Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright The Asahi Linux Contributors
   4 *
   5 * Based on irq-lpc32xx:
   6 *   Copyright 2015-2016 Vladimir Zapolskiy <vz@mleia.com>
   7 * Based on irq-bcm2836:
   8 *   Copyright 2015 Broadcom
   9 */
  10
  11/*
  12 * AIC is a fairly simple interrupt controller with the following features:
  13 *
  14 * - 896 level-triggered hardware IRQs
  15 *   - Single mask bit per IRQ
  16 *   - Per-IRQ affinity setting
  17 *   - Automatic masking on event delivery (auto-ack)
  18 *   - Software triggering (ORed with hw line)
  19 * - 2 per-CPU IPIs (meant as "self" and "other", but they are
  20 *   interchangeable if not symmetric)
  21 * - Automatic prioritization (single event/ack register per CPU, lower IRQs =
  22 *   higher priority)
  23 * - Automatic masking on ack
  24 * - Default "this CPU" register view and explicit per-CPU views
  25 *
  26 * In addition, this driver also handles FIQs, as these are routed to the same
  27 * IRQ vector. These are used for Fast IPIs, the ARMv8 timer IRQs, and
  28 * performance counters (TODO).
  29 *
  30 * Implementation notes:
  31 *
  32 * - This driver creates two IRQ domains, one for HW IRQs and internal FIQs,
  33 *   and one for IPIs.
  34 * - Since Linux needs more than 2 IPIs, we implement a software IRQ controller
  35 *   and funnel all IPIs into one per-CPU IPI (the second "self" IPI is unused).
  36 * - FIQ hwirq numbers are assigned after true hwirqs, and are per-cpu.
  37 * - DT bindings use 3-cell form (like GIC):
  38 *   - <0 nr flags> - hwirq #nr
  39 *   - <1 nr flags> - FIQ #nr
  40 *     - nr=0  Physical HV timer
  41 *     - nr=1  Virtual HV timer
  42 *     - nr=2  Physical guest timer
  43 *     - nr=3  Virtual guest timer
  44 */
  45
  46#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  47
  48#include <linux/bits.h>
  49#include <linux/bitfield.h>
  50#include <linux/cpuhotplug.h>
  51#include <linux/io.h>
  52#include <linux/irqchip.h>
  53#include <linux/irqchip/arm-vgic-info.h>
  54#include <linux/irqdomain.h>
  55#include <linux/jump_label.h>
  56#include <linux/limits.h>
  57#include <linux/of_address.h>
  58#include <linux/slab.h>
  59#include <asm/apple_m1_pmu.h>
  60#include <asm/cputype.h>
  61#include <asm/exception.h>
  62#include <asm/sysreg.h>
  63#include <asm/virt.h>
  64
  65#include <dt-bindings/interrupt-controller/apple-aic.h>
  66
  67/*
  68 * AIC v1 registers (MMIO)
  69 */
  70
  71#define AIC_INFO		0x0004
  72#define AIC_INFO_NR_IRQ		GENMASK(15, 0)
  73
  74#define AIC_CONFIG		0x0010
  75
  76#define AIC_WHOAMI		0x2000
  77#define AIC_EVENT		0x2004
  78#define AIC_EVENT_DIE		GENMASK(31, 24)
  79#define AIC_EVENT_TYPE		GENMASK(23, 16)
  80#define AIC_EVENT_NUM		GENMASK(15, 0)
  81
  82#define AIC_EVENT_TYPE_FIQ	0 /* Software use */
  83#define AIC_EVENT_TYPE_IRQ	1
  84#define AIC_EVENT_TYPE_IPI	4
  85#define AIC_EVENT_IPI_OTHER	1
  86#define AIC_EVENT_IPI_SELF	2
  87
  88#define AIC_IPI_SEND		0x2008
  89#define AIC_IPI_ACK		0x200c
  90#define AIC_IPI_MASK_SET	0x2024
  91#define AIC_IPI_MASK_CLR	0x2028
  92
  93#define AIC_IPI_SEND_CPU(cpu)	BIT(cpu)
  94
  95#define AIC_IPI_OTHER		BIT(0)
  96#define AIC_IPI_SELF		BIT(31)
  97
  98#define AIC_TARGET_CPU		0x3000
  99
 100#define AIC_CPU_IPI_SET(cpu)	(0x5008 + ((cpu) << 7))
 101#define AIC_CPU_IPI_CLR(cpu)	(0x500c + ((cpu) << 7))
 102#define AIC_CPU_IPI_MASK_SET(cpu) (0x5024 + ((cpu) << 7))
 103#define AIC_CPU_IPI_MASK_CLR(cpu) (0x5028 + ((cpu) << 7))
 104
 105#define AIC_MAX_IRQ		0x400
 106
 107/*
 108 * AIC v2 registers (MMIO)
 109 */
 110
 111#define AIC2_VERSION		0x0000
 112#define AIC2_VERSION_VER	GENMASK(7, 0)
 113
 114#define AIC2_INFO1		0x0004
 115#define AIC2_INFO1_NR_IRQ	GENMASK(15, 0)
 116#define AIC2_INFO1_LAST_DIE	GENMASK(27, 24)
 117
 118#define AIC2_INFO2		0x0008
 119
 120#define AIC2_INFO3		0x000c
 121#define AIC2_INFO3_MAX_IRQ	GENMASK(15, 0)
 122#define AIC2_INFO3_MAX_DIE	GENMASK(27, 24)
 123
 124#define AIC2_RESET		0x0010
 125#define AIC2_RESET_RESET	BIT(0)
 126
 127#define AIC2_CONFIG		0x0014
 128#define AIC2_CONFIG_ENABLE	BIT(0)
 129#define AIC2_CONFIG_PREFER_PCPU	BIT(28)
 130
 131#define AIC2_TIMEOUT		0x0028
 132#define AIC2_CLUSTER_PRIO	0x0030
 133#define AIC2_DELAY_GROUPS	0x0100
 134
 135#define AIC2_IRQ_CFG		0x2000
 136
 137/*
 138 * AIC2 registers are laid out like this, starting at AIC2_IRQ_CFG:
 139 *
 140 * Repeat for each die:
 141 *   IRQ_CFG: u32 * MAX_IRQS
 142 *   SW_SET: u32 * (MAX_IRQS / 32)
 143 *   SW_CLR: u32 * (MAX_IRQS / 32)
 144 *   MASK_SET: u32 * (MAX_IRQS / 32)
 145 *   MASK_CLR: u32 * (MAX_IRQS / 32)
 146 *   HW_STATE: u32 * (MAX_IRQS / 32)
 147 *
 148 * This is followed by a set of event registers, each 16K page aligned.
 149 * The first one is the AP event register we will use. Unfortunately,
 150 * the actual implemented die count is not specified anywhere in the
 151 * capability registers, so we have to explicitly specify the event
 152 * register as a second reg entry in the device tree to remain
 153 * forward-compatible.
 154 */
 155
 156#define AIC2_IRQ_CFG_TARGET	GENMASK(3, 0)
 157#define AIC2_IRQ_CFG_DELAY_IDX	GENMASK(7, 5)
 158
 159#define MASK_REG(x)		(4 * ((x) >> 5))
 160#define MASK_BIT(x)		BIT((x) & GENMASK(4, 0))
 161
 162/*
 163 * IMP-DEF sysregs that control FIQ sources
 164 */
 165
 166/* IPI request registers */
 167#define SYS_IMP_APL_IPI_RR_LOCAL_EL1	sys_reg(3, 5, 15, 0, 0)
 168#define SYS_IMP_APL_IPI_RR_GLOBAL_EL1	sys_reg(3, 5, 15, 0, 1)
 169#define IPI_RR_CPU			GENMASK(7, 0)
 170/* Cluster only used for the GLOBAL register */
 171#define IPI_RR_CLUSTER			GENMASK(23, 16)
 172#define IPI_RR_TYPE			GENMASK(29, 28)
 173#define IPI_RR_IMMEDIATE		0
 174#define IPI_RR_RETRACT			1
 175#define IPI_RR_DEFERRED			2
 176#define IPI_RR_NOWAKE			3
 177
 178/* IPI status register */
 179#define SYS_IMP_APL_IPI_SR_EL1		sys_reg(3, 5, 15, 1, 1)
 180#define IPI_SR_PENDING			BIT(0)
 181
 182/* Guest timer FIQ enable register */
 183#define SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2	sys_reg(3, 5, 15, 1, 3)
 184#define VM_TMR_FIQ_ENABLE_V		BIT(0)
 185#define VM_TMR_FIQ_ENABLE_P		BIT(1)
 186
 187/* Deferred IPI countdown register */
 188#define SYS_IMP_APL_IPI_CR_EL1		sys_reg(3, 5, 15, 3, 1)
 189
 190/* Uncore PMC control register */
 191#define SYS_IMP_APL_UPMCR0_EL1		sys_reg(3, 7, 15, 0, 4)
 192#define UPMCR0_IMODE			GENMASK(18, 16)
 193#define UPMCR0_IMODE_OFF		0
 194#define UPMCR0_IMODE_AIC		2
 195#define UPMCR0_IMODE_HALT		3
 196#define UPMCR0_IMODE_FIQ		4
 197
 198/* Uncore PMC status register */
 199#define SYS_IMP_APL_UPMSR_EL1		sys_reg(3, 7, 15, 6, 4)
 200#define UPMSR_IACT			BIT(0)
 201
 202/* MPIDR fields */
 203#define MPIDR_CPU(x)			MPIDR_AFFINITY_LEVEL(x, 0)
 204#define MPIDR_CLUSTER(x)		MPIDR_AFFINITY_LEVEL(x, 1)
 205
 206#define AIC_IRQ_HWIRQ(die, irq)	(FIELD_PREP(AIC_EVENT_DIE, die) | \
 207				 FIELD_PREP(AIC_EVENT_TYPE, AIC_EVENT_TYPE_IRQ) | \
 208				 FIELD_PREP(AIC_EVENT_NUM, irq))
 209#define AIC_FIQ_HWIRQ(x)	(FIELD_PREP(AIC_EVENT_TYPE, AIC_EVENT_TYPE_FIQ) | \
 210				 FIELD_PREP(AIC_EVENT_NUM, x))
 211#define AIC_HWIRQ_IRQ(x)	FIELD_GET(AIC_EVENT_NUM, x)
 212#define AIC_HWIRQ_DIE(x)	FIELD_GET(AIC_EVENT_DIE, x)
 213#define AIC_NR_SWIPI		32
 214
 215/*
 216 * FIQ hwirq index definitions: FIQ sources use the DT binding defines
 217 * directly, except that timers are special. At the irqchip level, the
 218 * two timer types are represented by their access method: _EL0 registers
 219 * or _EL02 registers. In the DT binding, the timers are represented
 220 * by their purpose (HV or guest). This mapping is for when the kernel is
 221 * running at EL2 (with VHE). When the kernel is running at EL1, the
 222 * mapping differs and aic_irq_domain_translate() performs the remapping.
 223 */
 224enum fiq_hwirq {
 225	/* Must be ordered as in apple-aic.h */
 226	AIC_TMR_EL0_PHYS	= AIC_TMR_HV_PHYS,
 227	AIC_TMR_EL0_VIRT	= AIC_TMR_HV_VIRT,
 228	AIC_TMR_EL02_PHYS	= AIC_TMR_GUEST_PHYS,
 229	AIC_TMR_EL02_VIRT	= AIC_TMR_GUEST_VIRT,
 230	AIC_CPU_PMU_Effi	= AIC_CPU_PMU_E,
 231	AIC_CPU_PMU_Perf	= AIC_CPU_PMU_P,
 232	/* No need for this to be discovered from DT */
 233	AIC_VGIC_MI,
 234	AIC_NR_FIQ
 235};
 236
 237static DEFINE_STATIC_KEY_TRUE(use_fast_ipi);
 238
 239struct aic_info {
 240	int version;
 241
 242	/* Register offsets */
 243	u32 event;
 244	u32 target_cpu;
 245	u32 irq_cfg;
 246	u32 sw_set;
 247	u32 sw_clr;
 248	u32 mask_set;
 249	u32 mask_clr;
 250
 251	u32 die_stride;
 252
 253	/* Features */
 254	bool fast_ipi;
 255};
 256
 257static const struct aic_info aic1_info __initconst = {
 258	.version	= 1,
 259
 260	.event		= AIC_EVENT,
 261	.target_cpu	= AIC_TARGET_CPU,
 262};
 263
 264static const struct aic_info aic1_fipi_info __initconst = {
 265	.version	= 1,
 266
 267	.event		= AIC_EVENT,
 268	.target_cpu	= AIC_TARGET_CPU,
 269
 270	.fast_ipi	= true,
 271};
 272
 273static const struct aic_info aic2_info __initconst = {
 274	.version	= 2,
 275
 276	.irq_cfg	= AIC2_IRQ_CFG,
 277
 278	.fast_ipi	= true,
 279};
 280
 281static const struct of_device_id aic_info_match[] = {
 282	{
 283		.compatible = "apple,t8103-aic",
 284		.data = &aic1_fipi_info,
 285	},
 286	{
 287		.compatible = "apple,aic",
 288		.data = &aic1_info,
 289	},
 290	{
 291		.compatible = "apple,aic2",
 292		.data = &aic2_info,
 293	},
 294	{}
 295};
 296
 297struct aic_irq_chip {
 298	void __iomem *base;
 299	void __iomem *event;
 300	struct irq_domain *hw_domain;
 301	struct {
 302		cpumask_t aff;
 303	} *fiq_aff[AIC_NR_FIQ];
 304
 305	int nr_irq;
 306	int max_irq;
 307	int nr_die;
 308	int max_die;
 309
 310	struct aic_info info;
 311};
 312
 313static DEFINE_PER_CPU(uint32_t, aic_fiq_unmasked);
 314
 315static struct aic_irq_chip *aic_irqc;
 316
 317static void aic_handle_ipi(struct pt_regs *regs);
 318
 319static u32 aic_ic_read(struct aic_irq_chip *ic, u32 reg)
 320{
 321	return readl_relaxed(ic->base + reg);
 322}
 323
 324static void aic_ic_write(struct aic_irq_chip *ic, u32 reg, u32 val)
 325{
 326	writel_relaxed(val, ic->base + reg);
 327}
 328
 329/*
 330 * IRQ irqchip
 331 */
 332
 333static void aic_irq_mask(struct irq_data *d)
 334{
 335	irq_hw_number_t hwirq = irqd_to_hwirq(d);
 336	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
 337
 338	u32 off = AIC_HWIRQ_DIE(hwirq) * ic->info.die_stride;
 339	u32 irq = AIC_HWIRQ_IRQ(hwirq);
 340
 341	aic_ic_write(ic, ic->info.mask_set + off + MASK_REG(irq), MASK_BIT(irq));
 342}
 343
 344static void aic_irq_unmask(struct irq_data *d)
 345{
 346	irq_hw_number_t hwirq = irqd_to_hwirq(d);
 347	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
 348
 349	u32 off = AIC_HWIRQ_DIE(hwirq) * ic->info.die_stride;
 350	u32 irq = AIC_HWIRQ_IRQ(hwirq);
 351
 352	aic_ic_write(ic, ic->info.mask_clr + off + MASK_REG(irq), MASK_BIT(irq));
 353}
 354
 355static void aic_irq_eoi(struct irq_data *d)
 356{
 357	/*
 358	 * Reading the interrupt reason automatically acknowledges and masks
 359	 * the IRQ, so we just unmask it here if needed.
 360	 */
 361	if (!irqd_irq_masked(d))
 362		aic_irq_unmask(d);
 363}
 364
 365static void __exception_irq_entry aic_handle_irq(struct pt_regs *regs)
 366{
 367	struct aic_irq_chip *ic = aic_irqc;
 368	u32 event, type, irq;
 369
 370	do {
 371		/*
 372		 * We cannot use a relaxed read here, as reads from DMA buffers
 373		 * need to be ordered after the IRQ fires.
 374		 */
 375		event = readl(ic->event + ic->info.event);
 376		type = FIELD_GET(AIC_EVENT_TYPE, event);
 377		irq = FIELD_GET(AIC_EVENT_NUM, event);
 378
 379		if (type == AIC_EVENT_TYPE_IRQ)
 380			generic_handle_domain_irq(aic_irqc->hw_domain, event);
 381		else if (type == AIC_EVENT_TYPE_IPI && irq == 1)
 382			aic_handle_ipi(regs);
 383		else if (event != 0)
 384			pr_err_ratelimited("Unknown IRQ event %d, %d\n", type, irq);
 385	} while (event);
 386
 387	/*
 388	 * vGIC maintenance interrupts end up here too, so we need to check
 389	 * for them separately. It should however only trigger when NV is
 390	 * in use, and be cleared when coming back from the handler.
 391	 */
 392	if (is_kernel_in_hyp_mode() &&
 393	    (read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EN) &&
 394	    read_sysreg_s(SYS_ICH_MISR_EL2) != 0) {
 395		generic_handle_domain_irq(aic_irqc->hw_domain,
 396					  AIC_FIQ_HWIRQ(AIC_VGIC_MI));
 397
 398		if (unlikely((read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EN) &&
 399			     read_sysreg_s(SYS_ICH_MISR_EL2))) {
 400			pr_err_ratelimited("vGIC IRQ fired and not handled by KVM, disabling.\n");
 401			sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
 402		}
 403	}
 404}
 405
 406static int aic_irq_set_affinity(struct irq_data *d,
 407				const struct cpumask *mask_val, bool force)
 408{
 409	irq_hw_number_t hwirq = irqd_to_hwirq(d);
 410	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
 411	int cpu;
 412
 413	BUG_ON(!ic->info.target_cpu);
 414
 415	if (force)
 416		cpu = cpumask_first(mask_val);
 417	else
 418		cpu = cpumask_any_and(mask_val, cpu_online_mask);
 419
 420	aic_ic_write(ic, ic->info.target_cpu + AIC_HWIRQ_IRQ(hwirq) * 4, BIT(cpu));
 421	irq_data_update_effective_affinity(d, cpumask_of(cpu));
 422
 423	return IRQ_SET_MASK_OK;
 424}
 425
 426static int aic_irq_set_type(struct irq_data *d, unsigned int type)
 427{
 428	/*
 429	 * Some IRQs (e.g. MSIs) implicitly have edge semantics, and we don't
 430	 * have a way to find out the type of any given IRQ, so just allow both.
 431	 */
 432	return (type == IRQ_TYPE_LEVEL_HIGH || type == IRQ_TYPE_EDGE_RISING) ? 0 : -EINVAL;
 433}
 434
 435static struct irq_chip aic_chip = {
 436	.name = "AIC",
 437	.irq_mask = aic_irq_mask,
 438	.irq_unmask = aic_irq_unmask,
 439	.irq_eoi = aic_irq_eoi,
 440	.irq_set_affinity = aic_irq_set_affinity,
 441	.irq_set_type = aic_irq_set_type,
 442};
 443
 444static struct irq_chip aic2_chip = {
 445	.name = "AIC2",
 446	.irq_mask = aic_irq_mask,
 447	.irq_unmask = aic_irq_unmask,
 448	.irq_eoi = aic_irq_eoi,
 449	.irq_set_type = aic_irq_set_type,
 450};
 451
 452/*
 453 * FIQ irqchip
 454 */
 455
 456static unsigned long aic_fiq_get_idx(struct irq_data *d)
 457{
 458	return AIC_HWIRQ_IRQ(irqd_to_hwirq(d));
 459}
 460
 461static void aic_fiq_set_mask(struct irq_data *d)
 462{
 463	/* Only the guest timers have real mask bits, unfortunately. */
 464	switch (aic_fiq_get_idx(d)) {
 465	case AIC_TMR_EL02_PHYS:
 466		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_P, 0);
 467		isb();
 468		break;
 469	case AIC_TMR_EL02_VIRT:
 470		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_V, 0);
 471		isb();
 472		break;
 473	default:
 474		break;
 475	}
 476}
 477
 478static void aic_fiq_clear_mask(struct irq_data *d)
 479{
 480	switch (aic_fiq_get_idx(d)) {
 481	case AIC_TMR_EL02_PHYS:
 482		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_P);
 483		isb();
 484		break;
 485	case AIC_TMR_EL02_VIRT:
 486		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_V);
 487		isb();
 488		break;
 489	default:
 490		break;
 491	}
 492}
 493
 494static void aic_fiq_mask(struct irq_data *d)
 495{
 496	aic_fiq_set_mask(d);
 497	__this_cpu_and(aic_fiq_unmasked, ~BIT(aic_fiq_get_idx(d)));
 498}
 499
 500static void aic_fiq_unmask(struct irq_data *d)
 501{
 502	aic_fiq_clear_mask(d);
 503	__this_cpu_or(aic_fiq_unmasked, BIT(aic_fiq_get_idx(d)));
 504}
 505
 506static void aic_fiq_eoi(struct irq_data *d)
 507{
 508	/* We mask to ack (where we can), so we need to unmask at EOI. */
 509	if (__this_cpu_read(aic_fiq_unmasked) & BIT(aic_fiq_get_idx(d)))
 510		aic_fiq_clear_mask(d);
 511}
 512
 513#define TIMER_FIRING(x)                                                        \
 514	(((x) & (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_MASK |            \
 515		 ARCH_TIMER_CTRL_IT_STAT)) ==                                  \
 516	 (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT))
 517
 518static void __exception_irq_entry aic_handle_fiq(struct pt_regs *regs)
 519{
 520	/*
 521	 * It would be really nice if we had a system register that lets us get
 522	 * the FIQ source state without having to peek down into sources...
 523	 * but such a register does not seem to exist.
 524	 *
 525	 * So, we have these potential sources to test for:
 526	 *  - Fast IPIs (not yet used)
 527	 *  - The 4 timers (CNTP, CNTV for each of HV and guest)
 528	 *  - Per-core PMCs (not yet supported)
 529	 *  - Per-cluster uncore PMCs (not yet supported)
 530	 *
 531	 * Since not dealing with any of these results in a FIQ storm,
 532	 * we check for everything here, even things we don't support yet.
 533	 */
 534
 535	if (read_sysreg_s(SYS_IMP_APL_IPI_SR_EL1) & IPI_SR_PENDING) {
 536		if (static_branch_likely(&use_fast_ipi)) {
 537			aic_handle_ipi(regs);
 538		} else {
 539			pr_err_ratelimited("Fast IPI fired. Acking.\n");
 540			write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
 541		}
 542	}
 543
 544	if (TIMER_FIRING(read_sysreg(cntp_ctl_el0)))
 545		generic_handle_domain_irq(aic_irqc->hw_domain,
 546					  AIC_FIQ_HWIRQ(AIC_TMR_EL0_PHYS));
 547
 548	if (TIMER_FIRING(read_sysreg(cntv_ctl_el0)))
 549		generic_handle_domain_irq(aic_irqc->hw_domain,
 550					  AIC_FIQ_HWIRQ(AIC_TMR_EL0_VIRT));
 551
 552	if (is_kernel_in_hyp_mode()) {
 553		uint64_t enabled = read_sysreg_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2);
 554
 555		if ((enabled & VM_TMR_FIQ_ENABLE_P) &&
 556		    TIMER_FIRING(read_sysreg_s(SYS_CNTP_CTL_EL02)))
 557			generic_handle_domain_irq(aic_irqc->hw_domain,
 558						  AIC_FIQ_HWIRQ(AIC_TMR_EL02_PHYS));
 559
 560		if ((enabled & VM_TMR_FIQ_ENABLE_V) &&
 561		    TIMER_FIRING(read_sysreg_s(SYS_CNTV_CTL_EL02)))
 562			generic_handle_domain_irq(aic_irqc->hw_domain,
 563						  AIC_FIQ_HWIRQ(AIC_TMR_EL02_VIRT));
 564	}
 565
 566	if (read_sysreg_s(SYS_IMP_APL_PMCR0_EL1) & PMCR0_IACT) {
 567		int irq;
 568		if (cpumask_test_cpu(smp_processor_id(),
 569				     &aic_irqc->fiq_aff[AIC_CPU_PMU_P]->aff))
 570			irq = AIC_CPU_PMU_P;
 571		else
 572			irq = AIC_CPU_PMU_E;
 573		generic_handle_domain_irq(aic_irqc->hw_domain,
 574					  AIC_FIQ_HWIRQ(irq));
 575	}
 576
 577	if (FIELD_GET(UPMCR0_IMODE, read_sysreg_s(SYS_IMP_APL_UPMCR0_EL1)) == UPMCR0_IMODE_FIQ &&
 578			(read_sysreg_s(SYS_IMP_APL_UPMSR_EL1) & UPMSR_IACT)) {
 579		/* Same story with uncore PMCs */
 580		pr_err_ratelimited("Uncore PMC FIQ fired. Masking.\n");
 581		sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
 582				   FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
 583	}
 584}
 585
 586static int aic_fiq_set_type(struct irq_data *d, unsigned int type)
 587{
 588	return (type == IRQ_TYPE_LEVEL_HIGH) ? 0 : -EINVAL;
 589}
 590
 591static struct irq_chip fiq_chip = {
 592	.name = "AIC-FIQ",
 593	.irq_mask = aic_fiq_mask,
 594	.irq_unmask = aic_fiq_unmask,
 595	.irq_ack = aic_fiq_set_mask,
 596	.irq_eoi = aic_fiq_eoi,
 597	.irq_set_type = aic_fiq_set_type,
 598};
 599
 600/*
 601 * Main IRQ domain
 602 */
 603
 604static int aic_irq_domain_map(struct irq_domain *id, unsigned int irq,
 605			      irq_hw_number_t hw)
 606{
 607	struct aic_irq_chip *ic = id->host_data;
 608	u32 type = FIELD_GET(AIC_EVENT_TYPE, hw);
 609	struct irq_chip *chip = &aic_chip;
 610
 611	if (ic->info.version == 2)
 612		chip = &aic2_chip;
 613
 614	if (type == AIC_EVENT_TYPE_IRQ) {
 615		irq_domain_set_info(id, irq, hw, chip, id->host_data,
 616				    handle_fasteoi_irq, NULL, NULL);
 617		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq)));
 618	} else {
 619		int fiq = FIELD_GET(AIC_EVENT_NUM, hw);
 620
 621		switch (fiq) {
 622		case AIC_CPU_PMU_P:
 623		case AIC_CPU_PMU_E:
 624			irq_set_percpu_devid_partition(irq, &ic->fiq_aff[fiq]->aff);
 625			break;
 626		default:
 627			irq_set_percpu_devid(irq);
 628			break;
 629		}
 630
 631		irq_domain_set_info(id, irq, hw, &fiq_chip, id->host_data,
 632				    handle_percpu_devid_irq, NULL, NULL);
 633	}
 634
 635	return 0;
 636}
 637
 638static int aic_irq_domain_translate(struct irq_domain *id,
 639				    struct irq_fwspec *fwspec,
 640				    unsigned long *hwirq,
 641				    unsigned int *type)
 642{
 643	struct aic_irq_chip *ic = id->host_data;
 644	u32 *args;
 645	u32 die = 0;
 646
 647	if (fwspec->param_count < 3 || fwspec->param_count > 4 ||
 648	    !is_of_node(fwspec->fwnode))
 649		return -EINVAL;
 650
 651	args = &fwspec->param[1];
 652
 653	if (fwspec->param_count == 4) {
 654		die = args[0];
 655		args++;
 656	}
 657
 658	switch (fwspec->param[0]) {
 659	case AIC_IRQ:
 660		if (die >= ic->nr_die)
 661			return -EINVAL;
 662		if (args[0] >= ic->nr_irq)
 663			return -EINVAL;
 664		*hwirq = AIC_IRQ_HWIRQ(die, args[0]);
 665		break;
 666	case AIC_FIQ:
 667		if (die != 0)
 668			return -EINVAL;
 669		if (args[0] >= AIC_NR_FIQ)
 670			return -EINVAL;
 671		*hwirq = AIC_FIQ_HWIRQ(args[0]);
 672
 673		/*
 674		 * In EL1 the non-redirected registers are the guest's,
 675		 * not EL2's, so remap the hwirqs to match.
 676		 */
 677		if (!is_kernel_in_hyp_mode()) {
 678			switch (args[0]) {
 679			case AIC_TMR_GUEST_PHYS:
 680				*hwirq = AIC_FIQ_HWIRQ(AIC_TMR_EL0_PHYS);
 681				break;
 682			case AIC_TMR_GUEST_VIRT:
 683				*hwirq = AIC_FIQ_HWIRQ(AIC_TMR_EL0_VIRT);
 684				break;
 685			case AIC_TMR_HV_PHYS:
 686			case AIC_TMR_HV_VIRT:
 687				return -ENOENT;
 688			default:
 689				break;
 690			}
 691		}
 692		break;
 693	default:
 694		return -EINVAL;
 695	}
 696
 697	*type = args[1] & IRQ_TYPE_SENSE_MASK;
 698
 699	return 0;
 700}
 701
 702static int aic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
 703				unsigned int nr_irqs, void *arg)
 704{
 705	unsigned int type = IRQ_TYPE_NONE;
 706	struct irq_fwspec *fwspec = arg;
 707	irq_hw_number_t hwirq;
 708	int i, ret;
 709
 710	ret = aic_irq_domain_translate(domain, fwspec, &hwirq, &type);
 711	if (ret)
 712		return ret;
 713
 714	for (i = 0; i < nr_irqs; i++) {
 715		ret = aic_irq_domain_map(domain, virq + i, hwirq + i);
 716		if (ret)
 717			return ret;
 718	}
 719
 720	return 0;
 721}
 722
 723static void aic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
 724				unsigned int nr_irqs)
 725{
 726	int i;
 727
 728	for (i = 0; i < nr_irqs; i++) {
 729		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
 730
 731		irq_set_handler(virq + i, NULL);
 732		irq_domain_reset_irq_data(d);
 733	}
 734}
 735
 736static const struct irq_domain_ops aic_irq_domain_ops = {
 737	.translate	= aic_irq_domain_translate,
 738	.alloc		= aic_irq_domain_alloc,
 739	.free		= aic_irq_domain_free,
 740};
 741
 742/*
 743 * IPI irqchip
 744 */
 745
 746static void aic_ipi_send_fast(int cpu)
 747{
 748	u64 mpidr = cpu_logical_map(cpu);
 749	u64 my_mpidr = read_cpuid_mpidr();
 750	u64 cluster = MPIDR_CLUSTER(mpidr);
 751	u64 idx = MPIDR_CPU(mpidr);
 752
 753	if (MPIDR_CLUSTER(my_mpidr) == cluster)
 754		write_sysreg_s(FIELD_PREP(IPI_RR_CPU, idx),
 755			       SYS_IMP_APL_IPI_RR_LOCAL_EL1);
 756	else
 757		write_sysreg_s(FIELD_PREP(IPI_RR_CPU, idx) | FIELD_PREP(IPI_RR_CLUSTER, cluster),
 758			       SYS_IMP_APL_IPI_RR_GLOBAL_EL1);
 759	isb();
 760}
 761
 762static void aic_handle_ipi(struct pt_regs *regs)
 763{
 764	/*
 765	 * Ack the IPI. We need to order this after the AIC event read, but
 766	 * that is enforced by normal MMIO ordering guarantees.
 767	 *
 768	 * For the Fast IPI case, this needs to be ordered before the vIPI
 769	 * handling below, so we need to isb();
 770	 */
 771	if (static_branch_likely(&use_fast_ipi)) {
 772		write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
 773		isb();
 774	} else {
 775		aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_OTHER);
 776	}
 777
 778	ipi_mux_process();
 779
 780	/*
 781	 * No ordering needed here; at worst this just changes the timing of
 782	 * when the next IPI will be delivered.
 783	 */
 784	if (!static_branch_likely(&use_fast_ipi))
 785		aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
 786}
 787
 788static void aic_ipi_send_single(unsigned int cpu)
 789{
 790	if (static_branch_likely(&use_fast_ipi))
 791		aic_ipi_send_fast(cpu);
 792	else
 793		aic_ic_write(aic_irqc, AIC_IPI_SEND, AIC_IPI_SEND_CPU(cpu));
 794}
 795
 796static int __init aic_init_smp(struct aic_irq_chip *irqc, struct device_node *node)
 797{
 798	int base_ipi;
 799
 800	base_ipi = ipi_mux_create(AIC_NR_SWIPI, aic_ipi_send_single);
 801	if (WARN_ON(base_ipi <= 0))
 802		return -ENODEV;
 803
 804	set_smp_ipi_range(base_ipi, AIC_NR_SWIPI);
 805
 806	return 0;
 807}
 808
 809static int aic_init_cpu(unsigned int cpu)
 810{
 811	/* Mask all hard-wired per-CPU IRQ/FIQ sources */
 812
 813	/* Pending Fast IPI FIQs */
 814	write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
 815
 816	/* Timer FIQs */
 817	sysreg_clear_set(cntp_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
 818	sysreg_clear_set(cntv_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
 819
 820	/* EL2-only (VHE mode) IRQ sources */
 821	if (is_kernel_in_hyp_mode()) {
 822		/* Guest timers */
 823		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2,
 824				   VM_TMR_FIQ_ENABLE_V | VM_TMR_FIQ_ENABLE_P, 0);
 825
 826		/* vGIC maintenance IRQ */
 827		sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
 828	}
 829
 830	/* PMC FIQ */
 831	sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT,
 832			   FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF));
 833
 834	/* Uncore PMC FIQ */
 835	sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
 836			   FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
 837
 838	/* Commit all of the above */
 839	isb();
 840
 841	if (aic_irqc->info.version == 1) {
 842		/*
 843		 * Make sure the kernel's idea of logical CPU order is the same as AIC's
 844		 * If we ever end up with a mismatch here, we will have to introduce
 845		 * a mapping table similar to what other irqchip drivers do.
 846		 */
 847		WARN_ON(aic_ic_read(aic_irqc, AIC_WHOAMI) != smp_processor_id());
 848
 849		/*
 850		 * Always keep IPIs unmasked at the hardware level (except auto-masking
 851		 * by AIC during processing). We manage masks at the vIPI level.
 852		 * These registers only exist on AICv1, AICv2 always uses fast IPIs.
 853		 */
 854		aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_SELF | AIC_IPI_OTHER);
 855		if (static_branch_likely(&use_fast_ipi)) {
 856			aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF | AIC_IPI_OTHER);
 857		} else {
 858			aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF);
 859			aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
 860		}
 861	}
 862
 863	/* Initialize the local mask state */
 864	__this_cpu_write(aic_fiq_unmasked, 0);
 865
 866	return 0;
 867}
 868
 869static struct gic_kvm_info vgic_info __initdata = {
 870	.type			= GIC_V3,
 871	.no_maint_irq_mask	= true,
 872	.no_hw_deactivation	= true,
 873};
 874
 875static void build_fiq_affinity(struct aic_irq_chip *ic, struct device_node *aff)
 876{
 877	int i, n;
 878	u32 fiq;
 879
 880	if (of_property_read_u32(aff, "apple,fiq-index", &fiq) ||
 881	    WARN_ON(fiq >= AIC_NR_FIQ) || ic->fiq_aff[fiq])
 882		return;
 883
 884	n = of_property_count_elems_of_size(aff, "cpus", sizeof(u32));
 885	if (WARN_ON(n < 0))
 886		return;
 887
 888	ic->fiq_aff[fiq] = kzalloc(sizeof(*ic->fiq_aff[fiq]), GFP_KERNEL);
 889	if (!ic->fiq_aff[fiq])
 890		return;
 891
 892	for (i = 0; i < n; i++) {
 893		struct device_node *cpu_node;
 894		u32 cpu_phandle;
 895		int cpu;
 896
 897		if (of_property_read_u32_index(aff, "cpus", i, &cpu_phandle))
 898			continue;
 899
 900		cpu_node = of_find_node_by_phandle(cpu_phandle);
 901		if (WARN_ON(!cpu_node))
 902			continue;
 903
 904		cpu = of_cpu_node_to_id(cpu_node);
 905		of_node_put(cpu_node);
 906		if (WARN_ON(cpu < 0))
 907			continue;
 908
 909		cpumask_set_cpu(cpu, &ic->fiq_aff[fiq]->aff);
 910	}
 911}
 912
 913static int __init aic_of_ic_init(struct device_node *node, struct device_node *parent)
 914{
 915	int i, die;
 916	u32 off, start_off;
 917	void __iomem *regs;
 918	struct aic_irq_chip *irqc;
 919	struct device_node *affs;
 920	const struct of_device_id *match;
 921
 922	regs = of_iomap(node, 0);
 923	if (WARN_ON(!regs))
 924		return -EIO;
 925
 926	irqc = kzalloc(sizeof(*irqc), GFP_KERNEL);
 927	if (!irqc) {
 928		iounmap(regs);
 929		return -ENOMEM;
 930	}
 931
 932	irqc->base = regs;
 933
 934	match = of_match_node(aic_info_match, node);
 935	if (!match)
 936		goto err_unmap;
 937
 938	irqc->info = *(struct aic_info *)match->data;
 939
 940	aic_irqc = irqc;
 941
 942	switch (irqc->info.version) {
 943	case 1: {
 944		u32 info;
 945
 946		info = aic_ic_read(irqc, AIC_INFO);
 947		irqc->nr_irq = FIELD_GET(AIC_INFO_NR_IRQ, info);
 948		irqc->max_irq = AIC_MAX_IRQ;
 949		irqc->nr_die = irqc->max_die = 1;
 950
 951		off = start_off = irqc->info.target_cpu;
 952		off += sizeof(u32) * irqc->max_irq; /* TARGET_CPU */
 953
 954		irqc->event = irqc->base;
 955
 956		break;
 957	}
 958	case 2: {
 959		u32 info1, info3;
 960
 961		info1 = aic_ic_read(irqc, AIC2_INFO1);
 962		info3 = aic_ic_read(irqc, AIC2_INFO3);
 963
 964		irqc->nr_irq = FIELD_GET(AIC2_INFO1_NR_IRQ, info1);
 965		irqc->max_irq = FIELD_GET(AIC2_INFO3_MAX_IRQ, info3);
 966		irqc->nr_die = FIELD_GET(AIC2_INFO1_LAST_DIE, info1) + 1;
 967		irqc->max_die = FIELD_GET(AIC2_INFO3_MAX_DIE, info3);
 968
 969		off = start_off = irqc->info.irq_cfg;
 970		off += sizeof(u32) * irqc->max_irq; /* IRQ_CFG */
 971
 972		irqc->event = of_iomap(node, 1);
 973		if (WARN_ON(!irqc->event))
 974			goto err_unmap;
 975
 976		break;
 977	}
 978	}
 979
 980	irqc->info.sw_set = off;
 981	off += sizeof(u32) * (irqc->max_irq >> 5); /* SW_SET */
 982	irqc->info.sw_clr = off;
 983	off += sizeof(u32) * (irqc->max_irq >> 5); /* SW_CLR */
 984	irqc->info.mask_set = off;
 985	off += sizeof(u32) * (irqc->max_irq >> 5); /* MASK_SET */
 986	irqc->info.mask_clr = off;
 987	off += sizeof(u32) * (irqc->max_irq >> 5); /* MASK_CLR */
 988	off += sizeof(u32) * (irqc->max_irq >> 5); /* HW_STATE */
 989
 990	if (irqc->info.fast_ipi)
 991		static_branch_enable(&use_fast_ipi);
 992	else
 993		static_branch_disable(&use_fast_ipi);
 994
 995	irqc->info.die_stride = off - start_off;
 996
 997	irqc->hw_domain = irq_domain_create_tree(of_node_to_fwnode(node),
 998						 &aic_irq_domain_ops, irqc);
 999	if (WARN_ON(!irqc->hw_domain))
1000		goto err_unmap;
1001
1002	irq_domain_update_bus_token(irqc->hw_domain, DOMAIN_BUS_WIRED);
1003
1004	if (aic_init_smp(irqc, node))
1005		goto err_remove_domain;
1006
1007	affs = of_get_child_by_name(node, "affinities");
1008	if (affs) {
1009		struct device_node *chld;
1010
1011		for_each_child_of_node(affs, chld)
1012			build_fiq_affinity(irqc, chld);
1013	}
1014	of_node_put(affs);
1015
1016	set_handle_irq(aic_handle_irq);
1017	set_handle_fiq(aic_handle_fiq);
1018
1019	off = 0;
1020	for (die = 0; die < irqc->nr_die; die++) {
1021		for (i = 0; i < BITS_TO_U32(irqc->nr_irq); i++)
1022			aic_ic_write(irqc, irqc->info.mask_set + off + i * 4, U32_MAX);
1023		for (i = 0; i < BITS_TO_U32(irqc->nr_irq); i++)
1024			aic_ic_write(irqc, irqc->info.sw_clr + off + i * 4, U32_MAX);
1025		if (irqc->info.target_cpu)
1026			for (i = 0; i < irqc->nr_irq; i++)
1027				aic_ic_write(irqc, irqc->info.target_cpu + off + i * 4, 1);
1028		off += irqc->info.die_stride;
1029	}
1030
1031	if (irqc->info.version == 2) {
1032		u32 config = aic_ic_read(irqc, AIC2_CONFIG);
1033
1034		config |= AIC2_CONFIG_ENABLE;
1035		aic_ic_write(irqc, AIC2_CONFIG, config);
1036	}
1037
1038	if (!is_kernel_in_hyp_mode())
1039		pr_info("Kernel running in EL1, mapping interrupts");
1040
1041	if (static_branch_likely(&use_fast_ipi))
1042		pr_info("Using Fast IPIs");
1043
1044	cpuhp_setup_state(CPUHP_AP_IRQ_APPLE_AIC_STARTING,
1045			  "irqchip/apple-aic/ipi:starting",
1046			  aic_init_cpu, NULL);
1047
1048	if (is_kernel_in_hyp_mode()) {
1049		struct irq_fwspec mi = {
1050			.fwnode		= of_node_to_fwnode(node),
1051			.param_count	= 3,
1052			.param		= {
1053				[0]	= AIC_FIQ, /* This is a lie */
1054				[1]	= AIC_VGIC_MI,
1055				[2]	= IRQ_TYPE_LEVEL_HIGH,
1056			},
1057		};
1058
1059		vgic_info.maint_irq = irq_create_fwspec_mapping(&mi);
1060		WARN_ON(!vgic_info.maint_irq);
1061	}
1062
1063	vgic_set_kvm_info(&vgic_info);
1064
1065	pr_info("Initialized with %d/%d IRQs * %d/%d die(s), %d FIQs, %d vIPIs",
1066		irqc->nr_irq, irqc->max_irq, irqc->nr_die, irqc->max_die, AIC_NR_FIQ, AIC_NR_SWIPI);
1067
1068	return 0;
1069
1070err_remove_domain:
1071	irq_domain_remove(irqc->hw_domain);
1072err_unmap:
1073	if (irqc->event && irqc->event != irqc->base)
1074		iounmap(irqc->event);
1075	iounmap(irqc->base);
1076	kfree(irqc);
1077	return -ENODEV;
1078}
1079
1080IRQCHIP_DECLARE(apple_aic, "apple,aic", aic_of_ic_init);
1081IRQCHIP_DECLARE(apple_aic2, "apple,aic2", aic_of_ic_init);