Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v3.1
   1/*
   2 * Copyright (c) 2008-2011 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include <asm/unaligned.h>
  18#include "hw.h"
  19#include "ar9002_phy.h"
  20
  21#define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
  22
  23static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
  24{
  25	return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
  26}
  27
  28static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
  29{
  30	return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
  31}
  32
  33static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
  34{
  35	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  36	struct ath_common *common = ath9k_hw_common(ah);
  37	u16 *eep_data;
  38	int addr, eep_start_loc = AR9287_EEP_START_LOC;
  39	eep_data = (u16 *)eep;
  40
  41	for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
  42		if (!ath9k_hw_nvram_read(common, addr + eep_start_loc,
  43					 eep_data)) {
  44			ath_dbg(common, ATH_DBG_EEPROM,
  45				"Unable to read eeprom region\n");
  46			return false;
  47		}
  48		eep_data++;
  49	}
  50
  51	return true;
  52}
  53
  54static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw *ah)
  55{
  56	u16 *eep_data = (u16 *)&ah->eeprom.map9287;
  57
  58	ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
  59				     AR9287_HTC_EEP_START_LOC,
  60				     SIZE_EEPROM_AR9287);
  61	return true;
  62}
  63
  64static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
  65{
  66	struct ath_common *common = ath9k_hw_common(ah);
  67
  68	if (!ath9k_hw_use_flash(ah)) {
  69		ath_dbg(common, ATH_DBG_EEPROM,
  70			"Reading from EEPROM, not flash\n");
  71	}
  72
  73	if (common->bus_ops->ath_bus_type == ATH_USB)
  74		return __ath9k_hw_usb_ar9287_fill_eeprom(ah);
  75	else
  76		return __ath9k_hw_ar9287_fill_eeprom(ah);
  77}
  78
  79static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80{
  81	u32 sum = 0, el, integer;
  82	u16 temp, word, magic, magic2, *eepdata;
  83	int i, addr;
  84	bool need_swap = false;
  85	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  86	struct ath_common *common = ath9k_hw_common(ah);
  87
  88	if (!ath9k_hw_use_flash(ah)) {
  89		if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
  90					 &magic)) {
  91			ath_err(common, "Reading Magic # failed\n");
  92			return false;
  93		}
  94
  95		ath_dbg(common, ATH_DBG_EEPROM,
  96			"Read Magic = 0x%04X\n", magic);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  97
  98		if (magic != AR5416_EEPROM_MAGIC) {
  99			magic2 = swab16(magic);
 100
 101			if (magic2 == AR5416_EEPROM_MAGIC) {
 102				need_swap = true;
 103				eepdata = (u16 *)(&ah->eeprom);
 104
 105				for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
 106					temp = swab16(*eepdata);
 107					*eepdata = temp;
 108					eepdata++;
 109				}
 110			} else {
 111				ath_err(common,
 112					"Invalid EEPROM Magic. Endianness mismatch.\n");
 113				return -EINVAL;
 114			}
 115		}
 116	}
 117
 118	ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
 119		need_swap ? "True" : "False");
 
 120
 121	if (need_swap)
 122		el = swab16(ah->eeprom.map9287.baseEepHeader.length);
 123	else
 124		el = ah->eeprom.map9287.baseEepHeader.length;
 125
 126	if (el > sizeof(struct ar9287_eeprom))
 127		el = sizeof(struct ar9287_eeprom) / sizeof(u16);
 128	else
 129		el = el / sizeof(u16);
 130
 131	eepdata = (u16 *)(&ah->eeprom);
 132
 133	for (i = 0; i < el; i++)
 134		sum ^= *eepdata++;
 135
 136	if (need_swap) {
 137		word = swab16(eep->baseEepHeader.length);
 138		eep->baseEepHeader.length = word;
 139
 140		word = swab16(eep->baseEepHeader.checksum);
 141		eep->baseEepHeader.checksum = word;
 142
 143		word = swab16(eep->baseEepHeader.version);
 144		eep->baseEepHeader.version = word;
 145
 146		word = swab16(eep->baseEepHeader.regDmn[0]);
 147		eep->baseEepHeader.regDmn[0] = word;
 148
 149		word = swab16(eep->baseEepHeader.regDmn[1]);
 150		eep->baseEepHeader.regDmn[1] = word;
 151
 152		word = swab16(eep->baseEepHeader.rfSilent);
 153		eep->baseEepHeader.rfSilent = word;
 154
 155		word = swab16(eep->baseEepHeader.blueToothOptions);
 156		eep->baseEepHeader.blueToothOptions = word;
 157
 158		word = swab16(eep->baseEepHeader.deviceCap);
 159		eep->baseEepHeader.deviceCap = word;
 160
 161		integer = swab32(eep->modalHeader.antCtrlCommon);
 162		eep->modalHeader.antCtrlCommon = integer;
 163
 164		for (i = 0; i < AR9287_MAX_CHAINS; i++) {
 165			integer = swab32(eep->modalHeader.antCtrlChain[i]);
 166			eep->modalHeader.antCtrlChain[i] = integer;
 167		}
 168
 169		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
 170			word = swab16(eep->modalHeader.spurChans[i].spurChan);
 171			eep->modalHeader.spurChans[i].spurChan = word;
 172		}
 173	}
 174
 175	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
 176	    || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
 177		ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
 178			sum, ah->eep_ops->get_eeprom_ver(ah));
 179		return -EINVAL;
 180	}
 181
 182	return 0;
 183}
 184
 
 
 185static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
 186				      enum eeprom_param param)
 187{
 188	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
 189	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
 190	struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
 191	u16 ver_minor;
 192
 193	ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
 194
 195	switch (param) {
 196	case EEP_NFTHRESH_2:
 197		return pModal->noiseFloorThreshCh[0];
 198	case EEP_MAC_LSW:
 199		return get_unaligned_be16(pBase->macAddr);
 200	case EEP_MAC_MID:
 201		return get_unaligned_be16(pBase->macAddr + 2);
 202	case EEP_MAC_MSW:
 203		return get_unaligned_be16(pBase->macAddr + 4);
 204	case EEP_REG_0:
 205		return pBase->regDmn[0];
 206	case EEP_REG_1:
 207		return pBase->regDmn[1];
 208	case EEP_OP_CAP:
 209		return pBase->deviceCap;
 210	case EEP_OP_MODE:
 211		return pBase->opCapFlags;
 212	case EEP_RF_SILENT:
 213		return pBase->rfSilent;
 214	case EEP_MINOR_REV:
 215		return ver_minor;
 216	case EEP_TX_MASK:
 217		return pBase->txMask;
 218	case EEP_RX_MASK:
 219		return pBase->rxMask;
 220	case EEP_DEV_TYPE:
 221		return pBase->deviceType;
 222	case EEP_OL_PWRCTRL:
 223		return pBase->openLoopPwrCntl;
 224	case EEP_TEMPSENSE_SLOPE:
 225		if (ver_minor >= AR9287_EEP_MINOR_VER_2)
 226			return pBase->tempSensSlope;
 227		else
 228			return 0;
 229	case EEP_TEMPSENSE_SLOPE_PAL_ON:
 230		if (ver_minor >= AR9287_EEP_MINOR_VER_3)
 231			return pBase->tempSensSlopePalOn;
 232		else
 233			return 0;
 
 
 
 234	default:
 235		return 0;
 236	}
 237}
 238
 239static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
 240			    struct ath9k_channel *chan,
 241			    struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
 242			    u8 *pCalChans,  u16 availPiers, int8_t *pPwr)
 243{
 244	u16 idxL = 0, idxR = 0, numPiers;
 245	bool match;
 246	struct chan_centers centers;
 247
 248	ath9k_hw_get_channel_centers(ah, chan, &centers);
 249
 250	for (numPiers = 0; numPiers < availPiers; numPiers++) {
 251		if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
 252			break;
 253	}
 254
 255	match = ath9k_hw_get_lower_upper_index(
 256		(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
 257		pCalChans, numPiers, &idxL, &idxR);
 258
 259	if (match) {
 260		*pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
 261	} else {
 262		*pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
 263			 (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
 264	}
 265
 266}
 267
 268static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
 269					  int32_t txPower, u16 chain)
 270{
 271	u32 tmpVal;
 272	u32 a;
 273
 274	/* Enable OLPC for chain 0 */
 275
 276	tmpVal = REG_READ(ah, 0xa270);
 277	tmpVal = tmpVal & 0xFCFFFFFF;
 278	tmpVal = tmpVal | (0x3 << 24);
 279	REG_WRITE(ah, 0xa270, tmpVal);
 280
 281	/* Enable OLPC for chain 1 */
 282
 283	tmpVal = REG_READ(ah, 0xb270);
 284	tmpVal = tmpVal & 0xFCFFFFFF;
 285	tmpVal = tmpVal | (0x3 << 24);
 286	REG_WRITE(ah, 0xb270, tmpVal);
 287
 288	/* Write the OLPC ref power for chain 0 */
 289
 290	if (chain == 0) {
 291		tmpVal = REG_READ(ah, 0xa398);
 292		tmpVal = tmpVal & 0xff00ffff;
 293		a = (txPower)&0xff;
 294		tmpVal = tmpVal | (a << 16);
 295		REG_WRITE(ah, 0xa398, tmpVal);
 296	}
 297
 298	/* Write the OLPC ref power for chain 1 */
 299
 300	if (chain == 1) {
 301		tmpVal = REG_READ(ah, 0xb398);
 302		tmpVal = tmpVal & 0xff00ffff;
 303		a = (txPower)&0xff;
 304		tmpVal = tmpVal | (a << 16);
 305		REG_WRITE(ah, 0xb398, tmpVal);
 306	}
 307}
 308
 309static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
 310						struct ath9k_channel *chan,
 311						int16_t *pTxPowerIndexOffset)
 312{
 313	struct cal_data_per_freq_ar9287 *pRawDataset;
 314	struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
 315	u8 *pCalBChans = NULL;
 316	u16 pdGainOverlap_t2;
 317	u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
 318	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
 319	u16 numPiers = 0, i, j;
 320	u16 numXpdGain, xpdMask;
 321	u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
 322	u32 reg32, regOffset, regChainOffset, regval;
 323	int16_t diff = 0;
 324	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
 325
 326	xpdMask = pEepData->modalHeader.xpdGain;
 327
 328	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
 329	    AR9287_EEP_MINOR_VER_2)
 330		pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
 331	else
 332		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
 333					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
 334
 335	if (IS_CHAN_2GHZ(chan)) {
 336		pCalBChans = pEepData->calFreqPier2G;
 337		numPiers = AR9287_NUM_2G_CAL_PIERS;
 338		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
 339			pRawDatasetOpenLoop =
 340			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
 341			ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
 342		}
 343	}
 344
 345	numXpdGain = 0;
 346
 347	/* Calculate the value of xpdgains from the xpdGain Mask */
 348	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
 349		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
 350			if (numXpdGain >= AR5416_NUM_PD_GAINS)
 351				break;
 352			xpdGainValues[numXpdGain] =
 353				(u16)(AR5416_PD_GAINS_IN_MASK-i);
 354			numXpdGain++;
 355		}
 356	}
 357
 358	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
 359		      (numXpdGain - 1) & 0x3);
 360	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
 361		      xpdGainValues[0]);
 362	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
 363		      xpdGainValues[1]);
 364	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
 365		      xpdGainValues[2]);
 366
 367	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
 368		regChainOffset = i * 0x1000;
 369
 370		if (pEepData->baseEepHeader.txMask & (1 << i)) {
 371			pRawDatasetOpenLoop =
 372			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
 373
 374			if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
 375				int8_t txPower;
 376				ar9287_eeprom_get_tx_gain_index(ah, chan,
 377							pRawDatasetOpenLoop,
 378							pCalBChans, numPiers,
 379							&txPower);
 380				ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
 381			} else {
 382				pRawDataset =
 383					(struct cal_data_per_freq_ar9287 *)
 384					pEepData->calPierData2G[i];
 385
 386				ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
 387							   pRawDataset,
 388							   pCalBChans, numPiers,
 389							   pdGainOverlap_t2,
 390							   gainBoundaries,
 391							   pdadcValues,
 392							   numXpdGain);
 393			}
 394
 395			ENABLE_REGWRITE_BUFFER(ah);
 396
 397			if (i == 0) {
 398				if (!ath9k_hw_ar9287_get_eeprom(ah,
 399							EEP_OL_PWRCTRL)) {
 400
 401					regval = SM(pdGainOverlap_t2,
 402						    AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
 403						| SM(gainBoundaries[0],
 404						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
 405						| SM(gainBoundaries[1],
 406						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
 407						| SM(gainBoundaries[2],
 408						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
 409						| SM(gainBoundaries[3],
 410						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
 411
 412					REG_WRITE(ah,
 413						  AR_PHY_TPCRG5 + regChainOffset,
 414						  regval);
 415				}
 416			}
 417
 418			if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
 419			    pEepData->baseEepHeader.pwrTableOffset) {
 420				diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
 421					     (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
 422				diff *= 2;
 423
 424				for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
 425					pdadcValues[j] = pdadcValues[j+diff];
 426
 427				for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
 428				     j < AR5416_NUM_PDADC_VALUES; j++)
 429					pdadcValues[j] =
 430					  pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
 431			}
 432
 433			if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
 434				regOffset = AR_PHY_BASE +
 435					(672 << 2) + regChainOffset;
 436
 437				for (j = 0; j < 32; j++) {
 438					reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
 439
 440					REG_WRITE(ah, regOffset, reg32);
 441					regOffset += 4;
 442				}
 443			}
 444			REGWRITE_BUFFER_FLUSH(ah);
 445		}
 446	}
 447
 448	*pTxPowerIndexOffset = 0;
 449}
 450
 451static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
 452						     struct ath9k_channel *chan,
 453						     int16_t *ratesArray,
 454						     u16 cfgCtl,
 455						     u16 AntennaReduction,
 456						     u16 twiceMaxRegulatoryPower,
 457						     u16 powerLimit)
 458{
 459#define CMP_CTL \
 460	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
 461	 pEepData->ctlIndex[i])
 462
 463#define CMP_NO_CTL \
 464	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
 465	 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
 466
 467#define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6
 468#define REDUCE_SCALED_POWER_BY_THREE_CHAIN   10
 469
 470	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 471	u16 twiceMaxEdgePower = MAX_RATE_POWER;
 472	static const u16 tpScaleReductionTable[5] =
 473		{ 0, 3, 6, 9, MAX_RATE_POWER };
 474	int i;
 475	int16_t twiceLargestAntenna;
 476	struct cal_ctl_data_ar9287 *rep;
 477	struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
 478				    targetPowerCck = {0, {0, 0, 0, 0} };
 479	struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
 480				    targetPowerCckExt = {0, {0, 0, 0, 0} };
 481	struct cal_target_power_ht targetPowerHt20,
 482				    targetPowerHt40 = {0, {0, 0, 0, 0} };
 483	u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
 484	static const u16 ctlModesFor11g[] = {
 485		CTL_11B, CTL_11G, CTL_2GHT20,
 486		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
 487	};
 488	u16 numCtlModes = 0;
 489	const u16 *pCtlMode = NULL;
 490	u16 ctlMode, freq;
 491	struct chan_centers centers;
 492	int tx_chainmask;
 493	u16 twiceMinEdgePower;
 494	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
 495	tx_chainmask = ah->txchainmask;
 496
 497	ath9k_hw_get_channel_centers(ah, chan, &centers);
 498
 499	/* Compute TxPower reduction due to Antenna Gain */
 500	twiceLargestAntenna = max(pEepData->modalHeader.antennaGainCh[0],
 501				  pEepData->modalHeader.antennaGainCh[1]);
 502	twiceLargestAntenna = (int16_t)min((AntennaReduction) -
 503					   twiceLargestAntenna, 0);
 504
 505	/*
 506	 * scaledPower is the minimum of the user input power level
 507	 * and the regulatory allowed power level.
 508	 */
 509	maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
 510
 511	if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX)
 512		maxRegAllowedPower -=
 513			(tpScaleReductionTable[(regulatory->tp_scale)] * 2);
 514
 515	scaledPower = min(powerLimit, maxRegAllowedPower);
 516
 517	/*
 518	 * Reduce scaled Power by number of chains active
 519	 * to get the per chain tx power level.
 520	 */
 521	switch (ar5416_get_ntxchains(tx_chainmask)) {
 522	case 1:
 523		break;
 524	case 2:
 525		if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
 526			scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
 527		else
 528			scaledPower = 0;
 529		break;
 530	case 3:
 531		if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
 532			scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
 533		else
 534			scaledPower = 0;
 535		break;
 536	}
 537	scaledPower = max((u16)0, scaledPower);
 538
 539	/*
 540	 * Get TX power from EEPROM.
 541	 */
 542	if (IS_CHAN_2GHZ(chan))	{
 543		/* CTL_11B, CTL_11G, CTL_2GHT20 */
 544		numCtlModes =
 545			ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
 546
 547		pCtlMode = ctlModesFor11g;
 548
 549		ath9k_hw_get_legacy_target_powers(ah, chan,
 550						  pEepData->calTargetPowerCck,
 551						  AR9287_NUM_2G_CCK_TARGET_POWERS,
 552						  &targetPowerCck, 4, false);
 553		ath9k_hw_get_legacy_target_powers(ah, chan,
 554						  pEepData->calTargetPower2G,
 555						  AR9287_NUM_2G_20_TARGET_POWERS,
 556						  &targetPowerOfdm, 4, false);
 557		ath9k_hw_get_target_powers(ah, chan,
 558					   pEepData->calTargetPower2GHT20,
 559					   AR9287_NUM_2G_20_TARGET_POWERS,
 560					   &targetPowerHt20, 8, false);
 561
 562		if (IS_CHAN_HT40(chan))	{
 563			/* All 2G CTLs */
 564			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
 565			ath9k_hw_get_target_powers(ah, chan,
 566						   pEepData->calTargetPower2GHT40,
 567						   AR9287_NUM_2G_40_TARGET_POWERS,
 568						   &targetPowerHt40, 8, true);
 569			ath9k_hw_get_legacy_target_powers(ah, chan,
 570						  pEepData->calTargetPowerCck,
 571						  AR9287_NUM_2G_CCK_TARGET_POWERS,
 572						  &targetPowerCckExt, 4, true);
 573			ath9k_hw_get_legacy_target_powers(ah, chan,
 574						  pEepData->calTargetPower2G,
 575						  AR9287_NUM_2G_20_TARGET_POWERS,
 576						  &targetPowerOfdmExt, 4, true);
 577		}
 578	}
 579
 580	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
 581		bool isHt40CtlMode =
 582			(pCtlMode[ctlMode] == CTL_2GHT40) ? true : false;
 583
 584		if (isHt40CtlMode)
 585			freq = centers.synth_center;
 586		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
 587			freq = centers.ext_center;
 588		else
 589			freq = centers.ctl_center;
 590
 
 591		/* Walk through the CTL indices stored in EEPROM */
 592		for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
 593			struct cal_ctl_edges *pRdEdgesPower;
 594
 595			/*
 596			 * Compare test group from regulatory channel list
 597			 * with test mode from pCtlMode list
 598			 */
 599			if (CMP_CTL || CMP_NO_CTL) {
 600				rep = &(pEepData->ctlData[i]);
 601				pRdEdgesPower =
 602				rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
 603
 604				twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
 605								pRdEdgesPower,
 606								IS_CHAN_2GHZ(chan),
 607								AR5416_NUM_BAND_EDGES);
 608
 609				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
 610					twiceMaxEdgePower = min(twiceMaxEdgePower,
 611								twiceMinEdgePower);
 612				} else {
 613					twiceMaxEdgePower = twiceMinEdgePower;
 614					break;
 615				}
 616			}
 617		}
 618
 619		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
 620
 621		/* Apply ctl mode to correct target power set */
 622		switch (pCtlMode[ctlMode]) {
 623		case CTL_11B:
 624			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
 625				targetPowerCck.tPow2x[i] =
 626					(u8)min((u16)targetPowerCck.tPow2x[i],
 627						minCtlPower);
 628			}
 629			break;
 630		case CTL_11A:
 631		case CTL_11G:
 632			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
 633				targetPowerOfdm.tPow2x[i] =
 634					(u8)min((u16)targetPowerOfdm.tPow2x[i],
 635						minCtlPower);
 636			}
 637			break;
 638		case CTL_5GHT20:
 639		case CTL_2GHT20:
 640			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
 641				targetPowerHt20.tPow2x[i] =
 642					(u8)min((u16)targetPowerHt20.tPow2x[i],
 643						minCtlPower);
 644			}
 645			break;
 646		case CTL_11B_EXT:
 647			targetPowerCckExt.tPow2x[0] =
 648				(u8)min((u16)targetPowerCckExt.tPow2x[0],
 649					minCtlPower);
 650			break;
 651		case CTL_11A_EXT:
 652		case CTL_11G_EXT:
 653			targetPowerOfdmExt.tPow2x[0] =
 654				(u8)min((u16)targetPowerOfdmExt.tPow2x[0],
 655					minCtlPower);
 656			break;
 657		case CTL_5GHT40:
 658		case CTL_2GHT40:
 659			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
 660				targetPowerHt40.tPow2x[i] =
 661					(u8)min((u16)targetPowerHt40.tPow2x[i],
 662						minCtlPower);
 663			}
 664			break;
 665		default:
 666			break;
 667		}
 668	}
 669
 670	/* Now set the rates array */
 671
 672	ratesArray[rate6mb] =
 673	ratesArray[rate9mb] =
 674	ratesArray[rate12mb] =
 675	ratesArray[rate18mb] =
 676	ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
 677
 678	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
 679	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
 680	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
 681	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
 682
 683	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
 684		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
 685
 686	if (IS_CHAN_2GHZ(chan))	{
 687		ratesArray[rate1l] = targetPowerCck.tPow2x[0];
 688		ratesArray[rate2s] =
 689		ratesArray[rate2l] = targetPowerCck.tPow2x[1];
 690		ratesArray[rate5_5s] =
 691		ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
 692		ratesArray[rate11s] =
 693		ratesArray[rate11l] = targetPowerCck.tPow2x[3];
 694	}
 695	if (IS_CHAN_HT40(chan))	{
 696		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
 697			ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
 698
 699		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
 700		ratesArray[rateDupCck]  = targetPowerHt40.tPow2x[0];
 701		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
 702
 703		if (IS_CHAN_2GHZ(chan))
 704			ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
 705	}
 706
 707#undef CMP_CTL
 708#undef CMP_NO_CTL
 709#undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
 710#undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
 711}
 712
 713static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
 714					struct ath9k_channel *chan, u16 cfgCtl,
 715					u8 twiceAntennaReduction,
 716					u8 twiceMaxRegulatoryPower,
 717					u8 powerLimit, bool test)
 718{
 719	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 720	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
 721	struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
 722	int16_t ratesArray[Ar5416RateSize];
 723	int16_t txPowerIndexOffset = 0;
 724	u8 ht40PowerIncForPdadc = 2;
 725	int i;
 726
 727	memset(ratesArray, 0, sizeof(ratesArray));
 728
 729	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
 730	    AR9287_EEP_MINOR_VER_2)
 731		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
 732
 733	ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
 734						 &ratesArray[0], cfgCtl,
 735						 twiceAntennaReduction,
 736						 twiceMaxRegulatoryPower,
 737						 powerLimit);
 738
 739	ath9k_hw_set_ar9287_power_cal_table(ah, chan, &txPowerIndexOffset);
 740
 741	regulatory->max_power_level = 0;
 742	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
 743		ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
 744		if (ratesArray[i] > MAX_RATE_POWER)
 745			ratesArray[i] = MAX_RATE_POWER;
 746
 747		if (ratesArray[i] > regulatory->max_power_level)
 748			regulatory->max_power_level = ratesArray[i];
 749	}
 750
 
 
 751	if (test)
 752		return;
 753
 754	if (IS_CHAN_2GHZ(chan))
 755		i = rate1l;
 756	else
 757		i = rate6mb;
 758
 759	regulatory->max_power_level = ratesArray[i];
 760
 761	if (AR_SREV_9280_20_OR_LATER(ah)) {
 762		for (i = 0; i < Ar5416RateSize; i++)
 763			ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
 764	}
 765
 766	ENABLE_REGWRITE_BUFFER(ah);
 767
 768	/* OFDM power per rate */
 769	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
 770		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
 771		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
 772		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
 773		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
 774
 775	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
 776		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
 777		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
 778		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
 779		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
 780
 781	/* CCK power per rate */
 782	if (IS_CHAN_2GHZ(chan))	{
 783		REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
 784			  ATH9K_POW_SM(ratesArray[rate2s], 24)
 785			  | ATH9K_POW_SM(ratesArray[rate2l], 16)
 786			  | ATH9K_POW_SM(ratesArray[rateXr], 8)
 787			  | ATH9K_POW_SM(ratesArray[rate1l], 0));
 788		REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
 789			  ATH9K_POW_SM(ratesArray[rate11s], 24)
 790			  | ATH9K_POW_SM(ratesArray[rate11l], 16)
 791			  | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
 792			  | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
 793	}
 794
 795	/* HT20 power per rate */
 796	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
 797		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
 798		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
 799		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
 800		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
 801
 802	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
 803		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
 804		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
 805		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
 806		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
 807
 808	/* HT40 power per rate */
 809	if (IS_CHAN_HT40(chan))	{
 810		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
 811			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
 812				  ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
 813				  | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
 814				  | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
 815				  | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
 816
 817			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
 818				  ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
 819				  | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
 820				  | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
 821				  | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
 822		} else {
 823			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
 824				  ATH9K_POW_SM(ratesArray[rateHt40_3] +
 825					       ht40PowerIncForPdadc, 24)
 826				  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
 827						 ht40PowerIncForPdadc, 16)
 828				  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
 829						 ht40PowerIncForPdadc, 8)
 830				  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
 831						 ht40PowerIncForPdadc, 0));
 832
 833			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
 834				  ATH9K_POW_SM(ratesArray[rateHt40_7] +
 835					       ht40PowerIncForPdadc, 24)
 836				  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
 837						 ht40PowerIncForPdadc, 16)
 838				  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
 839						 ht40PowerIncForPdadc, 8)
 840				  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
 841						 ht40PowerIncForPdadc, 0));
 842		}
 843
 844		/* Dup/Ext power per rate */
 845		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
 846			  ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
 847			  | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
 848			  | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
 849			  | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
 850	}
 851	REGWRITE_BUFFER_FLUSH(ah);
 852}
 853
 854static void ath9k_hw_ar9287_set_addac(struct ath_hw *ah,
 855				      struct ath9k_channel *chan)
 856{
 
 
 
 
 
 
 
 
 
 
 
 
 857}
 858
 859static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
 860					     struct ath9k_channel *chan)
 861{
 862	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
 863	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
 864	u32 regChainOffset, regval;
 865	u8 txRxAttenLocal;
 866	int i;
 867
 868	pModal = &eep->modalHeader;
 869
 870	REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
 871
 872	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
 873		regChainOffset = i * 0x1000;
 874
 875		REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
 876			  pModal->antCtrlChain[i]);
 877
 878		REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
 879			  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
 880			   & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
 881			       AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
 882			  SM(pModal->iqCalICh[i],
 883			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
 884			  SM(pModal->iqCalQCh[i],
 885			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
 886
 887		txRxAttenLocal = pModal->txRxAttenCh[i];
 888
 889		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
 890			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
 891			      pModal->bswMargin[i]);
 892		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
 893			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
 894			      pModal->bswAtten[i]);
 895		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
 896			      AR9280_PHY_RXGAIN_TXRX_ATTEN,
 897			      txRxAttenLocal);
 898		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
 899			      AR9280_PHY_RXGAIN_TXRX_MARGIN,
 900			      pModal->rxTxMarginCh[i]);
 901	}
 902
 903
 904	if (IS_CHAN_HT40(chan))
 905		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
 906			      AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
 907	else
 908		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
 909			      AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
 910
 911	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
 912		      AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
 913
 914	REG_WRITE(ah, AR_PHY_RF_CTL4,
 915		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
 916		  | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
 917		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
 918		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
 919
 920	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
 921		      AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
 922
 923	REG_RMW_FIELD(ah, AR_PHY_CCA,
 924		      AR9280_PHY_CCA_THRESH62, pModal->thresh62);
 925	REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
 926		      AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
 927
 928	regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
 929	regval &= ~(AR9287_AN_RF2G3_DB1 |
 930		    AR9287_AN_RF2G3_DB2 |
 931		    AR9287_AN_RF2G3_OB_CCK |
 932		    AR9287_AN_RF2G3_OB_PSK |
 933		    AR9287_AN_RF2G3_OB_QAM |
 934		    AR9287_AN_RF2G3_OB_PAL_OFF);
 935	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
 936		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
 937		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
 938		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
 939		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
 940		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
 941
 942	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
 943
 944	regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
 945	regval &= ~(AR9287_AN_RF2G3_DB1 |
 946		    AR9287_AN_RF2G3_DB2 |
 947		    AR9287_AN_RF2G3_OB_CCK |
 948		    AR9287_AN_RF2G3_OB_PSK |
 949		    AR9287_AN_RF2G3_OB_QAM |
 950		    AR9287_AN_RF2G3_OB_PAL_OFF);
 951	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
 952		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
 953		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
 954		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
 955		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
 956		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
 957
 958	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
 959
 960	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
 961		      AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
 962	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
 963		      AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
 964
 965	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
 966				  AR9287_AN_TOP2_XPABIAS_LVL,
 967				  AR9287_AN_TOP2_XPABIAS_LVL_S,
 968				  pModal->xpaBiasLvl);
 969}
 970
 971static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
 972					    u16 i, bool is2GHz)
 973{
 974#define EEP_MAP9287_SPURCHAN \
 975	(ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)
 976
 977	struct ath_common *common = ath9k_hw_common(ah);
 978	u16 spur_val = AR_NO_SPUR;
 979
 980	ath_dbg(common, ATH_DBG_ANI,
 981		"Getting spur idx:%d is2Ghz:%d val:%x\n",
 982		i, is2GHz, ah->config.spurchans[i][is2GHz]);
 983
 984	switch (ah->config.spurmode) {
 985	case SPUR_DISABLE:
 986		break;
 987	case SPUR_ENABLE_IOCTL:
 988		spur_val = ah->config.spurchans[i][is2GHz];
 989		ath_dbg(common, ATH_DBG_ANI,
 990			"Getting spur val from new loc. %d\n", spur_val);
 991		break;
 992	case SPUR_ENABLE_EEPROM:
 993		spur_val = EEP_MAP9287_SPURCHAN;
 994		break;
 995	}
 996
 997	return spur_val;
 998
 999#undef EEP_MAP9287_SPURCHAN
1000}
1001
1002const struct eeprom_ops eep_ar9287_ops = {
1003	.check_eeprom		= ath9k_hw_ar9287_check_eeprom,
1004	.get_eeprom		= ath9k_hw_ar9287_get_eeprom,
1005	.fill_eeprom		= ath9k_hw_ar9287_fill_eeprom,
 
1006	.get_eeprom_ver		= ath9k_hw_ar9287_get_eeprom_ver,
1007	.get_eeprom_rev		= ath9k_hw_ar9287_get_eeprom_rev,
1008	.set_board_values	= ath9k_hw_ar9287_set_board_values,
1009	.set_addac		= ath9k_hw_ar9287_set_addac,
1010	.set_txpower		= ath9k_hw_ar9287_set_txpower,
1011	.get_spur_channel	= ath9k_hw_ar9287_get_spur_channel
1012};
v4.6
  1/*
  2 * Copyright (c) 2008-2011 Atheros Communications Inc.
  3 *
  4 * Permission to use, copy, modify, and/or distribute this software for any
  5 * purpose with or without fee is hereby granted, provided that the above
  6 * copyright notice and this permission notice appear in all copies.
  7 *
  8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 15 */
 16
 17#include <asm/unaligned.h>
 18#include "hw.h"
 19#include "ar9002_phy.h"
 20
 21#define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
 22
 23static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
 24{
 25	return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
 26}
 27
 28static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
 29{
 30	return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
 31}
 32
 33static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
 34{
 35	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
 
 36	u16 *eep_data;
 37	int addr, eep_start_loc = AR9287_EEP_START_LOC;
 38	eep_data = (u16 *)eep;
 39
 40	for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
 41		if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data))
 
 
 
 42			return false;
 
 43		eep_data++;
 44	}
 45
 46	return true;
 47}
 48
 49static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw *ah)
 50{
 51	u16 *eep_data = (u16 *)&ah->eeprom.map9287;
 52
 53	ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
 54				     AR9287_HTC_EEP_START_LOC,
 55				     SIZE_EEPROM_AR9287);
 56	return true;
 57}
 58
 59static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
 60{
 61	struct ath_common *common = ath9k_hw_common(ah);
 62
 63	if (!ath9k_hw_use_flash(ah)) {
 64		ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
 
 65	}
 66
 67	if (common->bus_ops->ath_bus_type == ATH_USB)
 68		return __ath9k_hw_usb_ar9287_fill_eeprom(ah);
 69	else
 70		return __ath9k_hw_ar9287_fill_eeprom(ah);
 71}
 72
 73#if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
 74static u32 ar9287_dump_modal_eeprom(char *buf, u32 len, u32 size,
 75				    struct modal_eep_ar9287_header *modal_hdr)
 76{
 77	PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
 78	PR_EEP("Chain1 Ant. Control", modal_hdr->antCtrlChain[1]);
 79	PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
 80	PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
 81	PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
 82	PR_EEP("Switch Settle", modal_hdr->switchSettling);
 83	PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
 84	PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
 85	PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
 86	PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
 87	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
 88	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
 89	PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
 90	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
 91	PR_EEP("CCA Threshold)", modal_hdr->thresh62);
 92	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
 93	PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
 94	PR_EEP("xpdGain", modal_hdr->xpdGain);
 95	PR_EEP("External PD", modal_hdr->xpd);
 96	PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
 97	PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
 98	PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
 99	PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
100	PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
101	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
102	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
103	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
104	PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
105	PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
106	PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
107	PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
108	PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
109	PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
110	PR_EEP("AR92x7 Version", modal_hdr->version);
111	PR_EEP("DriverBias1", modal_hdr->db1);
112	PR_EEP("DriverBias2", modal_hdr->db1);
113	PR_EEP("CCK OutputBias", modal_hdr->ob_cck);
114	PR_EEP("PSK OutputBias", modal_hdr->ob_psk);
115	PR_EEP("QAM OutputBias", modal_hdr->ob_qam);
116	PR_EEP("PAL_OFF OutputBias", modal_hdr->ob_pal_off);
117
118	return len;
119}
120
121static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
122				       u8 *buf, u32 len, u32 size)
123{
 
 
 
 
124	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
125	struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
 
 
 
 
 
 
 
126
127	if (!dump_base_hdr) {
128		len += scnprintf(buf + len, size - len,
129				 "%20s :\n", "2GHz modal Header");
130		len = ar9287_dump_modal_eeprom(buf, len, size,
131						&eep->modalHeader);
132		goto out;
133	}
134
135	PR_EEP("Major Version", pBase->version >> 12);
136	PR_EEP("Minor Version", pBase->version & 0xFFF);
137	PR_EEP("Checksum", pBase->checksum);
138	PR_EEP("Length", pBase->length);
139	PR_EEP("RegDomain1", pBase->regDmn[0]);
140	PR_EEP("RegDomain2", pBase->regDmn[1]);
141	PR_EEP("TX Mask", pBase->txMask);
142	PR_EEP("RX Mask", pBase->rxMask);
143	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
144	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
145	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
146					AR5416_OPFLAGS_N_2G_HT20));
147	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
148					AR5416_OPFLAGS_N_2G_HT40));
149	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
150					AR5416_OPFLAGS_N_5G_HT20));
151	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
152					AR5416_OPFLAGS_N_5G_HT40));
153	PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
154	PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
155	PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
156	PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
157	PR_EEP("Power Table Offset", pBase->pwrTableOffset);
158	PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
159
160	len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
161			 pBase->macAddr);
162
163out:
164	if (len > size)
165		len = size;
166
167	return len;
168}
169#else
170static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
171				       u8 *buf, u32 len, u32 size)
172{
173	return 0;
174}
175#endif
176
 
 
177
178static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
179{
180	u32 el, integer;
181	u16 word;
182	int i, err;
183	bool need_swap;
184	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
 
 
 
 
 
 
 
 
 
185
186	err = ath9k_hw_nvram_swap_data(ah, &need_swap, SIZE_EEPROM_AR9287);
187	if (err)
188		return err;
189
190	if (need_swap)
191		el = swab16(eep->baseEepHeader.length);
192	else
193		el = eep->baseEepHeader.length;
194
195	el = min(el / sizeof(u16), SIZE_EEPROM_AR9287);
196	if (!ath9k_hw_nvram_validate_checksum(ah, el))
197		return -EINVAL;
 
 
 
 
 
 
198
199	if (need_swap) {
200		word = swab16(eep->baseEepHeader.length);
201		eep->baseEepHeader.length = word;
202
203		word = swab16(eep->baseEepHeader.checksum);
204		eep->baseEepHeader.checksum = word;
205
206		word = swab16(eep->baseEepHeader.version);
207		eep->baseEepHeader.version = word;
208
209		word = swab16(eep->baseEepHeader.regDmn[0]);
210		eep->baseEepHeader.regDmn[0] = word;
211
212		word = swab16(eep->baseEepHeader.regDmn[1]);
213		eep->baseEepHeader.regDmn[1] = word;
214
215		word = swab16(eep->baseEepHeader.rfSilent);
216		eep->baseEepHeader.rfSilent = word;
217
218		word = swab16(eep->baseEepHeader.blueToothOptions);
219		eep->baseEepHeader.blueToothOptions = word;
220
221		word = swab16(eep->baseEepHeader.deviceCap);
222		eep->baseEepHeader.deviceCap = word;
223
224		integer = swab32(eep->modalHeader.antCtrlCommon);
225		eep->modalHeader.antCtrlCommon = integer;
226
227		for (i = 0; i < AR9287_MAX_CHAINS; i++) {
228			integer = swab32(eep->modalHeader.antCtrlChain[i]);
229			eep->modalHeader.antCtrlChain[i] = integer;
230		}
231
232		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
233			word = swab16(eep->modalHeader.spurChans[i].spurChan);
234			eep->modalHeader.spurChans[i].spurChan = word;
235		}
236	}
237
238	if (!ath9k_hw_nvram_check_version(ah, AR9287_EEP_VER,
239	    AR5416_EEP_NO_BACK_VER))
 
 
240		return -EINVAL;
 
241
242	return 0;
243}
244
245#undef SIZE_EEPROM_AR9287
246
247static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
248				      enum eeprom_param param)
249{
250	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
251	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
252	struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
253	u16 ver_minor;
254
255	ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
256
257	switch (param) {
258	case EEP_NFTHRESH_2:
259		return pModal->noiseFloorThreshCh[0];
260	case EEP_MAC_LSW:
261		return get_unaligned_be16(pBase->macAddr);
262	case EEP_MAC_MID:
263		return get_unaligned_be16(pBase->macAddr + 2);
264	case EEP_MAC_MSW:
265		return get_unaligned_be16(pBase->macAddr + 4);
266	case EEP_REG_0:
267		return pBase->regDmn[0];
 
 
268	case EEP_OP_CAP:
269		return pBase->deviceCap;
270	case EEP_OP_MODE:
271		return pBase->opCapFlags;
272	case EEP_RF_SILENT:
273		return pBase->rfSilent;
274	case EEP_MINOR_REV:
275		return ver_minor;
276	case EEP_TX_MASK:
277		return pBase->txMask;
278	case EEP_RX_MASK:
279		return pBase->rxMask;
280	case EEP_DEV_TYPE:
281		return pBase->deviceType;
282	case EEP_OL_PWRCTRL:
283		return pBase->openLoopPwrCntl;
284	case EEP_TEMPSENSE_SLOPE:
285		if (ver_minor >= AR9287_EEP_MINOR_VER_2)
286			return pBase->tempSensSlope;
287		else
288			return 0;
289	case EEP_TEMPSENSE_SLOPE_PAL_ON:
290		if (ver_minor >= AR9287_EEP_MINOR_VER_3)
291			return pBase->tempSensSlopePalOn;
292		else
293			return 0;
294	case EEP_ANTENNA_GAIN_2G:
295		return max_t(u8, pModal->antennaGainCh[0],
296				 pModal->antennaGainCh[1]);
297	default:
298		return 0;
299	}
300}
301
302static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
303			    struct ath9k_channel *chan,
304			    struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
305			    u8 *pCalChans,  u16 availPiers, int8_t *pPwr)
306{
307	u16 idxL = 0, idxR = 0, numPiers;
308	bool match;
309	struct chan_centers centers;
310
311	ath9k_hw_get_channel_centers(ah, chan, &centers);
312
313	for (numPiers = 0; numPiers < availPiers; numPiers++) {
314		if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
315			break;
316	}
317
318	match = ath9k_hw_get_lower_upper_index(
319		(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
320		pCalChans, numPiers, &idxL, &idxR);
321
322	if (match) {
323		*pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
324	} else {
325		*pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
326			 (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
327	}
328
329}
330
331static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
332					  int32_t txPower, u16 chain)
333{
334	u32 tmpVal;
335	u32 a;
336
337	/* Enable OLPC for chain 0 */
338
339	tmpVal = REG_READ(ah, 0xa270);
340	tmpVal = tmpVal & 0xFCFFFFFF;
341	tmpVal = tmpVal | (0x3 << 24);
342	REG_WRITE(ah, 0xa270, tmpVal);
343
344	/* Enable OLPC for chain 1 */
345
346	tmpVal = REG_READ(ah, 0xb270);
347	tmpVal = tmpVal & 0xFCFFFFFF;
348	tmpVal = tmpVal | (0x3 << 24);
349	REG_WRITE(ah, 0xb270, tmpVal);
350
351	/* Write the OLPC ref power for chain 0 */
352
353	if (chain == 0) {
354		tmpVal = REG_READ(ah, 0xa398);
355		tmpVal = tmpVal & 0xff00ffff;
356		a = (txPower)&0xff;
357		tmpVal = tmpVal | (a << 16);
358		REG_WRITE(ah, 0xa398, tmpVal);
359	}
360
361	/* Write the OLPC ref power for chain 1 */
362
363	if (chain == 1) {
364		tmpVal = REG_READ(ah, 0xb398);
365		tmpVal = tmpVal & 0xff00ffff;
366		a = (txPower)&0xff;
367		tmpVal = tmpVal | (a << 16);
368		REG_WRITE(ah, 0xb398, tmpVal);
369	}
370}
371
372static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
373						struct ath9k_channel *chan)
 
374{
375	struct cal_data_per_freq_ar9287 *pRawDataset;
376	struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
377	u8 *pCalBChans = NULL;
378	u16 pdGainOverlap_t2;
379	u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
380	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
381	u16 numPiers = 0, i, j;
382	u16 numXpdGain, xpdMask;
383	u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
384	u32 reg32, regOffset, regChainOffset, regval;
385	int16_t diff = 0;
386	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
387
388	xpdMask = pEepData->modalHeader.xpdGain;
389
390	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
391	    AR9287_EEP_MINOR_VER_2)
392		pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
393	else
394		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
395					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
396
397	if (IS_CHAN_2GHZ(chan)) {
398		pCalBChans = pEepData->calFreqPier2G;
399		numPiers = AR9287_NUM_2G_CAL_PIERS;
400		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
401			pRawDatasetOpenLoop =
402			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
403			ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
404		}
405	}
406
407	numXpdGain = 0;
408
409	/* Calculate the value of xpdgains from the xpdGain Mask */
410	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
411		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
412			if (numXpdGain >= AR5416_NUM_PD_GAINS)
413				break;
414			xpdGainValues[numXpdGain] =
415				(u16)(AR5416_PD_GAINS_IN_MASK-i);
416			numXpdGain++;
417		}
418	}
419
420	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
421		      (numXpdGain - 1) & 0x3);
422	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
423		      xpdGainValues[0]);
424	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
425		      xpdGainValues[1]);
426	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
427		      xpdGainValues[2]);
428
429	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
430		regChainOffset = i * 0x1000;
431
432		if (pEepData->baseEepHeader.txMask & (1 << i)) {
433			pRawDatasetOpenLoop =
434			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
435
436			if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
437				int8_t txPower;
438				ar9287_eeprom_get_tx_gain_index(ah, chan,
439							pRawDatasetOpenLoop,
440							pCalBChans, numPiers,
441							&txPower);
442				ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
443			} else {
444				pRawDataset =
445					(struct cal_data_per_freq_ar9287 *)
446					pEepData->calPierData2G[i];
447
448				ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
449							   pRawDataset,
450							   pCalBChans, numPiers,
451							   pdGainOverlap_t2,
452							   gainBoundaries,
453							   pdadcValues,
454							   numXpdGain);
455			}
456
457			ENABLE_REGWRITE_BUFFER(ah);
458
459			if (i == 0) {
460				if (!ath9k_hw_ar9287_get_eeprom(ah,
461							EEP_OL_PWRCTRL)) {
462
463					regval = SM(pdGainOverlap_t2,
464						    AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
465						| SM(gainBoundaries[0],
466						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
467						| SM(gainBoundaries[1],
468						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
469						| SM(gainBoundaries[2],
470						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
471						| SM(gainBoundaries[3],
472						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
473
474					REG_WRITE(ah,
475						  AR_PHY_TPCRG5 + regChainOffset,
476						  regval);
477				}
478			}
479
480			if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
481			    pEepData->baseEepHeader.pwrTableOffset) {
482				diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
483					     (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
484				diff *= 2;
485
486				for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
487					pdadcValues[j] = pdadcValues[j+diff];
488
489				for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
490				     j < AR5416_NUM_PDADC_VALUES; j++)
491					pdadcValues[j] =
492					  pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
493			}
494
495			if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
496				regOffset = AR_PHY_BASE +
497					(672 << 2) + regChainOffset;
498
499				for (j = 0; j < 32; j++) {
500					reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
501
502					REG_WRITE(ah, regOffset, reg32);
503					regOffset += 4;
504				}
505			}
506			REGWRITE_BUFFER_FLUSH(ah);
507		}
508	}
 
 
509}
510
511static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
512						     struct ath9k_channel *chan,
513						     int16_t *ratesArray,
514						     u16 cfgCtl,
515						     u16 antenna_reduction,
 
516						     u16 powerLimit)
517{
518#define CMP_CTL \
519	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
520	 pEepData->ctlIndex[i])
521
522#define CMP_NO_CTL \
523	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
524	 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
525
526	u16 twiceMaxEdgePower;
 
 
 
 
 
 
527	int i;
 
528	struct cal_ctl_data_ar9287 *rep;
529	struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
530				    targetPowerCck = {0, {0, 0, 0, 0} };
531	struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
532				    targetPowerCckExt = {0, {0, 0, 0, 0} };
533	struct cal_target_power_ht targetPowerHt20,
534				    targetPowerHt40 = {0, {0, 0, 0, 0} };
535	u16 scaledPower = 0, minCtlPower;
536	static const u16 ctlModesFor11g[] = {
537		CTL_11B, CTL_11G, CTL_2GHT20,
538		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
539	};
540	u16 numCtlModes = 0;
541	const u16 *pCtlMode = NULL;
542	u16 ctlMode, freq;
543	struct chan_centers centers;
544	int tx_chainmask;
545	u16 twiceMinEdgePower;
546	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
547	tx_chainmask = ah->txchainmask;
548
549	ath9k_hw_get_channel_centers(ah, chan, &centers);
550	scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
551						antenna_reduction);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
552
553	/*
554	 * Get TX power from EEPROM.
555	 */
556	if (IS_CHAN_2GHZ(chan))	{
557		/* CTL_11B, CTL_11G, CTL_2GHT20 */
558		numCtlModes =
559			ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
560
561		pCtlMode = ctlModesFor11g;
562
563		ath9k_hw_get_legacy_target_powers(ah, chan,
564						  pEepData->calTargetPowerCck,
565						  AR9287_NUM_2G_CCK_TARGET_POWERS,
566						  &targetPowerCck, 4, false);
567		ath9k_hw_get_legacy_target_powers(ah, chan,
568						  pEepData->calTargetPower2G,
569						  AR9287_NUM_2G_20_TARGET_POWERS,
570						  &targetPowerOfdm, 4, false);
571		ath9k_hw_get_target_powers(ah, chan,
572					   pEepData->calTargetPower2GHT20,
573					   AR9287_NUM_2G_20_TARGET_POWERS,
574					   &targetPowerHt20, 8, false);
575
576		if (IS_CHAN_HT40(chan))	{
577			/* All 2G CTLs */
578			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
579			ath9k_hw_get_target_powers(ah, chan,
580						   pEepData->calTargetPower2GHT40,
581						   AR9287_NUM_2G_40_TARGET_POWERS,
582						   &targetPowerHt40, 8, true);
583			ath9k_hw_get_legacy_target_powers(ah, chan,
584						  pEepData->calTargetPowerCck,
585						  AR9287_NUM_2G_CCK_TARGET_POWERS,
586						  &targetPowerCckExt, 4, true);
587			ath9k_hw_get_legacy_target_powers(ah, chan,
588						  pEepData->calTargetPower2G,
589						  AR9287_NUM_2G_20_TARGET_POWERS,
590						  &targetPowerOfdmExt, 4, true);
591		}
592	}
593
594	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
595		bool isHt40CtlMode =
596			(pCtlMode[ctlMode] == CTL_2GHT40) ? true : false;
597
598		if (isHt40CtlMode)
599			freq = centers.synth_center;
600		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
601			freq = centers.ext_center;
602		else
603			freq = centers.ctl_center;
604
605		twiceMaxEdgePower = MAX_RATE_POWER;
606		/* Walk through the CTL indices stored in EEPROM */
607		for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
608			struct cal_ctl_edges *pRdEdgesPower;
609
610			/*
611			 * Compare test group from regulatory channel list
612			 * with test mode from pCtlMode list
613			 */
614			if (CMP_CTL || CMP_NO_CTL) {
615				rep = &(pEepData->ctlData[i]);
616				pRdEdgesPower =
617				rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
618
619				twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
620								pRdEdgesPower,
621								IS_CHAN_2GHZ(chan),
622								AR5416_NUM_BAND_EDGES);
623
624				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
625					twiceMaxEdgePower = min(twiceMaxEdgePower,
626								twiceMinEdgePower);
627				} else {
628					twiceMaxEdgePower = twiceMinEdgePower;
629					break;
630				}
631			}
632		}
633
634		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
635
636		/* Apply ctl mode to correct target power set */
637		switch (pCtlMode[ctlMode]) {
638		case CTL_11B:
639			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
640				targetPowerCck.tPow2x[i] =
641					(u8)min((u16)targetPowerCck.tPow2x[i],
642						minCtlPower);
643			}
644			break;
645		case CTL_11A:
646		case CTL_11G:
647			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
648				targetPowerOfdm.tPow2x[i] =
649					(u8)min((u16)targetPowerOfdm.tPow2x[i],
650						minCtlPower);
651			}
652			break;
653		case CTL_5GHT20:
654		case CTL_2GHT20:
655			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
656				targetPowerHt20.tPow2x[i] =
657					(u8)min((u16)targetPowerHt20.tPow2x[i],
658						minCtlPower);
659			}
660			break;
661		case CTL_11B_EXT:
662			targetPowerCckExt.tPow2x[0] =
663				(u8)min((u16)targetPowerCckExt.tPow2x[0],
664					minCtlPower);
665			break;
666		case CTL_11A_EXT:
667		case CTL_11G_EXT:
668			targetPowerOfdmExt.tPow2x[0] =
669				(u8)min((u16)targetPowerOfdmExt.tPow2x[0],
670					minCtlPower);
671			break;
672		case CTL_5GHT40:
673		case CTL_2GHT40:
674			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
675				targetPowerHt40.tPow2x[i] =
676					(u8)min((u16)targetPowerHt40.tPow2x[i],
677						minCtlPower);
678			}
679			break;
680		default:
681			break;
682		}
683	}
684
685	/* Now set the rates array */
686
687	ratesArray[rate6mb] =
688	ratesArray[rate9mb] =
689	ratesArray[rate12mb] =
690	ratesArray[rate18mb] =
691	ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
692
693	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
694	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
695	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
696	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
697
698	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
699		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
700
701	if (IS_CHAN_2GHZ(chan))	{
702		ratesArray[rate1l] = targetPowerCck.tPow2x[0];
703		ratesArray[rate2s] =
704		ratesArray[rate2l] = targetPowerCck.tPow2x[1];
705		ratesArray[rate5_5s] =
706		ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
707		ratesArray[rate11s] =
708		ratesArray[rate11l] = targetPowerCck.tPow2x[3];
709	}
710	if (IS_CHAN_HT40(chan))	{
711		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
712			ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
713
714		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
715		ratesArray[rateDupCck]  = targetPowerHt40.tPow2x[0];
716		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
717
718		if (IS_CHAN_2GHZ(chan))
719			ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
720	}
721
722#undef CMP_CTL
723#undef CMP_NO_CTL
 
 
724}
725
726static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
727					struct ath9k_channel *chan, u16 cfgCtl,
728					u8 twiceAntennaReduction,
 
729					u8 powerLimit, bool test)
730{
731	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
732	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
733	struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
734	int16_t ratesArray[Ar5416RateSize];
 
735	u8 ht40PowerIncForPdadc = 2;
736	int i;
737
738	memset(ratesArray, 0, sizeof(ratesArray));
739
740	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
741	    AR9287_EEP_MINOR_VER_2)
742		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
743
744	ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
745						 &ratesArray[0], cfgCtl,
746						 twiceAntennaReduction,
 
747						 powerLimit);
748
749	ath9k_hw_set_ar9287_power_cal_table(ah, chan);
750
751	regulatory->max_power_level = 0;
752	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
 
753		if (ratesArray[i] > MAX_RATE_POWER)
754			ratesArray[i] = MAX_RATE_POWER;
755
756		if (ratesArray[i] > regulatory->max_power_level)
757			regulatory->max_power_level = ratesArray[i];
758	}
759
760	ath9k_hw_update_regulatory_maxpower(ah);
761
762	if (test)
763		return;
764
765	for (i = 0; i < Ar5416RateSize; i++)
766		ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
 
 
 
 
 
 
 
 
 
767
768	ENABLE_REGWRITE_BUFFER(ah);
769
770	/* OFDM power per rate */
771	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
772		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
773		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
774		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
775		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
776
777	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
778		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
779		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
780		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
781		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
782
783	/* CCK power per rate */
784	if (IS_CHAN_2GHZ(chan))	{
785		REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
786			  ATH9K_POW_SM(ratesArray[rate2s], 24)
787			  | ATH9K_POW_SM(ratesArray[rate2l], 16)
788			  | ATH9K_POW_SM(ratesArray[rateXr], 8)
789			  | ATH9K_POW_SM(ratesArray[rate1l], 0));
790		REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
791			  ATH9K_POW_SM(ratesArray[rate11s], 24)
792			  | ATH9K_POW_SM(ratesArray[rate11l], 16)
793			  | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
794			  | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
795	}
796
797	/* HT20 power per rate */
798	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
799		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
800		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
801		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
802		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
803
804	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
805		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
806		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
807		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
808		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
809
810	/* HT40 power per rate */
811	if (IS_CHAN_HT40(chan))	{
812		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
813			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
814				  ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
815				  | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
816				  | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
817				  | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
818
819			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
820				  ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
821				  | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
822				  | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
823				  | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
824		} else {
825			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
826				  ATH9K_POW_SM(ratesArray[rateHt40_3] +
827					       ht40PowerIncForPdadc, 24)
828				  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
829						 ht40PowerIncForPdadc, 16)
830				  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
831						 ht40PowerIncForPdadc, 8)
832				  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
833						 ht40PowerIncForPdadc, 0));
834
835			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
836				  ATH9K_POW_SM(ratesArray[rateHt40_7] +
837					       ht40PowerIncForPdadc, 24)
838				  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
839						 ht40PowerIncForPdadc, 16)
840				  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
841						 ht40PowerIncForPdadc, 8)
842				  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
843						 ht40PowerIncForPdadc, 0));
844		}
845
846		/* Dup/Ext power per rate */
847		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
848			  ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
849			  | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
850			  | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
851			  | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
852	}
 
 
853
854	/* TPC initializations */
855	if (ah->tpc_enabled) {
856		int ht40_delta;
857
858		ht40_delta = (IS_CHAN_HT40(chan)) ? ht40PowerIncForPdadc : 0;
859		ar5008_hw_init_rate_txpower(ah, ratesArray, chan, ht40_delta);
860		/* Enable TPC */
861		REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX,
862			MAX_RATE_POWER | AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
863	} else {
864		/* Disable TPC */
865		REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER);
866	}
867
868	REGWRITE_BUFFER_FLUSH(ah);
869}
870
871static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
872					     struct ath9k_channel *chan)
873{
874	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
875	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
876	u32 regChainOffset, regval;
877	u8 txRxAttenLocal;
878	int i;
879
880	pModal = &eep->modalHeader;
881
882	REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
883
884	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
885		regChainOffset = i * 0x1000;
886
887		REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
888			  pModal->antCtrlChain[i]);
889
890		REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
891			  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
892			   & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
893			       AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
894			  SM(pModal->iqCalICh[i],
895			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
896			  SM(pModal->iqCalQCh[i],
897			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
898
899		txRxAttenLocal = pModal->txRxAttenCh[i];
900
901		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
902			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
903			      pModal->bswMargin[i]);
904		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
905			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
906			      pModal->bswAtten[i]);
907		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
908			      AR9280_PHY_RXGAIN_TXRX_ATTEN,
909			      txRxAttenLocal);
910		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
911			      AR9280_PHY_RXGAIN_TXRX_MARGIN,
912			      pModal->rxTxMarginCh[i]);
913	}
914
915
916	if (IS_CHAN_HT40(chan))
917		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
918			      AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
919	else
920		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
921			      AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
922
923	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
924		      AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
925
926	REG_WRITE(ah, AR_PHY_RF_CTL4,
927		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
928		  | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
929		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
930		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
931
932	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
933		      AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
934
935	REG_RMW_FIELD(ah, AR_PHY_CCA,
936		      AR9280_PHY_CCA_THRESH62, pModal->thresh62);
937	REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
938		      AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
939
940	regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
941	regval &= ~(AR9287_AN_RF2G3_DB1 |
942		    AR9287_AN_RF2G3_DB2 |
943		    AR9287_AN_RF2G3_OB_CCK |
944		    AR9287_AN_RF2G3_OB_PSK |
945		    AR9287_AN_RF2G3_OB_QAM |
946		    AR9287_AN_RF2G3_OB_PAL_OFF);
947	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
948		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
949		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
950		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
951		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
952		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
953
954	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
955
956	regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
957	regval &= ~(AR9287_AN_RF2G3_DB1 |
958		    AR9287_AN_RF2G3_DB2 |
959		    AR9287_AN_RF2G3_OB_CCK |
960		    AR9287_AN_RF2G3_OB_PSK |
961		    AR9287_AN_RF2G3_OB_QAM |
962		    AR9287_AN_RF2G3_OB_PAL_OFF);
963	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
964		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
965		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
966		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
967		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
968		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
969
970	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
971
972	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
973		      AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
974	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
975		      AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
976
977	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
978				  AR9287_AN_TOP2_XPABIAS_LVL,
979				  AR9287_AN_TOP2_XPABIAS_LVL_S,
980				  pModal->xpaBiasLvl);
981}
982
983static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
984					    u16 i, bool is2GHz)
985{
986	return ah->eeprom.map9287.modalHeader.spurChans[i].spurChan;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
987}
988
989const struct eeprom_ops eep_ar9287_ops = {
990	.check_eeprom		= ath9k_hw_ar9287_check_eeprom,
991	.get_eeprom		= ath9k_hw_ar9287_get_eeprom,
992	.fill_eeprom		= ath9k_hw_ar9287_fill_eeprom,
993	.dump_eeprom		= ath9k_hw_ar9287_dump_eeprom,
994	.get_eeprom_ver		= ath9k_hw_ar9287_get_eeprom_ver,
995	.get_eeprom_rev		= ath9k_hw_ar9287_get_eeprom_rev,
996	.set_board_values	= ath9k_hw_ar9287_set_board_values,
 
997	.set_txpower		= ath9k_hw_ar9287_set_txpower,
998	.get_spur_channel	= ath9k_hw_ar9287_get_spur_channel
999};