Loading...
1/*
2 * KVM paravirt_ops implementation
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 *
18 * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
19 * Copyright IBM Corporation, 2007
20 * Authors: Anthony Liguori <aliguori@us.ibm.com>
21 */
22
23#include <linux/module.h>
24#include <linux/kernel.h>
25#include <linux/kvm_para.h>
26#include <linux/cpu.h>
27#include <linux/mm.h>
28#include <linux/highmem.h>
29#include <linux/hardirq.h>
30#include <linux/notifier.h>
31#include <linux/reboot.h>
32#include <linux/hash.h>
33#include <linux/sched.h>
34#include <linux/slab.h>
35#include <linux/kprobes.h>
36#include <asm/timer.h>
37#include <asm/cpu.h>
38#include <asm/traps.h>
39#include <asm/desc.h>
40#include <asm/tlbflush.h>
41
42#define MMU_QUEUE_SIZE 1024
43
44static int kvmapf = 1;
45
46static int parse_no_kvmapf(char *arg)
47{
48 kvmapf = 0;
49 return 0;
50}
51
52early_param("no-kvmapf", parse_no_kvmapf);
53
54static int steal_acc = 1;
55static int parse_no_stealacc(char *arg)
56{
57 steal_acc = 0;
58 return 0;
59}
60
61early_param("no-steal-acc", parse_no_stealacc);
62
63struct kvm_para_state {
64 u8 mmu_queue[MMU_QUEUE_SIZE];
65 int mmu_queue_len;
66};
67
68static DEFINE_PER_CPU(struct kvm_para_state, para_state);
69static DEFINE_PER_CPU(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
70static DEFINE_PER_CPU(struct kvm_steal_time, steal_time) __aligned(64);
71static int has_steal_clock = 0;
72
73static struct kvm_para_state *kvm_para_state(void)
74{
75 return &per_cpu(para_state, raw_smp_processor_id());
76}
77
78/*
79 * No need for any "IO delay" on KVM
80 */
81static void kvm_io_delay(void)
82{
83}
84
85#define KVM_TASK_SLEEP_HASHBITS 8
86#define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
87
88struct kvm_task_sleep_node {
89 struct hlist_node link;
90 wait_queue_head_t wq;
91 u32 token;
92 int cpu;
93 bool halted;
94 struct mm_struct *mm;
95};
96
97static struct kvm_task_sleep_head {
98 spinlock_t lock;
99 struct hlist_head list;
100} async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
101
102static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
103 u32 token)
104{
105 struct hlist_node *p;
106
107 hlist_for_each(p, &b->list) {
108 struct kvm_task_sleep_node *n =
109 hlist_entry(p, typeof(*n), link);
110 if (n->token == token)
111 return n;
112 }
113
114 return NULL;
115}
116
117void kvm_async_pf_task_wait(u32 token)
118{
119 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
120 struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
121 struct kvm_task_sleep_node n, *e;
122 DEFINE_WAIT(wait);
123 int cpu, idle;
124
125 cpu = get_cpu();
126 idle = idle_cpu(cpu);
127 put_cpu();
128
129 spin_lock(&b->lock);
130 e = _find_apf_task(b, token);
131 if (e) {
132 /* dummy entry exist -> wake up was delivered ahead of PF */
133 hlist_del(&e->link);
134 kfree(e);
135 spin_unlock(&b->lock);
136 return;
137 }
138
139 n.token = token;
140 n.cpu = smp_processor_id();
141 n.mm = current->active_mm;
142 n.halted = idle || preempt_count() > 1;
143 atomic_inc(&n.mm->mm_count);
144 init_waitqueue_head(&n.wq);
145 hlist_add_head(&n.link, &b->list);
146 spin_unlock(&b->lock);
147
148 for (;;) {
149 if (!n.halted)
150 prepare_to_wait(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
151 if (hlist_unhashed(&n.link))
152 break;
153
154 if (!n.halted) {
155 local_irq_enable();
156 schedule();
157 local_irq_disable();
158 } else {
159 /*
160 * We cannot reschedule. So halt.
161 */
162 native_safe_halt();
163 local_irq_disable();
164 }
165 }
166 if (!n.halted)
167 finish_wait(&n.wq, &wait);
168
169 return;
170}
171EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait);
172
173static void apf_task_wake_one(struct kvm_task_sleep_node *n)
174{
175 hlist_del_init(&n->link);
176 if (!n->mm)
177 return;
178 mmdrop(n->mm);
179 if (n->halted)
180 smp_send_reschedule(n->cpu);
181 else if (waitqueue_active(&n->wq))
182 wake_up(&n->wq);
183}
184
185static void apf_task_wake_all(void)
186{
187 int i;
188
189 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
190 struct hlist_node *p, *next;
191 struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
192 spin_lock(&b->lock);
193 hlist_for_each_safe(p, next, &b->list) {
194 struct kvm_task_sleep_node *n =
195 hlist_entry(p, typeof(*n), link);
196 if (n->cpu == smp_processor_id())
197 apf_task_wake_one(n);
198 }
199 spin_unlock(&b->lock);
200 }
201}
202
203void kvm_async_pf_task_wake(u32 token)
204{
205 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
206 struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
207 struct kvm_task_sleep_node *n;
208
209 if (token == ~0) {
210 apf_task_wake_all();
211 return;
212 }
213
214again:
215 spin_lock(&b->lock);
216 n = _find_apf_task(b, token);
217 if (!n) {
218 /*
219 * async PF was not yet handled.
220 * Add dummy entry for the token.
221 */
222 n = kmalloc(sizeof(*n), GFP_ATOMIC);
223 if (!n) {
224 /*
225 * Allocation failed! Busy wait while other cpu
226 * handles async PF.
227 */
228 spin_unlock(&b->lock);
229 cpu_relax();
230 goto again;
231 }
232 n->token = token;
233 n->cpu = smp_processor_id();
234 n->mm = NULL;
235 init_waitqueue_head(&n->wq);
236 hlist_add_head(&n->link, &b->list);
237 } else
238 apf_task_wake_one(n);
239 spin_unlock(&b->lock);
240 return;
241}
242EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
243
244u32 kvm_read_and_reset_pf_reason(void)
245{
246 u32 reason = 0;
247
248 if (__get_cpu_var(apf_reason).enabled) {
249 reason = __get_cpu_var(apf_reason).reason;
250 __get_cpu_var(apf_reason).reason = 0;
251 }
252
253 return reason;
254}
255EXPORT_SYMBOL_GPL(kvm_read_and_reset_pf_reason);
256
257dotraplinkage void __kprobes
258do_async_page_fault(struct pt_regs *regs, unsigned long error_code)
259{
260 switch (kvm_read_and_reset_pf_reason()) {
261 default:
262 do_page_fault(regs, error_code);
263 break;
264 case KVM_PV_REASON_PAGE_NOT_PRESENT:
265 /* page is swapped out by the host. */
266 kvm_async_pf_task_wait((u32)read_cr2());
267 break;
268 case KVM_PV_REASON_PAGE_READY:
269 kvm_async_pf_task_wake((u32)read_cr2());
270 break;
271 }
272}
273
274static void kvm_mmu_op(void *buffer, unsigned len)
275{
276 int r;
277 unsigned long a1, a2;
278
279 do {
280 a1 = __pa(buffer);
281 a2 = 0; /* on i386 __pa() always returns <4G */
282 r = kvm_hypercall3(KVM_HC_MMU_OP, len, a1, a2);
283 buffer += r;
284 len -= r;
285 } while (len);
286}
287
288static void mmu_queue_flush(struct kvm_para_state *state)
289{
290 if (state->mmu_queue_len) {
291 kvm_mmu_op(state->mmu_queue, state->mmu_queue_len);
292 state->mmu_queue_len = 0;
293 }
294}
295
296static void kvm_deferred_mmu_op(void *buffer, int len)
297{
298 struct kvm_para_state *state = kvm_para_state();
299
300 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) {
301 kvm_mmu_op(buffer, len);
302 return;
303 }
304 if (state->mmu_queue_len + len > sizeof state->mmu_queue)
305 mmu_queue_flush(state);
306 memcpy(state->mmu_queue + state->mmu_queue_len, buffer, len);
307 state->mmu_queue_len += len;
308}
309
310static void kvm_mmu_write(void *dest, u64 val)
311{
312 __u64 pte_phys;
313 struct kvm_mmu_op_write_pte wpte;
314
315#ifdef CONFIG_HIGHPTE
316 struct page *page;
317 unsigned long dst = (unsigned long) dest;
318
319 page = kmap_atomic_to_page(dest);
320 pte_phys = page_to_pfn(page);
321 pte_phys <<= PAGE_SHIFT;
322 pte_phys += (dst & ~(PAGE_MASK));
323#else
324 pte_phys = (unsigned long)__pa(dest);
325#endif
326 wpte.header.op = KVM_MMU_OP_WRITE_PTE;
327 wpte.pte_val = val;
328 wpte.pte_phys = pte_phys;
329
330 kvm_deferred_mmu_op(&wpte, sizeof wpte);
331}
332
333/*
334 * We only need to hook operations that are MMU writes. We hook these so that
335 * we can use lazy MMU mode to batch these operations. We could probably
336 * improve the performance of the host code if we used some of the information
337 * here to simplify processing of batched writes.
338 */
339static void kvm_set_pte(pte_t *ptep, pte_t pte)
340{
341 kvm_mmu_write(ptep, pte_val(pte));
342}
343
344static void kvm_set_pte_at(struct mm_struct *mm, unsigned long addr,
345 pte_t *ptep, pte_t pte)
346{
347 kvm_mmu_write(ptep, pte_val(pte));
348}
349
350static void kvm_set_pmd(pmd_t *pmdp, pmd_t pmd)
351{
352 kvm_mmu_write(pmdp, pmd_val(pmd));
353}
354
355#if PAGETABLE_LEVELS >= 3
356#ifdef CONFIG_X86_PAE
357static void kvm_set_pte_atomic(pte_t *ptep, pte_t pte)
358{
359 kvm_mmu_write(ptep, pte_val(pte));
360}
361
362static void kvm_pte_clear(struct mm_struct *mm,
363 unsigned long addr, pte_t *ptep)
364{
365 kvm_mmu_write(ptep, 0);
366}
367
368static void kvm_pmd_clear(pmd_t *pmdp)
369{
370 kvm_mmu_write(pmdp, 0);
371}
372#endif
373
374static void kvm_set_pud(pud_t *pudp, pud_t pud)
375{
376 kvm_mmu_write(pudp, pud_val(pud));
377}
378
379#if PAGETABLE_LEVELS == 4
380static void kvm_set_pgd(pgd_t *pgdp, pgd_t pgd)
381{
382 kvm_mmu_write(pgdp, pgd_val(pgd));
383}
384#endif
385#endif /* PAGETABLE_LEVELS >= 3 */
386
387static void kvm_flush_tlb(void)
388{
389 struct kvm_mmu_op_flush_tlb ftlb = {
390 .header.op = KVM_MMU_OP_FLUSH_TLB,
391 };
392
393 kvm_deferred_mmu_op(&ftlb, sizeof ftlb);
394}
395
396static void kvm_release_pt(unsigned long pfn)
397{
398 struct kvm_mmu_op_release_pt rpt = {
399 .header.op = KVM_MMU_OP_RELEASE_PT,
400 .pt_phys = (u64)pfn << PAGE_SHIFT,
401 };
402
403 kvm_mmu_op(&rpt, sizeof rpt);
404}
405
406static void kvm_enter_lazy_mmu(void)
407{
408 paravirt_enter_lazy_mmu();
409}
410
411static void kvm_leave_lazy_mmu(void)
412{
413 struct kvm_para_state *state = kvm_para_state();
414
415 mmu_queue_flush(state);
416 paravirt_leave_lazy_mmu();
417}
418
419static void __init paravirt_ops_setup(void)
420{
421 pv_info.name = "KVM";
422 pv_info.paravirt_enabled = 1;
423
424 if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
425 pv_cpu_ops.io_delay = kvm_io_delay;
426
427 if (kvm_para_has_feature(KVM_FEATURE_MMU_OP)) {
428 pv_mmu_ops.set_pte = kvm_set_pte;
429 pv_mmu_ops.set_pte_at = kvm_set_pte_at;
430 pv_mmu_ops.set_pmd = kvm_set_pmd;
431#if PAGETABLE_LEVELS >= 3
432#ifdef CONFIG_X86_PAE
433 pv_mmu_ops.set_pte_atomic = kvm_set_pte_atomic;
434 pv_mmu_ops.pte_clear = kvm_pte_clear;
435 pv_mmu_ops.pmd_clear = kvm_pmd_clear;
436#endif
437 pv_mmu_ops.set_pud = kvm_set_pud;
438#if PAGETABLE_LEVELS == 4
439 pv_mmu_ops.set_pgd = kvm_set_pgd;
440#endif
441#endif
442 pv_mmu_ops.flush_tlb_user = kvm_flush_tlb;
443 pv_mmu_ops.release_pte = kvm_release_pt;
444 pv_mmu_ops.release_pmd = kvm_release_pt;
445 pv_mmu_ops.release_pud = kvm_release_pt;
446
447 pv_mmu_ops.lazy_mode.enter = kvm_enter_lazy_mmu;
448 pv_mmu_ops.lazy_mode.leave = kvm_leave_lazy_mmu;
449 }
450#ifdef CONFIG_X86_IO_APIC
451 no_timer_check = 1;
452#endif
453}
454
455static void kvm_register_steal_time(void)
456{
457 int cpu = smp_processor_id();
458 struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
459
460 if (!has_steal_clock)
461 return;
462
463 memset(st, 0, sizeof(*st));
464
465 wrmsrl(MSR_KVM_STEAL_TIME, (__pa(st) | KVM_MSR_ENABLED));
466 printk(KERN_INFO "kvm-stealtime: cpu %d, msr %lx\n",
467 cpu, __pa(st));
468}
469
470void __cpuinit kvm_guest_cpu_init(void)
471{
472 if (!kvm_para_available())
473 return;
474
475 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) {
476 u64 pa = __pa(&__get_cpu_var(apf_reason));
477
478#ifdef CONFIG_PREEMPT
479 pa |= KVM_ASYNC_PF_SEND_ALWAYS;
480#endif
481 wrmsrl(MSR_KVM_ASYNC_PF_EN, pa | KVM_ASYNC_PF_ENABLED);
482 __get_cpu_var(apf_reason).enabled = 1;
483 printk(KERN_INFO"KVM setup async PF for cpu %d\n",
484 smp_processor_id());
485 }
486
487 if (has_steal_clock)
488 kvm_register_steal_time();
489}
490
491static void kvm_pv_disable_apf(void *unused)
492{
493 if (!__get_cpu_var(apf_reason).enabled)
494 return;
495
496 wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
497 __get_cpu_var(apf_reason).enabled = 0;
498
499 printk(KERN_INFO"Unregister pv shared memory for cpu %d\n",
500 smp_processor_id());
501}
502
503static int kvm_pv_reboot_notify(struct notifier_block *nb,
504 unsigned long code, void *unused)
505{
506 if (code == SYS_RESTART)
507 on_each_cpu(kvm_pv_disable_apf, NULL, 1);
508 return NOTIFY_DONE;
509}
510
511static struct notifier_block kvm_pv_reboot_nb = {
512 .notifier_call = kvm_pv_reboot_notify,
513};
514
515static u64 kvm_steal_clock(int cpu)
516{
517 u64 steal;
518 struct kvm_steal_time *src;
519 int version;
520
521 src = &per_cpu(steal_time, cpu);
522 do {
523 version = src->version;
524 rmb();
525 steal = src->steal;
526 rmb();
527 } while ((version & 1) || (version != src->version));
528
529 return steal;
530}
531
532void kvm_disable_steal_time(void)
533{
534 if (!has_steal_clock)
535 return;
536
537 wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
538}
539
540#ifdef CONFIG_SMP
541static void __init kvm_smp_prepare_boot_cpu(void)
542{
543#ifdef CONFIG_KVM_CLOCK
544 WARN_ON(kvm_register_clock("primary cpu clock"));
545#endif
546 kvm_guest_cpu_init();
547 native_smp_prepare_boot_cpu();
548}
549
550static void __cpuinit kvm_guest_cpu_online(void *dummy)
551{
552 kvm_guest_cpu_init();
553}
554
555static void kvm_guest_cpu_offline(void *dummy)
556{
557 kvm_disable_steal_time();
558 kvm_pv_disable_apf(NULL);
559 apf_task_wake_all();
560}
561
562static int __cpuinit kvm_cpu_notify(struct notifier_block *self,
563 unsigned long action, void *hcpu)
564{
565 int cpu = (unsigned long)hcpu;
566 switch (action) {
567 case CPU_ONLINE:
568 case CPU_DOWN_FAILED:
569 case CPU_ONLINE_FROZEN:
570 smp_call_function_single(cpu, kvm_guest_cpu_online, NULL, 0);
571 break;
572 case CPU_DOWN_PREPARE:
573 case CPU_DOWN_PREPARE_FROZEN:
574 smp_call_function_single(cpu, kvm_guest_cpu_offline, NULL, 1);
575 break;
576 default:
577 break;
578 }
579 return NOTIFY_OK;
580}
581
582static struct notifier_block __cpuinitdata kvm_cpu_notifier = {
583 .notifier_call = kvm_cpu_notify,
584};
585#endif
586
587static void __init kvm_apf_trap_init(void)
588{
589 set_intr_gate(14, &async_page_fault);
590}
591
592void __init kvm_guest_init(void)
593{
594 int i;
595
596 if (!kvm_para_available())
597 return;
598
599 paravirt_ops_setup();
600 register_reboot_notifier(&kvm_pv_reboot_nb);
601 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
602 spin_lock_init(&async_pf_sleepers[i].lock);
603 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF))
604 x86_init.irqs.trap_init = kvm_apf_trap_init;
605
606 if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
607 has_steal_clock = 1;
608 pv_time_ops.steal_clock = kvm_steal_clock;
609 }
610
611#ifdef CONFIG_SMP
612 smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
613 register_cpu_notifier(&kvm_cpu_notifier);
614#else
615 kvm_guest_cpu_init();
616#endif
617}
618
619static __init int activate_jump_labels(void)
620{
621 if (has_steal_clock) {
622 jump_label_inc(¶virt_steal_enabled);
623 if (steal_acc)
624 jump_label_inc(¶virt_steal_rq_enabled);
625 }
626
627 return 0;
628}
629arch_initcall(activate_jump_labels);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * KVM paravirt_ops implementation
4 *
5 * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Copyright IBM Corporation, 2007
7 * Authors: Anthony Liguori <aliguori@us.ibm.com>
8 */
9
10#define pr_fmt(fmt) "kvm-guest: " fmt
11
12#include <linux/context_tracking.h>
13#include <linux/init.h>
14#include <linux/irq.h>
15#include <linux/kernel.h>
16#include <linux/kvm_para.h>
17#include <linux/cpu.h>
18#include <linux/mm.h>
19#include <linux/highmem.h>
20#include <linux/hardirq.h>
21#include <linux/notifier.h>
22#include <linux/reboot.h>
23#include <linux/hash.h>
24#include <linux/sched.h>
25#include <linux/slab.h>
26#include <linux/kprobes.h>
27#include <linux/nmi.h>
28#include <linux/swait.h>
29#include <asm/timer.h>
30#include <asm/cpu.h>
31#include <asm/traps.h>
32#include <asm/desc.h>
33#include <asm/tlbflush.h>
34#include <asm/apic.h>
35#include <asm/apicdef.h>
36#include <asm/hypervisor.h>
37#include <asm/tlb.h>
38#include <asm/cpuidle_haltpoll.h>
39
40DEFINE_STATIC_KEY_FALSE(kvm_async_pf_enabled);
41
42static int kvmapf = 1;
43
44static int __init parse_no_kvmapf(char *arg)
45{
46 kvmapf = 0;
47 return 0;
48}
49
50early_param("no-kvmapf", parse_no_kvmapf);
51
52static int steal_acc = 1;
53static int __init parse_no_stealacc(char *arg)
54{
55 steal_acc = 0;
56 return 0;
57}
58
59early_param("no-steal-acc", parse_no_stealacc);
60
61static DEFINE_PER_CPU_DECRYPTED(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
62DEFINE_PER_CPU_DECRYPTED(struct kvm_steal_time, steal_time) __aligned(64) __visible;
63static int has_steal_clock = 0;
64
65/*
66 * No need for any "IO delay" on KVM
67 */
68static void kvm_io_delay(void)
69{
70}
71
72#define KVM_TASK_SLEEP_HASHBITS 8
73#define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
74
75struct kvm_task_sleep_node {
76 struct hlist_node link;
77 struct swait_queue_head wq;
78 u32 token;
79 int cpu;
80};
81
82static struct kvm_task_sleep_head {
83 raw_spinlock_t lock;
84 struct hlist_head list;
85} async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
86
87static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
88 u32 token)
89{
90 struct hlist_node *p;
91
92 hlist_for_each(p, &b->list) {
93 struct kvm_task_sleep_node *n =
94 hlist_entry(p, typeof(*n), link);
95 if (n->token == token)
96 return n;
97 }
98
99 return NULL;
100}
101
102static bool kvm_async_pf_queue_task(u32 token, struct kvm_task_sleep_node *n)
103{
104 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
105 struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
106 struct kvm_task_sleep_node *e;
107
108 raw_spin_lock(&b->lock);
109 e = _find_apf_task(b, token);
110 if (e) {
111 /* dummy entry exist -> wake up was delivered ahead of PF */
112 hlist_del(&e->link);
113 raw_spin_unlock(&b->lock);
114 kfree(e);
115 return false;
116 }
117
118 n->token = token;
119 n->cpu = smp_processor_id();
120 init_swait_queue_head(&n->wq);
121 hlist_add_head(&n->link, &b->list);
122 raw_spin_unlock(&b->lock);
123 return true;
124}
125
126/*
127 * kvm_async_pf_task_wait_schedule - Wait for pagefault to be handled
128 * @token: Token to identify the sleep node entry
129 *
130 * Invoked from the async pagefault handling code or from the VM exit page
131 * fault handler. In both cases RCU is watching.
132 */
133void kvm_async_pf_task_wait_schedule(u32 token)
134{
135 struct kvm_task_sleep_node n;
136 DECLARE_SWAITQUEUE(wait);
137
138 lockdep_assert_irqs_disabled();
139
140 if (!kvm_async_pf_queue_task(token, &n))
141 return;
142
143 for (;;) {
144 prepare_to_swait_exclusive(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
145 if (hlist_unhashed(&n.link))
146 break;
147
148 local_irq_enable();
149 schedule();
150 local_irq_disable();
151 }
152 finish_swait(&n.wq, &wait);
153}
154EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait_schedule);
155
156static void apf_task_wake_one(struct kvm_task_sleep_node *n)
157{
158 hlist_del_init(&n->link);
159 if (swq_has_sleeper(&n->wq))
160 swake_up_one(&n->wq);
161}
162
163static void apf_task_wake_all(void)
164{
165 int i;
166
167 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
168 struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
169 struct kvm_task_sleep_node *n;
170 struct hlist_node *p, *next;
171
172 raw_spin_lock(&b->lock);
173 hlist_for_each_safe(p, next, &b->list) {
174 n = hlist_entry(p, typeof(*n), link);
175 if (n->cpu == smp_processor_id())
176 apf_task_wake_one(n);
177 }
178 raw_spin_unlock(&b->lock);
179 }
180}
181
182void kvm_async_pf_task_wake(u32 token)
183{
184 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
185 struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
186 struct kvm_task_sleep_node *n;
187
188 if (token == ~0) {
189 apf_task_wake_all();
190 return;
191 }
192
193again:
194 raw_spin_lock(&b->lock);
195 n = _find_apf_task(b, token);
196 if (!n) {
197 /*
198 * async PF was not yet handled.
199 * Add dummy entry for the token.
200 */
201 n = kzalloc(sizeof(*n), GFP_ATOMIC);
202 if (!n) {
203 /*
204 * Allocation failed! Busy wait while other cpu
205 * handles async PF.
206 */
207 raw_spin_unlock(&b->lock);
208 cpu_relax();
209 goto again;
210 }
211 n->token = token;
212 n->cpu = smp_processor_id();
213 init_swait_queue_head(&n->wq);
214 hlist_add_head(&n->link, &b->list);
215 } else {
216 apf_task_wake_one(n);
217 }
218 raw_spin_unlock(&b->lock);
219 return;
220}
221EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
222
223noinstr u32 kvm_read_and_reset_apf_flags(void)
224{
225 u32 flags = 0;
226
227 if (__this_cpu_read(apf_reason.enabled)) {
228 flags = __this_cpu_read(apf_reason.flags);
229 __this_cpu_write(apf_reason.flags, 0);
230 }
231
232 return flags;
233}
234EXPORT_SYMBOL_GPL(kvm_read_and_reset_apf_flags);
235
236noinstr bool __kvm_handle_async_pf(struct pt_regs *regs, u32 token)
237{
238 u32 flags = kvm_read_and_reset_apf_flags();
239 irqentry_state_t state;
240
241 if (!flags)
242 return false;
243
244 state = irqentry_enter(regs);
245 instrumentation_begin();
246
247 /*
248 * If the host managed to inject an async #PF into an interrupt
249 * disabled region, then die hard as this is not going to end well
250 * and the host side is seriously broken.
251 */
252 if (unlikely(!(regs->flags & X86_EFLAGS_IF)))
253 panic("Host injected async #PF in interrupt disabled region\n");
254
255 if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
256 if (unlikely(!(user_mode(regs))))
257 panic("Host injected async #PF in kernel mode\n");
258 /* Page is swapped out by the host. */
259 kvm_async_pf_task_wait_schedule(token);
260 } else {
261 WARN_ONCE(1, "Unexpected async PF flags: %x\n", flags);
262 }
263
264 instrumentation_end();
265 irqentry_exit(regs, state);
266 return true;
267}
268
269DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt)
270{
271 struct pt_regs *old_regs = set_irq_regs(regs);
272 u32 token;
273
274 ack_APIC_irq();
275
276 inc_irq_stat(irq_hv_callback_count);
277
278 if (__this_cpu_read(apf_reason.enabled)) {
279 token = __this_cpu_read(apf_reason.token);
280 kvm_async_pf_task_wake(token);
281 __this_cpu_write(apf_reason.token, 0);
282 wrmsrl(MSR_KVM_ASYNC_PF_ACK, 1);
283 }
284
285 set_irq_regs(old_regs);
286}
287
288static void __init paravirt_ops_setup(void)
289{
290 pv_info.name = "KVM";
291
292 if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
293 pv_ops.cpu.io_delay = kvm_io_delay;
294
295#ifdef CONFIG_X86_IO_APIC
296 no_timer_check = 1;
297#endif
298}
299
300static void kvm_register_steal_time(void)
301{
302 int cpu = smp_processor_id();
303 struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
304
305 if (!has_steal_clock)
306 return;
307
308 wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED));
309 pr_info("stealtime: cpu %d, msr %llx\n", cpu,
310 (unsigned long long) slow_virt_to_phys(st));
311}
312
313static DEFINE_PER_CPU_DECRYPTED(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED;
314
315static notrace void kvm_guest_apic_eoi_write(u32 reg, u32 val)
316{
317 /**
318 * This relies on __test_and_clear_bit to modify the memory
319 * in a way that is atomic with respect to the local CPU.
320 * The hypervisor only accesses this memory from the local CPU so
321 * there's no need for lock or memory barriers.
322 * An optimization barrier is implied in apic write.
323 */
324 if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi)))
325 return;
326 apic->native_eoi_write(APIC_EOI, APIC_EOI_ACK);
327}
328
329static void kvm_guest_cpu_init(void)
330{
331 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
332 u64 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
333
334 WARN_ON_ONCE(!static_branch_likely(&kvm_async_pf_enabled));
335
336 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
337 pa |= KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
338
339 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_VMEXIT))
340 pa |= KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
341
342 wrmsrl(MSR_KVM_ASYNC_PF_INT, HYPERVISOR_CALLBACK_VECTOR);
343
344 wrmsrl(MSR_KVM_ASYNC_PF_EN, pa);
345 __this_cpu_write(apf_reason.enabled, 1);
346 pr_info("KVM setup async PF for cpu %d\n", smp_processor_id());
347 }
348
349 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) {
350 unsigned long pa;
351
352 /* Size alignment is implied but just to make it explicit. */
353 BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4);
354 __this_cpu_write(kvm_apic_eoi, 0);
355 pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi))
356 | KVM_MSR_ENABLED;
357 wrmsrl(MSR_KVM_PV_EOI_EN, pa);
358 }
359
360 if (has_steal_clock)
361 kvm_register_steal_time();
362}
363
364static void kvm_pv_disable_apf(void)
365{
366 if (!__this_cpu_read(apf_reason.enabled))
367 return;
368
369 wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
370 __this_cpu_write(apf_reason.enabled, 0);
371
372 pr_info("Unregister pv shared memory for cpu %d\n", smp_processor_id());
373}
374
375static void kvm_pv_guest_cpu_reboot(void *unused)
376{
377 /*
378 * We disable PV EOI before we load a new kernel by kexec,
379 * since MSR_KVM_PV_EOI_EN stores a pointer into old kernel's memory.
380 * New kernel can re-enable when it boots.
381 */
382 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
383 wrmsrl(MSR_KVM_PV_EOI_EN, 0);
384 kvm_pv_disable_apf();
385 kvm_disable_steal_time();
386}
387
388static int kvm_pv_reboot_notify(struct notifier_block *nb,
389 unsigned long code, void *unused)
390{
391 if (code == SYS_RESTART)
392 on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1);
393 return NOTIFY_DONE;
394}
395
396static struct notifier_block kvm_pv_reboot_nb = {
397 .notifier_call = kvm_pv_reboot_notify,
398};
399
400static u64 kvm_steal_clock(int cpu)
401{
402 u64 steal;
403 struct kvm_steal_time *src;
404 int version;
405
406 src = &per_cpu(steal_time, cpu);
407 do {
408 version = src->version;
409 virt_rmb();
410 steal = src->steal;
411 virt_rmb();
412 } while ((version & 1) || (version != src->version));
413
414 return steal;
415}
416
417void kvm_disable_steal_time(void)
418{
419 if (!has_steal_clock)
420 return;
421
422 wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
423}
424
425static inline void __set_percpu_decrypted(void *ptr, unsigned long size)
426{
427 early_set_memory_decrypted((unsigned long) ptr, size);
428}
429
430/*
431 * Iterate through all possible CPUs and map the memory region pointed
432 * by apf_reason, steal_time and kvm_apic_eoi as decrypted at once.
433 *
434 * Note: we iterate through all possible CPUs to ensure that CPUs
435 * hotplugged will have their per-cpu variable already mapped as
436 * decrypted.
437 */
438static void __init sev_map_percpu_data(void)
439{
440 int cpu;
441
442 if (!sev_active())
443 return;
444
445 for_each_possible_cpu(cpu) {
446 __set_percpu_decrypted(&per_cpu(apf_reason, cpu), sizeof(apf_reason));
447 __set_percpu_decrypted(&per_cpu(steal_time, cpu), sizeof(steal_time));
448 __set_percpu_decrypted(&per_cpu(kvm_apic_eoi, cpu), sizeof(kvm_apic_eoi));
449 }
450}
451
452static bool pv_tlb_flush_supported(void)
453{
454 return (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH) &&
455 !kvm_para_has_hint(KVM_HINTS_REALTIME) &&
456 kvm_para_has_feature(KVM_FEATURE_STEAL_TIME));
457}
458
459static DEFINE_PER_CPU(cpumask_var_t, __pv_cpu_mask);
460
461#ifdef CONFIG_SMP
462
463static bool pv_ipi_supported(void)
464{
465 return kvm_para_has_feature(KVM_FEATURE_PV_SEND_IPI);
466}
467
468static bool pv_sched_yield_supported(void)
469{
470 return (kvm_para_has_feature(KVM_FEATURE_PV_SCHED_YIELD) &&
471 !kvm_para_has_hint(KVM_HINTS_REALTIME) &&
472 kvm_para_has_feature(KVM_FEATURE_STEAL_TIME));
473}
474
475#define KVM_IPI_CLUSTER_SIZE (2 * BITS_PER_LONG)
476
477static void __send_ipi_mask(const struct cpumask *mask, int vector)
478{
479 unsigned long flags;
480 int cpu, apic_id, icr;
481 int min = 0, max = 0;
482#ifdef CONFIG_X86_64
483 __uint128_t ipi_bitmap = 0;
484#else
485 u64 ipi_bitmap = 0;
486#endif
487 long ret;
488
489 if (cpumask_empty(mask))
490 return;
491
492 local_irq_save(flags);
493
494 switch (vector) {
495 default:
496 icr = APIC_DM_FIXED | vector;
497 break;
498 case NMI_VECTOR:
499 icr = APIC_DM_NMI;
500 break;
501 }
502
503 for_each_cpu(cpu, mask) {
504 apic_id = per_cpu(x86_cpu_to_apicid, cpu);
505 if (!ipi_bitmap) {
506 min = max = apic_id;
507 } else if (apic_id < min && max - apic_id < KVM_IPI_CLUSTER_SIZE) {
508 ipi_bitmap <<= min - apic_id;
509 min = apic_id;
510 } else if (apic_id < min + KVM_IPI_CLUSTER_SIZE) {
511 max = apic_id < max ? max : apic_id;
512 } else {
513 ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
514 (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
515 WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
516 ret);
517 min = max = apic_id;
518 ipi_bitmap = 0;
519 }
520 __set_bit(apic_id - min, (unsigned long *)&ipi_bitmap);
521 }
522
523 if (ipi_bitmap) {
524 ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
525 (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
526 WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
527 ret);
528 }
529
530 local_irq_restore(flags);
531}
532
533static void kvm_send_ipi_mask(const struct cpumask *mask, int vector)
534{
535 __send_ipi_mask(mask, vector);
536}
537
538static void kvm_send_ipi_mask_allbutself(const struct cpumask *mask, int vector)
539{
540 unsigned int this_cpu = smp_processor_id();
541 struct cpumask *new_mask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
542 const struct cpumask *local_mask;
543
544 cpumask_copy(new_mask, mask);
545 cpumask_clear_cpu(this_cpu, new_mask);
546 local_mask = new_mask;
547 __send_ipi_mask(local_mask, vector);
548}
549
550/*
551 * Set the IPI entry points
552 */
553static void kvm_setup_pv_ipi(void)
554{
555 apic->send_IPI_mask = kvm_send_ipi_mask;
556 apic->send_IPI_mask_allbutself = kvm_send_ipi_mask_allbutself;
557 pr_info("setup PV IPIs\n");
558}
559
560static void kvm_smp_send_call_func_ipi(const struct cpumask *mask)
561{
562 int cpu;
563
564 native_send_call_func_ipi(mask);
565
566 /* Make sure other vCPUs get a chance to run if they need to. */
567 for_each_cpu(cpu, mask) {
568 if (vcpu_is_preempted(cpu)) {
569 kvm_hypercall1(KVM_HC_SCHED_YIELD, per_cpu(x86_cpu_to_apicid, cpu));
570 break;
571 }
572 }
573}
574
575static void __init kvm_smp_prepare_boot_cpu(void)
576{
577 /*
578 * Map the per-cpu variables as decrypted before kvm_guest_cpu_init()
579 * shares the guest physical address with the hypervisor.
580 */
581 sev_map_percpu_data();
582
583 kvm_guest_cpu_init();
584 native_smp_prepare_boot_cpu();
585 kvm_spinlock_init();
586}
587
588static void kvm_guest_cpu_offline(void)
589{
590 kvm_disable_steal_time();
591 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
592 wrmsrl(MSR_KVM_PV_EOI_EN, 0);
593 kvm_pv_disable_apf();
594 apf_task_wake_all();
595}
596
597static int kvm_cpu_online(unsigned int cpu)
598{
599 local_irq_disable();
600 kvm_guest_cpu_init();
601 local_irq_enable();
602 return 0;
603}
604
605static int kvm_cpu_down_prepare(unsigned int cpu)
606{
607 local_irq_disable();
608 kvm_guest_cpu_offline();
609 local_irq_enable();
610 return 0;
611}
612#endif
613
614static void kvm_flush_tlb_others(const struct cpumask *cpumask,
615 const struct flush_tlb_info *info)
616{
617 u8 state;
618 int cpu;
619 struct kvm_steal_time *src;
620 struct cpumask *flushmask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
621
622 cpumask_copy(flushmask, cpumask);
623 /*
624 * We have to call flush only on online vCPUs. And
625 * queue flush_on_enter for pre-empted vCPUs
626 */
627 for_each_cpu(cpu, flushmask) {
628 src = &per_cpu(steal_time, cpu);
629 state = READ_ONCE(src->preempted);
630 if ((state & KVM_VCPU_PREEMPTED)) {
631 if (try_cmpxchg(&src->preempted, &state,
632 state | KVM_VCPU_FLUSH_TLB))
633 __cpumask_clear_cpu(cpu, flushmask);
634 }
635 }
636
637 native_flush_tlb_others(flushmask, info);
638}
639
640static void __init kvm_guest_init(void)
641{
642 int i;
643
644 paravirt_ops_setup();
645 register_reboot_notifier(&kvm_pv_reboot_nb);
646 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
647 raw_spin_lock_init(&async_pf_sleepers[i].lock);
648
649 if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
650 has_steal_clock = 1;
651 pv_ops.time.steal_clock = kvm_steal_clock;
652 }
653
654 if (pv_tlb_flush_supported()) {
655 pv_ops.mmu.flush_tlb_others = kvm_flush_tlb_others;
656 pv_ops.mmu.tlb_remove_table = tlb_remove_table;
657 pr_info("KVM setup pv remote TLB flush\n");
658 }
659
660 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
661 apic_set_eoi_write(kvm_guest_apic_eoi_write);
662
663 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
664 static_branch_enable(&kvm_async_pf_enabled);
665 alloc_intr_gate(HYPERVISOR_CALLBACK_VECTOR, asm_sysvec_kvm_asyncpf_interrupt);
666 }
667
668#ifdef CONFIG_SMP
669 smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
670 if (pv_sched_yield_supported()) {
671 smp_ops.send_call_func_ipi = kvm_smp_send_call_func_ipi;
672 pr_info("setup PV sched yield\n");
673 }
674 if (cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/kvm:online",
675 kvm_cpu_online, kvm_cpu_down_prepare) < 0)
676 pr_err("failed to install cpu hotplug callbacks\n");
677#else
678 sev_map_percpu_data();
679 kvm_guest_cpu_init();
680#endif
681
682 /*
683 * Hard lockup detection is enabled by default. Disable it, as guests
684 * can get false positives too easily, for example if the host is
685 * overcommitted.
686 */
687 hardlockup_detector_disable();
688}
689
690static noinline uint32_t __kvm_cpuid_base(void)
691{
692 if (boot_cpu_data.cpuid_level < 0)
693 return 0; /* So we don't blow up on old processors */
694
695 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
696 return hypervisor_cpuid_base("KVMKVMKVM\0\0\0", 0);
697
698 return 0;
699}
700
701static inline uint32_t kvm_cpuid_base(void)
702{
703 static int kvm_cpuid_base = -1;
704
705 if (kvm_cpuid_base == -1)
706 kvm_cpuid_base = __kvm_cpuid_base();
707
708 return kvm_cpuid_base;
709}
710
711bool kvm_para_available(void)
712{
713 return kvm_cpuid_base() != 0;
714}
715EXPORT_SYMBOL_GPL(kvm_para_available);
716
717unsigned int kvm_arch_para_features(void)
718{
719 return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES);
720}
721
722unsigned int kvm_arch_para_hints(void)
723{
724 return cpuid_edx(kvm_cpuid_base() | KVM_CPUID_FEATURES);
725}
726EXPORT_SYMBOL_GPL(kvm_arch_para_hints);
727
728static uint32_t __init kvm_detect(void)
729{
730 return kvm_cpuid_base();
731}
732
733static void __init kvm_apic_init(void)
734{
735#if defined(CONFIG_SMP)
736 if (pv_ipi_supported())
737 kvm_setup_pv_ipi();
738#endif
739}
740
741static void __init kvm_init_platform(void)
742{
743 kvmclock_init();
744 x86_platform.apic_post_init = kvm_apic_init;
745}
746
747const __initconst struct hypervisor_x86 x86_hyper_kvm = {
748 .name = "KVM",
749 .detect = kvm_detect,
750 .type = X86_HYPER_KVM,
751 .init.guest_late_init = kvm_guest_init,
752 .init.x2apic_available = kvm_para_available,
753 .init.init_platform = kvm_init_platform,
754};
755
756static __init int activate_jump_labels(void)
757{
758 if (has_steal_clock) {
759 static_key_slow_inc(¶virt_steal_enabled);
760 if (steal_acc)
761 static_key_slow_inc(¶virt_steal_rq_enabled);
762 }
763
764 return 0;
765}
766arch_initcall(activate_jump_labels);
767
768static __init int kvm_alloc_cpumask(void)
769{
770 int cpu;
771 bool alloc = false;
772
773 if (!kvm_para_available() || nopv)
774 return 0;
775
776 if (pv_tlb_flush_supported())
777 alloc = true;
778
779#if defined(CONFIG_SMP)
780 if (pv_ipi_supported())
781 alloc = true;
782#endif
783
784 if (alloc)
785 for_each_possible_cpu(cpu) {
786 zalloc_cpumask_var_node(per_cpu_ptr(&__pv_cpu_mask, cpu),
787 GFP_KERNEL, cpu_to_node(cpu));
788 }
789
790 return 0;
791}
792arch_initcall(kvm_alloc_cpumask);
793
794#ifdef CONFIG_PARAVIRT_SPINLOCKS
795
796/* Kick a cpu by its apicid. Used to wake up a halted vcpu */
797static void kvm_kick_cpu(int cpu)
798{
799 int apicid;
800 unsigned long flags = 0;
801
802 apicid = per_cpu(x86_cpu_to_apicid, cpu);
803 kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid);
804}
805
806#include <asm/qspinlock.h>
807
808static void kvm_wait(u8 *ptr, u8 val)
809{
810 unsigned long flags;
811
812 if (in_nmi())
813 return;
814
815 local_irq_save(flags);
816
817 if (READ_ONCE(*ptr) != val)
818 goto out;
819
820 /*
821 * halt until it's our turn and kicked. Note that we do safe halt
822 * for irq enabled case to avoid hang when lock info is overwritten
823 * in irq spinlock slowpath and no spurious interrupt occur to save us.
824 */
825 if (arch_irqs_disabled_flags(flags))
826 halt();
827 else
828 safe_halt();
829
830out:
831 local_irq_restore(flags);
832}
833
834#ifdef CONFIG_X86_32
835__visible bool __kvm_vcpu_is_preempted(long cpu)
836{
837 struct kvm_steal_time *src = &per_cpu(steal_time, cpu);
838
839 return !!(src->preempted & KVM_VCPU_PREEMPTED);
840}
841PV_CALLEE_SAVE_REGS_THUNK(__kvm_vcpu_is_preempted);
842
843#else
844
845#include <asm/asm-offsets.h>
846
847extern bool __raw_callee_save___kvm_vcpu_is_preempted(long);
848
849/*
850 * Hand-optimize version for x86-64 to avoid 8 64-bit register saving and
851 * restoring to/from the stack.
852 */
853asm(
854".pushsection .text;"
855".global __raw_callee_save___kvm_vcpu_is_preempted;"
856".type __raw_callee_save___kvm_vcpu_is_preempted, @function;"
857"__raw_callee_save___kvm_vcpu_is_preempted:"
858"movq __per_cpu_offset(,%rdi,8), %rax;"
859"cmpb $0, " __stringify(KVM_STEAL_TIME_preempted) "+steal_time(%rax);"
860"setne %al;"
861"ret;"
862".size __raw_callee_save___kvm_vcpu_is_preempted, .-__raw_callee_save___kvm_vcpu_is_preempted;"
863".popsection");
864
865#endif
866
867/*
868 * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present.
869 */
870void __init kvm_spinlock_init(void)
871{
872 /*
873 * In case host doesn't support KVM_FEATURE_PV_UNHALT there is still an
874 * advantage of keeping virt_spin_lock_key enabled: virt_spin_lock() is
875 * preferred over native qspinlock when vCPU is preempted.
876 */
877 if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT)) {
878 pr_info("PV spinlocks disabled, no host support\n");
879 return;
880 }
881
882 /*
883 * Disable PV spinlocks and use native qspinlock when dedicated pCPUs
884 * are available.
885 */
886 if (kvm_para_has_hint(KVM_HINTS_REALTIME)) {
887 pr_info("PV spinlocks disabled with KVM_HINTS_REALTIME hints\n");
888 goto out;
889 }
890
891 if (num_possible_cpus() == 1) {
892 pr_info("PV spinlocks disabled, single CPU\n");
893 goto out;
894 }
895
896 if (nopvspin) {
897 pr_info("PV spinlocks disabled, forced by \"nopvspin\" parameter\n");
898 goto out;
899 }
900
901 pr_info("PV spinlocks enabled\n");
902
903 __pv_init_lock_hash();
904 pv_ops.lock.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath;
905 pv_ops.lock.queued_spin_unlock =
906 PV_CALLEE_SAVE(__pv_queued_spin_unlock);
907 pv_ops.lock.wait = kvm_wait;
908 pv_ops.lock.kick = kvm_kick_cpu;
909
910 if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
911 pv_ops.lock.vcpu_is_preempted =
912 PV_CALLEE_SAVE(__kvm_vcpu_is_preempted);
913 }
914 /*
915 * When PV spinlock is enabled which is preferred over
916 * virt_spin_lock(), virt_spin_lock_key's value is meaningless.
917 * Just disable it anyway.
918 */
919out:
920 static_branch_disable(&virt_spin_lock_key);
921}
922
923#endif /* CONFIG_PARAVIRT_SPINLOCKS */
924
925#ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
926
927static void kvm_disable_host_haltpoll(void *i)
928{
929 wrmsrl(MSR_KVM_POLL_CONTROL, 0);
930}
931
932static void kvm_enable_host_haltpoll(void *i)
933{
934 wrmsrl(MSR_KVM_POLL_CONTROL, 1);
935}
936
937void arch_haltpoll_enable(unsigned int cpu)
938{
939 if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) {
940 pr_err_once("host does not support poll control\n");
941 pr_err_once("host upgrade recommended\n");
942 return;
943 }
944
945 /* Enable guest halt poll disables host halt poll */
946 smp_call_function_single(cpu, kvm_disable_host_haltpoll, NULL, 1);
947}
948EXPORT_SYMBOL_GPL(arch_haltpoll_enable);
949
950void arch_haltpoll_disable(unsigned int cpu)
951{
952 if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL))
953 return;
954
955 /* Enable guest halt poll disables host halt poll */
956 smp_call_function_single(cpu, kvm_enable_host_haltpoll, NULL, 1);
957}
958EXPORT_SYMBOL_GPL(arch_haltpoll_disable);
959#endif