Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * KVM paravirt_ops implementation
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 17 *
 18 * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 19 * Copyright IBM Corporation, 2007
 20 *   Authors: Anthony Liguori <aliguori@us.ibm.com>
 21 */
 22
 23#include <linux/module.h>
 
 
 
 
 24#include <linux/kernel.h>
 25#include <linux/kvm_para.h>
 26#include <linux/cpu.h>
 27#include <linux/mm.h>
 28#include <linux/highmem.h>
 29#include <linux/hardirq.h>
 30#include <linux/notifier.h>
 31#include <linux/reboot.h>
 32#include <linux/hash.h>
 33#include <linux/sched.h>
 34#include <linux/slab.h>
 35#include <linux/kprobes.h>
 
 
 36#include <asm/timer.h>
 37#include <asm/cpu.h>
 38#include <asm/traps.h>
 39#include <asm/desc.h>
 40#include <asm/tlbflush.h>
 
 
 
 
 
 41
 42#define MMU_QUEUE_SIZE 1024
 43
 44static int kvmapf = 1;
 45
 46static int parse_no_kvmapf(char *arg)
 47{
 48        kvmapf = 0;
 49        return 0;
 50}
 51
 52early_param("no-kvmapf", parse_no_kvmapf);
 53
 54static int steal_acc = 1;
 55static int parse_no_stealacc(char *arg)
 56{
 57        steal_acc = 0;
 58        return 0;
 59}
 60
 61early_param("no-steal-acc", parse_no_stealacc);
 62
 63struct kvm_para_state {
 64	u8 mmu_queue[MMU_QUEUE_SIZE];
 65	int mmu_queue_len;
 66};
 67
 68static DEFINE_PER_CPU(struct kvm_para_state, para_state);
 69static DEFINE_PER_CPU(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
 70static DEFINE_PER_CPU(struct kvm_steal_time, steal_time) __aligned(64);
 71static int has_steal_clock = 0;
 72
 73static struct kvm_para_state *kvm_para_state(void)
 74{
 75	return &per_cpu(para_state, raw_smp_processor_id());
 76}
 77
 78/*
 79 * No need for any "IO delay" on KVM
 80 */
 81static void kvm_io_delay(void)
 82{
 83}
 84
 85#define KVM_TASK_SLEEP_HASHBITS 8
 86#define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
 87
 88struct kvm_task_sleep_node {
 89	struct hlist_node link;
 90	wait_queue_head_t wq;
 91	u32 token;
 92	int cpu;
 93	bool halted;
 94	struct mm_struct *mm;
 95};
 96
 97static struct kvm_task_sleep_head {
 98	spinlock_t lock;
 99	struct hlist_head list;
100} async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
101
102static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
103						  u32 token)
104{
105	struct hlist_node *p;
106
107	hlist_for_each(p, &b->list) {
108		struct kvm_task_sleep_node *n =
109			hlist_entry(p, typeof(*n), link);
110		if (n->token == token)
111			return n;
112	}
113
114	return NULL;
115}
116
117void kvm_async_pf_task_wait(u32 token)
118{
119	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
120	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
121	struct kvm_task_sleep_node n, *e;
122	DEFINE_WAIT(wait);
123	int cpu, idle;
124
125	cpu = get_cpu();
126	idle = idle_cpu(cpu);
127	put_cpu();
128
129	spin_lock(&b->lock);
130	e = _find_apf_task(b, token);
131	if (e) {
132		/* dummy entry exist -> wake up was delivered ahead of PF */
133		hlist_del(&e->link);
 
134		kfree(e);
135		spin_unlock(&b->lock);
136		return;
137	}
138
139	n.token = token;
140	n.cpu = smp_processor_id();
141	n.mm = current->active_mm;
142	n.halted = idle || preempt_count() > 1;
143	atomic_inc(&n.mm->mm_count);
144	init_waitqueue_head(&n.wq);
145	hlist_add_head(&n.link, &b->list);
146	spin_unlock(&b->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147
148	for (;;) {
149		if (!n.halted)
150			prepare_to_wait(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
151		if (hlist_unhashed(&n.link))
152			break;
153
154		if (!n.halted) {
155			local_irq_enable();
156			schedule();
157			local_irq_disable();
158		} else {
159			/*
160			 * We cannot reschedule. So halt.
161			 */
162			native_safe_halt();
163			local_irq_disable();
164		}
165	}
166	if (!n.halted)
167		finish_wait(&n.wq, &wait);
168
169	return;
170}
171EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait);
172
173static void apf_task_wake_one(struct kvm_task_sleep_node *n)
174{
175	hlist_del_init(&n->link);
176	if (!n->mm)
177		return;
178	mmdrop(n->mm);
179	if (n->halted)
180		smp_send_reschedule(n->cpu);
181	else if (waitqueue_active(&n->wq))
182		wake_up(&n->wq);
183}
184
185static void apf_task_wake_all(void)
186{
187	int i;
188
189	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
190		struct hlist_node *p, *next;
191		struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
192		spin_lock(&b->lock);
 
 
 
193		hlist_for_each_safe(p, next, &b->list) {
194			struct kvm_task_sleep_node *n =
195				hlist_entry(p, typeof(*n), link);
196			if (n->cpu == smp_processor_id())
197				apf_task_wake_one(n);
198		}
199		spin_unlock(&b->lock);
200	}
201}
202
203void kvm_async_pf_task_wake(u32 token)
204{
205	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
206	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
207	struct kvm_task_sleep_node *n;
208
209	if (token == ~0) {
210		apf_task_wake_all();
211		return;
212	}
213
214again:
215	spin_lock(&b->lock);
216	n = _find_apf_task(b, token);
217	if (!n) {
218		/*
219		 * async PF was not yet handled.
220		 * Add dummy entry for the token.
221		 */
222		n = kmalloc(sizeof(*n), GFP_ATOMIC);
223		if (!n) {
224			/*
225			 * Allocation failed! Busy wait while other cpu
226			 * handles async PF.
227			 */
228			spin_unlock(&b->lock);
229			cpu_relax();
230			goto again;
231		}
232		n->token = token;
233		n->cpu = smp_processor_id();
234		n->mm = NULL;
235		init_waitqueue_head(&n->wq);
236		hlist_add_head(&n->link, &b->list);
237	} else
238		apf_task_wake_one(n);
239	spin_unlock(&b->lock);
 
240	return;
241}
242EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
243
244u32 kvm_read_and_reset_pf_reason(void)
245{
246	u32 reason = 0;
247
248	if (__get_cpu_var(apf_reason).enabled) {
249		reason = __get_cpu_var(apf_reason).reason;
250		__get_cpu_var(apf_reason).reason = 0;
251	}
252
253	return reason;
254}
255EXPORT_SYMBOL_GPL(kvm_read_and_reset_pf_reason);
256
257dotraplinkage void __kprobes
258do_async_page_fault(struct pt_regs *regs, unsigned long error_code)
259{
260	switch (kvm_read_and_reset_pf_reason()) {
261	default:
262		do_page_fault(regs, error_code);
263		break;
264	case KVM_PV_REASON_PAGE_NOT_PRESENT:
265		/* page is swapped out by the host. */
266		kvm_async_pf_task_wait((u32)read_cr2());
267		break;
268	case KVM_PV_REASON_PAGE_READY:
269		kvm_async_pf_task_wake((u32)read_cr2());
270		break;
271	}
272}
273
274static void kvm_mmu_op(void *buffer, unsigned len)
275{
276	int r;
277	unsigned long a1, a2;
278
279	do {
280		a1 = __pa(buffer);
281		a2 = 0;   /* on i386 __pa() always returns <4G */
282		r = kvm_hypercall3(KVM_HC_MMU_OP, len, a1, a2);
283		buffer += r;
284		len -= r;
285	} while (len);
286}
287
288static void mmu_queue_flush(struct kvm_para_state *state)
289{
290	if (state->mmu_queue_len) {
291		kvm_mmu_op(state->mmu_queue, state->mmu_queue_len);
292		state->mmu_queue_len = 0;
293	}
294}
295
296static void kvm_deferred_mmu_op(void *buffer, int len)
297{
298	struct kvm_para_state *state = kvm_para_state();
299
300	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) {
301		kvm_mmu_op(buffer, len);
302		return;
303	}
304	if (state->mmu_queue_len + len > sizeof state->mmu_queue)
305		mmu_queue_flush(state);
306	memcpy(state->mmu_queue + state->mmu_queue_len, buffer, len);
307	state->mmu_queue_len += len;
308}
309
310static void kvm_mmu_write(void *dest, u64 val)
311{
312	__u64 pte_phys;
313	struct kvm_mmu_op_write_pte wpte;
314
315#ifdef CONFIG_HIGHPTE
316	struct page *page;
317	unsigned long dst = (unsigned long) dest;
318
319	page = kmap_atomic_to_page(dest);
320	pte_phys = page_to_pfn(page);
321	pte_phys <<= PAGE_SHIFT;
322	pte_phys += (dst & ~(PAGE_MASK));
323#else
324	pte_phys = (unsigned long)__pa(dest);
325#endif
326	wpte.header.op = KVM_MMU_OP_WRITE_PTE;
327	wpte.pte_val = val;
328	wpte.pte_phys = pte_phys;
329
330	kvm_deferred_mmu_op(&wpte, sizeof wpte);
331}
332
333/*
334 * We only need to hook operations that are MMU writes.  We hook these so that
335 * we can use lazy MMU mode to batch these operations.  We could probably
336 * improve the performance of the host code if we used some of the information
337 * here to simplify processing of batched writes.
338 */
339static void kvm_set_pte(pte_t *ptep, pte_t pte)
340{
341	kvm_mmu_write(ptep, pte_val(pte));
342}
343
344static void kvm_set_pte_at(struct mm_struct *mm, unsigned long addr,
345			   pte_t *ptep, pte_t pte)
346{
347	kvm_mmu_write(ptep, pte_val(pte));
348}
349
350static void kvm_set_pmd(pmd_t *pmdp, pmd_t pmd)
351{
352	kvm_mmu_write(pmdp, pmd_val(pmd));
353}
354
355#if PAGETABLE_LEVELS >= 3
356#ifdef CONFIG_X86_PAE
357static void kvm_set_pte_atomic(pte_t *ptep, pte_t pte)
358{
359	kvm_mmu_write(ptep, pte_val(pte));
360}
361
362static void kvm_pte_clear(struct mm_struct *mm,
363			  unsigned long addr, pte_t *ptep)
364{
365	kvm_mmu_write(ptep, 0);
366}
367
368static void kvm_pmd_clear(pmd_t *pmdp)
369{
370	kvm_mmu_write(pmdp, 0);
371}
372#endif
373
374static void kvm_set_pud(pud_t *pudp, pud_t pud)
375{
376	kvm_mmu_write(pudp, pud_val(pud));
377}
378
379#if PAGETABLE_LEVELS == 4
380static void kvm_set_pgd(pgd_t *pgdp, pgd_t pgd)
381{
382	kvm_mmu_write(pgdp, pgd_val(pgd));
383}
384#endif
385#endif /* PAGETABLE_LEVELS >= 3 */
386
387static void kvm_flush_tlb(void)
388{
389	struct kvm_mmu_op_flush_tlb ftlb = {
390		.header.op = KVM_MMU_OP_FLUSH_TLB,
391	};
392
393	kvm_deferred_mmu_op(&ftlb, sizeof ftlb);
394}
395
396static void kvm_release_pt(unsigned long pfn)
397{
398	struct kvm_mmu_op_release_pt rpt = {
399		.header.op = KVM_MMU_OP_RELEASE_PT,
400		.pt_phys = (u64)pfn << PAGE_SHIFT,
401	};
402
403	kvm_mmu_op(&rpt, sizeof rpt);
404}
405
406static void kvm_enter_lazy_mmu(void)
407{
408	paravirt_enter_lazy_mmu();
409}
410
411static void kvm_leave_lazy_mmu(void)
412{
413	struct kvm_para_state *state = kvm_para_state();
 
 
 
414
415	mmu_queue_flush(state);
416	paravirt_leave_lazy_mmu();
417}
418
419static void __init paravirt_ops_setup(void)
420{
421	pv_info.name = "KVM";
422	pv_info.paravirt_enabled = 1;
423
424	if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
425		pv_cpu_ops.io_delay = kvm_io_delay;
426
427	if (kvm_para_has_feature(KVM_FEATURE_MMU_OP)) {
428		pv_mmu_ops.set_pte = kvm_set_pte;
429		pv_mmu_ops.set_pte_at = kvm_set_pte_at;
430		pv_mmu_ops.set_pmd = kvm_set_pmd;
431#if PAGETABLE_LEVELS >= 3
432#ifdef CONFIG_X86_PAE
433		pv_mmu_ops.set_pte_atomic = kvm_set_pte_atomic;
434		pv_mmu_ops.pte_clear = kvm_pte_clear;
435		pv_mmu_ops.pmd_clear = kvm_pmd_clear;
436#endif
437		pv_mmu_ops.set_pud = kvm_set_pud;
438#if PAGETABLE_LEVELS == 4
439		pv_mmu_ops.set_pgd = kvm_set_pgd;
440#endif
441#endif
442		pv_mmu_ops.flush_tlb_user = kvm_flush_tlb;
443		pv_mmu_ops.release_pte = kvm_release_pt;
444		pv_mmu_ops.release_pmd = kvm_release_pt;
445		pv_mmu_ops.release_pud = kvm_release_pt;
446
447		pv_mmu_ops.lazy_mode.enter = kvm_enter_lazy_mmu;
448		pv_mmu_ops.lazy_mode.leave = kvm_leave_lazy_mmu;
449	}
450#ifdef CONFIG_X86_IO_APIC
451	no_timer_check = 1;
452#endif
453}
454
455static void kvm_register_steal_time(void)
456{
457	int cpu = smp_processor_id();
458	struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
459
460	if (!has_steal_clock)
461		return;
462
463	memset(st, 0, sizeof(*st));
464
465	wrmsrl(MSR_KVM_STEAL_TIME, (__pa(st) | KVM_MSR_ENABLED));
466	printk(KERN_INFO "kvm-stealtime: cpu %d, msr %lx\n",
467		cpu, __pa(st));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
468}
469
470void __cpuinit kvm_guest_cpu_init(void)
471{
472	if (!kvm_para_available())
473		return;
474
475	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) {
476		u64 pa = __pa(&__get_cpu_var(apf_reason));
477
478#ifdef CONFIG_PREEMPT
479		pa |= KVM_ASYNC_PF_SEND_ALWAYS;
480#endif
481		wrmsrl(MSR_KVM_ASYNC_PF_EN, pa | KVM_ASYNC_PF_ENABLED);
482		__get_cpu_var(apf_reason).enabled = 1;
483		printk(KERN_INFO"KVM setup async PF for cpu %d\n",
484		       smp_processor_id());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
485	}
486
487	if (has_steal_clock)
488		kvm_register_steal_time();
489}
490
491static void kvm_pv_disable_apf(void *unused)
492{
493	if (!__get_cpu_var(apf_reason).enabled)
494		return;
495
496	wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
497	__get_cpu_var(apf_reason).enabled = 0;
 
 
 
498
499	printk(KERN_INFO"Unregister pv shared memory for cpu %d\n",
500	       smp_processor_id());
 
 
 
 
 
 
 
 
 
501}
502
503static int kvm_pv_reboot_notify(struct notifier_block *nb,
504				unsigned long code, void *unused)
505{
506	if (code == SYS_RESTART)
507		on_each_cpu(kvm_pv_disable_apf, NULL, 1);
508	return NOTIFY_DONE;
509}
510
511static struct notifier_block kvm_pv_reboot_nb = {
512	.notifier_call = kvm_pv_reboot_notify,
513};
514
515static u64 kvm_steal_clock(int cpu)
516{
517	u64 steal;
518	struct kvm_steal_time *src;
519	int version;
520
521	src = &per_cpu(steal_time, cpu);
522	do {
523		version = src->version;
524		rmb();
525		steal = src->steal;
526		rmb();
527	} while ((version & 1) || (version != src->version));
528
529	return steal;
530}
531
532void kvm_disable_steal_time(void)
533{
534	if (!has_steal_clock)
535		return;
536
537	wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
538}
539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
540#ifdef CONFIG_SMP
541static void __init kvm_smp_prepare_boot_cpu(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
542{
543#ifdef CONFIG_KVM_CLOCK
544	WARN_ON(kvm_register_clock("primary cpu clock"));
 
 
 
 
 
545#endif
546	kvm_guest_cpu_init();
547	native_smp_prepare_boot_cpu();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
548}
549
550static void __cpuinit kvm_guest_cpu_online(void *dummy)
551{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
552	kvm_guest_cpu_init();
 
 
553}
554
555static void kvm_guest_cpu_offline(void *dummy)
556{
557	kvm_disable_steal_time();
558	kvm_pv_disable_apf(NULL);
 
 
559	apf_task_wake_all();
560}
561
562static int __cpuinit kvm_cpu_notify(struct notifier_block *self,
563				    unsigned long action, void *hcpu)
564{
565	int cpu = (unsigned long)hcpu;
566	switch (action) {
567	case CPU_ONLINE:
568	case CPU_DOWN_FAILED:
569	case CPU_ONLINE_FROZEN:
570		smp_call_function_single(cpu, kvm_guest_cpu_online, NULL, 0);
571		break;
572	case CPU_DOWN_PREPARE:
573	case CPU_DOWN_PREPARE_FROZEN:
574		smp_call_function_single(cpu, kvm_guest_cpu_offline, NULL, 1);
575		break;
576	default:
577		break;
578	}
579	return NOTIFY_OK;
580}
581
582static struct notifier_block __cpuinitdata kvm_cpu_notifier = {
583        .notifier_call  = kvm_cpu_notify,
584};
 
 
 
 
585#endif
586
587static void __init kvm_apf_trap_init(void)
 
588{
589	set_intr_gate(14, &async_page_fault);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
590}
591
592void __init kvm_guest_init(void)
593{
594	int i;
595
596	if (!kvm_para_available())
597		return;
598
599	paravirt_ops_setup();
600	register_reboot_notifier(&kvm_pv_reboot_nb);
601	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
602		spin_lock_init(&async_pf_sleepers[i].lock);
603	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF))
604		x86_init.irqs.trap_init = kvm_apf_trap_init;
605
606	if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
607		has_steal_clock = 1;
608		pv_time_ops.steal_clock = kvm_steal_clock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
609	}
610
611#ifdef CONFIG_SMP
612	smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
613	register_cpu_notifier(&kvm_cpu_notifier);
 
 
 
 
 
 
614#else
 
615	kvm_guest_cpu_init();
616#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
617}
618
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
619static __init int activate_jump_labels(void)
620{
621	if (has_steal_clock) {
622		jump_label_inc(&paravirt_steal_enabled);
623		if (steal_acc)
624			jump_label_inc(&paravirt_steal_rq_enabled);
625	}
626
627	return 0;
628}
629arch_initcall(activate_jump_labels);
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * KVM paravirt_ops implementation
  4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  6 * Copyright IBM Corporation, 2007
  7 *   Authors: Anthony Liguori <aliguori@us.ibm.com>
  8 */
  9
 10#define pr_fmt(fmt) "kvm-guest: " fmt
 11
 12#include <linux/context_tracking.h>
 13#include <linux/init.h>
 14#include <linux/irq.h>
 15#include <linux/kernel.h>
 16#include <linux/kvm_para.h>
 17#include <linux/cpu.h>
 18#include <linux/mm.h>
 19#include <linux/highmem.h>
 20#include <linux/hardirq.h>
 21#include <linux/notifier.h>
 22#include <linux/reboot.h>
 23#include <linux/hash.h>
 24#include <linux/sched.h>
 25#include <linux/slab.h>
 26#include <linux/kprobes.h>
 27#include <linux/nmi.h>
 28#include <linux/swait.h>
 29#include <asm/timer.h>
 30#include <asm/cpu.h>
 31#include <asm/traps.h>
 32#include <asm/desc.h>
 33#include <asm/tlbflush.h>
 34#include <asm/apic.h>
 35#include <asm/apicdef.h>
 36#include <asm/hypervisor.h>
 37#include <asm/tlb.h>
 38#include <asm/cpuidle_haltpoll.h>
 39
 40DEFINE_STATIC_KEY_FALSE(kvm_async_pf_enabled);
 41
 42static int kvmapf = 1;
 43
 44static int __init parse_no_kvmapf(char *arg)
 45{
 46        kvmapf = 0;
 47        return 0;
 48}
 49
 50early_param("no-kvmapf", parse_no_kvmapf);
 51
 52static int steal_acc = 1;
 53static int __init parse_no_stealacc(char *arg)
 54{
 55        steal_acc = 0;
 56        return 0;
 57}
 58
 59early_param("no-steal-acc", parse_no_stealacc);
 60
 61static DEFINE_PER_CPU_DECRYPTED(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
 62DEFINE_PER_CPU_DECRYPTED(struct kvm_steal_time, steal_time) __aligned(64) __visible;
 
 
 
 
 
 
 63static int has_steal_clock = 0;
 64
 
 
 
 
 
 65/*
 66 * No need for any "IO delay" on KVM
 67 */
 68static void kvm_io_delay(void)
 69{
 70}
 71
 72#define KVM_TASK_SLEEP_HASHBITS 8
 73#define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
 74
 75struct kvm_task_sleep_node {
 76	struct hlist_node link;
 77	struct swait_queue_head wq;
 78	u32 token;
 79	int cpu;
 
 
 80};
 81
 82static struct kvm_task_sleep_head {
 83	raw_spinlock_t lock;
 84	struct hlist_head list;
 85} async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
 86
 87static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
 88						  u32 token)
 89{
 90	struct hlist_node *p;
 91
 92	hlist_for_each(p, &b->list) {
 93		struct kvm_task_sleep_node *n =
 94			hlist_entry(p, typeof(*n), link);
 95		if (n->token == token)
 96			return n;
 97	}
 98
 99	return NULL;
100}
101
102static bool kvm_async_pf_queue_task(u32 token, struct kvm_task_sleep_node *n)
103{
104	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
105	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
106	struct kvm_task_sleep_node *e;
 
 
 
 
 
 
107
108	raw_spin_lock(&b->lock);
109	e = _find_apf_task(b, token);
110	if (e) {
111		/* dummy entry exist -> wake up was delivered ahead of PF */
112		hlist_del(&e->link);
113		raw_spin_unlock(&b->lock);
114		kfree(e);
115		return false;
 
116	}
117
118	n->token = token;
119	n->cpu = smp_processor_id();
120	init_swait_queue_head(&n->wq);
121	hlist_add_head(&n->link, &b->list);
122	raw_spin_unlock(&b->lock);
123	return true;
124}
125
126/*
127 * kvm_async_pf_task_wait_schedule - Wait for pagefault to be handled
128 * @token:	Token to identify the sleep node entry
129 *
130 * Invoked from the async pagefault handling code or from the VM exit page
131 * fault handler. In both cases RCU is watching.
132 */
133void kvm_async_pf_task_wait_schedule(u32 token)
134{
135	struct kvm_task_sleep_node n;
136	DECLARE_SWAITQUEUE(wait);
137
138	lockdep_assert_irqs_disabled();
139
140	if (!kvm_async_pf_queue_task(token, &n))
141		return;
142
143	for (;;) {
144		prepare_to_swait_exclusive(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
 
145		if (hlist_unhashed(&n.link))
146			break;
147
148		local_irq_enable();
149		schedule();
150		local_irq_disable();
 
 
 
 
 
 
 
 
151	}
152	finish_swait(&n.wq, &wait);
 
 
 
153}
154EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait_schedule);
155
156static void apf_task_wake_one(struct kvm_task_sleep_node *n)
157{
158	hlist_del_init(&n->link);
159	if (swq_has_sleeper(&n->wq))
160		swake_up_one(&n->wq);
 
 
 
 
 
161}
162
163static void apf_task_wake_all(void)
164{
165	int i;
166
167	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
 
168		struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
169		struct kvm_task_sleep_node *n;
170		struct hlist_node *p, *next;
171
172		raw_spin_lock(&b->lock);
173		hlist_for_each_safe(p, next, &b->list) {
174			n = hlist_entry(p, typeof(*n), link);
 
175			if (n->cpu == smp_processor_id())
176				apf_task_wake_one(n);
177		}
178		raw_spin_unlock(&b->lock);
179	}
180}
181
182void kvm_async_pf_task_wake(u32 token)
183{
184	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
185	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
186	struct kvm_task_sleep_node *n;
187
188	if (token == ~0) {
189		apf_task_wake_all();
190		return;
191	}
192
193again:
194	raw_spin_lock(&b->lock);
195	n = _find_apf_task(b, token);
196	if (!n) {
197		/*
198		 * async PF was not yet handled.
199		 * Add dummy entry for the token.
200		 */
201		n = kzalloc(sizeof(*n), GFP_ATOMIC);
202		if (!n) {
203			/*
204			 * Allocation failed! Busy wait while other cpu
205			 * handles async PF.
206			 */
207			raw_spin_unlock(&b->lock);
208			cpu_relax();
209			goto again;
210		}
211		n->token = token;
212		n->cpu = smp_processor_id();
213		init_swait_queue_head(&n->wq);
 
214		hlist_add_head(&n->link, &b->list);
215	} else {
216		apf_task_wake_one(n);
217	}
218	raw_spin_unlock(&b->lock);
219	return;
220}
221EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
222
223noinstr u32 kvm_read_and_reset_apf_flags(void)
224{
225	u32 flags = 0;
226
227	if (__this_cpu_read(apf_reason.enabled)) {
228		flags = __this_cpu_read(apf_reason.flags);
229		__this_cpu_write(apf_reason.flags, 0);
230	}
231
232	return flags;
233}
234EXPORT_SYMBOL_GPL(kvm_read_and_reset_apf_flags);
235
236noinstr bool __kvm_handle_async_pf(struct pt_regs *regs, u32 token)
 
237{
238	u32 flags = kvm_read_and_reset_apf_flags();
239	irqentry_state_t state;
 
 
 
 
 
 
 
 
 
 
 
240
241	if (!flags)
242		return false;
 
 
243
244	state = irqentry_enter(regs);
245	instrumentation_begin();
 
 
 
 
 
 
246
247	/*
248	 * If the host managed to inject an async #PF into an interrupt
249	 * disabled region, then die hard as this is not going to end well
250	 * and the host side is seriously broken.
251	 */
252	if (unlikely(!(regs->flags & X86_EFLAGS_IF)))
253		panic("Host injected async #PF in interrupt disabled region\n");
254
255	if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
256		if (unlikely(!(user_mode(regs))))
257			panic("Host injected async #PF in kernel mode\n");
258		/* Page is swapped out by the host. */
259		kvm_async_pf_task_wait_schedule(token);
260	} else {
261		WARN_ONCE(1, "Unexpected async PF flags: %x\n", flags);
262	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
263
264	instrumentation_end();
265	irqentry_exit(regs, state);
266	return true;
 
267}
268
269DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt)
270{
271	struct pt_regs *old_regs = set_irq_regs(regs);
272	u32 token;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
273
274	ack_APIC_irq();
 
275
276	inc_irq_stat(irq_hv_callback_count);
 
 
 
277
278	if (__this_cpu_read(apf_reason.enabled)) {
279		token = __this_cpu_read(apf_reason.token);
280		kvm_async_pf_task_wake(token);
281		__this_cpu_write(apf_reason.token, 0);
282		wrmsrl(MSR_KVM_ASYNC_PF_ACK, 1);
283	}
284
285	set_irq_regs(old_regs);
 
286}
287
288static void __init paravirt_ops_setup(void)
289{
290	pv_info.name = "KVM";
 
291
292	if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
293		pv_ops.cpu.io_delay = kvm_io_delay;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
294
 
 
 
295#ifdef CONFIG_X86_IO_APIC
296	no_timer_check = 1;
297#endif
298}
299
300static void kvm_register_steal_time(void)
301{
302	int cpu = smp_processor_id();
303	struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
304
305	if (!has_steal_clock)
306		return;
307
308	wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED));
309	pr_info("stealtime: cpu %d, msr %llx\n", cpu,
310		(unsigned long long) slow_virt_to_phys(st));
311}
312
313static DEFINE_PER_CPU_DECRYPTED(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED;
314
315static notrace void kvm_guest_apic_eoi_write(u32 reg, u32 val)
316{
317	/**
318	 * This relies on __test_and_clear_bit to modify the memory
319	 * in a way that is atomic with respect to the local CPU.
320	 * The hypervisor only accesses this memory from the local CPU so
321	 * there's no need for lock or memory barriers.
322	 * An optimization barrier is implied in apic write.
323	 */
324	if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi)))
325		return;
326	apic->native_eoi_write(APIC_EOI, APIC_EOI_ACK);
327}
328
329static void kvm_guest_cpu_init(void)
330{
331	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
332		u64 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
333
334		WARN_ON_ONCE(!static_branch_likely(&kvm_async_pf_enabled));
 
335
336		pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
337		pa |= KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
338
339		if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_VMEXIT))
340			pa |= KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
341
342		wrmsrl(MSR_KVM_ASYNC_PF_INT, HYPERVISOR_CALLBACK_VECTOR);
343
344		wrmsrl(MSR_KVM_ASYNC_PF_EN, pa);
345		__this_cpu_write(apf_reason.enabled, 1);
346		pr_info("KVM setup async PF for cpu %d\n", smp_processor_id());
347	}
348
349	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) {
350		unsigned long pa;
351
352		/* Size alignment is implied but just to make it explicit. */
353		BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4);
354		__this_cpu_write(kvm_apic_eoi, 0);
355		pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi))
356			| KVM_MSR_ENABLED;
357		wrmsrl(MSR_KVM_PV_EOI_EN, pa);
358	}
359
360	if (has_steal_clock)
361		kvm_register_steal_time();
362}
363
364static void kvm_pv_disable_apf(void)
365{
366	if (!__this_cpu_read(apf_reason.enabled))
367		return;
368
369	wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
370	__this_cpu_write(apf_reason.enabled, 0);
371
372	pr_info("Unregister pv shared memory for cpu %d\n", smp_processor_id());
373}
374
375static void kvm_pv_guest_cpu_reboot(void *unused)
376{
377	/*
378	 * We disable PV EOI before we load a new kernel by kexec,
379	 * since MSR_KVM_PV_EOI_EN stores a pointer into old kernel's memory.
380	 * New kernel can re-enable when it boots.
381	 */
382	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
383		wrmsrl(MSR_KVM_PV_EOI_EN, 0);
384	kvm_pv_disable_apf();
385	kvm_disable_steal_time();
386}
387
388static int kvm_pv_reboot_notify(struct notifier_block *nb,
389				unsigned long code, void *unused)
390{
391	if (code == SYS_RESTART)
392		on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1);
393	return NOTIFY_DONE;
394}
395
396static struct notifier_block kvm_pv_reboot_nb = {
397	.notifier_call = kvm_pv_reboot_notify,
398};
399
400static u64 kvm_steal_clock(int cpu)
401{
402	u64 steal;
403	struct kvm_steal_time *src;
404	int version;
405
406	src = &per_cpu(steal_time, cpu);
407	do {
408		version = src->version;
409		virt_rmb();
410		steal = src->steal;
411		virt_rmb();
412	} while ((version & 1) || (version != src->version));
413
414	return steal;
415}
416
417void kvm_disable_steal_time(void)
418{
419	if (!has_steal_clock)
420		return;
421
422	wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
423}
424
425static inline void __set_percpu_decrypted(void *ptr, unsigned long size)
426{
427	early_set_memory_decrypted((unsigned long) ptr, size);
428}
429
430/*
431 * Iterate through all possible CPUs and map the memory region pointed
432 * by apf_reason, steal_time and kvm_apic_eoi as decrypted at once.
433 *
434 * Note: we iterate through all possible CPUs to ensure that CPUs
435 * hotplugged will have their per-cpu variable already mapped as
436 * decrypted.
437 */
438static void __init sev_map_percpu_data(void)
439{
440	int cpu;
441
442	if (!sev_active())
443		return;
444
445	for_each_possible_cpu(cpu) {
446		__set_percpu_decrypted(&per_cpu(apf_reason, cpu), sizeof(apf_reason));
447		__set_percpu_decrypted(&per_cpu(steal_time, cpu), sizeof(steal_time));
448		__set_percpu_decrypted(&per_cpu(kvm_apic_eoi, cpu), sizeof(kvm_apic_eoi));
449	}
450}
451
452static bool pv_tlb_flush_supported(void)
453{
454	return (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH) &&
455		!kvm_para_has_hint(KVM_HINTS_REALTIME) &&
456		kvm_para_has_feature(KVM_FEATURE_STEAL_TIME));
457}
458
459static DEFINE_PER_CPU(cpumask_var_t, __pv_cpu_mask);
460
461#ifdef CONFIG_SMP
462
463static bool pv_ipi_supported(void)
464{
465	return kvm_para_has_feature(KVM_FEATURE_PV_SEND_IPI);
466}
467
468static bool pv_sched_yield_supported(void)
469{
470	return (kvm_para_has_feature(KVM_FEATURE_PV_SCHED_YIELD) &&
471		!kvm_para_has_hint(KVM_HINTS_REALTIME) &&
472	    kvm_para_has_feature(KVM_FEATURE_STEAL_TIME));
473}
474
475#define KVM_IPI_CLUSTER_SIZE	(2 * BITS_PER_LONG)
476
477static void __send_ipi_mask(const struct cpumask *mask, int vector)
478{
479	unsigned long flags;
480	int cpu, apic_id, icr;
481	int min = 0, max = 0;
482#ifdef CONFIG_X86_64
483	__uint128_t ipi_bitmap = 0;
484#else
485	u64 ipi_bitmap = 0;
486#endif
487	long ret;
488
489	if (cpumask_empty(mask))
490		return;
491
492	local_irq_save(flags);
493
494	switch (vector) {
495	default:
496		icr = APIC_DM_FIXED | vector;
497		break;
498	case NMI_VECTOR:
499		icr = APIC_DM_NMI;
500		break;
501	}
502
503	for_each_cpu(cpu, mask) {
504		apic_id = per_cpu(x86_cpu_to_apicid, cpu);
505		if (!ipi_bitmap) {
506			min = max = apic_id;
507		} else if (apic_id < min && max - apic_id < KVM_IPI_CLUSTER_SIZE) {
508			ipi_bitmap <<= min - apic_id;
509			min = apic_id;
510		} else if (apic_id < min + KVM_IPI_CLUSTER_SIZE) {
511			max = apic_id < max ? max : apic_id;
512		} else {
513			ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
514				(unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
515			WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
516				  ret);
517			min = max = apic_id;
518			ipi_bitmap = 0;
519		}
520		__set_bit(apic_id - min, (unsigned long *)&ipi_bitmap);
521	}
522
523	if (ipi_bitmap) {
524		ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
525			(unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
526		WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
527			  ret);
528	}
529
530	local_irq_restore(flags);
531}
532
533static void kvm_send_ipi_mask(const struct cpumask *mask, int vector)
534{
535	__send_ipi_mask(mask, vector);
536}
537
538static void kvm_send_ipi_mask_allbutself(const struct cpumask *mask, int vector)
539{
540	unsigned int this_cpu = smp_processor_id();
541	struct cpumask *new_mask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
542	const struct cpumask *local_mask;
543
544	cpumask_copy(new_mask, mask);
545	cpumask_clear_cpu(this_cpu, new_mask);
546	local_mask = new_mask;
547	__send_ipi_mask(local_mask, vector);
548}
549
550/*
551 * Set the IPI entry points
552 */
553static void kvm_setup_pv_ipi(void)
554{
555	apic->send_IPI_mask = kvm_send_ipi_mask;
556	apic->send_IPI_mask_allbutself = kvm_send_ipi_mask_allbutself;
557	pr_info("setup PV IPIs\n");
558}
559
560static void kvm_smp_send_call_func_ipi(const struct cpumask *mask)
561{
562	int cpu;
563
564	native_send_call_func_ipi(mask);
565
566	/* Make sure other vCPUs get a chance to run if they need to. */
567	for_each_cpu(cpu, mask) {
568		if (vcpu_is_preempted(cpu)) {
569			kvm_hypercall1(KVM_HC_SCHED_YIELD, per_cpu(x86_cpu_to_apicid, cpu));
570			break;
571		}
572	}
573}
574
575static void __init kvm_smp_prepare_boot_cpu(void)
576{
577	/*
578	 * Map the per-cpu variables as decrypted before kvm_guest_cpu_init()
579	 * shares the guest physical address with the hypervisor.
580	 */
581	sev_map_percpu_data();
582
583	kvm_guest_cpu_init();
584	native_smp_prepare_boot_cpu();
585	kvm_spinlock_init();
586}
587
588static void kvm_guest_cpu_offline(void)
589{
590	kvm_disable_steal_time();
591	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
592		wrmsrl(MSR_KVM_PV_EOI_EN, 0);
593	kvm_pv_disable_apf();
594	apf_task_wake_all();
595}
596
597static int kvm_cpu_online(unsigned int cpu)
 
598{
599	local_irq_disable();
600	kvm_guest_cpu_init();
601	local_irq_enable();
602	return 0;
 
 
 
 
 
 
 
 
 
 
 
603}
604
605static int kvm_cpu_down_prepare(unsigned int cpu)
606{
607	local_irq_disable();
608	kvm_guest_cpu_offline();
609	local_irq_enable();
610	return 0;
611}
612#endif
613
614static void kvm_flush_tlb_others(const struct cpumask *cpumask,
615			const struct flush_tlb_info *info)
616{
617	u8 state;
618	int cpu;
619	struct kvm_steal_time *src;
620	struct cpumask *flushmask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
621
622	cpumask_copy(flushmask, cpumask);
623	/*
624	 * We have to call flush only on online vCPUs. And
625	 * queue flush_on_enter for pre-empted vCPUs
626	 */
627	for_each_cpu(cpu, flushmask) {
628		src = &per_cpu(steal_time, cpu);
629		state = READ_ONCE(src->preempted);
630		if ((state & KVM_VCPU_PREEMPTED)) {
631			if (try_cmpxchg(&src->preempted, &state,
632					state | KVM_VCPU_FLUSH_TLB))
633				__cpumask_clear_cpu(cpu, flushmask);
634		}
635	}
636
637	native_flush_tlb_others(flushmask, info);
638}
639
640static void __init kvm_guest_init(void)
641{
642	int i;
643
 
 
 
644	paravirt_ops_setup();
645	register_reboot_notifier(&kvm_pv_reboot_nb);
646	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
647		raw_spin_lock_init(&async_pf_sleepers[i].lock);
 
 
648
649	if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
650		has_steal_clock = 1;
651		pv_ops.time.steal_clock = kvm_steal_clock;
652	}
653
654	if (pv_tlb_flush_supported()) {
655		pv_ops.mmu.flush_tlb_others = kvm_flush_tlb_others;
656		pv_ops.mmu.tlb_remove_table = tlb_remove_table;
657		pr_info("KVM setup pv remote TLB flush\n");
658	}
659
660	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
661		apic_set_eoi_write(kvm_guest_apic_eoi_write);
662
663	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
664		static_branch_enable(&kvm_async_pf_enabled);
665		alloc_intr_gate(HYPERVISOR_CALLBACK_VECTOR, asm_sysvec_kvm_asyncpf_interrupt);
666	}
667
668#ifdef CONFIG_SMP
669	smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
670	if (pv_sched_yield_supported()) {
671		smp_ops.send_call_func_ipi = kvm_smp_send_call_func_ipi;
672		pr_info("setup PV sched yield\n");
673	}
674	if (cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/kvm:online",
675				      kvm_cpu_online, kvm_cpu_down_prepare) < 0)
676		pr_err("failed to install cpu hotplug callbacks\n");
677#else
678	sev_map_percpu_data();
679	kvm_guest_cpu_init();
680#endif
681
682	/*
683	 * Hard lockup detection is enabled by default. Disable it, as guests
684	 * can get false positives too easily, for example if the host is
685	 * overcommitted.
686	 */
687	hardlockup_detector_disable();
688}
689
690static noinline uint32_t __kvm_cpuid_base(void)
691{
692	if (boot_cpu_data.cpuid_level < 0)
693		return 0;	/* So we don't blow up on old processors */
694
695	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
696		return hypervisor_cpuid_base("KVMKVMKVM\0\0\0", 0);
697
698	return 0;
699}
700
701static inline uint32_t kvm_cpuid_base(void)
702{
703	static int kvm_cpuid_base = -1;
704
705	if (kvm_cpuid_base == -1)
706		kvm_cpuid_base = __kvm_cpuid_base();
707
708	return kvm_cpuid_base;
709}
710
711bool kvm_para_available(void)
712{
713	return kvm_cpuid_base() != 0;
714}
715EXPORT_SYMBOL_GPL(kvm_para_available);
716
717unsigned int kvm_arch_para_features(void)
718{
719	return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES);
720}
721
722unsigned int kvm_arch_para_hints(void)
723{
724	return cpuid_edx(kvm_cpuid_base() | KVM_CPUID_FEATURES);
725}
726EXPORT_SYMBOL_GPL(kvm_arch_para_hints);
727
728static uint32_t __init kvm_detect(void)
729{
730	return kvm_cpuid_base();
731}
732
733static void __init kvm_apic_init(void)
734{
735#if defined(CONFIG_SMP)
736	if (pv_ipi_supported())
737		kvm_setup_pv_ipi();
738#endif
739}
740
741static void __init kvm_init_platform(void)
742{
743	kvmclock_init();
744	x86_platform.apic_post_init = kvm_apic_init;
745}
746
747const __initconst struct hypervisor_x86 x86_hyper_kvm = {
748	.name			= "KVM",
749	.detect			= kvm_detect,
750	.type			= X86_HYPER_KVM,
751	.init.guest_late_init	= kvm_guest_init,
752	.init.x2apic_available	= kvm_para_available,
753	.init.init_platform	= kvm_init_platform,
754};
755
756static __init int activate_jump_labels(void)
757{
758	if (has_steal_clock) {
759		static_key_slow_inc(&paravirt_steal_enabled);
760		if (steal_acc)
761			static_key_slow_inc(&paravirt_steal_rq_enabled);
762	}
763
764	return 0;
765}
766arch_initcall(activate_jump_labels);
767
768static __init int kvm_alloc_cpumask(void)
769{
770	int cpu;
771	bool alloc = false;
772
773	if (!kvm_para_available() || nopv)
774		return 0;
775
776	if (pv_tlb_flush_supported())
777		alloc = true;
778
779#if defined(CONFIG_SMP)
780	if (pv_ipi_supported())
781		alloc = true;
782#endif
783
784	if (alloc)
785		for_each_possible_cpu(cpu) {
786			zalloc_cpumask_var_node(per_cpu_ptr(&__pv_cpu_mask, cpu),
787				GFP_KERNEL, cpu_to_node(cpu));
788		}
789
790	return 0;
791}
792arch_initcall(kvm_alloc_cpumask);
793
794#ifdef CONFIG_PARAVIRT_SPINLOCKS
795
796/* Kick a cpu by its apicid. Used to wake up a halted vcpu */
797static void kvm_kick_cpu(int cpu)
798{
799	int apicid;
800	unsigned long flags = 0;
801
802	apicid = per_cpu(x86_cpu_to_apicid, cpu);
803	kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid);
804}
805
806#include <asm/qspinlock.h>
807
808static void kvm_wait(u8 *ptr, u8 val)
809{
810	unsigned long flags;
811
812	if (in_nmi())
813		return;
814
815	local_irq_save(flags);
816
817	if (READ_ONCE(*ptr) != val)
818		goto out;
819
820	/*
821	 * halt until it's our turn and kicked. Note that we do safe halt
822	 * for irq enabled case to avoid hang when lock info is overwritten
823	 * in irq spinlock slowpath and no spurious interrupt occur to save us.
824	 */
825	if (arch_irqs_disabled_flags(flags))
826		halt();
827	else
828		safe_halt();
829
830out:
831	local_irq_restore(flags);
832}
833
834#ifdef CONFIG_X86_32
835__visible bool __kvm_vcpu_is_preempted(long cpu)
836{
837	struct kvm_steal_time *src = &per_cpu(steal_time, cpu);
838
839	return !!(src->preempted & KVM_VCPU_PREEMPTED);
840}
841PV_CALLEE_SAVE_REGS_THUNK(__kvm_vcpu_is_preempted);
842
843#else
844
845#include <asm/asm-offsets.h>
846
847extern bool __raw_callee_save___kvm_vcpu_is_preempted(long);
848
849/*
850 * Hand-optimize version for x86-64 to avoid 8 64-bit register saving and
851 * restoring to/from the stack.
852 */
853asm(
854".pushsection .text;"
855".global __raw_callee_save___kvm_vcpu_is_preempted;"
856".type __raw_callee_save___kvm_vcpu_is_preempted, @function;"
857"__raw_callee_save___kvm_vcpu_is_preempted:"
858"movq	__per_cpu_offset(,%rdi,8), %rax;"
859"cmpb	$0, " __stringify(KVM_STEAL_TIME_preempted) "+steal_time(%rax);"
860"setne	%al;"
861"ret;"
862".size __raw_callee_save___kvm_vcpu_is_preempted, .-__raw_callee_save___kvm_vcpu_is_preempted;"
863".popsection");
864
865#endif
866
867/*
868 * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present.
869 */
870void __init kvm_spinlock_init(void)
871{
872	/*
873	 * In case host doesn't support KVM_FEATURE_PV_UNHALT there is still an
874	 * advantage of keeping virt_spin_lock_key enabled: virt_spin_lock() is
875	 * preferred over native qspinlock when vCPU is preempted.
876	 */
877	if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT)) {
878		pr_info("PV spinlocks disabled, no host support\n");
879		return;
880	}
881
882	/*
883	 * Disable PV spinlocks and use native qspinlock when dedicated pCPUs
884	 * are available.
885	 */
886	if (kvm_para_has_hint(KVM_HINTS_REALTIME)) {
887		pr_info("PV spinlocks disabled with KVM_HINTS_REALTIME hints\n");
888		goto out;
889	}
890
891	if (num_possible_cpus() == 1) {
892		pr_info("PV spinlocks disabled, single CPU\n");
893		goto out;
894	}
895
896	if (nopvspin) {
897		pr_info("PV spinlocks disabled, forced by \"nopvspin\" parameter\n");
898		goto out;
899	}
900
901	pr_info("PV spinlocks enabled\n");
902
903	__pv_init_lock_hash();
904	pv_ops.lock.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath;
905	pv_ops.lock.queued_spin_unlock =
906		PV_CALLEE_SAVE(__pv_queued_spin_unlock);
907	pv_ops.lock.wait = kvm_wait;
908	pv_ops.lock.kick = kvm_kick_cpu;
909
910	if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
911		pv_ops.lock.vcpu_is_preempted =
912			PV_CALLEE_SAVE(__kvm_vcpu_is_preempted);
913	}
914	/*
915	 * When PV spinlock is enabled which is preferred over
916	 * virt_spin_lock(), virt_spin_lock_key's value is meaningless.
917	 * Just disable it anyway.
918	 */
919out:
920	static_branch_disable(&virt_spin_lock_key);
921}
922
923#endif	/* CONFIG_PARAVIRT_SPINLOCKS */
924
925#ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
926
927static void kvm_disable_host_haltpoll(void *i)
928{
929	wrmsrl(MSR_KVM_POLL_CONTROL, 0);
930}
931
932static void kvm_enable_host_haltpoll(void *i)
933{
934	wrmsrl(MSR_KVM_POLL_CONTROL, 1);
935}
936
937void arch_haltpoll_enable(unsigned int cpu)
938{
939	if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) {
940		pr_err_once("host does not support poll control\n");
941		pr_err_once("host upgrade recommended\n");
942		return;
943	}
944
945	/* Enable guest halt poll disables host halt poll */
946	smp_call_function_single(cpu, kvm_disable_host_haltpoll, NULL, 1);
947}
948EXPORT_SYMBOL_GPL(arch_haltpoll_enable);
949
950void arch_haltpoll_disable(unsigned int cpu)
951{
952	if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL))
953		return;
954
955	/* Enable guest halt poll disables host halt poll */
956	smp_call_function_single(cpu, kvm_enable_host_haltpoll, NULL, 1);
957}
958EXPORT_SYMBOL_GPL(arch_haltpoll_disable);
959#endif