Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
 
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include <linux/completion.h>
  10#include <linux/err.h>
  11#include <linux/module.h>
  12#include <linux/init.h>
  13#include <linux/kernel.h>
 
  14#include <linux/bio.h>
  15#include <linux/blkdev.h>
 
  16#include <linux/mempool.h>
  17#include <linux/slab.h>
  18#include <linux/crypto.h>
  19#include <linux/workqueue.h>
 
  20#include <linux/backing-dev.h>
  21#include <linux/percpu.h>
  22#include <linux/atomic.h>
  23#include <linux/scatterlist.h>
 
 
  24#include <asm/page.h>
  25#include <asm/unaligned.h>
  26#include <crypto/hash.h>
  27#include <crypto/md5.h>
  28#include <crypto/algapi.h>
 
 
 
 
 
 
 
 
  29
  30#include <linux/device-mapper.h>
  31
 
 
  32#define DM_MSG_PREFIX "crypt"
  33
  34/*
  35 * context holding the current state of a multi-part conversion
  36 */
  37struct convert_context {
  38	struct completion restart;
  39	struct bio *bio_in;
 
  40	struct bio *bio_out;
  41	unsigned int offset_in;
  42	unsigned int offset_out;
  43	unsigned int idx_in;
  44	unsigned int idx_out;
  45	sector_t sector;
  46	atomic_t pending;
 
 
 
 
  47};
  48
  49/*
  50 * per bio private data
  51 */
  52struct dm_crypt_io {
  53	struct dm_target *target;
  54	struct bio *base_bio;
 
 
 
  55	struct work_struct work;
  56
  57	struct convert_context ctx;
  58
  59	atomic_t pending;
  60	int error;
  61	sector_t sector;
  62	struct dm_crypt_io *base_io;
  63};
 
 
 
  64
  65struct dm_crypt_request {
  66	struct convert_context *ctx;
  67	struct scatterlist sg_in;
  68	struct scatterlist sg_out;
  69	sector_t iv_sector;
  70};
  71
  72struct crypt_config;
  73
  74struct crypt_iv_operations {
  75	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  76		   const char *opts);
  77	void (*dtr)(struct crypt_config *cc);
  78	int (*init)(struct crypt_config *cc);
  79	int (*wipe)(struct crypt_config *cc);
  80	int (*generator)(struct crypt_config *cc, u8 *iv,
  81			 struct dm_crypt_request *dmreq);
  82	int (*post)(struct crypt_config *cc, u8 *iv,
  83		    struct dm_crypt_request *dmreq);
  84};
  85
  86struct iv_essiv_private {
  87	struct crypto_hash *hash_tfm;
  88	u8 *salt;
  89};
  90
  91struct iv_benbi_private {
  92	int shift;
  93};
  94
  95#define LMK_SEED_SIZE 64 /* hash + 0 */
  96struct iv_lmk_private {
  97	struct crypto_shash *hash_tfm;
  98	u8 *seed;
  99};
 100
 
 
 
 
 
 
 
 
 
 
 
 
 101/*
 102 * Crypt: maps a linear range of a block device
 103 * and encrypts / decrypts at the same time.
 104 */
 105enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
 106
 107/*
 108 * Duplicated per-CPU state for cipher.
 109 */
 110struct crypt_cpu {
 111	struct ablkcipher_request *req;
 112	/* ESSIV: struct crypto_cipher *essiv_tfm */
 113	void *iv_private;
 114	struct crypto_ablkcipher *tfms[0];
 115};
 116
 117/*
 118 * The fields in here must be read only after initialization,
 119 * changing state should be in crypt_cpu.
 120 */
 121struct crypt_config {
 122	struct dm_dev *dev;
 123	sector_t start;
 124
 125	/*
 126	 * pool for per bio private data, crypto requests and
 127	 * encryption requeusts/buffer pages
 128	 */
 129	mempool_t *io_pool;
 130	mempool_t *req_pool;
 131	mempool_t *page_pool;
 132	struct bio_set *bs;
 133
 134	struct workqueue_struct *io_queue;
 135	struct workqueue_struct *crypt_queue;
 136
 137	char *cipher;
 
 
 
 138	char *cipher_string;
 
 
 139
 140	struct crypt_iv_operations *iv_gen_ops;
 141	union {
 142		struct iv_essiv_private essiv;
 143		struct iv_benbi_private benbi;
 144		struct iv_lmk_private lmk;
 
 
 145	} iv_gen_private;
 146	sector_t iv_offset;
 147	unsigned int iv_size;
 
 
 148
 149	/*
 150	 * Duplicated per cpu state. Access through
 151	 * per_cpu_ptr() only.
 152	 */
 153	struct crypt_cpu __percpu *cpu;
 154	unsigned tfms_count;
 155
 156	/*
 157	 * Layout of each crypto request:
 158	 *
 159	 *   struct ablkcipher_request
 160	 *      context
 161	 *      padding
 162	 *   struct dm_crypt_request
 163	 *      padding
 164	 *   IV
 165	 *
 166	 * The padding is added so that dm_crypt_request and the IV are
 167	 * correctly aligned.
 168	 */
 169	unsigned int dmreq_start;
 170
 
 
 171	unsigned long flags;
 172	unsigned int key_size;
 173	unsigned int key_parts;
 174	u8 key[0];
 175};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 176
 177#define MIN_IOS        16
 178#define MIN_POOL_PAGES 32
 179#define MIN_BIO_PAGES  8
 180
 181static struct kmem_cache *_crypt_io_pool;
 
 
 
 
 
 
 
 
 182
 183static void clone_init(struct dm_crypt_io *, struct bio *);
 184static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 185static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
 
 186
 187static struct crypt_cpu *this_crypt_config(struct crypt_config *cc)
 188{
 189	return this_cpu_ptr(cc->cpu);
 190}
 191
 192/*
 193 * Use this to access cipher attributes that are the same for each CPU.
 194 */
 195static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
 196{
 197	return __this_cpu_ptr(cc->cpu)->tfms[0];
 
 
 
 
 
 198}
 199
 200/*
 201 * Different IV generation algorithms:
 202 *
 203 * plain: the initial vector is the 32-bit little-endian version of the sector
 204 *        number, padded with zeros if necessary.
 205 *
 206 * plain64: the initial vector is the 64-bit little-endian version of the sector
 207 *        number, padded with zeros if necessary.
 208 *
 
 
 
 209 * essiv: "encrypted sector|salt initial vector", the sector number is
 210 *        encrypted with the bulk cipher using a salt as key. The salt
 211 *        should be derived from the bulk cipher's key via hashing.
 212 *
 213 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 214 *        (needed for LRW-32-AES and possible other narrow block modes)
 215 *
 216 * null: the initial vector is always zero.  Provides compatibility with
 217 *       obsolete loop_fish2 devices.  Do not use for new devices.
 218 *
 219 * lmk:  Compatible implementation of the block chaining mode used
 220 *       by the Loop-AES block device encryption system
 221 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 222 *       It operates on full 512 byte sectors and uses CBC
 223 *       with an IV derived from the sector number, the data and
 224 *       optionally extra IV seed.
 225 *       This means that after decryption the first block
 226 *       of sector must be tweaked according to decrypted data.
 227 *       Loop-AES can use three encryption schemes:
 228 *         version 1: is plain aes-cbc mode
 229 *         version 2: uses 64 multikey scheme with lmk IV generator
 230 *         version 3: the same as version 2 with additional IV seed
 231 *                   (it uses 65 keys, last key is used as IV seed)
 232 *
 233 * plumb: unimplemented, see:
 234 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 235 */
 236
 237static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 238			      struct dm_crypt_request *dmreq)
 239{
 240	memset(iv, 0, cc->iv_size);
 241	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 242
 243	return 0;
 244}
 245
 246static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 247				struct dm_crypt_request *dmreq)
 248{
 249	memset(iv, 0, cc->iv_size);
 250	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 251
 252	return 0;
 253}
 254
 255/* Initialise ESSIV - compute salt but no local memory allocations */
 256static int crypt_iv_essiv_init(struct crypt_config *cc)
 257{
 258	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 259	struct hash_desc desc;
 260	struct scatterlist sg;
 261	struct crypto_cipher *essiv_tfm;
 262	int err, cpu;
 263
 264	sg_init_one(&sg, cc->key, cc->key_size);
 265	desc.tfm = essiv->hash_tfm;
 266	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 267
 268	err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
 269	if (err)
 270		return err;
 271
 272	for_each_possible_cpu(cpu) {
 273		essiv_tfm = per_cpu_ptr(cc->cpu, cpu)->iv_private,
 274
 275		err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
 276				    crypto_hash_digestsize(essiv->hash_tfm));
 277		if (err)
 278			return err;
 279	}
 280
 281	return 0;
 282}
 283
 284/* Wipe salt and reset key derived from volume key */
 285static int crypt_iv_essiv_wipe(struct crypt_config *cc)
 286{
 287	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 288	unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
 289	struct crypto_cipher *essiv_tfm;
 290	int cpu, r, err = 0;
 291
 292	memset(essiv->salt, 0, salt_size);
 293
 294	for_each_possible_cpu(cpu) {
 295		essiv_tfm = per_cpu_ptr(cc->cpu, cpu)->iv_private;
 296		r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
 297		if (r)
 298			err = r;
 299	}
 300
 301	return err;
 302}
 303
 304/* Set up per cpu cipher state */
 305static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
 306					     struct dm_target *ti,
 307					     u8 *salt, unsigned saltsize)
 308{
 309	struct crypto_cipher *essiv_tfm;
 310	int err;
 311
 312	/* Setup the essiv_tfm with the given salt */
 313	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
 314	if (IS_ERR(essiv_tfm)) {
 315		ti->error = "Error allocating crypto tfm for ESSIV";
 316		return essiv_tfm;
 317	}
 318
 319	if (crypto_cipher_blocksize(essiv_tfm) !=
 320	    crypto_ablkcipher_ivsize(any_tfm(cc))) {
 321		ti->error = "Block size of ESSIV cipher does "
 322			    "not match IV size of block cipher";
 323		crypto_free_cipher(essiv_tfm);
 324		return ERR_PTR(-EINVAL);
 325	}
 326
 327	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
 328	if (err) {
 329		ti->error = "Failed to set key for ESSIV cipher";
 330		crypto_free_cipher(essiv_tfm);
 331		return ERR_PTR(err);
 332	}
 333
 334	return essiv_tfm;
 335}
 336
 337static void crypt_iv_essiv_dtr(struct crypt_config *cc)
 338{
 339	int cpu;
 340	struct crypt_cpu *cpu_cc;
 341	struct crypto_cipher *essiv_tfm;
 342	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 343
 344	crypto_free_hash(essiv->hash_tfm);
 345	essiv->hash_tfm = NULL;
 346
 347	kzfree(essiv->salt);
 348	essiv->salt = NULL;
 349
 350	for_each_possible_cpu(cpu) {
 351		cpu_cc = per_cpu_ptr(cc->cpu, cpu);
 352		essiv_tfm = cpu_cc->iv_private;
 353
 354		if (essiv_tfm)
 355			crypto_free_cipher(essiv_tfm);
 356
 357		cpu_cc->iv_private = NULL;
 358	}
 359}
 360
 361static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 362			      const char *opts)
 363{
 364	struct crypto_cipher *essiv_tfm = NULL;
 365	struct crypto_hash *hash_tfm = NULL;
 366	u8 *salt = NULL;
 367	int err, cpu;
 368
 369	if (!opts) {
 370		ti->error = "Digest algorithm missing for ESSIV mode";
 371		return -EINVAL;
 372	}
 373
 374	/* Allocate hash algorithm */
 375	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
 376	if (IS_ERR(hash_tfm)) {
 377		ti->error = "Error initializing ESSIV hash";
 378		err = PTR_ERR(hash_tfm);
 379		goto bad;
 380	}
 381
 382	salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
 383	if (!salt) {
 384		ti->error = "Error kmallocing salt storage in ESSIV";
 385		err = -ENOMEM;
 386		goto bad;
 387	}
 388
 389	cc->iv_gen_private.essiv.salt = salt;
 390	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
 391
 392	for_each_possible_cpu(cpu) {
 393		essiv_tfm = setup_essiv_cpu(cc, ti, salt,
 394					crypto_hash_digestsize(hash_tfm));
 395		if (IS_ERR(essiv_tfm)) {
 396			crypt_iv_essiv_dtr(cc);
 397			return PTR_ERR(essiv_tfm);
 398		}
 399		per_cpu_ptr(cc->cpu, cpu)->iv_private = essiv_tfm;
 400	}
 401
 402	return 0;
 403
 404bad:
 405	if (hash_tfm && !IS_ERR(hash_tfm))
 406		crypto_free_hash(hash_tfm);
 407	kfree(salt);
 408	return err;
 409}
 410
 411static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 412			      struct dm_crypt_request *dmreq)
 413{
 414	struct crypto_cipher *essiv_tfm = this_crypt_config(cc)->iv_private;
 415
 
 
 416	memset(iv, 0, cc->iv_size);
 417	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 418	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
 419
 420	return 0;
 421}
 422
 423static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 424			      const char *opts)
 425{
 426	unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
 427	int log = ilog2(bs);
 428
 429	/* we need to calculate how far we must shift the sector count
 430	 * to get the cipher block count, we use this shift in _gen */
 
 
 
 431
 
 
 
 
 432	if (1 << log != bs) {
 433		ti->error = "cypher blocksize is not a power of 2";
 434		return -EINVAL;
 435	}
 436
 437	if (log > 9) {
 438		ti->error = "cypher blocksize is > 512";
 439		return -EINVAL;
 440	}
 441
 442	cc->iv_gen_private.benbi.shift = 9 - log;
 443
 444	return 0;
 445}
 446
 447static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 448{
 449}
 450
 451static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 452			      struct dm_crypt_request *dmreq)
 453{
 454	__be64 val;
 455
 456	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 457
 458	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 459	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 460
 461	return 0;
 462}
 463
 464static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 465			     struct dm_crypt_request *dmreq)
 466{
 467	memset(iv, 0, cc->iv_size);
 468
 469	return 0;
 470}
 471
 472static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 473{
 474	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 475
 476	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 477		crypto_free_shash(lmk->hash_tfm);
 478	lmk->hash_tfm = NULL;
 479
 480	kzfree(lmk->seed);
 481	lmk->seed = NULL;
 482}
 483
 484static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 485			    const char *opts)
 486{
 487	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 488
 489	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
 
 
 
 
 
 
 490	if (IS_ERR(lmk->hash_tfm)) {
 491		ti->error = "Error initializing LMK hash";
 492		return PTR_ERR(lmk->hash_tfm);
 493	}
 494
 495	/* No seed in LMK version 2 */
 496	if (cc->key_parts == cc->tfms_count) {
 497		lmk->seed = NULL;
 498		return 0;
 499	}
 500
 501	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 502	if (!lmk->seed) {
 503		crypt_iv_lmk_dtr(cc);
 504		ti->error = "Error kmallocing seed storage in LMK";
 505		return -ENOMEM;
 506	}
 507
 508	return 0;
 509}
 510
 511static int crypt_iv_lmk_init(struct crypt_config *cc)
 512{
 513	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 514	int subkey_size = cc->key_size / cc->key_parts;
 515
 516	/* LMK seed is on the position of LMK_KEYS + 1 key */
 517	if (lmk->seed)
 518		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 519		       crypto_shash_digestsize(lmk->hash_tfm));
 520
 521	return 0;
 522}
 523
 524static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 525{
 526	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 527
 528	if (lmk->seed)
 529		memset(lmk->seed, 0, LMK_SEED_SIZE);
 530
 531	return 0;
 532}
 533
 534static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 535			    struct dm_crypt_request *dmreq,
 536			    u8 *data)
 537{
 538	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 539	struct {
 540		struct shash_desc desc;
 541		char ctx[crypto_shash_descsize(lmk->hash_tfm)];
 542	} sdesc;
 543	struct md5_state md5state;
 544	u32 buf[4];
 545	int i, r;
 546
 547	sdesc.desc.tfm = lmk->hash_tfm;
 548	sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 549
 550	r = crypto_shash_init(&sdesc.desc);
 551	if (r)
 552		return r;
 553
 554	if (lmk->seed) {
 555		r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
 556		if (r)
 557			return r;
 558	}
 559
 560	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
 561	r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
 562	if (r)
 563		return r;
 564
 565	/* Sector is cropped to 56 bits here */
 566	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 567	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 568	buf[2] = cpu_to_le32(4024);
 569	buf[3] = 0;
 570	r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
 571	if (r)
 572		return r;
 573
 574	/* No MD5 padding here */
 575	r = crypto_shash_export(&sdesc.desc, &md5state);
 576	if (r)
 577		return r;
 578
 579	for (i = 0; i < MD5_HASH_WORDS; i++)
 580		__cpu_to_le32s(&md5state.hash[i]);
 581	memcpy(iv, &md5state.hash, cc->iv_size);
 582
 583	return 0;
 584}
 585
 586static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 587			    struct dm_crypt_request *dmreq)
 588{
 
 589	u8 *src;
 590	int r = 0;
 591
 592	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 593		src = kmap_atomic(sg_page(&dmreq->sg_in), KM_USER0);
 594		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
 595		kunmap_atomic(src, KM_USER0);
 
 596	} else
 597		memset(iv, 0, cc->iv_size);
 598
 599	return r;
 600}
 601
 602static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 603			     struct dm_crypt_request *dmreq)
 604{
 
 605	u8 *dst;
 606	int r;
 607
 608	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 609		return 0;
 610
 611	dst = kmap_atomic(sg_page(&dmreq->sg_out), KM_USER0);
 612	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
 
 613
 614	/* Tweak the first block of plaintext sector */
 615	if (!r)
 616		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 617
 618	kunmap_atomic(dst, KM_USER0);
 
 
 
 
 619	return r;
 620}
 621
 622static struct crypt_iv_operations crypt_iv_plain_ops = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 623	.generator = crypt_iv_plain_gen
 624};
 625
 626static struct crypt_iv_operations crypt_iv_plain64_ops = {
 627	.generator = crypt_iv_plain64_gen
 628};
 629
 630static struct crypt_iv_operations crypt_iv_essiv_ops = {
 631	.ctr       = crypt_iv_essiv_ctr,
 632	.dtr       = crypt_iv_essiv_dtr,
 633	.init      = crypt_iv_essiv_init,
 634	.wipe      = crypt_iv_essiv_wipe,
 635	.generator = crypt_iv_essiv_gen
 636};
 637
 638static struct crypt_iv_operations crypt_iv_benbi_ops = {
 639	.ctr	   = crypt_iv_benbi_ctr,
 640	.dtr	   = crypt_iv_benbi_dtr,
 641	.generator = crypt_iv_benbi_gen
 642};
 643
 644static struct crypt_iv_operations crypt_iv_null_ops = {
 645	.generator = crypt_iv_null_gen
 646};
 647
 648static struct crypt_iv_operations crypt_iv_lmk_ops = {
 649	.ctr	   = crypt_iv_lmk_ctr,
 650	.dtr	   = crypt_iv_lmk_dtr,
 651	.init	   = crypt_iv_lmk_init,
 652	.wipe	   = crypt_iv_lmk_wipe,
 653	.generator = crypt_iv_lmk_gen,
 654	.post	   = crypt_iv_lmk_post
 655};
 656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657static void crypt_convert_init(struct crypt_config *cc,
 658			       struct convert_context *ctx,
 659			       struct bio *bio_out, struct bio *bio_in,
 660			       sector_t sector)
 661{
 662	ctx->bio_in = bio_in;
 663	ctx->bio_out = bio_out;
 664	ctx->offset_in = 0;
 665	ctx->offset_out = 0;
 666	ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
 667	ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
 668	ctx->sector = sector + cc->iv_offset;
 669	init_completion(&ctx->restart);
 670}
 671
 672static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
 673					     struct ablkcipher_request *req)
 674{
 675	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
 676}
 677
 678static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
 679					       struct dm_crypt_request *dmreq)
 680{
 681	return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
 682}
 683
 684static u8 *iv_of_dmreq(struct crypt_config *cc,
 685		       struct dm_crypt_request *dmreq)
 686{
 687	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
 688		crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
 
 
 
 
 689}
 690
 691static int crypt_convert_block(struct crypt_config *cc,
 692			       struct convert_context *ctx,
 693			       struct ablkcipher_request *req)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 694{
 695	struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
 696	struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
 697	struct dm_crypt_request *dmreq;
 698	u8 *iv;
 
 699	int r = 0;
 700
 
 
 
 
 
 
 701	dmreq = dmreq_of_req(cc, req);
 
 
 
 
 
 
 
 
 
 
 702	iv = iv_of_dmreq(cc, dmreq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 703
 704	dmreq->iv_sector = ctx->sector;
 705	dmreq->ctx = ctx;
 706	sg_init_table(&dmreq->sg_in, 1);
 707	sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
 708		    bv_in->bv_offset + ctx->offset_in);
 709
 710	sg_init_table(&dmreq->sg_out, 1);
 711	sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
 712		    bv_out->bv_offset + ctx->offset_out);
 713
 714	ctx->offset_in += 1 << SECTOR_SHIFT;
 715	if (ctx->offset_in >= bv_in->bv_len) {
 716		ctx->offset_in = 0;
 717		ctx->idx_in++;
 718	}
 719
 720	ctx->offset_out += 1 << SECTOR_SHIFT;
 721	if (ctx->offset_out >= bv_out->bv_len) {
 722		ctx->offset_out = 0;
 723		ctx->idx_out++;
 
 
 
 
 
 
 
 
 724	}
 725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 726	if (cc->iv_gen_ops) {
 727		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
 728		if (r < 0)
 729			return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 730	}
 731
 732	ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
 733				     1 << SECTOR_SHIFT, iv);
 734
 735	if (bio_data_dir(ctx->bio_in) == WRITE)
 736		r = crypto_ablkcipher_encrypt(req);
 737	else
 738		r = crypto_ablkcipher_decrypt(req);
 739
 740	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
 741		r = cc->iv_gen_ops->post(cc, iv, dmreq);
 
 
 
 742
 743	return r;
 744}
 745
 746static void kcryptd_async_done(struct crypto_async_request *async_req,
 747			       int error);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 748
 749static void crypt_alloc_req(struct crypt_config *cc,
 
 
 
 
 
 
 
 
 
 
 
 
 
 750			    struct convert_context *ctx)
 751{
 752	struct crypt_cpu *this_cc = this_crypt_config(cc);
 753	unsigned key_index = ctx->sector & (cc->tfms_count - 1);
 
 
 
 
 
 
 
 
 754
 755	if (!this_cc->req)
 756		this_cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
 
 
 
 
 
 
 757
 758	ablkcipher_request_set_tfm(this_cc->req, this_cc->tfms[key_index]);
 759	ablkcipher_request_set_callback(this_cc->req,
 760	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 761	    kcryptd_async_done, dmreq_of_req(cc, this_cc->req));
 
 
 
 
 
 
 762}
 763
 764/*
 765 * Encrypt / decrypt data from one bio to another one (can be the same one)
 766 */
 767static int crypt_convert(struct crypt_config *cc,
 768			 struct convert_context *ctx)
 769{
 770	struct crypt_cpu *this_cc = this_crypt_config(cc);
 
 771	int r;
 772
 773	atomic_set(&ctx->pending, 1);
 
 
 
 
 
 
 774
 775	while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
 776	      ctx->idx_out < ctx->bio_out->bi_vcnt) {
 777
 778		crypt_alloc_req(cc, ctx);
 
 
 
 
 779
 780		atomic_inc(&ctx->pending);
 781
 782		r = crypt_convert_block(cc, ctx, this_cc->req);
 
 
 
 783
 784		switch (r) {
 785		/* async */
 
 
 
 786		case -EBUSY:
 787			wait_for_completion(&ctx->restart);
 788			INIT_COMPLETION(ctx->restart);
 789			/* fall through*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790		case -EINPROGRESS:
 791			this_cc->req = NULL;
 792			ctx->sector++;
 
 793			continue;
 794
 795		/* sync */
 
 796		case 0:
 797			atomic_dec(&ctx->pending);
 798			ctx->sector++;
 799			cond_resched();
 
 
 800			continue;
 801
 802		/* error */
 
 
 
 
 
 
 
 803		default:
 804			atomic_dec(&ctx->pending);
 805			return r;
 806		}
 807	}
 808
 809	return 0;
 810}
 811
 812static void dm_crypt_bio_destructor(struct bio *bio)
 813{
 814	struct dm_crypt_io *io = bio->bi_private;
 815	struct crypt_config *cc = io->target->private;
 816
 817	bio_free(bio, cc->bs);
 818}
 819
 820/*
 821 * Generate a new unfragmented bio with the given size
 822 * This should never violate the device limitations
 823 * May return a smaller bio when running out of pages, indicated by
 824 * *out_of_pages set to 1.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 825 */
 826static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
 827				      unsigned *out_of_pages)
 828{
 829	struct crypt_config *cc = io->target->private;
 830	struct bio *clone;
 831	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 832	gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
 833	unsigned i, len;
 834	struct page *page;
 
 
 
 
 835
 836	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
 837	if (!clone)
 838		return NULL;
 
 
 839
 840	clone_init(io, clone);
 841	*out_of_pages = 0;
 842
 843	for (i = 0; i < nr_iovecs; i++) {
 844		page = mempool_alloc(cc->page_pool, gfp_mask);
 845		if (!page) {
 846			*out_of_pages = 1;
 847			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 848		}
 849
 850		/*
 851		 * if additional pages cannot be allocated without waiting,
 852		 * return a partially allocated bio, the caller will then try
 853		 * to allocate additional bios while submitting this partial bio
 854		 */
 855		if (i == (MIN_BIO_PAGES - 1))
 856			gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
 857
 858		len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
 859
 860		if (!bio_add_page(clone, page, len, 0)) {
 861			mempool_free(page, cc->page_pool);
 862			break;
 863		}
 864
 865		size -= len;
 
 
 
 866	}
 867
 868	if (!clone->bi_size) {
 
 
 869		bio_put(clone);
 870		return NULL;
 871	}
 872
 
 
 
 873	return clone;
 874}
 875
 876static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
 877{
 878	unsigned int i;
 879	struct bio_vec *bv;
 880
 881	for (i = 0; i < clone->bi_vcnt; i++) {
 882		bv = bio_iovec_idx(clone, i);
 883		BUG_ON(!bv->bv_page);
 884		mempool_free(bv->bv_page, cc->page_pool);
 885		bv->bv_page = NULL;
 
 
 
 
 
 886	}
 887}
 888
 889static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti,
 890					  struct bio *bio, sector_t sector)
 891{
 892	struct crypt_config *cc = ti->private;
 893	struct dm_crypt_io *io;
 894
 895	io = mempool_alloc(cc->io_pool, GFP_NOIO);
 896	io->target = ti;
 897	io->base_bio = bio;
 898	io->sector = sector;
 899	io->error = 0;
 900	io->base_io = NULL;
 901	atomic_set(&io->pending, 0);
 902
 903	return io;
 
 
 904}
 905
 906static void crypt_inc_pending(struct dm_crypt_io *io)
 907{
 908	atomic_inc(&io->pending);
 909}
 910
 
 
 911/*
 912 * One of the bios was finished. Check for completion of
 913 * the whole request and correctly clean up the buffer.
 914 * If base_io is set, wait for the last fragment to complete.
 915 */
 916static void crypt_dec_pending(struct dm_crypt_io *io)
 917{
 918	struct crypt_config *cc = io->target->private;
 919	struct bio *base_bio = io->base_bio;
 920	struct dm_crypt_io *base_io = io->base_io;
 921	int error = io->error;
 922
 923	if (!atomic_dec_and_test(&io->pending))
 924		return;
 925
 926	mempool_free(io, cc->io_pool);
 927
 928	if (likely(!base_io))
 929		bio_endio(base_bio, error);
 930	else {
 931		if (error && !base_io->error)
 932			base_io->error = error;
 933		crypt_dec_pending(base_io);
 934	}
 
 
 
 
 
 
 
 
 
 
 
 
 935}
 936
 937/*
 938 * kcryptd/kcryptd_io:
 939 *
 940 * Needed because it would be very unwise to do decryption in an
 941 * interrupt context.
 942 *
 943 * kcryptd performs the actual encryption or decryption.
 944 *
 945 * kcryptd_io performs the IO submission.
 946 *
 947 * They must be separated as otherwise the final stages could be
 948 * starved by new requests which can block in the first stages due
 949 * to memory allocation.
 950 *
 951 * The work is done per CPU global for all dm-crypt instances.
 952 * They should not depend on each other and do not block.
 953 */
 954static void crypt_endio(struct bio *clone, int error)
 955{
 956	struct dm_crypt_io *io = clone->bi_private;
 957	struct crypt_config *cc = io->target->private;
 958	unsigned rw = bio_data_dir(clone);
 
 959
 960	if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
 961		error = -EIO;
 
 
 962
 963	/*
 964	 * free the processed pages
 965	 */
 966	if (rw == WRITE)
 967		crypt_free_buffer_pages(cc, clone);
 968
 969	bio_put(clone);
 970
 971	if (rw == READ && !error) {
 972		kcryptd_queue_crypt(io);
 973		return;
 974	}
 975
 976	if (unlikely(error))
 977		io->error = error;
 978
 979	crypt_dec_pending(io);
 980}
 981
 982static void clone_init(struct dm_crypt_io *io, struct bio *clone)
 983{
 984	struct crypt_config *cc = io->target->private;
 985
 986	clone->bi_private = io;
 987	clone->bi_end_io  = crypt_endio;
 988	clone->bi_bdev    = cc->dev->bdev;
 989	clone->bi_rw      = io->base_bio->bi_rw;
 990	clone->bi_destructor = dm_crypt_bio_destructor;
 991}
 992
 993static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
 994{
 995	struct crypt_config *cc = io->target->private;
 996	struct bio *base_bio = io->base_bio;
 997	struct bio *clone;
 998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 999	/*
1000	 * The block layer might modify the bvec array, so always
1001	 * copy the required bvecs because we need the original
1002	 * one in order to decrypt the whole bio data *afterwards*.
 
1003	 */
1004	clone = bio_alloc_bioset(gfp, bio_segments(base_bio), cc->bs);
1005	if (!clone)
1006		return 1;
 
 
1007
1008	crypt_inc_pending(io);
1009
1010	clone_init(io, clone);
1011	clone->bi_idx = 0;
1012	clone->bi_vcnt = bio_segments(base_bio);
1013	clone->bi_size = base_bio->bi_size;
1014	clone->bi_sector = cc->start + io->sector;
1015	memcpy(clone->bi_io_vec, bio_iovec(base_bio),
1016	       sizeof(struct bio_vec) * clone->bi_vcnt);
1017
1018	generic_make_request(clone);
 
 
 
 
 
 
1019	return 0;
1020}
1021
1022static void kcryptd_io_write(struct dm_crypt_io *io)
1023{
1024	struct bio *clone = io->ctx.bio_out;
1025	generic_make_request(clone);
 
 
 
 
1026}
1027
1028static void kcryptd_io(struct work_struct *work)
1029{
1030	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1031
1032	if (bio_data_dir(io->base_bio) == READ) {
1033		crypt_inc_pending(io);
1034		if (kcryptd_io_read(io, GFP_NOIO))
1035			io->error = -ENOMEM;
1036		crypt_dec_pending(io);
1037	} else
1038		kcryptd_io_write(io);
1039}
1040
1041static void kcryptd_queue_io(struct dm_crypt_io *io)
1042{
1043	struct crypt_config *cc = io->target->private;
1044
1045	INIT_WORK(&io->work, kcryptd_io);
1046	queue_work(cc->io_queue, &io->work);
1047}
1048
1049static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io,
1050					  int error, int async)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1051{
1052	struct bio *clone = io->ctx.bio_out;
1053	struct crypt_config *cc = io->target->private;
 
 
 
1054
1055	if (unlikely(error < 0)) {
1056		crypt_free_buffer_pages(cc, clone);
1057		bio_put(clone);
1058		io->error = -EIO;
1059		crypt_dec_pending(io);
1060		return;
1061	}
1062
1063	/* crypt_convert should have filled the clone bio */
1064	BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
1065
1066	clone->bi_sector = cc->start + io->sector;
1067
1068	if (async)
1069		kcryptd_queue_io(io);
1070	else
1071		generic_make_request(clone);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072}
1073
1074static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1075{
1076	struct crypt_config *cc = io->target->private;
 
1077	struct bio *clone;
1078	struct dm_crypt_io *new_io;
1079	int crypt_finished;
1080	unsigned out_of_pages = 0;
1081	unsigned remaining = io->base_bio->bi_size;
1082	sector_t sector = io->sector;
1083	int r;
1084
1085	/*
1086	 * Prevent io from disappearing until this function completes.
1087	 */
1088	crypt_inc_pending(io);
1089	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1090
1091	/*
1092	 * The allocated buffers can be smaller than the whole bio,
1093	 * so repeat the whole process until all the data can be handled.
1094	 */
1095	while (remaining) {
1096		clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1097		if (unlikely(!clone)) {
1098			io->error = -ENOMEM;
1099			break;
1100		}
1101
1102		io->ctx.bio_out = clone;
1103		io->ctx.idx_out = 0;
 
 
 
1104
1105		remaining -= clone->bi_size;
1106		sector += bio_sectors(clone);
1107
1108		crypt_inc_pending(io);
1109		r = crypt_convert(cc, &io->ctx);
1110		crypt_finished = atomic_dec_and_test(&io->ctx.pending);
 
 
1111
1112		/* Encryption was already finished, submit io now */
1113		if (crypt_finished) {
1114			kcryptd_crypt_write_io_submit(io, r, 0);
1115
1116			/*
1117			 * If there was an error, do not try next fragments.
1118			 * For async, error is processed in async handler.
1119			 */
1120			if (unlikely(r < 0))
1121				break;
1122
1123			io->sector = sector;
1124		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1125
1126		/*
1127		 * Out of memory -> run queues
1128		 * But don't wait if split was due to the io size restriction
1129		 */
1130		if (unlikely(out_of_pages))
1131			congestion_wait(BLK_RW_ASYNC, HZ/100);
1132
1133		/*
1134		 * With async crypto it is unsafe to share the crypto context
1135		 * between fragments, so switch to a new dm_crypt_io structure.
1136		 */
1137		if (unlikely(!crypt_finished && remaining)) {
1138			new_io = crypt_io_alloc(io->target, io->base_bio,
1139						sector);
1140			crypt_inc_pending(new_io);
1141			crypt_convert_init(cc, &new_io->ctx, NULL,
1142					   io->base_bio, sector);
1143			new_io->ctx.idx_in = io->ctx.idx_in;
1144			new_io->ctx.offset_in = io->ctx.offset_in;
1145
1146			/*
1147			 * Fragments after the first use the base_io
1148			 * pending count.
1149			 */
1150			if (!io->base_io)
1151				new_io->base_io = io;
1152			else {
1153				new_io->base_io = io->base_io;
1154				crypt_inc_pending(io->base_io);
1155				crypt_dec_pending(io);
1156			}
1157
1158			io = new_io;
 
 
 
 
 
1159		}
 
 
1160	}
1161
1162	crypt_dec_pending(io);
1163}
1164
1165static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
1166{
1167	if (unlikely(error < 0))
1168		io->error = -EIO;
 
 
 
 
 
 
 
 
 
 
 
1169
1170	crypt_dec_pending(io);
1171}
1172
1173static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1174{
1175	struct crypt_config *cc = io->target->private;
1176	int r = 0;
1177
1178	crypt_inc_pending(io);
1179
1180	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1181			   io->sector);
 
 
 
 
 
1182
1183	r = crypt_convert(cc, &io->ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
1184
1185	if (atomic_dec_and_test(&io->ctx.pending))
1186		kcryptd_crypt_read_done(io, r);
1187
1188	crypt_dec_pending(io);
1189}
1190
1191static void kcryptd_async_done(struct crypto_async_request *async_req,
1192			       int error)
1193{
1194	struct dm_crypt_request *dmreq = async_req->data;
1195	struct convert_context *ctx = dmreq->ctx;
1196	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1197	struct crypt_config *cc = io->target->private;
1198
 
 
 
 
 
1199	if (error == -EINPROGRESS) {
1200		complete(&ctx->restart);
1201		return;
1202	}
1203
1204	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1205		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
 
 
 
1206
1207	mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
 
 
 
 
 
 
 
 
 
1208
1209	if (!atomic_dec_and_test(&ctx->pending))
 
 
1210		return;
1211
1212	if (bio_data_dir(io->base_bio) == READ)
1213		kcryptd_crypt_read_done(io, error);
1214	else
1215		kcryptd_crypt_write_io_submit(io, error, 1);
 
 
 
 
 
 
 
 
 
 
 
1216}
1217
1218static void kcryptd_crypt(struct work_struct *work)
1219{
1220	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1221
1222	if (bio_data_dir(io->base_bio) == READ)
1223		kcryptd_crypt_read_convert(io);
1224	else
1225		kcryptd_crypt_write_convert(io);
1226}
1227
1228static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1229{
1230	struct crypt_config *cc = io->target->private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1231
1232	INIT_WORK(&io->work, kcryptd_crypt);
1233	queue_work(cc->crypt_queue, &io->work);
1234}
1235
1236/*
1237 * Decode key from its hex representation
1238 */
1239static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
 
 
 
 
 
 
 
 
 
 
 
1240{
1241	char buffer[3];
1242	char *endp;
1243	unsigned int i;
1244
1245	buffer[2] = '\0';
 
1246
1247	for (i = 0; i < size; i++) {
1248		buffer[0] = *hex++;
1249		buffer[1] = *hex++;
 
 
1250
1251		key[i] = (u8)simple_strtoul(buffer, &endp, 16);
 
 
1252
1253		if (endp != &buffer[2])
1254			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1255	}
1256
1257	if (*hex != '\0')
1258		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
1259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1260	return 0;
1261}
1262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1263/*
1264 * Encode key into its hex representation
 
 
1265 */
1266static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
 
1267{
1268	unsigned int i;
 
1269
1270	for (i = 0; i < size; i++) {
1271		sprintf(hex, "%02x", *key);
1272		hex += 2;
1273		key++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1274	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1275}
1276
1277static void crypt_free_tfms(struct crypt_config *cc, int cpu)
 
 
1278{
1279	struct crypt_cpu *cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1280	unsigned i;
 
 
 
1281
1282	for (i = 0; i < cc->tfms_count; i++)
1283		if (cpu_cc->tfms[i] && !IS_ERR(cpu_cc->tfms[i])) {
1284			crypto_free_ablkcipher(cpu_cc->tfms[i]);
1285			cpu_cc->tfms[i] = NULL;
1286		}
 
 
 
 
 
 
 
 
 
1287}
1288
1289static int crypt_alloc_tfms(struct crypt_config *cc, int cpu, char *ciphermode)
1290{
1291	struct crypt_cpu *cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1292	unsigned i;
1293	int err;
1294
1295	for (i = 0; i < cc->tfms_count; i++) {
1296		cpu_cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1297		if (IS_ERR(cpu_cc->tfms[i])) {
1298			err = PTR_ERR(cpu_cc->tfms[i]);
1299			crypt_free_tfms(cc, cpu);
1300			return err;
1301		}
1302	}
1303
1304	return 0;
1305}
1306
1307static int crypt_setkey_allcpus(struct crypt_config *cc)
1308{
1309	unsigned subkey_size = cc->key_size >> ilog2(cc->tfms_count);
1310	int cpu, err = 0, i, r;
1311
1312	for_each_possible_cpu(cpu) {
1313		for (i = 0; i < cc->tfms_count; i++) {
1314			r = crypto_ablkcipher_setkey(per_cpu_ptr(cc->cpu, cpu)->tfms[i],
1315						     cc->key + (i * subkey_size), subkey_size);
1316			if (r)
1317				err = r;
1318		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1319	}
1320
1321	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1322}
1323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324static int crypt_set_key(struct crypt_config *cc, char *key)
1325{
1326	int r = -EINVAL;
1327	int key_string_len = strlen(key);
1328
1329	/* The key size may not be changed. */
1330	if (cc->key_size != (key_string_len >> 1))
1331		goto out;
1332
1333	/* Hyphen (which gives a key_size of zero) means there is no key. */
1334	if (!cc->key_size && strcmp(key, "-"))
1335		goto out;
1336
1337	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
 
 
1338		goto out;
 
1339
1340	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
 
1341
1342	r = crypt_setkey_allcpus(cc);
 
 
 
 
 
 
 
 
 
 
1343
1344out:
1345	/* Hex key string not needed after here, so wipe it. */
1346	memset(key, '0', key_string_len);
1347
1348	return r;
1349}
1350
1351static int crypt_wipe_key(struct crypt_config *cc)
1352{
 
 
1353	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
 
 
 
 
 
 
 
 
 
 
 
 
1354	memset(&cc->key, 0, cc->key_size * sizeof(u8));
1355
1356	return crypt_setkey_allcpus(cc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1357}
1358
1359static void crypt_dtr(struct dm_target *ti)
1360{
1361	struct crypt_config *cc = ti->private;
1362	struct crypt_cpu *cpu_cc;
1363	int cpu;
1364
1365	ti->private = NULL;
1366
1367	if (!cc)
1368		return;
1369
 
 
 
1370	if (cc->io_queue)
1371		destroy_workqueue(cc->io_queue);
1372	if (cc->crypt_queue)
1373		destroy_workqueue(cc->crypt_queue);
1374
1375	if (cc->cpu)
1376		for_each_possible_cpu(cpu) {
1377			cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1378			if (cpu_cc->req)
1379				mempool_free(cpu_cc->req, cc->req_pool);
1380			crypt_free_tfms(cc, cpu);
1381		}
1382
1383	if (cc->bs)
1384		bioset_free(cc->bs);
1385
1386	if (cc->page_pool)
1387		mempool_destroy(cc->page_pool);
1388	if (cc->req_pool)
1389		mempool_destroy(cc->req_pool);
1390	if (cc->io_pool)
1391		mempool_destroy(cc->io_pool);
1392
1393	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1394		cc->iv_gen_ops->dtr(cc);
1395
1396	if (cc->dev)
1397		dm_put_device(ti, cc->dev);
1398
1399	if (cc->cpu)
1400		free_percpu(cc->cpu);
 
 
1401
1402	kzfree(cc->cipher);
1403	kzfree(cc->cipher_string);
1404
1405	/* Must zero key material before freeing */
1406	kzfree(cc);
 
 
 
 
 
 
 
 
1407}
1408
1409static int crypt_ctr_cipher(struct dm_target *ti,
1410			    char *cipher_in, char *key)
1411{
1412	struct crypt_config *cc = ti->private;
1413	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1414	char *cipher_api = NULL;
1415	int cpu, ret = -EINVAL;
 
1416
1417	/* Convert to crypto api definition? */
1418	if (strchr(cipher_in, '(')) {
1419		ti->error = "Bad cipher specification";
1420		return -EINVAL;
1421	}
1422
1423	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1424	if (!cc->cipher_string)
1425		goto bad_mem;
1426
1427	/*
1428	 * Legacy dm-crypt cipher specification
1429	 * cipher[:keycount]-mode-iv:ivopts
1430	 */
1431	tmp = cipher_in;
1432	keycount = strsep(&tmp, "-");
1433	cipher = strsep(&keycount, ":");
1434
1435	if (!keycount)
1436		cc->tfms_count = 1;
1437	else if (sscanf(keycount, "%u", &cc->tfms_count) != 1 ||
1438		 !is_power_of_2(cc->tfms_count)) {
1439		ti->error = "Bad cipher key count specification";
1440		return -EINVAL;
1441	}
1442	cc->key_parts = cc->tfms_count;
1443
1444	cc->cipher = kstrdup(cipher, GFP_KERNEL);
1445	if (!cc->cipher)
1446		goto bad_mem;
1447
1448	chainmode = strsep(&tmp, "-");
1449	ivopts = strsep(&tmp, "-");
1450	ivmode = strsep(&ivopts, ":");
1451
1452	if (tmp)
1453		DMWARN("Ignoring unexpected additional cipher options");
1454
1455	cc->cpu = __alloc_percpu(sizeof(*(cc->cpu)) +
1456				 cc->tfms_count * sizeof(*(cc->cpu->tfms)),
1457				 __alignof__(struct crypt_cpu));
1458	if (!cc->cpu) {
1459		ti->error = "Cannot allocate per cpu state";
1460		goto bad_mem;
1461	}
1462
1463	/*
1464	 * For compatibility with the original dm-crypt mapping format, if
1465	 * only the cipher name is supplied, use cbc-plain.
1466	 */
1467	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1468		chainmode = "cbc";
1469		ivmode = "plain";
1470	}
1471
1472	if (strcmp(chainmode, "ecb") && !ivmode) {
1473		ti->error = "IV mechanism required";
1474		return -EINVAL;
1475	}
1476
1477	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1478	if (!cipher_api)
1479		goto bad_mem;
1480
1481	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1482		       "%s(%s)", chainmode, cipher);
1483	if (ret < 0) {
 
 
 
 
 
 
 
 
 
 
1484		kfree(cipher_api);
1485		goto bad_mem;
1486	}
1487
1488	/* Allocate cipher */
1489	for_each_possible_cpu(cpu) {
1490		ret = crypt_alloc_tfms(cc, cpu, cipher_api);
1491		if (ret < 0) {
1492			ti->error = "Error allocating crypto tfm";
1493			goto bad;
1494		}
1495	}
 
1496
1497	/* Initialize and set key */
1498	ret = crypt_set_key(cc, key);
1499	if (ret < 0) {
1500		ti->error = "Error decoding and setting key";
1501		goto bad;
 
 
 
 
 
 
 
 
 
 
 
1502	}
1503
 
 
 
 
 
 
 
1504	/* Initialize IV */
1505	cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1506	if (cc->iv_size)
1507		/* at least a 64 bit sector number should fit in our buffer */
1508		cc->iv_size = max(cc->iv_size,
1509				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1510	else if (ivmode) {
1511		DMWARN("Selected cipher does not support IVs");
1512		ivmode = NULL;
1513	}
1514
1515	/* Choose ivmode, see comments at iv code. */
1516	if (ivmode == NULL)
1517		cc->iv_gen_ops = NULL;
1518	else if (strcmp(ivmode, "plain") == 0)
1519		cc->iv_gen_ops = &crypt_iv_plain_ops;
1520	else if (strcmp(ivmode, "plain64") == 0)
1521		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1522	else if (strcmp(ivmode, "essiv") == 0)
1523		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1524	else if (strcmp(ivmode, "benbi") == 0)
1525		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1526	else if (strcmp(ivmode, "null") == 0)
1527		cc->iv_gen_ops = &crypt_iv_null_ops;
1528	else if (strcmp(ivmode, "lmk") == 0) {
1529		cc->iv_gen_ops = &crypt_iv_lmk_ops;
1530		/* Version 2 and 3 is recognised according
1531		 * to length of provided multi-key string.
1532		 * If present (version 3), last key is used as IV seed.
1533		 */
1534		if (cc->key_size % cc->key_parts)
1535			cc->key_parts++;
1536	} else {
1537		ret = -EINVAL;
1538		ti->error = "Invalid IV mode";
1539		goto bad;
1540	}
1541
1542	/* Allocate IV */
1543	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1544		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1545		if (ret < 0) {
1546			ti->error = "Error creating IV";
1547			goto bad;
1548		}
1549	}
1550
1551	/* Initialize IV (set keys for ESSIV etc) */
1552	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1553		ret = cc->iv_gen_ops->init(cc);
1554		if (ret < 0) {
1555			ti->error = "Error initialising IV";
1556			goto bad;
1557		}
1558	}
1559
1560	ret = 0;
1561bad:
1562	kfree(cipher_api);
 
1563	return ret;
 
1564
1565bad_mem:
1566	ti->error = "Cannot allocate cipher strings";
1567	return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1568}
1569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1570/*
1571 * Construct an encryption mapping:
1572 * <cipher> <key> <iv_offset> <dev_path> <start>
1573 */
1574static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1575{
1576	struct crypt_config *cc;
1577	unsigned int key_size, opt_params;
 
 
1578	unsigned long long tmpll;
1579	int ret;
1580	struct dm_arg_set as;
1581	const char *opt_string;
1582
1583	static struct dm_arg _args[] = {
1584		{0, 1, "Invalid number of feature args"},
1585	};
1586
1587	if (argc < 5) {
1588		ti->error = "Not enough arguments";
1589		return -EINVAL;
1590	}
1591
1592	key_size = strlen(argv[1]) >> 1;
 
 
 
 
1593
1594	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1595	if (!cc) {
1596		ti->error = "Cannot allocate encryption context";
1597		return -ENOMEM;
1598	}
1599	cc->key_size = key_size;
 
 
1600
1601	ti->private = cc;
1602	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
 
 
 
 
 
 
1603	if (ret < 0)
1604		goto bad;
1605
1606	ret = -ENOMEM;
1607	cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1608	if (!cc->io_pool) {
1609		ti->error = "Cannot allocate crypt io mempool";
 
 
 
 
 
1610		goto bad;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1611	}
1612
1613	cc->dmreq_start = sizeof(struct ablkcipher_request);
1614	cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1615	cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1616	cc->dmreq_start += crypto_ablkcipher_alignmask(any_tfm(cc)) &
1617			   ~(crypto_tfm_ctx_alignment() - 1);
1618
1619	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1620			sizeof(struct dm_crypt_request) + cc->iv_size);
1621	if (!cc->req_pool) {
1622		ti->error = "Cannot allocate crypt request mempool";
1623		goto bad;
1624	}
1625
1626	cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1627	if (!cc->page_pool) {
 
 
 
 
1628		ti->error = "Cannot allocate page mempool";
1629		goto bad;
1630	}
1631
1632	cc->bs = bioset_create(MIN_IOS, 0);
1633	if (!cc->bs) {
1634		ti->error = "Cannot allocate crypt bioset";
1635		goto bad;
1636	}
1637
 
 
1638	ret = -EINVAL;
1639	if (sscanf(argv[2], "%llu", &tmpll) != 1) {
 
1640		ti->error = "Invalid iv_offset sector";
1641		goto bad;
1642	}
1643	cc->iv_offset = tmpll;
1644
1645	if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
 
1646		ti->error = "Device lookup failed";
1647		goto bad;
1648	}
1649
1650	if (sscanf(argv[4], "%llu", &tmpll) != 1) {
 
1651		ti->error = "Invalid device sector";
1652		goto bad;
1653	}
1654	cc->start = tmpll;
1655
1656	argv += 5;
1657	argc -= 5;
 
 
 
 
 
 
1658
1659	/* Optional parameters */
1660	if (argc) {
1661		as.argc = argc;
1662		as.argv = argv;
 
 
 
 
 
 
 
 
 
 
1663
1664		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
 
1665		if (ret)
1666			goto bad;
1667
1668		opt_string = dm_shift_arg(&as);
1669
1670		if (opt_params == 1 && opt_string &&
1671		    !strcasecmp(opt_string, "allow_discards"))
1672			ti->num_discard_requests = 1;
1673		else if (opt_params) {
1674			ret = -EINVAL;
1675			ti->error = "Invalid feature arguments";
1676			goto bad;
1677		}
 
 
1678	}
1679
1680	ret = -ENOMEM;
1681	cc->io_queue = alloc_workqueue("kcryptd_io",
1682				       WQ_NON_REENTRANT|
1683				       WQ_MEM_RECLAIM,
1684				       1);
1685	if (!cc->io_queue) {
1686		ti->error = "Couldn't create kcryptd io queue";
1687		goto bad;
1688	}
1689
1690	cc->crypt_queue = alloc_workqueue("kcryptd",
1691					  WQ_NON_REENTRANT|
1692					  WQ_CPU_INTENSIVE|
1693					  WQ_MEM_RECLAIM,
1694					  1);
 
 
1695	if (!cc->crypt_queue) {
1696		ti->error = "Couldn't create kcryptd queue";
1697		goto bad;
1698	}
1699
1700	ti->num_flush_requests = 1;
1701	ti->discard_zeroes_data_unsupported = 1;
 
 
 
 
 
 
 
 
 
 
 
 
1702
 
1703	return 0;
1704
1705bad:
 
1706	crypt_dtr(ti);
1707	return ret;
1708}
1709
1710static int crypt_map(struct dm_target *ti, struct bio *bio,
1711		     union map_info *map_context)
1712{
1713	struct dm_crypt_io *io;
1714	struct crypt_config *cc;
1715
1716	/*
1717	 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1718	 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1719	 * - for REQ_DISCARD caller must use flush if IO ordering matters
1720	 */
1721	if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1722		cc = ti->private;
1723		bio->bi_bdev = cc->dev->bdev;
1724		if (bio_sectors(bio))
1725			bio->bi_sector = cc->start + dm_target_offset(ti, bio->bi_sector);
 
1726		return DM_MAPIO_REMAPPED;
1727	}
1728
1729	io = crypt_io_alloc(ti, bio, dm_target_offset(ti, bio->bi_sector));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1730
1731	if (bio_data_dir(io->base_bio) == READ) {
1732		if (kcryptd_io_read(io, GFP_NOWAIT))
1733			kcryptd_queue_io(io);
1734	} else
1735		kcryptd_queue_crypt(io);
1736
1737	return DM_MAPIO_SUBMITTED;
1738}
1739
1740static int crypt_status(struct dm_target *ti, status_type_t type,
1741			char *result, unsigned int maxlen)
 
 
 
 
 
1742{
1743	struct crypt_config *cc = ti->private;
1744	unsigned int sz = 0;
 
1745
1746	switch (type) {
1747	case STATUSTYPE_INFO:
1748		result[0] = '\0';
1749		break;
1750
1751	case STATUSTYPE_TABLE:
1752		DMEMIT("%s ", cc->cipher_string);
1753
1754		if (cc->key_size > 0) {
1755			if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1756				return -ENOMEM;
1757
1758			crypt_encode_key(result + sz, cc->key, cc->key_size);
1759			sz += cc->key_size << 1;
1760		} else {
1761			if (sz >= maxlen)
1762				return -ENOMEM;
1763			result[sz++] = '-';
1764		}
1765
1766		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1767				cc->dev->name, (unsigned long long)cc->start);
1768
1769		if (ti->num_discard_requests)
1770			DMEMIT(" 1 allow_discards");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1771
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1772		break;
1773	}
1774	return 0;
1775}
1776
1777static void crypt_postsuspend(struct dm_target *ti)
1778{
1779	struct crypt_config *cc = ti->private;
1780
1781	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1782}
1783
1784static int crypt_preresume(struct dm_target *ti)
1785{
1786	struct crypt_config *cc = ti->private;
1787
1788	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1789		DMERR("aborting resume - crypt key is not set.");
1790		return -EAGAIN;
1791	}
1792
1793	return 0;
1794}
1795
1796static void crypt_resume(struct dm_target *ti)
1797{
1798	struct crypt_config *cc = ti->private;
1799
1800	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1801}
1802
1803/* Message interface
1804 *	key set <key>
1805 *	key wipe
1806 */
1807static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
 
1808{
1809	struct crypt_config *cc = ti->private;
1810	int ret = -EINVAL;
1811
1812	if (argc < 2)
1813		goto error;
1814
1815	if (!strcasecmp(argv[0], "key")) {
1816		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1817			DMWARN("not suspended during key manipulation.");
1818			return -EINVAL;
1819		}
1820		if (argc == 3 && !strcasecmp(argv[1], "set")) {
 
 
 
 
 
 
 
1821			ret = crypt_set_key(cc, argv[2]);
1822			if (ret)
1823				return ret;
1824			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1825				ret = cc->iv_gen_ops->init(cc);
 
 
 
1826			return ret;
1827		}
1828		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
1829			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1830				ret = cc->iv_gen_ops->wipe(cc);
1831				if (ret)
1832					return ret;
1833			}
1834			return crypt_wipe_key(cc);
1835		}
1836	}
1837
1838error:
1839	DMWARN("unrecognised message received.");
1840	return -EINVAL;
1841}
1842
1843static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1844		       struct bio_vec *biovec, int max_size)
1845{
1846	struct crypt_config *cc = ti->private;
1847	struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1848
1849	if (!q->merge_bvec_fn)
1850		return max_size;
1851
1852	bvm->bi_bdev = cc->dev->bdev;
1853	bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1854
1855	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1856}
1857
1858static int crypt_iterate_devices(struct dm_target *ti,
1859				 iterate_devices_callout_fn fn, void *data)
1860{
1861	struct crypt_config *cc = ti->private;
1862
1863	return fn(ti, cc->dev, cc->start, ti->len, data);
 
 
 
 
 
 
 
 
 
 
 
 
 
1864}
1865
1866static struct target_type crypt_target = {
1867	.name   = "crypt",
1868	.version = {1, 11, 0},
1869	.module = THIS_MODULE,
1870	.ctr    = crypt_ctr,
1871	.dtr    = crypt_dtr,
 
 
1872	.map    = crypt_map,
1873	.status = crypt_status,
1874	.postsuspend = crypt_postsuspend,
1875	.preresume = crypt_preresume,
1876	.resume = crypt_resume,
1877	.message = crypt_message,
1878	.merge  = crypt_merge,
1879	.iterate_devices = crypt_iterate_devices,
 
1880};
 
1881
1882static int __init dm_crypt_init(void)
1883{
1884	int r;
1885
1886	_crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1887	if (!_crypt_io_pool)
1888		return -ENOMEM;
1889
1890	r = dm_register_target(&crypt_target);
1891	if (r < 0) {
1892		DMERR("register failed %d", r);
1893		kmem_cache_destroy(_crypt_io_pool);
1894	}
1895
1896	return r;
1897}
1898
1899static void __exit dm_crypt_exit(void)
1900{
1901	dm_unregister_target(&crypt_target);
1902	kmem_cache_destroy(_crypt_io_pool);
1903}
1904
1905module_init(dm_crypt_init);
1906module_exit(dm_crypt_exit);
1907
1908MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1909MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1910MODULE_LICENSE("GPL");
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2003 Jana Saout <jana@saout.de>
   4 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   5 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
   6 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
   7 *
   8 * This file is released under the GPL.
   9 */
  10
  11#include <linux/completion.h>
  12#include <linux/err.h>
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/kernel.h>
  16#include <linux/key.h>
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
  19#include <linux/blk-integrity.h>
  20#include <linux/mempool.h>
  21#include <linux/slab.h>
  22#include <linux/crypto.h>
  23#include <linux/workqueue.h>
  24#include <linux/kthread.h>
  25#include <linux/backing-dev.h>
 
  26#include <linux/atomic.h>
  27#include <linux/scatterlist.h>
  28#include <linux/rbtree.h>
  29#include <linux/ctype.h>
  30#include <asm/page.h>
  31#include <asm/unaligned.h>
  32#include <crypto/hash.h>
  33#include <crypto/md5.h>
  34#include <crypto/skcipher.h>
  35#include <crypto/aead.h>
  36#include <crypto/authenc.h>
  37#include <crypto/utils.h>
  38#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
  39#include <linux/key-type.h>
  40#include <keys/user-type.h>
  41#include <keys/encrypted-type.h>
  42#include <keys/trusted-type.h>
  43
  44#include <linux/device-mapper.h>
  45
  46#include "dm-audit.h"
  47
  48#define DM_MSG_PREFIX "crypt"
  49
  50/*
  51 * context holding the current state of a multi-part conversion
  52 */
  53struct convert_context {
  54	struct completion restart;
  55	struct bio *bio_in;
  56	struct bvec_iter iter_in;
  57	struct bio *bio_out;
  58	struct bvec_iter iter_out;
  59	atomic_t cc_pending;
  60	u64 cc_sector;
  61	union {
  62		struct skcipher_request *req;
  63		struct aead_request *req_aead;
  64	} r;
  65	bool aead_recheck;
  66	bool aead_failed;
  67
  68};
  69
  70/*
  71 * per bio private data
  72 */
  73struct dm_crypt_io {
  74	struct crypt_config *cc;
  75	struct bio *base_bio;
  76	u8 *integrity_metadata;
  77	bool integrity_metadata_from_pool:1;
  78
  79	struct work_struct work;
  80
  81	struct convert_context ctx;
  82
  83	atomic_t io_pending;
  84	blk_status_t error;
  85	sector_t sector;
  86
  87	struct bvec_iter saved_bi_iter;
  88
  89	struct rb_node rb_node;
  90} CRYPTO_MINALIGN_ATTR;
  91
  92struct dm_crypt_request {
  93	struct convert_context *ctx;
  94	struct scatterlist sg_in[4];
  95	struct scatterlist sg_out[4];
  96	u64 iv_sector;
  97};
  98
  99struct crypt_config;
 100
 101struct crypt_iv_operations {
 102	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
 103		   const char *opts);
 104	void (*dtr)(struct crypt_config *cc);
 105	int (*init)(struct crypt_config *cc);
 106	int (*wipe)(struct crypt_config *cc);
 107	int (*generator)(struct crypt_config *cc, u8 *iv,
 108			 struct dm_crypt_request *dmreq);
 109	int (*post)(struct crypt_config *cc, u8 *iv,
 110		    struct dm_crypt_request *dmreq);
 111};
 112
 
 
 
 
 
 113struct iv_benbi_private {
 114	int shift;
 115};
 116
 117#define LMK_SEED_SIZE 64 /* hash + 0 */
 118struct iv_lmk_private {
 119	struct crypto_shash *hash_tfm;
 120	u8 *seed;
 121};
 122
 123#define TCW_WHITENING_SIZE 16
 124struct iv_tcw_private {
 125	struct crypto_shash *crc32_tfm;
 126	u8 *iv_seed;
 127	u8 *whitening;
 128};
 129
 130#define ELEPHANT_MAX_KEY_SIZE 32
 131struct iv_elephant_private {
 132	struct crypto_skcipher *tfm;
 133};
 134
 135/*
 136 * Crypt: maps a linear range of a block device
 137 * and encrypts / decrypts at the same time.
 138 */
 139enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
 140	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
 141	     DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
 142	     DM_CRYPT_WRITE_INLINE };
 143
 144enum cipher_flags {
 145	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cipher */
 146	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
 147	CRYPT_ENCRYPT_PREPROCESS,	/* Must preprocess data for encryption (elephant) */
 
 148};
 149
 150/*
 151 * The fields in here must be read only after initialization.
 
 152 */
 153struct crypt_config {
 154	struct dm_dev *dev;
 155	sector_t start;
 156
 157	struct percpu_counter n_allocated_pages;
 
 
 
 
 
 
 
 158
 159	struct workqueue_struct *io_queue;
 160	struct workqueue_struct *crypt_queue;
 161
 162	spinlock_t write_thread_lock;
 163	struct task_struct *write_thread;
 164	struct rb_root write_tree;
 165
 166	char *cipher_string;
 167	char *cipher_auth;
 168	char *key_string;
 169
 170	const struct crypt_iv_operations *iv_gen_ops;
 171	union {
 
 172		struct iv_benbi_private benbi;
 173		struct iv_lmk_private lmk;
 174		struct iv_tcw_private tcw;
 175		struct iv_elephant_private elephant;
 176	} iv_gen_private;
 177	u64 iv_offset;
 178	unsigned int iv_size;
 179	unsigned short sector_size;
 180	unsigned char sector_shift;
 181
 182	union {
 183		struct crypto_skcipher **tfms;
 184		struct crypto_aead **tfms_aead;
 185	} cipher_tfm;
 186	unsigned int tfms_count;
 187	unsigned long cipher_flags;
 188
 189	/*
 190	 * Layout of each crypto request:
 191	 *
 192	 *   struct skcipher_request
 193	 *      context
 194	 *      padding
 195	 *   struct dm_crypt_request
 196	 *      padding
 197	 *   IV
 198	 *
 199	 * The padding is added so that dm_crypt_request and the IV are
 200	 * correctly aligned.
 201	 */
 202	unsigned int dmreq_start;
 203
 204	unsigned int per_bio_data_size;
 205
 206	unsigned long flags;
 207	unsigned int key_size;
 208	unsigned int key_parts;      /* independent parts in key buffer */
 209	unsigned int key_extra_size; /* additional keys length */
 210	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
 211
 212	unsigned int integrity_tag_size;
 213	unsigned int integrity_iv_size;
 214	unsigned int on_disk_tag_size;
 215
 216	/*
 217	 * pool for per bio private data, crypto requests,
 218	 * encryption requeusts/buffer pages and integrity tags
 219	 */
 220	unsigned int tag_pool_max_sectors;
 221	mempool_t tag_pool;
 222	mempool_t req_pool;
 223	mempool_t page_pool;
 224
 225	struct bio_set bs;
 226	struct mutex bio_alloc_lock;
 227
 228	u8 *authenc_key; /* space for keys in authenc() format (if used) */
 229	u8 key[] __counted_by(key_size);
 230};
 231
 232#define MIN_IOS		64
 233#define MAX_TAG_SIZE	480
 234#define POOL_ENTRY_SIZE	512
 235
 236static DEFINE_SPINLOCK(dm_crypt_clients_lock);
 237static unsigned int dm_crypt_clients_n;
 238static volatile unsigned long dm_crypt_pages_per_client;
 239#define DM_CRYPT_MEMORY_PERCENT			2
 240#define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_VECS * 16)
 241
 242static void crypt_endio(struct bio *clone);
 243static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 244static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
 245					     struct scatterlist *sg);
 246
 247static bool crypt_integrity_aead(struct crypt_config *cc);
 
 
 
 248
 249/*
 250 * Use this to access cipher attributes that are independent of the key.
 251 */
 252static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
 253{
 254	return cc->cipher_tfm.tfms[0];
 255}
 256
 257static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
 258{
 259	return cc->cipher_tfm.tfms_aead[0];
 260}
 261
 262/*
 263 * Different IV generation algorithms:
 264 *
 265 * plain: the initial vector is the 32-bit little-endian version of the sector
 266 *        number, padded with zeros if necessary.
 267 *
 268 * plain64: the initial vector is the 64-bit little-endian version of the sector
 269 *        number, padded with zeros if necessary.
 270 *
 271 * plain64be: the initial vector is the 64-bit big-endian version of the sector
 272 *        number, padded with zeros if necessary.
 273 *
 274 * essiv: "encrypted sector|salt initial vector", the sector number is
 275 *        encrypted with the bulk cipher using a salt as key. The salt
 276 *        should be derived from the bulk cipher's key via hashing.
 277 *
 278 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 279 *        (needed for LRW-32-AES and possible other narrow block modes)
 280 *
 281 * null: the initial vector is always zero.  Provides compatibility with
 282 *       obsolete loop_fish2 devices.  Do not use for new devices.
 283 *
 284 * lmk:  Compatible implementation of the block chaining mode used
 285 *       by the Loop-AES block device encryption system
 286 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 287 *       It operates on full 512 byte sectors and uses CBC
 288 *       with an IV derived from the sector number, the data and
 289 *       optionally extra IV seed.
 290 *       This means that after decryption the first block
 291 *       of sector must be tweaked according to decrypted data.
 292 *       Loop-AES can use three encryption schemes:
 293 *         version 1: is plain aes-cbc mode
 294 *         version 2: uses 64 multikey scheme with lmk IV generator
 295 *         version 3: the same as version 2 with additional IV seed
 296 *                   (it uses 65 keys, last key is used as IV seed)
 297 *
 298 * tcw:  Compatible implementation of the block chaining mode used
 299 *       by the TrueCrypt device encryption system (prior to version 4.1).
 300 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
 301 *       It operates on full 512 byte sectors and uses CBC
 302 *       with an IV derived from initial key and the sector number.
 303 *       In addition, whitening value is applied on every sector, whitening
 304 *       is calculated from initial key, sector number and mixed using CRC32.
 305 *       Note that this encryption scheme is vulnerable to watermarking attacks
 306 *       and should be used for old compatible containers access only.
 307 *
 308 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
 309 *        The IV is encrypted little-endian byte-offset (with the same key
 310 *        and cipher as the volume).
 311 *
 312 * elephant: The extended version of eboiv with additional Elephant diffuser
 313 *           used with Bitlocker CBC mode.
 314 *           This mode was used in older Windows systems
 315 *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
 316 */
 317
 318static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 319			      struct dm_crypt_request *dmreq)
 320{
 321	memset(iv, 0, cc->iv_size);
 322	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 323
 324	return 0;
 325}
 326
 327static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 328				struct dm_crypt_request *dmreq)
 329{
 330	memset(iv, 0, cc->iv_size);
 331	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 332
 333	return 0;
 334}
 335
 336static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
 337				  struct dm_crypt_request *dmreq)
 338{
 339	memset(iv, 0, cc->iv_size);
 340	/* iv_size is at least of size u64; usually it is 16 bytes */
 341	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 342
 343	return 0;
 
 
 
 
 
 
 344}
 345
 346static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 347			      struct dm_crypt_request *dmreq)
 348{
 349	/*
 350	 * ESSIV encryption of the IV is now handled by the crypto API,
 351	 * so just pass the plain sector number here.
 352	 */
 353	memset(iv, 0, cc->iv_size);
 354	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 
 355
 356	return 0;
 357}
 358
 359static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 360			      const char *opts)
 361{
 362	unsigned int bs;
 363	int log;
 364
 365	if (crypt_integrity_aead(cc))
 366		bs = crypto_aead_blocksize(any_tfm_aead(cc));
 367	else
 368		bs = crypto_skcipher_blocksize(any_tfm(cc));
 369	log = ilog2(bs);
 370
 371	/*
 372	 * We need to calculate how far we must shift the sector count
 373	 * to get the cipher block count, we use this shift in _gen.
 374	 */
 375	if (1 << log != bs) {
 376		ti->error = "cypher blocksize is not a power of 2";
 377		return -EINVAL;
 378	}
 379
 380	if (log > 9) {
 381		ti->error = "cypher blocksize is > 512";
 382		return -EINVAL;
 383	}
 384
 385	cc->iv_gen_private.benbi.shift = 9 - log;
 386
 387	return 0;
 388}
 389
 390static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 391{
 392}
 393
 394static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 395			      struct dm_crypt_request *dmreq)
 396{
 397	__be64 val;
 398
 399	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 400
 401	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 402	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 403
 404	return 0;
 405}
 406
 407static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 408			     struct dm_crypt_request *dmreq)
 409{
 410	memset(iv, 0, cc->iv_size);
 411
 412	return 0;
 413}
 414
 415static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 416{
 417	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 418
 419	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 420		crypto_free_shash(lmk->hash_tfm);
 421	lmk->hash_tfm = NULL;
 422
 423	kfree_sensitive(lmk->seed);
 424	lmk->seed = NULL;
 425}
 426
 427static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 428			    const char *opts)
 429{
 430	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 431
 432	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 433		ti->error = "Unsupported sector size for LMK";
 434		return -EINVAL;
 435	}
 436
 437	lmk->hash_tfm = crypto_alloc_shash("md5", 0,
 438					   CRYPTO_ALG_ALLOCATES_MEMORY);
 439	if (IS_ERR(lmk->hash_tfm)) {
 440		ti->error = "Error initializing LMK hash";
 441		return PTR_ERR(lmk->hash_tfm);
 442	}
 443
 444	/* No seed in LMK version 2 */
 445	if (cc->key_parts == cc->tfms_count) {
 446		lmk->seed = NULL;
 447		return 0;
 448	}
 449
 450	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 451	if (!lmk->seed) {
 452		crypt_iv_lmk_dtr(cc);
 453		ti->error = "Error kmallocing seed storage in LMK";
 454		return -ENOMEM;
 455	}
 456
 457	return 0;
 458}
 459
 460static int crypt_iv_lmk_init(struct crypt_config *cc)
 461{
 462	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 463	int subkey_size = cc->key_size / cc->key_parts;
 464
 465	/* LMK seed is on the position of LMK_KEYS + 1 key */
 466	if (lmk->seed)
 467		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 468		       crypto_shash_digestsize(lmk->hash_tfm));
 469
 470	return 0;
 471}
 472
 473static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 474{
 475	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 476
 477	if (lmk->seed)
 478		memset(lmk->seed, 0, LMK_SEED_SIZE);
 479
 480	return 0;
 481}
 482
 483static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 484			    struct dm_crypt_request *dmreq,
 485			    u8 *data)
 486{
 487	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 488	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
 
 
 
 489	struct md5_state md5state;
 490	__le32 buf[4];
 491	int i, r;
 492
 493	desc->tfm = lmk->hash_tfm;
 
 494
 495	r = crypto_shash_init(desc);
 496	if (r)
 497		return r;
 498
 499	if (lmk->seed) {
 500		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
 501		if (r)
 502			return r;
 503	}
 504
 505	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
 506	r = crypto_shash_update(desc, data + 16, 16 * 31);
 507	if (r)
 508		return r;
 509
 510	/* Sector is cropped to 56 bits here */
 511	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 512	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 513	buf[2] = cpu_to_le32(4024);
 514	buf[3] = 0;
 515	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
 516	if (r)
 517		return r;
 518
 519	/* No MD5 padding here */
 520	r = crypto_shash_export(desc, &md5state);
 521	if (r)
 522		return r;
 523
 524	for (i = 0; i < MD5_HASH_WORDS; i++)
 525		__cpu_to_le32s(&md5state.hash[i]);
 526	memcpy(iv, &md5state.hash, cc->iv_size);
 527
 528	return 0;
 529}
 530
 531static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 532			    struct dm_crypt_request *dmreq)
 533{
 534	struct scatterlist *sg;
 535	u8 *src;
 536	int r = 0;
 537
 538	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 539		sg = crypt_get_sg_data(cc, dmreq->sg_in);
 540		src = kmap_local_page(sg_page(sg));
 541		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
 542		kunmap_local(src);
 543	} else
 544		memset(iv, 0, cc->iv_size);
 545
 546	return r;
 547}
 548
 549static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 550			     struct dm_crypt_request *dmreq)
 551{
 552	struct scatterlist *sg;
 553	u8 *dst;
 554	int r;
 555
 556	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 557		return 0;
 558
 559	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 560	dst = kmap_local_page(sg_page(sg));
 561	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
 562
 563	/* Tweak the first block of plaintext sector */
 564	if (!r)
 565		crypto_xor(dst + sg->offset, iv, cc->iv_size);
 566
 567	kunmap_local(dst);
 568	return r;
 569}
 570
 571static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 572{
 573	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 574
 575	kfree_sensitive(tcw->iv_seed);
 576	tcw->iv_seed = NULL;
 577	kfree_sensitive(tcw->whitening);
 578	tcw->whitening = NULL;
 579
 580	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 581		crypto_free_shash(tcw->crc32_tfm);
 582	tcw->crc32_tfm = NULL;
 583}
 584
 585static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 586			    const char *opts)
 587{
 588	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 589
 590	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 591		ti->error = "Unsupported sector size for TCW";
 592		return -EINVAL;
 593	}
 594
 595	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 596		ti->error = "Wrong key size for TCW";
 597		return -EINVAL;
 598	}
 599
 600	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
 601					    CRYPTO_ALG_ALLOCATES_MEMORY);
 602	if (IS_ERR(tcw->crc32_tfm)) {
 603		ti->error = "Error initializing CRC32 in TCW";
 604		return PTR_ERR(tcw->crc32_tfm);
 605	}
 606
 607	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 608	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 609	if (!tcw->iv_seed || !tcw->whitening) {
 610		crypt_iv_tcw_dtr(cc);
 611		ti->error = "Error allocating seed storage in TCW";
 612		return -ENOMEM;
 613	}
 614
 615	return 0;
 616}
 617
 618static int crypt_iv_tcw_init(struct crypt_config *cc)
 619{
 620	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 621	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 622
 623	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 624	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 625	       TCW_WHITENING_SIZE);
 626
 627	return 0;
 628}
 629
 630static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 631{
 632	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 633
 634	memset(tcw->iv_seed, 0, cc->iv_size);
 635	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 636
 637	return 0;
 638}
 639
 640static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 641				  struct dm_crypt_request *dmreq,
 642				  u8 *data)
 643{
 644	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 645	__le64 sector = cpu_to_le64(dmreq->iv_sector);
 646	u8 buf[TCW_WHITENING_SIZE];
 647	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
 648	int i, r;
 649
 650	/* xor whitening with sector number */
 651	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
 652	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
 653
 654	/* calculate crc32 for every 32bit part and xor it */
 655	desc->tfm = tcw->crc32_tfm;
 656	for (i = 0; i < 4; i++) {
 657		r = crypto_shash_digest(desc, &buf[i * 4], 4, &buf[i * 4]);
 658		if (r)
 659			goto out;
 660	}
 661	crypto_xor(&buf[0], &buf[12], 4);
 662	crypto_xor(&buf[4], &buf[8], 4);
 663
 664	/* apply whitening (8 bytes) to whole sector */
 665	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 666		crypto_xor(data + i * 8, buf, 8);
 667out:
 668	memzero_explicit(buf, sizeof(buf));
 669	return r;
 670}
 671
 672static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 673			    struct dm_crypt_request *dmreq)
 674{
 675	struct scatterlist *sg;
 676	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 677	__le64 sector = cpu_to_le64(dmreq->iv_sector);
 678	u8 *src;
 679	int r = 0;
 680
 681	/* Remove whitening from ciphertext */
 682	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 683		sg = crypt_get_sg_data(cc, dmreq->sg_in);
 684		src = kmap_local_page(sg_page(sg));
 685		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
 686		kunmap_local(src);
 687	}
 688
 689	/* Calculate IV */
 690	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
 691	if (cc->iv_size > 8)
 692		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
 693			       cc->iv_size - 8);
 694
 695	return r;
 696}
 697
 698static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 699			     struct dm_crypt_request *dmreq)
 700{
 701	struct scatterlist *sg;
 702	u8 *dst;
 703	int r;
 704
 705	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 706		return 0;
 707
 708	/* Apply whitening on ciphertext */
 709	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 710	dst = kmap_local_page(sg_page(sg));
 711	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
 712	kunmap_local(dst);
 713
 714	return r;
 715}
 716
 717static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
 718				struct dm_crypt_request *dmreq)
 719{
 720	/* Used only for writes, there must be an additional space to store IV */
 721	get_random_bytes(iv, cc->iv_size);
 722	return 0;
 723}
 724
 725static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 726			    const char *opts)
 727{
 728	if (crypt_integrity_aead(cc)) {
 729		ti->error = "AEAD transforms not supported for EBOIV";
 730		return -EINVAL;
 731	}
 732
 733	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
 734		ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
 735		return -EINVAL;
 736	}
 737
 738	return 0;
 739}
 740
 741static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
 742			    struct dm_crypt_request *dmreq)
 743{
 744	struct crypto_skcipher *tfm = any_tfm(cc);
 745	struct skcipher_request *req;
 746	struct scatterlist src, dst;
 747	DECLARE_CRYPTO_WAIT(wait);
 748	unsigned int reqsize;
 749	int err;
 750	u8 *buf;
 751
 752	reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm);
 753	reqsize = ALIGN(reqsize, __alignof__(__le64));
 754
 755	req = kmalloc(reqsize + cc->iv_size, GFP_NOIO);
 756	if (!req)
 757		return -ENOMEM;
 758
 759	skcipher_request_set_tfm(req, tfm);
 760
 761	buf = (u8 *)req + reqsize;
 762	memset(buf, 0, cc->iv_size);
 763	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
 764
 765	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
 766	sg_init_one(&dst, iv, cc->iv_size);
 767	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
 768	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
 769	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 770	kfree_sensitive(req);
 771
 772	return err;
 773}
 774
 775static void crypt_iv_elephant_dtr(struct crypt_config *cc)
 776{
 777	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 778
 779	crypto_free_skcipher(elephant->tfm);
 780	elephant->tfm = NULL;
 781}
 782
 783static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
 784			    const char *opts)
 785{
 786	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 787	int r;
 788
 789	elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
 790					      CRYPTO_ALG_ALLOCATES_MEMORY);
 791	if (IS_ERR(elephant->tfm)) {
 792		r = PTR_ERR(elephant->tfm);
 793		elephant->tfm = NULL;
 794		return r;
 795	}
 796
 797	r = crypt_iv_eboiv_ctr(cc, ti, NULL);
 798	if (r)
 799		crypt_iv_elephant_dtr(cc);
 800	return r;
 801}
 802
 803static void diffuser_disk_to_cpu(u32 *d, size_t n)
 804{
 805#ifndef __LITTLE_ENDIAN
 806	int i;
 807
 808	for (i = 0; i < n; i++)
 809		d[i] = le32_to_cpu((__le32)d[i]);
 810#endif
 811}
 812
 813static void diffuser_cpu_to_disk(__le32 *d, size_t n)
 814{
 815#ifndef __LITTLE_ENDIAN
 816	int i;
 817
 818	for (i = 0; i < n; i++)
 819		d[i] = cpu_to_le32((u32)d[i]);
 820#endif
 821}
 822
 823static void diffuser_a_decrypt(u32 *d, size_t n)
 824{
 825	int i, i1, i2, i3;
 826
 827	for (i = 0; i < 5; i++) {
 828		i1 = 0;
 829		i2 = n - 2;
 830		i3 = n - 5;
 831
 832		while (i1 < (n - 1)) {
 833			d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
 834			i1++; i2++; i3++;
 835
 836			if (i3 >= n)
 837				i3 -= n;
 838
 839			d[i1] += d[i2] ^ d[i3];
 840			i1++; i2++; i3++;
 841
 842			if (i2 >= n)
 843				i2 -= n;
 844
 845			d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
 846			i1++; i2++; i3++;
 847
 848			d[i1] += d[i2] ^ d[i3];
 849			i1++; i2++; i3++;
 850		}
 851	}
 852}
 853
 854static void diffuser_a_encrypt(u32 *d, size_t n)
 855{
 856	int i, i1, i2, i3;
 857
 858	for (i = 0; i < 5; i++) {
 859		i1 = n - 1;
 860		i2 = n - 2 - 1;
 861		i3 = n - 5 - 1;
 862
 863		while (i1 > 0) {
 864			d[i1] -= d[i2] ^ d[i3];
 865			i1--; i2--; i3--;
 866
 867			d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
 868			i1--; i2--; i3--;
 869
 870			if (i2 < 0)
 871				i2 += n;
 872
 873			d[i1] -= d[i2] ^ d[i3];
 874			i1--; i2--; i3--;
 875
 876			if (i3 < 0)
 877				i3 += n;
 878
 879			d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
 880			i1--; i2--; i3--;
 881		}
 882	}
 883}
 884
 885static void diffuser_b_decrypt(u32 *d, size_t n)
 886{
 887	int i, i1, i2, i3;
 888
 889	for (i = 0; i < 3; i++) {
 890		i1 = 0;
 891		i2 = 2;
 892		i3 = 5;
 893
 894		while (i1 < (n - 1)) {
 895			d[i1] += d[i2] ^ d[i3];
 896			i1++; i2++; i3++;
 897
 898			d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
 899			i1++; i2++; i3++;
 900
 901			if (i2 >= n)
 902				i2 -= n;
 903
 904			d[i1] += d[i2] ^ d[i3];
 905			i1++; i2++; i3++;
 906
 907			if (i3 >= n)
 908				i3 -= n;
 909
 910			d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
 911			i1++; i2++; i3++;
 912		}
 913	}
 914}
 915
 916static void diffuser_b_encrypt(u32 *d, size_t n)
 917{
 918	int i, i1, i2, i3;
 919
 920	for (i = 0; i < 3; i++) {
 921		i1 = n - 1;
 922		i2 = 2 - 1;
 923		i3 = 5 - 1;
 924
 925		while (i1 > 0) {
 926			d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
 927			i1--; i2--; i3--;
 928
 929			if (i3 < 0)
 930				i3 += n;
 931
 932			d[i1] -= d[i2] ^ d[i3];
 933			i1--; i2--; i3--;
 934
 935			if (i2 < 0)
 936				i2 += n;
 937
 938			d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
 939			i1--; i2--; i3--;
 940
 941			d[i1] -= d[i2] ^ d[i3];
 942			i1--; i2--; i3--;
 943		}
 944	}
 945}
 946
 947static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
 948{
 949	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 950	u8 *es, *ks, *data, *data2, *data_offset;
 951	struct skcipher_request *req;
 952	struct scatterlist *sg, *sg2, src, dst;
 953	DECLARE_CRYPTO_WAIT(wait);
 954	int i, r;
 955
 956	req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
 957	es = kzalloc(16, GFP_NOIO); /* Key for AES */
 958	ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
 959
 960	if (!req || !es || !ks) {
 961		r = -ENOMEM;
 962		goto out;
 963	}
 964
 965	*(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
 966
 967	/* E(Ks, e(s)) */
 968	sg_init_one(&src, es, 16);
 969	sg_init_one(&dst, ks, 16);
 970	skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
 971	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
 972	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 973	if (r)
 974		goto out;
 975
 976	/* E(Ks, e'(s)) */
 977	es[15] = 0x80;
 978	sg_init_one(&dst, &ks[16], 16);
 979	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 980	if (r)
 981		goto out;
 982
 983	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 984	data = kmap_local_page(sg_page(sg));
 985	data_offset = data + sg->offset;
 986
 987	/* Cannot modify original bio, copy to sg_out and apply Elephant to it */
 988	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 989		sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
 990		data2 = kmap_local_page(sg_page(sg2));
 991		memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
 992		kunmap_local(data2);
 993	}
 994
 995	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 996		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
 997		diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
 998		diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
 999		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1000	}
1001
1002	for (i = 0; i < (cc->sector_size / 32); i++)
1003		crypto_xor(data_offset + i * 32, ks, 32);
1004
1005	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1006		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1007		diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1008		diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1009		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1010	}
1011
1012	kunmap_local(data);
1013out:
1014	kfree_sensitive(ks);
1015	kfree_sensitive(es);
1016	skcipher_request_free(req);
1017	return r;
1018}
1019
1020static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1021			    struct dm_crypt_request *dmreq)
1022{
1023	int r;
1024
1025	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1026		r = crypt_iv_elephant(cc, dmreq);
1027		if (r)
1028			return r;
1029	}
1030
1031	return crypt_iv_eboiv_gen(cc, iv, dmreq);
1032}
1033
1034static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1035				  struct dm_crypt_request *dmreq)
1036{
1037	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1038		return crypt_iv_elephant(cc, dmreq);
1039
1040	return 0;
1041}
1042
1043static int crypt_iv_elephant_init(struct crypt_config *cc)
1044{
1045	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1046	int key_offset = cc->key_size - cc->key_extra_size;
1047
1048	return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1049}
1050
1051static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1052{
1053	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1054	u8 key[ELEPHANT_MAX_KEY_SIZE];
1055
1056	memset(key, 0, cc->key_extra_size);
1057	return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1058}
1059
1060static const struct crypt_iv_operations crypt_iv_plain_ops = {
1061	.generator = crypt_iv_plain_gen
1062};
1063
1064static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1065	.generator = crypt_iv_plain64_gen
1066};
1067
1068static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1069	.generator = crypt_iv_plain64be_gen
1070};
1071
1072static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1073	.generator = crypt_iv_essiv_gen
1074};
1075
1076static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1077	.ctr	   = crypt_iv_benbi_ctr,
1078	.dtr	   = crypt_iv_benbi_dtr,
1079	.generator = crypt_iv_benbi_gen
1080};
1081
1082static const struct crypt_iv_operations crypt_iv_null_ops = {
1083	.generator = crypt_iv_null_gen
1084};
1085
1086static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1087	.ctr	   = crypt_iv_lmk_ctr,
1088	.dtr	   = crypt_iv_lmk_dtr,
1089	.init	   = crypt_iv_lmk_init,
1090	.wipe	   = crypt_iv_lmk_wipe,
1091	.generator = crypt_iv_lmk_gen,
1092	.post	   = crypt_iv_lmk_post
1093};
1094
1095static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1096	.ctr	   = crypt_iv_tcw_ctr,
1097	.dtr	   = crypt_iv_tcw_dtr,
1098	.init	   = crypt_iv_tcw_init,
1099	.wipe	   = crypt_iv_tcw_wipe,
1100	.generator = crypt_iv_tcw_gen,
1101	.post	   = crypt_iv_tcw_post
1102};
1103
1104static const struct crypt_iv_operations crypt_iv_random_ops = {
1105	.generator = crypt_iv_random_gen
1106};
1107
1108static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1109	.ctr	   = crypt_iv_eboiv_ctr,
1110	.generator = crypt_iv_eboiv_gen
1111};
1112
1113static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1114	.ctr	   = crypt_iv_elephant_ctr,
1115	.dtr	   = crypt_iv_elephant_dtr,
1116	.init	   = crypt_iv_elephant_init,
1117	.wipe	   = crypt_iv_elephant_wipe,
1118	.generator = crypt_iv_elephant_gen,
1119	.post	   = crypt_iv_elephant_post
1120};
1121
1122/*
1123 * Integrity extensions
1124 */
1125static bool crypt_integrity_aead(struct crypt_config *cc)
1126{
1127	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1128}
1129
1130static bool crypt_integrity_hmac(struct crypt_config *cc)
1131{
1132	return crypt_integrity_aead(cc) && cc->key_mac_size;
1133}
1134
1135/* Get sg containing data */
1136static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1137					     struct scatterlist *sg)
1138{
1139	if (unlikely(crypt_integrity_aead(cc)))
1140		return &sg[2];
1141
1142	return sg;
1143}
1144
1145static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1146{
1147	struct bio_integrity_payload *bip;
1148	unsigned int tag_len;
1149	int ret;
1150
1151	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1152		return 0;
1153
1154	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1155	if (IS_ERR(bip))
1156		return PTR_ERR(bip);
1157
1158	tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1159
1160	bip->bip_iter.bi_sector = io->cc->start + io->sector;
1161
1162	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1163				     tag_len, offset_in_page(io->integrity_metadata));
1164	if (unlikely(ret != tag_len))
1165		return -ENOMEM;
1166
1167	return 0;
1168}
1169
1170static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1171{
1172#ifdef CONFIG_BLK_DEV_INTEGRITY
1173	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1174	struct mapped_device *md = dm_table_get_md(ti->table);
1175
1176	/* From now we require underlying device with our integrity profile */
1177	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1178		ti->error = "Integrity profile not supported.";
1179		return -EINVAL;
1180	}
1181
1182	if (bi->tag_size != cc->on_disk_tag_size ||
1183	    bi->tuple_size != cc->on_disk_tag_size) {
1184		ti->error = "Integrity profile tag size mismatch.";
1185		return -EINVAL;
1186	}
1187	if (1 << bi->interval_exp != cc->sector_size) {
1188		ti->error = "Integrity profile sector size mismatch.";
1189		return -EINVAL;
1190	}
1191
1192	if (crypt_integrity_aead(cc)) {
1193		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1194		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1195		       cc->integrity_tag_size, cc->integrity_iv_size);
1196
1197		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1198			ti->error = "Integrity AEAD auth tag size is not supported.";
1199			return -EINVAL;
1200		}
1201	} else if (cc->integrity_iv_size)
1202		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1203		       cc->integrity_iv_size);
1204
1205	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1206		ti->error = "Not enough space for integrity tag in the profile.";
1207		return -EINVAL;
1208	}
1209
1210	return 0;
1211#else
1212	ti->error = "Integrity profile not supported.";
1213	return -EINVAL;
1214#endif
1215}
1216
1217static void crypt_convert_init(struct crypt_config *cc,
1218			       struct convert_context *ctx,
1219			       struct bio *bio_out, struct bio *bio_in,
1220			       sector_t sector)
1221{
1222	ctx->bio_in = bio_in;
1223	ctx->bio_out = bio_out;
1224	if (bio_in)
1225		ctx->iter_in = bio_in->bi_iter;
1226	if (bio_out)
1227		ctx->iter_out = bio_out->bi_iter;
1228	ctx->cc_sector = sector + cc->iv_offset;
1229	init_completion(&ctx->restart);
1230}
1231
1232static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1233					     void *req)
1234{
1235	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1236}
1237
1238static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
 
1239{
1240	return (void *)((char *)dmreq - cc->dmreq_start);
1241}
1242
1243static u8 *iv_of_dmreq(struct crypt_config *cc,
1244		       struct dm_crypt_request *dmreq)
1245{
1246	if (crypt_integrity_aead(cc))
1247		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1248			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1249	else
1250		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1251			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1252}
1253
1254static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1255		       struct dm_crypt_request *dmreq)
1256{
1257	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1258}
1259
1260static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1261		       struct dm_crypt_request *dmreq)
1262{
1263	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1264
1265	return (__le64 *) ptr;
1266}
1267
1268static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1269		       struct dm_crypt_request *dmreq)
1270{
1271	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1272		  cc->iv_size + sizeof(uint64_t);
1273
1274	return (unsigned int *)ptr;
1275}
1276
1277static void *tag_from_dmreq(struct crypt_config *cc,
1278				struct dm_crypt_request *dmreq)
1279{
1280	struct convert_context *ctx = dmreq->ctx;
1281	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1282
1283	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1284		cc->on_disk_tag_size];
1285}
1286
1287static void *iv_tag_from_dmreq(struct crypt_config *cc,
1288			       struct dm_crypt_request *dmreq)
1289{
1290	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1291}
1292
1293static int crypt_convert_block_aead(struct crypt_config *cc,
1294				     struct convert_context *ctx,
1295				     struct aead_request *req,
1296				     unsigned int tag_offset)
1297{
1298	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1299	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1300	struct dm_crypt_request *dmreq;
1301	u8 *iv, *org_iv, *tag_iv, *tag;
1302	__le64 *sector;
1303	int r = 0;
1304
1305	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1306
1307	/* Reject unexpected unaligned bio. */
1308	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1309		return -EIO;
1310
1311	dmreq = dmreq_of_req(cc, req);
1312	dmreq->iv_sector = ctx->cc_sector;
1313	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1314		dmreq->iv_sector >>= cc->sector_shift;
1315	dmreq->ctx = ctx;
1316
1317	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1318
1319	sector = org_sector_of_dmreq(cc, dmreq);
1320	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1321
1322	iv = iv_of_dmreq(cc, dmreq);
1323	org_iv = org_iv_of_dmreq(cc, dmreq);
1324	tag = tag_from_dmreq(cc, dmreq);
1325	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1326
1327	/* AEAD request:
1328	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1329	 *  | (authenticated) | (auth+encryption) |              |
1330	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1331	 */
1332	sg_init_table(dmreq->sg_in, 4);
1333	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1334	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1335	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1336	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1337
1338	sg_init_table(dmreq->sg_out, 4);
1339	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1340	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1341	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1342	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1343
1344	if (cc->iv_gen_ops) {
1345		/* For READs use IV stored in integrity metadata */
1346		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1347			memcpy(org_iv, tag_iv, cc->iv_size);
1348		} else {
1349			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1350			if (r < 0)
1351				return r;
1352			/* Store generated IV in integrity metadata */
1353			if (cc->integrity_iv_size)
1354				memcpy(tag_iv, org_iv, cc->iv_size);
1355		}
1356		/* Working copy of IV, to be modified in crypto API */
1357		memcpy(iv, org_iv, cc->iv_size);
1358	}
1359
1360	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1361	if (bio_data_dir(ctx->bio_in) == WRITE) {
1362		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1363				       cc->sector_size, iv);
1364		r = crypto_aead_encrypt(req);
1365		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1366			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1367			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1368	} else {
1369		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1370				       cc->sector_size + cc->integrity_tag_size, iv);
1371		r = crypto_aead_decrypt(req);
1372	}
1373
1374	if (r == -EBADMSG) {
1375		sector_t s = le64_to_cpu(*sector);
1376
1377		ctx->aead_failed = true;
1378		if (ctx->aead_recheck) {
1379			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1380				    ctx->bio_in->bi_bdev, s);
1381			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1382					 ctx->bio_in, s, 0);
1383		}
1384	}
1385
1386	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1387		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1388
1389	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1390	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1391
1392	return r;
1393}
1394
1395static int crypt_convert_block_skcipher(struct crypt_config *cc,
1396					struct convert_context *ctx,
1397					struct skcipher_request *req,
1398					unsigned int tag_offset)
1399{
1400	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1401	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1402	struct scatterlist *sg_in, *sg_out;
1403	struct dm_crypt_request *dmreq;
1404	u8 *iv, *org_iv, *tag_iv;
1405	__le64 *sector;
1406	int r = 0;
1407
1408	/* Reject unexpected unaligned bio. */
1409	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1410		return -EIO;
1411
1412	dmreq = dmreq_of_req(cc, req);
1413	dmreq->iv_sector = ctx->cc_sector;
1414	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1415		dmreq->iv_sector >>= cc->sector_shift;
1416	dmreq->ctx = ctx;
1417
1418	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1419
1420	iv = iv_of_dmreq(cc, dmreq);
1421	org_iv = org_iv_of_dmreq(cc, dmreq);
1422	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1423
1424	sector = org_sector_of_dmreq(cc, dmreq);
1425	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1426
1427	/* For skcipher we use only the first sg item */
1428	sg_in  = &dmreq->sg_in[0];
1429	sg_out = &dmreq->sg_out[0];
1430
1431	sg_init_table(sg_in, 1);
1432	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1433
1434	sg_init_table(sg_out, 1);
1435	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1436
1437	if (cc->iv_gen_ops) {
1438		/* For READs use IV stored in integrity metadata */
1439		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1440			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1441		} else {
1442			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1443			if (r < 0)
1444				return r;
1445			/* Data can be already preprocessed in generator */
1446			if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1447				sg_in = sg_out;
1448			/* Store generated IV in integrity metadata */
1449			if (cc->integrity_iv_size)
1450				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1451		}
1452		/* Working copy of IV, to be modified in crypto API */
1453		memcpy(iv, org_iv, cc->iv_size);
1454	}
1455
1456	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
 
1457
1458	if (bio_data_dir(ctx->bio_in) == WRITE)
1459		r = crypto_skcipher_encrypt(req);
1460	else
1461		r = crypto_skcipher_decrypt(req);
1462
1463	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1464		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1465
1466	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1467	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1468
1469	return r;
1470}
1471
1472static void kcryptd_async_done(void *async_req, int error);
1473
1474static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1475				     struct convert_context *ctx)
1476{
1477	unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1478
1479	if (!ctx->r.req) {
1480		ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1481		if (!ctx->r.req)
1482			return -ENOMEM;
1483	}
1484
1485	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1486
1487	/*
1488	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1489	 * requests if driver request queue is full.
1490	 */
1491	skcipher_request_set_callback(ctx->r.req,
1492	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1493	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1494
1495	return 0;
1496}
1497
1498static int crypt_alloc_req_aead(struct crypt_config *cc,
1499				 struct convert_context *ctx)
1500{
1501	if (!ctx->r.req_aead) {
1502		ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1503		if (!ctx->r.req_aead)
1504			return -ENOMEM;
1505	}
1506
1507	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1508
1509	/*
1510	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1511	 * requests if driver request queue is full.
1512	 */
1513	aead_request_set_callback(ctx->r.req_aead,
1514	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1515	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1516
1517	return 0;
1518}
1519
1520static int crypt_alloc_req(struct crypt_config *cc,
1521			    struct convert_context *ctx)
1522{
1523	if (crypt_integrity_aead(cc))
1524		return crypt_alloc_req_aead(cc, ctx);
1525	else
1526		return crypt_alloc_req_skcipher(cc, ctx);
1527}
1528
1529static void crypt_free_req_skcipher(struct crypt_config *cc,
1530				    struct skcipher_request *req, struct bio *base_bio)
1531{
1532	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1533
1534	if ((struct skcipher_request *)(io + 1) != req)
1535		mempool_free(req, &cc->req_pool);
1536}
1537
1538static void crypt_free_req_aead(struct crypt_config *cc,
1539				struct aead_request *req, struct bio *base_bio)
1540{
1541	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1542
1543	if ((struct aead_request *)(io + 1) != req)
1544		mempool_free(req, &cc->req_pool);
1545}
1546
1547static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1548{
1549	if (crypt_integrity_aead(cc))
1550		crypt_free_req_aead(cc, req, base_bio);
1551	else
1552		crypt_free_req_skcipher(cc, req, base_bio);
1553}
1554
1555/*
1556 * Encrypt / decrypt data from one bio to another one (can be the same one)
1557 */
1558static blk_status_t crypt_convert(struct crypt_config *cc,
1559			 struct convert_context *ctx, bool atomic, bool reset_pending)
1560{
1561	unsigned int tag_offset = 0;
1562	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1563	int r;
1564
1565	/*
1566	 * if reset_pending is set we are dealing with the bio for the first time,
1567	 * else we're continuing to work on the previous bio, so don't mess with
1568	 * the cc_pending counter
1569	 */
1570	if (reset_pending)
1571		atomic_set(&ctx->cc_pending, 1);
1572
1573	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
 
1574
1575		r = crypt_alloc_req(cc, ctx);
1576		if (r) {
1577			complete(&ctx->restart);
1578			return BLK_STS_DEV_RESOURCE;
1579		}
1580
1581		atomic_inc(&ctx->cc_pending);
1582
1583		if (crypt_integrity_aead(cc))
1584			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1585		else
1586			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1587
1588		switch (r) {
1589		/*
1590		 * The request was queued by a crypto driver
1591		 * but the driver request queue is full, let's wait.
1592		 */
1593		case -EBUSY:
1594			if (in_interrupt()) {
1595				if (try_wait_for_completion(&ctx->restart)) {
1596					/*
1597					 * we don't have to block to wait for completion,
1598					 * so proceed
1599					 */
1600				} else {
1601					/*
1602					 * we can't wait for completion without blocking
1603					 * exit and continue processing in a workqueue
1604					 */
1605					ctx->r.req = NULL;
1606					ctx->cc_sector += sector_step;
1607					tag_offset++;
1608					return BLK_STS_DEV_RESOURCE;
1609				}
1610			} else {
1611				wait_for_completion(&ctx->restart);
1612			}
1613			reinit_completion(&ctx->restart);
1614			fallthrough;
1615		/*
1616		 * The request is queued and processed asynchronously,
1617		 * completion function kcryptd_async_done() will be called.
1618		 */
1619		case -EINPROGRESS:
1620			ctx->r.req = NULL;
1621			ctx->cc_sector += sector_step;
1622			tag_offset++;
1623			continue;
1624		/*
1625		 * The request was already processed (synchronously).
1626		 */
1627		case 0:
1628			atomic_dec(&ctx->cc_pending);
1629			ctx->cc_sector += sector_step;
1630			tag_offset++;
1631			if (!atomic)
1632				cond_resched();
1633			continue;
1634		/*
1635		 * There was a data integrity error.
1636		 */
1637		case -EBADMSG:
1638			atomic_dec(&ctx->cc_pending);
1639			return BLK_STS_PROTECTION;
1640		/*
1641		 * There was an error while processing the request.
1642		 */
1643		default:
1644			atomic_dec(&ctx->cc_pending);
1645			return BLK_STS_IOERR;
1646		}
1647	}
1648
1649	return 0;
1650}
1651
1652static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
 
 
 
 
 
 
1653
1654/*
1655 * Generate a new unfragmented bio with the given size
1656 * This should never violate the device limitations (but only because
1657 * max_segment_size is being constrained to PAGE_SIZE).
1658 *
1659 * This function may be called concurrently. If we allocate from the mempool
1660 * concurrently, there is a possibility of deadlock. For example, if we have
1661 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1662 * the mempool concurrently, it may deadlock in a situation where both processes
1663 * have allocated 128 pages and the mempool is exhausted.
1664 *
1665 * In order to avoid this scenario we allocate the pages under a mutex.
1666 *
1667 * In order to not degrade performance with excessive locking, we try
1668 * non-blocking allocations without a mutex first but on failure we fallback
1669 * to blocking allocations with a mutex.
1670 *
1671 * In order to reduce allocation overhead, we try to allocate compound pages in
1672 * the first pass. If they are not available, we fall back to the mempool.
1673 */
1674static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
 
1675{
1676	struct crypt_config *cc = io->cc;
1677	struct bio *clone;
1678	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1679	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1680	unsigned int remaining_size;
1681	unsigned int order = MAX_PAGE_ORDER;
1682
1683retry:
1684	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1685		mutex_lock(&cc->bio_alloc_lock);
1686
1687	clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1688				 GFP_NOIO, &cc->bs);
1689	clone->bi_private = io;
1690	clone->bi_end_io = crypt_endio;
1691	clone->bi_ioprio = io->base_bio->bi_ioprio;
1692
1693	remaining_size = size;
 
1694
1695	while (remaining_size) {
1696		struct page *pages;
1697		unsigned size_to_add;
1698		unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1699		order = min(order, remaining_order);
1700
1701		while (order > 0) {
1702			if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) +
1703					(1 << order) > dm_crypt_pages_per_client))
1704				goto decrease_order;
1705			pages = alloc_pages(gfp_mask
1706				| __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP,
1707				order);
1708			if (likely(pages != NULL)) {
1709				percpu_counter_add(&cc->n_allocated_pages, 1 << order);
1710				goto have_pages;
1711			}
1712decrease_order:
1713			order--;
1714		}
1715
1716		pages = mempool_alloc(&cc->page_pool, gfp_mask);
1717		if (!pages) {
1718			crypt_free_buffer_pages(cc, clone);
1719			bio_put(clone);
1720			gfp_mask |= __GFP_DIRECT_RECLAIM;
1721			order = 0;
1722			goto retry;
 
 
 
 
 
 
1723		}
1724
1725have_pages:
1726		size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size);
1727		__bio_add_page(clone, pages, size_to_add, 0);
1728		remaining_size -= size_to_add;
1729	}
1730
1731	/* Allocate space for integrity tags */
1732	if (dm_crypt_integrity_io_alloc(io, clone)) {
1733		crypt_free_buffer_pages(cc, clone);
1734		bio_put(clone);
1735		clone = NULL;
1736	}
1737
1738	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1739		mutex_unlock(&cc->bio_alloc_lock);
1740
1741	return clone;
1742}
1743
1744static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1745{
1746	struct folio_iter fi;
 
1747
1748	if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */
1749		bio_for_each_folio_all(fi, clone) {
1750			if (folio_test_large(fi.folio)) {
1751				percpu_counter_sub(&cc->n_allocated_pages,
1752						1 << folio_order(fi.folio));
1753				folio_put(fi.folio);
1754			} else {
1755				mempool_free(&fi.folio->page, &cc->page_pool);
1756			}
1757		}
1758	}
1759}
1760
1761static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1762			  struct bio *bio, sector_t sector)
1763{
1764	io->cc = cc;
 
 
 
 
1765	io->base_bio = bio;
1766	io->sector = sector;
1767	io->error = 0;
1768	io->ctx.aead_recheck = false;
1769	io->ctx.aead_failed = false;
1770	io->ctx.r.req = NULL;
1771	io->integrity_metadata = NULL;
1772	io->integrity_metadata_from_pool = false;
1773	atomic_set(&io->io_pending, 0);
1774}
1775
1776static void crypt_inc_pending(struct dm_crypt_io *io)
1777{
1778	atomic_inc(&io->io_pending);
1779}
1780
1781static void kcryptd_queue_read(struct dm_crypt_io *io);
1782
1783/*
1784 * One of the bios was finished. Check for completion of
1785 * the whole request and correctly clean up the buffer.
 
1786 */
1787static void crypt_dec_pending(struct dm_crypt_io *io)
1788{
1789	struct crypt_config *cc = io->cc;
1790	struct bio *base_bio = io->base_bio;
1791	blk_status_t error = io->error;
 
1792
1793	if (!atomic_dec_and_test(&io->io_pending))
1794		return;
1795
1796	if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) &&
1797	    cc->on_disk_tag_size && bio_data_dir(base_bio) == READ) {
1798		io->ctx.aead_recheck = true;
1799		io->ctx.aead_failed = false;
1800		io->error = 0;
1801		kcryptd_queue_read(io);
1802		return;
 
1803	}
1804
1805	if (io->ctx.r.req)
1806		crypt_free_req(cc, io->ctx.r.req, base_bio);
1807
1808	if (unlikely(io->integrity_metadata_from_pool))
1809		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1810	else
1811		kfree(io->integrity_metadata);
1812
1813	base_bio->bi_status = error;
1814
1815	bio_endio(base_bio);
1816}
1817
1818/*
1819 * kcryptd/kcryptd_io:
1820 *
1821 * Needed because it would be very unwise to do decryption in an
1822 * interrupt context.
1823 *
1824 * kcryptd performs the actual encryption or decryption.
1825 *
1826 * kcryptd_io performs the IO submission.
1827 *
1828 * They must be separated as otherwise the final stages could be
1829 * starved by new requests which can block in the first stages due
1830 * to memory allocation.
1831 *
1832 * The work is done per CPU global for all dm-crypt instances.
1833 * They should not depend on each other and do not block.
1834 */
1835static void crypt_endio(struct bio *clone)
1836{
1837	struct dm_crypt_io *io = clone->bi_private;
1838	struct crypt_config *cc = io->cc;
1839	unsigned int rw = bio_data_dir(clone);
1840	blk_status_t error = clone->bi_status;
1841
1842	if (io->ctx.aead_recheck && !error) {
1843		kcryptd_queue_crypt(io);
1844		return;
1845	}
1846
1847	/*
1848	 * free the processed pages
1849	 */
1850	if (rw == WRITE || io->ctx.aead_recheck)
1851		crypt_free_buffer_pages(cc, clone);
1852
1853	bio_put(clone);
1854
1855	if (rw == READ && !error) {
1856		kcryptd_queue_crypt(io);
1857		return;
1858	}
1859
1860	if (unlikely(error))
1861		io->error = error;
1862
1863	crypt_dec_pending(io);
1864}
1865
1866#define CRYPT_MAP_READ_GFP GFP_NOWAIT
 
 
 
 
 
 
 
 
 
1867
1868static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1869{
1870	struct crypt_config *cc = io->cc;
 
1871	struct bio *clone;
1872
1873	if (io->ctx.aead_recheck) {
1874		if (!(gfp & __GFP_DIRECT_RECLAIM))
1875			return 1;
1876		crypt_inc_pending(io);
1877		clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1878		if (unlikely(!clone)) {
1879			crypt_dec_pending(io);
1880			return 1;
1881		}
1882		clone->bi_iter.bi_sector = cc->start + io->sector;
1883		crypt_convert_init(cc, &io->ctx, clone, clone, io->sector);
1884		io->saved_bi_iter = clone->bi_iter;
1885		dm_submit_bio_remap(io->base_bio, clone);
1886		return 0;
1887	}
1888
1889	/*
1890	 * We need the original biovec array in order to decrypt the whole bio
1891	 * data *afterwards* -- thanks to immutable biovecs we don't need to
1892	 * worry about the block layer modifying the biovec array; so leverage
1893	 * bio_alloc_clone().
1894	 */
1895	clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1896	if (!clone)
1897		return 1;
1898	clone->bi_private = io;
1899	clone->bi_end_io = crypt_endio;
1900
1901	crypt_inc_pending(io);
1902
1903	clone->bi_iter.bi_sector = cc->start + io->sector;
 
 
 
 
 
 
1904
1905	if (dm_crypt_integrity_io_alloc(io, clone)) {
1906		crypt_dec_pending(io);
1907		bio_put(clone);
1908		return 1;
1909	}
1910
1911	dm_submit_bio_remap(io->base_bio, clone);
1912	return 0;
1913}
1914
1915static void kcryptd_io_read_work(struct work_struct *work)
1916{
1917	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1918
1919	crypt_inc_pending(io);
1920	if (kcryptd_io_read(io, GFP_NOIO))
1921		io->error = BLK_STS_RESOURCE;
1922	crypt_dec_pending(io);
1923}
1924
1925static void kcryptd_queue_read(struct dm_crypt_io *io)
1926{
1927	struct crypt_config *cc = io->cc;
1928
1929	INIT_WORK(&io->work, kcryptd_io_read_work);
1930	queue_work(cc->io_queue, &io->work);
 
 
 
 
 
1931}
1932
1933static void kcryptd_io_write(struct dm_crypt_io *io)
1934{
1935	struct bio *clone = io->ctx.bio_out;
1936
1937	dm_submit_bio_remap(io->base_bio, clone);
 
1938}
1939
1940#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1941
1942static int dmcrypt_write(void *data)
1943{
1944	struct crypt_config *cc = data;
1945	struct dm_crypt_io *io;
1946
1947	while (1) {
1948		struct rb_root write_tree;
1949		struct blk_plug plug;
1950
1951		spin_lock_irq(&cc->write_thread_lock);
1952continue_locked:
1953
1954		if (!RB_EMPTY_ROOT(&cc->write_tree))
1955			goto pop_from_list;
1956
1957		set_current_state(TASK_INTERRUPTIBLE);
1958
1959		spin_unlock_irq(&cc->write_thread_lock);
1960
1961		if (unlikely(kthread_should_stop())) {
1962			set_current_state(TASK_RUNNING);
1963			break;
1964		}
1965
1966		schedule();
1967
1968		spin_lock_irq(&cc->write_thread_lock);
1969		goto continue_locked;
1970
1971pop_from_list:
1972		write_tree = cc->write_tree;
1973		cc->write_tree = RB_ROOT;
1974		spin_unlock_irq(&cc->write_thread_lock);
1975
1976		BUG_ON(rb_parent(write_tree.rb_node));
1977
1978		/*
1979		 * Note: we cannot walk the tree here with rb_next because
1980		 * the structures may be freed when kcryptd_io_write is called.
1981		 */
1982		blk_start_plug(&plug);
1983		do {
1984			io = crypt_io_from_node(rb_first(&write_tree));
1985			rb_erase(&io->rb_node, &write_tree);
1986			kcryptd_io_write(io);
1987			cond_resched();
1988		} while (!RB_EMPTY_ROOT(&write_tree));
1989		blk_finish_plug(&plug);
1990	}
1991	return 0;
1992}
1993
1994static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1995{
1996	struct bio *clone = io->ctx.bio_out;
1997	struct crypt_config *cc = io->cc;
1998	unsigned long flags;
1999	sector_t sector;
2000	struct rb_node **rbp, *parent;
2001
2002	if (unlikely(io->error)) {
2003		crypt_free_buffer_pages(cc, clone);
2004		bio_put(clone);
 
2005		crypt_dec_pending(io);
2006		return;
2007	}
2008
2009	/* crypt_convert should have filled the clone bio */
2010	BUG_ON(io->ctx.iter_out.bi_size);
2011
2012	clone->bi_iter.bi_sector = cc->start + io->sector;
2013
2014	if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
2015	    test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
2016		dm_submit_bio_remap(io->base_bio, clone);
2017		return;
2018	}
2019
2020	spin_lock_irqsave(&cc->write_thread_lock, flags);
2021	if (RB_EMPTY_ROOT(&cc->write_tree))
2022		wake_up_process(cc->write_thread);
2023	rbp = &cc->write_tree.rb_node;
2024	parent = NULL;
2025	sector = io->sector;
2026	while (*rbp) {
2027		parent = *rbp;
2028		if (sector < crypt_io_from_node(parent)->sector)
2029			rbp = &(*rbp)->rb_left;
2030		else
2031			rbp = &(*rbp)->rb_right;
2032	}
2033	rb_link_node(&io->rb_node, parent, rbp);
2034	rb_insert_color(&io->rb_node, &cc->write_tree);
2035	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
2036}
2037
2038static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
2039				       struct convert_context *ctx)
2040
2041{
2042	if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
2043		return false;
2044
2045	/*
2046	 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
2047	 * constraints so they do not need to be issued inline by
2048	 * kcryptd_crypt_write_convert().
2049	 */
2050	switch (bio_op(ctx->bio_in)) {
2051	case REQ_OP_WRITE:
2052	case REQ_OP_WRITE_ZEROES:
2053		return true;
2054	default:
2055		return false;
2056	}
2057}
2058
2059static void kcryptd_crypt_write_continue(struct work_struct *work)
2060{
2061	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2062	struct crypt_config *cc = io->cc;
2063	struct convert_context *ctx = &io->ctx;
2064	int crypt_finished;
2065	sector_t sector = io->sector;
2066	blk_status_t r;
2067
2068	wait_for_completion(&ctx->restart);
2069	reinit_completion(&ctx->restart);
2070
2071	r = crypt_convert(cc, &io->ctx, true, false);
2072	if (r)
2073		io->error = r;
2074	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2075	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2076		/* Wait for completion signaled by kcryptd_async_done() */
2077		wait_for_completion(&ctx->restart);
2078		crypt_finished = 1;
2079	}
2080
2081	/* Encryption was already finished, submit io now */
2082	if (crypt_finished) {
2083		kcryptd_crypt_write_io_submit(io, 0);
2084		io->sector = sector;
2085	}
2086
2087	crypt_dec_pending(io);
2088}
2089
2090static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2091{
2092	struct crypt_config *cc = io->cc;
2093	struct convert_context *ctx = &io->ctx;
2094	struct bio *clone;
 
2095	int crypt_finished;
 
 
2096	sector_t sector = io->sector;
2097	blk_status_t r;
2098
2099	/*
2100	 * Prevent io from disappearing until this function completes.
2101	 */
2102	crypt_inc_pending(io);
2103	crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
 
 
 
 
 
 
 
 
 
 
 
2104
2105	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2106	if (unlikely(!clone)) {
2107		io->error = BLK_STS_IOERR;
2108		goto dec;
2109	}
2110
2111	io->ctx.bio_out = clone;
2112	io->ctx.iter_out = clone->bi_iter;
2113
2114	if (crypt_integrity_aead(cc)) {
2115		bio_copy_data(clone, io->base_bio);
2116		io->ctx.bio_in = clone;
2117		io->ctx.iter_in = clone->bi_iter;
2118	}
2119
2120	sector += bio_sectors(clone);
 
 
 
 
 
 
 
 
 
2121
2122	crypt_inc_pending(io);
2123	r = crypt_convert(cc, ctx,
2124			  test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2125	/*
2126	 * Crypto API backlogged the request, because its queue was full
2127	 * and we're in softirq context, so continue from a workqueue
2128	 * (TODO: is it actually possible to be in softirq in the write path?)
2129	 */
2130	if (r == BLK_STS_DEV_RESOURCE) {
2131		INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2132		queue_work(cc->crypt_queue, &io->work);
2133		return;
2134	}
2135	if (r)
2136		io->error = r;
2137	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2138	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2139		/* Wait for completion signaled by kcryptd_async_done() */
2140		wait_for_completion(&ctx->restart);
2141		crypt_finished = 1;
2142	}
2143
2144	/* Encryption was already finished, submit io now */
2145	if (crypt_finished) {
2146		kcryptd_crypt_write_io_submit(io, 0);
2147		io->sector = sector;
2148	}
 
2149
2150dec:
2151	crypt_dec_pending(io);
2152}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2153
2154static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2155{
2156	if (io->ctx.aead_recheck) {
2157		if (!io->error) {
2158			io->ctx.bio_in->bi_iter = io->saved_bi_iter;
2159			bio_copy_data(io->base_bio, io->ctx.bio_in);
2160		}
2161		crypt_free_buffer_pages(io->cc, io->ctx.bio_in);
2162		bio_put(io->ctx.bio_in);
2163	}
 
2164	crypt_dec_pending(io);
2165}
2166
2167static void kcryptd_crypt_read_continue(struct work_struct *work)
2168{
2169	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2170	struct crypt_config *cc = io->cc;
2171	blk_status_t r;
2172
2173	wait_for_completion(&io->ctx.restart);
2174	reinit_completion(&io->ctx.restart);
2175
2176	r = crypt_convert(cc, &io->ctx, true, false);
2177	if (r)
2178		io->error = r;
2179
2180	if (atomic_dec_and_test(&io->ctx.cc_pending))
2181		kcryptd_crypt_read_done(io);
2182
2183	crypt_dec_pending(io);
2184}
2185
2186static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2187{
2188	struct crypt_config *cc = io->cc;
2189	blk_status_t r;
2190
2191	crypt_inc_pending(io);
2192
2193	if (io->ctx.aead_recheck) {
2194		io->ctx.cc_sector = io->sector + cc->iv_offset;
2195		r = crypt_convert(cc, &io->ctx,
2196				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2197	} else {
2198		crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2199				   io->sector);
2200
2201		r = crypt_convert(cc, &io->ctx,
2202				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2203	}
2204	/*
2205	 * Crypto API backlogged the request, because its queue was full
2206	 * and we're in softirq context, so continue from a workqueue
2207	 */
2208	if (r == BLK_STS_DEV_RESOURCE) {
2209		INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2210		queue_work(cc->crypt_queue, &io->work);
2211		return;
2212	}
2213	if (r)
2214		io->error = r;
2215
2216	if (atomic_dec_and_test(&io->ctx.cc_pending))
2217		kcryptd_crypt_read_done(io);
2218
2219	crypt_dec_pending(io);
2220}
2221
2222static void kcryptd_async_done(void *data, int error)
 
2223{
2224	struct dm_crypt_request *dmreq = data;
2225	struct convert_context *ctx = dmreq->ctx;
2226	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2227	struct crypt_config *cc = io->cc;
2228
2229	/*
2230	 * A request from crypto driver backlog is going to be processed now,
2231	 * finish the completion and continue in crypt_convert().
2232	 * (Callback will be called for the second time for this request.)
2233	 */
2234	if (error == -EINPROGRESS) {
2235		complete(&ctx->restart);
2236		return;
2237	}
2238
2239	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2240		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2241
2242	if (error == -EBADMSG) {
2243		sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2244
2245		ctx->aead_failed = true;
2246		if (ctx->aead_recheck) {
2247			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2248				    ctx->bio_in->bi_bdev, s);
2249			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2250					 ctx->bio_in, s, 0);
2251		}
2252		io->error = BLK_STS_PROTECTION;
2253	} else if (error < 0)
2254		io->error = BLK_STS_IOERR;
2255
2256	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2257
2258	if (!atomic_dec_and_test(&ctx->cc_pending))
2259		return;
2260
2261	/*
2262	 * The request is fully completed: for inline writes, let
2263	 * kcryptd_crypt_write_convert() do the IO submission.
2264	 */
2265	if (bio_data_dir(io->base_bio) == READ) {
2266		kcryptd_crypt_read_done(io);
2267		return;
2268	}
2269
2270	if (kcryptd_crypt_write_inline(cc, ctx)) {
2271		complete(&ctx->restart);
2272		return;
2273	}
2274
2275	kcryptd_crypt_write_io_submit(io, 1);
2276}
2277
2278static void kcryptd_crypt(struct work_struct *work)
2279{
2280	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2281
2282	if (bio_data_dir(io->base_bio) == READ)
2283		kcryptd_crypt_read_convert(io);
2284	else
2285		kcryptd_crypt_write_convert(io);
2286}
2287
2288static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2289{
2290	struct crypt_config *cc = io->cc;
2291
2292	if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2293	    (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2294		/*
2295		 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2296		 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2297		 * it is being executed with irqs disabled.
2298		 */
2299		if (in_hardirq() || irqs_disabled()) {
2300			INIT_WORK(&io->work, kcryptd_crypt);
2301			queue_work(system_bh_wq, &io->work);
2302			return;
2303		} else {
2304			kcryptd_crypt(&io->work);
2305			return;
2306		}
2307	}
2308
2309	INIT_WORK(&io->work, kcryptd_crypt);
2310	queue_work(cc->crypt_queue, &io->work);
2311}
2312
2313static void crypt_free_tfms_aead(struct crypt_config *cc)
2314{
2315	if (!cc->cipher_tfm.tfms_aead)
2316		return;
2317
2318	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2319		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2320		cc->cipher_tfm.tfms_aead[0] = NULL;
2321	}
2322
2323	kfree(cc->cipher_tfm.tfms_aead);
2324	cc->cipher_tfm.tfms_aead = NULL;
2325}
2326
2327static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2328{
 
 
2329	unsigned int i;
2330
2331	if (!cc->cipher_tfm.tfms)
2332		return;
2333
2334	for (i = 0; i < cc->tfms_count; i++)
2335		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2336			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2337			cc->cipher_tfm.tfms[i] = NULL;
2338		}
2339
2340	kfree(cc->cipher_tfm.tfms);
2341	cc->cipher_tfm.tfms = NULL;
2342}
2343
2344static void crypt_free_tfms(struct crypt_config *cc)
2345{
2346	if (crypt_integrity_aead(cc))
2347		crypt_free_tfms_aead(cc);
2348	else
2349		crypt_free_tfms_skcipher(cc);
2350}
2351
2352static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2353{
2354	unsigned int i;
2355	int err;
2356
2357	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2358				      sizeof(struct crypto_skcipher *),
2359				      GFP_KERNEL);
2360	if (!cc->cipher_tfm.tfms)
2361		return -ENOMEM;
2362
2363	for (i = 0; i < cc->tfms_count; i++) {
2364		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2365						CRYPTO_ALG_ALLOCATES_MEMORY);
2366		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2367			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2368			crypt_free_tfms(cc);
2369			return err;
2370		}
2371	}
2372
2373	/*
2374	 * dm-crypt performance can vary greatly depending on which crypto
2375	 * algorithm implementation is used.  Help people debug performance
2376	 * problems by logging the ->cra_driver_name.
2377	 */
2378	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2379	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2380	return 0;
2381}
2382
2383static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2384{
2385	int err;
2386
2387	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2388	if (!cc->cipher_tfm.tfms)
2389		return -ENOMEM;
2390
2391	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2392						CRYPTO_ALG_ALLOCATES_MEMORY);
2393	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2394		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2395		crypt_free_tfms(cc);
2396		return err;
2397	}
2398
2399	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2400	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2401	return 0;
2402}
2403
2404static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2405{
2406	if (crypt_integrity_aead(cc))
2407		return crypt_alloc_tfms_aead(cc, ciphermode);
2408	else
2409		return crypt_alloc_tfms_skcipher(cc, ciphermode);
2410}
2411
2412static unsigned int crypt_subkey_size(struct crypt_config *cc)
2413{
2414	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2415}
2416
2417static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2418{
2419	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2420}
2421
2422/*
2423 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2424 * the key must be for some reason in special format.
2425 * This funcion converts cc->key to this special format.
2426 */
2427static void crypt_copy_authenckey(char *p, const void *key,
2428				  unsigned int enckeylen, unsigned int authkeylen)
2429{
2430	struct crypto_authenc_key_param *param;
2431	struct rtattr *rta;
2432
2433	rta = (struct rtattr *)p;
2434	param = RTA_DATA(rta);
2435	param->enckeylen = cpu_to_be32(enckeylen);
2436	rta->rta_len = RTA_LENGTH(sizeof(*param));
2437	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2438	p += RTA_SPACE(sizeof(*param));
2439	memcpy(p, key + enckeylen, authkeylen);
2440	p += authkeylen;
2441	memcpy(p, key, enckeylen);
2442}
2443
2444static int crypt_setkey(struct crypt_config *cc)
2445{
2446	unsigned int subkey_size;
2447	int err = 0, i, r;
2448
2449	/* Ignore extra keys (which are used for IV etc) */
2450	subkey_size = crypt_subkey_size(cc);
2451
2452	if (crypt_integrity_hmac(cc)) {
2453		if (subkey_size < cc->key_mac_size)
2454			return -EINVAL;
2455
2456		crypt_copy_authenckey(cc->authenc_key, cc->key,
2457				      subkey_size - cc->key_mac_size,
2458				      cc->key_mac_size);
2459	}
2460
2461	for (i = 0; i < cc->tfms_count; i++) {
2462		if (crypt_integrity_hmac(cc))
2463			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2464				cc->authenc_key, crypt_authenckey_size(cc));
2465		else if (crypt_integrity_aead(cc))
2466			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2467					       cc->key + (i * subkey_size),
2468					       subkey_size);
2469		else
2470			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2471						   cc->key + (i * subkey_size),
2472						   subkey_size);
2473		if (r)
2474			err = r;
2475	}
2476
2477	if (crypt_integrity_hmac(cc))
2478		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2479
2480	return err;
2481}
2482
2483#ifdef CONFIG_KEYS
2484
2485static bool contains_whitespace(const char *str)
2486{
2487	while (*str)
2488		if (isspace(*str++))
2489			return true;
2490	return false;
2491}
2492
2493static int set_key_user(struct crypt_config *cc, struct key *key)
2494{
2495	const struct user_key_payload *ukp;
2496
2497	ukp = user_key_payload_locked(key);
2498	if (!ukp)
2499		return -EKEYREVOKED;
2500
2501	if (cc->key_size != ukp->datalen)
2502		return -EINVAL;
2503
2504	memcpy(cc->key, ukp->data, cc->key_size);
2505
2506	return 0;
2507}
2508
2509static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2510{
2511	const struct encrypted_key_payload *ekp;
 
 
2512
2513	ekp = key->payload.data[0];
2514	if (!ekp)
2515		return -EKEYREVOKED;
2516
2517	if (cc->key_size != ekp->decrypted_datalen)
2518		return -EINVAL;
2519
2520	memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2521
2522	return 0;
2523}
2524
2525static int set_key_trusted(struct crypt_config *cc, struct key *key)
2526{
2527	const struct trusted_key_payload *tkp;
 
2528
2529	tkp = key->payload.data[0];
2530	if (!tkp)
2531		return -EKEYREVOKED;
2532
2533	if (cc->key_size != tkp->key_len)
2534		return -EINVAL;
2535
2536	memcpy(cc->key, tkp->key, cc->key_size);
2537
2538	return 0;
2539}
2540
2541static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2542{
2543	char *new_key_string, *key_desc;
2544	int ret;
2545	struct key_type *type;
2546	struct key *key;
2547	int (*set_key)(struct crypt_config *cc, struct key *key);
2548
2549	/*
2550	 * Reject key_string with whitespace. dm core currently lacks code for
2551	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2552	 */
2553	if (contains_whitespace(key_string)) {
2554		DMERR("whitespace chars not allowed in key string");
2555		return -EINVAL;
2556	}
2557
2558	/* look for next ':' separating key_type from key_description */
2559	key_desc = strchr(key_string, ':');
2560	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2561		return -EINVAL;
2562
2563	if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2564		type = &key_type_logon;
2565		set_key = set_key_user;
2566	} else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2567		type = &key_type_user;
2568		set_key = set_key_user;
2569	} else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2570		   !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2571		type = &key_type_encrypted;
2572		set_key = set_key_encrypted;
2573	} else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2574		   !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2575		type = &key_type_trusted;
2576		set_key = set_key_trusted;
2577	} else {
2578		return -EINVAL;
2579	}
2580
2581	new_key_string = kstrdup(key_string, GFP_KERNEL);
2582	if (!new_key_string)
2583		return -ENOMEM;
2584
2585	key = request_key(type, key_desc + 1, NULL);
2586	if (IS_ERR(key)) {
2587		kfree_sensitive(new_key_string);
2588		return PTR_ERR(key);
2589	}
2590
2591	down_read(&key->sem);
2592
2593	ret = set_key(cc, key);
2594	if (ret < 0) {
2595		up_read(&key->sem);
2596		key_put(key);
2597		kfree_sensitive(new_key_string);
2598		return ret;
2599	}
2600
2601	up_read(&key->sem);
2602	key_put(key);
2603
2604	/* clear the flag since following operations may invalidate previously valid key */
2605	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2606
2607	ret = crypt_setkey(cc);
2608
2609	if (!ret) {
2610		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2611		kfree_sensitive(cc->key_string);
2612		cc->key_string = new_key_string;
2613	} else
2614		kfree_sensitive(new_key_string);
2615
2616	return ret;
2617}
2618
2619static int get_key_size(char **key_string)
2620{
2621	char *colon, dummy;
2622	int ret;
2623
2624	if (*key_string[0] != ':')
2625		return strlen(*key_string) >> 1;
2626
2627	/* look for next ':' in key string */
2628	colon = strpbrk(*key_string + 1, ":");
2629	if (!colon)
2630		return -EINVAL;
2631
2632	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2633		return -EINVAL;
2634
2635	*key_string = colon;
2636
2637	/* remaining key string should be :<logon|user>:<key_desc> */
2638
2639	return ret;
2640}
2641
2642#else
2643
2644static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2645{
2646	return -EINVAL;
2647}
2648
2649static int get_key_size(char **key_string)
2650{
2651	return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2652}
2653
2654#endif /* CONFIG_KEYS */
2655
2656static int crypt_set_key(struct crypt_config *cc, char *key)
2657{
2658	int r = -EINVAL;
2659	int key_string_len = strlen(key);
2660
 
 
 
 
2661	/* Hyphen (which gives a key_size of zero) means there is no key. */
2662	if (!cc->key_size && strcmp(key, "-"))
2663		goto out;
2664
2665	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2666	if (key[0] == ':') {
2667		r = crypt_set_keyring_key(cc, key + 1);
2668		goto out;
2669	}
2670
2671	/* clear the flag since following operations may invalidate previously valid key */
2672	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2673
2674	/* wipe references to any kernel keyring key */
2675	kfree_sensitive(cc->key_string);
2676	cc->key_string = NULL;
2677
2678	/* Decode key from its hex representation. */
2679	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2680		goto out;
2681
2682	r = crypt_setkey(cc);
2683	if (!r)
2684		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2685
2686out:
2687	/* Hex key string not needed after here, so wipe it. */
2688	memset(key, '0', key_string_len);
2689
2690	return r;
2691}
2692
2693static int crypt_wipe_key(struct crypt_config *cc)
2694{
2695	int r;
2696
2697	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2698	get_random_bytes(&cc->key, cc->key_size);
2699
2700	/* Wipe IV private keys */
2701	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2702		r = cc->iv_gen_ops->wipe(cc);
2703		if (r)
2704			return r;
2705	}
2706
2707	kfree_sensitive(cc->key_string);
2708	cc->key_string = NULL;
2709	r = crypt_setkey(cc);
2710	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2711
2712	return r;
2713}
2714
2715static void crypt_calculate_pages_per_client(void)
2716{
2717	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2718
2719	if (!dm_crypt_clients_n)
2720		return;
2721
2722	pages /= dm_crypt_clients_n;
2723	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2724		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2725	dm_crypt_pages_per_client = pages;
2726}
2727
2728static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2729{
2730	struct crypt_config *cc = pool_data;
2731	struct page *page;
2732
2733	/*
2734	 * Note, percpu_counter_read_positive() may over (and under) estimate
2735	 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2736	 * but avoids potential spinlock contention of an exact result.
2737	 */
2738	if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2739	    likely(gfp_mask & __GFP_NORETRY))
2740		return NULL;
2741
2742	page = alloc_page(gfp_mask);
2743	if (likely(page != NULL))
2744		percpu_counter_add(&cc->n_allocated_pages, 1);
2745
2746	return page;
2747}
2748
2749static void crypt_page_free(void *page, void *pool_data)
2750{
2751	struct crypt_config *cc = pool_data;
2752
2753	__free_page(page);
2754	percpu_counter_sub(&cc->n_allocated_pages, 1);
2755}
2756
2757static void crypt_dtr(struct dm_target *ti)
2758{
2759	struct crypt_config *cc = ti->private;
 
 
2760
2761	ti->private = NULL;
2762
2763	if (!cc)
2764		return;
2765
2766	if (cc->write_thread)
2767		kthread_stop(cc->write_thread);
2768
2769	if (cc->io_queue)
2770		destroy_workqueue(cc->io_queue);
2771	if (cc->crypt_queue)
2772		destroy_workqueue(cc->crypt_queue);
2773
2774	crypt_free_tfms(cc);
2775
2776	bioset_exit(&cc->bs);
2777
2778	mempool_exit(&cc->page_pool);
2779	mempool_exit(&cc->req_pool);
2780	mempool_exit(&cc->tag_pool);
2781
2782	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2783	percpu_counter_destroy(&cc->n_allocated_pages);
 
 
 
 
 
 
 
2784
2785	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2786		cc->iv_gen_ops->dtr(cc);
2787
2788	if (cc->dev)
2789		dm_put_device(ti, cc->dev);
2790
2791	kfree_sensitive(cc->cipher_string);
2792	kfree_sensitive(cc->key_string);
2793	kfree_sensitive(cc->cipher_auth);
2794	kfree_sensitive(cc->authenc_key);
2795
2796	mutex_destroy(&cc->bio_alloc_lock);
 
2797
2798	/* Must zero key material before freeing */
2799	kfree_sensitive(cc);
2800
2801	spin_lock(&dm_crypt_clients_lock);
2802	WARN_ON(!dm_crypt_clients_n);
2803	dm_crypt_clients_n--;
2804	crypt_calculate_pages_per_client();
2805	spin_unlock(&dm_crypt_clients_lock);
2806
2807	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2808}
2809
2810static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
 
2811{
2812	struct crypt_config *cc = ti->private;
2813
2814	if (crypt_integrity_aead(cc))
2815		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2816	else
2817		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2818
2819	if (cc->iv_size)
2820		/* at least a 64 bit sector number should fit in our buffer */
2821		cc->iv_size = max(cc->iv_size,
2822				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2823	else if (ivmode) {
2824		DMWARN("Selected cipher does not support IVs");
2825		ivmode = NULL;
2826	}
2827
2828	/* Choose ivmode, see comments at iv code. */
2829	if (ivmode == NULL)
2830		cc->iv_gen_ops = NULL;
2831	else if (strcmp(ivmode, "plain") == 0)
2832		cc->iv_gen_ops = &crypt_iv_plain_ops;
2833	else if (strcmp(ivmode, "plain64") == 0)
2834		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2835	else if (strcmp(ivmode, "plain64be") == 0)
2836		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2837	else if (strcmp(ivmode, "essiv") == 0)
2838		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2839	else if (strcmp(ivmode, "benbi") == 0)
2840		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2841	else if (strcmp(ivmode, "null") == 0)
2842		cc->iv_gen_ops = &crypt_iv_null_ops;
2843	else if (strcmp(ivmode, "eboiv") == 0)
2844		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2845	else if (strcmp(ivmode, "elephant") == 0) {
2846		cc->iv_gen_ops = &crypt_iv_elephant_ops;
2847		cc->key_parts = 2;
2848		cc->key_extra_size = cc->key_size / 2;
2849		if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2850			return -EINVAL;
2851		set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2852	} else if (strcmp(ivmode, "lmk") == 0) {
2853		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2854		/*
2855		 * Version 2 and 3 is recognised according
2856		 * to length of provided multi-key string.
2857		 * If present (version 3), last key is used as IV seed.
2858		 * All keys (including IV seed) are always the same size.
2859		 */
2860		if (cc->key_size % cc->key_parts) {
2861			cc->key_parts++;
2862			cc->key_extra_size = cc->key_size / cc->key_parts;
2863		}
2864	} else if (strcmp(ivmode, "tcw") == 0) {
2865		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2866		cc->key_parts += 2; /* IV + whitening */
2867		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2868	} else if (strcmp(ivmode, "random") == 0) {
2869		cc->iv_gen_ops = &crypt_iv_random_ops;
2870		/* Need storage space in integrity fields. */
2871		cc->integrity_iv_size = cc->iv_size;
2872	} else {
2873		ti->error = "Invalid IV mode";
2874		return -EINVAL;
2875	}
2876
2877	return 0;
2878}
2879
2880/*
2881 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2882 * The HMAC is needed to calculate tag size (HMAC digest size).
2883 * This should be probably done by crypto-api calls (once available...)
2884 */
2885static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2886{
2887	char *start, *end, *mac_alg = NULL;
2888	struct crypto_ahash *mac;
2889
2890	if (!strstarts(cipher_api, "authenc("))
2891		return 0;
2892
2893	start = strchr(cipher_api, '(');
2894	end = strchr(cipher_api, ',');
2895	if (!start || !end || ++start > end)
2896		return -EINVAL;
2897
2898	mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL);
2899	if (!mac_alg)
2900		return -ENOMEM;
2901
2902	mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2903	kfree(mac_alg);
2904
2905	if (IS_ERR(mac))
2906		return PTR_ERR(mac);
2907
2908	cc->key_mac_size = crypto_ahash_digestsize(mac);
2909	crypto_free_ahash(mac);
2910
2911	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2912	if (!cc->authenc_key)
2913		return -ENOMEM;
2914
2915	return 0;
2916}
2917
2918static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2919				char **ivmode, char **ivopts)
2920{
2921	struct crypt_config *cc = ti->private;
2922	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2923	int ret = -EINVAL;
2924
2925	cc->tfms_count = 1;
2926
2927	/*
2928	 * New format (capi: prefix)
2929	 * capi:cipher_api_spec-iv:ivopts
2930	 */
2931	tmp = &cipher_in[strlen("capi:")];
2932
2933	/* Separate IV options if present, it can contain another '-' in hash name */
2934	*ivopts = strrchr(tmp, ':');
2935	if (*ivopts) {
2936		**ivopts = '\0';
2937		(*ivopts)++;
2938	}
2939	/* Parse IV mode */
2940	*ivmode = strrchr(tmp, '-');
2941	if (*ivmode) {
2942		**ivmode = '\0';
2943		(*ivmode)++;
2944	}
2945	/* The rest is crypto API spec */
2946	cipher_api = tmp;
2947
2948	/* Alloc AEAD, can be used only in new format. */
2949	if (crypt_integrity_aead(cc)) {
2950		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2951		if (ret < 0) {
2952			ti->error = "Invalid AEAD cipher spec";
2953			return ret;
2954		}
2955	}
2956
2957	if (*ivmode && !strcmp(*ivmode, "lmk"))
2958		cc->tfms_count = 64;
2959
2960	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2961		if (!*ivopts) {
2962			ti->error = "Digest algorithm missing for ESSIV mode";
2963			return -EINVAL;
2964		}
2965		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2966			       cipher_api, *ivopts);
2967		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2968			ti->error = "Cannot allocate cipher string";
2969			return -ENOMEM;
2970		}
2971		cipher_api = buf;
2972	}
2973
2974	cc->key_parts = cc->tfms_count;
2975
2976	/* Allocate cipher */
2977	ret = crypt_alloc_tfms(cc, cipher_api);
2978	if (ret < 0) {
2979		ti->error = "Error allocating crypto tfm";
2980		return ret;
2981	}
2982
2983	if (crypt_integrity_aead(cc))
2984		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2985	else
2986		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2987
2988	return 0;
2989}
2990
2991static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2992				char **ivmode, char **ivopts)
2993{
2994	struct crypt_config *cc = ti->private;
2995	char *tmp, *cipher, *chainmode, *keycount;
2996	char *cipher_api = NULL;
2997	int ret = -EINVAL;
2998	char dummy;
2999
3000	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
 
3001		ti->error = "Bad cipher specification";
3002		return -EINVAL;
3003	}
3004
 
 
 
 
3005	/*
3006	 * Legacy dm-crypt cipher specification
3007	 * cipher[:keycount]-mode-iv:ivopts
3008	 */
3009	tmp = cipher_in;
3010	keycount = strsep(&tmp, "-");
3011	cipher = strsep(&keycount, ":");
3012
3013	if (!keycount)
3014		cc->tfms_count = 1;
3015	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
3016		 !is_power_of_2(cc->tfms_count)) {
3017		ti->error = "Bad cipher key count specification";
3018		return -EINVAL;
3019	}
3020	cc->key_parts = cc->tfms_count;
3021
 
 
 
 
3022	chainmode = strsep(&tmp, "-");
3023	*ivmode = strsep(&tmp, ":");
3024	*ivopts = tmp;
 
 
 
 
 
 
 
 
 
 
 
3025
3026	/*
3027	 * For compatibility with the original dm-crypt mapping format, if
3028	 * only the cipher name is supplied, use cbc-plain.
3029	 */
3030	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
3031		chainmode = "cbc";
3032		*ivmode = "plain";
3033	}
3034
3035	if (strcmp(chainmode, "ecb") && !*ivmode) {
3036		ti->error = "IV mechanism required";
3037		return -EINVAL;
3038	}
3039
3040	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
3041	if (!cipher_api)
3042		goto bad_mem;
3043
3044	if (*ivmode && !strcmp(*ivmode, "essiv")) {
3045		if (!*ivopts) {
3046			ti->error = "Digest algorithm missing for ESSIV mode";
3047			kfree(cipher_api);
3048			return -EINVAL;
3049		}
3050		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3051			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
3052	} else {
3053		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3054			       "%s(%s)", chainmode, cipher);
3055	}
3056	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
3057		kfree(cipher_api);
3058		goto bad_mem;
3059	}
3060
3061	/* Allocate cipher */
3062	ret = crypt_alloc_tfms(cc, cipher_api);
3063	if (ret < 0) {
3064		ti->error = "Error allocating crypto tfm";
3065		kfree(cipher_api);
3066		return ret;
 
3067	}
3068	kfree(cipher_api);
3069
3070	return 0;
3071bad_mem:
3072	ti->error = "Cannot allocate cipher strings";
3073	return -ENOMEM;
3074}
3075
3076static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3077{
3078	struct crypt_config *cc = ti->private;
3079	char *ivmode = NULL, *ivopts = NULL;
3080	int ret;
3081
3082	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3083	if (!cc->cipher_string) {
3084		ti->error = "Cannot allocate cipher strings";
3085		return -ENOMEM;
3086	}
3087
3088	if (strstarts(cipher_in, "capi:"))
3089		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3090	else
3091		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3092	if (ret)
3093		return ret;
3094
3095	/* Initialize IV */
3096	ret = crypt_ctr_ivmode(ti, ivmode);
3097	if (ret < 0)
3098		return ret;
 
 
 
 
 
 
3099
3100	/* Initialize and set key */
3101	ret = crypt_set_key(cc, key);
3102	if (ret < 0) {
3103		ti->error = "Error decoding and setting key";
3104		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3105	}
3106
3107	/* Allocate IV */
3108	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3109		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3110		if (ret < 0) {
3111			ti->error = "Error creating IV";
3112			return ret;
3113		}
3114	}
3115
3116	/* Initialize IV (set keys for ESSIV etc) */
3117	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3118		ret = cc->iv_gen_ops->init(cc);
3119		if (ret < 0) {
3120			ti->error = "Error initialising IV";
3121			return ret;
3122		}
3123	}
3124
3125	/* wipe the kernel key payload copy */
3126	if (cc->key_string)
3127		memset(cc->key, 0, cc->key_size * sizeof(u8));
3128
3129	return ret;
3130}
3131
3132static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3133{
3134	struct crypt_config *cc = ti->private;
3135	struct dm_arg_set as;
3136	static const struct dm_arg _args[] = {
3137		{0, 8, "Invalid number of feature args"},
3138	};
3139	unsigned int opt_params, val;
3140	const char *opt_string, *sval;
3141	char dummy;
3142	int ret;
3143
3144	/* Optional parameters */
3145	as.argc = argc;
3146	as.argv = argv;
3147
3148	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3149	if (ret)
3150		return ret;
3151
3152	while (opt_params--) {
3153		opt_string = dm_shift_arg(&as);
3154		if (!opt_string) {
3155			ti->error = "Not enough feature arguments";
3156			return -EINVAL;
3157		}
3158
3159		if (!strcasecmp(opt_string, "allow_discards"))
3160			ti->num_discard_bios = 1;
3161
3162		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3163			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3164
3165		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3166			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3167		else if (!strcasecmp(opt_string, "no_read_workqueue"))
3168			set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3169		else if (!strcasecmp(opt_string, "no_write_workqueue"))
3170			set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3171		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3172			if (val == 0 || val > MAX_TAG_SIZE) {
3173				ti->error = "Invalid integrity arguments";
3174				return -EINVAL;
3175			}
3176			cc->on_disk_tag_size = val;
3177			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3178			if (!strcasecmp(sval, "aead")) {
3179				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3180			} else if (strcasecmp(sval, "none")) {
3181				ti->error = "Unknown integrity profile";
3182				return -EINVAL;
3183			}
3184
3185			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3186			if (!cc->cipher_auth)
3187				return -ENOMEM;
3188		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3189			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3190			    cc->sector_size > 4096 ||
3191			    (cc->sector_size & (cc->sector_size - 1))) {
3192				ti->error = "Invalid feature value for sector_size";
3193				return -EINVAL;
3194			}
3195			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3196				ti->error = "Device size is not multiple of sector_size feature";
3197				return -EINVAL;
3198			}
3199			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3200		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
3201			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3202		else {
3203			ti->error = "Invalid feature arguments";
3204			return -EINVAL;
3205		}
3206	}
3207
3208	return 0;
3209}
3210
3211#ifdef CONFIG_BLK_DEV_ZONED
3212static int crypt_report_zones(struct dm_target *ti,
3213		struct dm_report_zones_args *args, unsigned int nr_zones)
3214{
3215	struct crypt_config *cc = ti->private;
3216
3217	return dm_report_zones(cc->dev->bdev, cc->start,
3218			cc->start + dm_target_offset(ti, args->next_sector),
3219			args, nr_zones);
3220}
3221#else
3222#define crypt_report_zones NULL
3223#endif
3224
3225/*
3226 * Construct an encryption mapping:
3227 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3228 */
3229static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3230{
3231	struct crypt_config *cc;
3232	const char *devname = dm_table_device_name(ti->table);
3233	int key_size;
3234	unsigned int align_mask;
3235	unsigned long long tmpll;
3236	int ret;
3237	size_t iv_size_padding, additional_req_size;
3238	char dummy;
 
 
 
 
3239
3240	if (argc < 5) {
3241		ti->error = "Not enough arguments";
3242		return -EINVAL;
3243	}
3244
3245	key_size = get_key_size(&argv[1]);
3246	if (key_size < 0) {
3247		ti->error = "Cannot parse key size";
3248		return -EINVAL;
3249	}
3250
3251	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3252	if (!cc) {
3253		ti->error = "Cannot allocate encryption context";
3254		return -ENOMEM;
3255	}
3256	cc->key_size = key_size;
3257	cc->sector_size = (1 << SECTOR_SHIFT);
3258	cc->sector_shift = 0;
3259
3260	ti->private = cc;
3261
3262	spin_lock(&dm_crypt_clients_lock);
3263	dm_crypt_clients_n++;
3264	crypt_calculate_pages_per_client();
3265	spin_unlock(&dm_crypt_clients_lock);
3266
3267	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3268	if (ret < 0)
3269		goto bad;
3270
3271	/* Optional parameters need to be read before cipher constructor */
3272	if (argc > 5) {
3273		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3274		if (ret)
3275			goto bad;
3276	}
3277
3278	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3279	if (ret < 0)
3280		goto bad;
3281
3282	if (crypt_integrity_aead(cc)) {
3283		cc->dmreq_start = sizeof(struct aead_request);
3284		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3285		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3286	} else {
3287		cc->dmreq_start = sizeof(struct skcipher_request);
3288		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3289		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3290	}
3291	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3292
3293	if (align_mask < CRYPTO_MINALIGN) {
3294		/* Allocate the padding exactly */
3295		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3296				& align_mask;
3297	} else {
3298		/*
3299		 * If the cipher requires greater alignment than kmalloc
3300		 * alignment, we don't know the exact position of the
3301		 * initialization vector. We must assume worst case.
3302		 */
3303		iv_size_padding = align_mask;
3304	}
3305
3306	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
3307	additional_req_size = sizeof(struct dm_crypt_request) +
3308		iv_size_padding + cc->iv_size +
3309		cc->iv_size +
3310		sizeof(uint64_t) +
3311		sizeof(unsigned int);
3312
3313	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3314	if (ret) {
3315		ti->error = "Cannot allocate crypt request mempool";
3316		goto bad;
3317	}
3318
3319	cc->per_bio_data_size = ti->per_io_data_size =
3320		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3321		      ARCH_DMA_MINALIGN);
3322
3323	ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3324	if (ret) {
3325		ti->error = "Cannot allocate page mempool";
3326		goto bad;
3327	}
3328
3329	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3330	if (ret) {
3331		ti->error = "Cannot allocate crypt bioset";
3332		goto bad;
3333	}
3334
3335	mutex_init(&cc->bio_alloc_lock);
3336
3337	ret = -EINVAL;
3338	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3339	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3340		ti->error = "Invalid iv_offset sector";
3341		goto bad;
3342	}
3343	cc->iv_offset = tmpll;
3344
3345	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3346	if (ret) {
3347		ti->error = "Device lookup failed";
3348		goto bad;
3349	}
3350
3351	ret = -EINVAL;
3352	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3353		ti->error = "Invalid device sector";
3354		goto bad;
3355	}
3356	cc->start = tmpll;
3357
3358	if (bdev_is_zoned(cc->dev->bdev)) {
3359		/*
3360		 * For zoned block devices, we need to preserve the issuer write
3361		 * ordering. To do so, disable write workqueues and force inline
3362		 * encryption completion.
3363		 */
3364		set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3365		set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3366
3367		/*
3368		 * All zone append writes to a zone of a zoned block device will
3369		 * have the same BIO sector, the start of the zone. When the
3370		 * cypher IV mode uses sector values, all data targeting a
3371		 * zone will be encrypted using the first sector numbers of the
3372		 * zone. This will not result in write errors but will
3373		 * cause most reads to fail as reads will use the sector values
3374		 * for the actual data locations, resulting in IV mismatch.
3375		 * To avoid this problem, ask DM core to emulate zone append
3376		 * operations with regular writes.
3377		 */
3378		DMDEBUG("Zone append operations will be emulated");
3379		ti->emulate_zone_append = true;
3380	}
3381
3382	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3383		ret = crypt_integrity_ctr(cc, ti);
3384		if (ret)
3385			goto bad;
3386
3387		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3388		if (!cc->tag_pool_max_sectors)
3389			cc->tag_pool_max_sectors = 1;
3390
3391		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3392			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3393		if (ret) {
3394			ti->error = "Cannot allocate integrity tags mempool";
3395			goto bad;
3396		}
3397
3398		cc->tag_pool_max_sectors <<= cc->sector_shift;
3399	}
3400
3401	ret = -ENOMEM;
3402	cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
 
 
 
3403	if (!cc->io_queue) {
3404		ti->error = "Couldn't create kcryptd io queue";
3405		goto bad;
3406	}
3407
3408	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3409		cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3410						  1, devname);
3411	else
3412		cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3413						  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3414						  num_online_cpus(), devname);
3415	if (!cc->crypt_queue) {
3416		ti->error = "Couldn't create kcryptd queue";
3417		goto bad;
3418	}
3419
3420	spin_lock_init(&cc->write_thread_lock);
3421	cc->write_tree = RB_ROOT;
3422
3423	cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3424	if (IS_ERR(cc->write_thread)) {
3425		ret = PTR_ERR(cc->write_thread);
3426		cc->write_thread = NULL;
3427		ti->error = "Couldn't spawn write thread";
3428		goto bad;
3429	}
3430
3431	ti->num_flush_bios = 1;
3432	ti->limit_swap_bios = true;
3433	ti->accounts_remapped_io = true;
3434
3435	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3436	return 0;
3437
3438bad:
3439	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3440	crypt_dtr(ti);
3441	return ret;
3442}
3443
3444static int crypt_map(struct dm_target *ti, struct bio *bio)
 
3445{
3446	struct dm_crypt_io *io;
3447	struct crypt_config *cc = ti->private;
3448
3449	/*
3450	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3451	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3452	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3453	 */
3454	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3455	    bio_op(bio) == REQ_OP_DISCARD)) {
3456		bio_set_dev(bio, cc->dev->bdev);
3457		if (bio_sectors(bio))
3458			bio->bi_iter.bi_sector = cc->start +
3459				dm_target_offset(ti, bio->bi_iter.bi_sector);
3460		return DM_MAPIO_REMAPPED;
3461	}
3462
3463	/*
3464	 * Check if bio is too large, split as needed.
3465	 */
3466	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
3467	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3468		dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
3469
3470	/*
3471	 * Ensure that bio is a multiple of internal sector encryption size
3472	 * and is aligned to this size as defined in IO hints.
3473	 */
3474	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3475		return DM_MAPIO_KILL;
3476
3477	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3478		return DM_MAPIO_KILL;
3479
3480	io = dm_per_bio_data(bio, cc->per_bio_data_size);
3481	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3482
3483	if (cc->on_disk_tag_size) {
3484		unsigned int tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3485
3486		if (unlikely(tag_len > KMALLOC_MAX_SIZE))
3487			io->integrity_metadata = NULL;
3488		else
3489			io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3490
3491		if (unlikely(!io->integrity_metadata)) {
3492			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3493				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3494			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3495			io->integrity_metadata_from_pool = true;
3496		}
3497	}
3498
3499	if (crypt_integrity_aead(cc))
3500		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3501	else
3502		io->ctx.r.req = (struct skcipher_request *)(io + 1);
3503
3504	if (bio_data_dir(io->base_bio) == READ) {
3505		if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3506			kcryptd_queue_read(io);
3507	} else
3508		kcryptd_queue_crypt(io);
3509
3510	return DM_MAPIO_SUBMITTED;
3511}
3512
3513static char hex2asc(unsigned char c)
3514{
3515	return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3516}
3517
3518static void crypt_status(struct dm_target *ti, status_type_t type,
3519			 unsigned int status_flags, char *result, unsigned int maxlen)
3520{
3521	struct crypt_config *cc = ti->private;
3522	unsigned int i, sz = 0;
3523	int num_feature_args = 0;
3524
3525	switch (type) {
3526	case STATUSTYPE_INFO:
3527		result[0] = '\0';
3528		break;
3529
3530	case STATUSTYPE_TABLE:
3531		DMEMIT("%s ", cc->cipher_string);
3532
3533		if (cc->key_size > 0) {
3534			if (cc->key_string)
3535				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3536			else {
3537				for (i = 0; i < cc->key_size; i++) {
3538					DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3539					       hex2asc(cc->key[i] & 0xf));
3540				}
3541			}
3542		} else
3543			DMEMIT("-");
3544
3545		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3546				cc->dev->name, (unsigned long long)cc->start);
3547
3548		num_feature_args += !!ti->num_discard_bios;
3549		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3550		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3551		num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3552		num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3553		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3554		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3555		if (cc->on_disk_tag_size)
3556			num_feature_args++;
3557		if (num_feature_args) {
3558			DMEMIT(" %d", num_feature_args);
3559			if (ti->num_discard_bios)
3560				DMEMIT(" allow_discards");
3561			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3562				DMEMIT(" same_cpu_crypt");
3563			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3564				DMEMIT(" submit_from_crypt_cpus");
3565			if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3566				DMEMIT(" no_read_workqueue");
3567			if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3568				DMEMIT(" no_write_workqueue");
3569			if (cc->on_disk_tag_size)
3570				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3571			if (cc->sector_size != (1 << SECTOR_SHIFT))
3572				DMEMIT(" sector_size:%d", cc->sector_size);
3573			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3574				DMEMIT(" iv_large_sectors");
3575		}
3576		break;
3577
3578	case STATUSTYPE_IMA:
3579		DMEMIT_TARGET_NAME_VERSION(ti->type);
3580		DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3581		DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3582		DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3583		       'y' : 'n');
3584		DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3585		       'y' : 'n');
3586		DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3587		       'y' : 'n');
3588		DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3589		       'y' : 'n');
3590
3591		if (cc->on_disk_tag_size)
3592			DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3593			       cc->on_disk_tag_size, cc->cipher_auth);
3594		if (cc->sector_size != (1 << SECTOR_SHIFT))
3595			DMEMIT(",sector_size=%d", cc->sector_size);
3596		if (cc->cipher_string)
3597			DMEMIT(",cipher_string=%s", cc->cipher_string);
3598
3599		DMEMIT(",key_size=%u", cc->key_size);
3600		DMEMIT(",key_parts=%u", cc->key_parts);
3601		DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3602		DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3603		DMEMIT(";");
3604		break;
3605	}
 
3606}
3607
3608static void crypt_postsuspend(struct dm_target *ti)
3609{
3610	struct crypt_config *cc = ti->private;
3611
3612	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3613}
3614
3615static int crypt_preresume(struct dm_target *ti)
3616{
3617	struct crypt_config *cc = ti->private;
3618
3619	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3620		DMERR("aborting resume - crypt key is not set.");
3621		return -EAGAIN;
3622	}
3623
3624	return 0;
3625}
3626
3627static void crypt_resume(struct dm_target *ti)
3628{
3629	struct crypt_config *cc = ti->private;
3630
3631	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3632}
3633
3634/* Message interface
3635 *	key set <key>
3636 *	key wipe
3637 */
3638static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3639			 char *result, unsigned int maxlen)
3640{
3641	struct crypt_config *cc = ti->private;
3642	int key_size, ret = -EINVAL;
3643
3644	if (argc < 2)
3645		goto error;
3646
3647	if (!strcasecmp(argv[0], "key")) {
3648		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3649			DMWARN("not suspended during key manipulation.");
3650			return -EINVAL;
3651		}
3652		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3653			/* The key size may not be changed. */
3654			key_size = get_key_size(&argv[2]);
3655			if (key_size < 0 || cc->key_size != key_size) {
3656				memset(argv[2], '0', strlen(argv[2]));
3657				return -EINVAL;
3658			}
3659
3660			ret = crypt_set_key(cc, argv[2]);
3661			if (ret)
3662				return ret;
3663			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3664				ret = cc->iv_gen_ops->init(cc);
3665			/* wipe the kernel key payload copy */
3666			if (cc->key_string)
3667				memset(cc->key, 0, cc->key_size * sizeof(u8));
3668			return ret;
3669		}
3670		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
 
 
 
 
 
3671			return crypt_wipe_key(cc);
 
3672	}
3673
3674error:
3675	DMWARN("unrecognised message received.");
3676	return -EINVAL;
3677}
3678
3679static int crypt_iterate_devices(struct dm_target *ti,
3680				 iterate_devices_callout_fn fn, void *data)
3681{
3682	struct crypt_config *cc = ti->private;
 
 
 
 
3683
3684	return fn(ti, cc->dev, cc->start, ti->len, data);
 
 
 
3685}
3686
3687static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
 
3688{
3689	struct crypt_config *cc = ti->private;
3690
3691	/*
3692	 * Unfortunate constraint that is required to avoid the potential
3693	 * for exceeding underlying device's max_segments limits -- due to
3694	 * crypt_alloc_buffer() possibly allocating pages for the encryption
3695	 * bio that are not as physically contiguous as the original bio.
3696	 */
3697	limits->max_segment_size = PAGE_SIZE;
3698
3699	limits->logical_block_size =
3700		max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3701	limits->physical_block_size =
3702		max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3703	limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3704	limits->dma_alignment = limits->logical_block_size - 1;
3705}
3706
3707static struct target_type crypt_target = {
3708	.name   = "crypt",
3709	.version = {1, 25, 0},
3710	.module = THIS_MODULE,
3711	.ctr    = crypt_ctr,
3712	.dtr    = crypt_dtr,
3713	.features = DM_TARGET_ZONED_HM,
3714	.report_zones = crypt_report_zones,
3715	.map    = crypt_map,
3716	.status = crypt_status,
3717	.postsuspend = crypt_postsuspend,
3718	.preresume = crypt_preresume,
3719	.resume = crypt_resume,
3720	.message = crypt_message,
 
3721	.iterate_devices = crypt_iterate_devices,
3722	.io_hints = crypt_io_hints,
3723};
3724module_dm(crypt);
3725
3726MODULE_AUTHOR("Jana Saout <jana@saout.de>");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3727MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3728MODULE_LICENSE("GPL");