Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v3.1
 
  1/*
  2 * KVM paravirt_ops implementation
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 17 *
 18 * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 19 * Copyright IBM Corporation, 2007
 20 *   Authors: Anthony Liguori <aliguori@us.ibm.com>
 21 */
 22
 23#include <linux/module.h>
 
 
 
 
 24#include <linux/kernel.h>
 25#include <linux/kvm_para.h>
 26#include <linux/cpu.h>
 27#include <linux/mm.h>
 28#include <linux/highmem.h>
 29#include <linux/hardirq.h>
 30#include <linux/notifier.h>
 31#include <linux/reboot.h>
 32#include <linux/hash.h>
 33#include <linux/sched.h>
 34#include <linux/slab.h>
 35#include <linux/kprobes.h>
 
 
 
 
 
 36#include <asm/timer.h>
 37#include <asm/cpu.h>
 38#include <asm/traps.h>
 39#include <asm/desc.h>
 40#include <asm/tlbflush.h>
 
 
 
 
 
 
 
 
 
 41
 42#define MMU_QUEUE_SIZE 1024
 43
 44static int kvmapf = 1;
 45
 46static int parse_no_kvmapf(char *arg)
 47{
 48        kvmapf = 0;
 49        return 0;
 50}
 51
 52early_param("no-kvmapf", parse_no_kvmapf);
 53
 54static int steal_acc = 1;
 55static int parse_no_stealacc(char *arg)
 56{
 57        steal_acc = 0;
 58        return 0;
 59}
 60
 61early_param("no-steal-acc", parse_no_stealacc);
 62
 63struct kvm_para_state {
 64	u8 mmu_queue[MMU_QUEUE_SIZE];
 65	int mmu_queue_len;
 66};
 67
 68static DEFINE_PER_CPU(struct kvm_para_state, para_state);
 69static DEFINE_PER_CPU(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
 70static DEFINE_PER_CPU(struct kvm_steal_time, steal_time) __aligned(64);
 71static int has_steal_clock = 0;
 72
 73static struct kvm_para_state *kvm_para_state(void)
 74{
 75	return &per_cpu(para_state, raw_smp_processor_id());
 76}
 77
 78/*
 79 * No need for any "IO delay" on KVM
 80 */
 81static void kvm_io_delay(void)
 82{
 83}
 84
 85#define KVM_TASK_SLEEP_HASHBITS 8
 86#define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
 87
 88struct kvm_task_sleep_node {
 89	struct hlist_node link;
 90	wait_queue_head_t wq;
 91	u32 token;
 92	int cpu;
 93	bool halted;
 94	struct mm_struct *mm;
 95};
 96
 97static struct kvm_task_sleep_head {
 98	spinlock_t lock;
 99	struct hlist_head list;
100} async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
101
102static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
103						  u32 token)
104{
105	struct hlist_node *p;
106
107	hlist_for_each(p, &b->list) {
108		struct kvm_task_sleep_node *n =
109			hlist_entry(p, typeof(*n), link);
110		if (n->token == token)
111			return n;
112	}
113
114	return NULL;
115}
116
117void kvm_async_pf_task_wait(u32 token)
118{
119	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
120	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
121	struct kvm_task_sleep_node n, *e;
122	DEFINE_WAIT(wait);
123	int cpu, idle;
124
125	cpu = get_cpu();
126	idle = idle_cpu(cpu);
127	put_cpu();
128
129	spin_lock(&b->lock);
130	e = _find_apf_task(b, token);
131	if (e) {
132		/* dummy entry exist -> wake up was delivered ahead of PF */
133		hlist_del(&e->link);
 
134		kfree(e);
135		spin_unlock(&b->lock);
136		return;
137	}
138
139	n.token = token;
140	n.cpu = smp_processor_id();
141	n.mm = current->active_mm;
142	n.halted = idle || preempt_count() > 1;
143	atomic_inc(&n.mm->mm_count);
144	init_waitqueue_head(&n.wq);
145	hlist_add_head(&n.link, &b->list);
146	spin_unlock(&b->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147
148	for (;;) {
149		if (!n.halted)
150			prepare_to_wait(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
151		if (hlist_unhashed(&n.link))
152			break;
153
154		if (!n.halted) {
155			local_irq_enable();
156			schedule();
157			local_irq_disable();
158		} else {
159			/*
160			 * We cannot reschedule. So halt.
161			 */
162			native_safe_halt();
163			local_irq_disable();
164		}
165	}
166	if (!n.halted)
167		finish_wait(&n.wq, &wait);
168
169	return;
170}
171EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait);
172
173static void apf_task_wake_one(struct kvm_task_sleep_node *n)
174{
175	hlist_del_init(&n->link);
176	if (!n->mm)
177		return;
178	mmdrop(n->mm);
179	if (n->halted)
180		smp_send_reschedule(n->cpu);
181	else if (waitqueue_active(&n->wq))
182		wake_up(&n->wq);
183}
184
185static void apf_task_wake_all(void)
186{
187	int i;
188
189	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
190		struct hlist_node *p, *next;
191		struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
192		spin_lock(&b->lock);
 
 
 
193		hlist_for_each_safe(p, next, &b->list) {
194			struct kvm_task_sleep_node *n =
195				hlist_entry(p, typeof(*n), link);
196			if (n->cpu == smp_processor_id())
197				apf_task_wake_one(n);
198		}
199		spin_unlock(&b->lock);
200	}
201}
202
203void kvm_async_pf_task_wake(u32 token)
204{
205	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
206	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
207	struct kvm_task_sleep_node *n;
208
209	if (token == ~0) {
210		apf_task_wake_all();
211		return;
212	}
213
214again:
215	spin_lock(&b->lock);
216	n = _find_apf_task(b, token);
217	if (!n) {
218		/*
219		 * async PF was not yet handled.
220		 * Add dummy entry for the token.
 
221		 */
222		n = kmalloc(sizeof(*n), GFP_ATOMIC);
223		if (!n) {
 
 
224			/*
225			 * Allocation failed! Busy wait while other cpu
226			 * handles async PF.
 
 
 
 
 
 
 
 
227			 */
228			spin_unlock(&b->lock);
229			cpu_relax();
230			goto again;
231		}
232		n->token = token;
233		n->cpu = smp_processor_id();
234		n->mm = NULL;
235		init_waitqueue_head(&n->wq);
236		hlist_add_head(&n->link, &b->list);
237	} else
238		apf_task_wake_one(n);
239	spin_unlock(&b->lock);
240	return;
 
 
 
241}
242EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
243
244u32 kvm_read_and_reset_pf_reason(void)
245{
246	u32 reason = 0;
247
248	if (__get_cpu_var(apf_reason).enabled) {
249		reason = __get_cpu_var(apf_reason).reason;
250		__get_cpu_var(apf_reason).reason = 0;
251	}
252
253	return reason;
254}
255EXPORT_SYMBOL_GPL(kvm_read_and_reset_pf_reason);
256
257dotraplinkage void __kprobes
258do_async_page_fault(struct pt_regs *regs, unsigned long error_code)
259{
260	switch (kvm_read_and_reset_pf_reason()) {
261	default:
262		do_page_fault(regs, error_code);
263		break;
264	case KVM_PV_REASON_PAGE_NOT_PRESENT:
265		/* page is swapped out by the host. */
266		kvm_async_pf_task_wait((u32)read_cr2());
267		break;
268	case KVM_PV_REASON_PAGE_READY:
269		kvm_async_pf_task_wake((u32)read_cr2());
270		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
271	}
 
 
 
 
272}
273
274static void kvm_mmu_op(void *buffer, unsigned len)
275{
276	int r;
277	unsigned long a1, a2;
278
279	do {
280		a1 = __pa(buffer);
281		a2 = 0;   /* on i386 __pa() always returns <4G */
282		r = kvm_hypercall3(KVM_HC_MMU_OP, len, a1, a2);
283		buffer += r;
284		len -= r;
285	} while (len);
 
 
 
 
 
286}
287
288static void mmu_queue_flush(struct kvm_para_state *state)
289{
290	if (state->mmu_queue_len) {
291		kvm_mmu_op(state->mmu_queue, state->mmu_queue_len);
292		state->mmu_queue_len = 0;
293	}
 
 
 
 
294}
295
296static void kvm_deferred_mmu_op(void *buffer, int len)
297{
298	struct kvm_para_state *state = kvm_para_state();
 
299
300	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) {
301		kvm_mmu_op(buffer, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303	}
304	if (state->mmu_queue_len + len > sizeof state->mmu_queue)
305		mmu_queue_flush(state);
306	memcpy(state->mmu_queue + state->mmu_queue_len, buffer, len);
307	state->mmu_queue_len += len;
 
 
 
 
 
 
 
 
 
 
308}
309
310static void kvm_mmu_write(void *dest, u64 val)
311{
312	__u64 pte_phys;
313	struct kvm_mmu_op_write_pte wpte;
314
315#ifdef CONFIG_HIGHPTE
316	struct page *page;
317	unsigned long dst = (unsigned long) dest;
318
319	page = kmap_atomic_to_page(dest);
320	pte_phys = page_to_pfn(page);
321	pte_phys <<= PAGE_SHIFT;
322	pte_phys += (dst & ~(PAGE_MASK));
323#else
324	pte_phys = (unsigned long)__pa(dest);
325#endif
326	wpte.header.op = KVM_MMU_OP_WRITE_PTE;
327	wpte.pte_val = val;
328	wpte.pte_phys = pte_phys;
329
330	kvm_deferred_mmu_op(&wpte, sizeof wpte);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331}
332
333/*
334 * We only need to hook operations that are MMU writes.  We hook these so that
335 * we can use lazy MMU mode to batch these operations.  We could probably
336 * improve the performance of the host code if we used some of the information
337 * here to simplify processing of batched writes.
 
 
338 */
339static void kvm_set_pte(pte_t *ptep, pte_t pte)
340{
341	kvm_mmu_write(ptep, pte_val(pte));
 
 
 
 
 
 
 
 
 
 
342}
343
344static void kvm_set_pte_at(struct mm_struct *mm, unsigned long addr,
345			   pte_t *ptep, pte_t pte)
346{
347	kvm_mmu_write(ptep, pte_val(pte));
 
 
 
 
 
 
 
 
348}
349
350static void kvm_set_pmd(pmd_t *pmdp, pmd_t pmd)
351{
352	kvm_mmu_write(pmdp, pmd_val(pmd));
 
 
 
 
 
353}
354
355#if PAGETABLE_LEVELS >= 3
356#ifdef CONFIG_X86_PAE
357static void kvm_set_pte_atomic(pte_t *ptep, pte_t pte)
 
 
358{
359	kvm_mmu_write(ptep, pte_val(pte));
 
 
 
 
360}
361
362static void kvm_pte_clear(struct mm_struct *mm,
363			  unsigned long addr, pte_t *ptep)
364{
365	kvm_mmu_write(ptep, 0);
 
366}
367
368static void kvm_pmd_clear(pmd_t *pmdp)
369{
370	kvm_mmu_write(pmdp, 0);
 
 
 
 
371}
372#endif
373
374static void kvm_set_pud(pud_t *pudp, pud_t pud)
 
 
375{
376	kvm_mmu_write(pudp, pud_val(pud));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
377}
378
379#if PAGETABLE_LEVELS == 4
380static void kvm_set_pgd(pgd_t *pgdp, pgd_t pgd)
381{
382	kvm_mmu_write(pgdp, pgd_val(pgd));
383}
384#endif
385#endif /* PAGETABLE_LEVELS >= 3 */
386
387static void kvm_flush_tlb(void)
388{
389	struct kvm_mmu_op_flush_tlb ftlb = {
390		.header.op = KVM_MMU_OP_FLUSH_TLB,
391	};
392
393	kvm_deferred_mmu_op(&ftlb, sizeof ftlb);
 
 
 
394}
395
396static void kvm_release_pt(unsigned long pfn)
397{
398	struct kvm_mmu_op_release_pt rpt = {
399		.header.op = KVM_MMU_OP_RELEASE_PT,
400		.pt_phys = (u64)pfn << PAGE_SHIFT,
401	};
 
 
 
 
 
402
403	kvm_mmu_op(&rpt, sizeof rpt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
404}
405
406static void kvm_enter_lazy_mmu(void)
 
 
 
 
 
407{
408	paravirt_enter_lazy_mmu();
 
 
409}
410
411static void kvm_leave_lazy_mmu(void)
412{
413	struct kvm_para_state *state = kvm_para_state();
414
415	mmu_queue_flush(state);
416	paravirt_leave_lazy_mmu();
 
 
 
 
 
 
 
417}
418
419static void __init paravirt_ops_setup(void)
 
420{
421	pv_info.name = "KVM";
422	pv_info.paravirt_enabled = 1;
423
424	if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
425		pv_cpu_ops.io_delay = kvm_io_delay;
426
427	if (kvm_para_has_feature(KVM_FEATURE_MMU_OP)) {
428		pv_mmu_ops.set_pte = kvm_set_pte;
429		pv_mmu_ops.set_pte_at = kvm_set_pte_at;
430		pv_mmu_ops.set_pmd = kvm_set_pmd;
431#if PAGETABLE_LEVELS >= 3
432#ifdef CONFIG_X86_PAE
433		pv_mmu_ops.set_pte_atomic = kvm_set_pte_atomic;
434		pv_mmu_ops.pte_clear = kvm_pte_clear;
435		pv_mmu_ops.pmd_clear = kvm_pmd_clear;
436#endif
437		pv_mmu_ops.set_pud = kvm_set_pud;
438#if PAGETABLE_LEVELS == 4
439		pv_mmu_ops.set_pgd = kvm_set_pgd;
440#endif
441#endif
442		pv_mmu_ops.flush_tlb_user = kvm_flush_tlb;
443		pv_mmu_ops.release_pte = kvm_release_pt;
444		pv_mmu_ops.release_pmd = kvm_release_pt;
445		pv_mmu_ops.release_pud = kvm_release_pt;
446
447		pv_mmu_ops.lazy_mode.enter = kvm_enter_lazy_mmu;
448		pv_mmu_ops.lazy_mode.leave = kvm_leave_lazy_mmu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
449	}
450#ifdef CONFIG_X86_IO_APIC
451	no_timer_check = 1;
452#endif
453}
454
455static void kvm_register_steal_time(void)
456{
457	int cpu = smp_processor_id();
458	struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
459
460	if (!has_steal_clock)
461		return;
462
463	memset(st, 0, sizeof(*st));
 
 
 
 
464
465	wrmsrl(MSR_KVM_STEAL_TIME, (__pa(st) | KVM_MSR_ENABLED));
466	printk(KERN_INFO "kvm-stealtime: cpu %d, msr %lx\n",
467		cpu, __pa(st));
468}
 
469
470void __cpuinit kvm_guest_cpu_init(void)
471{
472	if (!kvm_para_available())
473		return;
 
 
 
 
 
 
 
 
 
 
 
 
474
475	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) {
476		u64 pa = __pa(&__get_cpu_var(apf_reason));
 
 
 
477
478#ifdef CONFIG_PREEMPT
479		pa |= KVM_ASYNC_PF_SEND_ALWAYS;
480#endif
481		wrmsrl(MSR_KVM_ASYNC_PF_EN, pa | KVM_ASYNC_PF_ENABLED);
482		__get_cpu_var(apf_reason).enabled = 1;
483		printk(KERN_INFO"KVM setup async PF for cpu %d\n",
484		       smp_processor_id());
485	}
486
487	if (has_steal_clock)
488		kvm_register_steal_time();
 
 
 
 
 
 
 
 
 
 
489}
490
491static void kvm_pv_disable_apf(void *unused)
492{
493	if (!__get_cpu_var(apf_reason).enabled)
494		return;
495
496	wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
497	__get_cpu_var(apf_reason).enabled = 0;
 
 
 
 
 
 
 
 
498
499	printk(KERN_INFO"Unregister pv shared memory for cpu %d\n",
500	       smp_processor_id());
 
501}
502
503static int kvm_pv_reboot_notify(struct notifier_block *nb,
504				unsigned long code, void *unused)
505{
506	if (code == SYS_RESTART)
507		on_each_cpu(kvm_pv_disable_apf, NULL, 1);
508	return NOTIFY_DONE;
509}
510
511static struct notifier_block kvm_pv_reboot_nb = {
512	.notifier_call = kvm_pv_reboot_notify,
513};
514
515static u64 kvm_steal_clock(int cpu)
 
 
 
 
 
 
 
516{
517	u64 steal;
518	struct kvm_steal_time *src;
519	int version;
 
520
521	src = &per_cpu(steal_time, cpu);
522	do {
523		version = src->version;
524		rmb();
525		steal = src->steal;
526		rmb();
527	} while ((version & 1) || (version != src->version));
528
529	return steal;
 
 
 
 
530}
 
531
532void kvm_disable_steal_time(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
533{
534	if (!has_steal_clock)
535		return;
536
537	wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
538}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
539
540#ifdef CONFIG_SMP
541static void __init kvm_smp_prepare_boot_cpu(void)
542{
543#ifdef CONFIG_KVM_CLOCK
544	WARN_ON(kvm_register_clock("primary cpu clock"));
545#endif
 
 
 
 
 
 
 
 
 
 
 
546	kvm_guest_cpu_init();
547	native_smp_prepare_boot_cpu();
 
 
 
 
 
 
 
 
 
 
 
 
 
548}
549
550static void __cpuinit kvm_guest_cpu_online(void *dummy)
551{
552	kvm_guest_cpu_init();
 
 
 
 
 
 
553}
554
555static void kvm_guest_cpu_offline(void *dummy)
556{
557	kvm_disable_steal_time();
558	kvm_pv_disable_apf(NULL);
559	apf_task_wake_all();
 
 
 
560}
561
562static int __cpuinit kvm_cpu_notify(struct notifier_block *self,
563				    unsigned long action, void *hcpu)
564{
565	int cpu = (unsigned long)hcpu;
566	switch (action) {
567	case CPU_ONLINE:
568	case CPU_DOWN_FAILED:
569	case CPU_ONLINE_FROZEN:
570		smp_call_function_single(cpu, kvm_guest_cpu_online, NULL, 0);
571		break;
572	case CPU_DOWN_PREPARE:
573	case CPU_DOWN_PREPARE_FROZEN:
574		smp_call_function_single(cpu, kvm_guest_cpu_offline, NULL, 1);
575		break;
576	default:
577		break;
578	}
579	return NOTIFY_OK;
580}
 
581
582static struct notifier_block __cpuinitdata kvm_cpu_notifier = {
583        .notifier_call  = kvm_cpu_notify,
584};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
585#endif
 
586
587static void __init kvm_apf_trap_init(void)
588{
589	set_intr_gate(14, &async_page_fault);
590}
591
592void __init kvm_guest_init(void)
593{
594	int i;
 
 
595
596	if (!kvm_para_available())
597		return;
 
 
 
 
598
599	paravirt_ops_setup();
600	register_reboot_notifier(&kvm_pv_reboot_nb);
601	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
602		spin_lock_init(&async_pf_sleepers[i].lock);
603	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF))
604		x86_init.irqs.trap_init = kvm_apf_trap_init;
605
606	if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
607		has_steal_clock = 1;
608		pv_time_ops.steal_clock = kvm_steal_clock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
609	}
 
 
 
610
611#ifdef CONFIG_SMP
612	smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
613	register_cpu_notifier(&kvm_cpu_notifier);
614#else
615	kvm_guest_cpu_init();
616#endif
 
 
 
 
 
 
 
 
617}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
618
619static __init int activate_jump_labels(void)
620{
621	if (has_steal_clock) {
622		jump_label_inc(&paravirt_steal_enabled);
623		if (steal_acc)
624			jump_label_inc(&paravirt_steal_rq_enabled);
625	}
626
627	return 0;
628}
629arch_initcall(activate_jump_labels);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * KVM paravirt_ops implementation
   4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   6 * Copyright IBM Corporation, 2007
   7 *   Authors: Anthony Liguori <aliguori@us.ibm.com>
   8 */
   9
  10#define pr_fmt(fmt) "kvm-guest: " fmt
  11
  12#include <linux/context_tracking.h>
  13#include <linux/init.h>
  14#include <linux/irq.h>
  15#include <linux/kernel.h>
  16#include <linux/kvm_para.h>
  17#include <linux/cpu.h>
  18#include <linux/mm.h>
  19#include <linux/highmem.h>
  20#include <linux/hardirq.h>
  21#include <linux/notifier.h>
  22#include <linux/reboot.h>
  23#include <linux/hash.h>
  24#include <linux/sched.h>
  25#include <linux/slab.h>
  26#include <linux/kprobes.h>
  27#include <linux/nmi.h>
  28#include <linux/swait.h>
  29#include <linux/syscore_ops.h>
  30#include <linux/cc_platform.h>
  31#include <linux/efi.h>
  32#include <asm/timer.h>
  33#include <asm/cpu.h>
  34#include <asm/traps.h>
  35#include <asm/desc.h>
  36#include <asm/tlbflush.h>
  37#include <asm/apic.h>
  38#include <asm/apicdef.h>
  39#include <asm/hypervisor.h>
  40#include <asm/tlb.h>
  41#include <asm/cpuidle_haltpoll.h>
  42#include <asm/ptrace.h>
  43#include <asm/reboot.h>
  44#include <asm/svm.h>
  45#include <asm/e820/api.h>
  46
  47DEFINE_STATIC_KEY_FALSE(kvm_async_pf_enabled);
  48
  49static int kvmapf = 1;
  50
  51static int __init parse_no_kvmapf(char *arg)
  52{
  53        kvmapf = 0;
  54        return 0;
  55}
  56
  57early_param("no-kvmapf", parse_no_kvmapf);
  58
  59static int steal_acc = 1;
  60static int __init parse_no_stealacc(char *arg)
  61{
  62        steal_acc = 0;
  63        return 0;
  64}
  65
  66early_param("no-steal-acc", parse_no_stealacc);
  67
  68static DEFINE_PER_CPU_READ_MOSTLY(bool, async_pf_enabled);
  69static DEFINE_PER_CPU_DECRYPTED(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
  70DEFINE_PER_CPU_DECRYPTED(struct kvm_steal_time, steal_time) __aligned(64) __visible;
 
 
 
 
 
  71static int has_steal_clock = 0;
  72
  73static int has_guest_poll = 0;
 
 
 
 
  74/*
  75 * No need for any "IO delay" on KVM
  76 */
  77static void kvm_io_delay(void)
  78{
  79}
  80
  81#define KVM_TASK_SLEEP_HASHBITS 8
  82#define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
  83
  84struct kvm_task_sleep_node {
  85	struct hlist_node link;
  86	struct swait_queue_head wq;
  87	u32 token;
  88	int cpu;
 
 
  89};
  90
  91static struct kvm_task_sleep_head {
  92	raw_spinlock_t lock;
  93	struct hlist_head list;
  94} async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
  95
  96static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
  97						  u32 token)
  98{
  99	struct hlist_node *p;
 100
 101	hlist_for_each(p, &b->list) {
 102		struct kvm_task_sleep_node *n =
 103			hlist_entry(p, typeof(*n), link);
 104		if (n->token == token)
 105			return n;
 106	}
 107
 108	return NULL;
 109}
 110
 111static bool kvm_async_pf_queue_task(u32 token, struct kvm_task_sleep_node *n)
 112{
 113	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
 114	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
 115	struct kvm_task_sleep_node *e;
 
 
 
 
 
 
 116
 117	raw_spin_lock(&b->lock);
 118	e = _find_apf_task(b, token);
 119	if (e) {
 120		/* dummy entry exist -> wake up was delivered ahead of PF */
 121		hlist_del(&e->link);
 122		raw_spin_unlock(&b->lock);
 123		kfree(e);
 124		return false;
 
 125	}
 126
 127	n->token = token;
 128	n->cpu = smp_processor_id();
 129	init_swait_queue_head(&n->wq);
 130	hlist_add_head(&n->link, &b->list);
 131	raw_spin_unlock(&b->lock);
 132	return true;
 133}
 134
 135/*
 136 * kvm_async_pf_task_wait_schedule - Wait for pagefault to be handled
 137 * @token:	Token to identify the sleep node entry
 138 *
 139 * Invoked from the async pagefault handling code or from the VM exit page
 140 * fault handler. In both cases RCU is watching.
 141 */
 142void kvm_async_pf_task_wait_schedule(u32 token)
 143{
 144	struct kvm_task_sleep_node n;
 145	DECLARE_SWAITQUEUE(wait);
 146
 147	lockdep_assert_irqs_disabled();
 148
 149	if (!kvm_async_pf_queue_task(token, &n))
 150		return;
 151
 152	for (;;) {
 153		prepare_to_swait_exclusive(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
 
 154		if (hlist_unhashed(&n.link))
 155			break;
 156
 157		local_irq_enable();
 158		schedule();
 159		local_irq_disable();
 
 
 
 
 
 
 
 
 160	}
 161	finish_swait(&n.wq, &wait);
 
 
 
 162}
 163EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait_schedule);
 164
 165static void apf_task_wake_one(struct kvm_task_sleep_node *n)
 166{
 167	hlist_del_init(&n->link);
 168	if (swq_has_sleeper(&n->wq))
 169		swake_up_one(&n->wq);
 
 
 
 
 
 170}
 171
 172static void apf_task_wake_all(void)
 173{
 174	int i;
 175
 176	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
 
 177		struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
 178		struct kvm_task_sleep_node *n;
 179		struct hlist_node *p, *next;
 180
 181		raw_spin_lock(&b->lock);
 182		hlist_for_each_safe(p, next, &b->list) {
 183			n = hlist_entry(p, typeof(*n), link);
 
 184			if (n->cpu == smp_processor_id())
 185				apf_task_wake_one(n);
 186		}
 187		raw_spin_unlock(&b->lock);
 188	}
 189}
 190
 191void kvm_async_pf_task_wake(u32 token)
 192{
 193	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
 194	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
 195	struct kvm_task_sleep_node *n, *dummy = NULL;
 196
 197	if (token == ~0) {
 198		apf_task_wake_all();
 199		return;
 200	}
 201
 202again:
 203	raw_spin_lock(&b->lock);
 204	n = _find_apf_task(b, token);
 205	if (!n) {
 206		/*
 207		 * Async #PF not yet handled, add a dummy entry for the token.
 208		 * Allocating the token must be down outside of the raw lock
 209		 * as the allocator is preemptible on PREEMPT_RT kernels.
 210		 */
 211		if (!dummy) {
 212			raw_spin_unlock(&b->lock);
 213			dummy = kzalloc(sizeof(*dummy), GFP_ATOMIC);
 214
 215			/*
 216			 * Continue looping on allocation failure, eventually
 217			 * the async #PF will be handled and allocating a new
 218			 * node will be unnecessary.
 219			 */
 220			if (!dummy)
 221				cpu_relax();
 222
 223			/*
 224			 * Recheck for async #PF completion before enqueueing
 225			 * the dummy token to avoid duplicate list entries.
 226			 */
 
 
 227			goto again;
 228		}
 229		dummy->token = token;
 230		dummy->cpu = smp_processor_id();
 231		init_swait_queue_head(&dummy->wq);
 232		hlist_add_head(&dummy->link, &b->list);
 233		dummy = NULL;
 234	} else {
 235		apf_task_wake_one(n);
 236	}
 237	raw_spin_unlock(&b->lock);
 238
 239	/* A dummy token might be allocated and ultimately not used.  */
 240	kfree(dummy);
 241}
 242EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
 243
 244noinstr u32 kvm_read_and_reset_apf_flags(void)
 245{
 246	u32 flags = 0;
 247
 248	if (__this_cpu_read(async_pf_enabled)) {
 249		flags = __this_cpu_read(apf_reason.flags);
 250		__this_cpu_write(apf_reason.flags, 0);
 251	}
 252
 253	return flags;
 254}
 255EXPORT_SYMBOL_GPL(kvm_read_and_reset_apf_flags);
 256
 257noinstr bool __kvm_handle_async_pf(struct pt_regs *regs, u32 token)
 
 258{
 259	u32 flags = kvm_read_and_reset_apf_flags();
 260	irqentry_state_t state;
 261
 262	if (!flags)
 263		return false;
 264
 265	state = irqentry_enter(regs);
 266	instrumentation_begin();
 267
 268	/*
 269	 * If the host managed to inject an async #PF into an interrupt
 270	 * disabled region, then die hard as this is not going to end well
 271	 * and the host side is seriously broken.
 272	 */
 273	if (unlikely(!(regs->flags & X86_EFLAGS_IF)))
 274		panic("Host injected async #PF in interrupt disabled region\n");
 275
 276	if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
 277		if (unlikely(!(user_mode(regs))))
 278			panic("Host injected async #PF in kernel mode\n");
 279		/* Page is swapped out by the host. */
 280		kvm_async_pf_task_wait_schedule(token);
 281	} else {
 282		WARN_ONCE(1, "Unexpected async PF flags: %x\n", flags);
 283	}
 284
 285	instrumentation_end();
 286	irqentry_exit(regs, state);
 287	return true;
 288}
 289
 290DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt)
 291{
 292	struct pt_regs *old_regs = set_irq_regs(regs);
 293	u32 token;
 294
 295	apic_eoi();
 296
 297	inc_irq_stat(irq_hv_callback_count);
 298
 299	if (__this_cpu_read(async_pf_enabled)) {
 300		token = __this_cpu_read(apf_reason.token);
 301		kvm_async_pf_task_wake(token);
 302		__this_cpu_write(apf_reason.token, 0);
 303		wrmsrl(MSR_KVM_ASYNC_PF_ACK, 1);
 304	}
 305
 306	set_irq_regs(old_regs);
 307}
 308
 309static void __init paravirt_ops_setup(void)
 310{
 311	pv_info.name = "KVM";
 312
 313	if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
 314		pv_ops.cpu.io_delay = kvm_io_delay;
 315
 316#ifdef CONFIG_X86_IO_APIC
 317	no_timer_check = 1;
 318#endif
 319}
 320
 321static void kvm_register_steal_time(void)
 322{
 323	int cpu = smp_processor_id();
 324	struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
 325
 326	if (!has_steal_clock)
 327		return;
 328
 329	wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED));
 330	pr_debug("stealtime: cpu %d, msr %llx\n", cpu,
 331		(unsigned long long) slow_virt_to_phys(st));
 332}
 333
 334static DEFINE_PER_CPU_DECRYPTED(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED;
 335
 336static notrace __maybe_unused void kvm_guest_apic_eoi_write(void)
 337{
 338	/**
 339	 * This relies on __test_and_clear_bit to modify the memory
 340	 * in a way that is atomic with respect to the local CPU.
 341	 * The hypervisor only accesses this memory from the local CPU so
 342	 * there's no need for lock or memory barriers.
 343	 * An optimization barrier is implied in apic write.
 344	 */
 345	if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi)))
 346		return;
 347	apic_native_eoi();
 348}
 349
 350static void kvm_guest_cpu_init(void)
 351{
 352	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
 353		u64 pa;
 354
 355		WARN_ON_ONCE(!static_branch_likely(&kvm_async_pf_enabled));
 356
 357		pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
 358		pa |= KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
 359
 360		if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_VMEXIT))
 361			pa |= KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
 362
 363		wrmsrl(MSR_KVM_ASYNC_PF_INT, HYPERVISOR_CALLBACK_VECTOR);
 364
 365		wrmsrl(MSR_KVM_ASYNC_PF_EN, pa);
 366		__this_cpu_write(async_pf_enabled, true);
 367		pr_debug("setup async PF for cpu %d\n", smp_processor_id());
 368	}
 369
 370	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) {
 371		unsigned long pa;
 372
 373		/* Size alignment is implied but just to make it explicit. */
 374		BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4);
 375		__this_cpu_write(kvm_apic_eoi, 0);
 376		pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi))
 377			| KVM_MSR_ENABLED;
 378		wrmsrl(MSR_KVM_PV_EOI_EN, pa);
 379	}
 380
 381	if (has_steal_clock)
 382		kvm_register_steal_time();
 383}
 384
 385static void kvm_pv_disable_apf(void)
 386{
 387	if (!__this_cpu_read(async_pf_enabled))
 388		return;
 389
 390	wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
 391	__this_cpu_write(async_pf_enabled, false);
 
 392
 393	pr_debug("disable async PF for cpu %d\n", smp_processor_id());
 394}
 
 
 
 
 
 
 
 
 395
 396static void kvm_disable_steal_time(void)
 397{
 398	if (!has_steal_clock)
 399		return;
 400
 401	wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
 402}
 403
 404static u64 kvm_steal_clock(int cpu)
 405{
 406	u64 steal;
 407	struct kvm_steal_time *src;
 408	int version;
 409
 410	src = &per_cpu(steal_time, cpu);
 411	do {
 412		version = src->version;
 413		virt_rmb();
 414		steal = src->steal;
 415		virt_rmb();
 416	} while ((version & 1) || (version != src->version));
 417
 418	return steal;
 419}
 420
 421static inline void __set_percpu_decrypted(void *ptr, unsigned long size)
 422{
 423	early_set_memory_decrypted((unsigned long) ptr, size);
 424}
 425
 426/*
 427 * Iterate through all possible CPUs and map the memory region pointed
 428 * by apf_reason, steal_time and kvm_apic_eoi as decrypted at once.
 429 *
 430 * Note: we iterate through all possible CPUs to ensure that CPUs
 431 * hotplugged will have their per-cpu variable already mapped as
 432 * decrypted.
 433 */
 434static void __init sev_map_percpu_data(void)
 435{
 436	int cpu;
 437
 438	if (cc_vendor != CC_VENDOR_AMD ||
 439	    !cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
 440		return;
 441
 442	for_each_possible_cpu(cpu) {
 443		__set_percpu_decrypted(&per_cpu(apf_reason, cpu), sizeof(apf_reason));
 444		__set_percpu_decrypted(&per_cpu(steal_time, cpu), sizeof(steal_time));
 445		__set_percpu_decrypted(&per_cpu(kvm_apic_eoi, cpu), sizeof(kvm_apic_eoi));
 446	}
 447}
 448
 449static void kvm_guest_cpu_offline(bool shutdown)
 
 450{
 451	kvm_disable_steal_time();
 452	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
 453		wrmsrl(MSR_KVM_PV_EOI_EN, 0);
 454	if (kvm_para_has_feature(KVM_FEATURE_MIGRATION_CONTROL))
 455		wrmsrl(MSR_KVM_MIGRATION_CONTROL, 0);
 456	kvm_pv_disable_apf();
 457	if (!shutdown)
 458		apf_task_wake_all();
 459	kvmclock_disable();
 460}
 461
 462static int kvm_cpu_online(unsigned int cpu)
 463{
 464	unsigned long flags;
 465
 466	local_irq_save(flags);
 467	kvm_guest_cpu_init();
 468	local_irq_restore(flags);
 469	return 0;
 470}
 471
 472#ifdef CONFIG_SMP
 473
 474static DEFINE_PER_CPU(cpumask_var_t, __pv_cpu_mask);
 475
 476static bool pv_tlb_flush_supported(void)
 477{
 478	return (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH) &&
 479		!kvm_para_has_hint(KVM_HINTS_REALTIME) &&
 480		kvm_para_has_feature(KVM_FEATURE_STEAL_TIME) &&
 481		!boot_cpu_has(X86_FEATURE_MWAIT) &&
 482		(num_possible_cpus() != 1));
 483}
 484
 485static bool pv_ipi_supported(void)
 
 486{
 487	return (kvm_para_has_feature(KVM_FEATURE_PV_SEND_IPI) &&
 488	       (num_possible_cpus() != 1));
 489}
 490
 491static bool pv_sched_yield_supported(void)
 492{
 493	return (kvm_para_has_feature(KVM_FEATURE_PV_SCHED_YIELD) &&
 494		!kvm_para_has_hint(KVM_HINTS_REALTIME) &&
 495	    kvm_para_has_feature(KVM_FEATURE_STEAL_TIME) &&
 496	    !boot_cpu_has(X86_FEATURE_MWAIT) &&
 497	    (num_possible_cpus() != 1));
 498}
 
 499
 500#define KVM_IPI_CLUSTER_SIZE	(2 * BITS_PER_LONG)
 501
 502static void __send_ipi_mask(const struct cpumask *mask, int vector)
 503{
 504	unsigned long flags;
 505	int cpu, min = 0, max = 0;
 506#ifdef CONFIG_X86_64
 507	__uint128_t ipi_bitmap = 0;
 508#else
 509	u64 ipi_bitmap = 0;
 510#endif
 511	u32 apic_id, icr;
 512	long ret;
 513
 514	if (cpumask_empty(mask))
 515		return;
 516
 517	local_irq_save(flags);
 518
 519	switch (vector) {
 520	default:
 521		icr = APIC_DM_FIXED | vector;
 522		break;
 523	case NMI_VECTOR:
 524		icr = APIC_DM_NMI;
 525		break;
 526	}
 527
 528	for_each_cpu(cpu, mask) {
 529		apic_id = per_cpu(x86_cpu_to_apicid, cpu);
 530		if (!ipi_bitmap) {
 531			min = max = apic_id;
 532		} else if (apic_id < min && max - apic_id < KVM_IPI_CLUSTER_SIZE) {
 533			ipi_bitmap <<= min - apic_id;
 534			min = apic_id;
 535		} else if (apic_id > min && apic_id < min + KVM_IPI_CLUSTER_SIZE) {
 536			max = apic_id < max ? max : apic_id;
 537		} else {
 538			ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
 539				(unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
 540			WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
 541				  ret);
 542			min = max = apic_id;
 543			ipi_bitmap = 0;
 544		}
 545		__set_bit(apic_id - min, (unsigned long *)&ipi_bitmap);
 546	}
 547
 548	if (ipi_bitmap) {
 549		ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
 550			(unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
 551		WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
 552			  ret);
 553	}
 554
 555	local_irq_restore(flags);
 556}
 557
 558static void kvm_send_ipi_mask(const struct cpumask *mask, int vector)
 
 559{
 560	__send_ipi_mask(mask, vector);
 561}
 
 
 562
 563static void kvm_send_ipi_mask_allbutself(const struct cpumask *mask, int vector)
 564{
 565	unsigned int this_cpu = smp_processor_id();
 566	struct cpumask *new_mask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
 567	const struct cpumask *local_mask;
 568
 569	cpumask_copy(new_mask, mask);
 570	cpumask_clear_cpu(this_cpu, new_mask);
 571	local_mask = new_mask;
 572	__send_ipi_mask(local_mask, vector);
 573}
 574
 575static int __init setup_efi_kvm_sev_migration(void)
 576{
 577	efi_char16_t efi_sev_live_migration_enabled[] = L"SevLiveMigrationEnabled";
 578	efi_guid_t efi_variable_guid = AMD_SEV_MEM_ENCRYPT_GUID;
 579	efi_status_t status;
 580	unsigned long size;
 581	bool enabled;
 582
 583	if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT) ||
 584	    !kvm_para_has_feature(KVM_FEATURE_MIGRATION_CONTROL))
 585		return 0;
 586
 587	if (!efi_enabled(EFI_BOOT))
 588		return 0;
 589
 590	if (!efi_enabled(EFI_RUNTIME_SERVICES)) {
 591		pr_info("%s : EFI runtime services are not enabled\n", __func__);
 592		return 0;
 593	}
 594
 595	size = sizeof(enabled);
 596
 597	/* Get variable contents into buffer */
 598	status = efi.get_variable(efi_sev_live_migration_enabled,
 599				  &efi_variable_guid, NULL, &size, &enabled);
 600
 601	if (status == EFI_NOT_FOUND) {
 602		pr_info("%s : EFI live migration variable not found\n", __func__);
 603		return 0;
 604	}
 605
 606	if (status != EFI_SUCCESS) {
 607		pr_info("%s : EFI variable retrieval failed\n", __func__);
 608		return 0;
 609	}
 610
 611	if (enabled == 0) {
 612		pr_info("%s: live migration disabled in EFI\n", __func__);
 613		return 0;
 614	}
 615
 616	pr_info("%s : live migration enabled in EFI\n", __func__);
 617	wrmsrl(MSR_KVM_MIGRATION_CONTROL, KVM_MIGRATION_READY);
 618
 619	return 1;
 620}
 621
 622late_initcall(setup_efi_kvm_sev_migration);
 623
 624/*
 625 * Set the IPI entry points
 626 */
 627static __init void kvm_setup_pv_ipi(void)
 628{
 629	apic_update_callback(send_IPI_mask, kvm_send_ipi_mask);
 630	apic_update_callback(send_IPI_mask_allbutself, kvm_send_ipi_mask_allbutself);
 631	pr_info("setup PV IPIs\n");
 632}
 633
 634static void kvm_smp_send_call_func_ipi(const struct cpumask *mask)
 635{
 636	int cpu;
 637
 638	native_send_call_func_ipi(mask);
 639
 640	/* Make sure other vCPUs get a chance to run if they need to. */
 641	for_each_cpu(cpu, mask) {
 642		if (!idle_cpu(cpu) && vcpu_is_preempted(cpu)) {
 643			kvm_hypercall1(KVM_HC_SCHED_YIELD, per_cpu(x86_cpu_to_apicid, cpu));
 644			break;
 645		}
 646	}
 647}
 648
 649static void kvm_flush_tlb_multi(const struct cpumask *cpumask,
 650			const struct flush_tlb_info *info)
 651{
 652	u8 state;
 653	int cpu;
 654	struct kvm_steal_time *src;
 655	struct cpumask *flushmask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 656
 657	cpumask_copy(flushmask, cpumask);
 658	/*
 659	 * We have to call flush only on online vCPUs. And
 660	 * queue flush_on_enter for pre-empted vCPUs
 661	 */
 662	for_each_cpu(cpu, flushmask) {
 663		/*
 664		 * The local vCPU is never preempted, so we do not explicitly
 665		 * skip check for local vCPU - it will never be cleared from
 666		 * flushmask.
 667		 */
 668		src = &per_cpu(steal_time, cpu);
 669		state = READ_ONCE(src->preempted);
 670		if ((state & KVM_VCPU_PREEMPTED)) {
 671			if (try_cmpxchg(&src->preempted, &state,
 672					state | KVM_VCPU_FLUSH_TLB))
 673				__cpumask_clear_cpu(cpu, flushmask);
 674		}
 675	}
 676
 677	native_flush_tlb_multi(flushmask, info);
 
 678}
 679
 680static __init int kvm_alloc_cpumask(void)
 681{
 682	int cpu;
 
 683
 684	if (!kvm_para_available() || nopv)
 685		return 0;
 686
 687	if (pv_tlb_flush_supported() || pv_ipi_supported())
 688		for_each_possible_cpu(cpu) {
 689			zalloc_cpumask_var_node(per_cpu_ptr(&__pv_cpu_mask, cpu),
 690				GFP_KERNEL, cpu_to_node(cpu));
 691		}
 692
 693	return 0;
 
 
 694}
 695arch_initcall(kvm_alloc_cpumask);
 696
 697static void __init kvm_smp_prepare_boot_cpu(void)
 698{
 699	/*
 700	 * Map the per-cpu variables as decrypted before kvm_guest_cpu_init()
 701	 * shares the guest physical address with the hypervisor.
 702	 */
 703	sev_map_percpu_data();
 704
 705	kvm_guest_cpu_init();
 706	native_smp_prepare_boot_cpu();
 707	kvm_spinlock_init();
 708}
 709
 710static int kvm_cpu_down_prepare(unsigned int cpu)
 711{
 712	unsigned long flags;
 713
 714	local_irq_save(flags);
 715	kvm_guest_cpu_offline(false);
 716	local_irq_restore(flags);
 717	return 0;
 718}
 719
 
 
 720#endif
 
 
 
 
 
 721
 722static int kvm_suspend(void)
 723{
 724	u64 val = 0;
 725
 726	kvm_guest_cpu_offline(false);
 727
 728#ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
 729	if (kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL))
 730		rdmsrl(MSR_KVM_POLL_CONTROL, val);
 731	has_guest_poll = !(val & 1);
 732#endif
 733	return 0;
 734}
 735
 736static void kvm_resume(void)
 737{
 738	kvm_cpu_online(raw_smp_processor_id());
 
 739
 740#ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
 741	if (kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL) && has_guest_poll)
 742		wrmsrl(MSR_KVM_POLL_CONTROL, 0);
 743#endif
 744}
 745
 746static struct syscore_ops kvm_syscore_ops = {
 747	.suspend	= kvm_suspend,
 748	.resume		= kvm_resume,
 749};
 750
 751static void kvm_pv_guest_cpu_reboot(void *unused)
 752{
 753	kvm_guest_cpu_offline(true);
 754}
 755
 756static int kvm_pv_reboot_notify(struct notifier_block *nb,
 757				unsigned long code, void *unused)
 758{
 759	if (code == SYS_RESTART)
 760		on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1);
 761	return NOTIFY_DONE;
 762}
 763
 764static struct notifier_block kvm_pv_reboot_nb = {
 765	.notifier_call = kvm_pv_reboot_notify,
 766};
 767
 768/*
 769 * After a PV feature is registered, the host will keep writing to the
 770 * registered memory location. If the guest happens to shutdown, this memory
 771 * won't be valid. In cases like kexec, in which you install a new kernel, this
 772 * means a random memory location will be kept being written.
 773 */
 774#ifdef CONFIG_CRASH_DUMP
 775static void kvm_crash_shutdown(struct pt_regs *regs)
 776{
 777	kvm_guest_cpu_offline(true);
 778	native_machine_crash_shutdown(regs);
 779}
 780#endif
 781
 782#if defined(CONFIG_X86_32) || !defined(CONFIG_SMP)
 783bool __kvm_vcpu_is_preempted(long cpu);
 
 
 
 
 
 784
 785__visible bool __kvm_vcpu_is_preempted(long cpu)
 786{
 787	struct kvm_steal_time *src = &per_cpu(steal_time, cpu);
 788
 789	return !!(src->preempted & KVM_VCPU_PREEMPTED);
 790}
 791PV_CALLEE_SAVE_REGS_THUNK(__kvm_vcpu_is_preempted);
 792
 793#else
 794
 795#include <asm/asm-offsets.h>
 796
 797extern bool __raw_callee_save___kvm_vcpu_is_preempted(long);
 798
 799/*
 800 * Hand-optimize version for x86-64 to avoid 8 64-bit register saving and
 801 * restoring to/from the stack.
 802 */
 803#define PV_VCPU_PREEMPTED_ASM						     \
 804 "movq   __per_cpu_offset(,%rdi,8), %rax\n\t"				     \
 805 "cmpb   $0, " __stringify(KVM_STEAL_TIME_preempted) "+steal_time(%rax)\n\t" \
 806 "setne  %al\n\t"
 807
 808DEFINE_ASM_FUNC(__raw_callee_save___kvm_vcpu_is_preempted,
 809		PV_VCPU_PREEMPTED_ASM, .text);
 810#endif
 811
 812static void __init kvm_guest_init(void)
 813{
 814	int i;
 
 815
 816	paravirt_ops_setup();
 817	register_reboot_notifier(&kvm_pv_reboot_nb);
 818	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
 819		raw_spin_lock_init(&async_pf_sleepers[i].lock);
 820
 821	if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
 822		has_steal_clock = 1;
 823		static_call_update(pv_steal_clock, kvm_steal_clock);
 824
 825		pv_ops.lock.vcpu_is_preempted =
 826			PV_CALLEE_SAVE(__kvm_vcpu_is_preempted);
 827	}
 828
 829	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
 830		apic_update_callback(eoi, kvm_guest_apic_eoi_write);
 831
 832	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
 833		static_branch_enable(&kvm_async_pf_enabled);
 834		sysvec_install(HYPERVISOR_CALLBACK_VECTOR, sysvec_kvm_asyncpf_interrupt);
 835	}
 836
 837#ifdef CONFIG_SMP
 838	if (pv_tlb_flush_supported()) {
 839		pv_ops.mmu.flush_tlb_multi = kvm_flush_tlb_multi;
 840		pv_ops.mmu.tlb_remove_table = tlb_remove_table;
 841		pr_info("KVM setup pv remote TLB flush\n");
 842	}
 843
 844	smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
 845	if (pv_sched_yield_supported()) {
 846		smp_ops.send_call_func_ipi = kvm_smp_send_call_func_ipi;
 847		pr_info("setup PV sched yield\n");
 848	}
 849	if (cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/kvm:online",
 850				      kvm_cpu_online, kvm_cpu_down_prepare) < 0)
 851		pr_err("failed to install cpu hotplug callbacks\n");
 852#else
 853	sev_map_percpu_data();
 854	kvm_guest_cpu_init();
 855#endif
 856
 857#ifdef CONFIG_CRASH_DUMP
 858	machine_ops.crash_shutdown = kvm_crash_shutdown;
 859#endif
 860
 861	register_syscore_ops(&kvm_syscore_ops);
 862
 863	/*
 864	 * Hard lockup detection is enabled by default. Disable it, as guests
 865	 * can get false positives too easily, for example if the host is
 866	 * overcommitted.
 867	 */
 868	hardlockup_detector_disable();
 869}
 870
 871static noinline uint32_t __kvm_cpuid_base(void)
 872{
 873	if (boot_cpu_data.cpuid_level < 0)
 874		return 0;	/* So we don't blow up on old processors */
 875
 876	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
 877		return hypervisor_cpuid_base(KVM_SIGNATURE, 0);
 878
 879	return 0;
 880}
 881
 882static inline uint32_t kvm_cpuid_base(void)
 883{
 884	static int kvm_cpuid_base = -1;
 885
 886	if (kvm_cpuid_base == -1)
 887		kvm_cpuid_base = __kvm_cpuid_base();
 888
 889	return kvm_cpuid_base;
 890}
 891
 892bool kvm_para_available(void)
 
 893{
 894	return kvm_cpuid_base() != 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 895}
 896EXPORT_SYMBOL_GPL(kvm_para_available);
 897
 898unsigned int kvm_arch_para_features(void)
 899{
 900	return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES);
 901}
 902
 903unsigned int kvm_arch_para_hints(void)
 904{
 905	return cpuid_edx(kvm_cpuid_base() | KVM_CPUID_FEATURES);
 906}
 907EXPORT_SYMBOL_GPL(kvm_arch_para_hints);
 908
 909static uint32_t __init kvm_detect(void)
 910{
 911	return kvm_cpuid_base();
 912}
 913
 914static void __init kvm_apic_init(void)
 915{
 916#ifdef CONFIG_SMP
 917	if (pv_ipi_supported())
 918		kvm_setup_pv_ipi();
 919#endif
 920}
 921
 922static bool __init kvm_msi_ext_dest_id(void)
 923{
 924	return kvm_para_has_feature(KVM_FEATURE_MSI_EXT_DEST_ID);
 925}
 926
 927static void kvm_sev_hc_page_enc_status(unsigned long pfn, int npages, bool enc)
 928{
 929	kvm_sev_hypercall3(KVM_HC_MAP_GPA_RANGE, pfn << PAGE_SHIFT, npages,
 930			   KVM_MAP_GPA_RANGE_ENC_STAT(enc) | KVM_MAP_GPA_RANGE_PAGE_SZ_4K);
 931}
 932
 933static void __init kvm_init_platform(void)
 934{
 935	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT) &&
 936	    kvm_para_has_feature(KVM_FEATURE_MIGRATION_CONTROL)) {
 937		unsigned long nr_pages;
 938		int i;
 939
 940		pv_ops.mmu.notify_page_enc_status_changed =
 941			kvm_sev_hc_page_enc_status;
 
 
 
 
 942
 943		/*
 944		 * Reset the host's shared pages list related to kernel
 945		 * specific page encryption status settings before we load a
 946		 * new kernel by kexec. Reset the page encryption status
 947		 * during early boot instead of just before kexec to avoid SMP
 948		 * races during kvm_pv_guest_cpu_reboot().
 949		 * NOTE: We cannot reset the complete shared pages list
 950		 * here as we need to retain the UEFI/OVMF firmware
 951		 * specific settings.
 952		 */
 953
 954		for (i = 0; i < e820_table->nr_entries; i++) {
 955			struct e820_entry *entry = &e820_table->entries[i];
 956
 957			if (entry->type != E820_TYPE_RAM)
 958				continue;
 959
 960			nr_pages = DIV_ROUND_UP(entry->size, PAGE_SIZE);
 961
 962			kvm_sev_hypercall3(KVM_HC_MAP_GPA_RANGE, entry->addr,
 963				       nr_pages,
 964				       KVM_MAP_GPA_RANGE_ENCRYPTED | KVM_MAP_GPA_RANGE_PAGE_SZ_4K);
 965		}
 966
 967		/*
 968		 * Ensure that _bss_decrypted section is marked as decrypted in the
 969		 * shared pages list.
 970		 */
 971		early_set_mem_enc_dec_hypercall((unsigned long)__start_bss_decrypted,
 972						__end_bss_decrypted - __start_bss_decrypted, 0);
 973
 974		/*
 975		 * If not booted using EFI, enable Live migration support.
 976		 */
 977		if (!efi_enabled(EFI_BOOT))
 978			wrmsrl(MSR_KVM_MIGRATION_CONTROL,
 979			       KVM_MIGRATION_READY);
 980	}
 981	kvmclock_init();
 982	x86_platform.apic_post_init = kvm_apic_init;
 983}
 984
 985#if defined(CONFIG_AMD_MEM_ENCRYPT)
 986static void kvm_sev_es_hcall_prepare(struct ghcb *ghcb, struct pt_regs *regs)
 987{
 988	/* RAX and CPL are already in the GHCB */
 989	ghcb_set_rbx(ghcb, regs->bx);
 990	ghcb_set_rcx(ghcb, regs->cx);
 991	ghcb_set_rdx(ghcb, regs->dx);
 992	ghcb_set_rsi(ghcb, regs->si);
 993}
 994
 995static bool kvm_sev_es_hcall_finish(struct ghcb *ghcb, struct pt_regs *regs)
 996{
 997	/* No checking of the return state needed */
 998	return true;
 999}
1000#endif
1001
1002const __initconst struct hypervisor_x86 x86_hyper_kvm = {
1003	.name				= "KVM",
1004	.detect				= kvm_detect,
1005	.type				= X86_HYPER_KVM,
1006	.init.guest_late_init		= kvm_guest_init,
1007	.init.x2apic_available		= kvm_para_available,
1008	.init.msi_ext_dest_id		= kvm_msi_ext_dest_id,
1009	.init.init_platform		= kvm_init_platform,
1010#if defined(CONFIG_AMD_MEM_ENCRYPT)
1011	.runtime.sev_es_hcall_prepare	= kvm_sev_es_hcall_prepare,
1012	.runtime.sev_es_hcall_finish	= kvm_sev_es_hcall_finish,
1013#endif
1014};
1015
1016static __init int activate_jump_labels(void)
1017{
1018	if (has_steal_clock) {
1019		static_key_slow_inc(&paravirt_steal_enabled);
1020		if (steal_acc)
1021			static_key_slow_inc(&paravirt_steal_rq_enabled);
1022	}
1023
1024	return 0;
1025}
1026arch_initcall(activate_jump_labels);
1027
1028#ifdef CONFIG_PARAVIRT_SPINLOCKS
1029
1030/* Kick a cpu by its apicid. Used to wake up a halted vcpu */
1031static void kvm_kick_cpu(int cpu)
1032{
1033	unsigned long flags = 0;
1034	u32 apicid;
1035
1036	apicid = per_cpu(x86_cpu_to_apicid, cpu);
1037	kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid);
1038}
1039
1040#include <asm/qspinlock.h>
1041
1042static void kvm_wait(u8 *ptr, u8 val)
1043{
1044	if (in_nmi())
1045		return;
1046
1047	/*
1048	 * halt until it's our turn and kicked. Note that we do safe halt
1049	 * for irq enabled case to avoid hang when lock info is overwritten
1050	 * in irq spinlock slowpath and no spurious interrupt occur to save us.
1051	 */
1052	if (irqs_disabled()) {
1053		if (READ_ONCE(*ptr) == val)
1054			halt();
1055	} else {
1056		local_irq_disable();
1057
1058		/* safe_halt() will enable IRQ */
1059		if (READ_ONCE(*ptr) == val)
1060			safe_halt();
1061		else
1062			local_irq_enable();
1063	}
1064}
1065
1066/*
1067 * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present.
1068 */
1069void __init kvm_spinlock_init(void)
1070{
1071	/*
1072	 * In case host doesn't support KVM_FEATURE_PV_UNHALT there is still an
1073	 * advantage of keeping virt_spin_lock_key enabled: virt_spin_lock() is
1074	 * preferred over native qspinlock when vCPU is preempted.
1075	 */
1076	if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT)) {
1077		pr_info("PV spinlocks disabled, no host support\n");
1078		return;
1079	}
1080
1081	/*
1082	 * Disable PV spinlocks and use native qspinlock when dedicated pCPUs
1083	 * are available.
1084	 */
1085	if (kvm_para_has_hint(KVM_HINTS_REALTIME)) {
1086		pr_info("PV spinlocks disabled with KVM_HINTS_REALTIME hints\n");
1087		goto out;
1088	}
1089
1090	if (num_possible_cpus() == 1) {
1091		pr_info("PV spinlocks disabled, single CPU\n");
1092		goto out;
1093	}
1094
1095	if (nopvspin) {
1096		pr_info("PV spinlocks disabled, forced by \"nopvspin\" parameter\n");
1097		goto out;
1098	}
1099
1100	pr_info("PV spinlocks enabled\n");
1101
1102	__pv_init_lock_hash();
1103	pv_ops.lock.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath;
1104	pv_ops.lock.queued_spin_unlock =
1105		PV_CALLEE_SAVE(__pv_queued_spin_unlock);
1106	pv_ops.lock.wait = kvm_wait;
1107	pv_ops.lock.kick = kvm_kick_cpu;
1108
1109	/*
1110	 * When PV spinlock is enabled which is preferred over
1111	 * virt_spin_lock(), virt_spin_lock_key's value is meaningless.
1112	 * Just disable it anyway.
1113	 */
1114out:
1115	static_branch_disable(&virt_spin_lock_key);
1116}
1117
1118#endif	/* CONFIG_PARAVIRT_SPINLOCKS */
1119
1120#ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
1121
1122static void kvm_disable_host_haltpoll(void *i)
1123{
1124	wrmsrl(MSR_KVM_POLL_CONTROL, 0);
1125}
1126
1127static void kvm_enable_host_haltpoll(void *i)
1128{
1129	wrmsrl(MSR_KVM_POLL_CONTROL, 1);
1130}
1131
1132void arch_haltpoll_enable(unsigned int cpu)
1133{
1134	if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) {
1135		pr_err_once("host does not support poll control\n");
1136		pr_err_once("host upgrade recommended\n");
1137		return;
1138	}
1139
1140	/* Enable guest halt poll disables host halt poll */
1141	smp_call_function_single(cpu, kvm_disable_host_haltpoll, NULL, 1);
1142}
1143EXPORT_SYMBOL_GPL(arch_haltpoll_enable);
1144
1145void arch_haltpoll_disable(unsigned int cpu)
1146{
1147	if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL))
1148		return;
1149
1150	/* Disable guest halt poll enables host halt poll */
1151	smp_call_function_single(cpu, kvm_enable_host_haltpoll, NULL, 1);
1152}
1153EXPORT_SYMBOL_GPL(arch_haltpoll_disable);
1154#endif