Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (c) 2008-2011 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include <asm/unaligned.h>
  18#include "hw.h"
  19#include "ar9002_phy.h"
  20
  21#define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
  22
  23static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
  24{
  25	return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
 
 
 
  26}
  27
  28static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
  29{
  30	return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
 
 
  31}
  32
  33static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
  34{
  35	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  36	struct ath_common *common = ath9k_hw_common(ah);
  37	u16 *eep_data;
  38	int addr, eep_start_loc = AR9287_EEP_START_LOC;
  39	eep_data = (u16 *)eep;
  40
  41	for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
  42		if (!ath9k_hw_nvram_read(common, addr + eep_start_loc,
  43					 eep_data)) {
  44			ath_dbg(common, ATH_DBG_EEPROM,
  45				"Unable to read eeprom region\n");
  46			return false;
  47		}
  48		eep_data++;
  49	}
  50
  51	return true;
  52}
  53
  54static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw *ah)
  55{
  56	u16 *eep_data = (u16 *)&ah->eeprom.map9287;
  57
  58	ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
  59				     AR9287_HTC_EEP_START_LOC,
  60				     SIZE_EEPROM_AR9287);
  61	return true;
  62}
  63
  64static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
  65{
  66	struct ath_common *common = ath9k_hw_common(ah);
  67
  68	if (!ath9k_hw_use_flash(ah)) {
  69		ath_dbg(common, ATH_DBG_EEPROM,
  70			"Reading from EEPROM, not flash\n");
  71	}
  72
  73	if (common->bus_ops->ath_bus_type == ATH_USB)
  74		return __ath9k_hw_usb_ar9287_fill_eeprom(ah);
  75	else
  76		return __ath9k_hw_ar9287_fill_eeprom(ah);
  77}
  78
  79static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80{
  81	u32 sum = 0, el, integer;
  82	u16 temp, word, magic, magic2, *eepdata;
  83	int i, addr;
  84	bool need_swap = false;
  85	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  86	struct ath_common *common = ath9k_hw_common(ah);
  87
  88	if (!ath9k_hw_use_flash(ah)) {
  89		if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
  90					 &magic)) {
  91			ath_err(common, "Reading Magic # failed\n");
  92			return false;
  93		}
  94
  95		ath_dbg(common, ATH_DBG_EEPROM,
  96			"Read Magic = 0x%04X\n", magic);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  97
  98		if (magic != AR5416_EEPROM_MAGIC) {
  99			magic2 = swab16(magic);
 100
 101			if (magic2 == AR5416_EEPROM_MAGIC) {
 102				need_swap = true;
 103				eepdata = (u16 *)(&ah->eeprom);
 104
 105				for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
 106					temp = swab16(*eepdata);
 107					*eepdata = temp;
 108					eepdata++;
 109				}
 110			} else {
 111				ath_err(common,
 112					"Invalid EEPROM Magic. Endianness mismatch.\n");
 113				return -EINVAL;
 114			}
 115		}
 116	}
 117
 118	ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
 119		need_swap ? "True" : "False");
 
 120
 121	if (need_swap)
 122		el = swab16(ah->eeprom.map9287.baseEepHeader.length);
 123	else
 124		el = ah->eeprom.map9287.baseEepHeader.length;
 125
 126	if (el > sizeof(struct ar9287_eeprom))
 127		el = sizeof(struct ar9287_eeprom) / sizeof(u16);
 128	else
 129		el = el / sizeof(u16);
 130
 131	eepdata = (u16 *)(&ah->eeprom);
 132
 133	for (i = 0; i < el; i++)
 134		sum ^= *eepdata++;
 135
 136	if (need_swap) {
 137		word = swab16(eep->baseEepHeader.length);
 138		eep->baseEepHeader.length = word;
 139
 140		word = swab16(eep->baseEepHeader.checksum);
 141		eep->baseEepHeader.checksum = word;
 142
 143		word = swab16(eep->baseEepHeader.version);
 144		eep->baseEepHeader.version = word;
 145
 146		word = swab16(eep->baseEepHeader.regDmn[0]);
 147		eep->baseEepHeader.regDmn[0] = word;
 148
 149		word = swab16(eep->baseEepHeader.regDmn[1]);
 150		eep->baseEepHeader.regDmn[1] = word;
 151
 152		word = swab16(eep->baseEepHeader.rfSilent);
 153		eep->baseEepHeader.rfSilent = word;
 154
 155		word = swab16(eep->baseEepHeader.blueToothOptions);
 156		eep->baseEepHeader.blueToothOptions = word;
 157
 158		word = swab16(eep->baseEepHeader.deviceCap);
 159		eep->baseEepHeader.deviceCap = word;
 160
 161		integer = swab32(eep->modalHeader.antCtrlCommon);
 162		eep->modalHeader.antCtrlCommon = integer;
 163
 164		for (i = 0; i < AR9287_MAX_CHAINS; i++) {
 165			integer = swab32(eep->modalHeader.antCtrlChain[i]);
 166			eep->modalHeader.antCtrlChain[i] = integer;
 167		}
 168
 169		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
 170			word = swab16(eep->modalHeader.spurChans[i].spurChan);
 171			eep->modalHeader.spurChans[i].spurChan = word;
 172		}
 173	}
 174
 175	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
 176	    || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
 177		ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
 178			sum, ah->eep_ops->get_eeprom_ver(ah));
 179		return -EINVAL;
 180	}
 181
 182	return 0;
 183}
 184
 
 
 185static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
 186				      enum eeprom_param param)
 187{
 188	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
 189	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
 190	struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
 191	u16 ver_minor;
 192
 193	ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
 194
 195	switch (param) {
 196	case EEP_NFTHRESH_2:
 197		return pModal->noiseFloorThreshCh[0];
 198	case EEP_MAC_LSW:
 199		return get_unaligned_be16(pBase->macAddr);
 200	case EEP_MAC_MID:
 201		return get_unaligned_be16(pBase->macAddr + 2);
 202	case EEP_MAC_MSW:
 203		return get_unaligned_be16(pBase->macAddr + 4);
 204	case EEP_REG_0:
 205		return pBase->regDmn[0];
 206	case EEP_REG_1:
 207		return pBase->regDmn[1];
 208	case EEP_OP_CAP:
 209		return pBase->deviceCap;
 210	case EEP_OP_MODE:
 211		return pBase->opCapFlags;
 212	case EEP_RF_SILENT:
 213		return pBase->rfSilent;
 214	case EEP_MINOR_REV:
 215		return ver_minor;
 216	case EEP_TX_MASK:
 217		return pBase->txMask;
 218	case EEP_RX_MASK:
 219		return pBase->rxMask;
 220	case EEP_DEV_TYPE:
 221		return pBase->deviceType;
 222	case EEP_OL_PWRCTRL:
 223		return pBase->openLoopPwrCntl;
 224	case EEP_TEMPSENSE_SLOPE:
 225		if (ver_minor >= AR9287_EEP_MINOR_VER_2)
 226			return pBase->tempSensSlope;
 227		else
 228			return 0;
 229	case EEP_TEMPSENSE_SLOPE_PAL_ON:
 230		if (ver_minor >= AR9287_EEP_MINOR_VER_3)
 231			return pBase->tempSensSlopePalOn;
 232		else
 233			return 0;
 
 
 
 234	default:
 235		return 0;
 236	}
 237}
 238
 239static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
 240			    struct ath9k_channel *chan,
 241			    struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
 242			    u8 *pCalChans,  u16 availPiers, int8_t *pPwr)
 243{
 244	u16 idxL = 0, idxR = 0, numPiers;
 245	bool match;
 246	struct chan_centers centers;
 247
 248	ath9k_hw_get_channel_centers(ah, chan, &centers);
 249
 250	for (numPiers = 0; numPiers < availPiers; numPiers++) {
 251		if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
 252			break;
 253	}
 254
 255	match = ath9k_hw_get_lower_upper_index(
 256		(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
 257		pCalChans, numPiers, &idxL, &idxR);
 258
 259	if (match) {
 260		*pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
 261	} else {
 262		*pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
 263			 (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
 264	}
 265
 266}
 267
 268static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
 269					  int32_t txPower, u16 chain)
 270{
 271	u32 tmpVal;
 272	u32 a;
 273
 274	/* Enable OLPC for chain 0 */
 275
 276	tmpVal = REG_READ(ah, 0xa270);
 277	tmpVal = tmpVal & 0xFCFFFFFF;
 278	tmpVal = tmpVal | (0x3 << 24);
 279	REG_WRITE(ah, 0xa270, tmpVal);
 280
 281	/* Enable OLPC for chain 1 */
 282
 283	tmpVal = REG_READ(ah, 0xb270);
 284	tmpVal = tmpVal & 0xFCFFFFFF;
 285	tmpVal = tmpVal | (0x3 << 24);
 286	REG_WRITE(ah, 0xb270, tmpVal);
 287
 288	/* Write the OLPC ref power for chain 0 */
 289
 290	if (chain == 0) {
 291		tmpVal = REG_READ(ah, 0xa398);
 292		tmpVal = tmpVal & 0xff00ffff;
 293		a = (txPower)&0xff;
 294		tmpVal = tmpVal | (a << 16);
 295		REG_WRITE(ah, 0xa398, tmpVal);
 296	}
 297
 298	/* Write the OLPC ref power for chain 1 */
 299
 300	if (chain == 1) {
 301		tmpVal = REG_READ(ah, 0xb398);
 302		tmpVal = tmpVal & 0xff00ffff;
 303		a = (txPower)&0xff;
 304		tmpVal = tmpVal | (a << 16);
 305		REG_WRITE(ah, 0xb398, tmpVal);
 306	}
 307}
 308
 309static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
 310						struct ath9k_channel *chan,
 311						int16_t *pTxPowerIndexOffset)
 312{
 313	struct cal_data_per_freq_ar9287 *pRawDataset;
 314	struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
 315	u8 *pCalBChans = NULL;
 316	u16 pdGainOverlap_t2;
 317	u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
 318	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
 319	u16 numPiers = 0, i, j;
 320	u16 numXpdGain, xpdMask;
 321	u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
 322	u32 reg32, regOffset, regChainOffset, regval;
 323	int16_t diff = 0;
 324	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
 325
 326	xpdMask = pEepData->modalHeader.xpdGain;
 327
 328	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
 329	    AR9287_EEP_MINOR_VER_2)
 330		pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
 331	else
 332		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
 333					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
 334
 335	if (IS_CHAN_2GHZ(chan)) {
 336		pCalBChans = pEepData->calFreqPier2G;
 337		numPiers = AR9287_NUM_2G_CAL_PIERS;
 338		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
 339			pRawDatasetOpenLoop =
 340			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
 341			ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
 342		}
 343	}
 344
 345	numXpdGain = 0;
 346
 347	/* Calculate the value of xpdgains from the xpdGain Mask */
 348	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
 349		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
 350			if (numXpdGain >= AR5416_NUM_PD_GAINS)
 351				break;
 352			xpdGainValues[numXpdGain] =
 353				(u16)(AR5416_PD_GAINS_IN_MASK-i);
 354			numXpdGain++;
 355		}
 356	}
 357
 358	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
 359		      (numXpdGain - 1) & 0x3);
 360	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
 361		      xpdGainValues[0]);
 362	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
 363		      xpdGainValues[1]);
 364	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
 365		      xpdGainValues[2]);
 366
 367	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
 368		regChainOffset = i * 0x1000;
 369
 370		if (pEepData->baseEepHeader.txMask & (1 << i)) {
 371			pRawDatasetOpenLoop =
 372			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
 373
 374			if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
 375				int8_t txPower;
 376				ar9287_eeprom_get_tx_gain_index(ah, chan,
 377							pRawDatasetOpenLoop,
 378							pCalBChans, numPiers,
 379							&txPower);
 380				ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
 381			} else {
 382				pRawDataset =
 383					(struct cal_data_per_freq_ar9287 *)
 384					pEepData->calPierData2G[i];
 385
 386				ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
 387							   pRawDataset,
 388							   pCalBChans, numPiers,
 389							   pdGainOverlap_t2,
 390							   gainBoundaries,
 391							   pdadcValues,
 392							   numXpdGain);
 393			}
 394
 395			ENABLE_REGWRITE_BUFFER(ah);
 396
 397			if (i == 0) {
 398				if (!ath9k_hw_ar9287_get_eeprom(ah,
 399							EEP_OL_PWRCTRL)) {
 400
 401					regval = SM(pdGainOverlap_t2,
 402						    AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
 403						| SM(gainBoundaries[0],
 404						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
 405						| SM(gainBoundaries[1],
 406						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
 407						| SM(gainBoundaries[2],
 408						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
 409						| SM(gainBoundaries[3],
 410						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
 411
 412					REG_WRITE(ah,
 413						  AR_PHY_TPCRG5 + regChainOffset,
 414						  regval);
 415				}
 416			}
 417
 418			if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
 419			    pEepData->baseEepHeader.pwrTableOffset) {
 420				diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
 421					     (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
 422				diff *= 2;
 423
 424				for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
 425					pdadcValues[j] = pdadcValues[j+diff];
 426
 427				for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
 428				     j < AR5416_NUM_PDADC_VALUES; j++)
 429					pdadcValues[j] =
 430					  pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
 431			}
 432
 433			if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
 434				regOffset = AR_PHY_BASE +
 435					(672 << 2) + regChainOffset;
 436
 437				for (j = 0; j < 32; j++) {
 438					reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
 439
 440					REG_WRITE(ah, regOffset, reg32);
 441					regOffset += 4;
 442				}
 443			}
 444			REGWRITE_BUFFER_FLUSH(ah);
 445		}
 446	}
 447
 448	*pTxPowerIndexOffset = 0;
 449}
 450
 451static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
 452						     struct ath9k_channel *chan,
 453						     int16_t *ratesArray,
 454						     u16 cfgCtl,
 455						     u16 AntennaReduction,
 456						     u16 twiceMaxRegulatoryPower,
 457						     u16 powerLimit)
 458{
 459#define CMP_CTL \
 460	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
 461	 pEepData->ctlIndex[i])
 462
 463#define CMP_NO_CTL \
 464	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
 465	 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
 466
 467#define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6
 468#define REDUCE_SCALED_POWER_BY_THREE_CHAIN   10
 469
 470	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 471	u16 twiceMaxEdgePower = MAX_RATE_POWER;
 472	static const u16 tpScaleReductionTable[5] =
 473		{ 0, 3, 6, 9, MAX_RATE_POWER };
 474	int i;
 475	int16_t twiceLargestAntenna;
 476	struct cal_ctl_data_ar9287 *rep;
 477	struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
 478				    targetPowerCck = {0, {0, 0, 0, 0} };
 479	struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
 480				    targetPowerCckExt = {0, {0, 0, 0, 0} };
 481	struct cal_target_power_ht targetPowerHt20,
 482				    targetPowerHt40 = {0, {0, 0, 0, 0} };
 483	u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
 484	static const u16 ctlModesFor11g[] = {
 485		CTL_11B, CTL_11G, CTL_2GHT20,
 486		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
 487	};
 488	u16 numCtlModes = 0;
 489	const u16 *pCtlMode = NULL;
 490	u16 ctlMode, freq;
 491	struct chan_centers centers;
 492	int tx_chainmask;
 493	u16 twiceMinEdgePower;
 494	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
 495	tx_chainmask = ah->txchainmask;
 496
 497	ath9k_hw_get_channel_centers(ah, chan, &centers);
 498
 499	/* Compute TxPower reduction due to Antenna Gain */
 500	twiceLargestAntenna = max(pEepData->modalHeader.antennaGainCh[0],
 501				  pEepData->modalHeader.antennaGainCh[1]);
 502	twiceLargestAntenna = (int16_t)min((AntennaReduction) -
 503					   twiceLargestAntenna, 0);
 504
 505	/*
 506	 * scaledPower is the minimum of the user input power level
 507	 * and the regulatory allowed power level.
 508	 */
 509	maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
 510
 511	if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX)
 512		maxRegAllowedPower -=
 513			(tpScaleReductionTable[(regulatory->tp_scale)] * 2);
 514
 515	scaledPower = min(powerLimit, maxRegAllowedPower);
 516
 517	/*
 518	 * Reduce scaled Power by number of chains active
 519	 * to get the per chain tx power level.
 520	 */
 521	switch (ar5416_get_ntxchains(tx_chainmask)) {
 522	case 1:
 523		break;
 524	case 2:
 525		if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
 526			scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
 527		else
 528			scaledPower = 0;
 529		break;
 530	case 3:
 531		if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
 532			scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
 533		else
 534			scaledPower = 0;
 535		break;
 536	}
 537	scaledPower = max((u16)0, scaledPower);
 538
 539	/*
 540	 * Get TX power from EEPROM.
 541	 */
 542	if (IS_CHAN_2GHZ(chan))	{
 543		/* CTL_11B, CTL_11G, CTL_2GHT20 */
 544		numCtlModes =
 545			ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
 546
 547		pCtlMode = ctlModesFor11g;
 548
 549		ath9k_hw_get_legacy_target_powers(ah, chan,
 550						  pEepData->calTargetPowerCck,
 551						  AR9287_NUM_2G_CCK_TARGET_POWERS,
 552						  &targetPowerCck, 4, false);
 553		ath9k_hw_get_legacy_target_powers(ah, chan,
 554						  pEepData->calTargetPower2G,
 555						  AR9287_NUM_2G_20_TARGET_POWERS,
 556						  &targetPowerOfdm, 4, false);
 557		ath9k_hw_get_target_powers(ah, chan,
 558					   pEepData->calTargetPower2GHT20,
 559					   AR9287_NUM_2G_20_TARGET_POWERS,
 560					   &targetPowerHt20, 8, false);
 561
 562		if (IS_CHAN_HT40(chan))	{
 563			/* All 2G CTLs */
 564			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
 565			ath9k_hw_get_target_powers(ah, chan,
 566						   pEepData->calTargetPower2GHT40,
 567						   AR9287_NUM_2G_40_TARGET_POWERS,
 568						   &targetPowerHt40, 8, true);
 569			ath9k_hw_get_legacy_target_powers(ah, chan,
 570						  pEepData->calTargetPowerCck,
 571						  AR9287_NUM_2G_CCK_TARGET_POWERS,
 572						  &targetPowerCckExt, 4, true);
 573			ath9k_hw_get_legacy_target_powers(ah, chan,
 574						  pEepData->calTargetPower2G,
 575						  AR9287_NUM_2G_20_TARGET_POWERS,
 576						  &targetPowerOfdmExt, 4, true);
 577		}
 578	}
 579
 580	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
 581		bool isHt40CtlMode =
 582			(pCtlMode[ctlMode] == CTL_2GHT40) ? true : false;
 583
 584		if (isHt40CtlMode)
 585			freq = centers.synth_center;
 586		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
 587			freq = centers.ext_center;
 588		else
 589			freq = centers.ctl_center;
 590
 
 591		/* Walk through the CTL indices stored in EEPROM */
 592		for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
 593			struct cal_ctl_edges *pRdEdgesPower;
 594
 595			/*
 596			 * Compare test group from regulatory channel list
 597			 * with test mode from pCtlMode list
 598			 */
 599			if (CMP_CTL || CMP_NO_CTL) {
 600				rep = &(pEepData->ctlData[i]);
 601				pRdEdgesPower =
 602				rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
 603
 604				twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
 605								pRdEdgesPower,
 606								IS_CHAN_2GHZ(chan),
 607								AR5416_NUM_BAND_EDGES);
 608
 609				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
 610					twiceMaxEdgePower = min(twiceMaxEdgePower,
 611								twiceMinEdgePower);
 612				} else {
 613					twiceMaxEdgePower = twiceMinEdgePower;
 614					break;
 615				}
 616			}
 617		}
 618
 619		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
 620
 621		/* Apply ctl mode to correct target power set */
 622		switch (pCtlMode[ctlMode]) {
 623		case CTL_11B:
 624			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
 625				targetPowerCck.tPow2x[i] =
 626					(u8)min((u16)targetPowerCck.tPow2x[i],
 627						minCtlPower);
 628			}
 629			break;
 630		case CTL_11A:
 631		case CTL_11G:
 632			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
 633				targetPowerOfdm.tPow2x[i] =
 634					(u8)min((u16)targetPowerOfdm.tPow2x[i],
 635						minCtlPower);
 636			}
 637			break;
 638		case CTL_5GHT20:
 639		case CTL_2GHT20:
 640			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
 641				targetPowerHt20.tPow2x[i] =
 642					(u8)min((u16)targetPowerHt20.tPow2x[i],
 643						minCtlPower);
 644			}
 645			break;
 646		case CTL_11B_EXT:
 647			targetPowerCckExt.tPow2x[0] =
 648				(u8)min((u16)targetPowerCckExt.tPow2x[0],
 649					minCtlPower);
 650			break;
 651		case CTL_11A_EXT:
 652		case CTL_11G_EXT:
 653			targetPowerOfdmExt.tPow2x[0] =
 654				(u8)min((u16)targetPowerOfdmExt.tPow2x[0],
 655					minCtlPower);
 656			break;
 657		case CTL_5GHT40:
 658		case CTL_2GHT40:
 659			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
 660				targetPowerHt40.tPow2x[i] =
 661					(u8)min((u16)targetPowerHt40.tPow2x[i],
 662						minCtlPower);
 663			}
 664			break;
 665		default:
 666			break;
 667		}
 668	}
 669
 670	/* Now set the rates array */
 671
 672	ratesArray[rate6mb] =
 673	ratesArray[rate9mb] =
 674	ratesArray[rate12mb] =
 675	ratesArray[rate18mb] =
 676	ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
 677
 678	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
 679	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
 680	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
 681	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
 682
 683	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
 684		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
 685
 686	if (IS_CHAN_2GHZ(chan))	{
 687		ratesArray[rate1l] = targetPowerCck.tPow2x[0];
 688		ratesArray[rate2s] =
 689		ratesArray[rate2l] = targetPowerCck.tPow2x[1];
 690		ratesArray[rate5_5s] =
 691		ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
 692		ratesArray[rate11s] =
 693		ratesArray[rate11l] = targetPowerCck.tPow2x[3];
 694	}
 695	if (IS_CHAN_HT40(chan))	{
 696		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
 697			ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
 698
 699		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
 700		ratesArray[rateDupCck]  = targetPowerHt40.tPow2x[0];
 701		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
 702
 703		if (IS_CHAN_2GHZ(chan))
 704			ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
 705	}
 706
 707#undef CMP_CTL
 708#undef CMP_NO_CTL
 709#undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
 710#undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
 711}
 712
 713static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
 714					struct ath9k_channel *chan, u16 cfgCtl,
 715					u8 twiceAntennaReduction,
 716					u8 twiceMaxRegulatoryPower,
 717					u8 powerLimit, bool test)
 718{
 719	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 720	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
 721	struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
 722	int16_t ratesArray[Ar5416RateSize];
 723	int16_t txPowerIndexOffset = 0;
 724	u8 ht40PowerIncForPdadc = 2;
 725	int i;
 726
 727	memset(ratesArray, 0, sizeof(ratesArray));
 728
 729	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
 730	    AR9287_EEP_MINOR_VER_2)
 731		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
 732
 733	ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
 734						 &ratesArray[0], cfgCtl,
 735						 twiceAntennaReduction,
 736						 twiceMaxRegulatoryPower,
 737						 powerLimit);
 738
 739	ath9k_hw_set_ar9287_power_cal_table(ah, chan, &txPowerIndexOffset);
 740
 741	regulatory->max_power_level = 0;
 742	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
 743		ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
 744		if (ratesArray[i] > MAX_RATE_POWER)
 745			ratesArray[i] = MAX_RATE_POWER;
 746
 747		if (ratesArray[i] > regulatory->max_power_level)
 748			regulatory->max_power_level = ratesArray[i];
 749	}
 750
 
 
 751	if (test)
 752		return;
 753
 754	if (IS_CHAN_2GHZ(chan))
 755		i = rate1l;
 756	else
 757		i = rate6mb;
 758
 759	regulatory->max_power_level = ratesArray[i];
 760
 761	if (AR_SREV_9280_20_OR_LATER(ah)) {
 762		for (i = 0; i < Ar5416RateSize; i++)
 763			ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
 764	}
 765
 766	ENABLE_REGWRITE_BUFFER(ah);
 767
 768	/* OFDM power per rate */
 769	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
 770		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
 771		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
 772		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
 773		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
 774
 775	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
 776		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
 777		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
 778		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
 779		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
 780
 781	/* CCK power per rate */
 782	if (IS_CHAN_2GHZ(chan))	{
 783		REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
 784			  ATH9K_POW_SM(ratesArray[rate2s], 24)
 785			  | ATH9K_POW_SM(ratesArray[rate2l], 16)
 786			  | ATH9K_POW_SM(ratesArray[rateXr], 8)
 787			  | ATH9K_POW_SM(ratesArray[rate1l], 0));
 788		REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
 789			  ATH9K_POW_SM(ratesArray[rate11s], 24)
 790			  | ATH9K_POW_SM(ratesArray[rate11l], 16)
 791			  | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
 792			  | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
 793	}
 794
 795	/* HT20 power per rate */
 796	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
 797		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
 798		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
 799		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
 800		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
 801
 802	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
 803		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
 804		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
 805		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
 806		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
 807
 808	/* HT40 power per rate */
 809	if (IS_CHAN_HT40(chan))	{
 810		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
 811			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
 812				  ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
 813				  | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
 814				  | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
 815				  | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
 816
 817			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
 818				  ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
 819				  | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
 820				  | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
 821				  | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
 822		} else {
 823			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
 824				  ATH9K_POW_SM(ratesArray[rateHt40_3] +
 825					       ht40PowerIncForPdadc, 24)
 826				  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
 827						 ht40PowerIncForPdadc, 16)
 828				  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
 829						 ht40PowerIncForPdadc, 8)
 830				  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
 831						 ht40PowerIncForPdadc, 0));
 832
 833			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
 834				  ATH9K_POW_SM(ratesArray[rateHt40_7] +
 835					       ht40PowerIncForPdadc, 24)
 836				  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
 837						 ht40PowerIncForPdadc, 16)
 838				  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
 839						 ht40PowerIncForPdadc, 8)
 840				  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
 841						 ht40PowerIncForPdadc, 0));
 842		}
 843
 844		/* Dup/Ext power per rate */
 845		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
 846			  ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
 847			  | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
 848			  | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
 849			  | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
 850	}
 851	REGWRITE_BUFFER_FLUSH(ah);
 852}
 853
 854static void ath9k_hw_ar9287_set_addac(struct ath_hw *ah,
 855				      struct ath9k_channel *chan)
 856{
 
 
 
 
 
 
 
 
 
 
 
 
 857}
 858
 859static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
 860					     struct ath9k_channel *chan)
 861{
 862	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
 863	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
 864	u32 regChainOffset, regval;
 865	u8 txRxAttenLocal;
 866	int i;
 867
 868	pModal = &eep->modalHeader;
 869
 870	REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
 871
 872	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
 873		regChainOffset = i * 0x1000;
 874
 875		REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
 876			  pModal->antCtrlChain[i]);
 877
 878		REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
 879			  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
 880			   & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
 881			       AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
 882			  SM(pModal->iqCalICh[i],
 883			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
 884			  SM(pModal->iqCalQCh[i],
 885			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
 886
 887		txRxAttenLocal = pModal->txRxAttenCh[i];
 888
 889		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
 890			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
 891			      pModal->bswMargin[i]);
 892		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
 893			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
 894			      pModal->bswAtten[i]);
 895		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
 896			      AR9280_PHY_RXGAIN_TXRX_ATTEN,
 897			      txRxAttenLocal);
 898		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
 899			      AR9280_PHY_RXGAIN_TXRX_MARGIN,
 900			      pModal->rxTxMarginCh[i]);
 901	}
 902
 903
 904	if (IS_CHAN_HT40(chan))
 905		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
 906			      AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
 907	else
 908		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
 909			      AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
 910
 911	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
 912		      AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
 913
 914	REG_WRITE(ah, AR_PHY_RF_CTL4,
 915		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
 916		  | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
 917		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
 918		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
 919
 920	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
 921		      AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
 922
 923	REG_RMW_FIELD(ah, AR_PHY_CCA,
 924		      AR9280_PHY_CCA_THRESH62, pModal->thresh62);
 925	REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
 926		      AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
 927
 928	regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
 929	regval &= ~(AR9287_AN_RF2G3_DB1 |
 930		    AR9287_AN_RF2G3_DB2 |
 931		    AR9287_AN_RF2G3_OB_CCK |
 932		    AR9287_AN_RF2G3_OB_PSK |
 933		    AR9287_AN_RF2G3_OB_QAM |
 934		    AR9287_AN_RF2G3_OB_PAL_OFF);
 935	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
 936		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
 937		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
 938		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
 939		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
 940		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
 941
 942	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
 943
 944	regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
 945	regval &= ~(AR9287_AN_RF2G3_DB1 |
 946		    AR9287_AN_RF2G3_DB2 |
 947		    AR9287_AN_RF2G3_OB_CCK |
 948		    AR9287_AN_RF2G3_OB_PSK |
 949		    AR9287_AN_RF2G3_OB_QAM |
 950		    AR9287_AN_RF2G3_OB_PAL_OFF);
 951	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
 952		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
 953		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
 954		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
 955		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
 956		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
 957
 958	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
 959
 960	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
 961		      AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
 962	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
 963		      AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
 964
 965	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
 966				  AR9287_AN_TOP2_XPABIAS_LVL,
 967				  AR9287_AN_TOP2_XPABIAS_LVL_S,
 968				  pModal->xpaBiasLvl);
 969}
 970
 971static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
 972					    u16 i, bool is2GHz)
 973{
 974#define EEP_MAP9287_SPURCHAN \
 975	(ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)
 976
 977	struct ath_common *common = ath9k_hw_common(ah);
 978	u16 spur_val = AR_NO_SPUR;
 979
 980	ath_dbg(common, ATH_DBG_ANI,
 981		"Getting spur idx:%d is2Ghz:%d val:%x\n",
 982		i, is2GHz, ah->config.spurchans[i][is2GHz]);
 983
 984	switch (ah->config.spurmode) {
 985	case SPUR_DISABLE:
 986		break;
 987	case SPUR_ENABLE_IOCTL:
 988		spur_val = ah->config.spurchans[i][is2GHz];
 989		ath_dbg(common, ATH_DBG_ANI,
 990			"Getting spur val from new loc. %d\n", spur_val);
 991		break;
 992	case SPUR_ENABLE_EEPROM:
 993		spur_val = EEP_MAP9287_SPURCHAN;
 994		break;
 995	}
 996
 997	return spur_val;
 998
 999#undef EEP_MAP9287_SPURCHAN
 
 
1000}
1001
1002const struct eeprom_ops eep_ar9287_ops = {
1003	.check_eeprom		= ath9k_hw_ar9287_check_eeprom,
1004	.get_eeprom		= ath9k_hw_ar9287_get_eeprom,
1005	.fill_eeprom		= ath9k_hw_ar9287_fill_eeprom,
 
1006	.get_eeprom_ver		= ath9k_hw_ar9287_get_eeprom_ver,
1007	.get_eeprom_rev		= ath9k_hw_ar9287_get_eeprom_rev,
1008	.set_board_values	= ath9k_hw_ar9287_set_board_values,
1009	.set_addac		= ath9k_hw_ar9287_set_addac,
1010	.set_txpower		= ath9k_hw_ar9287_set_txpower,
1011	.get_spur_channel	= ath9k_hw_ar9287_get_spur_channel
 
1012};
v6.9.4
  1/*
  2 * Copyright (c) 2008-2011 Atheros Communications Inc.
  3 *
  4 * Permission to use, copy, modify, and/or distribute this software for any
  5 * purpose with or without fee is hereby granted, provided that the above
  6 * copyright notice and this permission notice appear in all copies.
  7 *
  8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 15 */
 16
 17#include <asm/unaligned.h>
 18#include "hw.h"
 19#include "ar9002_phy.h"
 20
 21#define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
 22
 23static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
 24{
 25	u16 version = le16_to_cpu(ah->eeprom.map9287.baseEepHeader.version);
 26
 27	return (version & AR5416_EEP_VER_MAJOR_MASK) >>
 28		AR5416_EEP_VER_MAJOR_SHIFT;
 29}
 30
 31static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
 32{
 33	u16 version = le16_to_cpu(ah->eeprom.map9287.baseEepHeader.version);
 34
 35	return version & AR5416_EEP_VER_MINOR_MASK;
 36}
 37
 38static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
 39{
 40	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
 
 41	u16 *eep_data;
 42	int addr, eep_start_loc = AR9287_EEP_START_LOC;
 43	eep_data = (u16 *)eep;
 44
 45	for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
 46		if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data))
 
 
 
 47			return false;
 
 48		eep_data++;
 49	}
 50
 51	return true;
 52}
 53
 54static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw *ah)
 55{
 56	u16 *eep_data = (u16 *)&ah->eeprom.map9287;
 57
 58	ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
 59				     AR9287_HTC_EEP_START_LOC,
 60				     SIZE_EEPROM_AR9287);
 61	return true;
 62}
 63
 64static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
 65{
 66	struct ath_common *common = ath9k_hw_common(ah);
 67
 68	if (!ath9k_hw_use_flash(ah)) {
 69		ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
 
 70	}
 71
 72	if (common->bus_ops->ath_bus_type == ATH_USB)
 73		return __ath9k_hw_usb_ar9287_fill_eeprom(ah);
 74	else
 75		return __ath9k_hw_ar9287_fill_eeprom(ah);
 76}
 77
 78#ifdef CONFIG_ATH9K_COMMON_DEBUG
 79static u32 ar9287_dump_modal_eeprom(char *buf, u32 len, u32 size,
 80				    struct modal_eep_ar9287_header *modal_hdr)
 81{
 82	PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
 83	PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
 84	PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
 85	PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
 86	PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
 87	PR_EEP("Switch Settle", modal_hdr->switchSettling);
 88	PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
 89	PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
 90	PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
 91	PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
 92	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
 93	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
 94	PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
 95	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
 96	PR_EEP("CCA Threshold)", modal_hdr->thresh62);
 97	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
 98	PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
 99	PR_EEP("xpdGain", modal_hdr->xpdGain);
100	PR_EEP("External PD", modal_hdr->xpd);
101	PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
102	PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
103	PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
104	PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
105	PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
106	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
107	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
108	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
109	PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
110	PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
111	PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
112	PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
113	PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
114	PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
115	PR_EEP("AR92x7 Version", modal_hdr->version);
116	PR_EEP("DriverBias1", modal_hdr->db1);
117	PR_EEP("DriverBias2", modal_hdr->db1);
118	PR_EEP("CCK OutputBias", modal_hdr->ob_cck);
119	PR_EEP("PSK OutputBias", modal_hdr->ob_psk);
120	PR_EEP("QAM OutputBias", modal_hdr->ob_qam);
121	PR_EEP("PAL_OFF OutputBias", modal_hdr->ob_pal_off);
122
123	return len;
124}
125
126static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
127				       u8 *buf, u32 len, u32 size)
128{
 
 
 
 
129	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
130	struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
131	u32 binBuildNumber = le32_to_cpu(pBase->binBuildNumber);
 
 
 
 
 
 
132
133	if (!dump_base_hdr) {
134		len += scnprintf(buf + len, size - len,
135				 "%20s :\n", "2GHz modal Header");
136		len = ar9287_dump_modal_eeprom(buf, len, size,
137						&eep->modalHeader);
138		goto out;
139	}
140
141	PR_EEP("Major Version", ath9k_hw_ar9287_get_eeprom_ver(ah));
142	PR_EEP("Minor Version", ath9k_hw_ar9287_get_eeprom_rev(ah));
143	PR_EEP("Checksum", le16_to_cpu(pBase->checksum));
144	PR_EEP("Length", le16_to_cpu(pBase->length));
145	PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
146	PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
147	PR_EEP("TX Mask", pBase->txMask);
148	PR_EEP("RX Mask", pBase->rxMask);
149	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
150	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
151	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
152					AR5416_OPFLAGS_N_2G_HT20));
153	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
154					AR5416_OPFLAGS_N_2G_HT40));
155	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
156					AR5416_OPFLAGS_N_5G_HT20));
157	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
158					AR5416_OPFLAGS_N_5G_HT40));
159	PR_EEP("Big Endian", !!(pBase->eepMisc & AR5416_EEPMISC_BIG_ENDIAN));
160	PR_EEP("Cal Bin Major Ver", (binBuildNumber >> 24) & 0xFF);
161	PR_EEP("Cal Bin Minor Ver", (binBuildNumber >> 16) & 0xFF);
162	PR_EEP("Cal Bin Build", (binBuildNumber >> 8) & 0xFF);
163	PR_EEP("Power Table Offset", pBase->pwrTableOffset);
164	PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
165
166	len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
167			 pBase->macAddr);
168
169out:
170	if (len > size)
171		len = size;
172
173	return len;
174}
175#else
176static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
177				       u8 *buf, u32 len, u32 size)
178{
179	return 0;
180}
181#endif
182
 
 
183
184static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
185{
186	u32 el;
187	int i, err;
188	bool need_swap;
189	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
 
 
 
 
 
 
 
 
 
 
190
191	err = ath9k_hw_nvram_swap_data(ah, &need_swap, SIZE_EEPROM_AR9287);
192	if (err)
193		return err;
194
195	if (need_swap)
196		el = swab16((__force u16)eep->baseEepHeader.length);
197	else
198		el = le16_to_cpu(eep->baseEepHeader.length);
199
200	el = min(el / sizeof(u16), SIZE_EEPROM_AR9287);
201	if (!ath9k_hw_nvram_validate_checksum(ah, el))
202		return -EINVAL;
 
 
 
 
 
 
203
204	if (need_swap) {
205		EEPROM_FIELD_SWAB16(eep->baseEepHeader.length);
206		EEPROM_FIELD_SWAB16(eep->baseEepHeader.checksum);
207		EEPROM_FIELD_SWAB16(eep->baseEepHeader.version);
208		EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[0]);
209		EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[1]);
210		EEPROM_FIELD_SWAB16(eep->baseEepHeader.rfSilent);
211		EEPROM_FIELD_SWAB16(eep->baseEepHeader.blueToothOptions);
212		EEPROM_FIELD_SWAB16(eep->baseEepHeader.deviceCap);
213		EEPROM_FIELD_SWAB32(eep->modalHeader.antCtrlCommon);
214
215		for (i = 0; i < AR9287_MAX_CHAINS; i++)
216			EEPROM_FIELD_SWAB32(eep->modalHeader.antCtrlChain[i]);
217
218		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++)
219			EEPROM_FIELD_SWAB16(
220				eep->modalHeader.spurChans[i].spurChan);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221	}
222
223	if (!ath9k_hw_nvram_check_version(ah, AR9287_EEP_VER,
224	    AR5416_EEP_NO_BACK_VER))
 
 
225		return -EINVAL;
 
226
227	return 0;
228}
229
230#undef SIZE_EEPROM_AR9287
231
232static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
233				      enum eeprom_param param)
234{
235	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
236	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
237	struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
238	u16 ver_minor = ath9k_hw_ar9287_get_eeprom_rev(ah);
 
 
239
240	switch (param) {
241	case EEP_NFTHRESH_2:
242		return pModal->noiseFloorThreshCh[0];
243	case EEP_MAC_LSW:
244		return get_unaligned_be16(pBase->macAddr);
245	case EEP_MAC_MID:
246		return get_unaligned_be16(pBase->macAddr + 2);
247	case EEP_MAC_MSW:
248		return get_unaligned_be16(pBase->macAddr + 4);
249	case EEP_REG_0:
250		return le16_to_cpu(pBase->regDmn[0]);
 
 
251	case EEP_OP_CAP:
252		return le16_to_cpu(pBase->deviceCap);
253	case EEP_OP_MODE:
254		return pBase->opCapFlags;
255	case EEP_RF_SILENT:
256		return le16_to_cpu(pBase->rfSilent);
 
 
257	case EEP_TX_MASK:
258		return pBase->txMask;
259	case EEP_RX_MASK:
260		return pBase->rxMask;
261	case EEP_DEV_TYPE:
262		return pBase->deviceType;
263	case EEP_OL_PWRCTRL:
264		return pBase->openLoopPwrCntl;
265	case EEP_TEMPSENSE_SLOPE:
266		if (ver_minor >= AR9287_EEP_MINOR_VER_2)
267			return pBase->tempSensSlope;
268		else
269			return 0;
270	case EEP_TEMPSENSE_SLOPE_PAL_ON:
271		if (ver_minor >= AR9287_EEP_MINOR_VER_3)
272			return pBase->tempSensSlopePalOn;
273		else
274			return 0;
275	case EEP_ANTENNA_GAIN_2G:
276		return max_t(u8, pModal->antennaGainCh[0],
277				 pModal->antennaGainCh[1]);
278	default:
279		return 0;
280	}
281}
282
283static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
284			    struct ath9k_channel *chan,
285			    struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
286			    u8 *pCalChans,  u16 availPiers, int8_t *pPwr)
287{
288	u16 idxL = 0, idxR = 0, numPiers;
289	bool match;
290	struct chan_centers centers;
291
292	ath9k_hw_get_channel_centers(ah, chan, &centers);
293
294	for (numPiers = 0; numPiers < availPiers; numPiers++) {
295		if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
296			break;
297	}
298
299	match = ath9k_hw_get_lower_upper_index(
300		(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
301		pCalChans, numPiers, &idxL, &idxR);
302
303	if (match) {
304		*pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
305	} else {
306		*pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
307			 (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
308	}
309
310}
311
312static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
313					  int32_t txPower, u16 chain)
314{
315	u32 tmpVal;
316	u32 a;
317
318	/* Enable OLPC for chain 0 */
319
320	tmpVal = REG_READ(ah, 0xa270);
321	tmpVal = tmpVal & 0xFCFFFFFF;
322	tmpVal = tmpVal | (0x3 << 24);
323	REG_WRITE(ah, 0xa270, tmpVal);
324
325	/* Enable OLPC for chain 1 */
326
327	tmpVal = REG_READ(ah, 0xb270);
328	tmpVal = tmpVal & 0xFCFFFFFF;
329	tmpVal = tmpVal | (0x3 << 24);
330	REG_WRITE(ah, 0xb270, tmpVal);
331
332	/* Write the OLPC ref power for chain 0 */
333
334	if (chain == 0) {
335		tmpVal = REG_READ(ah, 0xa398);
336		tmpVal = tmpVal & 0xff00ffff;
337		a = (txPower)&0xff;
338		tmpVal = tmpVal | (a << 16);
339		REG_WRITE(ah, 0xa398, tmpVal);
340	}
341
342	/* Write the OLPC ref power for chain 1 */
343
344	if (chain == 1) {
345		tmpVal = REG_READ(ah, 0xb398);
346		tmpVal = tmpVal & 0xff00ffff;
347		a = (txPower)&0xff;
348		tmpVal = tmpVal | (a << 16);
349		REG_WRITE(ah, 0xb398, tmpVal);
350	}
351}
352
353static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
354						struct ath9k_channel *chan)
 
355{
356	struct cal_data_per_freq_ar9287 *pRawDataset;
357	struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
358	u8 *pCalBChans = NULL;
359	u16 pdGainOverlap_t2;
360	u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
361	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
362	u16 numPiers = 0, i, j;
363	u16 numXpdGain, xpdMask;
364	u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
365	u32 reg32, regOffset, regChainOffset, regval;
366	int16_t diff = 0;
367	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
368
369	xpdMask = pEepData->modalHeader.xpdGain;
370
371	if (ath9k_hw_ar9287_get_eeprom_rev(ah) >= AR9287_EEP_MINOR_VER_2)
 
372		pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
373	else
374		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
375					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
376
377	if (IS_CHAN_2GHZ(chan)) {
378		pCalBChans = pEepData->calFreqPier2G;
379		numPiers = AR9287_NUM_2G_CAL_PIERS;
380		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
381			pRawDatasetOpenLoop =
382			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
383			ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
384		}
385	}
386
387	numXpdGain = 0;
388
389	/* Calculate the value of xpdgains from the xpdGain Mask */
390	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
391		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
392			if (numXpdGain >= AR5416_NUM_PD_GAINS)
393				break;
394			xpdGainValues[numXpdGain] =
395				(u16)(AR5416_PD_GAINS_IN_MASK-i);
396			numXpdGain++;
397		}
398	}
399
400	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
401		      (numXpdGain - 1) & 0x3);
402	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
403		      xpdGainValues[0]);
404	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
405		      xpdGainValues[1]);
406	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
407		      xpdGainValues[2]);
408
409	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
410		regChainOffset = i * 0x1000;
411
412		if (pEepData->baseEepHeader.txMask & (1 << i)) {
413			pRawDatasetOpenLoop =
414			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
415
416			if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
417				int8_t txPower;
418				ar9287_eeprom_get_tx_gain_index(ah, chan,
419							pRawDatasetOpenLoop,
420							pCalBChans, numPiers,
421							&txPower);
422				ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
423			} else {
424				pRawDataset =
425					(struct cal_data_per_freq_ar9287 *)
426					pEepData->calPierData2G[i];
427
428				ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
429							   pRawDataset,
430							   pCalBChans, numPiers,
431							   pdGainOverlap_t2,
432							   gainBoundaries,
433							   pdadcValues,
434							   numXpdGain);
435			}
436
437			ENABLE_REGWRITE_BUFFER(ah);
438
439			if (i == 0) {
440				if (!ath9k_hw_ar9287_get_eeprom(ah,
441							EEP_OL_PWRCTRL)) {
442
443					regval = SM(pdGainOverlap_t2,
444						    AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
445						| SM(gainBoundaries[0],
446						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
447						| SM(gainBoundaries[1],
448						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
449						| SM(gainBoundaries[2],
450						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
451						| SM(gainBoundaries[3],
452						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
453
454					REG_WRITE(ah,
455						  AR_PHY_TPCRG5 + regChainOffset,
456						  regval);
457				}
458			}
459
460			if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
461			    pEepData->baseEepHeader.pwrTableOffset) {
462				diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
463					     (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
464				diff *= 2;
465
466				for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
467					pdadcValues[j] = pdadcValues[j+diff];
468
469				for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
470				     j < AR5416_NUM_PDADC_VALUES; j++)
471					pdadcValues[j] =
472					  pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
473			}
474
475			if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
476				regOffset = AR_PHY_BASE +
477					(672 << 2) + regChainOffset;
478
479				for (j = 0; j < 32; j++) {
480					reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
481
482					REG_WRITE(ah, regOffset, reg32);
483					regOffset += 4;
484				}
485			}
486			REGWRITE_BUFFER_FLUSH(ah);
487		}
488	}
 
 
489}
490
491static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
492						     struct ath9k_channel *chan,
493						     int16_t *ratesArray,
494						     u16 cfgCtl,
495						     u16 antenna_reduction,
 
496						     u16 powerLimit)
497{
498#define CMP_CTL \
499	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
500	 pEepData->ctlIndex[i])
501
502#define CMP_NO_CTL \
503	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
504	 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
505
506	u16 twiceMaxEdgePower;
 
 
 
 
 
 
507	int i;
 
508	struct cal_ctl_data_ar9287 *rep;
509	struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
510				    targetPowerCck = {0, {0, 0, 0, 0} };
511	struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
512				    targetPowerCckExt = {0, {0, 0, 0, 0} };
513	struct cal_target_power_ht targetPowerHt20,
514				    targetPowerHt40 = {0, {0, 0, 0, 0} };
515	u16 scaledPower = 0, minCtlPower;
516	static const u16 ctlModesFor11g[] = {
517		CTL_11B, CTL_11G, CTL_2GHT20,
518		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
519	};
520	u16 numCtlModes = 0;
521	const u16 *pCtlMode = NULL;
522	u16 ctlMode, freq;
523	struct chan_centers centers;
524	int tx_chainmask;
525	u16 twiceMinEdgePower;
526	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
527	tx_chainmask = ah->txchainmask;
528
529	ath9k_hw_get_channel_centers(ah, chan, &centers);
530	scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
531						antenna_reduction);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
532
533	/*
534	 * Get TX power from EEPROM.
535	 */
536	if (IS_CHAN_2GHZ(chan))	{
537		/* CTL_11B, CTL_11G, CTL_2GHT20 */
538		numCtlModes =
539			ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
540
541		pCtlMode = ctlModesFor11g;
542
543		ath9k_hw_get_legacy_target_powers(ah, chan,
544						  pEepData->calTargetPowerCck,
545						  AR9287_NUM_2G_CCK_TARGET_POWERS,
546						  &targetPowerCck, 4, false);
547		ath9k_hw_get_legacy_target_powers(ah, chan,
548						  pEepData->calTargetPower2G,
549						  AR9287_NUM_2G_20_TARGET_POWERS,
550						  &targetPowerOfdm, 4, false);
551		ath9k_hw_get_target_powers(ah, chan,
552					   pEepData->calTargetPower2GHT20,
553					   AR9287_NUM_2G_20_TARGET_POWERS,
554					   &targetPowerHt20, 8, false);
555
556		if (IS_CHAN_HT40(chan))	{
557			/* All 2G CTLs */
558			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
559			ath9k_hw_get_target_powers(ah, chan,
560						   pEepData->calTargetPower2GHT40,
561						   AR9287_NUM_2G_40_TARGET_POWERS,
562						   &targetPowerHt40, 8, true);
563			ath9k_hw_get_legacy_target_powers(ah, chan,
564						  pEepData->calTargetPowerCck,
565						  AR9287_NUM_2G_CCK_TARGET_POWERS,
566						  &targetPowerCckExt, 4, true);
567			ath9k_hw_get_legacy_target_powers(ah, chan,
568						  pEepData->calTargetPower2G,
569						  AR9287_NUM_2G_20_TARGET_POWERS,
570						  &targetPowerOfdmExt, 4, true);
571		}
572	}
573
574	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
575		bool isHt40CtlMode = pCtlMode[ctlMode] == CTL_2GHT40;
 
576
577		if (isHt40CtlMode)
578			freq = centers.synth_center;
579		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
580			freq = centers.ext_center;
581		else
582			freq = centers.ctl_center;
583
584		twiceMaxEdgePower = MAX_RATE_POWER;
585		/* Walk through the CTL indices stored in EEPROM */
586		for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
587			struct cal_ctl_edges *pRdEdgesPower;
588
589			/*
590			 * Compare test group from regulatory channel list
591			 * with test mode from pCtlMode list
592			 */
593			if (CMP_CTL || CMP_NO_CTL) {
594				rep = &(pEepData->ctlData[i]);
595				pRdEdgesPower =
596				rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
597
598				twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
599								pRdEdgesPower,
600								IS_CHAN_2GHZ(chan),
601								AR5416_NUM_BAND_EDGES);
602
603				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
604					twiceMaxEdgePower = min(twiceMaxEdgePower,
605								twiceMinEdgePower);
606				} else {
607					twiceMaxEdgePower = twiceMinEdgePower;
608					break;
609				}
610			}
611		}
612
613		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
614
615		/* Apply ctl mode to correct target power set */
616		switch (pCtlMode[ctlMode]) {
617		case CTL_11B:
618			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
619				targetPowerCck.tPow2x[i] =
620					(u8)min((u16)targetPowerCck.tPow2x[i],
621						minCtlPower);
622			}
623			break;
624		case CTL_11A:
625		case CTL_11G:
626			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
627				targetPowerOfdm.tPow2x[i] =
628					(u8)min((u16)targetPowerOfdm.tPow2x[i],
629						minCtlPower);
630			}
631			break;
632		case CTL_5GHT20:
633		case CTL_2GHT20:
634			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
635				targetPowerHt20.tPow2x[i] =
636					(u8)min((u16)targetPowerHt20.tPow2x[i],
637						minCtlPower);
638			}
639			break;
640		case CTL_11B_EXT:
641			targetPowerCckExt.tPow2x[0] =
642				(u8)min((u16)targetPowerCckExt.tPow2x[0],
643					minCtlPower);
644			break;
645		case CTL_11A_EXT:
646		case CTL_11G_EXT:
647			targetPowerOfdmExt.tPow2x[0] =
648				(u8)min((u16)targetPowerOfdmExt.tPow2x[0],
649					minCtlPower);
650			break;
651		case CTL_5GHT40:
652		case CTL_2GHT40:
653			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
654				targetPowerHt40.tPow2x[i] =
655					(u8)min((u16)targetPowerHt40.tPow2x[i],
656						minCtlPower);
657			}
658			break;
659		default:
660			break;
661		}
662	}
663
664	/* Now set the rates array */
665
666	ratesArray[rate6mb] =
667	ratesArray[rate9mb] =
668	ratesArray[rate12mb] =
669	ratesArray[rate18mb] =
670	ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
671
672	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
673	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
674	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
675	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
676
677	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
678		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
679
680	if (IS_CHAN_2GHZ(chan))	{
681		ratesArray[rate1l] = targetPowerCck.tPow2x[0];
682		ratesArray[rate2s] =
683		ratesArray[rate2l] = targetPowerCck.tPow2x[1];
684		ratesArray[rate5_5s] =
685		ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
686		ratesArray[rate11s] =
687		ratesArray[rate11l] = targetPowerCck.tPow2x[3];
688	}
689	if (IS_CHAN_HT40(chan))	{
690		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
691			ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
692
693		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
694		ratesArray[rateDupCck]  = targetPowerHt40.tPow2x[0];
695		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
696
697		if (IS_CHAN_2GHZ(chan))
698			ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
699	}
700
701#undef CMP_CTL
702#undef CMP_NO_CTL
 
 
703}
704
705static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
706					struct ath9k_channel *chan, u16 cfgCtl,
707					u8 twiceAntennaReduction,
 
708					u8 powerLimit, bool test)
709{
710	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
711	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
712	struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
713	int16_t ratesArray[Ar5416RateSize];
 
714	u8 ht40PowerIncForPdadc = 2;
715	int i;
716
717	memset(ratesArray, 0, sizeof(ratesArray));
718
719	if (ath9k_hw_ar9287_get_eeprom_rev(ah) >= AR9287_EEP_MINOR_VER_2)
 
720		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
721
722	ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
723						 &ratesArray[0], cfgCtl,
724						 twiceAntennaReduction,
 
725						 powerLimit);
726
727	ath9k_hw_set_ar9287_power_cal_table(ah, chan);
728
729	regulatory->max_power_level = 0;
730	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
 
731		if (ratesArray[i] > MAX_RATE_POWER)
732			ratesArray[i] = MAX_RATE_POWER;
733
734		if (ratesArray[i] > regulatory->max_power_level)
735			regulatory->max_power_level = ratesArray[i];
736	}
737
738	ath9k_hw_update_regulatory_maxpower(ah);
739
740	if (test)
741		return;
742
743	for (i = 0; i < Ar5416RateSize; i++)
744		ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
 
 
 
 
 
 
 
 
 
745
746	ENABLE_REGWRITE_BUFFER(ah);
747
748	/* OFDM power per rate */
749	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
750		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
751		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
752		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
753		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
754
755	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
756		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
757		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
758		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
759		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
760
761	/* CCK power per rate */
762	if (IS_CHAN_2GHZ(chan))	{
763		REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
764			  ATH9K_POW_SM(ratesArray[rate2s], 24)
765			  | ATH9K_POW_SM(ratesArray[rate2l], 16)
766			  | ATH9K_POW_SM(ratesArray[rateXr], 8)
767			  | ATH9K_POW_SM(ratesArray[rate1l], 0));
768		REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
769			  ATH9K_POW_SM(ratesArray[rate11s], 24)
770			  | ATH9K_POW_SM(ratesArray[rate11l], 16)
771			  | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
772			  | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
773	}
774
775	/* HT20 power per rate */
776	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
777		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
778		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
779		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
780		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
781
782	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
783		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
784		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
785		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
786		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
787
788	/* HT40 power per rate */
789	if (IS_CHAN_HT40(chan))	{
790		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
791			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
792				  ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
793				  | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
794				  | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
795				  | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
796
797			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
798				  ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
799				  | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
800				  | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
801				  | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
802		} else {
803			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
804				  ATH9K_POW_SM(ratesArray[rateHt40_3] +
805					       ht40PowerIncForPdadc, 24)
806				  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
807						 ht40PowerIncForPdadc, 16)
808				  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
809						 ht40PowerIncForPdadc, 8)
810				  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
811						 ht40PowerIncForPdadc, 0));
812
813			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
814				  ATH9K_POW_SM(ratesArray[rateHt40_7] +
815					       ht40PowerIncForPdadc, 24)
816				  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
817						 ht40PowerIncForPdadc, 16)
818				  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
819						 ht40PowerIncForPdadc, 8)
820				  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
821						 ht40PowerIncForPdadc, 0));
822		}
823
824		/* Dup/Ext power per rate */
825		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
826			  ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
827			  | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
828			  | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
829			  | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
830	}
 
 
831
832	/* TPC initializations */
833	if (ah->tpc_enabled) {
834		int ht40_delta;
835
836		ht40_delta = (IS_CHAN_HT40(chan)) ? ht40PowerIncForPdadc : 0;
837		ar5008_hw_init_rate_txpower(ah, ratesArray, chan, ht40_delta);
838		/* Enable TPC */
839		REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX,
840			MAX_RATE_POWER | AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
841	} else {
842		/* Disable TPC */
843		REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER);
844	}
845
846	REGWRITE_BUFFER_FLUSH(ah);
847}
848
849static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
850					     struct ath9k_channel *chan)
851{
852	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
853	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
854	u32 regChainOffset, regval;
855	u8 txRxAttenLocal;
856	int i;
857
858	pModal = &eep->modalHeader;
859
860	REG_WRITE(ah, AR_PHY_SWITCH_COM, le32_to_cpu(pModal->antCtrlCommon));
861
862	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
863		regChainOffset = i * 0x1000;
864
865		REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
866			  le32_to_cpu(pModal->antCtrlChain[i]));
867
868		REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
869			  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
870			   & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
871			       AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
872			  SM(pModal->iqCalICh[i],
873			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
874			  SM(pModal->iqCalQCh[i],
875			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
876
877		txRxAttenLocal = pModal->txRxAttenCh[i];
878
879		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
880			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
881			      pModal->bswMargin[i]);
882		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
883			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
884			      pModal->bswAtten[i]);
885		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
886			      AR9280_PHY_RXGAIN_TXRX_ATTEN,
887			      txRxAttenLocal);
888		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
889			      AR9280_PHY_RXGAIN_TXRX_MARGIN,
890			      pModal->rxTxMarginCh[i]);
891	}
892
893
894	if (IS_CHAN_HT40(chan))
895		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
896			      AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
897	else
898		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
899			      AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
900
901	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
902		      AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
903
904	REG_WRITE(ah, AR_PHY_RF_CTL4,
905		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
906		  | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
907		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
908		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
909
910	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
911		      AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
912
913	REG_RMW_FIELD(ah, AR_PHY_CCA,
914		      AR9280_PHY_CCA_THRESH62, pModal->thresh62);
915	REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
916		      AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
917
918	regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
919	regval &= ~(AR9287_AN_RF2G3_DB1 |
920		    AR9287_AN_RF2G3_DB2 |
921		    AR9287_AN_RF2G3_OB_CCK |
922		    AR9287_AN_RF2G3_OB_PSK |
923		    AR9287_AN_RF2G3_OB_QAM |
924		    AR9287_AN_RF2G3_OB_PAL_OFF);
925	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
926		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
927		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
928		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
929		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
930		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
931
932	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
933
934	regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
935	regval &= ~(AR9287_AN_RF2G3_DB1 |
936		    AR9287_AN_RF2G3_DB2 |
937		    AR9287_AN_RF2G3_OB_CCK |
938		    AR9287_AN_RF2G3_OB_PSK |
939		    AR9287_AN_RF2G3_OB_QAM |
940		    AR9287_AN_RF2G3_OB_PAL_OFF);
941	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
942		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
943		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
944		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
945		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
946		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
947
948	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
949
950	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
951		      AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
952	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
953		      AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
954
955	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
956				  AR9287_AN_TOP2_XPABIAS_LVL,
957				  AR9287_AN_TOP2_XPABIAS_LVL_S,
958				  pModal->xpaBiasLvl);
959}
960
961static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
962					    u16 i, bool is2GHz)
963{
964	__le16 spur_ch = ah->eeprom.map9287.modalHeader.spurChans[i].spurChan;
 
 
 
 
965
966	return le16_to_cpu(spur_ch);
967}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
968
969static u8 ath9k_hw_ar9287_get_eepmisc(struct ath_hw *ah)
970{
971	return ah->eeprom.map9287.baseEepHeader.eepMisc;
972}
973
974const struct eeprom_ops eep_ar9287_ops = {
975	.check_eeprom		= ath9k_hw_ar9287_check_eeprom,
976	.get_eeprom		= ath9k_hw_ar9287_get_eeprom,
977	.fill_eeprom		= ath9k_hw_ar9287_fill_eeprom,
978	.dump_eeprom		= ath9k_hw_ar9287_dump_eeprom,
979	.get_eeprom_ver		= ath9k_hw_ar9287_get_eeprom_ver,
980	.get_eeprom_rev		= ath9k_hw_ar9287_get_eeprom_rev,
981	.set_board_values	= ath9k_hw_ar9287_set_board_values,
 
982	.set_txpower		= ath9k_hw_ar9287_set_txpower,
983	.get_spur_channel	= ath9k_hw_ar9287_get_spur_channel,
984	.get_eepmisc		= ath9k_hw_ar9287_get_eepmisc
985};