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
593 struct cal_ctl_edges *pRdEdgesPower;
594
595 /*
596 * Compare test group from regulatory channel list
597 * with test mode from pCtlMode list
598 */
599 if (CMP_CTL || CMP_NO_CTL) {
600 rep = &(pEepData->ctlData[i]);
601 pRdEdgesPower =
602 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
603
604 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
605 pRdEdgesPower,
606 IS_CHAN_2GHZ(chan),
607 AR5416_NUM_BAND_EDGES);
608
609 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
610 twiceMaxEdgePower = min(twiceMaxEdgePower,
611 twiceMinEdgePower);
612 } else {
613 twiceMaxEdgePower = twiceMinEdgePower;
614 break;
615 }
616 }
617 }
618
619 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
620
621 /* Apply ctl mode to correct target power set */
622 switch (pCtlMode[ctlMode]) {
623 case CTL_11B:
624 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
625 targetPowerCck.tPow2x[i] =
626 (u8)min((u16)targetPowerCck.tPow2x[i],
627 minCtlPower);
628 }
629 break;
630 case CTL_11A:
631 case CTL_11G:
632 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
633 targetPowerOfdm.tPow2x[i] =
634 (u8)min((u16)targetPowerOfdm.tPow2x[i],
635 minCtlPower);
636 }
637 break;
638 case CTL_5GHT20:
639 case CTL_2GHT20:
640 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
641 targetPowerHt20.tPow2x[i] =
642 (u8)min((u16)targetPowerHt20.tPow2x[i],
643 minCtlPower);
644 }
645 break;
646 case CTL_11B_EXT:
647 targetPowerCckExt.tPow2x[0] =
648 (u8)min((u16)targetPowerCckExt.tPow2x[0],
649 minCtlPower);
650 break;
651 case CTL_11A_EXT:
652 case CTL_11G_EXT:
653 targetPowerOfdmExt.tPow2x[0] =
654 (u8)min((u16)targetPowerOfdmExt.tPow2x[0],
655 minCtlPower);
656 break;
657 case CTL_5GHT40:
658 case CTL_2GHT40:
659 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
660 targetPowerHt40.tPow2x[i] =
661 (u8)min((u16)targetPowerHt40.tPow2x[i],
662 minCtlPower);
663 }
664 break;
665 default:
666 break;
667 }
668 }
669
670 /* Now set the rates array */
671
672 ratesArray[rate6mb] =
673 ratesArray[rate9mb] =
674 ratesArray[rate12mb] =
675 ratesArray[rate18mb] =
676 ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
677
678 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
679 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
680 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
681 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
682
683 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
684 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
685
686 if (IS_CHAN_2GHZ(chan)) {
687 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
688 ratesArray[rate2s] =
689 ratesArray[rate2l] = targetPowerCck.tPow2x[1];
690 ratesArray[rate5_5s] =
691 ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
692 ratesArray[rate11s] =
693 ratesArray[rate11l] = targetPowerCck.tPow2x[3];
694 }
695 if (IS_CHAN_HT40(chan)) {
696 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
697 ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
698
699 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
700 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
701 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
702
703 if (IS_CHAN_2GHZ(chan))
704 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
705 }
706
707#undef CMP_CTL
708#undef CMP_NO_CTL
709#undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
710#undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
711}
712
713static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
714 struct ath9k_channel *chan, u16 cfgCtl,
715 u8 twiceAntennaReduction,
716 u8 twiceMaxRegulatoryPower,
717 u8 powerLimit, bool test)
718{
719 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
720 struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
721 struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
722 int16_t ratesArray[Ar5416RateSize];
723 int16_t txPowerIndexOffset = 0;
724 u8 ht40PowerIncForPdadc = 2;
725 int i;
726
727 memset(ratesArray, 0, sizeof(ratesArray));
728
729 if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
730 AR9287_EEP_MINOR_VER_2)
731 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
732
733 ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
734 &ratesArray[0], cfgCtl,
735 twiceAntennaReduction,
736 twiceMaxRegulatoryPower,
737 powerLimit);
738
739 ath9k_hw_set_ar9287_power_cal_table(ah, chan, &txPowerIndexOffset);
740
741 regulatory->max_power_level = 0;
742 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
743 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
744 if (ratesArray[i] > MAX_RATE_POWER)
745 ratesArray[i] = MAX_RATE_POWER;
746
747 if (ratesArray[i] > regulatory->max_power_level)
748 regulatory->max_power_level = ratesArray[i];
749 }
750
751 if (test)
752 return;
753
754 if (IS_CHAN_2GHZ(chan))
755 i = rate1l;
756 else
757 i = rate6mb;
758
759 regulatory->max_power_level = ratesArray[i];
760
761 if (AR_SREV_9280_20_OR_LATER(ah)) {
762 for (i = 0; i < Ar5416RateSize; i++)
763 ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
764 }
765
766 ENABLE_REGWRITE_BUFFER(ah);
767
768 /* OFDM power per rate */
769 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
770 ATH9K_POW_SM(ratesArray[rate18mb], 24)
771 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
772 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
773 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
774
775 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
776 ATH9K_POW_SM(ratesArray[rate54mb], 24)
777 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
778 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
779 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
780
781 /* CCK power per rate */
782 if (IS_CHAN_2GHZ(chan)) {
783 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
784 ATH9K_POW_SM(ratesArray[rate2s], 24)
785 | ATH9K_POW_SM(ratesArray[rate2l], 16)
786 | ATH9K_POW_SM(ratesArray[rateXr], 8)
787 | ATH9K_POW_SM(ratesArray[rate1l], 0));
788 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
789 ATH9K_POW_SM(ratesArray[rate11s], 24)
790 | ATH9K_POW_SM(ratesArray[rate11l], 16)
791 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
792 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
793 }
794
795 /* HT20 power per rate */
796 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
797 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
798 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
799 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
800 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
801
802 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
803 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
804 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
805 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
806 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
807
808 /* HT40 power per rate */
809 if (IS_CHAN_HT40(chan)) {
810 if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
811 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
812 ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
813 | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
814 | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
815 | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
816
817 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
818 ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
819 | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
820 | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
821 | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
822 } else {
823 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
824 ATH9K_POW_SM(ratesArray[rateHt40_3] +
825 ht40PowerIncForPdadc, 24)
826 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
827 ht40PowerIncForPdadc, 16)
828 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
829 ht40PowerIncForPdadc, 8)
830 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
831 ht40PowerIncForPdadc, 0));
832
833 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
834 ATH9K_POW_SM(ratesArray[rateHt40_7] +
835 ht40PowerIncForPdadc, 24)
836 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
837 ht40PowerIncForPdadc, 16)
838 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
839 ht40PowerIncForPdadc, 8)
840 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
841 ht40PowerIncForPdadc, 0));
842 }
843
844 /* Dup/Ext power per rate */
845 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
846 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
847 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
848 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
849 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
850 }
851 REGWRITE_BUFFER_FLUSH(ah);
852}
853
854static void ath9k_hw_ar9287_set_addac(struct ath_hw *ah,
855 struct ath9k_channel *chan)
856{
857}
858
859static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
860 struct ath9k_channel *chan)
861{
862 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
863 struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
864 u32 regChainOffset, regval;
865 u8 txRxAttenLocal;
866 int i;
867
868 pModal = &eep->modalHeader;
869
870 REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
871
872 for (i = 0; i < AR9287_MAX_CHAINS; i++) {
873 regChainOffset = i * 0x1000;
874
875 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
876 pModal->antCtrlChain[i]);
877
878 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
879 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
880 & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
881 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
882 SM(pModal->iqCalICh[i],
883 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
884 SM(pModal->iqCalQCh[i],
885 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
886
887 txRxAttenLocal = pModal->txRxAttenCh[i];
888
889 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
890 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
891 pModal->bswMargin[i]);
892 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
893 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
894 pModal->bswAtten[i]);
895 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
896 AR9280_PHY_RXGAIN_TXRX_ATTEN,
897 txRxAttenLocal);
898 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
899 AR9280_PHY_RXGAIN_TXRX_MARGIN,
900 pModal->rxTxMarginCh[i]);
901 }
902
903
904 if (IS_CHAN_HT40(chan))
905 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
906 AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
907 else
908 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
909 AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
910
911 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
912 AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
913
914 REG_WRITE(ah, AR_PHY_RF_CTL4,
915 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
916 | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
917 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
918 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
919
920 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
921 AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
922
923 REG_RMW_FIELD(ah, AR_PHY_CCA,
924 AR9280_PHY_CCA_THRESH62, pModal->thresh62);
925 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
926 AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
927
928 regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
929 regval &= ~(AR9287_AN_RF2G3_DB1 |
930 AR9287_AN_RF2G3_DB2 |
931 AR9287_AN_RF2G3_OB_CCK |
932 AR9287_AN_RF2G3_OB_PSK |
933 AR9287_AN_RF2G3_OB_QAM |
934 AR9287_AN_RF2G3_OB_PAL_OFF);
935 regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
936 SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
937 SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
938 SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
939 SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
940 SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
941
942 ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
943
944 regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
945 regval &= ~(AR9287_AN_RF2G3_DB1 |
946 AR9287_AN_RF2G3_DB2 |
947 AR9287_AN_RF2G3_OB_CCK |
948 AR9287_AN_RF2G3_OB_PSK |
949 AR9287_AN_RF2G3_OB_QAM |
950 AR9287_AN_RF2G3_OB_PAL_OFF);
951 regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
952 SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
953 SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
954 SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
955 SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
956 SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
957
958 ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
959
960 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
961 AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
962 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
963 AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
964
965 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
966 AR9287_AN_TOP2_XPABIAS_LVL,
967 AR9287_AN_TOP2_XPABIAS_LVL_S,
968 pModal->xpaBiasLvl);
969}
970
971static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
972 u16 i, bool is2GHz)
973{
974#define EEP_MAP9287_SPURCHAN \
975 (ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)
976
977 struct ath_common *common = ath9k_hw_common(ah);
978 u16 spur_val = AR_NO_SPUR;
979
980 ath_dbg(common, ATH_DBG_ANI,
981 "Getting spur idx:%d is2Ghz:%d val:%x\n",
982 i, is2GHz, ah->config.spurchans[i][is2GHz]);
983
984 switch (ah->config.spurmode) {
985 case SPUR_DISABLE:
986 break;
987 case SPUR_ENABLE_IOCTL:
988 spur_val = ah->config.spurchans[i][is2GHz];
989 ath_dbg(common, ATH_DBG_ANI,
990 "Getting spur val from new loc. %d\n", spur_val);
991 break;
992 case SPUR_ENABLE_EEPROM:
993 spur_val = EEP_MAP9287_SPURCHAN;
994 break;
995 }
996
997 return spur_val;
998
999#undef EEP_MAP9287_SPURCHAN
1000}
1001
1002const struct eeprom_ops eep_ar9287_ops = {
1003 .check_eeprom = ath9k_hw_ar9287_check_eeprom,
1004 .get_eeprom = ath9k_hw_ar9287_get_eeprom,
1005 .fill_eeprom = ath9k_hw_ar9287_fill_eeprom,
1006 .get_eeprom_ver = ath9k_hw_ar9287_get_eeprom_ver,
1007 .get_eeprom_rev = ath9k_hw_ar9287_get_eeprom_rev,
1008 .set_board_values = ath9k_hw_ar9287_set_board_values,
1009 .set_addac = ath9k_hw_ar9287_set_addac,
1010 .set_txpower = ath9k_hw_ar9287_set_txpower,
1011 .get_spur_channel = ath9k_hw_ar9287_get_spur_channel
1012};
1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <asm/unaligned.h>
18#include "hw.h"
19#include "ar9002_phy.h"
20
21#define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
22
23static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
24{
25 u16 version = le16_to_cpu(ah->eeprom.map9287.baseEepHeader.version);
26
27 return (version & AR5416_EEP_VER_MAJOR_MASK) >>
28 AR5416_EEP_VER_MAJOR_SHIFT;
29}
30
31static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
32{
33 u16 version = le16_to_cpu(ah->eeprom.map9287.baseEepHeader.version);
34
35 return version & AR5416_EEP_VER_MINOR_MASK;
36}
37
38static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
39{
40 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
41 u16 *eep_data;
42 int addr, eep_start_loc = AR9287_EEP_START_LOC;
43 eep_data = (u16 *)eep;
44
45 for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
46 if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data))
47 return false;
48 eep_data++;
49 }
50
51 return true;
52}
53
54static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw *ah)
55{
56 u16 *eep_data = (u16 *)&ah->eeprom.map9287;
57
58 ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
59 AR9287_HTC_EEP_START_LOC,
60 SIZE_EEPROM_AR9287);
61 return true;
62}
63
64static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
65{
66 struct ath_common *common = ath9k_hw_common(ah);
67
68 if (!ath9k_hw_use_flash(ah)) {
69 ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
70 }
71
72 if (common->bus_ops->ath_bus_type == ATH_USB)
73 return __ath9k_hw_usb_ar9287_fill_eeprom(ah);
74 else
75 return __ath9k_hw_ar9287_fill_eeprom(ah);
76}
77
78#ifdef CONFIG_ATH9K_COMMON_DEBUG
79static u32 ar9287_dump_modal_eeprom(char *buf, u32 len, u32 size,
80 struct modal_eep_ar9287_header *modal_hdr)
81{
82 PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
83 PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
84 PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
85 PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
86 PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
87 PR_EEP("Switch Settle", modal_hdr->switchSettling);
88 PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
89 PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
90 PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
91 PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
92 PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
93 PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
94 PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
95 PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
96 PR_EEP("CCA Threshold)", modal_hdr->thresh62);
97 PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
98 PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
99 PR_EEP("xpdGain", modal_hdr->xpdGain);
100 PR_EEP("External PD", modal_hdr->xpd);
101 PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
102 PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
103 PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
104 PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
105 PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
106 PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
107 PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
108 PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
109 PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
110 PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
111 PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
112 PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
113 PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
114 PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
115 PR_EEP("AR92x7 Version", modal_hdr->version);
116 PR_EEP("DriverBias1", modal_hdr->db1);
117 PR_EEP("DriverBias2", modal_hdr->db1);
118 PR_EEP("CCK OutputBias", modal_hdr->ob_cck);
119 PR_EEP("PSK OutputBias", modal_hdr->ob_psk);
120 PR_EEP("QAM OutputBias", modal_hdr->ob_qam);
121 PR_EEP("PAL_OFF OutputBias", modal_hdr->ob_pal_off);
122
123 return len;
124}
125
126static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
127 u8 *buf, u32 len, u32 size)
128{
129 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
130 struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
131 u32 binBuildNumber = le32_to_cpu(pBase->binBuildNumber);
132
133 if (!dump_base_hdr) {
134 len += scnprintf(buf + len, size - len,
135 "%20s :\n", "2GHz modal Header");
136 len = ar9287_dump_modal_eeprom(buf, len, size,
137 &eep->modalHeader);
138 goto out;
139 }
140
141 PR_EEP("Major Version", ath9k_hw_ar9287_get_eeprom_ver(ah));
142 PR_EEP("Minor Version", ath9k_hw_ar9287_get_eeprom_rev(ah));
143 PR_EEP("Checksum", le16_to_cpu(pBase->checksum));
144 PR_EEP("Length", le16_to_cpu(pBase->length));
145 PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
146 PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
147 PR_EEP("TX Mask", pBase->txMask);
148 PR_EEP("RX Mask", pBase->rxMask);
149 PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
150 PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
151 PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
152 AR5416_OPFLAGS_N_2G_HT20));
153 PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
154 AR5416_OPFLAGS_N_2G_HT40));
155 PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
156 AR5416_OPFLAGS_N_5G_HT20));
157 PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
158 AR5416_OPFLAGS_N_5G_HT40));
159 PR_EEP("Big Endian", !!(pBase->eepMisc & AR5416_EEPMISC_BIG_ENDIAN));
160 PR_EEP("Cal Bin Major Ver", (binBuildNumber >> 24) & 0xFF);
161 PR_EEP("Cal Bin Minor Ver", (binBuildNumber >> 16) & 0xFF);
162 PR_EEP("Cal Bin Build", (binBuildNumber >> 8) & 0xFF);
163 PR_EEP("Power Table Offset", pBase->pwrTableOffset);
164 PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
165
166 len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
167 pBase->macAddr);
168
169out:
170 if (len > size)
171 len = size;
172
173 return len;
174}
175#else
176static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
177 u8 *buf, u32 len, u32 size)
178{
179 return 0;
180}
181#endif
182
183
184static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
185{
186 u32 el;
187 int i, err;
188 bool need_swap;
189 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
190
191 err = ath9k_hw_nvram_swap_data(ah, &need_swap, SIZE_EEPROM_AR9287);
192 if (err)
193 return err;
194
195 if (need_swap)
196 el = swab16((__force u16)eep->baseEepHeader.length);
197 else
198 el = le16_to_cpu(eep->baseEepHeader.length);
199
200 el = min(el / sizeof(u16), SIZE_EEPROM_AR9287);
201 if (!ath9k_hw_nvram_validate_checksum(ah, el))
202 return -EINVAL;
203
204 if (need_swap) {
205 EEPROM_FIELD_SWAB16(eep->baseEepHeader.length);
206 EEPROM_FIELD_SWAB16(eep->baseEepHeader.checksum);
207 EEPROM_FIELD_SWAB16(eep->baseEepHeader.version);
208 EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[0]);
209 EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[1]);
210 EEPROM_FIELD_SWAB16(eep->baseEepHeader.rfSilent);
211 EEPROM_FIELD_SWAB16(eep->baseEepHeader.blueToothOptions);
212 EEPROM_FIELD_SWAB16(eep->baseEepHeader.deviceCap);
213 EEPROM_FIELD_SWAB32(eep->modalHeader.antCtrlCommon);
214
215 for (i = 0; i < AR9287_MAX_CHAINS; i++)
216 EEPROM_FIELD_SWAB32(eep->modalHeader.antCtrlChain[i]);
217
218 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++)
219 EEPROM_FIELD_SWAB16(
220 eep->modalHeader.spurChans[i].spurChan);
221 }
222
223 if (!ath9k_hw_nvram_check_version(ah, AR9287_EEP_VER,
224 AR5416_EEP_NO_BACK_VER))
225 return -EINVAL;
226
227 return 0;
228}
229
230#undef SIZE_EEPROM_AR9287
231
232static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
233 enum eeprom_param param)
234{
235 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
236 struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
237 struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
238 u16 ver_minor = ath9k_hw_ar9287_get_eeprom_rev(ah);
239
240 switch (param) {
241 case EEP_NFTHRESH_2:
242 return pModal->noiseFloorThreshCh[0];
243 case EEP_MAC_LSW:
244 return get_unaligned_be16(pBase->macAddr);
245 case EEP_MAC_MID:
246 return get_unaligned_be16(pBase->macAddr + 2);
247 case EEP_MAC_MSW:
248 return get_unaligned_be16(pBase->macAddr + 4);
249 case EEP_REG_0:
250 return le16_to_cpu(pBase->regDmn[0]);
251 case EEP_OP_CAP:
252 return le16_to_cpu(pBase->deviceCap);
253 case EEP_OP_MODE:
254 return pBase->opCapFlags;
255 case EEP_RF_SILENT:
256 return le16_to_cpu(pBase->rfSilent);
257 case EEP_TX_MASK:
258 return pBase->txMask;
259 case EEP_RX_MASK:
260 return pBase->rxMask;
261 case EEP_DEV_TYPE:
262 return pBase->deviceType;
263 case EEP_OL_PWRCTRL:
264 return pBase->openLoopPwrCntl;
265 case EEP_TEMPSENSE_SLOPE:
266 if (ver_minor >= AR9287_EEP_MINOR_VER_2)
267 return pBase->tempSensSlope;
268 else
269 return 0;
270 case EEP_TEMPSENSE_SLOPE_PAL_ON:
271 if (ver_minor >= AR9287_EEP_MINOR_VER_3)
272 return pBase->tempSensSlopePalOn;
273 else
274 return 0;
275 case EEP_ANTENNA_GAIN_2G:
276 return max_t(u8, pModal->antennaGainCh[0],
277 pModal->antennaGainCh[1]);
278 default:
279 return 0;
280 }
281}
282
283static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
284 struct ath9k_channel *chan,
285 struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
286 u8 *pCalChans, u16 availPiers, int8_t *pPwr)
287{
288 u16 idxL = 0, idxR = 0, numPiers;
289 bool match;
290 struct chan_centers centers;
291
292 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
293
294 for (numPiers = 0; numPiers < availPiers; numPiers++) {
295 if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
296 break;
297 }
298
299 match = ath9k_hw_get_lower_upper_index(
300 (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
301 pCalChans, numPiers, &idxL, &idxR);
302
303 if (match) {
304 *pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
305 } else {
306 *pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
307 (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
308 }
309
310}
311
312static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
313 int32_t txPower, u16 chain)
314{
315 u32 tmpVal;
316 u32 a;
317
318 /* Enable OLPC for chain 0 */
319
320 tmpVal = REG_READ(ah, 0xa270);
321 tmpVal = tmpVal & 0xFCFFFFFF;
322 tmpVal = tmpVal | (0x3 << 24);
323 REG_WRITE(ah, 0xa270, tmpVal);
324
325 /* Enable OLPC for chain 1 */
326
327 tmpVal = REG_READ(ah, 0xb270);
328 tmpVal = tmpVal & 0xFCFFFFFF;
329 tmpVal = tmpVal | (0x3 << 24);
330 REG_WRITE(ah, 0xb270, tmpVal);
331
332 /* Write the OLPC ref power for chain 0 */
333
334 if (chain == 0) {
335 tmpVal = REG_READ(ah, 0xa398);
336 tmpVal = tmpVal & 0xff00ffff;
337 a = (txPower)&0xff;
338 tmpVal = tmpVal | (a << 16);
339 REG_WRITE(ah, 0xa398, tmpVal);
340 }
341
342 /* Write the OLPC ref power for chain 1 */
343
344 if (chain == 1) {
345 tmpVal = REG_READ(ah, 0xb398);
346 tmpVal = tmpVal & 0xff00ffff;
347 a = (txPower)&0xff;
348 tmpVal = tmpVal | (a << 16);
349 REG_WRITE(ah, 0xb398, tmpVal);
350 }
351}
352
353static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
354 struct ath9k_channel *chan)
355{
356 struct cal_data_per_freq_ar9287 *pRawDataset;
357 struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
358 u8 *pCalBChans = NULL;
359 u16 pdGainOverlap_t2;
360 u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
361 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
362 u16 numPiers = 0, i, j;
363 u16 numXpdGain, xpdMask;
364 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
365 u32 reg32, regOffset, regChainOffset, regval;
366 int16_t diff = 0;
367 struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
368
369 xpdMask = pEepData->modalHeader.xpdGain;
370
371 if (ath9k_hw_ar9287_get_eeprom_rev(ah) >= AR9287_EEP_MINOR_VER_2)
372 pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
373 else
374 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
375 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
376
377 if (IS_CHAN_2GHZ(chan)) {
378 pCalBChans = pEepData->calFreqPier2G;
379 numPiers = AR9287_NUM_2G_CAL_PIERS;
380 if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
381 pRawDatasetOpenLoop =
382 (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
383 ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
384 }
385 }
386
387 numXpdGain = 0;
388
389 /* Calculate the value of xpdgains from the xpdGain Mask */
390 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
391 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
392 if (numXpdGain >= AR5416_NUM_PD_GAINS)
393 break;
394 xpdGainValues[numXpdGain] =
395 (u16)(AR5416_PD_GAINS_IN_MASK-i);
396 numXpdGain++;
397 }
398 }
399
400 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
401 (numXpdGain - 1) & 0x3);
402 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
403 xpdGainValues[0]);
404 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
405 xpdGainValues[1]);
406 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
407 xpdGainValues[2]);
408
409 for (i = 0; i < AR9287_MAX_CHAINS; i++) {
410 regChainOffset = i * 0x1000;
411
412 if (pEepData->baseEepHeader.txMask & (1 << i)) {
413 pRawDatasetOpenLoop =
414 (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
415
416 if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
417 int8_t txPower;
418 ar9287_eeprom_get_tx_gain_index(ah, chan,
419 pRawDatasetOpenLoop,
420 pCalBChans, numPiers,
421 &txPower);
422 ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
423 } else {
424 pRawDataset =
425 (struct cal_data_per_freq_ar9287 *)
426 pEepData->calPierData2G[i];
427
428 ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
429 pRawDataset,
430 pCalBChans, numPiers,
431 pdGainOverlap_t2,
432 gainBoundaries,
433 pdadcValues,
434 numXpdGain);
435 }
436
437 ENABLE_REGWRITE_BUFFER(ah);
438
439 if (i == 0) {
440 if (!ath9k_hw_ar9287_get_eeprom(ah,
441 EEP_OL_PWRCTRL)) {
442
443 regval = SM(pdGainOverlap_t2,
444 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
445 | SM(gainBoundaries[0],
446 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
447 | SM(gainBoundaries[1],
448 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
449 | SM(gainBoundaries[2],
450 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
451 | SM(gainBoundaries[3],
452 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
453
454 REG_WRITE(ah,
455 AR_PHY_TPCRG5 + regChainOffset,
456 regval);
457 }
458 }
459
460 if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
461 pEepData->baseEepHeader.pwrTableOffset) {
462 diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
463 (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
464 diff *= 2;
465
466 for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
467 pdadcValues[j] = pdadcValues[j+diff];
468
469 for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
470 j < AR5416_NUM_PDADC_VALUES; j++)
471 pdadcValues[j] =
472 pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
473 }
474
475 if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
476 regOffset = AR_PHY_BASE +
477 (672 << 2) + regChainOffset;
478
479 for (j = 0; j < 32; j++) {
480 reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
481
482 REG_WRITE(ah, regOffset, reg32);
483 regOffset += 4;
484 }
485 }
486 REGWRITE_BUFFER_FLUSH(ah);
487 }
488 }
489}
490
491static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
492 struct ath9k_channel *chan,
493 int16_t *ratesArray,
494 u16 cfgCtl,
495 u16 antenna_reduction,
496 u16 powerLimit)
497{
498#define CMP_CTL \
499 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
500 pEepData->ctlIndex[i])
501
502#define CMP_NO_CTL \
503 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
504 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
505
506 u16 twiceMaxEdgePower;
507 int i;
508 struct cal_ctl_data_ar9287 *rep;
509 struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
510 targetPowerCck = {0, {0, 0, 0, 0} };
511 struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
512 targetPowerCckExt = {0, {0, 0, 0, 0} };
513 struct cal_target_power_ht targetPowerHt20,
514 targetPowerHt40 = {0, {0, 0, 0, 0} };
515 u16 scaledPower = 0, minCtlPower;
516 static const u16 ctlModesFor11g[] = {
517 CTL_11B, CTL_11G, CTL_2GHT20,
518 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
519 };
520 u16 numCtlModes = 0;
521 const u16 *pCtlMode = NULL;
522 u16 ctlMode, freq;
523 struct chan_centers centers;
524 int tx_chainmask;
525 u16 twiceMinEdgePower;
526 struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
527 tx_chainmask = ah->txchainmask;
528
529 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
530 scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
531 antenna_reduction);
532
533 /*
534 * Get TX power from EEPROM.
535 */
536 if (IS_CHAN_2GHZ(chan)) {
537 /* CTL_11B, CTL_11G, CTL_2GHT20 */
538 numCtlModes =
539 ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
540
541 pCtlMode = ctlModesFor11g;
542
543 ath9k_hw_get_legacy_target_powers(ah, chan,
544 pEepData->calTargetPowerCck,
545 AR9287_NUM_2G_CCK_TARGET_POWERS,
546 &targetPowerCck, 4, false);
547 ath9k_hw_get_legacy_target_powers(ah, chan,
548 pEepData->calTargetPower2G,
549 AR9287_NUM_2G_20_TARGET_POWERS,
550 &targetPowerOfdm, 4, false);
551 ath9k_hw_get_target_powers(ah, chan,
552 pEepData->calTargetPower2GHT20,
553 AR9287_NUM_2G_20_TARGET_POWERS,
554 &targetPowerHt20, 8, false);
555
556 if (IS_CHAN_HT40(chan)) {
557 /* All 2G CTLs */
558 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
559 ath9k_hw_get_target_powers(ah, chan,
560 pEepData->calTargetPower2GHT40,
561 AR9287_NUM_2G_40_TARGET_POWERS,
562 &targetPowerHt40, 8, true);
563 ath9k_hw_get_legacy_target_powers(ah, chan,
564 pEepData->calTargetPowerCck,
565 AR9287_NUM_2G_CCK_TARGET_POWERS,
566 &targetPowerCckExt, 4, true);
567 ath9k_hw_get_legacy_target_powers(ah, chan,
568 pEepData->calTargetPower2G,
569 AR9287_NUM_2G_20_TARGET_POWERS,
570 &targetPowerOfdmExt, 4, true);
571 }
572 }
573
574 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
575 bool isHt40CtlMode = pCtlMode[ctlMode] == CTL_2GHT40;
576
577 if (isHt40CtlMode)
578 freq = centers.synth_center;
579 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
580 freq = centers.ext_center;
581 else
582 freq = centers.ctl_center;
583
584 twiceMaxEdgePower = MAX_RATE_POWER;
585 /* Walk through the CTL indices stored in EEPROM */
586 for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
587 struct cal_ctl_edges *pRdEdgesPower;
588
589 /*
590 * Compare test group from regulatory channel list
591 * with test mode from pCtlMode list
592 */
593 if (CMP_CTL || CMP_NO_CTL) {
594 rep = &(pEepData->ctlData[i]);
595 pRdEdgesPower =
596 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
597
598 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
599 pRdEdgesPower,
600 IS_CHAN_2GHZ(chan),
601 AR5416_NUM_BAND_EDGES);
602
603 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
604 twiceMaxEdgePower = min(twiceMaxEdgePower,
605 twiceMinEdgePower);
606 } else {
607 twiceMaxEdgePower = twiceMinEdgePower;
608 break;
609 }
610 }
611 }
612
613 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
614
615 /* Apply ctl mode to correct target power set */
616 switch (pCtlMode[ctlMode]) {
617 case CTL_11B:
618 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
619 targetPowerCck.tPow2x[i] =
620 (u8)min((u16)targetPowerCck.tPow2x[i],
621 minCtlPower);
622 }
623 break;
624 case CTL_11A:
625 case CTL_11G:
626 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
627 targetPowerOfdm.tPow2x[i] =
628 (u8)min((u16)targetPowerOfdm.tPow2x[i],
629 minCtlPower);
630 }
631 break;
632 case CTL_5GHT20:
633 case CTL_2GHT20:
634 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
635 targetPowerHt20.tPow2x[i] =
636 (u8)min((u16)targetPowerHt20.tPow2x[i],
637 minCtlPower);
638 }
639 break;
640 case CTL_11B_EXT:
641 targetPowerCckExt.tPow2x[0] =
642 (u8)min((u16)targetPowerCckExt.tPow2x[0],
643 minCtlPower);
644 break;
645 case CTL_11A_EXT:
646 case CTL_11G_EXT:
647 targetPowerOfdmExt.tPow2x[0] =
648 (u8)min((u16)targetPowerOfdmExt.tPow2x[0],
649 minCtlPower);
650 break;
651 case CTL_5GHT40:
652 case CTL_2GHT40:
653 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
654 targetPowerHt40.tPow2x[i] =
655 (u8)min((u16)targetPowerHt40.tPow2x[i],
656 minCtlPower);
657 }
658 break;
659 default:
660 break;
661 }
662 }
663
664 /* Now set the rates array */
665
666 ratesArray[rate6mb] =
667 ratesArray[rate9mb] =
668 ratesArray[rate12mb] =
669 ratesArray[rate18mb] =
670 ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
671
672 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
673 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
674 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
675 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
676
677 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
678 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
679
680 if (IS_CHAN_2GHZ(chan)) {
681 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
682 ratesArray[rate2s] =
683 ratesArray[rate2l] = targetPowerCck.tPow2x[1];
684 ratesArray[rate5_5s] =
685 ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
686 ratesArray[rate11s] =
687 ratesArray[rate11l] = targetPowerCck.tPow2x[3];
688 }
689 if (IS_CHAN_HT40(chan)) {
690 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
691 ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
692
693 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
694 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
695 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
696
697 if (IS_CHAN_2GHZ(chan))
698 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
699 }
700
701#undef CMP_CTL
702#undef CMP_NO_CTL
703}
704
705static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
706 struct ath9k_channel *chan, u16 cfgCtl,
707 u8 twiceAntennaReduction,
708 u8 powerLimit, bool test)
709{
710 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
711 struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
712 struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
713 int16_t ratesArray[Ar5416RateSize];
714 u8 ht40PowerIncForPdadc = 2;
715 int i;
716
717 memset(ratesArray, 0, sizeof(ratesArray));
718
719 if (ath9k_hw_ar9287_get_eeprom_rev(ah) >= AR9287_EEP_MINOR_VER_2)
720 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
721
722 ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
723 &ratesArray[0], cfgCtl,
724 twiceAntennaReduction,
725 powerLimit);
726
727 ath9k_hw_set_ar9287_power_cal_table(ah, chan);
728
729 regulatory->max_power_level = 0;
730 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
731 if (ratesArray[i] > MAX_RATE_POWER)
732 ratesArray[i] = MAX_RATE_POWER;
733
734 if (ratesArray[i] > regulatory->max_power_level)
735 regulatory->max_power_level = ratesArray[i];
736 }
737
738 ath9k_hw_update_regulatory_maxpower(ah);
739
740 if (test)
741 return;
742
743 for (i = 0; i < Ar5416RateSize; i++)
744 ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
745
746 ENABLE_REGWRITE_BUFFER(ah);
747
748 /* OFDM power per rate */
749 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
750 ATH9K_POW_SM(ratesArray[rate18mb], 24)
751 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
752 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
753 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
754
755 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
756 ATH9K_POW_SM(ratesArray[rate54mb], 24)
757 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
758 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
759 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
760
761 /* CCK power per rate */
762 if (IS_CHAN_2GHZ(chan)) {
763 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
764 ATH9K_POW_SM(ratesArray[rate2s], 24)
765 | ATH9K_POW_SM(ratesArray[rate2l], 16)
766 | ATH9K_POW_SM(ratesArray[rateXr], 8)
767 | ATH9K_POW_SM(ratesArray[rate1l], 0));
768 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
769 ATH9K_POW_SM(ratesArray[rate11s], 24)
770 | ATH9K_POW_SM(ratesArray[rate11l], 16)
771 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
772 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
773 }
774
775 /* HT20 power per rate */
776 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
777 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
778 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
779 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
780 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
781
782 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
783 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
784 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
785 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
786 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
787
788 /* HT40 power per rate */
789 if (IS_CHAN_HT40(chan)) {
790 if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
791 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
792 ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
793 | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
794 | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
795 | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
796
797 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
798 ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
799 | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
800 | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
801 | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
802 } else {
803 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
804 ATH9K_POW_SM(ratesArray[rateHt40_3] +
805 ht40PowerIncForPdadc, 24)
806 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
807 ht40PowerIncForPdadc, 16)
808 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
809 ht40PowerIncForPdadc, 8)
810 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
811 ht40PowerIncForPdadc, 0));
812
813 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
814 ATH9K_POW_SM(ratesArray[rateHt40_7] +
815 ht40PowerIncForPdadc, 24)
816 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
817 ht40PowerIncForPdadc, 16)
818 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
819 ht40PowerIncForPdadc, 8)
820 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
821 ht40PowerIncForPdadc, 0));
822 }
823
824 /* Dup/Ext power per rate */
825 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
826 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
827 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
828 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
829 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
830 }
831
832 /* TPC initializations */
833 if (ah->tpc_enabled) {
834 int ht40_delta;
835
836 ht40_delta = (IS_CHAN_HT40(chan)) ? ht40PowerIncForPdadc : 0;
837 ar5008_hw_init_rate_txpower(ah, ratesArray, chan, ht40_delta);
838 /* Enable TPC */
839 REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX,
840 MAX_RATE_POWER | AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
841 } else {
842 /* Disable TPC */
843 REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER);
844 }
845
846 REGWRITE_BUFFER_FLUSH(ah);
847}
848
849static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
850 struct ath9k_channel *chan)
851{
852 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
853 struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
854 u32 regChainOffset, regval;
855 u8 txRxAttenLocal;
856 int i;
857
858 pModal = &eep->modalHeader;
859
860 REG_WRITE(ah, AR_PHY_SWITCH_COM, le32_to_cpu(pModal->antCtrlCommon));
861
862 for (i = 0; i < AR9287_MAX_CHAINS; i++) {
863 regChainOffset = i * 0x1000;
864
865 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
866 le32_to_cpu(pModal->antCtrlChain[i]));
867
868 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
869 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
870 & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
871 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
872 SM(pModal->iqCalICh[i],
873 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
874 SM(pModal->iqCalQCh[i],
875 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
876
877 txRxAttenLocal = pModal->txRxAttenCh[i];
878
879 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
880 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
881 pModal->bswMargin[i]);
882 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
883 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
884 pModal->bswAtten[i]);
885 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
886 AR9280_PHY_RXGAIN_TXRX_ATTEN,
887 txRxAttenLocal);
888 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
889 AR9280_PHY_RXGAIN_TXRX_MARGIN,
890 pModal->rxTxMarginCh[i]);
891 }
892
893
894 if (IS_CHAN_HT40(chan))
895 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
896 AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
897 else
898 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
899 AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
900
901 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
902 AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
903
904 REG_WRITE(ah, AR_PHY_RF_CTL4,
905 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
906 | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
907 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
908 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
909
910 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
911 AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
912
913 REG_RMW_FIELD(ah, AR_PHY_CCA,
914 AR9280_PHY_CCA_THRESH62, pModal->thresh62);
915 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
916 AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
917
918 regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
919 regval &= ~(AR9287_AN_RF2G3_DB1 |
920 AR9287_AN_RF2G3_DB2 |
921 AR9287_AN_RF2G3_OB_CCK |
922 AR9287_AN_RF2G3_OB_PSK |
923 AR9287_AN_RF2G3_OB_QAM |
924 AR9287_AN_RF2G3_OB_PAL_OFF);
925 regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
926 SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
927 SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
928 SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
929 SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
930 SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
931
932 ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
933
934 regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
935 regval &= ~(AR9287_AN_RF2G3_DB1 |
936 AR9287_AN_RF2G3_DB2 |
937 AR9287_AN_RF2G3_OB_CCK |
938 AR9287_AN_RF2G3_OB_PSK |
939 AR9287_AN_RF2G3_OB_QAM |
940 AR9287_AN_RF2G3_OB_PAL_OFF);
941 regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
942 SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
943 SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
944 SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
945 SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
946 SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
947
948 ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
949
950 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
951 AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
952 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
953 AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
954
955 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
956 AR9287_AN_TOP2_XPABIAS_LVL,
957 AR9287_AN_TOP2_XPABIAS_LVL_S,
958 pModal->xpaBiasLvl);
959}
960
961static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
962 u16 i, bool is2GHz)
963{
964 __le16 spur_ch = ah->eeprom.map9287.modalHeader.spurChans[i].spurChan;
965
966 return le16_to_cpu(spur_ch);
967}
968
969static u8 ath9k_hw_ar9287_get_eepmisc(struct ath_hw *ah)
970{
971 return ah->eeprom.map9287.baseEepHeader.eepMisc;
972}
973
974const struct eeprom_ops eep_ar9287_ops = {
975 .check_eeprom = ath9k_hw_ar9287_check_eeprom,
976 .get_eeprom = ath9k_hw_ar9287_get_eeprom,
977 .fill_eeprom = ath9k_hw_ar9287_fill_eeprom,
978 .dump_eeprom = ath9k_hw_ar9287_dump_eeprom,
979 .get_eeprom_ver = ath9k_hw_ar9287_get_eeprom_ver,
980 .get_eeprom_rev = ath9k_hw_ar9287_get_eeprom_rev,
981 .set_board_values = ath9k_hw_ar9287_set_board_values,
982 .set_txpower = ath9k_hw_ar9287_set_txpower,
983 .get_spur_channel = ath9k_hw_ar9287_get_spur_channel,
984 .get_eepmisc = ath9k_hw_ar9287_get_eepmisc
985};