Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright The Asahi Linux Contributors
  4 *
  5 * Based on irq-lpc32xx:
  6 *   Copyright 2015-2016 Vladimir Zapolskiy <vz@mleia.com>
  7 * Based on irq-bcm2836:
  8 *   Copyright 2015 Broadcom
  9 */
 10
 11/*
 12 * AIC is a fairly simple interrupt controller with the following features:
 13 *
 14 * - 896 level-triggered hardware IRQs
 15 *   - Single mask bit per IRQ
 16 *   - Per-IRQ affinity setting
 17 *   - Automatic masking on event delivery (auto-ack)
 18 *   - Software triggering (ORed with hw line)
 19 * - 2 per-CPU IPIs (meant as "self" and "other", but they are
 20 *   interchangeable if not symmetric)
 21 * - Automatic prioritization (single event/ack register per CPU, lower IRQs =
 22 *   higher priority)
 23 * - Automatic masking on ack
 24 * - Default "this CPU" register view and explicit per-CPU views
 25 *
 26 * In addition, this driver also handles FIQs, as these are routed to the same
 27 * IRQ vector. These are used for Fast IPIs (TODO), the ARMv8 timer IRQs, and
 28 * performance counters (TODO).
 29 *
 30 * Implementation notes:
 31 *
 32 * - This driver creates two IRQ domains, one for HW IRQs and internal FIQs,
 33 *   and one for IPIs.
 34 * - Since Linux needs more than 2 IPIs, we implement a software IRQ controller
 35 *   and funnel all IPIs into one per-CPU IPI (the second "self" IPI is unused).
 36 * - FIQ hwirq numbers are assigned after true hwirqs, and are per-cpu.
 37 * - DT bindings use 3-cell form (like GIC):
 38 *   - <0 nr flags> - hwirq #nr
 39 *   - <1 nr flags> - FIQ #nr
 40 *     - nr=0  Physical HV timer
 41 *     - nr=1  Virtual HV timer
 42 *     - nr=2  Physical guest timer
 43 *     - nr=3  Virtual guest timer
 44 */
 45
 46#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 47
 48#include <linux/bits.h>
 49#include <linux/bitfield.h>
 50#include <linux/cpuhotplug.h>
 51#include <linux/io.h>
 52#include <linux/irqchip.h>
 53#include <linux/irqchip/arm-vgic-info.h>
 54#include <linux/irqdomain.h>
 55#include <linux/limits.h>
 56#include <linux/of_address.h>
 57#include <linux/slab.h>
 58#include <asm/exception.h>
 59#include <asm/sysreg.h>
 60#include <asm/virt.h>
 61
 62#include <dt-bindings/interrupt-controller/apple-aic.h>
 63
 64/*
 65 * AIC registers (MMIO)
 66 */
 67
 68#define AIC_INFO		0x0004
 69#define AIC_INFO_NR_HW		GENMASK(15, 0)
 70
 71#define AIC_CONFIG		0x0010
 72
 73#define AIC_WHOAMI		0x2000
 74#define AIC_EVENT		0x2004
 75#define AIC_EVENT_TYPE		GENMASK(31, 16)
 76#define AIC_EVENT_NUM		GENMASK(15, 0)
 77
 78#define AIC_EVENT_TYPE_HW	1
 79#define AIC_EVENT_TYPE_IPI	4
 80#define AIC_EVENT_IPI_OTHER	1
 81#define AIC_EVENT_IPI_SELF	2
 82
 83#define AIC_IPI_SEND		0x2008
 84#define AIC_IPI_ACK		0x200c
 85#define AIC_IPI_MASK_SET	0x2024
 86#define AIC_IPI_MASK_CLR	0x2028
 87
 88#define AIC_IPI_SEND_CPU(cpu)	BIT(cpu)
 89
 90#define AIC_IPI_OTHER		BIT(0)
 91#define AIC_IPI_SELF		BIT(31)
 92
 93#define AIC_TARGET_CPU		0x3000
 94#define AIC_SW_SET		0x4000
 95#define AIC_SW_CLR		0x4080
 96#define AIC_MASK_SET		0x4100
 97#define AIC_MASK_CLR		0x4180
 98
 99#define AIC_CPU_IPI_SET(cpu)	(0x5008 + ((cpu) << 7))
100#define AIC_CPU_IPI_CLR(cpu)	(0x500c + ((cpu) << 7))
101#define AIC_CPU_IPI_MASK_SET(cpu) (0x5024 + ((cpu) << 7))
102#define AIC_CPU_IPI_MASK_CLR(cpu) (0x5028 + ((cpu) << 7))
103
104#define MASK_REG(x)		(4 * ((x) >> 5))
105#define MASK_BIT(x)		BIT((x) & GENMASK(4, 0))
106
107/*
108 * IMP-DEF sysregs that control FIQ sources
109 * Note: sysreg-based IPIs are not supported yet.
110 */
111
112/* Core PMC control register */
113#define SYS_IMP_APL_PMCR0_EL1		sys_reg(3, 1, 15, 0, 0)
114#define PMCR0_IMODE			GENMASK(10, 8)
115#define PMCR0_IMODE_OFF			0
116#define PMCR0_IMODE_PMI			1
117#define PMCR0_IMODE_AIC			2
118#define PMCR0_IMODE_HALT		3
119#define PMCR0_IMODE_FIQ			4
120#define PMCR0_IACT			BIT(11)
121
122/* IPI request registers */
123#define SYS_IMP_APL_IPI_RR_LOCAL_EL1	sys_reg(3, 5, 15, 0, 0)
124#define SYS_IMP_APL_IPI_RR_GLOBAL_EL1	sys_reg(3, 5, 15, 0, 1)
125#define IPI_RR_CPU			GENMASK(7, 0)
126/* Cluster only used for the GLOBAL register */
127#define IPI_RR_CLUSTER			GENMASK(23, 16)
128#define IPI_RR_TYPE			GENMASK(29, 28)
129#define IPI_RR_IMMEDIATE		0
130#define IPI_RR_RETRACT			1
131#define IPI_RR_DEFERRED			2
132#define IPI_RR_NOWAKE			3
133
134/* IPI status register */
135#define SYS_IMP_APL_IPI_SR_EL1		sys_reg(3, 5, 15, 1, 1)
136#define IPI_SR_PENDING			BIT(0)
137
138/* Guest timer FIQ enable register */
139#define SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2	sys_reg(3, 5, 15, 1, 3)
140#define VM_TMR_FIQ_ENABLE_V		BIT(0)
141#define VM_TMR_FIQ_ENABLE_P		BIT(1)
142
143/* Deferred IPI countdown register */
144#define SYS_IMP_APL_IPI_CR_EL1		sys_reg(3, 5, 15, 3, 1)
145
146/* Uncore PMC control register */
147#define SYS_IMP_APL_UPMCR0_EL1		sys_reg(3, 7, 15, 0, 4)
148#define UPMCR0_IMODE			GENMASK(18, 16)
149#define UPMCR0_IMODE_OFF		0
150#define UPMCR0_IMODE_AIC		2
151#define UPMCR0_IMODE_HALT		3
152#define UPMCR0_IMODE_FIQ		4
153
154/* Uncore PMC status register */
155#define SYS_IMP_APL_UPMSR_EL1		sys_reg(3, 7, 15, 6, 4)
156#define UPMSR_IACT			BIT(0)
157
158#define AIC_NR_FIQ		4
159#define AIC_NR_SWIPI		32
160
161/*
162 * FIQ hwirq index definitions: FIQ sources use the DT binding defines
163 * directly, except that timers are special. At the irqchip level, the
164 * two timer types are represented by their access method: _EL0 registers
165 * or _EL02 registers. In the DT binding, the timers are represented
166 * by their purpose (HV or guest). This mapping is for when the kernel is
167 * running at EL2 (with VHE). When the kernel is running at EL1, the
168 * mapping differs and aic_irq_domain_translate() performs the remapping.
169 */
170
171#define AIC_TMR_EL0_PHYS	AIC_TMR_HV_PHYS
172#define AIC_TMR_EL0_VIRT	AIC_TMR_HV_VIRT
173#define AIC_TMR_EL02_PHYS	AIC_TMR_GUEST_PHYS
174#define AIC_TMR_EL02_VIRT	AIC_TMR_GUEST_VIRT
175
176struct aic_irq_chip {
177	void __iomem *base;
178	struct irq_domain *hw_domain;
179	struct irq_domain *ipi_domain;
180	int nr_hw;
181	int ipi_hwirq;
182};
183
184static DEFINE_PER_CPU(uint32_t, aic_fiq_unmasked);
185
186static DEFINE_PER_CPU(atomic_t, aic_vipi_flag);
187static DEFINE_PER_CPU(atomic_t, aic_vipi_enable);
188
189static struct aic_irq_chip *aic_irqc;
190
191static void aic_handle_ipi(struct pt_regs *regs);
192
193static u32 aic_ic_read(struct aic_irq_chip *ic, u32 reg)
194{
195	return readl_relaxed(ic->base + reg);
196}
197
198static void aic_ic_write(struct aic_irq_chip *ic, u32 reg, u32 val)
199{
200	writel_relaxed(val, ic->base + reg);
201}
202
203/*
204 * IRQ irqchip
205 */
206
207static void aic_irq_mask(struct irq_data *d)
208{
209	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
210
211	aic_ic_write(ic, AIC_MASK_SET + MASK_REG(irqd_to_hwirq(d)),
212		     MASK_BIT(irqd_to_hwirq(d)));
213}
214
215static void aic_irq_unmask(struct irq_data *d)
216{
217	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
218
219	aic_ic_write(ic, AIC_MASK_CLR + MASK_REG(d->hwirq),
220		     MASK_BIT(irqd_to_hwirq(d)));
221}
222
223static void aic_irq_eoi(struct irq_data *d)
224{
225	/*
226	 * Reading the interrupt reason automatically acknowledges and masks
227	 * the IRQ, so we just unmask it here if needed.
228	 */
229	if (!irqd_irq_masked(d))
230		aic_irq_unmask(d);
231}
232
233static void __exception_irq_entry aic_handle_irq(struct pt_regs *regs)
234{
235	struct aic_irq_chip *ic = aic_irqc;
236	u32 event, type, irq;
237
238	do {
239		/*
240		 * We cannot use a relaxed read here, as reads from DMA buffers
241		 * need to be ordered after the IRQ fires.
242		 */
243		event = readl(ic->base + AIC_EVENT);
244		type = FIELD_GET(AIC_EVENT_TYPE, event);
245		irq = FIELD_GET(AIC_EVENT_NUM, event);
246
247		if (type == AIC_EVENT_TYPE_HW)
248			handle_domain_irq(aic_irqc->hw_domain, irq, regs);
249		else if (type == AIC_EVENT_TYPE_IPI && irq == 1)
250			aic_handle_ipi(regs);
251		else if (event != 0)
252			pr_err_ratelimited("Unknown IRQ event %d, %d\n", type, irq);
253	} while (event);
254
255	/*
256	 * vGIC maintenance interrupts end up here too, so we need to check
257	 * for them separately. This should never trigger if KVM is working
258	 * properly, because it will have already taken care of clearing it
259	 * on guest exit before this handler runs.
260	 */
261	if (is_kernel_in_hyp_mode() && (read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EN) &&
262		read_sysreg_s(SYS_ICH_MISR_EL2) != 0) {
263		pr_err_ratelimited("vGIC IRQ fired and not handled by KVM, disabling.\n");
264		sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
265	}
266}
267
268static int aic_irq_set_affinity(struct irq_data *d,
269				const struct cpumask *mask_val, bool force)
270{
271	irq_hw_number_t hwirq = irqd_to_hwirq(d);
272	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
273	int cpu;
274
275	if (force)
276		cpu = cpumask_first(mask_val);
277	else
278		cpu = cpumask_any_and(mask_val, cpu_online_mask);
279
280	aic_ic_write(ic, AIC_TARGET_CPU + hwirq * 4, BIT(cpu));
281	irq_data_update_effective_affinity(d, cpumask_of(cpu));
282
283	return IRQ_SET_MASK_OK;
284}
285
286static int aic_irq_set_type(struct irq_data *d, unsigned int type)
287{
288	/*
289	 * Some IRQs (e.g. MSIs) implicitly have edge semantics, and we don't
290	 * have a way to find out the type of any given IRQ, so just allow both.
291	 */
292	return (type == IRQ_TYPE_LEVEL_HIGH || type == IRQ_TYPE_EDGE_RISING) ? 0 : -EINVAL;
293}
294
295static struct irq_chip aic_chip = {
296	.name = "AIC",
297	.irq_mask = aic_irq_mask,
298	.irq_unmask = aic_irq_unmask,
299	.irq_eoi = aic_irq_eoi,
300	.irq_set_affinity = aic_irq_set_affinity,
301	.irq_set_type = aic_irq_set_type,
302};
303
304/*
305 * FIQ irqchip
306 */
307
308static unsigned long aic_fiq_get_idx(struct irq_data *d)
309{
310	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
311
312	return irqd_to_hwirq(d) - ic->nr_hw;
313}
314
315static void aic_fiq_set_mask(struct irq_data *d)
316{
317	/* Only the guest timers have real mask bits, unfortunately. */
318	switch (aic_fiq_get_idx(d)) {
319	case AIC_TMR_EL02_PHYS:
320		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_P, 0);
321		isb();
322		break;
323	case AIC_TMR_EL02_VIRT:
324		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_V, 0);
325		isb();
326		break;
327	default:
328		break;
329	}
330}
331
332static void aic_fiq_clear_mask(struct irq_data *d)
333{
334	switch (aic_fiq_get_idx(d)) {
335	case AIC_TMR_EL02_PHYS:
336		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_P);
337		isb();
338		break;
339	case AIC_TMR_EL02_VIRT:
340		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_V);
341		isb();
342		break;
343	default:
344		break;
345	}
346}
347
348static void aic_fiq_mask(struct irq_data *d)
349{
350	aic_fiq_set_mask(d);
351	__this_cpu_and(aic_fiq_unmasked, ~BIT(aic_fiq_get_idx(d)));
352}
353
354static void aic_fiq_unmask(struct irq_data *d)
355{
356	aic_fiq_clear_mask(d);
357	__this_cpu_or(aic_fiq_unmasked, BIT(aic_fiq_get_idx(d)));
358}
359
360static void aic_fiq_eoi(struct irq_data *d)
361{
362	/* We mask to ack (where we can), so we need to unmask at EOI. */
363	if (__this_cpu_read(aic_fiq_unmasked) & BIT(aic_fiq_get_idx(d)))
364		aic_fiq_clear_mask(d);
365}
366
367#define TIMER_FIRING(x)                                                        \
368	(((x) & (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_MASK |            \
369		 ARCH_TIMER_CTRL_IT_STAT)) ==                                  \
370	 (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT))
371
372static void __exception_irq_entry aic_handle_fiq(struct pt_regs *regs)
373{
374	/*
375	 * It would be really nice if we had a system register that lets us get
376	 * the FIQ source state without having to peek down into sources...
377	 * but such a register does not seem to exist.
378	 *
379	 * So, we have these potential sources to test for:
380	 *  - Fast IPIs (not yet used)
381	 *  - The 4 timers (CNTP, CNTV for each of HV and guest)
382	 *  - Per-core PMCs (not yet supported)
383	 *  - Per-cluster uncore PMCs (not yet supported)
384	 *
385	 * Since not dealing with any of these results in a FIQ storm,
386	 * we check for everything here, even things we don't support yet.
387	 */
388
389	if (read_sysreg_s(SYS_IMP_APL_IPI_SR_EL1) & IPI_SR_PENDING) {
390		pr_err_ratelimited("Fast IPI fired. Acking.\n");
391		write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
392	}
393
394	if (TIMER_FIRING(read_sysreg(cntp_ctl_el0)))
395		handle_domain_irq(aic_irqc->hw_domain,
396				  aic_irqc->nr_hw + AIC_TMR_EL0_PHYS, regs);
397
398	if (TIMER_FIRING(read_sysreg(cntv_ctl_el0)))
399		handle_domain_irq(aic_irqc->hw_domain,
400				  aic_irqc->nr_hw + AIC_TMR_EL0_VIRT, regs);
401
402	if (is_kernel_in_hyp_mode()) {
403		uint64_t enabled = read_sysreg_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2);
404
405		if ((enabled & VM_TMR_FIQ_ENABLE_P) &&
406		    TIMER_FIRING(read_sysreg_s(SYS_CNTP_CTL_EL02)))
407			handle_domain_irq(aic_irqc->hw_domain,
408					  aic_irqc->nr_hw + AIC_TMR_EL02_PHYS, regs);
409
410		if ((enabled & VM_TMR_FIQ_ENABLE_V) &&
411		    TIMER_FIRING(read_sysreg_s(SYS_CNTV_CTL_EL02)))
412			handle_domain_irq(aic_irqc->hw_domain,
413					  aic_irqc->nr_hw + AIC_TMR_EL02_VIRT, regs);
414	}
415
416	if ((read_sysreg_s(SYS_IMP_APL_PMCR0_EL1) & (PMCR0_IMODE | PMCR0_IACT)) ==
417			(FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_FIQ) | PMCR0_IACT)) {
418		/*
419		 * Not supported yet, let's figure out how to handle this when
420		 * we implement these proprietary performance counters. For now,
421		 * just mask it and move on.
422		 */
423		pr_err_ratelimited("PMC FIQ fired. Masking.\n");
424		sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT,
425				   FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF));
426	}
427
428	if (FIELD_GET(UPMCR0_IMODE, read_sysreg_s(SYS_IMP_APL_UPMCR0_EL1)) == UPMCR0_IMODE_FIQ &&
429			(read_sysreg_s(SYS_IMP_APL_UPMSR_EL1) & UPMSR_IACT)) {
430		/* Same story with uncore PMCs */
431		pr_err_ratelimited("Uncore PMC FIQ fired. Masking.\n");
432		sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
433				   FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
434	}
435}
436
437static int aic_fiq_set_type(struct irq_data *d, unsigned int type)
438{
439	return (type == IRQ_TYPE_LEVEL_HIGH) ? 0 : -EINVAL;
440}
441
442static struct irq_chip fiq_chip = {
443	.name = "AIC-FIQ",
444	.irq_mask = aic_fiq_mask,
445	.irq_unmask = aic_fiq_unmask,
446	.irq_ack = aic_fiq_set_mask,
447	.irq_eoi = aic_fiq_eoi,
448	.irq_set_type = aic_fiq_set_type,
449};
450
451/*
452 * Main IRQ domain
453 */
454
455static int aic_irq_domain_map(struct irq_domain *id, unsigned int irq,
456			      irq_hw_number_t hw)
457{
458	struct aic_irq_chip *ic = id->host_data;
459
460	if (hw < ic->nr_hw) {
461		irq_domain_set_info(id, irq, hw, &aic_chip, id->host_data,
462				    handle_fasteoi_irq, NULL, NULL);
463		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq)));
464	} else {
465		irq_set_percpu_devid(irq);
466		irq_domain_set_info(id, irq, hw, &fiq_chip, id->host_data,
467				    handle_percpu_devid_irq, NULL, NULL);
468	}
469
470	return 0;
471}
472
473static int aic_irq_domain_translate(struct irq_domain *id,
474				    struct irq_fwspec *fwspec,
475				    unsigned long *hwirq,
476				    unsigned int *type)
477{
478	struct aic_irq_chip *ic = id->host_data;
479
480	if (fwspec->param_count != 3 || !is_of_node(fwspec->fwnode))
481		return -EINVAL;
482
483	switch (fwspec->param[0]) {
484	case AIC_IRQ:
485		if (fwspec->param[1] >= ic->nr_hw)
486			return -EINVAL;
487		*hwirq = fwspec->param[1];
488		break;
489	case AIC_FIQ:
490		if (fwspec->param[1] >= AIC_NR_FIQ)
491			return -EINVAL;
492		*hwirq = ic->nr_hw + fwspec->param[1];
493
494		/*
495		 * In EL1 the non-redirected registers are the guest's,
496		 * not EL2's, so remap the hwirqs to match.
497		 */
498		if (!is_kernel_in_hyp_mode()) {
499			switch (fwspec->param[1]) {
500			case AIC_TMR_GUEST_PHYS:
501				*hwirq = ic->nr_hw + AIC_TMR_EL0_PHYS;
502				break;
503			case AIC_TMR_GUEST_VIRT:
504				*hwirq = ic->nr_hw + AIC_TMR_EL0_VIRT;
505				break;
506			case AIC_TMR_HV_PHYS:
507			case AIC_TMR_HV_VIRT:
508				return -ENOENT;
509			default:
510				break;
511			}
512		}
513		break;
514	default:
515		return -EINVAL;
516	}
517
518	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
519
520	return 0;
521}
522
523static int aic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
524				unsigned int nr_irqs, void *arg)
525{
526	unsigned int type = IRQ_TYPE_NONE;
527	struct irq_fwspec *fwspec = arg;
528	irq_hw_number_t hwirq;
529	int i, ret;
530
531	ret = aic_irq_domain_translate(domain, fwspec, &hwirq, &type);
532	if (ret)
533		return ret;
534
535	for (i = 0; i < nr_irqs; i++) {
536		ret = aic_irq_domain_map(domain, virq + i, hwirq + i);
537		if (ret)
538			return ret;
539	}
540
541	return 0;
542}
543
544static void aic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
545				unsigned int nr_irqs)
546{
547	int i;
548
549	for (i = 0; i < nr_irqs; i++) {
550		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
551
552		irq_set_handler(virq + i, NULL);
553		irq_domain_reset_irq_data(d);
554	}
555}
556
557static const struct irq_domain_ops aic_irq_domain_ops = {
558	.translate	= aic_irq_domain_translate,
559	.alloc		= aic_irq_domain_alloc,
560	.free		= aic_irq_domain_free,
561};
562
563/*
564 * IPI irqchip
565 */
566
567static void aic_ipi_mask(struct irq_data *d)
568{
569	u32 irq_bit = BIT(irqd_to_hwirq(d));
570
571	/* No specific ordering requirements needed here. */
572	atomic_andnot(irq_bit, this_cpu_ptr(&aic_vipi_enable));
573}
574
575static void aic_ipi_unmask(struct irq_data *d)
576{
577	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
578	u32 irq_bit = BIT(irqd_to_hwirq(d));
579
580	atomic_or(irq_bit, this_cpu_ptr(&aic_vipi_enable));
581
582	/*
583	 * The atomic_or() above must complete before the atomic_read()
584	 * below to avoid racing aic_ipi_send_mask().
585	 */
586	smp_mb__after_atomic();
587
588	/*
589	 * If a pending vIPI was unmasked, raise a HW IPI to ourselves.
590	 * No barriers needed here since this is a self-IPI.
591	 */
592	if (atomic_read(this_cpu_ptr(&aic_vipi_flag)) & irq_bit)
593		aic_ic_write(ic, AIC_IPI_SEND, AIC_IPI_SEND_CPU(smp_processor_id()));
594}
595
596static void aic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
597{
598	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
599	u32 irq_bit = BIT(irqd_to_hwirq(d));
600	u32 send = 0;
601	int cpu;
602	unsigned long pending;
603
604	for_each_cpu(cpu, mask) {
605		/*
606		 * This sequence is the mirror of the one in aic_ipi_unmask();
607		 * see the comment there. Additionally, release semantics
608		 * ensure that the vIPI flag set is ordered after any shared
609		 * memory accesses that precede it. This therefore also pairs
610		 * with the atomic_fetch_andnot in aic_handle_ipi().
611		 */
612		pending = atomic_fetch_or_release(irq_bit, per_cpu_ptr(&aic_vipi_flag, cpu));
613
614		/*
615		 * The atomic_fetch_or_release() above must complete before the
616		 * atomic_read() below to avoid racing aic_ipi_unmask().
617		 */
618		smp_mb__after_atomic();
619
620		if (!(pending & irq_bit) &&
621		    (atomic_read(per_cpu_ptr(&aic_vipi_enable, cpu)) & irq_bit))
622			send |= AIC_IPI_SEND_CPU(cpu);
623	}
624
625	/*
626	 * The flag writes must complete before the physical IPI is issued
627	 * to another CPU. This is implied by the control dependency on
628	 * the result of atomic_read_acquire() above, which is itself
629	 * already ordered after the vIPI flag write.
630	 */
631	if (send)
632		aic_ic_write(ic, AIC_IPI_SEND, send);
633}
634
635static struct irq_chip ipi_chip = {
636	.name = "AIC-IPI",
637	.irq_mask = aic_ipi_mask,
638	.irq_unmask = aic_ipi_unmask,
639	.ipi_send_mask = aic_ipi_send_mask,
640};
641
642/*
643 * IPI IRQ domain
644 */
645
646static void aic_handle_ipi(struct pt_regs *regs)
647{
648	int i;
649	unsigned long enabled, firing;
650
651	/*
652	 * Ack the IPI. We need to order this after the AIC event read, but
653	 * that is enforced by normal MMIO ordering guarantees.
654	 */
655	aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_OTHER);
656
657	/*
658	 * The mask read does not need to be ordered. Only we can change
659	 * our own mask anyway, so no races are possible here, as long as
660	 * we are properly in the interrupt handler (which is covered by
661	 * the barrier that is part of the top-level AIC handler's readl()).
662	 */
663	enabled = atomic_read(this_cpu_ptr(&aic_vipi_enable));
664
665	/*
666	 * Clear the IPIs we are about to handle. This pairs with the
667	 * atomic_fetch_or_release() in aic_ipi_send_mask(), and needs to be
668	 * ordered after the aic_ic_write() above (to avoid dropping vIPIs) and
669	 * before IPI handling code (to avoid races handling vIPIs before they
670	 * are signaled). The former is taken care of by the release semantics
671	 * of the write portion, while the latter is taken care of by the
672	 * acquire semantics of the read portion.
673	 */
674	firing = atomic_fetch_andnot(enabled, this_cpu_ptr(&aic_vipi_flag)) & enabled;
675
676	for_each_set_bit(i, &firing, AIC_NR_SWIPI)
677		handle_domain_irq(aic_irqc->ipi_domain, i, regs);
678
679	/*
680	 * No ordering needed here; at worst this just changes the timing of
681	 * when the next IPI will be delivered.
682	 */
683	aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
684}
685
686static int aic_ipi_alloc(struct irq_domain *d, unsigned int virq,
687			 unsigned int nr_irqs, void *args)
688{
689	int i;
690
691	for (i = 0; i < nr_irqs; i++) {
692		irq_set_percpu_devid(virq + i);
693		irq_domain_set_info(d, virq + i, i, &ipi_chip, d->host_data,
694				    handle_percpu_devid_irq, NULL, NULL);
695	}
696
697	return 0;
698}
699
700static void aic_ipi_free(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs)
701{
702	/* Not freeing IPIs */
703}
704
705static const struct irq_domain_ops aic_ipi_domain_ops = {
706	.alloc = aic_ipi_alloc,
707	.free = aic_ipi_free,
708};
709
710static int aic_init_smp(struct aic_irq_chip *irqc, struct device_node *node)
711{
712	struct irq_domain *ipi_domain;
713	int base_ipi;
714
715	ipi_domain = irq_domain_create_linear(irqc->hw_domain->fwnode, AIC_NR_SWIPI,
716					      &aic_ipi_domain_ops, irqc);
717	if (WARN_ON(!ipi_domain))
718		return -ENODEV;
719
720	ipi_domain->flags |= IRQ_DOMAIN_FLAG_IPI_SINGLE;
721	irq_domain_update_bus_token(ipi_domain, DOMAIN_BUS_IPI);
722
723	base_ipi = __irq_domain_alloc_irqs(ipi_domain, -1, AIC_NR_SWIPI,
724					   NUMA_NO_NODE, NULL, false, NULL);
725
726	if (WARN_ON(!base_ipi)) {
727		irq_domain_remove(ipi_domain);
728		return -ENODEV;
729	}
730
731	set_smp_ipi_range(base_ipi, AIC_NR_SWIPI);
732
733	irqc->ipi_domain = ipi_domain;
734
735	return 0;
736}
737
738static int aic_init_cpu(unsigned int cpu)
739{
740	/* Mask all hard-wired per-CPU IRQ/FIQ sources */
741
742	/* Pending Fast IPI FIQs */
743	write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
744
745	/* Timer FIQs */
746	sysreg_clear_set(cntp_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
747	sysreg_clear_set(cntv_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
748
749	/* EL2-only (VHE mode) IRQ sources */
750	if (is_kernel_in_hyp_mode()) {
751		/* Guest timers */
752		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2,
753				   VM_TMR_FIQ_ENABLE_V | VM_TMR_FIQ_ENABLE_P, 0);
754
755		/* vGIC maintenance IRQ */
756		sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
757	}
758
759	/* PMC FIQ */
760	sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT,
761			   FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF));
762
763	/* Uncore PMC FIQ */
764	sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
765			   FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
766
767	/* Commit all of the above */
768	isb();
769
770	/*
771	 * Make sure the kernel's idea of logical CPU order is the same as AIC's
772	 * If we ever end up with a mismatch here, we will have to introduce
773	 * a mapping table similar to what other irqchip drivers do.
774	 */
775	WARN_ON(aic_ic_read(aic_irqc, AIC_WHOAMI) != smp_processor_id());
776
777	/*
778	 * Always keep IPIs unmasked at the hardware level (except auto-masking
779	 * by AIC during processing). We manage masks at the vIPI level.
780	 */
781	aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_SELF | AIC_IPI_OTHER);
782	aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF);
783	aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
784
785	/* Initialize the local mask state */
786	__this_cpu_write(aic_fiq_unmasked, 0);
787
788	return 0;
789}
790
791static struct gic_kvm_info vgic_info __initdata = {
792	.type			= GIC_V3,
793	.no_maint_irq_mask	= true,
794	.no_hw_deactivation	= true,
795};
796
797static int __init aic_of_ic_init(struct device_node *node, struct device_node *parent)
798{
799	int i;
800	void __iomem *regs;
801	u32 info;
802	struct aic_irq_chip *irqc;
803
804	regs = of_iomap(node, 0);
805	if (WARN_ON(!regs))
806		return -EIO;
807
808	irqc = kzalloc(sizeof(*irqc), GFP_KERNEL);
809	if (!irqc)
810		return -ENOMEM;
811
812	aic_irqc = irqc;
813	irqc->base = regs;
814
815	info = aic_ic_read(irqc, AIC_INFO);
816	irqc->nr_hw = FIELD_GET(AIC_INFO_NR_HW, info);
817
818	irqc->hw_domain = irq_domain_create_linear(of_node_to_fwnode(node),
819						   irqc->nr_hw + AIC_NR_FIQ,
820						   &aic_irq_domain_ops, irqc);
821	if (WARN_ON(!irqc->hw_domain)) {
822		iounmap(irqc->base);
823		kfree(irqc);
824		return -ENODEV;
825	}
826
827	irq_domain_update_bus_token(irqc->hw_domain, DOMAIN_BUS_WIRED);
828
829	if (aic_init_smp(irqc, node)) {
830		irq_domain_remove(irqc->hw_domain);
831		iounmap(irqc->base);
832		kfree(irqc);
833		return -ENODEV;
834	}
835
836	set_handle_irq(aic_handle_irq);
837	set_handle_fiq(aic_handle_fiq);
838
839	for (i = 0; i < BITS_TO_U32(irqc->nr_hw); i++)
840		aic_ic_write(irqc, AIC_MASK_SET + i * 4, U32_MAX);
841	for (i = 0; i < BITS_TO_U32(irqc->nr_hw); i++)
842		aic_ic_write(irqc, AIC_SW_CLR + i * 4, U32_MAX);
843	for (i = 0; i < irqc->nr_hw; i++)
844		aic_ic_write(irqc, AIC_TARGET_CPU + i * 4, 1);
845
846	if (!is_kernel_in_hyp_mode())
847		pr_info("Kernel running in EL1, mapping interrupts");
848
849	cpuhp_setup_state(CPUHP_AP_IRQ_APPLE_AIC_STARTING,
850			  "irqchip/apple-aic/ipi:starting",
851			  aic_init_cpu, NULL);
852
853	vgic_set_kvm_info(&vgic_info);
854
855	pr_info("Initialized with %d IRQs, %d FIQs, %d vIPIs\n",
856		irqc->nr_hw, AIC_NR_FIQ, AIC_NR_SWIPI);
857
858	return 0;
859}
860
861IRQCHIP_DECLARE(apple_m1_aic, "apple,aic", aic_of_ic_init);