Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
    1// SPDX-License-Identifier: GPL-2.0-only
    2/*
    3 *  kernel/sched/core.c
    4 *
    5 *  Core kernel scheduler code and related syscalls
    6 *
    7 *  Copyright (C) 1991-2002  Linus Torvalds
    8 */
    9#include <linux/highmem.h>
   10#include <linux/hrtimer_api.h>
   11#include <linux/ktime_api.h>
   12#include <linux/sched/signal.h>
   13#include <linux/syscalls_api.h>
   14#include <linux/debug_locks.h>
   15#include <linux/prefetch.h>
   16#include <linux/capability.h>
   17#include <linux/pgtable_api.h>
   18#include <linux/wait_bit.h>
   19#include <linux/jiffies.h>
   20#include <linux/spinlock_api.h>
   21#include <linux/cpumask_api.h>
   22#include <linux/lockdep_api.h>
   23#include <linux/hardirq.h>
   24#include <linux/softirq.h>
   25#include <linux/refcount_api.h>
   26#include <linux/topology.h>
   27#include <linux/sched/clock.h>
   28#include <linux/sched/cond_resched.h>
   29#include <linux/sched/cputime.h>
   30#include <linux/sched/debug.h>
   31#include <linux/sched/hotplug.h>
   32#include <linux/sched/init.h>
   33#include <linux/sched/isolation.h>
   34#include <linux/sched/loadavg.h>
   35#include <linux/sched/mm.h>
   36#include <linux/sched/nohz.h>
   37#include <linux/sched/rseq_api.h>
   38#include <linux/sched/rt.h>
   39
   40#include <linux/blkdev.h>
   41#include <linux/context_tracking.h>
   42#include <linux/cpuset.h>
   43#include <linux/delayacct.h>
   44#include <linux/init_task.h>
   45#include <linux/interrupt.h>
   46#include <linux/ioprio.h>
   47#include <linux/kallsyms.h>
   48#include <linux/kcov.h>
   49#include <linux/kprobes.h>
   50#include <linux/llist_api.h>
   51#include <linux/mmu_context.h>
   52#include <linux/mmzone.h>
   53#include <linux/mutex_api.h>
   54#include <linux/nmi.h>
   55#include <linux/nospec.h>
   56#include <linux/perf_event_api.h>
   57#include <linux/profile.h>
   58#include <linux/psi.h>
   59#include <linux/rcuwait_api.h>
   60#include <linux/rseq.h>
   61#include <linux/sched/wake_q.h>
   62#include <linux/scs.h>
   63#include <linux/slab.h>
   64#include <linux/syscalls.h>
   65#include <linux/vtime.h>
   66#include <linux/wait_api.h>
   67#include <linux/workqueue_api.h>
   68
   69#ifdef CONFIG_PREEMPT_DYNAMIC
   70# ifdef CONFIG_GENERIC_ENTRY
   71#  include <linux/entry-common.h>
   72# endif
   73#endif
   74
   75#include <uapi/linux/sched/types.h>
   76
   77#include <asm/irq_regs.h>
   78#include <asm/switch_to.h>
   79#include <asm/tlb.h>
   80
   81#define CREATE_TRACE_POINTS
   82#include <linux/sched/rseq_api.h>
   83#include <trace/events/sched.h>
   84#include <trace/events/ipi.h>
   85#undef CREATE_TRACE_POINTS
   86
   87#include "sched.h"
   88#include "stats.h"
   89
   90#include "autogroup.h"
   91#include "pelt.h"
   92#include "smp.h"
   93#include "stats.h"
   94
   95#include "../workqueue_internal.h"
   96#include "../../io_uring/io-wq.h"
   97#include "../smpboot.h"
   98
   99EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
  100EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
  101
  102/*
  103 * Export tracepoints that act as a bare tracehook (ie: have no trace event
  104 * associated with them) to allow external modules to probe them.
  105 */
  106EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
  107EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
  108EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
  109EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
  110EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
  111EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
  112EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
  113EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
  114EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
  115EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
  116EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
  117EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
  118
  119DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  120
  121#ifdef CONFIG_SCHED_DEBUG
  122/*
  123 * Debugging: various feature bits
  124 *
  125 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
  126 * sysctl_sched_features, defined in sched.h, to allow constants propagation
  127 * at compile time and compiler optimization based on features default.
  128 */
  129#define SCHED_FEAT(name, enabled)	\
  130	(1UL << __SCHED_FEAT_##name) * enabled |
  131const_debug unsigned int sysctl_sched_features =
  132#include "features.h"
  133	0;
  134#undef SCHED_FEAT
  135
  136/*
  137 * Print a warning if need_resched is set for the given duration (if
  138 * LATENCY_WARN is enabled).
  139 *
  140 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
  141 * per boot.
  142 */
  143__read_mostly int sysctl_resched_latency_warn_ms = 100;
  144__read_mostly int sysctl_resched_latency_warn_once = 1;
  145#endif /* CONFIG_SCHED_DEBUG */
  146
  147/*
  148 * Number of tasks to iterate in a single balance run.
  149 * Limited because this is done with IRQs disabled.
  150 */
  151const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
  152
  153__read_mostly int scheduler_running;
  154
  155#ifdef CONFIG_SCHED_CORE
  156
  157DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
  158
  159/* kernel prio, less is more */
  160static inline int __task_prio(const struct task_struct *p)
  161{
  162	if (p->sched_class == &stop_sched_class) /* trumps deadline */
  163		return -2;
  164
  165	if (rt_prio(p->prio)) /* includes deadline */
  166		return p->prio; /* [-1, 99] */
  167
  168	if (p->sched_class == &idle_sched_class)
  169		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
  170
  171	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
  172}
  173
  174/*
  175 * l(a,b)
  176 * le(a,b) := !l(b,a)
  177 * g(a,b)  := l(b,a)
  178 * ge(a,b) := !l(a,b)
  179 */
  180
  181/* real prio, less is less */
  182static inline bool prio_less(const struct task_struct *a,
  183			     const struct task_struct *b, bool in_fi)
  184{
  185
  186	int pa = __task_prio(a), pb = __task_prio(b);
  187
  188	if (-pa < -pb)
  189		return true;
  190
  191	if (-pb < -pa)
  192		return false;
  193
  194	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
  195		return !dl_time_before(a->dl.deadline, b->dl.deadline);
  196
  197	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
  198		return cfs_prio_less(a, b, in_fi);
  199
  200	return false;
  201}
  202
  203static inline bool __sched_core_less(const struct task_struct *a,
  204				     const struct task_struct *b)
  205{
  206	if (a->core_cookie < b->core_cookie)
  207		return true;
  208
  209	if (a->core_cookie > b->core_cookie)
  210		return false;
  211
  212	/* flip prio, so high prio is leftmost */
  213	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
  214		return true;
  215
  216	return false;
  217}
  218
  219#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
  220
  221static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
  222{
  223	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
  224}
  225
  226static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
  227{
  228	const struct task_struct *p = __node_2_sc(node);
  229	unsigned long cookie = (unsigned long)key;
  230
  231	if (cookie < p->core_cookie)
  232		return -1;
  233
  234	if (cookie > p->core_cookie)
  235		return 1;
  236
  237	return 0;
  238}
  239
  240void sched_core_enqueue(struct rq *rq, struct task_struct *p)
  241{
  242	rq->core->core_task_seq++;
  243
  244	if (!p->core_cookie)
  245		return;
  246
  247	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
  248}
  249
  250void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
  251{
  252	rq->core->core_task_seq++;
  253
  254	if (sched_core_enqueued(p)) {
  255		rb_erase(&p->core_node, &rq->core_tree);
  256		RB_CLEAR_NODE(&p->core_node);
  257	}
  258
  259	/*
  260	 * Migrating the last task off the cpu, with the cpu in forced idle
  261	 * state. Reschedule to create an accounting edge for forced idle,
  262	 * and re-examine whether the core is still in forced idle state.
  263	 */
  264	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
  265	    rq->core->core_forceidle_count && rq->curr == rq->idle)
  266		resched_curr(rq);
  267}
  268
  269static int sched_task_is_throttled(struct task_struct *p, int cpu)
  270{
  271	if (p->sched_class->task_is_throttled)
  272		return p->sched_class->task_is_throttled(p, cpu);
  273
  274	return 0;
  275}
  276
  277static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
  278{
  279	struct rb_node *node = &p->core_node;
  280	int cpu = task_cpu(p);
  281
  282	do {
  283		node = rb_next(node);
  284		if (!node)
  285			return NULL;
  286
  287		p = __node_2_sc(node);
  288		if (p->core_cookie != cookie)
  289			return NULL;
  290
  291	} while (sched_task_is_throttled(p, cpu));
  292
  293	return p;
  294}
  295
  296/*
  297 * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
  298 * If no suitable task is found, NULL will be returned.
  299 */
  300static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
  301{
  302	struct task_struct *p;
  303	struct rb_node *node;
  304
  305	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
  306	if (!node)
  307		return NULL;
  308
  309	p = __node_2_sc(node);
  310	if (!sched_task_is_throttled(p, rq->cpu))
  311		return p;
  312
  313	return sched_core_next(p, cookie);
  314}
  315
  316/*
  317 * Magic required such that:
  318 *
  319 *	raw_spin_rq_lock(rq);
  320 *	...
  321 *	raw_spin_rq_unlock(rq);
  322 *
  323 * ends up locking and unlocking the _same_ lock, and all CPUs
  324 * always agree on what rq has what lock.
  325 *
  326 * XXX entirely possible to selectively enable cores, don't bother for now.
  327 */
  328
  329static DEFINE_MUTEX(sched_core_mutex);
  330static atomic_t sched_core_count;
  331static struct cpumask sched_core_mask;
  332
  333static void sched_core_lock(int cpu, unsigned long *flags)
  334{
  335	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
  336	int t, i = 0;
  337
  338	local_irq_save(*flags);
  339	for_each_cpu(t, smt_mask)
  340		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
  341}
  342
  343static void sched_core_unlock(int cpu, unsigned long *flags)
  344{
  345	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
  346	int t;
  347
  348	for_each_cpu(t, smt_mask)
  349		raw_spin_unlock(&cpu_rq(t)->__lock);
  350	local_irq_restore(*flags);
  351}
  352
  353static void __sched_core_flip(bool enabled)
  354{
  355	unsigned long flags;
  356	int cpu, t;
  357
  358	cpus_read_lock();
  359
  360	/*
  361	 * Toggle the online cores, one by one.
  362	 */
  363	cpumask_copy(&sched_core_mask, cpu_online_mask);
  364	for_each_cpu(cpu, &sched_core_mask) {
  365		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
  366
  367		sched_core_lock(cpu, &flags);
  368
  369		for_each_cpu(t, smt_mask)
  370			cpu_rq(t)->core_enabled = enabled;
  371
  372		cpu_rq(cpu)->core->core_forceidle_start = 0;
  373
  374		sched_core_unlock(cpu, &flags);
  375
  376		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
  377	}
  378
  379	/*
  380	 * Toggle the offline CPUs.
  381	 */
  382	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
  383		cpu_rq(cpu)->core_enabled = enabled;
  384
  385	cpus_read_unlock();
  386}
  387
  388static void sched_core_assert_empty(void)
  389{
  390	int cpu;
  391
  392	for_each_possible_cpu(cpu)
  393		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
  394}
  395
  396static void __sched_core_enable(void)
  397{
  398	static_branch_enable(&__sched_core_enabled);
  399	/*
  400	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
  401	 * and future ones will observe !sched_core_disabled().
  402	 */
  403	synchronize_rcu();
  404	__sched_core_flip(true);
  405	sched_core_assert_empty();
  406}
  407
  408static void __sched_core_disable(void)
  409{
  410	sched_core_assert_empty();
  411	__sched_core_flip(false);
  412	static_branch_disable(&__sched_core_enabled);
  413}
  414
  415void sched_core_get(void)
  416{
  417	if (atomic_inc_not_zero(&sched_core_count))
  418		return;
  419
  420	mutex_lock(&sched_core_mutex);
  421	if (!atomic_read(&sched_core_count))
  422		__sched_core_enable();
  423
  424	smp_mb__before_atomic();
  425	atomic_inc(&sched_core_count);
  426	mutex_unlock(&sched_core_mutex);
  427}
  428
  429static void __sched_core_put(struct work_struct *work)
  430{
  431	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
  432		__sched_core_disable();
  433		mutex_unlock(&sched_core_mutex);
  434	}
  435}
  436
  437void sched_core_put(void)
  438{
  439	static DECLARE_WORK(_work, __sched_core_put);
  440
  441	/*
  442	 * "There can be only one"
  443	 *
  444	 * Either this is the last one, or we don't actually need to do any
  445	 * 'work'. If it is the last *again*, we rely on
  446	 * WORK_STRUCT_PENDING_BIT.
  447	 */
  448	if (!atomic_add_unless(&sched_core_count, -1, 1))
  449		schedule_work(&_work);
  450}
  451
  452#else /* !CONFIG_SCHED_CORE */
  453
  454static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
  455static inline void
  456sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
  457
  458#endif /* CONFIG_SCHED_CORE */
  459
  460/*
  461 * Serialization rules:
  462 *
  463 * Lock order:
  464 *
  465 *   p->pi_lock
  466 *     rq->lock
  467 *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
  468 *
  469 *  rq1->lock
  470 *    rq2->lock  where: rq1 < rq2
  471 *
  472 * Regular state:
  473 *
  474 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
  475 * local CPU's rq->lock, it optionally removes the task from the runqueue and
  476 * always looks at the local rq data structures to find the most eligible task
  477 * to run next.
  478 *
  479 * Task enqueue is also under rq->lock, possibly taken from another CPU.
  480 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
  481 * the local CPU to avoid bouncing the runqueue state around [ see
  482 * ttwu_queue_wakelist() ]
  483 *
  484 * Task wakeup, specifically wakeups that involve migration, are horribly
  485 * complicated to avoid having to take two rq->locks.
  486 *
  487 * Special state:
  488 *
  489 * System-calls and anything external will use task_rq_lock() which acquires
  490 * both p->pi_lock and rq->lock. As a consequence the state they change is
  491 * stable while holding either lock:
  492 *
  493 *  - sched_setaffinity()/
  494 *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
  495 *  - set_user_nice():		p->se.load, p->*prio
  496 *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
  497 *				p->se.load, p->rt_priority,
  498 *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
  499 *  - sched_setnuma():		p->numa_preferred_nid
  500 *  - sched_move_task():	p->sched_task_group
  501 *  - uclamp_update_active()	p->uclamp*
  502 *
  503 * p->state <- TASK_*:
  504 *
  505 *   is changed locklessly using set_current_state(), __set_current_state() or
  506 *   set_special_state(), see their respective comments, or by
  507 *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
  508 *   concurrent self.
  509 *
  510 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
  511 *
  512 *   is set by activate_task() and cleared by deactivate_task(), under
  513 *   rq->lock. Non-zero indicates the task is runnable, the special
  514 *   ON_RQ_MIGRATING state is used for migration without holding both
  515 *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
  516 *
  517 * p->on_cpu <- { 0, 1 }:
  518 *
  519 *   is set by prepare_task() and cleared by finish_task() such that it will be
  520 *   set before p is scheduled-in and cleared after p is scheduled-out, both
  521 *   under rq->lock. Non-zero indicates the task is running on its CPU.
  522 *
  523 *   [ The astute reader will observe that it is possible for two tasks on one
  524 *     CPU to have ->on_cpu = 1 at the same time. ]
  525 *
  526 * task_cpu(p): is changed by set_task_cpu(), the rules are:
  527 *
  528 *  - Don't call set_task_cpu() on a blocked task:
  529 *
  530 *    We don't care what CPU we're not running on, this simplifies hotplug,
  531 *    the CPU assignment of blocked tasks isn't required to be valid.
  532 *
  533 *  - for try_to_wake_up(), called under p->pi_lock:
  534 *
  535 *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
  536 *
  537 *  - for migration called under rq->lock:
  538 *    [ see task_on_rq_migrating() in task_rq_lock() ]
  539 *
  540 *    o move_queued_task()
  541 *    o detach_task()
  542 *
  543 *  - for migration called under double_rq_lock():
  544 *
  545 *    o __migrate_swap_task()
  546 *    o push_rt_task() / pull_rt_task()
  547 *    o push_dl_task() / pull_dl_task()
  548 *    o dl_task_offline_migration()
  549 *
  550 */
  551
  552void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
  553{
  554	raw_spinlock_t *lock;
  555
  556	/* Matches synchronize_rcu() in __sched_core_enable() */
  557	preempt_disable();
  558	if (sched_core_disabled()) {
  559		raw_spin_lock_nested(&rq->__lock, subclass);
  560		/* preempt_count *MUST* be > 1 */
  561		preempt_enable_no_resched();
  562		return;
  563	}
  564
  565	for (;;) {
  566		lock = __rq_lockp(rq);
  567		raw_spin_lock_nested(lock, subclass);
  568		if (likely(lock == __rq_lockp(rq))) {
  569			/* preempt_count *MUST* be > 1 */
  570			preempt_enable_no_resched();
  571			return;
  572		}
  573		raw_spin_unlock(lock);
  574	}
  575}
  576
  577bool raw_spin_rq_trylock(struct rq *rq)
  578{
  579	raw_spinlock_t *lock;
  580	bool ret;
  581
  582	/* Matches synchronize_rcu() in __sched_core_enable() */
  583	preempt_disable();
  584	if (sched_core_disabled()) {
  585		ret = raw_spin_trylock(&rq->__lock);
  586		preempt_enable();
  587		return ret;
  588	}
  589
  590	for (;;) {
  591		lock = __rq_lockp(rq);
  592		ret = raw_spin_trylock(lock);
  593		if (!ret || (likely(lock == __rq_lockp(rq)))) {
  594			preempt_enable();
  595			return ret;
  596		}
  597		raw_spin_unlock(lock);
  598	}
  599}
  600
  601void raw_spin_rq_unlock(struct rq *rq)
  602{
  603	raw_spin_unlock(rq_lockp(rq));
  604}
  605
  606#ifdef CONFIG_SMP
  607/*
  608 * double_rq_lock - safely lock two runqueues
  609 */
  610void double_rq_lock(struct rq *rq1, struct rq *rq2)
  611{
  612	lockdep_assert_irqs_disabled();
  613
  614	if (rq_order_less(rq2, rq1))
  615		swap(rq1, rq2);
  616
  617	raw_spin_rq_lock(rq1);
  618	if (__rq_lockp(rq1) != __rq_lockp(rq2))
  619		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
  620
  621	double_rq_clock_clear_update(rq1, rq2);
  622}
  623#endif
  624
  625/*
  626 * __task_rq_lock - lock the rq @p resides on.
  627 */
  628struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
  629	__acquires(rq->lock)
  630{
  631	struct rq *rq;
  632
  633	lockdep_assert_held(&p->pi_lock);
  634
  635	for (;;) {
  636		rq = task_rq(p);
  637		raw_spin_rq_lock(rq);
  638		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
  639			rq_pin_lock(rq, rf);
  640			return rq;
  641		}
  642		raw_spin_rq_unlock(rq);
  643
  644		while (unlikely(task_on_rq_migrating(p)))
  645			cpu_relax();
  646	}
  647}
  648
  649/*
  650 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  651 */
  652struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
  653	__acquires(p->pi_lock)
  654	__acquires(rq->lock)
  655{
  656	struct rq *rq;
  657
  658	for (;;) {
  659		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
  660		rq = task_rq(p);
  661		raw_spin_rq_lock(rq);
  662		/*
  663		 *	move_queued_task()		task_rq_lock()
  664		 *
  665		 *	ACQUIRE (rq->lock)
  666		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
  667		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
  668		 *	[S] ->cpu = new_cpu		[L] task_rq()
  669		 *					[L] ->on_rq
  670		 *	RELEASE (rq->lock)
  671		 *
  672		 * If we observe the old CPU in task_rq_lock(), the acquire of
  673		 * the old rq->lock will fully serialize against the stores.
  674		 *
  675		 * If we observe the new CPU in task_rq_lock(), the address
  676		 * dependency headed by '[L] rq = task_rq()' and the acquire
  677		 * will pair with the WMB to ensure we then also see migrating.
  678		 */
  679		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
  680			rq_pin_lock(rq, rf);
  681			return rq;
  682		}
  683		raw_spin_rq_unlock(rq);
  684		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
  685
  686		while (unlikely(task_on_rq_migrating(p)))
  687			cpu_relax();
  688	}
  689}
  690
  691/*
  692 * RQ-clock updating methods:
  693 */
  694
  695static void update_rq_clock_task(struct rq *rq, s64 delta)
  696{
  697/*
  698 * In theory, the compile should just see 0 here, and optimize out the call
  699 * to sched_rt_avg_update. But I don't trust it...
  700 */
  701	s64 __maybe_unused steal = 0, irq_delta = 0;
  702
  703#ifdef CONFIG_IRQ_TIME_ACCOUNTING
  704	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  705
  706	/*
  707	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
  708	 * this case when a previous update_rq_clock() happened inside a
  709	 * {soft,}irq region.
  710	 *
  711	 * When this happens, we stop ->clock_task and only update the
  712	 * prev_irq_time stamp to account for the part that fit, so that a next
  713	 * update will consume the rest. This ensures ->clock_task is
  714	 * monotonic.
  715	 *
  716	 * It does however cause some slight miss-attribution of {soft,}irq
  717	 * time, a more accurate solution would be to update the irq_time using
  718	 * the current rq->clock timestamp, except that would require using
  719	 * atomic ops.
  720	 */
  721	if (irq_delta > delta)
  722		irq_delta = delta;
  723
  724	rq->prev_irq_time += irq_delta;
  725	delta -= irq_delta;
  726	psi_account_irqtime(rq->curr, irq_delta);
  727	delayacct_irq(rq->curr, irq_delta);
  728#endif
  729#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  730	if (static_key_false((&paravirt_steal_rq_enabled))) {
  731		steal = paravirt_steal_clock(cpu_of(rq));
  732		steal -= rq->prev_steal_time_rq;
  733
  734		if (unlikely(steal > delta))
  735			steal = delta;
  736
  737		rq->prev_steal_time_rq += steal;
  738		delta -= steal;
  739	}
  740#endif
  741
  742	rq->clock_task += delta;
  743
  744#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
  745	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
  746		update_irq_load_avg(rq, irq_delta + steal);
  747#endif
  748	update_rq_clock_pelt(rq, delta);
  749}
  750
  751void update_rq_clock(struct rq *rq)
  752{
  753	s64 delta;
  754
  755	lockdep_assert_rq_held(rq);
  756
  757	if (rq->clock_update_flags & RQCF_ACT_SKIP)
  758		return;
  759
  760#ifdef CONFIG_SCHED_DEBUG
  761	if (sched_feat(WARN_DOUBLE_CLOCK))
  762		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
  763	rq->clock_update_flags |= RQCF_UPDATED;
  764#endif
  765
  766	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  767	if (delta < 0)
  768		return;
  769	rq->clock += delta;
  770	update_rq_clock_task(rq, delta);
  771}
  772
  773#ifdef CONFIG_SCHED_HRTICK
  774/*
  775 * Use HR-timers to deliver accurate preemption points.
  776 */
  777
  778static void hrtick_clear(struct rq *rq)
  779{
  780	if (hrtimer_active(&rq->hrtick_timer))
  781		hrtimer_cancel(&rq->hrtick_timer);
  782}
  783
  784/*
  785 * High-resolution timer tick.
  786 * Runs from hardirq context with interrupts disabled.
  787 */
  788static enum hrtimer_restart hrtick(struct hrtimer *timer)
  789{
  790	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  791	struct rq_flags rf;
  792
  793	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  794
  795	rq_lock(rq, &rf);
  796	update_rq_clock(rq);
  797	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  798	rq_unlock(rq, &rf);
  799
  800	return HRTIMER_NORESTART;
  801}
  802
  803#ifdef CONFIG_SMP
  804
  805static void __hrtick_restart(struct rq *rq)
  806{
  807	struct hrtimer *timer = &rq->hrtick_timer;
  808	ktime_t time = rq->hrtick_time;
  809
  810	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
  811}
  812
  813/*
  814 * called from hardirq (IPI) context
  815 */
  816static void __hrtick_start(void *arg)
  817{
  818	struct rq *rq = arg;
  819	struct rq_flags rf;
  820
  821	rq_lock(rq, &rf);
  822	__hrtick_restart(rq);
  823	rq_unlock(rq, &rf);
  824}
  825
  826/*
  827 * Called to set the hrtick timer state.
  828 *
  829 * called with rq->lock held and irqs disabled
  830 */
  831void hrtick_start(struct rq *rq, u64 delay)
  832{
  833	struct hrtimer *timer = &rq->hrtick_timer;
  834	s64 delta;
  835
  836	/*
  837	 * Don't schedule slices shorter than 10000ns, that just
  838	 * doesn't make sense and can cause timer DoS.
  839	 */
  840	delta = max_t(s64, delay, 10000LL);
  841	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
  842
  843	if (rq == this_rq())
  844		__hrtick_restart(rq);
  845	else
  846		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  847}
  848
  849#else
  850/*
  851 * Called to set the hrtick timer state.
  852 *
  853 * called with rq->lock held and irqs disabled
  854 */
  855void hrtick_start(struct rq *rq, u64 delay)
  856{
  857	/*
  858	 * Don't schedule slices shorter than 10000ns, that just
  859	 * doesn't make sense. Rely on vruntime for fairness.
  860	 */
  861	delay = max_t(u64, delay, 10000LL);
  862	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
  863		      HRTIMER_MODE_REL_PINNED_HARD);
  864}
  865
  866#endif /* CONFIG_SMP */
  867
  868static void hrtick_rq_init(struct rq *rq)
  869{
  870#ifdef CONFIG_SMP
  871	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
  872#endif
  873	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
  874	rq->hrtick_timer.function = hrtick;
  875}
  876#else	/* CONFIG_SCHED_HRTICK */
  877static inline void hrtick_clear(struct rq *rq)
  878{
  879}
  880
  881static inline void hrtick_rq_init(struct rq *rq)
  882{
  883}
  884#endif	/* CONFIG_SCHED_HRTICK */
  885
  886/*
  887 * cmpxchg based fetch_or, macro so it works for different integer types
  888 */
  889#define fetch_or(ptr, mask)						\
  890	({								\
  891		typeof(ptr) _ptr = (ptr);				\
  892		typeof(mask) _mask = (mask);				\
  893		typeof(*_ptr) _val = *_ptr;				\
  894									\
  895		do {							\
  896		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
  897	_val;								\
  898})
  899
  900#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
  901/*
  902 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  903 * this avoids any races wrt polling state changes and thereby avoids
  904 * spurious IPIs.
  905 */
  906static inline bool set_nr_and_not_polling(struct task_struct *p)
  907{
  908	struct thread_info *ti = task_thread_info(p);
  909	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
  910}
  911
  912/*
  913 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
  914 *
  915 * If this returns true, then the idle task promises to call
  916 * sched_ttwu_pending() and reschedule soon.
  917 */
  918static bool set_nr_if_polling(struct task_struct *p)
  919{
  920	struct thread_info *ti = task_thread_info(p);
  921	typeof(ti->flags) val = READ_ONCE(ti->flags);
  922
  923	do {
  924		if (!(val & _TIF_POLLING_NRFLAG))
  925			return false;
  926		if (val & _TIF_NEED_RESCHED)
  927			return true;
  928	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
  929
  930	return true;
  931}
  932
  933#else
  934static inline bool set_nr_and_not_polling(struct task_struct *p)
  935{
  936	set_tsk_need_resched(p);
  937	return true;
  938}
  939
  940#ifdef CONFIG_SMP
  941static inline bool set_nr_if_polling(struct task_struct *p)
  942{
  943	return false;
  944}
  945#endif
  946#endif
  947
  948static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
  949{
  950	struct wake_q_node *node = &task->wake_q;
  951
  952	/*
  953	 * Atomically grab the task, if ->wake_q is !nil already it means
  954	 * it's already queued (either by us or someone else) and will get the
  955	 * wakeup due to that.
  956	 *
  957	 * In order to ensure that a pending wakeup will observe our pending
  958	 * state, even in the failed case, an explicit smp_mb() must be used.
  959	 */
  960	smp_mb__before_atomic();
  961	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
  962		return false;
  963
  964	/*
  965	 * The head is context local, there can be no concurrency.
  966	 */
  967	*head->lastp = node;
  968	head->lastp = &node->next;
  969	return true;
  970}
  971
  972/**
  973 * wake_q_add() - queue a wakeup for 'later' waking.
  974 * @head: the wake_q_head to add @task to
  975 * @task: the task to queue for 'later' wakeup
  976 *
  977 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
  978 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
  979 * instantly.
  980 *
  981 * This function must be used as-if it were wake_up_process(); IOW the task
  982 * must be ready to be woken at this location.
  983 */
  984void wake_q_add(struct wake_q_head *head, struct task_struct *task)
  985{
  986	if (__wake_q_add(head, task))
  987		get_task_struct(task);
  988}
  989
  990/**
  991 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
  992 * @head: the wake_q_head to add @task to
  993 * @task: the task to queue for 'later' wakeup
  994 *
  995 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
  996 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
  997 * instantly.
  998 *
  999 * This function must be used as-if it were wake_up_process(); IOW the task
 1000 * must be ready to be woken at this location.
 1001 *
 1002 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
 1003 * that already hold reference to @task can call the 'safe' version and trust
 1004 * wake_q to do the right thing depending whether or not the @task is already
 1005 * queued for wakeup.
 1006 */
 1007void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
 1008{
 1009	if (!__wake_q_add(head, task))
 1010		put_task_struct(task);
 1011}
 1012
 1013void wake_up_q(struct wake_q_head *head)
 1014{
 1015	struct wake_q_node *node = head->first;
 1016
 1017	while (node != WAKE_Q_TAIL) {
 1018		struct task_struct *task;
 1019
 1020		task = container_of(node, struct task_struct, wake_q);
 1021		/* Task can safely be re-inserted now: */
 1022		node = node->next;
 1023		task->wake_q.next = NULL;
 1024
 1025		/*
 1026		 * wake_up_process() executes a full barrier, which pairs with
 1027		 * the queueing in wake_q_add() so as not to miss wakeups.
 1028		 */
 1029		wake_up_process(task);
 1030		put_task_struct(task);
 1031	}
 1032}
 1033
 1034/*
 1035 * resched_curr - mark rq's current task 'to be rescheduled now'.
 1036 *
 1037 * On UP this means the setting of the need_resched flag, on SMP it
 1038 * might also involve a cross-CPU call to trigger the scheduler on
 1039 * the target CPU.
 1040 */
 1041void resched_curr(struct rq *rq)
 1042{
 1043	struct task_struct *curr = rq->curr;
 1044	int cpu;
 1045
 1046	lockdep_assert_rq_held(rq);
 1047
 1048	if (test_tsk_need_resched(curr))
 1049		return;
 1050
 1051	cpu = cpu_of(rq);
 1052
 1053	if (cpu == smp_processor_id()) {
 1054		set_tsk_need_resched(curr);
 1055		set_preempt_need_resched();
 1056		return;
 1057	}
 1058
 1059	if (set_nr_and_not_polling(curr))
 1060		smp_send_reschedule(cpu);
 1061	else
 1062		trace_sched_wake_idle_without_ipi(cpu);
 1063}
 1064
 1065void resched_cpu(int cpu)
 1066{
 1067	struct rq *rq = cpu_rq(cpu);
 1068	unsigned long flags;
 1069
 1070	raw_spin_rq_lock_irqsave(rq, flags);
 1071	if (cpu_online(cpu) || cpu == smp_processor_id())
 1072		resched_curr(rq);
 1073	raw_spin_rq_unlock_irqrestore(rq, flags);
 1074}
 1075
 1076#ifdef CONFIG_SMP
 1077#ifdef CONFIG_NO_HZ_COMMON
 1078/*
 1079 * In the semi idle case, use the nearest busy CPU for migrating timers
 1080 * from an idle CPU.  This is good for power-savings.
 1081 *
 1082 * We don't do similar optimization for completely idle system, as
 1083 * selecting an idle CPU will add more delays to the timers than intended
 1084 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
 1085 */
 1086int get_nohz_timer_target(void)
 1087{
 1088	int i, cpu = smp_processor_id(), default_cpu = -1;
 1089	struct sched_domain *sd;
 1090	const struct cpumask *hk_mask;
 1091
 1092	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
 1093		if (!idle_cpu(cpu))
 1094			return cpu;
 1095		default_cpu = cpu;
 1096	}
 1097
 1098	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
 1099
 1100	guard(rcu)();
 1101
 1102	for_each_domain(cpu, sd) {
 1103		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
 1104			if (cpu == i)
 1105				continue;
 1106
 1107			if (!idle_cpu(i))
 1108				return i;
 1109		}
 1110	}
 1111
 1112	if (default_cpu == -1)
 1113		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
 1114
 1115	return default_cpu;
 1116}
 1117
 1118/*
 1119 * When add_timer_on() enqueues a timer into the timer wheel of an
 1120 * idle CPU then this timer might expire before the next timer event
 1121 * which is scheduled to wake up that CPU. In case of a completely
 1122 * idle system the next event might even be infinite time into the
 1123 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 1124 * leaves the inner idle loop so the newly added timer is taken into
 1125 * account when the CPU goes back to idle and evaluates the timer
 1126 * wheel for the next timer event.
 1127 */
 1128static void wake_up_idle_cpu(int cpu)
 1129{
 1130	struct rq *rq = cpu_rq(cpu);
 1131
 1132	if (cpu == smp_processor_id())
 1133		return;
 1134
 1135	/*
 1136	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
 1137	 * part of the idle loop. This forces an exit from the idle loop
 1138	 * and a round trip to schedule(). Now this could be optimized
 1139	 * because a simple new idle loop iteration is enough to
 1140	 * re-evaluate the next tick. Provided some re-ordering of tick
 1141	 * nohz functions that would need to follow TIF_NR_POLLING
 1142	 * clearing:
 1143	 *
 1144	 * - On most archs, a simple fetch_or on ti::flags with a
 1145	 *   "0" value would be enough to know if an IPI needs to be sent.
 1146	 *
 1147	 * - x86 needs to perform a last need_resched() check between
 1148	 *   monitor and mwait which doesn't take timers into account.
 1149	 *   There a dedicated TIF_TIMER flag would be required to
 1150	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
 1151	 *   before mwait().
 1152	 *
 1153	 * However, remote timer enqueue is not such a frequent event
 1154	 * and testing of the above solutions didn't appear to report
 1155	 * much benefits.
 1156	 */
 1157	if (set_nr_and_not_polling(rq->idle))
 1158		smp_send_reschedule(cpu);
 1159	else
 1160		trace_sched_wake_idle_without_ipi(cpu);
 1161}
 1162
 1163static bool wake_up_full_nohz_cpu(int cpu)
 1164{
 1165	/*
 1166	 * We just need the target to call irq_exit() and re-evaluate
 1167	 * the next tick. The nohz full kick at least implies that.
 1168	 * If needed we can still optimize that later with an
 1169	 * empty IRQ.
 1170	 */
 1171	if (cpu_is_offline(cpu))
 1172		return true;  /* Don't try to wake offline CPUs. */
 1173	if (tick_nohz_full_cpu(cpu)) {
 1174		if (cpu != smp_processor_id() ||
 1175		    tick_nohz_tick_stopped())
 1176			tick_nohz_full_kick_cpu(cpu);
 1177		return true;
 1178	}
 1179
 1180	return false;
 1181}
 1182
 1183/*
 1184 * Wake up the specified CPU.  If the CPU is going offline, it is the
 1185 * caller's responsibility to deal with the lost wakeup, for example,
 1186 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 1187 */
 1188void wake_up_nohz_cpu(int cpu)
 1189{
 1190	if (!wake_up_full_nohz_cpu(cpu))
 1191		wake_up_idle_cpu(cpu);
 1192}
 1193
 1194static void nohz_csd_func(void *info)
 1195{
 1196	struct rq *rq = info;
 1197	int cpu = cpu_of(rq);
 1198	unsigned int flags;
 1199
 1200	/*
 1201	 * Release the rq::nohz_csd.
 1202	 */
 1203	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
 1204	WARN_ON(!(flags & NOHZ_KICK_MASK));
 1205
 1206	rq->idle_balance = idle_cpu(cpu);
 1207	if (rq->idle_balance && !need_resched()) {
 1208		rq->nohz_idle_balance = flags;
 1209		raise_softirq_irqoff(SCHED_SOFTIRQ);
 1210	}
 1211}
 1212
 1213#endif /* CONFIG_NO_HZ_COMMON */
 1214
 1215#ifdef CONFIG_NO_HZ_FULL
 1216static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
 1217{
 1218	if (rq->nr_running != 1)
 1219		return false;
 1220
 1221	if (p->sched_class != &fair_sched_class)
 1222		return false;
 1223
 1224	if (!task_on_rq_queued(p))
 1225		return false;
 1226
 1227	return true;
 1228}
 1229
 1230bool sched_can_stop_tick(struct rq *rq)
 1231{
 1232	int fifo_nr_running;
 1233
 1234	/* Deadline tasks, even if single, need the tick */
 1235	if (rq->dl.dl_nr_running)
 1236		return false;
 1237
 1238	/*
 1239	 * If there are more than one RR tasks, we need the tick to affect the
 1240	 * actual RR behaviour.
 1241	 */
 1242	if (rq->rt.rr_nr_running) {
 1243		if (rq->rt.rr_nr_running == 1)
 1244			return true;
 1245		else
 1246			return false;
 1247	}
 1248
 1249	/*
 1250	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
 1251	 * forced preemption between FIFO tasks.
 1252	 */
 1253	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
 1254	if (fifo_nr_running)
 1255		return true;
 1256
 1257	/*
 1258	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
 1259	 * if there's more than one we need the tick for involuntary
 1260	 * preemption.
 1261	 */
 1262	if (rq->nr_running > 1)
 1263		return false;
 1264
 1265	/*
 1266	 * If there is one task and it has CFS runtime bandwidth constraints
 1267	 * and it's on the cpu now we don't want to stop the tick.
 1268	 * This check prevents clearing the bit if a newly enqueued task here is
 1269	 * dequeued by migrating while the constrained task continues to run.
 1270	 * E.g. going from 2->1 without going through pick_next_task().
 1271	 */
 1272	if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) {
 1273		if (cfs_task_bw_constrained(rq->curr))
 1274			return false;
 1275	}
 1276
 1277	return true;
 1278}
 1279#endif /* CONFIG_NO_HZ_FULL */
 1280#endif /* CONFIG_SMP */
 1281
 1282#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 1283			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 1284/*
 1285 * Iterate task_group tree rooted at *from, calling @down when first entering a
 1286 * node and @up when leaving it for the final time.
 1287 *
 1288 * Caller must hold rcu_lock or sufficient equivalent.
 1289 */
 1290int walk_tg_tree_from(struct task_group *from,
 1291			     tg_visitor down, tg_visitor up, void *data)
 1292{
 1293	struct task_group *parent, *child;
 1294	int ret;
 1295
 1296	parent = from;
 1297
 1298down:
 1299	ret = (*down)(parent, data);
 1300	if (ret)
 1301		goto out;
 1302	list_for_each_entry_rcu(child, &parent->children, siblings) {
 1303		parent = child;
 1304		goto down;
 1305
 1306up:
 1307		continue;
 1308	}
 1309	ret = (*up)(parent, data);
 1310	if (ret || parent == from)
 1311		goto out;
 1312
 1313	child = parent;
 1314	parent = parent->parent;
 1315	if (parent)
 1316		goto up;
 1317out:
 1318	return ret;
 1319}
 1320
 1321int tg_nop(struct task_group *tg, void *data)
 1322{
 1323	return 0;
 1324}
 1325#endif
 1326
 1327static void set_load_weight(struct task_struct *p, bool update_load)
 1328{
 1329	int prio = p->static_prio - MAX_RT_PRIO;
 1330	struct load_weight *load = &p->se.load;
 1331
 1332	/*
 1333	 * SCHED_IDLE tasks get minimal weight:
 1334	 */
 1335	if (task_has_idle_policy(p)) {
 1336		load->weight = scale_load(WEIGHT_IDLEPRIO);
 1337		load->inv_weight = WMULT_IDLEPRIO;
 1338		return;
 1339	}
 1340
 1341	/*
 1342	 * SCHED_OTHER tasks have to update their load when changing their
 1343	 * weight
 1344	 */
 1345	if (update_load && p->sched_class == &fair_sched_class) {
 1346		reweight_task(p, prio);
 1347	} else {
 1348		load->weight = scale_load(sched_prio_to_weight[prio]);
 1349		load->inv_weight = sched_prio_to_wmult[prio];
 1350	}
 1351}
 1352
 1353#ifdef CONFIG_UCLAMP_TASK
 1354/*
 1355 * Serializes updates of utilization clamp values
 1356 *
 1357 * The (slow-path) user-space triggers utilization clamp value updates which
 1358 * can require updates on (fast-path) scheduler's data structures used to
 1359 * support enqueue/dequeue operations.
 1360 * While the per-CPU rq lock protects fast-path update operations, user-space
 1361 * requests are serialized using a mutex to reduce the risk of conflicting
 1362 * updates or API abuses.
 1363 */
 1364static DEFINE_MUTEX(uclamp_mutex);
 1365
 1366/* Max allowed minimum utilization */
 1367static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
 1368
 1369/* Max allowed maximum utilization */
 1370static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
 1371
 1372/*
 1373 * By default RT tasks run at the maximum performance point/capacity of the
 1374 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
 1375 * SCHED_CAPACITY_SCALE.
 1376 *
 1377 * This knob allows admins to change the default behavior when uclamp is being
 1378 * used. In battery powered devices, particularly, running at the maximum
 1379 * capacity and frequency will increase energy consumption and shorten the
 1380 * battery life.
 1381 *
 1382 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
 1383 *
 1384 * This knob will not override the system default sched_util_clamp_min defined
 1385 * above.
 1386 */
 1387static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
 1388
 1389/* All clamps are required to be less or equal than these values */
 1390static struct uclamp_se uclamp_default[UCLAMP_CNT];
 1391
 1392/*
 1393 * This static key is used to reduce the uclamp overhead in the fast path. It
 1394 * primarily disables the call to uclamp_rq_{inc, dec}() in
 1395 * enqueue/dequeue_task().
 1396 *
 1397 * This allows users to continue to enable uclamp in their kernel config with
 1398 * minimum uclamp overhead in the fast path.
 1399 *
 1400 * As soon as userspace modifies any of the uclamp knobs, the static key is
 1401 * enabled, since we have an actual users that make use of uclamp
 1402 * functionality.
 1403 *
 1404 * The knobs that would enable this static key are:
 1405 *
 1406 *   * A task modifying its uclamp value with sched_setattr().
 1407 *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
 1408 *   * An admin modifying the cgroup cpu.uclamp.{min, max}
 1409 */
 1410DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
 1411
 1412/* Integer rounded range for each bucket */
 1413#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
 1414
 1415#define for_each_clamp_id(clamp_id) \
 1416	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
 1417
 1418static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
 1419{
 1420	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
 1421}
 1422
 1423static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
 1424{
 1425	if (clamp_id == UCLAMP_MIN)
 1426		return 0;
 1427	return SCHED_CAPACITY_SCALE;
 1428}
 1429
 1430static inline void uclamp_se_set(struct uclamp_se *uc_se,
 1431				 unsigned int value, bool user_defined)
 1432{
 1433	uc_se->value = value;
 1434	uc_se->bucket_id = uclamp_bucket_id(value);
 1435	uc_se->user_defined = user_defined;
 1436}
 1437
 1438static inline unsigned int
 1439uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
 1440		  unsigned int clamp_value)
 1441{
 1442	/*
 1443	 * Avoid blocked utilization pushing up the frequency when we go
 1444	 * idle (which drops the max-clamp) by retaining the last known
 1445	 * max-clamp.
 1446	 */
 1447	if (clamp_id == UCLAMP_MAX) {
 1448		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
 1449		return clamp_value;
 1450	}
 1451
 1452	return uclamp_none(UCLAMP_MIN);
 1453}
 1454
 1455static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
 1456				     unsigned int clamp_value)
 1457{
 1458	/* Reset max-clamp retention only on idle exit */
 1459	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
 1460		return;
 1461
 1462	uclamp_rq_set(rq, clamp_id, clamp_value);
 1463}
 1464
 1465static inline
 1466unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
 1467				   unsigned int clamp_value)
 1468{
 1469	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
 1470	int bucket_id = UCLAMP_BUCKETS - 1;
 1471
 1472	/*
 1473	 * Since both min and max clamps are max aggregated, find the
 1474	 * top most bucket with tasks in.
 1475	 */
 1476	for ( ; bucket_id >= 0; bucket_id--) {
 1477		if (!bucket[bucket_id].tasks)
 1478			continue;
 1479		return bucket[bucket_id].value;
 1480	}
 1481
 1482	/* No tasks -- default clamp values */
 1483	return uclamp_idle_value(rq, clamp_id, clamp_value);
 1484}
 1485
 1486static void __uclamp_update_util_min_rt_default(struct task_struct *p)
 1487{
 1488	unsigned int default_util_min;
 1489	struct uclamp_se *uc_se;
 1490
 1491	lockdep_assert_held(&p->pi_lock);
 1492
 1493	uc_se = &p->uclamp_req[UCLAMP_MIN];
 1494
 1495	/* Only sync if user didn't override the default */
 1496	if (uc_se->user_defined)
 1497		return;
 1498
 1499	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
 1500	uclamp_se_set(uc_se, default_util_min, false);
 1501}
 1502
 1503static void uclamp_update_util_min_rt_default(struct task_struct *p)
 1504{
 1505	if (!rt_task(p))
 1506		return;
 1507
 1508	/* Protect updates to p->uclamp_* */
 1509	guard(task_rq_lock)(p);
 1510	__uclamp_update_util_min_rt_default(p);
 1511}
 1512
 1513static inline struct uclamp_se
 1514uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
 1515{
 1516	/* Copy by value as we could modify it */
 1517	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
 1518#ifdef CONFIG_UCLAMP_TASK_GROUP
 1519	unsigned int tg_min, tg_max, value;
 1520
 1521	/*
 1522	 * Tasks in autogroups or root task group will be
 1523	 * restricted by system defaults.
 1524	 */
 1525	if (task_group_is_autogroup(task_group(p)))
 1526		return uc_req;
 1527	if (task_group(p) == &root_task_group)
 1528		return uc_req;
 1529
 1530	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
 1531	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
 1532	value = uc_req.value;
 1533	value = clamp(value, tg_min, tg_max);
 1534	uclamp_se_set(&uc_req, value, false);
 1535#endif
 1536
 1537	return uc_req;
 1538}
 1539
 1540/*
 1541 * The effective clamp bucket index of a task depends on, by increasing
 1542 * priority:
 1543 * - the task specific clamp value, when explicitly requested from userspace
 1544 * - the task group effective clamp value, for tasks not either in the root
 1545 *   group or in an autogroup
 1546 * - the system default clamp value, defined by the sysadmin
 1547 */
 1548static inline struct uclamp_se
 1549uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
 1550{
 1551	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
 1552	struct uclamp_se uc_max = uclamp_default[clamp_id];
 1553
 1554	/* System default restrictions always apply */
 1555	if (unlikely(uc_req.value > uc_max.value))
 1556		return uc_max;
 1557
 1558	return uc_req;
 1559}
 1560
 1561unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
 1562{
 1563	struct uclamp_se uc_eff;
 1564
 1565	/* Task currently refcounted: use back-annotated (effective) value */
 1566	if (p->uclamp[clamp_id].active)
 1567		return (unsigned long)p->uclamp[clamp_id].value;
 1568
 1569	uc_eff = uclamp_eff_get(p, clamp_id);
 1570
 1571	return (unsigned long)uc_eff.value;
 1572}
 1573
 1574/*
 1575 * When a task is enqueued on a rq, the clamp bucket currently defined by the
 1576 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
 1577 * updates the rq's clamp value if required.
 1578 *
 1579 * Tasks can have a task-specific value requested from user-space, track
 1580 * within each bucket the maximum value for tasks refcounted in it.
 1581 * This "local max aggregation" allows to track the exact "requested" value
 1582 * for each bucket when all its RUNNABLE tasks require the same clamp.
 1583 */
 1584static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
 1585				    enum uclamp_id clamp_id)
 1586{
 1587	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
 1588	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
 1589	struct uclamp_bucket *bucket;
 1590
 1591	lockdep_assert_rq_held(rq);
 1592
 1593	/* Update task effective clamp */
 1594	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
 1595
 1596	bucket = &uc_rq->bucket[uc_se->bucket_id];
 1597	bucket->tasks++;
 1598	uc_se->active = true;
 1599
 1600	uclamp_idle_reset(rq, clamp_id, uc_se->value);
 1601
 1602	/*
 1603	 * Local max aggregation: rq buckets always track the max
 1604	 * "requested" clamp value of its RUNNABLE tasks.
 1605	 */
 1606	if (bucket->tasks == 1 || uc_se->value > bucket->value)
 1607		bucket->value = uc_se->value;
 1608
 1609	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
 1610		uclamp_rq_set(rq, clamp_id, uc_se->value);
 1611}
 1612
 1613/*
 1614 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
 1615 * is released. If this is the last task reference counting the rq's max
 1616 * active clamp value, then the rq's clamp value is updated.
 1617 *
 1618 * Both refcounted tasks and rq's cached clamp values are expected to be
 1619 * always valid. If it's detected they are not, as defensive programming,
 1620 * enforce the expected state and warn.
 1621 */
 1622static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
 1623				    enum uclamp_id clamp_id)
 1624{
 1625	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
 1626	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
 1627	struct uclamp_bucket *bucket;
 1628	unsigned int bkt_clamp;
 1629	unsigned int rq_clamp;
 1630
 1631	lockdep_assert_rq_held(rq);
 1632
 1633	/*
 1634	 * If sched_uclamp_used was enabled after task @p was enqueued,
 1635	 * we could end up with unbalanced call to uclamp_rq_dec_id().
 1636	 *
 1637	 * In this case the uc_se->active flag should be false since no uclamp
 1638	 * accounting was performed at enqueue time and we can just return
 1639	 * here.
 1640	 *
 1641	 * Need to be careful of the following enqueue/dequeue ordering
 1642	 * problem too
 1643	 *
 1644	 *	enqueue(taskA)
 1645	 *	// sched_uclamp_used gets enabled
 1646	 *	enqueue(taskB)
 1647	 *	dequeue(taskA)
 1648	 *	// Must not decrement bucket->tasks here
 1649	 *	dequeue(taskB)
 1650	 *
 1651	 * where we could end up with stale data in uc_se and
 1652	 * bucket[uc_se->bucket_id].
 1653	 *
 1654	 * The following check here eliminates the possibility of such race.
 1655	 */
 1656	if (unlikely(!uc_se->active))
 1657		return;
 1658
 1659	bucket = &uc_rq->bucket[uc_se->bucket_id];
 1660
 1661	SCHED_WARN_ON(!bucket->tasks);
 1662	if (likely(bucket->tasks))
 1663		bucket->tasks--;
 1664
 1665	uc_se->active = false;
 1666
 1667	/*
 1668	 * Keep "local max aggregation" simple and accept to (possibly)
 1669	 * overboost some RUNNABLE tasks in the same bucket.
 1670	 * The rq clamp bucket value is reset to its base value whenever
 1671	 * there are no more RUNNABLE tasks refcounting it.
 1672	 */
 1673	if (likely(bucket->tasks))
 1674		return;
 1675
 1676	rq_clamp = uclamp_rq_get(rq, clamp_id);
 1677	/*
 1678	 * Defensive programming: this should never happen. If it happens,
 1679	 * e.g. due to future modification, warn and fixup the expected value.
 1680	 */
 1681	SCHED_WARN_ON(bucket->value > rq_clamp);
 1682	if (bucket->value >= rq_clamp) {
 1683		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
 1684		uclamp_rq_set(rq, clamp_id, bkt_clamp);
 1685	}
 1686}
 1687
 1688static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
 1689{
 1690	enum uclamp_id clamp_id;
 1691
 1692	/*
 1693	 * Avoid any overhead until uclamp is actually used by the userspace.
 1694	 *
 1695	 * The condition is constructed such that a NOP is generated when
 1696	 * sched_uclamp_used is disabled.
 1697	 */
 1698	if (!static_branch_unlikely(&sched_uclamp_used))
 1699		return;
 1700
 1701	if (unlikely(!p->sched_class->uclamp_enabled))
 1702		return;
 1703
 1704	for_each_clamp_id(clamp_id)
 1705		uclamp_rq_inc_id(rq, p, clamp_id);
 1706
 1707	/* Reset clamp idle holding when there is one RUNNABLE task */
 1708	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
 1709		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
 1710}
 1711
 1712static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
 1713{
 1714	enum uclamp_id clamp_id;
 1715
 1716	/*
 1717	 * Avoid any overhead until uclamp is actually used by the userspace.
 1718	 *
 1719	 * The condition is constructed such that a NOP is generated when
 1720	 * sched_uclamp_used is disabled.
 1721	 */
 1722	if (!static_branch_unlikely(&sched_uclamp_used))
 1723		return;
 1724
 1725	if (unlikely(!p->sched_class->uclamp_enabled))
 1726		return;
 1727
 1728	for_each_clamp_id(clamp_id)
 1729		uclamp_rq_dec_id(rq, p, clamp_id);
 1730}
 1731
 1732static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
 1733				      enum uclamp_id clamp_id)
 1734{
 1735	if (!p->uclamp[clamp_id].active)
 1736		return;
 1737
 1738	uclamp_rq_dec_id(rq, p, clamp_id);
 1739	uclamp_rq_inc_id(rq, p, clamp_id);
 1740
 1741	/*
 1742	 * Make sure to clear the idle flag if we've transiently reached 0
 1743	 * active tasks on rq.
 1744	 */
 1745	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
 1746		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
 1747}
 1748
 1749static inline void
 1750uclamp_update_active(struct task_struct *p)
 1751{
 1752	enum uclamp_id clamp_id;
 1753	struct rq_flags rf;
 1754	struct rq *rq;
 1755
 1756	/*
 1757	 * Lock the task and the rq where the task is (or was) queued.
 1758	 *
 1759	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
 1760	 * price to pay to safely serialize util_{min,max} updates with
 1761	 * enqueues, dequeues and migration operations.
 1762	 * This is the same locking schema used by __set_cpus_allowed_ptr().
 1763	 */
 1764	rq = task_rq_lock(p, &rf);
 1765
 1766	/*
 1767	 * Setting the clamp bucket is serialized by task_rq_lock().
 1768	 * If the task is not yet RUNNABLE and its task_struct is not
 1769	 * affecting a valid clamp bucket, the next time it's enqueued,
 1770	 * it will already see the updated clamp bucket value.
 1771	 */
 1772	for_each_clamp_id(clamp_id)
 1773		uclamp_rq_reinc_id(rq, p, clamp_id);
 1774
 1775	task_rq_unlock(rq, p, &rf);
 1776}
 1777
 1778#ifdef CONFIG_UCLAMP_TASK_GROUP
 1779static inline void
 1780uclamp_update_active_tasks(struct cgroup_subsys_state *css)
 1781{
 1782	struct css_task_iter it;
 1783	struct task_struct *p;
 1784
 1785	css_task_iter_start(css, 0, &it);
 1786	while ((p = css_task_iter_next(&it)))
 1787		uclamp_update_active(p);
 1788	css_task_iter_end(&it);
 1789}
 1790
 1791static void cpu_util_update_eff(struct cgroup_subsys_state *css);
 1792#endif
 1793
 1794#ifdef CONFIG_SYSCTL
 1795#ifdef CONFIG_UCLAMP_TASK_GROUP
 1796static void uclamp_update_root_tg(void)
 1797{
 1798	struct task_group *tg = &root_task_group;
 1799
 1800	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
 1801		      sysctl_sched_uclamp_util_min, false);
 1802	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
 1803		      sysctl_sched_uclamp_util_max, false);
 1804
 1805	guard(rcu)();
 1806	cpu_util_update_eff(&root_task_group.css);
 1807}
 1808#else
 1809static void uclamp_update_root_tg(void) { }
 1810#endif
 1811
 1812static void uclamp_sync_util_min_rt_default(void)
 1813{
 1814	struct task_struct *g, *p;
 1815
 1816	/*
 1817	 * copy_process()			sysctl_uclamp
 1818	 *					  uclamp_min_rt = X;
 1819	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
 1820	 *   // link thread			  smp_mb__after_spinlock()
 1821	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
 1822	 *   sched_post_fork()			  for_each_process_thread()
 1823	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
 1824	 *
 1825	 * Ensures that either sched_post_fork() will observe the new
 1826	 * uclamp_min_rt or for_each_process_thread() will observe the new
 1827	 * task.
 1828	 */
 1829	read_lock(&tasklist_lock);
 1830	smp_mb__after_spinlock();
 1831	read_unlock(&tasklist_lock);
 1832
 1833	guard(rcu)();
 1834	for_each_process_thread(g, p)
 1835		uclamp_update_util_min_rt_default(p);
 1836}
 1837
 1838static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
 1839				void *buffer, size_t *lenp, loff_t *ppos)
 1840{
 1841	bool update_root_tg = false;
 1842	int old_min, old_max, old_min_rt;
 1843	int result;
 1844
 1845	guard(mutex)(&uclamp_mutex);
 1846
 1847	old_min = sysctl_sched_uclamp_util_min;
 1848	old_max = sysctl_sched_uclamp_util_max;
 1849	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
 1850
 1851	result = proc_dointvec(table, write, buffer, lenp, ppos);
 1852	if (result)
 1853		goto undo;
 1854	if (!write)
 1855		return 0;
 1856
 1857	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
 1858	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
 1859	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
 1860
 1861		result = -EINVAL;
 1862		goto undo;
 1863	}
 1864
 1865	if (old_min != sysctl_sched_uclamp_util_min) {
 1866		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
 1867			      sysctl_sched_uclamp_util_min, false);
 1868		update_root_tg = true;
 1869	}
 1870	if (old_max != sysctl_sched_uclamp_util_max) {
 1871		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
 1872			      sysctl_sched_uclamp_util_max, false);
 1873		update_root_tg = true;
 1874	}
 1875
 1876	if (update_root_tg) {
 1877		static_branch_enable(&sched_uclamp_used);
 1878		uclamp_update_root_tg();
 1879	}
 1880
 1881	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
 1882		static_branch_enable(&sched_uclamp_used);
 1883		uclamp_sync_util_min_rt_default();
 1884	}
 1885
 1886	/*
 1887	 * We update all RUNNABLE tasks only when task groups are in use.
 1888	 * Otherwise, keep it simple and do just a lazy update at each next
 1889	 * task enqueue time.
 1890	 */
 1891	return 0;
 1892
 1893undo:
 1894	sysctl_sched_uclamp_util_min = old_min;
 1895	sysctl_sched_uclamp_util_max = old_max;
 1896	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
 1897	return result;
 1898}
 1899#endif
 1900
 1901static int uclamp_validate(struct task_struct *p,
 1902			   const struct sched_attr *attr)
 1903{
 1904	int util_min = p->uclamp_req[UCLAMP_MIN].value;
 1905	int util_max = p->uclamp_req[UCLAMP_MAX].value;
 1906
 1907	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
 1908		util_min = attr->sched_util_min;
 1909
 1910		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
 1911			return -EINVAL;
 1912	}
 1913
 1914	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
 1915		util_max = attr->sched_util_max;
 1916
 1917		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
 1918			return -EINVAL;
 1919	}
 1920
 1921	if (util_min != -1 && util_max != -1 && util_min > util_max)
 1922		return -EINVAL;
 1923
 1924	/*
 1925	 * We have valid uclamp attributes; make sure uclamp is enabled.
 1926	 *
 1927	 * We need to do that here, because enabling static branches is a
 1928	 * blocking operation which obviously cannot be done while holding
 1929	 * scheduler locks.
 1930	 */
 1931	static_branch_enable(&sched_uclamp_used);
 1932
 1933	return 0;
 1934}
 1935
 1936static bool uclamp_reset(const struct sched_attr *attr,
 1937			 enum uclamp_id clamp_id,
 1938			 struct uclamp_se *uc_se)
 1939{
 1940	/* Reset on sched class change for a non user-defined clamp value. */
 1941	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
 1942	    !uc_se->user_defined)
 1943		return true;
 1944
 1945	/* Reset on sched_util_{min,max} == -1. */
 1946	if (clamp_id == UCLAMP_MIN &&
 1947	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
 1948	    attr->sched_util_min == -1) {
 1949		return true;
 1950	}
 1951
 1952	if (clamp_id == UCLAMP_MAX &&
 1953	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
 1954	    attr->sched_util_max == -1) {
 1955		return true;
 1956	}
 1957
 1958	return false;
 1959}
 1960
 1961static void __setscheduler_uclamp(struct task_struct *p,
 1962				  const struct sched_attr *attr)
 1963{
 1964	enum uclamp_id clamp_id;
 1965
 1966	for_each_clamp_id(clamp_id) {
 1967		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
 1968		unsigned int value;
 1969
 1970		if (!uclamp_reset(attr, clamp_id, uc_se))
 1971			continue;
 1972
 1973		/*
 1974		 * RT by default have a 100% boost value that could be modified
 1975		 * at runtime.
 1976		 */
 1977		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
 1978			value = sysctl_sched_uclamp_util_min_rt_default;
 1979		else
 1980			value = uclamp_none(clamp_id);
 1981
 1982		uclamp_se_set(uc_se, value, false);
 1983
 1984	}
 1985
 1986	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
 1987		return;
 1988
 1989	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
 1990	    attr->sched_util_min != -1) {
 1991		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
 1992			      attr->sched_util_min, true);
 1993	}
 1994
 1995	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
 1996	    attr->sched_util_max != -1) {
 1997		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
 1998			      attr->sched_util_max, true);
 1999	}
 2000}
 2001
 2002static void uclamp_fork(struct task_struct *p)
 2003{
 2004	enum uclamp_id clamp_id;
 2005
 2006	/*
 2007	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
 2008	 * as the task is still at its early fork stages.
 2009	 */
 2010	for_each_clamp_id(clamp_id)
 2011		p->uclamp[clamp_id].active = false;
 2012
 2013	if (likely(!p->sched_reset_on_fork))
 2014		return;
 2015
 2016	for_each_clamp_id(clamp_id) {
 2017		uclamp_se_set(&p->uclamp_req[clamp_id],
 2018			      uclamp_none(clamp_id), false);
 2019	}
 2020}
 2021
 2022static void uclamp_post_fork(struct task_struct *p)
 2023{
 2024	uclamp_update_util_min_rt_default(p);
 2025}
 2026
 2027static void __init init_uclamp_rq(struct rq *rq)
 2028{
 2029	enum uclamp_id clamp_id;
 2030	struct uclamp_rq *uc_rq = rq->uclamp;
 2031
 2032	for_each_clamp_id(clamp_id) {
 2033		uc_rq[clamp_id] = (struct uclamp_rq) {
 2034			.value = uclamp_none(clamp_id)
 2035		};
 2036	}
 2037
 2038	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
 2039}
 2040
 2041static void __init init_uclamp(void)
 2042{
 2043	struct uclamp_se uc_max = {};
 2044	enum uclamp_id clamp_id;
 2045	int cpu;
 2046
 2047	for_each_possible_cpu(cpu)
 2048		init_uclamp_rq(cpu_rq(cpu));
 2049
 2050	for_each_clamp_id(clamp_id) {
 2051		uclamp_se_set(&init_task.uclamp_req[clamp_id],
 2052			      uclamp_none(clamp_id), false);
 2053	}
 2054
 2055	/* System defaults allow max clamp values for both indexes */
 2056	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
 2057	for_each_clamp_id(clamp_id) {
 2058		uclamp_default[clamp_id] = uc_max;
 2059#ifdef CONFIG_UCLAMP_TASK_GROUP
 2060		root_task_group.uclamp_req[clamp_id] = uc_max;
 2061		root_task_group.uclamp[clamp_id] = uc_max;
 2062#endif
 2063	}
 2064}
 2065
 2066#else /* !CONFIG_UCLAMP_TASK */
 2067static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
 2068static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
 2069static inline int uclamp_validate(struct task_struct *p,
 2070				  const struct sched_attr *attr)
 2071{
 2072	return -EOPNOTSUPP;
 2073}
 2074static void __setscheduler_uclamp(struct task_struct *p,
 2075				  const struct sched_attr *attr) { }
 2076static inline void uclamp_fork(struct task_struct *p) { }
 2077static inline void uclamp_post_fork(struct task_struct *p) { }
 2078static inline void init_uclamp(void) { }
 2079#endif /* CONFIG_UCLAMP_TASK */
 2080
 2081bool sched_task_on_rq(struct task_struct *p)
 2082{
 2083	return task_on_rq_queued(p);
 2084}
 2085
 2086unsigned long get_wchan(struct task_struct *p)
 2087{
 2088	unsigned long ip = 0;
 2089	unsigned int state;
 2090
 2091	if (!p || p == current)
 2092		return 0;
 2093
 2094	/* Only get wchan if task is blocked and we can keep it that way. */
 2095	raw_spin_lock_irq(&p->pi_lock);
 2096	state = READ_ONCE(p->__state);
 2097	smp_rmb(); /* see try_to_wake_up() */
 2098	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
 2099		ip = __get_wchan(p);
 2100	raw_spin_unlock_irq(&p->pi_lock);
 2101
 2102	return ip;
 2103}
 2104
 2105static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
 2106{
 2107	if (!(flags & ENQUEUE_NOCLOCK))
 2108		update_rq_clock(rq);
 2109
 2110	if (!(flags & ENQUEUE_RESTORE)) {
 2111		sched_info_enqueue(rq, p);
 2112		psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
 2113	}
 2114
 2115	uclamp_rq_inc(rq, p);
 2116	p->sched_class->enqueue_task(rq, p, flags);
 2117
 2118	if (sched_core_enabled(rq))
 2119		sched_core_enqueue(rq, p);
 2120}
 2121
 2122static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
 2123{
 2124	if (sched_core_enabled(rq))
 2125		sched_core_dequeue(rq, p, flags);
 2126
 2127	if (!(flags & DEQUEUE_NOCLOCK))
 2128		update_rq_clock(rq);
 2129
 2130	if (!(flags & DEQUEUE_SAVE)) {
 2131		sched_info_dequeue(rq, p);
 2132		psi_dequeue(p, flags & DEQUEUE_SLEEP);
 2133	}
 2134
 2135	uclamp_rq_dec(rq, p);
 2136	p->sched_class->dequeue_task(rq, p, flags);
 2137}
 2138
 2139void activate_task(struct rq *rq, struct task_struct *p, int flags)
 2140{
 2141	if (task_on_rq_migrating(p))
 2142		flags |= ENQUEUE_MIGRATED;
 2143	if (flags & ENQUEUE_MIGRATED)
 2144		sched_mm_cid_migrate_to(rq, p);
 2145
 2146	enqueue_task(rq, p, flags);
 2147
 2148	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
 2149	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
 2150}
 2151
 2152void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
 2153{
 2154	WRITE_ONCE(p->on_rq, (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING);
 2155	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
 2156
 2157	dequeue_task(rq, p, flags);
 2158}
 2159
 2160static inline int __normal_prio(int policy, int rt_prio, int nice)
 2161{
 2162	int prio;
 2163
 2164	if (dl_policy(policy))
 2165		prio = MAX_DL_PRIO - 1;
 2166	else if (rt_policy(policy))
 2167		prio = MAX_RT_PRIO - 1 - rt_prio;
 2168	else
 2169		prio = NICE_TO_PRIO(nice);
 2170
 2171	return prio;
 2172}
 2173
 2174/*
 2175 * Calculate the expected normal priority: i.e. priority
 2176 * without taking RT-inheritance into account. Might be
 2177 * boosted by interactivity modifiers. Changes upon fork,
 2178 * setprio syscalls, and whenever the interactivity
 2179 * estimator recalculates.
 2180 */
 2181static inline int normal_prio(struct task_struct *p)
 2182{
 2183	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
 2184}
 2185
 2186/*
 2187 * Calculate the current priority, i.e. the priority
 2188 * taken into account by the scheduler. This value might
 2189 * be boosted by RT tasks, or might be boosted by
 2190 * interactivity modifiers. Will be RT if the task got
 2191 * RT-boosted. If not then it returns p->normal_prio.
 2192 */
 2193static int effective_prio(struct task_struct *p)
 2194{
 2195	p->normal_prio = normal_prio(p);
 2196	/*
 2197	 * If we are RT tasks or we were boosted to RT priority,
 2198	 * keep the priority unchanged. Otherwise, update priority
 2199	 * to the normal priority:
 2200	 */
 2201	if (!rt_prio(p->prio))
 2202		return p->normal_prio;
 2203	return p->prio;
 2204}
 2205
 2206/**
 2207 * task_curr - is this task currently executing on a CPU?
 2208 * @p: the task in question.
 2209 *
 2210 * Return: 1 if the task is currently executing. 0 otherwise.
 2211 */
 2212inline int task_curr(const struct task_struct *p)
 2213{
 2214	return cpu_curr(task_cpu(p)) == p;
 2215}
 2216
 2217/*
 2218 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 2219 * use the balance_callback list if you want balancing.
 2220 *
 2221 * this means any call to check_class_changed() must be followed by a call to
 2222 * balance_callback().
 2223 */
 2224static inline void check_class_changed(struct rq *rq, struct task_struct *p,
 2225				       const struct sched_class *prev_class,
 2226				       int oldprio)
 2227{
 2228	if (prev_class != p->sched_class) {
 2229		if (prev_class->switched_from)
 2230			prev_class->switched_from(rq, p);
 2231
 2232		p->sched_class->switched_to(rq, p);
 2233	} else if (oldprio != p->prio || dl_task(p))
 2234		p->sched_class->prio_changed(rq, p, oldprio);
 2235}
 2236
 2237void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
 2238{
 2239	if (p->sched_class == rq->curr->sched_class)
 2240		rq->curr->sched_class->wakeup_preempt(rq, p, flags);
 2241	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
 2242		resched_curr(rq);
 2243
 2244	/*
 2245	 * A queue event has occurred, and we're going to schedule.  In
 2246	 * this case, we can save a useless back to back clock update.
 2247	 */
 2248	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
 2249		rq_clock_skip_update(rq);
 2250}
 2251
 2252static __always_inline
 2253int __task_state_match(struct task_struct *p, unsigned int state)
 2254{
 2255	if (READ_ONCE(p->__state) & state)
 2256		return 1;
 2257
 2258	if (READ_ONCE(p->saved_state) & state)
 2259		return -1;
 2260
 2261	return 0;
 2262}
 2263
 2264static __always_inline
 2265int task_state_match(struct task_struct *p, unsigned int state)
 2266{
 2267	/*
 2268	 * Serialize against current_save_and_set_rtlock_wait_state(),
 2269	 * current_restore_rtlock_saved_state(), and __refrigerator().
 2270	 */
 2271	guard(raw_spinlock_irq)(&p->pi_lock);
 2272	return __task_state_match(p, state);
 2273}
 2274
 2275/*
 2276 * wait_task_inactive - wait for a thread to unschedule.
 2277 *
 2278 * Wait for the thread to block in any of the states set in @match_state.
 2279 * If it changes, i.e. @p might have woken up, then return zero.  When we
 2280 * succeed in waiting for @p to be off its CPU, we return a positive number
 2281 * (its total switch count).  If a second call a short while later returns the
 2282 * same number, the caller can be sure that @p has remained unscheduled the
 2283 * whole time.
 2284 *
 2285 * The caller must ensure that the task *will* unschedule sometime soon,
 2286 * else this function might spin for a *long* time. This function can't
 2287 * be called with interrupts off, or it may introduce deadlock with
 2288 * smp_call_function() if an IPI is sent by the same process we are
 2289 * waiting to become inactive.
 2290 */
 2291unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
 2292{
 2293	int running, queued, match;
 2294	struct rq_flags rf;
 2295	unsigned long ncsw;
 2296	struct rq *rq;
 2297
 2298	for (;;) {
 2299		/*
 2300		 * We do the initial early heuristics without holding
 2301		 * any task-queue locks at all. We'll only try to get
 2302		 * the runqueue lock when things look like they will
 2303		 * work out!
 2304		 */
 2305		rq = task_rq(p);
 2306
 2307		/*
 2308		 * If the task is actively running on another CPU
 2309		 * still, just relax and busy-wait without holding
 2310		 * any locks.
 2311		 *
 2312		 * NOTE! Since we don't hold any locks, it's not
 2313		 * even sure that "rq" stays as the right runqueue!
 2314		 * But we don't care, since "task_on_cpu()" will
 2315		 * return false if the runqueue has changed and p
 2316		 * is actually now running somewhere else!
 2317		 */
 2318		while (task_on_cpu(rq, p)) {
 2319			if (!task_state_match(p, match_state))
 2320				return 0;
 2321			cpu_relax();
 2322		}
 2323
 2324		/*
 2325		 * Ok, time to look more closely! We need the rq
 2326		 * lock now, to be *sure*. If we're wrong, we'll
 2327		 * just go back and repeat.
 2328		 */
 2329		rq = task_rq_lock(p, &rf);
 2330		trace_sched_wait_task(p);
 2331		running = task_on_cpu(rq, p);
 2332		queued = task_on_rq_queued(p);
 2333		ncsw = 0;
 2334		if ((match = __task_state_match(p, match_state))) {
 2335			/*
 2336			 * When matching on p->saved_state, consider this task
 2337			 * still queued so it will wait.
 2338			 */
 2339			if (match < 0)
 2340				queued = 1;
 2341			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
 2342		}
 2343		task_rq_unlock(rq, p, &rf);
 2344
 2345		/*
 2346		 * If it changed from the expected state, bail out now.
 2347		 */
 2348		if (unlikely(!ncsw))
 2349			break;
 2350
 2351		/*
 2352		 * Was it really running after all now that we
 2353		 * checked with the proper locks actually held?
 2354		 *
 2355		 * Oops. Go back and try again..
 2356		 */
 2357		if (unlikely(running)) {
 2358			cpu_relax();
 2359			continue;
 2360		}
 2361
 2362		/*
 2363		 * It's not enough that it's not actively running,
 2364		 * it must be off the runqueue _entirely_, and not
 2365		 * preempted!
 2366		 *
 2367		 * So if it was still runnable (but just not actively
 2368		 * running right now), it's preempted, and we should
 2369		 * yield - it could be a while.
 2370		 */
 2371		if (unlikely(queued)) {
 2372			ktime_t to = NSEC_PER_SEC / HZ;
 2373
 2374			set_current_state(TASK_UNINTERRUPTIBLE);
 2375			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
 2376			continue;
 2377		}
 2378
 2379		/*
 2380		 * Ahh, all good. It wasn't running, and it wasn't
 2381		 * runnable, which means that it will never become
 2382		 * running in the future either. We're all done!
 2383		 */
 2384		break;
 2385	}
 2386
 2387	return ncsw;
 2388}
 2389
 2390#ifdef CONFIG_SMP
 2391
 2392static void
 2393__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
 2394
 2395static int __set_cpus_allowed_ptr(struct task_struct *p,
 2396				  struct affinity_context *ctx);
 2397
 2398static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
 2399{
 2400	struct affinity_context ac = {
 2401		.new_mask  = cpumask_of(rq->cpu),
 2402		.flags     = SCA_MIGRATE_DISABLE,
 2403	};
 2404
 2405	if (likely(!p->migration_disabled))
 2406		return;
 2407
 2408	if (p->cpus_ptr != &p->cpus_mask)
 2409		return;
 2410
 2411	/*
 2412	 * Violates locking rules! see comment in __do_set_cpus_allowed().
 2413	 */
 2414	__do_set_cpus_allowed(p, &ac);
 2415}
 2416
 2417void migrate_disable(void)
 2418{
 2419	struct task_struct *p = current;
 2420
 2421	if (p->migration_disabled) {
 2422		p->migration_disabled++;
 2423		return;
 2424	}
 2425
 2426	guard(preempt)();
 2427	this_rq()->nr_pinned++;
 2428	p->migration_disabled = 1;
 2429}
 2430EXPORT_SYMBOL_GPL(migrate_disable);
 2431
 2432void migrate_enable(void)
 2433{
 2434	struct task_struct *p = current;
 2435	struct affinity_context ac = {
 2436		.new_mask  = &p->cpus_mask,
 2437		.flags     = SCA_MIGRATE_ENABLE,
 2438	};
 2439
 2440	if (p->migration_disabled > 1) {
 2441		p->migration_disabled--;
 2442		return;
 2443	}
 2444
 2445	if (WARN_ON_ONCE(!p->migration_disabled))
 2446		return;
 2447
 2448	/*
 2449	 * Ensure stop_task runs either before or after this, and that
 2450	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
 2451	 */
 2452	guard(preempt)();
 2453	if (p->cpus_ptr != &p->cpus_mask)
 2454		__set_cpus_allowed_ptr(p, &ac);
 2455	/*
 2456	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
 2457	 * regular cpus_mask, otherwise things that race (eg.
 2458	 * select_fallback_rq) get confused.
 2459	 */
 2460	barrier();
 2461	p->migration_disabled = 0;
 2462	this_rq()->nr_pinned--;
 2463}
 2464EXPORT_SYMBOL_GPL(migrate_enable);
 2465
 2466static inline bool rq_has_pinned_tasks(struct rq *rq)
 2467{
 2468	return rq->nr_pinned;
 2469}
 2470
 2471/*
 2472 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
 2473 * __set_cpus_allowed_ptr() and select_fallback_rq().
 2474 */
 2475static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
 2476{
 2477	/* When not in the task's cpumask, no point in looking further. */
 2478	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
 2479		return false;
 2480
 2481	/* migrate_disabled() must be allowed to finish. */
 2482	if (is_migration_disabled(p))
 2483		return cpu_online(cpu);
 2484
 2485	/* Non kernel threads are not allowed during either online or offline. */
 2486	if (!(p->flags & PF_KTHREAD))
 2487		return cpu_active(cpu) && task_cpu_possible(cpu, p);
 2488
 2489	/* KTHREAD_IS_PER_CPU is always allowed. */
 2490	if (kthread_is_per_cpu(p))
 2491		return cpu_online(cpu);
 2492
 2493	/* Regular kernel threads don't get to stay during offline. */
 2494	if (cpu_dying(cpu))
 2495		return false;
 2496
 2497	/* But are allowed during online. */
 2498	return cpu_online(cpu);
 2499}
 2500
 2501/*
 2502 * This is how migration works:
 2503 *
 2504 * 1) we invoke migration_cpu_stop() on the target CPU using
 2505 *    stop_one_cpu().
 2506 * 2) stopper starts to run (implicitly forcing the migrated thread
 2507 *    off the CPU)
 2508 * 3) it checks whether the migrated task is still in the wrong runqueue.
 2509 * 4) if it's in the wrong runqueue then the migration thread removes
 2510 *    it and puts it into the right queue.
 2511 * 5) stopper completes and stop_one_cpu() returns and the migration
 2512 *    is done.
 2513 */
 2514
 2515/*
 2516 * move_queued_task - move a queued task to new rq.
 2517 *
 2518 * Returns (locked) new rq. Old rq's lock is released.
 2519 */
 2520static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
 2521				   struct task_struct *p, int new_cpu)
 2522{
 2523	lockdep_assert_rq_held(rq);
 2524
 2525	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
 2526	set_task_cpu(p, new_cpu);
 2527	rq_unlock(rq, rf);
 2528
 2529	rq = cpu_rq(new_cpu);
 2530
 2531	rq_lock(rq, rf);
 2532	WARN_ON_ONCE(task_cpu(p) != new_cpu);
 2533	activate_task(rq, p, 0);
 2534	wakeup_preempt(rq, p, 0);
 2535
 2536	return rq;
 2537}
 2538
 2539struct migration_arg {
 2540	struct task_struct		*task;
 2541	int				dest_cpu;
 2542	struct set_affinity_pending	*pending;
 2543};
 2544
 2545/*
 2546 * @refs: number of wait_for_completion()
 2547 * @stop_pending: is @stop_work in use
 2548 */
 2549struct set_affinity_pending {
 2550	refcount_t		refs;
 2551	unsigned int		stop_pending;
 2552	struct completion	done;
 2553	struct cpu_stop_work	stop_work;
 2554	struct migration_arg	arg;
 2555};
 2556
 2557/*
 2558 * Move (not current) task off this CPU, onto the destination CPU. We're doing
 2559 * this because either it can't run here any more (set_cpus_allowed()
 2560 * away from this CPU, or CPU going down), or because we're
 2561 * attempting to rebalance this task on exec (sched_exec).
 2562 *
 2563 * So we race with normal scheduler movements, but that's OK, as long
 2564 * as the task is no longer on this CPU.
 2565 */
 2566static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
 2567				 struct task_struct *p, int dest_cpu)
 2568{
 2569	/* Affinity changed (again). */
 2570	if (!is_cpu_allowed(p, dest_cpu))
 2571		return rq;
 2572
 2573	rq = move_queued_task(rq, rf, p, dest_cpu);
 2574
 2575	return rq;
 2576}
 2577
 2578/*
 2579 * migration_cpu_stop - this will be executed by a highprio stopper thread
 2580 * and performs thread migration by bumping thread off CPU then
 2581 * 'pushing' onto another runqueue.
 2582 */
 2583static int migration_cpu_stop(void *data)
 2584{
 2585	struct migration_arg *arg = data;
 2586	struct set_affinity_pending *pending = arg->pending;
 2587	struct task_struct *p = arg->task;
 2588	struct rq *rq = this_rq();
 2589	bool complete = false;
 2590	struct rq_flags rf;
 2591
 2592	/*
 2593	 * The original target CPU might have gone down and we might
 2594	 * be on another CPU but it doesn't matter.
 2595	 */
 2596	local_irq_save(rf.flags);
 2597	/*
 2598	 * We need to explicitly wake pending tasks before running
 2599	 * __migrate_task() such that we will not miss enforcing cpus_ptr
 2600	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
 2601	 */
 2602	flush_smp_call_function_queue();
 2603
 2604	raw_spin_lock(&p->pi_lock);
 2605	rq_lock(rq, &rf);
 2606
 2607	/*
 2608	 * If we were passed a pending, then ->stop_pending was set, thus
 2609	 * p->migration_pending must have remained stable.
 2610	 */
 2611	WARN_ON_ONCE(pending && pending != p->migration_pending);
 2612
 2613	/*
 2614	 * If task_rq(p) != rq, it cannot be migrated here, because we're
 2615	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
 2616	 * we're holding p->pi_lock.
 2617	 */
 2618	if (task_rq(p) == rq) {
 2619		if (is_migration_disabled(p))
 2620			goto out;
 2621
 2622		if (pending) {
 2623			p->migration_pending = NULL;
 2624			complete = true;
 2625
 2626			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
 2627				goto out;
 2628		}
 2629
 2630		if (task_on_rq_queued(p)) {
 2631			update_rq_clock(rq);
 2632			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
 2633		} else {
 2634			p->wake_cpu = arg->dest_cpu;
 2635		}
 2636
 2637		/*
 2638		 * XXX __migrate_task() can fail, at which point we might end
 2639		 * up running on a dodgy CPU, AFAICT this can only happen
 2640		 * during CPU hotplug, at which point we'll get pushed out
 2641		 * anyway, so it's probably not a big deal.
 2642		 */
 2643
 2644	} else if (pending) {
 2645		/*
 2646		 * This happens when we get migrated between migrate_enable()'s
 2647		 * preempt_enable() and scheduling the stopper task. At that
 2648		 * point we're a regular task again and not current anymore.
 2649		 *
 2650		 * A !PREEMPT kernel has a giant hole here, which makes it far
 2651		 * more likely.
 2652		 */
 2653
 2654		/*
 2655		 * The task moved before the stopper got to run. We're holding
 2656		 * ->pi_lock, so the allowed mask is stable - if it got
 2657		 * somewhere allowed, we're done.
 2658		 */
 2659		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
 2660			p->migration_pending = NULL;
 2661			complete = true;
 2662			goto out;
 2663		}
 2664
 2665		/*
 2666		 * When migrate_enable() hits a rq mis-match we can't reliably
 2667		 * determine is_migration_disabled() and so have to chase after
 2668		 * it.
 2669		 */
 2670		WARN_ON_ONCE(!pending->stop_pending);
 2671		preempt_disable();
 2672		task_rq_unlock(rq, p, &rf);
 2673		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
 2674				    &pending->arg, &pending->stop_work);
 2675		preempt_enable();
 2676		return 0;
 2677	}
 2678out:
 2679	if (pending)
 2680		pending->stop_pending = false;
 2681	task_rq_unlock(rq, p, &rf);
 2682
 2683	if (complete)
 2684		complete_all(&pending->done);
 2685
 2686	return 0;
 2687}
 2688
 2689int push_cpu_stop(void *arg)
 2690{
 2691	struct rq *lowest_rq = NULL, *rq = this_rq();
 2692	struct task_struct *p = arg;
 2693
 2694	raw_spin_lock_irq(&p->pi_lock);
 2695	raw_spin_rq_lock(rq);
 2696
 2697	if (task_rq(p) != rq)
 2698		goto out_unlock;
 2699
 2700	if (is_migration_disabled(p)) {
 2701		p->migration_flags |= MDF_PUSH;
 2702		goto out_unlock;
 2703	}
 2704
 2705	p->migration_flags &= ~MDF_PUSH;
 2706
 2707	if (p->sched_class->find_lock_rq)
 2708		lowest_rq = p->sched_class->find_lock_rq(p, rq);
 2709
 2710	if (!lowest_rq)
 2711		goto out_unlock;
 2712
 2713	// XXX validate p is still the highest prio task
 2714	if (task_rq(p) == rq) {
 2715		deactivate_task(rq, p, 0);
 2716		set_task_cpu(p, lowest_rq->cpu);
 2717		activate_task(lowest_rq, p, 0);
 2718		resched_curr(lowest_rq);
 2719	}
 2720
 2721	double_unlock_balance(rq, lowest_rq);
 2722
 2723out_unlock:
 2724	rq->push_busy = false;
 2725	raw_spin_rq_unlock(rq);
 2726	raw_spin_unlock_irq(&p->pi_lock);
 2727
 2728	put_task_struct(p);
 2729	return 0;
 2730}
 2731
 2732/*
 2733 * sched_class::set_cpus_allowed must do the below, but is not required to
 2734 * actually call this function.
 2735 */
 2736void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
 2737{
 2738	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
 2739		p->cpus_ptr = ctx->new_mask;
 2740		return;
 2741	}
 2742
 2743	cpumask_copy(&p->cpus_mask, ctx->new_mask);
 2744	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
 2745
 2746	/*
 2747	 * Swap in a new user_cpus_ptr if SCA_USER flag set
 2748	 */
 2749	if (ctx->flags & SCA_USER)
 2750		swap(p->user_cpus_ptr, ctx->user_mask);
 2751}
 2752
 2753static void
 2754__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
 2755{
 2756	struct rq *rq = task_rq(p);
 2757	bool queued, running;
 2758
 2759	/*
 2760	 * This here violates the locking rules for affinity, since we're only
 2761	 * supposed to change these variables while holding both rq->lock and
 2762	 * p->pi_lock.
 2763	 *
 2764	 * HOWEVER, it magically works, because ttwu() is the only code that
 2765	 * accesses these variables under p->pi_lock and only does so after
 2766	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
 2767	 * before finish_task().
 2768	 *
 2769	 * XXX do further audits, this smells like something putrid.
 2770	 */
 2771	if (ctx->flags & SCA_MIGRATE_DISABLE)
 2772		SCHED_WARN_ON(!p->on_cpu);
 2773	else
 2774		lockdep_assert_held(&p->pi_lock);
 2775
 2776	queued = task_on_rq_queued(p);
 2777	running = task_current(rq, p);
 2778
 2779	if (queued) {
 2780		/*
 2781		 * Because __kthread_bind() calls this on blocked tasks without
 2782		 * holding rq->lock.
 2783		 */
 2784		lockdep_assert_rq_held(rq);
 2785		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
 2786	}
 2787	if (running)
 2788		put_prev_task(rq, p);
 2789
 2790	p->sched_class->set_cpus_allowed(p, ctx);
 2791
 2792	if (queued)
 2793		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
 2794	if (running)
 2795		set_next_task(rq, p);
 2796}
 2797
 2798/*
 2799 * Used for kthread_bind() and select_fallback_rq(), in both cases the user
 2800 * affinity (if any) should be destroyed too.
 2801 */
 2802void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
 2803{
 2804	struct affinity_context ac = {
 2805		.new_mask  = new_mask,
 2806		.user_mask = NULL,
 2807		.flags     = SCA_USER,	/* clear the user requested mask */
 2808	};
 2809	union cpumask_rcuhead {
 2810		cpumask_t cpumask;
 2811		struct rcu_head rcu;
 2812	};
 2813
 2814	__do_set_cpus_allowed(p, &ac);
 2815
 2816	/*
 2817	 * Because this is called with p->pi_lock held, it is not possible
 2818	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
 2819	 * kfree_rcu().
 2820	 */
 2821	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
 2822}
 2823
 2824static cpumask_t *alloc_user_cpus_ptr(int node)
 2825{
 2826	/*
 2827	 * See do_set_cpus_allowed() above for the rcu_head usage.
 2828	 */
 2829	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
 2830
 2831	return kmalloc_node(size, GFP_KERNEL, node);
 2832}
 2833
 2834int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
 2835		      int node)
 2836{
 2837	cpumask_t *user_mask;
 2838	unsigned long flags;
 2839
 2840	/*
 2841	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
 2842	 * may differ by now due to racing.
 2843	 */
 2844	dst->user_cpus_ptr = NULL;
 2845
 2846	/*
 2847	 * This check is racy and losing the race is a valid situation.
 2848	 * It is not worth the extra overhead of taking the pi_lock on
 2849	 * every fork/clone.
 2850	 */
 2851	if (data_race(!src->user_cpus_ptr))
 2852		return 0;
 2853
 2854	user_mask = alloc_user_cpus_ptr(node);
 2855	if (!user_mask)
 2856		return -ENOMEM;
 2857
 2858	/*
 2859	 * Use pi_lock to protect content of user_cpus_ptr
 2860	 *
 2861	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
 2862	 * do_set_cpus_allowed().
 2863	 */
 2864	raw_spin_lock_irqsave(&src->pi_lock, flags);
 2865	if (src->user_cpus_ptr) {
 2866		swap(dst->user_cpus_ptr, user_mask);
 2867		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
 2868	}
 2869	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
 2870
 2871	if (unlikely(user_mask))
 2872		kfree(user_mask);
 2873
 2874	return 0;
 2875}
 2876
 2877static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
 2878{
 2879	struct cpumask *user_mask = NULL;
 2880
 2881	swap(p->user_cpus_ptr, user_mask);
 2882
 2883	return user_mask;
 2884}
 2885
 2886void release_user_cpus_ptr(struct task_struct *p)
 2887{
 2888	kfree(clear_user_cpus_ptr(p));
 2889}
 2890
 2891/*
 2892 * This function is wildly self concurrent; here be dragons.
 2893 *
 2894 *
 2895 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
 2896 * designated task is enqueued on an allowed CPU. If that task is currently
 2897 * running, we have to kick it out using the CPU stopper.
 2898 *
 2899 * Migrate-Disable comes along and tramples all over our nice sandcastle.
 2900 * Consider:
 2901 *
 2902 *     Initial conditions: P0->cpus_mask = [0, 1]
 2903 *
 2904 *     P0@CPU0                  P1
 2905 *
 2906 *     migrate_disable();
 2907 *     <preempted>
 2908 *                              set_cpus_allowed_ptr(P0, [1]);
 2909 *
 2910 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
 2911 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
 2912 * This means we need the following scheme:
 2913 *
 2914 *     P0@CPU0                  P1
 2915 *
 2916 *     migrate_disable();
 2917 *     <preempted>
 2918 *                              set_cpus_allowed_ptr(P0, [1]);
 2919 *                                <blocks>
 2920 *     <resumes>
 2921 *     migrate_enable();
 2922 *       __set_cpus_allowed_ptr();
 2923 *       <wakes local stopper>
 2924 *                         `--> <woken on migration completion>
 2925 *
 2926 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
 2927 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
 2928 * task p are serialized by p->pi_lock, which we can leverage: the one that
 2929 * should come into effect at the end of the Migrate-Disable region is the last
 2930 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
 2931 * but we still need to properly signal those waiting tasks at the appropriate
 2932 * moment.
 2933 *
 2934 * This is implemented using struct set_affinity_pending. The first
 2935 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
 2936 * setup an instance of that struct and install it on the targeted task_struct.
 2937 * Any and all further callers will reuse that instance. Those then wait for
 2938 * a completion signaled at the tail of the CPU stopper callback (1), triggered
 2939 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
 2940 *
 2941 *
 2942 * (1) In the cases covered above. There is one more where the completion is
 2943 * signaled within affine_move_task() itself: when a subsequent affinity request
 2944 * occurs after the stopper bailed out due to the targeted task still being
 2945 * Migrate-Disable. Consider:
 2946 *
 2947 *     Initial conditions: P0->cpus_mask = [0, 1]
 2948 *
 2949 *     CPU0		  P1				P2
 2950 *     <P0>
 2951 *       migrate_disable();
 2952 *       <preempted>
 2953 *                        set_cpus_allowed_ptr(P0, [1]);
 2954 *                          <blocks>
 2955 *     <migration/0>
 2956 *       migration_cpu_stop()
 2957 *         is_migration_disabled()
 2958 *           <bails>
 2959 *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
 2960 *                                                         <signal completion>
 2961 *                          <awakes>
 2962 *
 2963 * Note that the above is safe vs a concurrent migrate_enable(), as any
 2964 * pending affinity completion is preceded by an uninstallation of
 2965 * p->migration_pending done with p->pi_lock held.
 2966 */
 2967static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
 2968			    int dest_cpu, unsigned int flags)
 2969	__releases(rq->lock)
 2970	__releases(p->pi_lock)
 2971{
 2972	struct set_affinity_pending my_pending = { }, *pending = NULL;
 2973	bool stop_pending, complete = false;
 2974
 2975	/* Can the task run on the task's current CPU? If so, we're done */
 2976	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
 2977		struct task_struct *push_task = NULL;
 2978
 2979		if ((flags & SCA_MIGRATE_ENABLE) &&
 2980		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
 2981			rq->push_busy = true;
 2982			push_task = get_task_struct(p);
 2983		}
 2984
 2985		/*
 2986		 * If there are pending waiters, but no pending stop_work,
 2987		 * then complete now.
 2988		 */
 2989		pending = p->migration_pending;
 2990		if (pending && !pending->stop_pending) {
 2991			p->migration_pending = NULL;
 2992			complete = true;
 2993		}
 2994
 2995		preempt_disable();
 2996		task_rq_unlock(rq, p, rf);
 2997		if (push_task) {
 2998			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
 2999					    p, &rq->push_work);
 3000		}
 3001		preempt_enable();
 3002
 3003		if (complete)
 3004			complete_all(&pending->done);
 3005
 3006		return 0;
 3007	}
 3008
 3009	if (!(flags & SCA_MIGRATE_ENABLE)) {
 3010		/* serialized by p->pi_lock */
 3011		if (!p->migration_pending) {
 3012			/* Install the request */
 3013			refcount_set(&my_pending.refs, 1);
 3014			init_completion(&my_pending.done);
 3015			my_pending.arg = (struct migration_arg) {
 3016				.task = p,
 3017				.dest_cpu = dest_cpu,
 3018				.pending = &my_pending,
 3019			};
 3020
 3021			p->migration_pending = &my_pending;
 3022		} else {
 3023			pending = p->migration_pending;
 3024			refcount_inc(&pending->refs);
 3025			/*
 3026			 * Affinity has changed, but we've already installed a
 3027			 * pending. migration_cpu_stop() *must* see this, else
 3028			 * we risk a completion of the pending despite having a
 3029			 * task on a disallowed CPU.
 3030			 *
 3031			 * Serialized by p->pi_lock, so this is safe.
 3032			 */
 3033			pending->arg.dest_cpu = dest_cpu;
 3034		}
 3035	}
 3036	pending = p->migration_pending;
 3037	/*
 3038	 * - !MIGRATE_ENABLE:
 3039	 *   we'll have installed a pending if there wasn't one already.
 3040	 *
 3041	 * - MIGRATE_ENABLE:
 3042	 *   we're here because the current CPU isn't matching anymore,
 3043	 *   the only way that can happen is because of a concurrent
 3044	 *   set_cpus_allowed_ptr() call, which should then still be
 3045	 *   pending completion.
 3046	 *
 3047	 * Either way, we really should have a @pending here.
 3048	 */
 3049	if (WARN_ON_ONCE(!pending)) {
 3050		task_rq_unlock(rq, p, rf);
 3051		return -EINVAL;
 3052	}
 3053
 3054	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
 3055		/*
 3056		 * MIGRATE_ENABLE gets here because 'p == current', but for
 3057		 * anything else we cannot do is_migration_disabled(), punt
 3058		 * and have the stopper function handle it all race-free.
 3059		 */
 3060		stop_pending = pending->stop_pending;
 3061		if (!stop_pending)
 3062			pending->stop_pending = true;
 3063
 3064		if (flags & SCA_MIGRATE_ENABLE)
 3065			p->migration_flags &= ~MDF_PUSH;
 3066
 3067		preempt_disable();
 3068		task_rq_unlock(rq, p, rf);
 3069		if (!stop_pending) {
 3070			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
 3071					    &pending->arg, &pending->stop_work);
 3072		}
 3073		preempt_enable();
 3074
 3075		if (flags & SCA_MIGRATE_ENABLE)
 3076			return 0;
 3077	} else {
 3078
 3079		if (!is_migration_disabled(p)) {
 3080			if (task_on_rq_queued(p))
 3081				rq = move_queued_task(rq, rf, p, dest_cpu);
 3082
 3083			if (!pending->stop_pending) {
 3084				p->migration_pending = NULL;
 3085				complete = true;
 3086			}
 3087		}
 3088		task_rq_unlock(rq, p, rf);
 3089
 3090		if (complete)
 3091			complete_all(&pending->done);
 3092	}
 3093
 3094	wait_for_completion(&pending->done);
 3095
 3096	if (refcount_dec_and_test(&pending->refs))
 3097		wake_up_var(&pending->refs); /* No UaF, just an address */
 3098
 3099	/*
 3100	 * Block the original owner of &pending until all subsequent callers
 3101	 * have seen the completion and decremented the refcount
 3102	 */
 3103	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
 3104
 3105	/* ARGH */
 3106	WARN_ON_ONCE(my_pending.stop_pending);
 3107
 3108	return 0;
 3109}
 3110
 3111/*
 3112 * Called with both p->pi_lock and rq->lock held; drops both before returning.
 3113 */
 3114static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
 3115					 struct affinity_context *ctx,
 3116					 struct rq *rq,
 3117					 struct rq_flags *rf)
 3118	__releases(rq->lock)
 3119	__releases(p->pi_lock)
 3120{
 3121	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
 3122	const struct cpumask *cpu_valid_mask = cpu_active_mask;
 3123	bool kthread = p->flags & PF_KTHREAD;
 3124	unsigned int dest_cpu;
 3125	int ret = 0;
 3126
 3127	update_rq_clock(rq);
 3128
 3129	if (kthread || is_migration_disabled(p)) {
 3130		/*
 3131		 * Kernel threads are allowed on online && !active CPUs,
 3132		 * however, during cpu-hot-unplug, even these might get pushed
 3133		 * away if not KTHREAD_IS_PER_CPU.
 3134		 *
 3135		 * Specifically, migration_disabled() tasks must not fail the
 3136		 * cpumask_any_and_distribute() pick below, esp. so on
 3137		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
 3138		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
 3139		 */
 3140		cpu_valid_mask = cpu_online_mask;
 3141	}
 3142
 3143	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
 3144		ret = -EINVAL;
 3145		goto out;
 3146	}
 3147
 3148	/*
 3149	 * Must re-check here, to close a race against __kthread_bind(),
 3150	 * sched_setaffinity() is not guaranteed to observe the flag.
 3151	 */
 3152	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
 3153		ret = -EINVAL;
 3154		goto out;
 3155	}
 3156
 3157	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
 3158		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
 3159			if (ctx->flags & SCA_USER)
 3160				swap(p->user_cpus_ptr, ctx->user_mask);
 3161			goto out;
 3162		}
 3163
 3164		if (WARN_ON_ONCE(p == current &&
 3165				 is_migration_disabled(p) &&
 3166				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
 3167			ret = -EBUSY;
 3168			goto out;
 3169		}
 3170	}
 3171
 3172	/*
 3173	 * Picking a ~random cpu helps in cases where we are changing affinity
 3174	 * for groups of tasks (ie. cpuset), so that load balancing is not
 3175	 * immediately required to distribute the tasks within their new mask.
 3176	 */
 3177	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
 3178	if (dest_cpu >= nr_cpu_ids) {
 3179		ret = -EINVAL;
 3180		goto out;
 3181	}
 3182
 3183	__do_set_cpus_allowed(p, ctx);
 3184
 3185	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
 3186
 3187out:
 3188	task_rq_unlock(rq, p, rf);
 3189
 3190	return ret;
 3191}
 3192
 3193/*
 3194 * Change a given task's CPU affinity. Migrate the thread to a
 3195 * proper CPU and schedule it away if the CPU it's executing on
 3196 * is removed from the allowed bitmask.
 3197 *
 3198 * NOTE: the caller must have a valid reference to the task, the
 3199 * task must not exit() & deallocate itself prematurely. The
 3200 * call is not atomic; no spinlocks may be held.
 3201 */
 3202static int __set_cpus_allowed_ptr(struct task_struct *p,
 3203				  struct affinity_context *ctx)
 3204{
 3205	struct rq_flags rf;
 3206	struct rq *rq;
 3207
 3208	rq = task_rq_lock(p, &rf);
 3209	/*
 3210	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
 3211	 * flags are set.
 3212	 */
 3213	if (p->user_cpus_ptr &&
 3214	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
 3215	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
 3216		ctx->new_mask = rq->scratch_mask;
 3217
 3218	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
 3219}
 3220
 3221int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
 3222{
 3223	struct affinity_context ac = {
 3224		.new_mask  = new_mask,
 3225		.flags     = 0,
 3226	};
 3227
 3228	return __set_cpus_allowed_ptr(p, &ac);
 3229}
 3230EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
 3231
 3232/*
 3233 * Change a given task's CPU affinity to the intersection of its current
 3234 * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
 3235 * If user_cpus_ptr is defined, use it as the basis for restricting CPU
 3236 * affinity or use cpu_online_mask instead.
 3237 *
 3238 * If the resulting mask is empty, leave the affinity unchanged and return
 3239 * -EINVAL.
 3240 */
 3241static int restrict_cpus_allowed_ptr(struct task_struct *p,
 3242				     struct cpumask *new_mask,
 3243				     const struct cpumask *subset_mask)
 3244{
 3245	struct affinity_context ac = {
 3246		.new_mask  = new_mask,
 3247		.flags     = 0,
 3248	};
 3249	struct rq_flags rf;
 3250	struct rq *rq;
 3251	int err;
 3252
 3253	rq = task_rq_lock(p, &rf);
 3254
 3255	/*
 3256	 * Forcefully restricting the affinity of a deadline task is
 3257	 * likely to cause problems, so fail and noisily override the
 3258	 * mask entirely.
 3259	 */
 3260	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
 3261		err = -EPERM;
 3262		goto err_unlock;
 3263	}
 3264
 3265	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
 3266		err = -EINVAL;
 3267		goto err_unlock;
 3268	}
 3269
 3270	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
 3271
 3272err_unlock:
 3273	task_rq_unlock(rq, p, &rf);
 3274	return err;
 3275}
 3276
 3277/*
 3278 * Restrict the CPU affinity of task @p so that it is a subset of
 3279 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
 3280 * old affinity mask. If the resulting mask is empty, we warn and walk
 3281 * up the cpuset hierarchy until we find a suitable mask.
 3282 */
 3283void force_compatible_cpus_allowed_ptr(struct task_struct *p)
 3284{
 3285	cpumask_var_t new_mask;
 3286	const struct cpumask *override_mask = task_cpu_possible_mask(p);
 3287
 3288	alloc_cpumask_var(&new_mask, GFP_KERNEL);
 3289
 3290	/*
 3291	 * __migrate_task() can fail silently in the face of concurrent
 3292	 * offlining of the chosen destination CPU, so take the hotplug
 3293	 * lock to ensure that the migration succeeds.
 3294	 */
 3295	cpus_read_lock();
 3296	if (!cpumask_available(new_mask))
 3297		goto out_set_mask;
 3298
 3299	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
 3300		goto out_free_mask;
 3301
 3302	/*
 3303	 * We failed to find a valid subset of the affinity mask for the
 3304	 * task, so override it based on its cpuset hierarchy.
 3305	 */
 3306	cpuset_cpus_allowed(p, new_mask);
 3307	override_mask = new_mask;
 3308
 3309out_set_mask:
 3310	if (printk_ratelimit()) {
 3311		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
 3312				task_pid_nr(p), p->comm,
 3313				cpumask_pr_args(override_mask));
 3314	}
 3315
 3316	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
 3317out_free_mask:
 3318	cpus_read_unlock();
 3319	free_cpumask_var(new_mask);
 3320}
 3321
 3322static int
 3323__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
 3324
 3325/*
 3326 * Restore the affinity of a task @p which was previously restricted by a
 3327 * call to force_compatible_cpus_allowed_ptr().
 3328 *
 3329 * It is the caller's responsibility to serialise this with any calls to
 3330 * force_compatible_cpus_allowed_ptr(@p).
 3331 */
 3332void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
 3333{
 3334	struct affinity_context ac = {
 3335		.new_mask  = task_user_cpus(p),
 3336		.flags     = 0,
 3337	};
 3338	int ret;
 3339
 3340	/*
 3341	 * Try to restore the old affinity mask with __sched_setaffinity().
 3342	 * Cpuset masking will be done there too.
 3343	 */
 3344	ret = __sched_setaffinity(p, &ac);
 3345	WARN_ON_ONCE(ret);
 3346}
 3347
 3348void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
 3349{
 3350#ifdef CONFIG_SCHED_DEBUG
 3351	unsigned int state = READ_ONCE(p->__state);
 3352
 3353	/*
 3354	 * We should never call set_task_cpu() on a blocked task,
 3355	 * ttwu() will sort out the placement.
 3356	 */
 3357	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
 3358
 3359	/*
 3360	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
 3361	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
 3362	 * time relying on p->on_rq.
 3363	 */
 3364	WARN_ON_ONCE(state == TASK_RUNNING &&
 3365		     p->sched_class == &fair_sched_class &&
 3366		     (p->on_rq && !task_on_rq_migrating(p)));
 3367
 3368#ifdef CONFIG_LOCKDEP
 3369	/*
 3370	 * The caller should hold either p->pi_lock or rq->lock, when changing
 3371	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
 3372	 *
 3373	 * sched_move_task() holds both and thus holding either pins the cgroup,
 3374	 * see task_group().
 3375	 *
 3376	 * Furthermore, all task_rq users should acquire both locks, see
 3377	 * task_rq_lock().
 3378	 */
 3379	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
 3380				      lockdep_is_held(__rq_lockp(task_rq(p)))));
 3381#endif
 3382	/*
 3383	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
 3384	 */
 3385	WARN_ON_ONCE(!cpu_online(new_cpu));
 3386
 3387	WARN_ON_ONCE(is_migration_disabled(p));
 3388#endif
 3389
 3390	trace_sched_migrate_task(p, new_cpu);
 3391
 3392	if (task_cpu(p) != new_cpu) {
 3393		if (p->sched_class->migrate_task_rq)
 3394			p->sched_class->migrate_task_rq(p, new_cpu);
 3395		p->se.nr_migrations++;
 3396		rseq_migrate(p);
 3397		sched_mm_cid_migrate_from(p);
 3398		perf_event_task_migrate(p);
 3399	}
 3400
 3401	__set_task_cpu(p, new_cpu);
 3402}
 3403
 3404#ifdef CONFIG_NUMA_BALANCING
 3405static void __migrate_swap_task(struct task_struct *p, int cpu)
 3406{
 3407	if (task_on_rq_queued(p)) {
 3408		struct rq *src_rq, *dst_rq;
 3409		struct rq_flags srf, drf;
 3410
 3411		src_rq = task_rq(p);
 3412		dst_rq = cpu_rq(cpu);
 3413
 3414		rq_pin_lock(src_rq, &srf);
 3415		rq_pin_lock(dst_rq, &drf);
 3416
 3417		deactivate_task(src_rq, p, 0);
 3418		set_task_cpu(p, cpu);
 3419		activate_task(dst_rq, p, 0);
 3420		wakeup_preempt(dst_rq, p, 0);
 3421
 3422		rq_unpin_lock(dst_rq, &drf);
 3423		rq_unpin_lock(src_rq, &srf);
 3424
 3425	} else {
 3426		/*
 3427		 * Task isn't running anymore; make it appear like we migrated
 3428		 * it before it went to sleep. This means on wakeup we make the
 3429		 * previous CPU our target instead of where it really is.
 3430		 */
 3431		p->wake_cpu = cpu;
 3432	}
 3433}
 3434
 3435struct migration_swap_arg {
 3436	struct task_struct *src_task, *dst_task;
 3437	int src_cpu, dst_cpu;
 3438};
 3439
 3440static int migrate_swap_stop(void *data)
 3441{
 3442	struct migration_swap_arg *arg = data;
 3443	struct rq *src_rq, *dst_rq;
 3444
 3445	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
 3446		return -EAGAIN;
 3447
 3448	src_rq = cpu_rq(arg->src_cpu);
 3449	dst_rq = cpu_rq(arg->dst_cpu);
 3450
 3451	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
 3452	guard(double_rq_lock)(src_rq, dst_rq);
 3453
 3454	if (task_cpu(arg->dst_task) != arg->dst_cpu)
 3455		return -EAGAIN;
 3456
 3457	if (task_cpu(arg->src_task) != arg->src_cpu)
 3458		return -EAGAIN;
 3459
 3460	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
 3461		return -EAGAIN;
 3462
 3463	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
 3464		return -EAGAIN;
 3465
 3466	__migrate_swap_task(arg->src_task, arg->dst_cpu);
 3467	__migrate_swap_task(arg->dst_task, arg->src_cpu);
 3468
 3469	return 0;
 3470}
 3471
 3472/*
 3473 * Cross migrate two tasks
 3474 */
 3475int migrate_swap(struct task_struct *cur, struct task_struct *p,
 3476		int target_cpu, int curr_cpu)
 3477{
 3478	struct migration_swap_arg arg;
 3479	int ret = -EINVAL;
 3480
 3481	arg = (struct migration_swap_arg){
 3482		.src_task = cur,
 3483		.src_cpu = curr_cpu,
 3484		.dst_task = p,
 3485		.dst_cpu = target_cpu,
 3486	};
 3487
 3488	if (arg.src_cpu == arg.dst_cpu)
 3489		goto out;
 3490
 3491	/*
 3492	 * These three tests are all lockless; this is OK since all of them
 3493	 * will be re-checked with proper locks held further down the line.
 3494	 */
 3495	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
 3496		goto out;
 3497
 3498	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
 3499		goto out;
 3500
 3501	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
 3502		goto out;
 3503
 3504	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
 3505	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
 3506
 3507out:
 3508	return ret;
 3509}
 3510#endif /* CONFIG_NUMA_BALANCING */
 3511
 3512/***
 3513 * kick_process - kick a running thread to enter/exit the kernel
 3514 * @p: the to-be-kicked thread
 3515 *
 3516 * Cause a process which is running on another CPU to enter
 3517 * kernel-mode, without any delay. (to get signals handled.)
 3518 *
 3519 * NOTE: this function doesn't have to take the runqueue lock,
 3520 * because all it wants to ensure is that the remote task enters
 3521 * the kernel. If the IPI races and the task has been migrated
 3522 * to another CPU then no harm is done and the purpose has been
 3523 * achieved as well.
 3524 */
 3525void kick_process(struct task_struct *p)
 3526{
 3527	guard(preempt)();
 3528	int cpu = task_cpu(p);
 3529
 3530	if ((cpu != smp_processor_id()) && task_curr(p))
 3531		smp_send_reschedule(cpu);
 3532}
 3533EXPORT_SYMBOL_GPL(kick_process);
 3534
 3535/*
 3536 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
 3537 *
 3538 * A few notes on cpu_active vs cpu_online:
 3539 *
 3540 *  - cpu_active must be a subset of cpu_online
 3541 *
 3542 *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
 3543 *    see __set_cpus_allowed_ptr(). At this point the newly online
 3544 *    CPU isn't yet part of the sched domains, and balancing will not
 3545 *    see it.
 3546 *
 3547 *  - on CPU-down we clear cpu_active() to mask the sched domains and
 3548 *    avoid the load balancer to place new tasks on the to be removed
 3549 *    CPU. Existing tasks will remain running there and will be taken
 3550 *    off.
 3551 *
 3552 * This means that fallback selection must not select !active CPUs.
 3553 * And can assume that any active CPU must be online. Conversely
 3554 * select_task_rq() below may allow selection of !active CPUs in order
 3555 * to satisfy the above rules.
 3556 */
 3557static int select_fallback_rq(int cpu, struct task_struct *p)
 3558{
 3559	int nid = cpu_to_node(cpu);
 3560	const struct cpumask *nodemask = NULL;
 3561	enum { cpuset, possible, fail } state = cpuset;
 3562	int dest_cpu;
 3563
 3564	/*
 3565	 * If the node that the CPU is on has been offlined, cpu_to_node()
 3566	 * will return -1. There is no CPU on the node, and we should
 3567	 * select the CPU on the other node.
 3568	 */
 3569	if (nid != -1) {
 3570		nodemask = cpumask_of_node(nid);
 3571
 3572		/* Look for allowed, online CPU in same node. */
 3573		for_each_cpu(dest_cpu, nodemask) {
 3574			if (is_cpu_allowed(p, dest_cpu))
 3575				return dest_cpu;
 3576		}
 3577	}
 3578
 3579	for (;;) {
 3580		/* Any allowed, online CPU? */
 3581		for_each_cpu(dest_cpu, p->cpus_ptr) {
 3582			if (!is_cpu_allowed(p, dest_cpu))
 3583				continue;
 3584
 3585			goto out;
 3586		}
 3587
 3588		/* No more Mr. Nice Guy. */
 3589		switch (state) {
 3590		case cpuset:
 3591			if (cpuset_cpus_allowed_fallback(p)) {
 3592				state = possible;
 3593				break;
 3594			}
 3595			fallthrough;
 3596		case possible:
 3597			/*
 3598			 * XXX When called from select_task_rq() we only
 3599			 * hold p->pi_lock and again violate locking order.
 3600			 *
 3601			 * More yuck to audit.
 3602			 */
 3603			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
 3604			state = fail;
 3605			break;
 3606		case fail:
 3607			BUG();
 3608			break;
 3609		}
 3610	}
 3611
 3612out:
 3613	if (state != cpuset) {
 3614		/*
 3615		 * Don't tell them about moving exiting tasks or
 3616		 * kernel threads (both mm NULL), since they never
 3617		 * leave kernel.
 3618		 */
 3619		if (p->mm && printk_ratelimit()) {
 3620			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
 3621					task_pid_nr(p), p->comm, cpu);
 3622		}
 3623	}
 3624
 3625	return dest_cpu;
 3626}
 3627
 3628/*
 3629 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
 3630 */
 3631static inline
 3632int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
 3633{
 3634	lockdep_assert_held(&p->pi_lock);
 3635
 3636	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
 3637		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
 3638	else
 3639		cpu = cpumask_any(p->cpus_ptr);
 3640
 3641	/*
 3642	 * In order not to call set_task_cpu() on a blocking task we need
 3643	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
 3644	 * CPU.
 3645	 *
 3646	 * Since this is common to all placement strategies, this lives here.
 3647	 *
 3648	 * [ this allows ->select_task() to simply return task_cpu(p) and
 3649	 *   not worry about this generic constraint ]
 3650	 */
 3651	if (unlikely(!is_cpu_allowed(p, cpu)))
 3652		cpu = select_fallback_rq(task_cpu(p), p);
 3653
 3654	return cpu;
 3655}
 3656
 3657void sched_set_stop_task(int cpu, struct task_struct *stop)
 3658{
 3659	static struct lock_class_key stop_pi_lock;
 3660	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 3661	struct task_struct *old_stop = cpu_rq(cpu)->stop;
 3662
 3663	if (stop) {
 3664		/*
 3665		 * Make it appear like a SCHED_FIFO task, its something
 3666		 * userspace knows about and won't get confused about.
 3667		 *
 3668		 * Also, it will make PI more or less work without too
 3669		 * much confusion -- but then, stop work should not
 3670		 * rely on PI working anyway.
 3671		 */
 3672		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
 3673
 3674		stop->sched_class = &stop_sched_class;
 3675
 3676		/*
 3677		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
 3678		 * adjust the effective priority of a task. As a result,
 3679		 * rt_mutex_setprio() can trigger (RT) balancing operations,
 3680		 * which can then trigger wakeups of the stop thread to push
 3681		 * around the current task.
 3682		 *
 3683		 * The stop task itself will never be part of the PI-chain, it
 3684		 * never blocks, therefore that ->pi_lock recursion is safe.
 3685		 * Tell lockdep about this by placing the stop->pi_lock in its
 3686		 * own class.
 3687		 */
 3688		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
 3689	}
 3690
 3691	cpu_rq(cpu)->stop = stop;
 3692
 3693	if (old_stop) {
 3694		/*
 3695		 * Reset it back to a normal scheduling class so that
 3696		 * it can die in pieces.
 3697		 */
 3698		old_stop->sched_class = &rt_sched_class;
 3699	}
 3700}
 3701
 3702#else /* CONFIG_SMP */
 3703
 3704static inline int __set_cpus_allowed_ptr(struct task_struct *p,
 3705					 struct affinity_context *ctx)
 3706{
 3707	return set_cpus_allowed_ptr(p, ctx->new_mask);
 3708}
 3709
 3710static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
 3711
 3712static inline bool rq_has_pinned_tasks(struct rq *rq)
 3713{
 3714	return false;
 3715}
 3716
 3717static inline cpumask_t *alloc_user_cpus_ptr(int node)
 3718{
 3719	return NULL;
 3720}
 3721
 3722#endif /* !CONFIG_SMP */
 3723
 3724static void
 3725ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
 3726{
 3727	struct rq *rq;
 3728
 3729	if (!schedstat_enabled())
 3730		return;
 3731
 3732	rq = this_rq();
 3733
 3734#ifdef CONFIG_SMP
 3735	if (cpu == rq->cpu) {
 3736		__schedstat_inc(rq->ttwu_local);
 3737		__schedstat_inc(p->stats.nr_wakeups_local);
 3738	} else {
 3739		struct sched_domain *sd;
 3740
 3741		__schedstat_inc(p->stats.nr_wakeups_remote);
 3742
 3743		guard(rcu)();
 3744		for_each_domain(rq->cpu, sd) {
 3745			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
 3746				__schedstat_inc(sd->ttwu_wake_remote);
 3747				break;
 3748			}
 3749		}
 3750	}
 3751
 3752	if (wake_flags & WF_MIGRATED)
 3753		__schedstat_inc(p->stats.nr_wakeups_migrate);
 3754#endif /* CONFIG_SMP */
 3755
 3756	__schedstat_inc(rq->ttwu_count);
 3757	__schedstat_inc(p->stats.nr_wakeups);
 3758
 3759	if (wake_flags & WF_SYNC)
 3760		__schedstat_inc(p->stats.nr_wakeups_sync);
 3761}
 3762
 3763/*
 3764 * Mark the task runnable.
 3765 */
 3766static inline void ttwu_do_wakeup(struct task_struct *p)
 3767{
 3768	WRITE_ONCE(p->__state, TASK_RUNNING);
 3769	trace_sched_wakeup(p);
 3770}
 3771
 3772static void
 3773ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
 3774		 struct rq_flags *rf)
 3775{
 3776	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
 3777
 3778	lockdep_assert_rq_held(rq);
 3779
 3780	if (p->sched_contributes_to_load)
 3781		rq->nr_uninterruptible--;
 3782
 3783#ifdef CONFIG_SMP
 3784	if (wake_flags & WF_MIGRATED)
 3785		en_flags |= ENQUEUE_MIGRATED;
 3786	else
 3787#endif
 3788	if (p->in_iowait) {
 3789		delayacct_blkio_end(p);
 3790		atomic_dec(&task_rq(p)->nr_iowait);
 3791	}
 3792
 3793	activate_task(rq, p, en_flags);
 3794	wakeup_preempt(rq, p, wake_flags);
 3795
 3796	ttwu_do_wakeup(p);
 3797
 3798#ifdef CONFIG_SMP
 3799	if (p->sched_class->task_woken) {
 3800		/*
 3801		 * Our task @p is fully woken up and running; so it's safe to
 3802		 * drop the rq->lock, hereafter rq is only used for statistics.
 3803		 */
 3804		rq_unpin_lock(rq, rf);
 3805		p->sched_class->task_woken(rq, p);
 3806		rq_repin_lock(rq, rf);
 3807	}
 3808
 3809	if (rq->idle_stamp) {
 3810		u64 delta = rq_clock(rq) - rq->idle_stamp;
 3811		u64 max = 2*rq->max_idle_balance_cost;
 3812
 3813		update_avg(&rq->avg_idle, delta);
 3814
 3815		if (rq->avg_idle > max)
 3816			rq->avg_idle = max;
 3817
 3818		rq->idle_stamp = 0;
 3819	}
 3820#endif
 3821
 3822	p->dl_server = NULL;
 3823}
 3824
 3825/*
 3826 * Consider @p being inside a wait loop:
 3827 *
 3828 *   for (;;) {
 3829 *      set_current_state(TASK_UNINTERRUPTIBLE);
 3830 *
 3831 *      if (CONDITION)
 3832 *         break;
 3833 *
 3834 *      schedule();
 3835 *   }
 3836 *   __set_current_state(TASK_RUNNING);
 3837 *
 3838 * between set_current_state() and schedule(). In this case @p is still
 3839 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
 3840 * an atomic manner.
 3841 *
 3842 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
 3843 * then schedule() must still happen and p->state can be changed to
 3844 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
 3845 * need to do a full wakeup with enqueue.
 3846 *
 3847 * Returns: %true when the wakeup is done,
 3848 *          %false otherwise.
 3849 */
 3850static int ttwu_runnable(struct task_struct *p, int wake_flags)
 3851{
 3852	struct rq_flags rf;
 3853	struct rq *rq;
 3854	int ret = 0;
 3855
 3856	rq = __task_rq_lock(p, &rf);
 3857	if (task_on_rq_queued(p)) {
 3858		if (!task_on_cpu(rq, p)) {
 3859			/*
 3860			 * When on_rq && !on_cpu the task is preempted, see if
 3861			 * it should preempt the task that is current now.
 3862			 */
 3863			update_rq_clock(rq);
 3864			wakeup_preempt(rq, p, wake_flags);
 3865		}
 3866		ttwu_do_wakeup(p);
 3867		ret = 1;
 3868	}
 3869	__task_rq_unlock(rq, &rf);
 3870
 3871	return ret;
 3872}
 3873
 3874#ifdef CONFIG_SMP
 3875void sched_ttwu_pending(void *arg)
 3876{
 3877	struct llist_node *llist = arg;
 3878	struct rq *rq = this_rq();
 3879	struct task_struct *p, *t;
 3880	struct rq_flags rf;
 3881
 3882	if (!llist)
 3883		return;
 3884
 3885	rq_lock_irqsave(rq, &rf);
 3886	update_rq_clock(rq);
 3887
 3888	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
 3889		if (WARN_ON_ONCE(p->on_cpu))
 3890			smp_cond_load_acquire(&p->on_cpu, !VAL);
 3891
 3892		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
 3893			set_task_cpu(p, cpu_of(rq));
 3894
 3895		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
 3896	}
 3897
 3898	/*
 3899	 * Must be after enqueueing at least once task such that
 3900	 * idle_cpu() does not observe a false-negative -- if it does,
 3901	 * it is possible for select_idle_siblings() to stack a number
 3902	 * of tasks on this CPU during that window.
 3903	 *
 3904	 * It is ok to clear ttwu_pending when another task pending.
 3905	 * We will receive IPI after local irq enabled and then enqueue it.
 3906	 * Since now nr_running > 0, idle_cpu() will always get correct result.
 3907	 */
 3908	WRITE_ONCE(rq->ttwu_pending, 0);
 3909	rq_unlock_irqrestore(rq, &rf);
 3910}
 3911
 3912/*
 3913 * Prepare the scene for sending an IPI for a remote smp_call
 3914 *
 3915 * Returns true if the caller can proceed with sending the IPI.
 3916 * Returns false otherwise.
 3917 */
 3918bool call_function_single_prep_ipi(int cpu)
 3919{
 3920	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
 3921		trace_sched_wake_idle_without_ipi(cpu);
 3922		return false;
 3923	}
 3924
 3925	return true;
 3926}
 3927
 3928/*
 3929 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
 3930 * necessary. The wakee CPU on receipt of the IPI will queue the task
 3931 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
 3932 * of the wakeup instead of the waker.
 3933 */
 3934static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
 3935{
 3936	struct rq *rq = cpu_rq(cpu);
 3937
 3938	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
 3939
 3940	WRITE_ONCE(rq->ttwu_pending, 1);
 3941	__smp_call_single_queue(cpu, &p->wake_entry.llist);
 3942}
 3943
 3944void wake_up_if_idle(int cpu)
 3945{
 3946	struct rq *rq = cpu_rq(cpu);
 3947
 3948	guard(rcu)();
 3949	if (is_idle_task(rcu_dereference(rq->curr))) {
 3950		guard(rq_lock_irqsave)(rq);
 3951		if (is_idle_task(rq->curr))
 3952			resched_curr(rq);
 3953	}
 3954}
 3955
 3956bool cpus_equal_capacity(int this_cpu, int that_cpu)
 3957{
 3958	if (!sched_asym_cpucap_active())
 3959		return true;
 3960
 3961	if (this_cpu == that_cpu)
 3962		return true;
 3963
 3964	return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
 3965}
 3966
 3967bool cpus_share_cache(int this_cpu, int that_cpu)
 3968{
 3969	if (this_cpu == that_cpu)
 3970		return true;
 3971
 3972	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
 3973}
 3974
 3975/*
 3976 * Whether CPUs are share cache resources, which means LLC on non-cluster
 3977 * machines and LLC tag or L2 on machines with clusters.
 3978 */
 3979bool cpus_share_resources(int this_cpu, int that_cpu)
 3980{
 3981	if (this_cpu == that_cpu)
 3982		return true;
 3983
 3984	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
 3985}
 3986
 3987static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
 3988{
 3989	/*
 3990	 * Do not complicate things with the async wake_list while the CPU is
 3991	 * in hotplug state.
 3992	 */
 3993	if (!cpu_active(cpu))
 3994		return false;
 3995
 3996	/* Ensure the task will still be allowed to run on the CPU. */
 3997	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
 3998		return false;
 3999
 4000	/*
 4001	 * If the CPU does not share cache, then queue the task on the
 4002	 * remote rqs wakelist to avoid accessing remote data.
 4003	 */
 4004	if (!cpus_share_cache(smp_processor_id(), cpu))
 4005		return true;
 4006
 4007	if (cpu == smp_processor_id())
 4008		return false;
 4009
 4010	/*
 4011	 * If the wakee cpu is idle, or the task is descheduling and the
 4012	 * only running task on the CPU, then use the wakelist to offload
 4013	 * the task activation to the idle (or soon-to-be-idle) CPU as
 4014	 * the current CPU is likely busy. nr_running is checked to
 4015	 * avoid unnecessary task stacking.
 4016	 *
 4017	 * Note that we can only get here with (wakee) p->on_rq=0,
 4018	 * p->on_cpu can be whatever, we've done the dequeue, so
 4019	 * the wakee has been accounted out of ->nr_running.
 4020	 */
 4021	if (!cpu_rq(cpu)->nr_running)
 4022		return true;
 4023
 4024	return false;
 4025}
 4026
 4027static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
 4028{
 4029	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
 4030		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
 4031		__ttwu_queue_wakelist(p, cpu, wake_flags);
 4032		return true;
 4033	}
 4034
 4035	return false;
 4036}
 4037
 4038#else /* !CONFIG_SMP */
 4039
 4040static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
 4041{
 4042	return false;
 4043}
 4044
 4045#endif /* CONFIG_SMP */
 4046
 4047static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
 4048{
 4049	struct rq *rq = cpu_rq(cpu);
 4050	struct rq_flags rf;
 4051
 4052	if (ttwu_queue_wakelist(p, cpu, wake_flags))
 4053		return;
 4054
 4055	rq_lock(rq, &rf);
 4056	update_rq_clock(rq);
 4057	ttwu_do_activate(rq, p, wake_flags, &rf);
 4058	rq_unlock(rq, &rf);
 4059}
 4060
 4061/*
 4062 * Invoked from try_to_wake_up() to check whether the task can be woken up.
 4063 *
 4064 * The caller holds p::pi_lock if p != current or has preemption
 4065 * disabled when p == current.
 4066 *
 4067 * The rules of saved_state:
 4068 *
 4069 *   The related locking code always holds p::pi_lock when updating
 4070 *   p::saved_state, which means the code is fully serialized in both cases.
 4071 *
 4072 *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
 4073 *   No other bits set. This allows to distinguish all wakeup scenarios.
 4074 *
 4075 *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
 4076 *   allows us to prevent early wakeup of tasks before they can be run on
 4077 *   asymmetric ISA architectures (eg ARMv9).
 4078 */
 4079static __always_inline
 4080bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
 4081{
 4082	int match;
 4083
 4084	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
 4085		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
 4086			     state != TASK_RTLOCK_WAIT);
 4087	}
 4088
 4089	*success = !!(match = __task_state_match(p, state));
 4090
 4091	/*
 4092	 * Saved state preserves the task state across blocking on
 4093	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
 4094	 * set p::saved_state to TASK_RUNNING, but do not wake the task
 4095	 * because it waits for a lock wakeup or __thaw_task(). Also
 4096	 * indicate success because from the regular waker's point of
 4097	 * view this has succeeded.
 4098	 *
 4099	 * After acquiring the lock the task will restore p::__state
 4100	 * from p::saved_state which ensures that the regular
 4101	 * wakeup is not lost. The restore will also set
 4102	 * p::saved_state to TASK_RUNNING so any further tests will
 4103	 * not result in false positives vs. @success
 4104	 */
 4105	if (match < 0)
 4106		p->saved_state = TASK_RUNNING;
 4107
 4108	return match > 0;
 4109}
 4110
 4111/*
 4112 * Notes on Program-Order guarantees on SMP systems.
 4113 *
 4114 *  MIGRATION
 4115 *
 4116 * The basic program-order guarantee on SMP systems is that when a task [t]
 4117 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
 4118 * execution on its new CPU [c1].
 4119 *
 4120 * For migration (of runnable tasks) this is provided by the following means:
 4121 *
 4122 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 4123 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 4124 *     rq(c1)->lock (if not at the same time, then in that order).
 4125 *  C) LOCK of the rq(c1)->lock scheduling in task
 4126 *
 4127 * Release/acquire chaining guarantees that B happens after A and C after B.
 4128 * Note: the CPU doing B need not be c0 or c1
 4129 *
 4130 * Example:
 4131 *
 4132 *   CPU0            CPU1            CPU2
 4133 *
 4134 *   LOCK rq(0)->lock
 4135 *   sched-out X
 4136 *   sched-in Y
 4137 *   UNLOCK rq(0)->lock
 4138 *
 4139 *                                   LOCK rq(0)->lock // orders against CPU0
 4140 *                                   dequeue X
 4141 *                                   UNLOCK rq(0)->lock
 4142 *
 4143 *                                   LOCK rq(1)->lock
 4144 *                                   enqueue X
 4145 *                                   UNLOCK rq(1)->lock
 4146 *
 4147 *                   LOCK rq(1)->lock // orders against CPU2
 4148 *                   sched-out Z
 4149 *                   sched-in X
 4150 *                   UNLOCK rq(1)->lock
 4151 *
 4152 *
 4153 *  BLOCKING -- aka. SLEEP + WAKEUP
 4154 *
 4155 * For blocking we (obviously) need to provide the same guarantee as for
 4156 * migration. However the means are completely different as there is no lock
 4157 * chain to provide order. Instead we do:
 4158 *
 4159 *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
 4160 *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
 4161 *
 4162 * Example:
 4163 *
 4164 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 4165 *
 4166 *   LOCK rq(0)->lock LOCK X->pi_lock
 4167 *   dequeue X
 4168 *   sched-out X
 4169 *   smp_store_release(X->on_cpu, 0);
 4170 *
 4171 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
 4172 *                    X->state = WAKING
 4173 *                    set_task_cpu(X,2)
 4174 *
 4175 *                    LOCK rq(2)->lock
 4176 *                    enqueue X
 4177 *                    X->state = RUNNING
 4178 *                    UNLOCK rq(2)->lock
 4179 *
 4180 *                                          LOCK rq(2)->lock // orders against CPU1
 4181 *                                          sched-out Z
 4182 *                                          sched-in X
 4183 *                                          UNLOCK rq(2)->lock
 4184 *
 4185 *                    UNLOCK X->pi_lock
 4186 *   UNLOCK rq(0)->lock
 4187 *
 4188 *
 4189 * However, for wakeups there is a second guarantee we must provide, namely we
 4190 * must ensure that CONDITION=1 done by the caller can not be reordered with
 4191 * accesses to the task state; see try_to_wake_up() and set_current_state().
 4192 */
 4193
 4194/**
 4195 * try_to_wake_up - wake up a thread
 4196 * @p: the thread to be awakened
 4197 * @state: the mask of task states that can be woken
 4198 * @wake_flags: wake modifier flags (WF_*)
 4199 *
 4200 * Conceptually does:
 4201 *
 4202 *   If (@state & @p->state) @p->state = TASK_RUNNING.
 4203 *
 4204 * If the task was not queued/runnable, also place it back on a runqueue.
 4205 *
 4206 * This function is atomic against schedule() which would dequeue the task.
 4207 *
 4208 * It issues a full memory barrier before accessing @p->state, see the comment
 4209 * with set_current_state().
 4210 *
 4211 * Uses p->pi_lock to serialize against concurrent wake-ups.
 4212 *
 4213 * Relies on p->pi_lock stabilizing:
 4214 *  - p->sched_class
 4215 *  - p->cpus_ptr
 4216 *  - p->sched_task_group
 4217 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
 4218 *
 4219 * Tries really hard to only take one task_rq(p)->lock for performance.
 4220 * Takes rq->lock in:
 4221 *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
 4222 *  - ttwu_queue()       -- new rq, for enqueue of the task;
 4223 *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
 4224 *
 4225 * As a consequence we race really badly with just about everything. See the
 4226 * many memory barriers and their comments for details.
 4227 *
 4228 * Return: %true if @p->state changes (an actual wakeup was done),
 4229 *	   %false otherwise.
 4230 */
 4231int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
 4232{
 4233	guard(preempt)();
 4234	int cpu, success = 0;
 4235
 4236	if (p == current) {
 4237		/*
 4238		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
 4239		 * == smp_processor_id()'. Together this means we can special
 4240		 * case the whole 'p->on_rq && ttwu_runnable()' case below
 4241		 * without taking any locks.
 4242		 *
 4243		 * In particular:
 4244		 *  - we rely on Program-Order guarantees for all the ordering,
 4245		 *  - we're serialized against set_special_state() by virtue of
 4246		 *    it disabling IRQs (this allows not taking ->pi_lock).
 4247		 */
 4248		if (!ttwu_state_match(p, state, &success))
 4249			goto out;
 4250
 4251		trace_sched_waking(p);
 4252		ttwu_do_wakeup(p);
 4253		goto out;
 4254	}
 4255
 4256	/*
 4257	 * If we are going to wake up a thread waiting for CONDITION we
 4258	 * need to ensure that CONDITION=1 done by the caller can not be
 4259	 * reordered with p->state check below. This pairs with smp_store_mb()
 4260	 * in set_current_state() that the waiting thread does.
 4261	 */
 4262	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
 4263		smp_mb__after_spinlock();
 4264		if (!ttwu_state_match(p, state, &success))
 4265			break;
 4266
 4267		trace_sched_waking(p);
 4268
 4269		/*
 4270		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
 4271		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
 4272		 * in smp_cond_load_acquire() below.
 4273		 *
 4274		 * sched_ttwu_pending()			try_to_wake_up()
 4275		 *   STORE p->on_rq = 1			  LOAD p->state
 4276		 *   UNLOCK rq->lock
 4277		 *
 4278		 * __schedule() (switch to task 'p')
 4279		 *   LOCK rq->lock			  smp_rmb();
 4280		 *   smp_mb__after_spinlock();
 4281		 *   UNLOCK rq->lock
 4282		 *
 4283		 * [task p]
 4284		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
 4285		 *
 4286		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
 4287		 * __schedule().  See the comment for smp_mb__after_spinlock().
 4288		 *
 4289		 * A similar smp_rmb() lives in __task_needs_rq_lock().
 4290		 */
 4291		smp_rmb();
 4292		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
 4293			break;
 4294
 4295#ifdef CONFIG_SMP
 4296		/*
 4297		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
 4298		 * possible to, falsely, observe p->on_cpu == 0.
 4299		 *
 4300		 * One must be running (->on_cpu == 1) in order to remove oneself
 4301		 * from the runqueue.
 4302		 *
 4303		 * __schedule() (switch to task 'p')	try_to_wake_up()
 4304		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
 4305		 *   UNLOCK rq->lock
 4306		 *
 4307		 * __schedule() (put 'p' to sleep)
 4308		 *   LOCK rq->lock			  smp_rmb();
 4309		 *   smp_mb__after_spinlock();
 4310		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
 4311		 *
 4312		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
 4313		 * __schedule().  See the comment for smp_mb__after_spinlock().
 4314		 *
 4315		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
 4316		 * schedule()'s deactivate_task() has 'happened' and p will no longer
 4317		 * care about it's own p->state. See the comment in __schedule().
 4318		 */
 4319		smp_acquire__after_ctrl_dep();
 4320
 4321		/*
 4322		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
 4323		 * == 0), which means we need to do an enqueue, change p->state to
 4324		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
 4325		 * enqueue, such as ttwu_queue_wakelist().
 4326		 */
 4327		WRITE_ONCE(p->__state, TASK_WAKING);
 4328
 4329		/*
 4330		 * If the owning (remote) CPU is still in the middle of schedule() with
 4331		 * this task as prev, considering queueing p on the remote CPUs wake_list
 4332		 * which potentially sends an IPI instead of spinning on p->on_cpu to
 4333		 * let the waker make forward progress. This is safe because IRQs are
 4334		 * disabled and the IPI will deliver after on_cpu is cleared.
 4335		 *
 4336		 * Ensure we load task_cpu(p) after p->on_cpu:
 4337		 *
 4338		 * set_task_cpu(p, cpu);
 4339		 *   STORE p->cpu = @cpu
 4340		 * __schedule() (switch to task 'p')
 4341		 *   LOCK rq->lock
 4342		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
 4343		 *   STORE p->on_cpu = 1		LOAD p->cpu
 4344		 *
 4345		 * to ensure we observe the correct CPU on which the task is currently
 4346		 * scheduling.
 4347		 */
 4348		if (smp_load_acquire(&p->on_cpu) &&
 4349		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
 4350			break;
 4351
 4352		/*
 4353		 * If the owning (remote) CPU is still in the middle of schedule() with
 4354		 * this task as prev, wait until it's done referencing the task.
 4355		 *
 4356		 * Pairs with the smp_store_release() in finish_task().
 4357		 *
 4358		 * This ensures that tasks getting woken will be fully ordered against
 4359		 * their previous state and preserve Program Order.
 4360		 */
 4361		smp_cond_load_acquire(&p->on_cpu, !VAL);
 4362
 4363		cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
 4364		if (task_cpu(p) != cpu) {
 4365			if (p->in_iowait) {
 4366				delayacct_blkio_end(p);
 4367				atomic_dec(&task_rq(p)->nr_iowait);
 4368			}
 4369
 4370			wake_flags |= WF_MIGRATED;
 4371			psi_ttwu_dequeue(p);
 4372			set_task_cpu(p, cpu);
 4373		}
 4374#else
 4375		cpu = task_cpu(p);
 4376#endif /* CONFIG_SMP */
 4377
 4378		ttwu_queue(p, cpu, wake_flags);
 4379	}
 4380out:
 4381	if (success)
 4382		ttwu_stat(p, task_cpu(p), wake_flags);
 4383
 4384	return success;
 4385}
 4386
 4387static bool __task_needs_rq_lock(struct task_struct *p)
 4388{
 4389	unsigned int state = READ_ONCE(p->__state);
 4390
 4391	/*
 4392	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
 4393	 * the task is blocked. Make sure to check @state since ttwu() can drop
 4394	 * locks at the end, see ttwu_queue_wakelist().
 4395	 */
 4396	if (state == TASK_RUNNING || state == TASK_WAKING)
 4397		return true;
 4398
 4399	/*
 4400	 * Ensure we load p->on_rq after p->__state, otherwise it would be
 4401	 * possible to, falsely, observe p->on_rq == 0.
 4402	 *
 4403	 * See try_to_wake_up() for a longer comment.
 4404	 */
 4405	smp_rmb();
 4406	if (p->on_rq)
 4407		return true;
 4408
 4409#ifdef CONFIG_SMP
 4410	/*
 4411	 * Ensure the task has finished __schedule() and will not be referenced
 4412	 * anymore. Again, see try_to_wake_up() for a longer comment.
 4413	 */
 4414	smp_rmb();
 4415	smp_cond_load_acquire(&p->on_cpu, !VAL);
 4416#endif
 4417
 4418	return false;
 4419}
 4420
 4421/**
 4422 * task_call_func - Invoke a function on task in fixed state
 4423 * @p: Process for which the function is to be invoked, can be @current.
 4424 * @func: Function to invoke.
 4425 * @arg: Argument to function.
 4426 *
 4427 * Fix the task in it's current state by avoiding wakeups and or rq operations
 4428 * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
 4429 * to work out what the state is, if required.  Given that @func can be invoked
 4430 * with a runqueue lock held, it had better be quite lightweight.
 4431 *
 4432 * Returns:
 4433 *   Whatever @func returns
 4434 */
 4435int task_call_func(struct task_struct *p, task_call_f func, void *arg)
 4436{
 4437	struct rq *rq = NULL;
 4438	struct rq_flags rf;
 4439	int ret;
 4440
 4441	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
 4442
 4443	if (__task_needs_rq_lock(p))
 4444		rq = __task_rq_lock(p, &rf);
 4445
 4446	/*
 4447	 * At this point the task is pinned; either:
 4448	 *  - blocked and we're holding off wakeups	 (pi->lock)
 4449	 *  - woken, and we're holding off enqueue	 (rq->lock)
 4450	 *  - queued, and we're holding off schedule	 (rq->lock)
 4451	 *  - running, and we're holding off de-schedule (rq->lock)
 4452	 *
 4453	 * The called function (@func) can use: task_curr(), p->on_rq and
 4454	 * p->__state to differentiate between these states.
 4455	 */
 4456	ret = func(p, arg);
 4457
 4458	if (rq)
 4459		rq_unlock(rq, &rf);
 4460
 4461	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
 4462	return ret;
 4463}
 4464
 4465/**
 4466 * cpu_curr_snapshot - Return a snapshot of the currently running task
 4467 * @cpu: The CPU on which to snapshot the task.
 4468 *
 4469 * Returns the task_struct pointer of the task "currently" running on
 4470 * the specified CPU.  If the same task is running on that CPU throughout,
 4471 * the return value will be a pointer to that task's task_struct structure.
 4472 * If the CPU did any context switches even vaguely concurrently with the
 4473 * execution of this function, the return value will be a pointer to the
 4474 * task_struct structure of a randomly chosen task that was running on
 4475 * that CPU somewhere around the time that this function was executing.
 4476 *
 4477 * If the specified CPU was offline, the return value is whatever it
 4478 * is, perhaps a pointer to the task_struct structure of that CPU's idle
 4479 * task, but there is no guarantee.  Callers wishing a useful return
 4480 * value must take some action to ensure that the specified CPU remains
 4481 * online throughout.
 4482 *
 4483 * This function executes full memory barriers before and after fetching
 4484 * the pointer, which permits the caller to confine this function's fetch
 4485 * with respect to the caller's accesses to other shared variables.
 4486 */
 4487struct task_struct *cpu_curr_snapshot(int cpu)
 4488{
 4489	struct task_struct *t;
 4490
 4491	smp_mb(); /* Pairing determined by caller's synchronization design. */
 4492	t = rcu_dereference(cpu_curr(cpu));
 4493	smp_mb(); /* Pairing determined by caller's synchronization design. */
 4494	return t;
 4495}
 4496
 4497/**
 4498 * wake_up_process - Wake up a specific process
 4499 * @p: The process to be woken up.
 4500 *
 4501 * Attempt to wake up the nominated process and move it to the set of runnable
 4502 * processes.
 4503 *
 4504 * Return: 1 if the process was woken up, 0 if it was already running.
 4505 *
 4506 * This function executes a full memory barrier before accessing the task state.
 4507 */
 4508int wake_up_process(struct task_struct *p)
 4509{
 4510	return try_to_wake_up(p, TASK_NORMAL, 0);
 4511}
 4512EXPORT_SYMBOL(wake_up_process);
 4513
 4514int wake_up_state(struct task_struct *p, unsigned int state)
 4515{
 4516	return try_to_wake_up(p, state, 0);
 4517}
 4518
 4519/*
 4520 * Perform scheduler related setup for a newly forked process p.
 4521 * p is forked by current.
 4522 *
 4523 * __sched_fork() is basic setup used by init_idle() too:
 4524 */
 4525static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
 4526{
 4527	p->on_rq			= 0;
 4528
 4529	p->se.on_rq			= 0;
 4530	p->se.exec_start		= 0;
 4531	p->se.sum_exec_runtime		= 0;
 4532	p->se.prev_sum_exec_runtime	= 0;
 4533	p->se.nr_migrations		= 0;
 4534	p->se.vruntime			= 0;
 4535	p->se.vlag			= 0;
 4536	p->se.slice			= sysctl_sched_base_slice;
 4537	INIT_LIST_HEAD(&p->se.group_node);
 4538
 4539#ifdef CONFIG_FAIR_GROUP_SCHED
 4540	p->se.cfs_rq			= NULL;
 4541#endif
 4542
 4543#ifdef CONFIG_SCHEDSTATS
 4544	/* Even if schedstat is disabled, there should not be garbage */
 4545	memset(&p->stats, 0, sizeof(p->stats));
 4546#endif
 4547
 4548	init_dl_entity(&p->dl);
 4549
 4550	INIT_LIST_HEAD(&p->rt.run_list);
 4551	p->rt.timeout		= 0;
 4552	p->rt.time_slice	= sched_rr_timeslice;
 4553	p->rt.on_rq		= 0;
 4554	p->rt.on_list		= 0;
 4555
 4556#ifdef CONFIG_PREEMPT_NOTIFIERS
 4557	INIT_HLIST_HEAD(&p->preempt_notifiers);
 4558#endif
 4559
 4560#ifdef CONFIG_COMPACTION
 4561	p->capture_control = NULL;
 4562#endif
 4563	init_numa_balancing(clone_flags, p);
 4564#ifdef CONFIG_SMP
 4565	p->wake_entry.u_flags = CSD_TYPE_TTWU;
 4566	p->migration_pending = NULL;
 4567#endif
 4568	init_sched_mm_cid(p);
 4569}
 4570
 4571DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
 4572
 4573#ifdef CONFIG_NUMA_BALANCING
 4574
 4575int sysctl_numa_balancing_mode;
 4576
 4577static void __set_numabalancing_state(bool enabled)
 4578{
 4579	if (enabled)
 4580		static_branch_enable(&sched_numa_balancing);
 4581	else
 4582		static_branch_disable(&sched_numa_balancing);
 4583}
 4584
 4585void set_numabalancing_state(bool enabled)
 4586{
 4587	if (enabled)
 4588		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
 4589	else
 4590		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
 4591	__set_numabalancing_state(enabled);
 4592}
 4593
 4594#ifdef CONFIG_PROC_SYSCTL
 4595static void reset_memory_tiering(void)
 4596{
 4597	struct pglist_data *pgdat;
 4598
 4599	for_each_online_pgdat(pgdat) {
 4600		pgdat->nbp_threshold = 0;
 4601		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
 4602		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
 4603	}
 4604}
 4605
 4606static int sysctl_numa_balancing(struct ctl_table *table, int write,
 4607			  void *buffer, size_t *lenp, loff_t *ppos)
 4608{
 4609	struct ctl_table t;
 4610	int err;
 4611	int state = sysctl_numa_balancing_mode;
 4612
 4613	if (write && !capable(CAP_SYS_ADMIN))
 4614		return -EPERM;
 4615
 4616	t = *table;
 4617	t.data = &state;
 4618	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
 4619	if (err < 0)
 4620		return err;
 4621	if (write) {
 4622		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
 4623		    (state & NUMA_BALANCING_MEMORY_TIERING))
 4624			reset_memory_tiering();
 4625		sysctl_numa_balancing_mode = state;
 4626		__set_numabalancing_state(state);
 4627	}
 4628	return err;
 4629}
 4630#endif
 4631#endif
 4632
 4633#ifdef CONFIG_SCHEDSTATS
 4634
 4635DEFINE_STATIC_KEY_FALSE(sched_schedstats);
 4636
 4637static void set_schedstats(bool enabled)
 4638{
 4639	if (enabled)
 4640		static_branch_enable(&sched_schedstats);
 4641	else
 4642		static_branch_disable(&sched_schedstats);
 4643}
 4644
 4645void force_schedstat_enabled(void)
 4646{
 4647	if (!schedstat_enabled()) {
 4648		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
 4649		static_branch_enable(&sched_schedstats);
 4650	}
 4651}
 4652
 4653static int __init setup_schedstats(char *str)
 4654{
 4655	int ret = 0;
 4656	if (!str)
 4657		goto out;
 4658
 4659	if (!strcmp(str, "enable")) {
 4660		set_schedstats(true);
 4661		ret = 1;
 4662	} else if (!strcmp(str, "disable")) {
 4663		set_schedstats(false);
 4664		ret = 1;
 4665	}
 4666out:
 4667	if (!ret)
 4668		pr_warn("Unable to parse schedstats=\n");
 4669
 4670	return ret;
 4671}
 4672__setup("schedstats=", setup_schedstats);
 4673
 4674#ifdef CONFIG_PROC_SYSCTL
 4675static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
 4676		size_t *lenp, loff_t *ppos)
 4677{
 4678	struct ctl_table t;
 4679	int err;
 4680	int state = static_branch_likely(&sched_schedstats);
 4681
 4682	if (write && !capable(CAP_SYS_ADMIN))
 4683		return -EPERM;
 4684
 4685	t = *table;
 4686	t.data = &state;
 4687	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
 4688	if (err < 0)
 4689		return err;
 4690	if (write)
 4691		set_schedstats(state);
 4692	return err;
 4693}
 4694#endif /* CONFIG_PROC_SYSCTL */
 4695#endif /* CONFIG_SCHEDSTATS */
 4696
 4697#ifdef CONFIG_SYSCTL
 4698static struct ctl_table sched_core_sysctls[] = {
 4699#ifdef CONFIG_SCHEDSTATS
 4700	{
 4701		.procname       = "sched_schedstats",
 4702		.data           = NULL,
 4703		.maxlen         = sizeof(unsigned int),
 4704		.mode           = 0644,
 4705		.proc_handler   = sysctl_schedstats,
 4706		.extra1         = SYSCTL_ZERO,
 4707		.extra2         = SYSCTL_ONE,
 4708	},
 4709#endif /* CONFIG_SCHEDSTATS */
 4710#ifdef CONFIG_UCLAMP_TASK
 4711	{
 4712		.procname       = "sched_util_clamp_min",
 4713		.data           = &sysctl_sched_uclamp_util_min,
 4714		.maxlen         = sizeof(unsigned int),
 4715		.mode           = 0644,
 4716		.proc_handler   = sysctl_sched_uclamp_handler,
 4717	},
 4718	{
 4719		.procname       = "sched_util_clamp_max",
 4720		.data           = &sysctl_sched_uclamp_util_max,
 4721		.maxlen         = sizeof(unsigned int),
 4722		.mode           = 0644,
 4723		.proc_handler   = sysctl_sched_uclamp_handler,
 4724	},
 4725	{
 4726		.procname       = "sched_util_clamp_min_rt_default",
 4727		.data           = &sysctl_sched_uclamp_util_min_rt_default,
 4728		.maxlen         = sizeof(unsigned int),
 4729		.mode           = 0644,
 4730		.proc_handler   = sysctl_sched_uclamp_handler,
 4731	},
 4732#endif /* CONFIG_UCLAMP_TASK */
 4733#ifdef CONFIG_NUMA_BALANCING
 4734	{
 4735		.procname	= "numa_balancing",
 4736		.data		= NULL, /* filled in by handler */
 4737		.maxlen		= sizeof(unsigned int),
 4738		.mode		= 0644,
 4739		.proc_handler	= sysctl_numa_balancing,
 4740		.extra1		= SYSCTL_ZERO,
 4741		.extra2		= SYSCTL_FOUR,
 4742	},
 4743#endif /* CONFIG_NUMA_BALANCING */
 4744	{}
 4745};
 4746static int __init sched_core_sysctl_init(void)
 4747{
 4748	register_sysctl_init("kernel", sched_core_sysctls);
 4749	return 0;
 4750}
 4751late_initcall(sched_core_sysctl_init);
 4752#endif /* CONFIG_SYSCTL */
 4753
 4754/*
 4755 * fork()/clone()-time setup:
 4756 */
 4757int sched_fork(unsigned long clone_flags, struct task_struct *p)
 4758{
 4759	__sched_fork(clone_flags, p);
 4760	/*
 4761	 * We mark the process as NEW here. This guarantees that
 4762	 * nobody will actually run it, and a signal or other external
 4763	 * event cannot wake it up and insert it on the runqueue either.
 4764	 */
 4765	p->__state = TASK_NEW;
 4766
 4767	/*
 4768	 * Make sure we do not leak PI boosting priority to the child.
 4769	 */
 4770	p->prio = current->normal_prio;
 4771
 4772	uclamp_fork(p);
 4773
 4774	/*
 4775	 * Revert to default priority/policy on fork if requested.
 4776	 */
 4777	if (unlikely(p->sched_reset_on_fork)) {
 4778		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
 4779			p->policy = SCHED_NORMAL;
 4780			p->static_prio = NICE_TO_PRIO(0);
 4781			p->rt_priority = 0;
 4782		} else if (PRIO_TO_NICE(p->static_prio) < 0)
 4783			p->static_prio = NICE_TO_PRIO(0);
 4784
 4785		p->prio = p->normal_prio = p->static_prio;
 4786		set_load_weight(p, false);
 4787
 4788		/*
 4789		 * We don't need the reset flag anymore after the fork. It has
 4790		 * fulfilled its duty:
 4791		 */
 4792		p->sched_reset_on_fork = 0;
 4793	}
 4794
 4795	if (dl_prio(p->prio))
 4796		return -EAGAIN;
 4797	else if (rt_prio(p->prio))
 4798		p->sched_class = &rt_sched_class;
 4799	else
 4800		p->sched_class = &fair_sched_class;
 4801
 4802	init_entity_runnable_average(&p->se);
 4803
 4804
 4805#ifdef CONFIG_SCHED_INFO
 4806	if (likely(sched_info_on()))
 4807		memset(&p->sched_info, 0, sizeof(p->sched_info));
 4808#endif
 4809#if defined(CONFIG_SMP)
 4810	p->on_cpu = 0;
 4811#endif
 4812	init_task_preempt_count(p);
 4813#ifdef CONFIG_SMP
 4814	plist_node_init(&p->pushable_tasks, MAX_PRIO);
 4815	RB_CLEAR_NODE(&p->pushable_dl_tasks);
 4816#endif
 4817	return 0;
 4818}
 4819
 4820void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
 4821{
 4822	unsigned long flags;
 4823
 4824	/*
 4825	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
 4826	 * required yet, but lockdep gets upset if rules are violated.
 4827	 */
 4828	raw_spin_lock_irqsave(&p->pi_lock, flags);
 4829#ifdef CONFIG_CGROUP_SCHED
 4830	if (1) {
 4831		struct task_group *tg;
 4832		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
 4833				  struct task_group, css);
 4834		tg = autogroup_task_group(p, tg);
 4835		p->sched_task_group = tg;
 4836	}
 4837#endif
 4838	rseq_migrate(p);
 4839	/*
 4840	 * We're setting the CPU for the first time, we don't migrate,
 4841	 * so use __set_task_cpu().
 4842	 */
 4843	__set_task_cpu(p, smp_processor_id());
 4844	if (p->sched_class->task_fork)
 4845		p->sched_class->task_fork(p);
 4846	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 4847}
 4848
 4849void sched_post_fork(struct task_struct *p)
 4850{
 4851	uclamp_post_fork(p);
 4852}
 4853
 4854unsigned long to_ratio(u64 period, u64 runtime)
 4855{
 4856	if (runtime == RUNTIME_INF)
 4857		return BW_UNIT;
 4858
 4859	/*
 4860	 * Doing this here saves a lot of checks in all
 4861	 * the calling paths, and returning zero seems
 4862	 * safe for them anyway.
 4863	 */
 4864	if (period == 0)
 4865		return 0;
 4866
 4867	return div64_u64(runtime << BW_SHIFT, period);
 4868}
 4869
 4870/*
 4871 * wake_up_new_task - wake up a newly created task for the first time.
 4872 *
 4873 * This function will do some initial scheduler statistics housekeeping
 4874 * that must be done for every newly created context, then puts the task
 4875 * on the runqueue and wakes it.
 4876 */
 4877void wake_up_new_task(struct task_struct *p)
 4878{
 4879	struct rq_flags rf;
 4880	struct rq *rq;
 4881
 4882	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
 4883	WRITE_ONCE(p->__state, TASK_RUNNING);
 4884#ifdef CONFIG_SMP
 4885	/*
 4886	 * Fork balancing, do it here and not earlier because:
 4887	 *  - cpus_ptr can change in the fork path
 4888	 *  - any previously selected CPU might disappear through hotplug
 4889	 *
 4890	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
 4891	 * as we're not fully set-up yet.
 4892	 */
 4893	p->recent_used_cpu = task_cpu(p);
 4894	rseq_migrate(p);
 4895	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
 4896#endif
 4897	rq = __task_rq_lock(p, &rf);
 4898	update_rq_clock(rq);
 4899	post_init_entity_util_avg(p);
 4900
 4901	activate_task(rq, p, ENQUEUE_NOCLOCK);
 4902	trace_sched_wakeup_new(p);
 4903	wakeup_preempt(rq, p, WF_FORK);
 4904#ifdef CONFIG_SMP
 4905	if (p->sched_class->task_woken) {
 4906		/*
 4907		 * Nothing relies on rq->lock after this, so it's fine to
 4908		 * drop it.
 4909		 */
 4910		rq_unpin_lock(rq, &rf);
 4911		p->sched_class->task_woken(rq, p);
 4912		rq_repin_lock(rq, &rf);
 4913	}
 4914#endif
 4915	task_rq_unlock(rq, p, &rf);
 4916}
 4917
 4918#ifdef CONFIG_PREEMPT_NOTIFIERS
 4919
 4920static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
 4921
 4922void preempt_notifier_inc(void)
 4923{
 4924	static_branch_inc(&preempt_notifier_key);
 4925}
 4926EXPORT_SYMBOL_GPL(preempt_notifier_inc);
 4927
 4928void preempt_notifier_dec(void)
 4929{
 4930	static_branch_dec(&preempt_notifier_key);
 4931}
 4932EXPORT_SYMBOL_GPL(preempt_notifier_dec);
 4933
 4934/**
 4935 * preempt_notifier_register - tell me when current is being preempted & rescheduled
 4936 * @notifier: notifier struct to register
 4937 */
 4938void preempt_notifier_register(struct preempt_notifier *notifier)
 4939{
 4940	if (!static_branch_unlikely(&preempt_notifier_key))
 4941		WARN(1, "registering preempt_notifier while notifiers disabled\n");
 4942
 4943	hlist_add_head(&notifier->link, &current->preempt_notifiers);
 4944}
 4945EXPORT_SYMBOL_GPL(preempt_notifier_register);
 4946
 4947/**
 4948 * preempt_notifier_unregister - no longer interested in preemption notifications
 4949 * @notifier: notifier struct to unregister
 4950 *
 4951 * This is *not* safe to call from within a preemption notifier.
 4952 */
 4953void preempt_notifier_unregister(struct preempt_notifier *notifier)
 4954{
 4955	hlist_del(&notifier->link);
 4956}
 4957EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
 4958
 4959static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
 4960{
 4961	struct preempt_notifier *notifier;
 4962
 4963	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
 4964		notifier->ops->sched_in(notifier, raw_smp_processor_id());
 4965}
 4966
 4967static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
 4968{
 4969	if (static_branch_unlikely(&preempt_notifier_key))
 4970		__fire_sched_in_preempt_notifiers(curr);
 4971}
 4972
 4973static void
 4974__fire_sched_out_preempt_notifiers(struct task_struct *curr,
 4975				   struct task_struct *next)
 4976{
 4977	struct preempt_notifier *notifier;
 4978
 4979	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
 4980		notifier->ops->sched_out(notifier, next);
 4981}
 4982
 4983static __always_inline void
 4984fire_sched_out_preempt_notifiers(struct task_struct *curr,
 4985				 struct task_struct *next)
 4986{
 4987	if (static_branch_unlikely(&preempt_notifier_key))
 4988		__fire_sched_out_preempt_notifiers(curr, next);
 4989}
 4990
 4991#else /* !CONFIG_PREEMPT_NOTIFIERS */
 4992
 4993static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
 4994{
 4995}
 4996
 4997static inline void
 4998fire_sched_out_preempt_notifiers(struct task_struct *curr,
 4999				 struct task_struct *next)
 5000{
 5001}
 5002
 5003#endif /* CONFIG_PREEMPT_NOTIFIERS */
 5004
 5005static inline void prepare_task(struct task_struct *next)
 5006{
 5007#ifdef CONFIG_SMP
 5008	/*
 5009	 * Claim the task as running, we do this before switching to it
 5010	 * such that any running task will have this set.
 5011	 *
 5012	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
 5013	 * its ordering comment.
 5014	 */
 5015	WRITE_ONCE(next->on_cpu, 1);
 5016#endif
 5017}
 5018
 5019static inline void finish_task(struct task_struct *prev)
 5020{
 5021#ifdef CONFIG_SMP
 5022	/*
 5023	 * This must be the very last reference to @prev from this CPU. After
 5024	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
 5025	 * must ensure this doesn't happen until the switch is completely
 5026	 * finished.
 5027	 *
 5028	 * In particular, the load of prev->state in finish_task_switch() must
 5029	 * happen before this.
 5030	 *
 5031	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
 5032	 */
 5033	smp_store_release(&prev->on_cpu, 0);
 5034#endif
 5035}
 5036
 5037#ifdef CONFIG_SMP
 5038
 5039static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
 5040{
 5041	void (*func)(struct rq *rq);
 5042	struct balance_callback *next;
 5043
 5044	lockdep_assert_rq_held(rq);
 5045
 5046	while (head) {
 5047		func = (void (*)(struct rq *))head->func;
 5048		next = head->next;
 5049		head->next = NULL;
 5050		head = next;
 5051
 5052		func(rq);
 5053	}
 5054}
 5055
 5056static void balance_push(struct rq *rq);
 5057
 5058/*
 5059 * balance_push_callback is a right abuse of the callback interface and plays
 5060 * by significantly different rules.
 5061 *
 5062 * Where the normal balance_callback's purpose is to be ran in the same context
 5063 * that queued it (only later, when it's safe to drop rq->lock again),
 5064 * balance_push_callback is specifically targeted at __schedule().
 5065 *
 5066 * This abuse is tolerated because it places all the unlikely/odd cases behind
 5067 * a single test, namely: rq->balance_callback == NULL.
 5068 */
 5069struct balance_callback balance_push_callback = {
 5070	.next = NULL,
 5071	.func = balance_push,
 5072};
 5073
 5074static inline struct balance_callback *
 5075__splice_balance_callbacks(struct rq *rq, bool split)
 5076{
 5077	struct balance_callback *head = rq->balance_callback;
 5078
 5079	if (likely(!head))
 5080		return NULL;
 5081
 5082	lockdep_assert_rq_held(rq);
 5083	/*
 5084	 * Must not take balance_push_callback off the list when
 5085	 * splice_balance_callbacks() and balance_callbacks() are not
 5086	 * in the same rq->lock section.
 5087	 *
 5088	 * In that case it would be possible for __schedule() to interleave
 5089	 * and observe the list empty.
 5090	 */
 5091	if (split && head == &balance_push_callback)
 5092		head = NULL;
 5093	else
 5094		rq->balance_callback = NULL;
 5095
 5096	return head;
 5097}
 5098
 5099static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
 5100{
 5101	return __splice_balance_callbacks(rq, true);
 5102}
 5103
 5104static void __balance_callbacks(struct rq *rq)
 5105{
 5106	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
 5107}
 5108
 5109static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
 5110{
 5111	unsigned long flags;
 5112
 5113	if (unlikely(head)) {
 5114		raw_spin_rq_lock_irqsave(rq, flags);
 5115		do_balance_callbacks(rq, head);
 5116		raw_spin_rq_unlock_irqrestore(rq, flags);
 5117	}
 5118}
 5119
 5120#else
 5121
 5122static inline void __balance_callbacks(struct rq *rq)
 5123{
 5124}
 5125
 5126static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
 5127{
 5128	return NULL;
 5129}
 5130
 5131static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
 5132{
 5133}
 5134
 5135#endif
 5136
 5137static inline void
 5138prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
 5139{
 5140	/*
 5141	 * Since the runqueue lock will be released by the next
 5142	 * task (which is an invalid locking op but in the case
 5143	 * of the scheduler it's an obvious special-case), so we
 5144	 * do an early lockdep release here:
 5145	 */
 5146	rq_unpin_lock(rq, rf);
 5147	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
 5148#ifdef CONFIG_DEBUG_SPINLOCK
 5149	/* this is a valid case when another task releases the spinlock */
 5150	rq_lockp(rq)->owner = next;
 5151#endif
 5152}
 5153
 5154static inline void finish_lock_switch(struct rq *rq)
 5155{
 5156	/*
 5157	 * If we are tracking spinlock dependencies then we have to
 5158	 * fix up the runqueue lock - which gets 'carried over' from
 5159	 * prev into current:
 5160	 */
 5161	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
 5162	__balance_callbacks(rq);
 5163	raw_spin_rq_unlock_irq(rq);
 5164}
 5165
 5166/*
 5167 * NOP if the arch has not defined these:
 5168 */
 5169
 5170#ifndef prepare_arch_switch
 5171# define prepare_arch_switch(next)	do { } while (0)
 5172#endif
 5173
 5174#ifndef finish_arch_post_lock_switch
 5175# define finish_arch_post_lock_switch()	do { } while (0)
 5176#endif
 5177
 5178static inline void kmap_local_sched_out(void)
 5179{
 5180#ifdef CONFIG_KMAP_LOCAL
 5181	if (unlikely(current->kmap_ctrl.idx))
 5182		__kmap_local_sched_out();
 5183#endif
 5184}
 5185
 5186static inline void kmap_local_sched_in(void)
 5187{
 5188#ifdef CONFIG_KMAP_LOCAL
 5189	if (unlikely(current->kmap_ctrl.idx))
 5190		__kmap_local_sched_in();
 5191#endif
 5192}
 5193
 5194/**
 5195 * prepare_task_switch - prepare to switch tasks
 5196 * @rq: the runqueue preparing to switch
 5197 * @prev: the current task that is being switched out
 5198 * @next: the task we are going to switch to.
 5199 *
 5200 * This is called with the rq lock held and interrupts off. It must
 5201 * be paired with a subsequent finish_task_switch after the context
 5202 * switch.
 5203 *
 5204 * prepare_task_switch sets up locking and calls architecture specific
 5205 * hooks.
 5206 */
 5207static inline void
 5208prepare_task_switch(struct rq *rq, struct task_struct *prev,
 5209		    struct task_struct *next)
 5210{
 5211	kcov_prepare_switch(prev);
 5212	sched_info_switch(rq, prev, next);
 5213	perf_event_task_sched_out(prev, next);
 5214	rseq_preempt(prev);
 5215	fire_sched_out_preempt_notifiers(prev, next);
 5216	kmap_local_sched_out();
 5217	prepare_task(next);
 5218	prepare_arch_switch(next);
 5219}
 5220
 5221/**
 5222 * finish_task_switch - clean up after a task-switch
 5223 * @prev: the thread we just switched away from.
 5224 *
 5225 * finish_task_switch must be called after the context switch, paired
 5226 * with a prepare_task_switch call before the context switch.
 5227 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 5228 * and do any other architecture-specific cleanup actions.
 5229 *
 5230 * Note that we may have delayed dropping an mm in context_switch(). If
 5231 * so, we finish that here outside of the runqueue lock. (Doing it
 5232 * with the lock held can cause deadlocks; see schedule() for
 5233 * details.)
 5234 *
 5235 * The context switch have flipped the stack from under us and restored the
 5236 * local variables which were saved when this task called schedule() in the
 5237 * past. prev == current is still correct but we need to recalculate this_rq
 5238 * because prev may have moved to another CPU.
 5239 */
 5240static struct rq *finish_task_switch(struct task_struct *prev)
 5241	__releases(rq->lock)
 5242{
 5243	struct rq *rq = this_rq();
 5244	struct mm_struct *mm = rq->prev_mm;
 5245	unsigned int prev_state;
 5246
 5247	/*
 5248	 * The previous task will have left us with a preempt_count of 2
 5249	 * because it left us after:
 5250	 *
 5251	 *	schedule()
 5252	 *	  preempt_disable();			// 1
 5253	 *	  __schedule()
 5254	 *	    raw_spin_lock_irq(&rq->lock)	// 2
 5255	 *
 5256	 * Also, see FORK_PREEMPT_COUNT.
 5257	 */
 5258	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
 5259		      "corrupted preempt_count: %s/%d/0x%x\n",
 5260		      current->comm, current->pid, preempt_count()))
 5261		preempt_count_set(FORK_PREEMPT_COUNT);
 5262
 5263	rq->prev_mm = NULL;
 5264
 5265	/*
 5266	 * A task struct has one reference for the use as "current".
 5267	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
 5268	 * schedule one last time. The schedule call will never return, and
 5269	 * the scheduled task must drop that reference.
 5270	 *
 5271	 * We must observe prev->state before clearing prev->on_cpu (in
 5272	 * finish_task), otherwise a concurrent wakeup can get prev
 5273	 * running on another CPU and we could rave with its RUNNING -> DEAD
 5274	 * transition, resulting in a double drop.
 5275	 */
 5276	prev_state = READ_ONCE(prev->__state);
 5277	vtime_task_switch(prev);
 5278	perf_event_task_sched_in(prev, current);
 5279	finish_task(prev);
 5280	tick_nohz_task_switch();
 5281	finish_lock_switch(rq);
 5282	finish_arch_post_lock_switch();
 5283	kcov_finish_switch(current);
 5284	/*
 5285	 * kmap_local_sched_out() is invoked with rq::lock held and
 5286	 * interrupts disabled. There is no requirement for that, but the
 5287	 * sched out code does not have an interrupt enabled section.
 5288	 * Restoring the maps on sched in does not require interrupts being
 5289	 * disabled either.
 5290	 */
 5291	kmap_local_sched_in();
 5292
 5293	fire_sched_in_preempt_notifiers(current);
 5294	/*
 5295	 * When switching through a kernel thread, the loop in
 5296	 * membarrier_{private,global}_expedited() may have observed that
 5297	 * kernel thread and not issued an IPI. It is therefore possible to
 5298	 * schedule between user->kernel->user threads without passing though
 5299	 * switch_mm(). Membarrier requires a barrier after storing to
 5300	 * rq->curr, before returning to userspace, so provide them here:
 5301	 *
 5302	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
 5303	 *   provided by mmdrop_lazy_tlb(),
 5304	 * - a sync_core for SYNC_CORE.
 5305	 */
 5306	if (mm) {
 5307		membarrier_mm_sync_core_before_usermode(mm);
 5308		mmdrop_lazy_tlb_sched(mm);
 5309	}
 5310
 5311	if (unlikely(prev_state == TASK_DEAD)) {
 5312		if (prev->sched_class->task_dead)
 5313			prev->sched_class->task_dead(prev);
 5314
 5315		/* Task is done with its stack. */
 5316		put_task_stack(prev);
 5317
 5318		put_task_struct_rcu_user(prev);
 5319	}
 5320
 5321	return rq;
 5322}
 5323
 5324/**
 5325 * schedule_tail - first thing a freshly forked thread must call.
 5326 * @prev: the thread we just switched away from.
 5327 */
 5328asmlinkage __visible void schedule_tail(struct task_struct *prev)
 5329	__releases(rq->lock)
 5330{
 5331	/*
 5332	 * New tasks start with FORK_PREEMPT_COUNT, see there and
 5333	 * finish_task_switch() for details.
 5334	 *
 5335	 * finish_task_switch() will drop rq->lock() and lower preempt_count
 5336	 * and the preempt_enable() will end up enabling preemption (on
 5337	 * PREEMPT_COUNT kernels).
 5338	 */
 5339
 5340	finish_task_switch(prev);
 5341	preempt_enable();
 5342
 5343	if (current->set_child_tid)
 5344		put_user(task_pid_vnr(current), current->set_child_tid);
 5345
 5346	calculate_sigpending();
 5347}
 5348
 5349/*
 5350 * context_switch - switch to the new MM and the new thread's register state.
 5351 */
 5352static __always_inline struct rq *
 5353context_switch(struct rq *rq, struct task_struct *prev,
 5354	       struct task_struct *next, struct rq_flags *rf)
 5355{
 5356	prepare_task_switch(rq, prev, next);
 5357
 5358	/*
 5359	 * For paravirt, this is coupled with an exit in switch_to to
 5360	 * combine the page table reload and the switch backend into
 5361	 * one hypercall.
 5362	 */
 5363	arch_start_context_switch(prev);
 5364
 5365	/*
 5366	 * kernel -> kernel   lazy + transfer active
 5367	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
 5368	 *
 5369	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
 5370	 *   user ->   user   switch
 5371	 *
 5372	 * switch_mm_cid() needs to be updated if the barriers provided
 5373	 * by context_switch() are modified.
 5374	 */
 5375	if (!next->mm) {                                // to kernel
 5376		enter_lazy_tlb(prev->active_mm, next);
 5377
 5378		next->active_mm = prev->active_mm;
 5379		if (prev->mm)                           // from user
 5380			mmgrab_lazy_tlb(prev->active_mm);
 5381		else
 5382			prev->active_mm = NULL;
 5383	} else {                                        // to user
 5384		membarrier_switch_mm(rq, prev->active_mm, next->mm);
 5385		/*
 5386		 * sys_membarrier() requires an smp_mb() between setting
 5387		 * rq->curr / membarrier_switch_mm() and returning to userspace.
 5388		 *
 5389		 * The below provides this either through switch_mm(), or in
 5390		 * case 'prev->active_mm == next->mm' through
 5391		 * finish_task_switch()'s mmdrop().
 5392		 */
 5393		switch_mm_irqs_off(prev->active_mm, next->mm, next);
 5394		lru_gen_use_mm(next->mm);
 5395
 5396		if (!prev->mm) {                        // from kernel
 5397			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
 5398			rq->prev_mm = prev->active_mm;
 5399			prev->active_mm = NULL;
 5400		}
 5401	}
 5402
 5403	/* switch_mm_cid() requires the memory barriers above. */
 5404	switch_mm_cid(rq, prev, next);
 5405
 5406	prepare_lock_switch(rq, next, rf);
 5407
 5408	/* Here we just switch the register state and the stack. */
 5409	switch_to(prev, next, prev);
 5410	barrier();
 5411
 5412	return finish_task_switch(prev);
 5413}
 5414
 5415/*
 5416 * nr_running and nr_context_switches:
 5417 *
 5418 * externally visible scheduler statistics: current number of runnable
 5419 * threads, total number of context switches performed since bootup.
 5420 */
 5421unsigned int nr_running(void)
 5422{
 5423	unsigned int i, sum = 0;
 5424
 5425	for_each_online_cpu(i)
 5426		sum += cpu_rq(i)->nr_running;
 5427
 5428	return sum;
 5429}
 5430
 5431/*
 5432 * Check if only the current task is running on the CPU.
 5433 *
 5434 * Caution: this function does not check that the caller has disabled
 5435 * preemption, thus the result might have a time-of-check-to-time-of-use
 5436 * race.  The caller is responsible to use it correctly, for example:
 5437 *
 5438 * - from a non-preemptible section (of course)
 5439 *
 5440 * - from a thread that is bound to a single CPU
 5441 *
 5442 * - in a loop with very short iterations (e.g. a polling loop)
 5443 */
 5444bool single_task_running(void)
 5445{
 5446	return raw_rq()->nr_running == 1;
 5447}
 5448EXPORT_SYMBOL(single_task_running);
 5449
 5450unsigned long long nr_context_switches_cpu(int cpu)
 5451{
 5452	return cpu_rq(cpu)->nr_switches;
 5453}
 5454
 5455unsigned long long nr_context_switches(void)
 5456{
 5457	int i;
 5458	unsigned long long sum = 0;
 5459
 5460	for_each_possible_cpu(i)
 5461		sum += cpu_rq(i)->nr_switches;
 5462
 5463	return sum;
 5464}
 5465
 5466/*
 5467 * Consumers of these two interfaces, like for example the cpuidle menu
 5468 * governor, are using nonsensical data. Preferring shallow idle state selection
 5469 * for a CPU that has IO-wait which might not even end up running the task when
 5470 * it does become runnable.
 5471 */
 5472
 5473unsigned int nr_iowait_cpu(int cpu)
 5474{
 5475	return atomic_read(&cpu_rq(cpu)->nr_iowait);
 5476}
 5477
 5478/*
 5479 * IO-wait accounting, and how it's mostly bollocks (on SMP).
 5480 *
 5481 * The idea behind IO-wait account is to account the idle time that we could
 5482 * have spend running if it were not for IO. That is, if we were to improve the
 5483 * storage performance, we'd have a proportional reduction in IO-wait time.
 5484 *
 5485 * This all works nicely on UP, where, when a task blocks on IO, we account
 5486 * idle time as IO-wait, because if the storage were faster, it could've been
 5487 * running and we'd not be idle.
 5488 *
 5489 * This has been extended to SMP, by doing the same for each CPU. This however
 5490 * is broken.
 5491 *
 5492 * Imagine for instance the case where two tasks block on one CPU, only the one
 5493 * CPU will have IO-wait accounted, while the other has regular idle. Even
 5494 * though, if the storage were faster, both could've ran at the same time,
 5495 * utilising both CPUs.
 5496 *
 5497 * This means, that when looking globally, the current IO-wait accounting on
 5498 * SMP is a lower bound, by reason of under accounting.
 5499 *
 5500 * Worse, since the numbers are provided per CPU, they are sometimes
 5501 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
 5502 * associated with any one particular CPU, it can wake to another CPU than it
 5503 * blocked on. This means the per CPU IO-wait number is meaningless.
 5504 *
 5505 * Task CPU affinities can make all that even more 'interesting'.
 5506 */
 5507
 5508unsigned int nr_iowait(void)
 5509{
 5510	unsigned int i, sum = 0;
 5511
 5512	for_each_possible_cpu(i)
 5513		sum += nr_iowait_cpu(i);
 5514
 5515	return sum;
 5516}
 5517
 5518#ifdef CONFIG_SMP
 5519
 5520/*
 5521 * sched_exec - execve() is a valuable balancing opportunity, because at
 5522 * this point the task has the smallest effective memory and cache footprint.
 5523 */
 5524void sched_exec(void)
 5525{
 5526	struct task_struct *p = current;
 5527	struct migration_arg arg;
 5528	int dest_cpu;
 5529
 5530	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
 5531		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
 5532		if (dest_cpu == smp_processor_id())
 5533			return;
 5534
 5535		if (unlikely(!cpu_active(dest_cpu)))
 5536			return;
 5537
 5538		arg = (struct migration_arg){ p, dest_cpu };
 5539	}
 5540	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
 5541}
 5542
 5543#endif
 5544
 5545DEFINE_PER_CPU(struct kernel_stat, kstat);
 5546DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
 5547
 5548EXPORT_PER_CPU_SYMBOL(kstat);
 5549EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
 5550
 5551/*
 5552 * The function fair_sched_class.update_curr accesses the struct curr
 5553 * and its field curr->exec_start; when called from task_sched_runtime(),
 5554 * we observe a high rate of cache misses in practice.
 5555 * Prefetching this data results in improved performance.
 5556 */
 5557static inline void prefetch_curr_exec_start(struct task_struct *p)
 5558{
 5559#ifdef CONFIG_FAIR_GROUP_SCHED
 5560	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
 5561#else
 5562	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
 5563#endif
 5564	prefetch(curr);
 5565	prefetch(&curr->exec_start);
 5566}
 5567
 5568/*
 5569 * Return accounted runtime for the task.
 5570 * In case the task is currently running, return the runtime plus current's
 5571 * pending runtime that have not been accounted yet.
 5572 */
 5573unsigned long long task_sched_runtime(struct task_struct *p)
 5574{
 5575	struct rq_flags rf;
 5576	struct rq *rq;
 5577	u64 ns;
 5578
 5579#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
 5580	/*
 5581	 * 64-bit doesn't need locks to atomically read a 64-bit value.
 5582	 * So we have a optimization chance when the task's delta_exec is 0.
 5583	 * Reading ->on_cpu is racy, but this is ok.
 5584	 *
 5585	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
 5586	 * If we race with it entering CPU, unaccounted time is 0. This is
 5587	 * indistinguishable from the read occurring a few cycles earlier.
 5588	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
 5589	 * been accounted, so we're correct here as well.
 5590	 */
 5591	if (!p->on_cpu || !task_on_rq_queued(p))
 5592		return p->se.sum_exec_runtime;
 5593#endif
 5594
 5595	rq = task_rq_lock(p, &rf);
 5596	/*
 5597	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
 5598	 * project cycles that may never be accounted to this
 5599	 * thread, breaking clock_gettime().
 5600	 */
 5601	if (task_current(rq, p) && task_on_rq_queued(p)) {
 5602		prefetch_curr_exec_start(p);
 5603		update_rq_clock(rq);
 5604		p->sched_class->update_curr(rq);
 5605	}
 5606	ns = p->se.sum_exec_runtime;
 5607	task_rq_unlock(rq, p, &rf);
 5608
 5609	return ns;
 5610}
 5611
 5612#ifdef CONFIG_SCHED_DEBUG
 5613static u64 cpu_resched_latency(struct rq *rq)
 5614{
 5615	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
 5616	u64 resched_latency, now = rq_clock(rq);
 5617	static bool warned_once;
 5618
 5619	if (sysctl_resched_latency_warn_once && warned_once)
 5620		return 0;
 5621
 5622	if (!need_resched() || !latency_warn_ms)
 5623		return 0;
 5624
 5625	if (system_state == SYSTEM_BOOTING)
 5626		return 0;
 5627
 5628	if (!rq->last_seen_need_resched_ns) {
 5629		rq->last_seen_need_resched_ns = now;
 5630		rq->ticks_without_resched = 0;
 5631		return 0;
 5632	}
 5633
 5634	rq->ticks_without_resched++;
 5635	resched_latency = now - rq->last_seen_need_resched_ns;
 5636	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
 5637		return 0;
 5638
 5639	warned_once = true;
 5640
 5641	return resched_latency;
 5642}
 5643
 5644static int __init setup_resched_latency_warn_ms(char *str)
 5645{
 5646	long val;
 5647
 5648	if ((kstrtol(str, 0, &val))) {
 5649		pr_warn("Unable to set resched_latency_warn_ms\n");
 5650		return 1;
 5651	}
 5652
 5653	sysctl_resched_latency_warn_ms = val;
 5654	return 1;
 5655}
 5656__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
 5657#else
 5658static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
 5659#endif /* CONFIG_SCHED_DEBUG */
 5660
 5661/*
 5662 * This function gets called by the timer code, with HZ frequency.
 5663 * We call it with interrupts disabled.
 5664 */
 5665void scheduler_tick(void)
 5666{
 5667	int cpu = smp_processor_id();
 5668	struct rq *rq = cpu_rq(cpu);
 5669	struct task_struct *curr = rq->curr;
 5670	struct rq_flags rf;
 5671	unsigned long thermal_pressure;
 5672	u64 resched_latency;
 5673
 5674	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
 5675		arch_scale_freq_tick();
 5676
 5677	sched_clock_tick();
 5678
 5679	rq_lock(rq, &rf);
 5680
 5681	update_rq_clock(rq);
 5682	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
 5683	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
 5684	curr->sched_class->task_tick(rq, curr, 0);
 5685	if (sched_feat(LATENCY_WARN))
 5686		resched_latency = cpu_resched_latency(rq);
 5687	calc_global_load_tick(rq);
 5688	sched_core_tick(rq);
 5689	task_tick_mm_cid(rq, curr);
 5690
 5691	rq_unlock(rq, &rf);
 5692
 5693	if (sched_feat(LATENCY_WARN) && resched_latency)
 5694		resched_latency_warn(cpu, resched_latency);
 5695
 5696	perf_event_task_tick();
 5697
 5698	if (curr->flags & PF_WQ_WORKER)
 5699		wq_worker_tick(curr);
 5700
 5701#ifdef CONFIG_SMP
 5702	rq->idle_balance = idle_cpu(cpu);
 5703	trigger_load_balance(rq);
 5704#endif
 5705}
 5706
 5707#ifdef CONFIG_NO_HZ_FULL
 5708
 5709struct tick_work {
 5710	int			cpu;
 5711	atomic_t		state;
 5712	struct delayed_work	work;
 5713};
 5714/* Values for ->state, see diagram below. */
 5715#define TICK_SCHED_REMOTE_OFFLINE	0
 5716#define TICK_SCHED_REMOTE_OFFLINING	1
 5717#define TICK_SCHED_REMOTE_RUNNING	2
 5718
 5719/*
 5720 * State diagram for ->state:
 5721 *
 5722 *
 5723 *          TICK_SCHED_REMOTE_OFFLINE
 5724 *                    |   ^
 5725 *                    |   |
 5726 *                    |   | sched_tick_remote()
 5727 *                    |   |
 5728 *                    |   |
 5729 *                    +--TICK_SCHED_REMOTE_OFFLINING
 5730 *                    |   ^
 5731 *                    |   |
 5732 * sched_tick_start() |   | sched_tick_stop()
 5733 *                    |   |
 5734 *                    V   |
 5735 *          TICK_SCHED_REMOTE_RUNNING
 5736 *
 5737 *
 5738 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
 5739 * and sched_tick_start() are happy to leave the state in RUNNING.
 5740 */
 5741
 5742static struct tick_work __percpu *tick_work_cpu;
 5743
 5744static void sched_tick_remote(struct work_struct *work)
 5745{
 5746	struct delayed_work *dwork = to_delayed_work(work);
 5747	struct tick_work *twork = container_of(dwork, struct tick_work, work);
 5748	int cpu = twork->cpu;
 5749	struct rq *rq = cpu_rq(cpu);
 5750	int os;
 5751
 5752	/*
 5753	 * Handle the tick only if it appears the remote CPU is running in full
 5754	 * dynticks mode. The check is racy by nature, but missing a tick or
 5755	 * having one too much is no big deal because the scheduler tick updates
 5756	 * statistics and checks timeslices in a time-independent way, regardless
 5757	 * of when exactly it is running.
 5758	 */
 5759	if (tick_nohz_tick_stopped_cpu(cpu)) {
 5760		guard(rq_lock_irq)(rq);
 5761		struct task_struct *curr = rq->curr;
 5762
 5763		if (cpu_online(cpu)) {
 5764			update_rq_clock(rq);
 5765
 5766			if (!is_idle_task(curr)) {
 5767				/*
 5768				 * Make sure the next tick runs within a
 5769				 * reasonable amount of time.
 5770				 */
 5771				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
 5772				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
 5773			}
 5774			curr->sched_class->task_tick(rq, curr, 0);
 5775
 5776			calc_load_nohz_remote(rq);
 5777		}
 5778	}
 5779
 5780	/*
 5781	 * Run the remote tick once per second (1Hz). This arbitrary
 5782	 * frequency is large enough to avoid overload but short enough
 5783	 * to keep scheduler internal stats reasonably up to date.  But
 5784	 * first update state to reflect hotplug activity if required.
 5785	 */
 5786	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
 5787	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
 5788	if (os == TICK_SCHED_REMOTE_RUNNING)
 5789		queue_delayed_work(system_unbound_wq, dwork, HZ);
 5790}
 5791
 5792static void sched_tick_start(int cpu)
 5793{
 5794	int os;
 5795	struct tick_work *twork;
 5796
 5797	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
 5798		return;
 5799
 5800	WARN_ON_ONCE(!tick_work_cpu);
 5801
 5802	twork = per_cpu_ptr(tick_work_cpu, cpu);
 5803	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
 5804	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
 5805	if (os == TICK_SCHED_REMOTE_OFFLINE) {
 5806		twork->cpu = cpu;
 5807		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
 5808		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
 5809	}
 5810}
 5811
 5812#ifdef CONFIG_HOTPLUG_CPU
 5813static void sched_tick_stop(int cpu)
 5814{
 5815	struct tick_work *twork;
 5816	int os;
 5817
 5818	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
 5819		return;
 5820
 5821	WARN_ON_ONCE(!tick_work_cpu);
 5822
 5823	twork = per_cpu_ptr(tick_work_cpu, cpu);
 5824	/* There cannot be competing actions, but don't rely on stop-machine. */
 5825	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
 5826	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
 5827	/* Don't cancel, as this would mess up the state machine. */
 5828}
 5829#endif /* CONFIG_HOTPLUG_CPU */
 5830
 5831int __init sched_tick_offload_init(void)
 5832{
 5833	tick_work_cpu = alloc_percpu(struct tick_work);
 5834	BUG_ON(!tick_work_cpu);
 5835	return 0;
 5836}
 5837
 5838#else /* !CONFIG_NO_HZ_FULL */
 5839static inline void sched_tick_start(int cpu) { }
 5840static inline void sched_tick_stop(int cpu) { }
 5841#endif
 5842
 5843#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
 5844				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
 5845/*
 5846 * If the value passed in is equal to the current preempt count
 5847 * then we just disabled preemption. Start timing the latency.
 5848 */
 5849static inline void preempt_latency_start(int val)
 5850{
 5851	if (preempt_count() == val) {
 5852		unsigned long ip = get_lock_parent_ip();
 5853#ifdef CONFIG_DEBUG_PREEMPT
 5854		current->preempt_disable_ip = ip;
 5855#endif
 5856		trace_preempt_off(CALLER_ADDR0, ip);
 5857	}
 5858}
 5859
 5860void preempt_count_add(int val)
 5861{
 5862#ifdef CONFIG_DEBUG_PREEMPT
 5863	/*
 5864	 * Underflow?
 5865	 */
 5866	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
 5867		return;
 5868#endif
 5869	__preempt_count_add(val);
 5870#ifdef CONFIG_DEBUG_PREEMPT
 5871	/*
 5872	 * Spinlock count overflowing soon?
 5873	 */
 5874	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
 5875				PREEMPT_MASK - 10);
 5876#endif
 5877	preempt_latency_start(val);
 5878}
 5879EXPORT_SYMBOL(preempt_count_add);
 5880NOKPROBE_SYMBOL(preempt_count_add);
 5881
 5882/*
 5883 * If the value passed in equals to the current preempt count
 5884 * then we just enabled preemption. Stop timing the latency.
 5885 */
 5886static inline void preempt_latency_stop(int val)
 5887{
 5888	if (preempt_count() == val)
 5889		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
 5890}
 5891
 5892void preempt_count_sub(int val)
 5893{
 5894#ifdef CONFIG_DEBUG_PREEMPT
 5895	/*
 5896	 * Underflow?
 5897	 */
 5898	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
 5899		return;
 5900	/*
 5901	 * Is the spinlock portion underflowing?
 5902	 */
 5903	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
 5904			!(preempt_count() & PREEMPT_MASK)))
 5905		return;
 5906#endif
 5907
 5908	preempt_latency_stop(val);
 5909	__preempt_count_sub(val);
 5910}
 5911EXPORT_SYMBOL(preempt_count_sub);
 5912NOKPROBE_SYMBOL(preempt_count_sub);
 5913
 5914#else
 5915static inline void preempt_latency_start(int val) { }
 5916static inline void preempt_latency_stop(int val) { }
 5917#endif
 5918
 5919static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
 5920{
 5921#ifdef CONFIG_DEBUG_PREEMPT
 5922	return p->preempt_disable_ip;
 5923#else
 5924	return 0;
 5925#endif
 5926}
 5927
 5928/*
 5929 * Print scheduling while atomic bug:
 5930 */
 5931static noinline void __schedule_bug(struct task_struct *prev)
 5932{
 5933	/* Save this before calling printk(), since that will clobber it */
 5934	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
 5935
 5936	if (oops_in_progress)
 5937		return;
 5938
 5939	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
 5940		prev->comm, prev->pid, preempt_count());
 5941
 5942	debug_show_held_locks(prev);
 5943	print_modules();
 5944	if (irqs_disabled())
 5945		print_irqtrace_events(prev);
 5946	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
 5947		pr_err("Preemption disabled at:");
 5948		print_ip_sym(KERN_ERR, preempt_disable_ip);
 5949	}
 5950	check_panic_on_warn("scheduling while atomic");
 5951
 5952	dump_stack();
 5953	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
 5954}
 5955
 5956/*
 5957 * Various schedule()-time debugging checks and statistics:
 5958 */
 5959static inline void schedule_debug(struct task_struct *prev, bool preempt)
 5960{
 5961#ifdef CONFIG_SCHED_STACK_END_CHECK
 5962	if (task_stack_end_corrupted(prev))
 5963		panic("corrupted stack end detected inside scheduler\n");
 5964
 5965	if (task_scs_end_corrupted(prev))
 5966		panic("corrupted shadow stack detected inside scheduler\n");
 5967#endif
 5968
 5969#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 5970	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
 5971		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
 5972			prev->comm, prev->pid, prev->non_block_count);
 5973		dump_stack();
 5974		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
 5975	}
 5976#endif
 5977
 5978	if (unlikely(in_atomic_preempt_off())) {
 5979		__schedule_bug(prev);
 5980		preempt_count_set(PREEMPT_DISABLED);
 5981	}
 5982	rcu_sleep_check();
 5983	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
 5984
 5985	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
 5986
 5987	schedstat_inc(this_rq()->sched_count);
 5988}
 5989
 5990static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
 5991				  struct rq_flags *rf)
 5992{
 5993#ifdef CONFIG_SMP
 5994	const struct sched_class *class;
 5995	/*
 5996	 * We must do the balancing pass before put_prev_task(), such
 5997	 * that when we release the rq->lock the task is in the same
 5998	 * state as before we took rq->lock.
 5999	 *
 6000	 * We can terminate the balance pass as soon as we know there is
 6001	 * a runnable task of @class priority or higher.
 6002	 */
 6003	for_class_range(class, prev->sched_class, &idle_sched_class) {
 6004		if (class->balance(rq, prev, rf))
 6005			break;
 6006	}
 6007#endif
 6008
 6009	put_prev_task(rq, prev);
 6010}
 6011
 6012/*
 6013 * Pick up the highest-prio task:
 6014 */
 6015static inline struct task_struct *
 6016__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 6017{
 6018	const struct sched_class *class;
 6019	struct task_struct *p;
 6020
 6021	/*
 6022	 * Optimization: we know that if all tasks are in the fair class we can
 6023	 * call that function directly, but only if the @prev task wasn't of a
 6024	 * higher scheduling class, because otherwise those lose the
 6025	 * opportunity to pull in more work from other CPUs.
 6026	 */
 6027	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
 6028		   rq->nr_running == rq->cfs.h_nr_running)) {
 6029
 6030		p = pick_next_task_fair(rq, prev, rf);
 6031		if (unlikely(p == RETRY_TASK))
 6032			goto restart;
 6033
 6034		/* Assume the next prioritized class is idle_sched_class */
 6035		if (!p) {
 6036			put_prev_task(rq, prev);
 6037			p = pick_next_task_idle(rq);
 6038		}
 6039
 6040		/*
 6041		 * This is the fast path; it cannot be a DL server pick;
 6042		 * therefore even if @p == @prev, ->dl_server must be NULL.
 6043		 */
 6044		if (p->dl_server)
 6045			p->dl_server = NULL;
 6046
 6047		return p;
 6048	}
 6049
 6050restart:
 6051	put_prev_task_balance(rq, prev, rf);
 6052
 6053	/*
 6054	 * We've updated @prev and no longer need the server link, clear it.
 6055	 * Must be done before ->pick_next_task() because that can (re)set
 6056	 * ->dl_server.
 6057	 */
 6058	if (prev->dl_server)
 6059		prev->dl_server = NULL;
 6060
 6061	for_each_class(class) {
 6062		p = class->pick_next_task(rq);
 6063		if (p)
 6064			return p;
 6065	}
 6066
 6067	BUG(); /* The idle class should always have a runnable task. */
 6068}
 6069
 6070#ifdef CONFIG_SCHED_CORE
 6071static inline bool is_task_rq_idle(struct task_struct *t)
 6072{
 6073	return (task_rq(t)->idle == t);
 6074}
 6075
 6076static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
 6077{
 6078	return is_task_rq_idle(a) || (a->core_cookie == cookie);
 6079}
 6080
 6081static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
 6082{
 6083	if (is_task_rq_idle(a) || is_task_rq_idle(b))
 6084		return true;
 6085
 6086	return a->core_cookie == b->core_cookie;
 6087}
 6088
 6089static inline struct task_struct *pick_task(struct rq *rq)
 6090{
 6091	const struct sched_class *class;
 6092	struct task_struct *p;
 6093
 6094	for_each_class(class) {
 6095		p = class->pick_task(rq);
 6096		if (p)
 6097			return p;
 6098	}
 6099
 6100	BUG(); /* The idle class should always have a runnable task. */
 6101}
 6102
 6103extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
 6104
 6105static void queue_core_balance(struct rq *rq);
 6106
 6107static struct task_struct *
 6108pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 6109{
 6110	struct task_struct *next, *p, *max = NULL;
 6111	const struct cpumask *smt_mask;
 6112	bool fi_before = false;
 6113	bool core_clock_updated = (rq == rq->core);
 6114	unsigned long cookie;
 6115	int i, cpu, occ = 0;
 6116	struct rq *rq_i;
 6117	bool need_sync;
 6118
 6119	if (!sched_core_enabled(rq))
 6120		return __pick_next_task(rq, prev, rf);
 6121
 6122	cpu = cpu_of(rq);
 6123
 6124	/* Stopper task is switching into idle, no need core-wide selection. */
 6125	if (cpu_is_offline(cpu)) {
 6126		/*
 6127		 * Reset core_pick so that we don't enter the fastpath when
 6128		 * coming online. core_pick would already be migrated to
 6129		 * another cpu during offline.
 6130		 */
 6131		rq->core_pick = NULL;
 6132		return __pick_next_task(rq, prev, rf);
 6133	}
 6134
 6135	/*
 6136	 * If there were no {en,de}queues since we picked (IOW, the task
 6137	 * pointers are all still valid), and we haven't scheduled the last
 6138	 * pick yet, do so now.
 6139	 *
 6140	 * rq->core_pick can be NULL if no selection was made for a CPU because
 6141	 * it was either offline or went offline during a sibling's core-wide
 6142	 * selection. In this case, do a core-wide selection.
 6143	 */
 6144	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
 6145	    rq->core->core_pick_seq != rq->core_sched_seq &&
 6146	    rq->core_pick) {
 6147		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
 6148
 6149		next = rq->core_pick;
 6150		if (next != prev) {
 6151			put_prev_task(rq, prev);
 6152			set_next_task(rq, next);
 6153		}
 6154
 6155		rq->core_pick = NULL;
 6156		goto out;
 6157	}
 6158
 6159	put_prev_task_balance(rq, prev, rf);
 6160
 6161	smt_mask = cpu_smt_mask(cpu);
 6162	need_sync = !!rq->core->core_cookie;
 6163
 6164	/* reset state */
 6165	rq->core->core_cookie = 0UL;
 6166	if (rq->core->core_forceidle_count) {
 6167		if (!core_clock_updated) {
 6168			update_rq_clock(rq->core);
 6169			core_clock_updated = true;
 6170		}
 6171		sched_core_account_forceidle(rq);
 6172		/* reset after accounting force idle */
 6173		rq->core->core_forceidle_start = 0;
 6174		rq->core->core_forceidle_count = 0;
 6175		rq->core->core_forceidle_occupation = 0;
 6176		need_sync = true;
 6177		fi_before = true;
 6178	}
 6179
 6180	/*
 6181	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
 6182	 *
 6183	 * @task_seq guards the task state ({en,de}queues)
 6184	 * @pick_seq is the @task_seq we did a selection on
 6185	 * @sched_seq is the @pick_seq we scheduled
 6186	 *
 6187	 * However, preemptions can cause multiple picks on the same task set.
 6188	 * 'Fix' this by also increasing @task_seq for every pick.
 6189	 */
 6190	rq->core->core_task_seq++;
 6191
 6192	/*
 6193	 * Optimize for common case where this CPU has no cookies
 6194	 * and there are no cookied tasks running on siblings.
 6195	 */
 6196	if (!need_sync) {
 6197		next = pick_task(rq);
 6198		if (!next->core_cookie) {
 6199			rq->core_pick = NULL;
 6200			/*
 6201			 * For robustness, update the min_vruntime_fi for
 6202			 * unconstrained picks as well.
 6203			 */
 6204			WARN_ON_ONCE(fi_before);
 6205			task_vruntime_update(rq, next, false);
 6206			goto out_set_next;
 6207		}
 6208	}
 6209
 6210	/*
 6211	 * For each thread: do the regular task pick and find the max prio task
 6212	 * amongst them.
 6213	 *
 6214	 * Tie-break prio towards the current CPU
 6215	 */
 6216	for_each_cpu_wrap(i, smt_mask, cpu) {
 6217		rq_i = cpu_rq(i);
 6218
 6219		/*
 6220		 * Current cpu always has its clock updated on entrance to
 6221		 * pick_next_task(). If the current cpu is not the core,
 6222		 * the core may also have been updated above.
 6223		 */
 6224		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
 6225			update_rq_clock(rq_i);
 6226
 6227		p = rq_i->core_pick = pick_task(rq_i);
 6228		if (!max || prio_less(max, p, fi_before))
 6229			max = p;
 6230	}
 6231
 6232	cookie = rq->core->core_cookie = max->core_cookie;
 6233
 6234	/*
 6235	 * For each thread: try and find a runnable task that matches @max or
 6236	 * force idle.
 6237	 */
 6238	for_each_cpu(i, smt_mask) {
 6239		rq_i = cpu_rq(i);
 6240		p = rq_i->core_pick;
 6241
 6242		if (!cookie_equals(p, cookie)) {
 6243			p = NULL;
 6244			if (cookie)
 6245				p = sched_core_find(rq_i, cookie);
 6246			if (!p)
 6247				p = idle_sched_class.pick_task(rq_i);
 6248		}
 6249
 6250		rq_i->core_pick = p;
 6251
 6252		if (p == rq_i->idle) {
 6253			if (rq_i->nr_running) {
 6254				rq->core->core_forceidle_count++;
 6255				if (!fi_before)
 6256					rq->core->core_forceidle_seq++;
 6257			}
 6258		} else {
 6259			occ++;
 6260		}
 6261	}
 6262
 6263	if (schedstat_enabled() && rq->core->core_forceidle_count) {
 6264		rq->core->core_forceidle_start = rq_clock(rq->core);
 6265		rq->core->core_forceidle_occupation = occ;
 6266	}
 6267
 6268	rq->core->core_pick_seq = rq->core->core_task_seq;
 6269	next = rq->core_pick;
 6270	rq->core_sched_seq = rq->core->core_pick_seq;
 6271
 6272	/* Something should have been selected for current CPU */
 6273	WARN_ON_ONCE(!next);
 6274
 6275	/*
 6276	 * Reschedule siblings
 6277	 *
 6278	 * NOTE: L1TF -- at this point we're no longer running the old task and
 6279	 * sending an IPI (below) ensures the sibling will no longer be running
 6280	 * their task. This ensures there is no inter-sibling overlap between
 6281	 * non-matching user state.
 6282	 */
 6283	for_each_cpu(i, smt_mask) {
 6284		rq_i = cpu_rq(i);
 6285
 6286		/*
 6287		 * An online sibling might have gone offline before a task
 6288		 * could be picked for it, or it might be offline but later
 6289		 * happen to come online, but its too late and nothing was
 6290		 * picked for it.  That's Ok - it will pick tasks for itself,
 6291		 * so ignore it.
 6292		 */
 6293		if (!rq_i->core_pick)
 6294			continue;
 6295
 6296		/*
 6297		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
 6298		 * fi_before     fi      update?
 6299		 *  0            0       1
 6300		 *  0            1       1
 6301		 *  1            0       1
 6302		 *  1            1       0
 6303		 */
 6304		if (!(fi_before && rq->core->core_forceidle_count))
 6305			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
 6306
 6307		rq_i->core_pick->core_occupation = occ;
 6308
 6309		if (i == cpu) {
 6310			rq_i->core_pick = NULL;
 6311			continue;
 6312		}
 6313
 6314		/* Did we break L1TF mitigation requirements? */
 6315		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
 6316
 6317		if (rq_i->curr == rq_i->core_pick) {
 6318			rq_i->core_pick = NULL;
 6319			continue;
 6320		}
 6321
 6322		resched_curr(rq_i);
 6323	}
 6324
 6325out_set_next:
 6326	set_next_task(rq, next);
 6327out:
 6328	if (rq->core->core_forceidle_count && next == rq->idle)
 6329		queue_core_balance(rq);
 6330
 6331	return next;
 6332}
 6333
 6334static bool try_steal_cookie(int this, int that)
 6335{
 6336	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
 6337	struct task_struct *p;
 6338	unsigned long cookie;
 6339	bool success = false;
 6340
 6341	guard(irq)();
 6342	guard(double_rq_lock)(dst, src);
 6343
 6344	cookie = dst->core->core_cookie;
 6345	if (!cookie)
 6346		return false;
 6347
 6348	if (dst->curr != dst->idle)
 6349		return false;
 6350
 6351	p = sched_core_find(src, cookie);
 6352	if (!p)
 6353		return false;
 6354
 6355	do {
 6356		if (p == src->core_pick || p == src->curr)
 6357			goto next;
 6358
 6359		if (!is_cpu_allowed(p, this))
 6360			goto next;
 6361
 6362		if (p->core_occupation > dst->idle->core_occupation)
 6363			goto next;
 6364		/*
 6365		 * sched_core_find() and sched_core_next() will ensure
 6366		 * that task @p is not throttled now, we also need to
 6367		 * check whether the runqueue of the destination CPU is
 6368		 * being throttled.
 6369		 */
 6370		if (sched_task_is_throttled(p, this))
 6371			goto next;
 6372
 6373		deactivate_task(src, p, 0);
 6374		set_task_cpu(p, this);
 6375		activate_task(dst, p, 0);
 6376
 6377		resched_curr(dst);
 6378
 6379		success = true;
 6380		break;
 6381
 6382next:
 6383		p = sched_core_next(p, cookie);
 6384	} while (p);
 6385
 6386	return success;
 6387}
 6388
 6389static bool steal_cookie_task(int cpu, struct sched_domain *sd)
 6390{
 6391	int i;
 6392
 6393	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
 6394		if (i == cpu)
 6395			continue;
 6396
 6397		if (need_resched())
 6398			break;
 6399
 6400		if (try_steal_cookie(cpu, i))
 6401			return true;
 6402	}
 6403
 6404	return false;
 6405}
 6406
 6407static void sched_core_balance(struct rq *rq)
 6408{
 6409	struct sched_domain *sd;
 6410	int cpu = cpu_of(rq);
 6411
 6412	guard(preempt)();
 6413	guard(rcu)();
 6414
 6415	raw_spin_rq_unlock_irq(rq);
 6416	for_each_domain(cpu, sd) {
 6417		if (need_resched())
 6418			break;
 6419
 6420		if (steal_cookie_task(cpu, sd))
 6421			break;
 6422	}
 6423	raw_spin_rq_lock_irq(rq);
 6424}
 6425
 6426static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
 6427
 6428static void queue_core_balance(struct rq *rq)
 6429{
 6430	if (!sched_core_enabled(rq))
 6431		return;
 6432
 6433	if (!rq->core->core_cookie)
 6434		return;
 6435
 6436	if (!rq->nr_running) /* not forced idle */
 6437		return;
 6438
 6439	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
 6440}
 6441
 6442DEFINE_LOCK_GUARD_1(core_lock, int,
 6443		    sched_core_lock(*_T->lock, &_T->flags),
 6444		    sched_core_unlock(*_T->lock, &_T->flags),
 6445		    unsigned long flags)
 6446
 6447static void sched_core_cpu_starting(unsigned int cpu)
 6448{
 6449	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
 6450	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
 6451	int t;
 6452
 6453	guard(core_lock)(&cpu);
 6454
 6455	WARN_ON_ONCE(rq->core != rq);
 6456
 6457	/* if we're the first, we'll be our own leader */
 6458	if (cpumask_weight(smt_mask) == 1)
 6459		return;
 6460
 6461	/* find the leader */
 6462	for_each_cpu(t, smt_mask) {
 6463		if (t == cpu)
 6464			continue;
 6465		rq = cpu_rq(t);
 6466		if (rq->core == rq) {
 6467			core_rq = rq;
 6468			break;
 6469		}
 6470	}
 6471
 6472	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
 6473		return;
 6474
 6475	/* install and validate core_rq */
 6476	for_each_cpu(t, smt_mask) {
 6477		rq = cpu_rq(t);
 6478
 6479		if (t == cpu)
 6480			rq->core = core_rq;
 6481
 6482		WARN_ON_ONCE(rq->core != core_rq);
 6483	}
 6484}
 6485
 6486static void sched_core_cpu_deactivate(unsigned int cpu)
 6487{
 6488	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
 6489	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
 6490	int t;
 6491
 6492	guard(core_lock)(&cpu);
 6493
 6494	/* if we're the last man standing, nothing to do */
 6495	if (cpumask_weight(smt_mask) == 1) {
 6496		WARN_ON_ONCE(rq->core != rq);
 6497		return;
 6498	}
 6499
 6500	/* if we're not the leader, nothing to do */
 6501	if (rq->core != rq)
 6502		return;
 6503
 6504	/* find a new leader */
 6505	for_each_cpu(t, smt_mask) {
 6506		if (t == cpu)
 6507			continue;
 6508		core_rq = cpu_rq(t);
 6509		break;
 6510	}
 6511
 6512	if (WARN_ON_ONCE(!core_rq)) /* impossible */
 6513		return;
 6514
 6515	/* copy the shared state to the new leader */
 6516	core_rq->core_task_seq             = rq->core_task_seq;
 6517	core_rq->core_pick_seq             = rq->core_pick_seq;
 6518	core_rq->core_cookie               = rq->core_cookie;
 6519	core_rq->core_forceidle_count      = rq->core_forceidle_count;
 6520	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
 6521	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
 6522
 6523	/*
 6524	 * Accounting edge for forced idle is handled in pick_next_task().
 6525	 * Don't need another one here, since the hotplug thread shouldn't
 6526	 * have a cookie.
 6527	 */
 6528	core_rq->core_forceidle_start = 0;
 6529
 6530	/* install new leader */
 6531	for_each_cpu(t, smt_mask) {
 6532		rq = cpu_rq(t);
 6533		rq->core = core_rq;
 6534	}
 6535}
 6536
 6537static inline void sched_core_cpu_dying(unsigned int cpu)
 6538{
 6539	struct rq *rq = cpu_rq(cpu);
 6540
 6541	if (rq->core != rq)
 6542		rq->core = rq;
 6543}
 6544
 6545#else /* !CONFIG_SCHED_CORE */
 6546
 6547static inline void sched_core_cpu_starting(unsigned int cpu) {}
 6548static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
 6549static inline void sched_core_cpu_dying(unsigned int cpu) {}
 6550
 6551static struct task_struct *
 6552pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 6553{
 6554	return __pick_next_task(rq, prev, rf);
 6555}
 6556
 6557#endif /* CONFIG_SCHED_CORE */
 6558
 6559/*
 6560 * Constants for the sched_mode argument of __schedule().
 6561 *
 6562 * The mode argument allows RT enabled kernels to differentiate a
 6563 * preemption from blocking on an 'sleeping' spin/rwlock. Note that
 6564 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
 6565 * optimize the AND operation out and just check for zero.
 6566 */
 6567#define SM_NONE			0x0
 6568#define SM_PREEMPT		0x1
 6569#define SM_RTLOCK_WAIT		0x2
 6570
 6571#ifndef CONFIG_PREEMPT_RT
 6572# define SM_MASK_PREEMPT	(~0U)
 6573#else
 6574# define SM_MASK_PREEMPT	SM_PREEMPT
 6575#endif
 6576
 6577/*
 6578 * __schedule() is the main scheduler function.
 6579 *
 6580 * The main means of driving the scheduler and thus entering this function are:
 6581 *
 6582 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 6583 *
 6584 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 6585 *      paths. For example, see arch/x86/entry_64.S.
 6586 *
 6587 *      To drive preemption between tasks, the scheduler sets the flag in timer
 6588 *      interrupt handler scheduler_tick().
 6589 *
 6590 *   3. Wakeups don't really cause entry into schedule(). They add a
 6591 *      task to the run-queue and that's it.
 6592 *
 6593 *      Now, if the new task added to the run-queue preempts the current
 6594 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 6595 *      called on the nearest possible occasion:
 6596 *
 6597 *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
 6598 *
 6599 *         - in syscall or exception context, at the next outmost
 6600 *           preempt_enable(). (this might be as soon as the wake_up()'s
 6601 *           spin_unlock()!)
 6602 *
 6603 *         - in IRQ context, return from interrupt-handler to
 6604 *           preemptible context
 6605 *
 6606 *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
 6607 *         then at the next:
 6608 *
 6609 *          - cond_resched() call
 6610 *          - explicit schedule() call
 6611 *          - return from syscall or exception to user-space
 6612 *          - return from interrupt-handler to user-space
 6613 *
 6614 * WARNING: must be called with preemption disabled!
 6615 */
 6616static void __sched notrace __schedule(unsigned int sched_mode)
 6617{
 6618	struct task_struct *prev, *next;
 6619	unsigned long *switch_count;
 6620	unsigned long prev_state;
 6621	struct rq_flags rf;
 6622	struct rq *rq;
 6623	int cpu;
 6624
 6625	cpu = smp_processor_id();
 6626	rq = cpu_rq(cpu);
 6627	prev = rq->curr;
 6628
 6629	schedule_debug(prev, !!sched_mode);
 6630
 6631	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
 6632		hrtick_clear(rq);
 6633
 6634	local_irq_disable();
 6635	rcu_note_context_switch(!!sched_mode);
 6636
 6637	/*
 6638	 * Make sure that signal_pending_state()->signal_pending() below
 6639	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
 6640	 * done by the caller to avoid the race with signal_wake_up():
 6641	 *
 6642	 * __set_current_state(@state)		signal_wake_up()
 6643	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
 6644	 *					  wake_up_state(p, state)
 6645	 *   LOCK rq->lock			    LOCK p->pi_state
 6646	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
 6647	 *     if (signal_pending_state())	    if (p->state & @state)
 6648	 *
 6649	 * Also, the membarrier system call requires a full memory barrier
 6650	 * after coming from user-space, before storing to rq->curr; this
 6651	 * barrier matches a full barrier in the proximity of the membarrier
 6652	 * system call exit.
 6653	 */
 6654	rq_lock(rq, &rf);
 6655	smp_mb__after_spinlock();
 6656
 6657	/* Promote REQ to ACT */
 6658	rq->clock_update_flags <<= 1;
 6659	update_rq_clock(rq);
 6660	rq->clock_update_flags = RQCF_UPDATED;
 6661
 6662	switch_count = &prev->nivcsw;
 6663
 6664	/*
 6665	 * We must load prev->state once (task_struct::state is volatile), such
 6666	 * that we form a control dependency vs deactivate_task() below.
 6667	 */
 6668	prev_state = READ_ONCE(prev->__state);
 6669	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
 6670		if (signal_pending_state(prev_state, prev)) {
 6671			WRITE_ONCE(prev->__state, TASK_RUNNING);
 6672		} else {
 6673			prev->sched_contributes_to_load =
 6674				(prev_state & TASK_UNINTERRUPTIBLE) &&
 6675				!(prev_state & TASK_NOLOAD) &&
 6676				!(prev_state & TASK_FROZEN);
 6677
 6678			if (prev->sched_contributes_to_load)
 6679				rq->nr_uninterruptible++;
 6680
 6681			/*
 6682			 * __schedule()			ttwu()
 6683			 *   prev_state = prev->state;    if (p->on_rq && ...)
 6684			 *   if (prev_state)		    goto out;
 6685			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
 6686			 *				  p->state = TASK_WAKING
 6687			 *
 6688			 * Where __schedule() and ttwu() have matching control dependencies.
 6689			 *
 6690			 * After this, schedule() must not care about p->state any more.
 6691			 */
 6692			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
 6693
 6694			if (prev->in_iowait) {
 6695				atomic_inc(&rq->nr_iowait);
 6696				delayacct_blkio_start();
 6697			}
 6698		}
 6699		switch_count = &prev->nvcsw;
 6700	}
 6701
 6702	next = pick_next_task(rq, prev, &rf);
 6703	clear_tsk_need_resched(prev);
 6704	clear_preempt_need_resched();
 6705#ifdef CONFIG_SCHED_DEBUG
 6706	rq->last_seen_need_resched_ns = 0;
 6707#endif
 6708
 6709	if (likely(prev != next)) {
 6710		rq->nr_switches++;
 6711		/*
 6712		 * RCU users of rcu_dereference(rq->curr) may not see
 6713		 * changes to task_struct made by pick_next_task().
 6714		 */
 6715		RCU_INIT_POINTER(rq->curr, next);
 6716		/*
 6717		 * The membarrier system call requires each architecture
 6718		 * to have a full memory barrier after updating
 6719		 * rq->curr, before returning to user-space.
 6720		 *
 6721		 * Here are the schemes providing that barrier on the
 6722		 * various architectures:
 6723		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
 6724		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
 6725		 *   on PowerPC and on RISC-V.
 6726		 * - finish_lock_switch() for weakly-ordered
 6727		 *   architectures where spin_unlock is a full barrier,
 6728		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
 6729		 *   is a RELEASE barrier),
 6730		 *
 6731		 * The barrier matches a full barrier in the proximity of
 6732		 * the membarrier system call entry.
 6733		 *
 6734		 * On RISC-V, this barrier pairing is also needed for the
 6735		 * SYNC_CORE command when switching between processes, cf.
 6736		 * the inline comments in membarrier_arch_switch_mm().
 6737		 */
 6738		++*switch_count;
 6739
 6740		migrate_disable_switch(rq, prev);
 6741		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
 6742
 6743		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
 6744
 6745		/* Also unlocks the rq: */
 6746		rq = context_switch(rq, prev, next, &rf);
 6747	} else {
 6748		rq_unpin_lock(rq, &rf);
 6749		__balance_callbacks(rq);
 6750		raw_spin_rq_unlock_irq(rq);
 6751	}
 6752}
 6753
 6754void __noreturn do_task_dead(void)
 6755{
 6756	/* Causes final put_task_struct in finish_task_switch(): */
 6757	set_special_state(TASK_DEAD);
 6758
 6759	/* Tell freezer to ignore us: */
 6760	current->flags |= PF_NOFREEZE;
 6761
 6762	__schedule(SM_NONE);
 6763	BUG();
 6764
 6765	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
 6766	for (;;)
 6767		cpu_relax();
 6768}
 6769
 6770static inline void sched_submit_work(struct task_struct *tsk)
 6771{
 6772	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
 6773	unsigned int task_flags;
 6774
 6775	/*
 6776	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
 6777	 * will use a blocking primitive -- which would lead to recursion.
 6778	 */
 6779	lock_map_acquire_try(&sched_map);
 6780
 6781	task_flags = tsk->flags;
 6782	/*
 6783	 * If a worker goes to sleep, notify and ask workqueue whether it
 6784	 * wants to wake up a task to maintain concurrency.
 6785	 */
 6786	if (task_flags & PF_WQ_WORKER)
 6787		wq_worker_sleeping(tsk);
 6788	else if (task_flags & PF_IO_WORKER)
 6789		io_wq_worker_sleeping(tsk);
 6790
 6791	/*
 6792	 * spinlock and rwlock must not flush block requests.  This will
 6793	 * deadlock if the callback attempts to acquire a lock which is
 6794	 * already acquired.
 6795	 */
 6796	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
 6797
 6798	/*
 6799	 * If we are going to sleep and we have plugged IO queued,
 6800	 * make sure to submit it to avoid deadlocks.
 6801	 */
 6802	blk_flush_plug(tsk->plug, true);
 6803
 6804	lock_map_release(&sched_map);
 6805}
 6806
 6807static void sched_update_worker(struct task_struct *tsk)
 6808{
 6809	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
 6810		if (tsk->flags & PF_BLOCK_TS)
 6811			blk_plug_invalidate_ts(tsk);
 6812		if (tsk->flags & PF_WQ_WORKER)
 6813			wq_worker_running(tsk);
 6814		else if (tsk->flags & PF_IO_WORKER)
 6815			io_wq_worker_running(tsk);
 6816	}
 6817}
 6818
 6819static __always_inline void __schedule_loop(unsigned int sched_mode)
 6820{
 6821	do {
 6822		preempt_disable();
 6823		__schedule(sched_mode);
 6824		sched_preempt_enable_no_resched();
 6825	} while (need_resched());
 6826}
 6827
 6828asmlinkage __visible void __sched schedule(void)
 6829{
 6830	struct task_struct *tsk = current;
 6831
 6832#ifdef CONFIG_RT_MUTEXES
 6833	lockdep_assert(!tsk->sched_rt_mutex);
 6834#endif
 6835
 6836	if (!task_is_running(tsk))
 6837		sched_submit_work(tsk);
 6838	__schedule_loop(SM_NONE);
 6839	sched_update_worker(tsk);
 6840}
 6841EXPORT_SYMBOL(schedule);
 6842
 6843/*
 6844 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
 6845 * state (have scheduled out non-voluntarily) by making sure that all
 6846 * tasks have either left the run queue or have gone into user space.
 6847 * As idle tasks do not do either, they must not ever be preempted
 6848 * (schedule out non-voluntarily).
 6849 *
 6850 * schedule_idle() is similar to schedule_preempt_disable() except that it
 6851 * never enables preemption because it does not call sched_submit_work().
 6852 */
 6853void __sched schedule_idle(void)
 6854{
 6855	/*
 6856	 * As this skips calling sched_submit_work(), which the idle task does
 6857	 * regardless because that function is a nop when the task is in a
 6858	 * TASK_RUNNING state, make sure this isn't used someplace that the
 6859	 * current task can be in any other state. Note, idle is always in the
 6860	 * TASK_RUNNING state.
 6861	 */
 6862	WARN_ON_ONCE(current->__state);
 6863	do {
 6864		__schedule(SM_NONE);
 6865	} while (need_resched());
 6866}
 6867
 6868#if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
 6869asmlinkage __visible void __sched schedule_user(void)
 6870{
 6871	/*
 6872	 * If we come here after a random call to set_need_resched(),
 6873	 * or we have been woken up remotely but the IPI has not yet arrived,
 6874	 * we haven't yet exited the RCU idle mode. Do it here manually until
 6875	 * we find a better solution.
 6876	 *
 6877	 * NB: There are buggy callers of this function.  Ideally we
 6878	 * should warn if prev_state != CONTEXT_USER, but that will trigger
 6879	 * too frequently to make sense yet.
 6880	 */
 6881	enum ctx_state prev_state = exception_enter();
 6882	schedule();
 6883	exception_exit(prev_state);
 6884}
 6885#endif
 6886
 6887/**
 6888 * schedule_preempt_disabled - called with preemption disabled
 6889 *
 6890 * Returns with preemption disabled. Note: preempt_count must be 1
 6891 */
 6892void __sched schedule_preempt_disabled(void)
 6893{
 6894	sched_preempt_enable_no_resched();
 6895	schedule();
 6896	preempt_disable();
 6897}
 6898
 6899#ifdef CONFIG_PREEMPT_RT
 6900void __sched notrace schedule_rtlock(void)
 6901{
 6902	__schedule_loop(SM_RTLOCK_WAIT);
 6903}
 6904NOKPROBE_SYMBOL(schedule_rtlock);
 6905#endif
 6906
 6907static void __sched notrace preempt_schedule_common(void)
 6908{
 6909	do {
 6910		/*
 6911		 * Because the function tracer can trace preempt_count_sub()
 6912		 * and it also uses preempt_enable/disable_notrace(), if
 6913		 * NEED_RESCHED is set, the preempt_enable_notrace() called
 6914		 * by the function tracer will call this function again and
 6915		 * cause infinite recursion.
 6916		 *
 6917		 * Preemption must be disabled here before the function
 6918		 * tracer can trace. Break up preempt_disable() into two
 6919		 * calls. One to disable preemption without fear of being
 6920		 * traced. The other to still record the preemption latency,
 6921		 * which can also be traced by the function tracer.
 6922		 */
 6923		preempt_disable_notrace();
 6924		preempt_latency_start(1);
 6925		__schedule(SM_PREEMPT);
 6926		preempt_latency_stop(1);
 6927		preempt_enable_no_resched_notrace();
 6928
 6929		/*
 6930		 * Check again in case we missed a preemption opportunity
 6931		 * between schedule and now.
 6932		 */
 6933	} while (need_resched());
 6934}
 6935
 6936#ifdef CONFIG_PREEMPTION
 6937/*
 6938 * This is the entry point to schedule() from in-kernel preemption
 6939 * off of preempt_enable.
 6940 */
 6941asmlinkage __visible void __sched notrace preempt_schedule(void)
 6942{
 6943	/*
 6944	 * If there is a non-zero preempt_count or interrupts are disabled,
 6945	 * we do not want to preempt the current task. Just return..
 6946	 */
 6947	if (likely(!preemptible()))
 6948		return;
 6949	preempt_schedule_common();
 6950}
 6951NOKPROBE_SYMBOL(preempt_schedule);
 6952EXPORT_SYMBOL(preempt_schedule);
 6953
 6954#ifdef CONFIG_PREEMPT_DYNAMIC
 6955#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
 6956#ifndef preempt_schedule_dynamic_enabled
 6957#define preempt_schedule_dynamic_enabled	preempt_schedule
 6958#define preempt_schedule_dynamic_disabled	NULL
 6959#endif
 6960DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
 6961EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
 6962#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
 6963static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
 6964void __sched notrace dynamic_preempt_schedule(void)
 6965{
 6966	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
 6967		return;
 6968	preempt_schedule();
 6969}
 6970NOKPROBE_SYMBOL(dynamic_preempt_schedule);
 6971EXPORT_SYMBOL(dynamic_preempt_schedule);
 6972#endif
 6973#endif
 6974
 6975/**
 6976 * preempt_schedule_notrace - preempt_schedule called by tracing
 6977 *
 6978 * The tracing infrastructure uses preempt_enable_notrace to prevent
 6979 * recursion and tracing preempt enabling caused by the tracing
 6980 * infrastructure itself. But as tracing can happen in areas coming
 6981 * from userspace or just about to enter userspace, a preempt enable
 6982 * can occur before user_exit() is called. This will cause the scheduler
 6983 * to be called when the system is still in usermode.
 6984 *
 6985 * To prevent this, the preempt_enable_notrace will use this function
 6986 * instead of preempt_schedule() to exit user context if needed before
 6987 * calling the scheduler.
 6988 */
 6989asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
 6990{
 6991	enum ctx_state prev_ctx;
 6992
 6993	if (likely(!preemptible()))
 6994		return;
 6995
 6996	do {
 6997		/*
 6998		 * Because the function tracer can trace preempt_count_sub()
 6999		 * and it also uses preempt_enable/disable_notrace(), if
 7000		 * NEED_RESCHED is set, the preempt_enable_notrace() called
 7001		 * by the function tracer will call this function again and
 7002		 * cause infinite recursion.
 7003		 *
 7004		 * Preemption must be disabled here before the function
 7005		 * tracer can trace. Break up preempt_disable() into two
 7006		 * calls. One to disable preemption without fear of being
 7007		 * traced. The other to still record the preemption latency,
 7008		 * which can also be traced by the function tracer.
 7009		 */
 7010		preempt_disable_notrace();
 7011		preempt_latency_start(1);
 7012		/*
 7013		 * Needs preempt disabled in case user_exit() is traced
 7014		 * and the tracer calls preempt_enable_notrace() causing
 7015		 * an infinite recursion.
 7016		 */
 7017		prev_ctx = exception_enter();
 7018		__schedule(SM_PREEMPT);
 7019		exception_exit(prev_ctx);
 7020
 7021		preempt_latency_stop(1);
 7022		preempt_enable_no_resched_notrace();
 7023	} while (need_resched());
 7024}
 7025EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
 7026
 7027#ifdef CONFIG_PREEMPT_DYNAMIC
 7028#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
 7029#ifndef preempt_schedule_notrace_dynamic_enabled
 7030#define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
 7031#define preempt_schedule_notrace_dynamic_disabled	NULL
 7032#endif
 7033DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
 7034EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
 7035#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
 7036static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
 7037void __sched notrace dynamic_preempt_schedule_notrace(void)
 7038{
 7039	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
 7040		return;
 7041	preempt_schedule_notrace();
 7042}
 7043NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
 7044EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
 7045#endif
 7046#endif
 7047
 7048#endif /* CONFIG_PREEMPTION */
 7049
 7050/*
 7051 * This is the entry point to schedule() from kernel preemption
 7052 * off of irq context.
 7053 * Note, that this is called and return with irqs disabled. This will
 7054 * protect us against recursive calling from irq.
 7055 */
 7056asmlinkage __visible void __sched preempt_schedule_irq(void)
 7057{
 7058	enum ctx_state prev_state;
 7059
 7060	/* Catch callers which need to be fixed */
 7061	BUG_ON(preempt_count() || !irqs_disabled());
 7062
 7063	prev_state = exception_enter();
 7064
 7065	do {
 7066		preempt_disable();
 7067		local_irq_enable();
 7068		__schedule(SM_PREEMPT);
 7069		local_irq_disable();
 7070		sched_preempt_enable_no_resched();
 7071	} while (need_resched());
 7072
 7073	exception_exit(prev_state);
 7074}
 7075
 7076int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
 7077			  void *key)
 7078{
 7079	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
 7080	return try_to_wake_up(curr->private, mode, wake_flags);
 7081}
 7082EXPORT_SYMBOL(default_wake_function);
 7083
 7084static void __setscheduler_prio(struct task_struct *p, int prio)
 7085{
 7086	if (dl_prio(prio))
 7087		p->sched_class = &dl_sched_class;
 7088	else if (rt_prio(prio))
 7089		p->sched_class = &rt_sched_class;
 7090	else
 7091		p->sched_class = &fair_sched_class;
 7092
 7093	p->prio = prio;
 7094}
 7095
 7096#ifdef CONFIG_RT_MUTEXES
 7097
 7098/*
 7099 * Would be more useful with typeof()/auto_type but they don't mix with
 7100 * bit-fields. Since it's a local thing, use int. Keep the generic sounding
 7101 * name such that if someone were to implement this function we get to compare
 7102 * notes.
 7103 */
 7104#define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
 7105
 7106void rt_mutex_pre_schedule(void)
 7107{
 7108	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
 7109	sched_submit_work(current);
 7110}
 7111
 7112void rt_mutex_schedule(void)
 7113{
 7114	lockdep_assert(current->sched_rt_mutex);
 7115	__schedule_loop(SM_NONE);
 7116}
 7117
 7118void rt_mutex_post_schedule(void)
 7119{
 7120	sched_update_worker(current);
 7121	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
 7122}
 7123
 7124static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
 7125{
 7126	if (pi_task)
 7127		prio = min(prio, pi_task->prio);
 7128
 7129	return prio;
 7130}
 7131
 7132static inline int rt_effective_prio(struct task_struct *p, int prio)
 7133{
 7134	struct task_struct *pi_task = rt_mutex_get_top_task(p);
 7135
 7136	return __rt_effective_prio(pi_task, prio);
 7137}
 7138
 7139/*
 7140 * rt_mutex_setprio - set the current priority of a task
 7141 * @p: task to boost
 7142 * @pi_task: donor task
 7143 *
 7144 * This function changes the 'effective' priority of a task. It does
 7145 * not touch ->normal_prio like __setscheduler().
 7146 *
 7147 * Used by the rt_mutex code to implement priority inheritance
 7148 * logic. Call site only calls if the priority of the task changed.
 7149 */
 7150void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
 7151{
 7152	int prio, oldprio, queued, running, queue_flag =
 7153		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
 7154	const struct sched_class *prev_class;
 7155	struct rq_flags rf;
 7156	struct rq *rq;
 7157
 7158	/* XXX used to be waiter->prio, not waiter->task->prio */
 7159	prio = __rt_effective_prio(pi_task, p->normal_prio);
 7160
 7161	/*
 7162	 * If nothing changed; bail early.
 7163	 */
 7164	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
 7165		return;
 7166
 7167	rq = __task_rq_lock(p, &rf);
 7168	update_rq_clock(rq);
 7169	/*
 7170	 * Set under pi_lock && rq->lock, such that the value can be used under
 7171	 * either lock.
 7172	 *
 7173	 * Note that there is loads of tricky to make this pointer cache work
 7174	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
 7175	 * ensure a task is de-boosted (pi_task is set to NULL) before the
 7176	 * task is allowed to run again (and can exit). This ensures the pointer
 7177	 * points to a blocked task -- which guarantees the task is present.
 7178	 */
 7179	p->pi_top_task = pi_task;
 7180
 7181	/*
 7182	 * For FIFO/RR we only need to set prio, if that matches we're done.
 7183	 */
 7184	if (prio == p->prio && !dl_prio(prio))
 7185		goto out_unlock;
 7186
 7187	/*
 7188	 * Idle task boosting is a nono in general. There is one
 7189	 * exception, when PREEMPT_RT and NOHZ is active:
 7190	 *
 7191	 * The idle task calls get_next_timer_interrupt() and holds
 7192	 * the timer wheel base->lock on the CPU and another CPU wants
 7193	 * to access the timer (probably to cancel it). We can safely
 7194	 * ignore the boosting request, as the idle CPU runs this code
 7195	 * with interrupts disabled and will complete the lock
 7196	 * protected section without being interrupted. So there is no
 7197	 * real need to boost.
 7198	 */
 7199	if (unlikely(p == rq->idle)) {
 7200		WARN_ON(p != rq->curr);
 7201		WARN_ON(p->pi_blocked_on);
 7202		goto out_unlock;
 7203	}
 7204
 7205	trace_sched_pi_setprio(p, pi_task);
 7206	oldprio = p->prio;
 7207
 7208	if (oldprio == prio)
 7209		queue_flag &= ~DEQUEUE_MOVE;
 7210
 7211	prev_class = p->sched_class;
 7212	queued = task_on_rq_queued(p);
 7213	running = task_current(rq, p);
 7214	if (queued)
 7215		dequeue_task(rq, p, queue_flag);
 7216	if (running)
 7217		put_prev_task(rq, p);
 7218
 7219	/*
 7220	 * Boosting condition are:
 7221	 * 1. -rt task is running and holds mutex A
 7222	 *      --> -dl task blocks on mutex A
 7223	 *
 7224	 * 2. -dl task is running and holds mutex A
 7225	 *      --> -dl task blocks on mutex A and could preempt the
 7226	 *          running task
 7227	 */
 7228	if (dl_prio(prio)) {
 7229		if (!dl_prio(p->normal_prio) ||
 7230		    (pi_task && dl_prio(pi_task->prio) &&
 7231		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
 7232			p->dl.pi_se = pi_task->dl.pi_se;
 7233			queue_flag |= ENQUEUE_REPLENISH;
 7234		} else {
 7235			p->dl.pi_se = &p->dl;
 7236		}
 7237	} else if (rt_prio(prio)) {
 7238		if (dl_prio(oldprio))
 7239			p->dl.pi_se = &p->dl;
 7240		if (oldprio < prio)
 7241			queue_flag |= ENQUEUE_HEAD;
 7242	} else {
 7243		if (dl_prio(oldprio))
 7244			p->dl.pi_se = &p->dl;
 7245		if (rt_prio(oldprio))
 7246			p->rt.timeout = 0;
 7247	}
 7248
 7249	__setscheduler_prio(p, prio);
 7250
 7251	if (queued)
 7252		enqueue_task(rq, p, queue_flag);
 7253	if (running)
 7254		set_next_task(rq, p);
 7255
 7256	check_class_changed(rq, p, prev_class, oldprio);
 7257out_unlock:
 7258	/* Avoid rq from going away on us: */
 7259	preempt_disable();
 7260
 7261	rq_unpin_lock(rq, &rf);
 7262	__balance_callbacks(rq);
 7263	raw_spin_rq_unlock(rq);
 7264
 7265	preempt_enable();
 7266}
 7267#else
 7268static inline int rt_effective_prio(struct task_struct *p, int prio)
 7269{
 7270	return prio;
 7271}
 7272#endif
 7273
 7274void set_user_nice(struct task_struct *p, long nice)
 7275{
 7276	bool queued, running;
 7277	struct rq *rq;
 7278	int old_prio;
 7279
 7280	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
 7281		return;
 7282	/*
 7283	 * We have to be careful, if called from sys_setpriority(),
 7284	 * the task might be in the middle of scheduling on another CPU.
 7285	 */
 7286	CLASS(task_rq_lock, rq_guard)(p);
 7287	rq = rq_guard.rq;
 7288
 7289	update_rq_clock(rq);
 7290
 7291	/*
 7292	 * The RT priorities are set via sched_setscheduler(), but we still
 7293	 * allow the 'normal' nice value to be set - but as expected
 7294	 * it won't have any effect on scheduling until the task is
 7295	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
 7296	 */
 7297	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
 7298		p->static_prio = NICE_TO_PRIO(nice);
 7299		return;
 7300	}
 7301
 7302	queued = task_on_rq_queued(p);
 7303	running = task_current(rq, p);
 7304	if (queued)
 7305		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
 7306	if (running)
 7307		put_prev_task(rq, p);
 7308
 7309	p->static_prio = NICE_TO_PRIO(nice);
 7310	set_load_weight(p, true);
 7311	old_prio = p->prio;
 7312	p->prio = effective_prio(p);
 7313
 7314	if (queued)
 7315		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
 7316	if (running)
 7317		set_next_task(rq, p);
 7318
 7319	/*
 7320	 * If the task increased its priority or is running and
 7321	 * lowered its priority, then reschedule its CPU:
 7322	 */
 7323	p->sched_class->prio_changed(rq, p, old_prio);
 7324}
 7325EXPORT_SYMBOL(set_user_nice);
 7326
 7327/*
 7328 * is_nice_reduction - check if nice value is an actual reduction
 7329 *
 7330 * Similar to can_nice() but does not perform a capability check.
 7331 *
 7332 * @p: task
 7333 * @nice: nice value
 7334 */
 7335static bool is_nice_reduction(const struct task_struct *p, const int nice)
 7336{
 7337	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
 7338	int nice_rlim = nice_to_rlimit(nice);
 7339
 7340	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
 7341}
 7342
 7343/*
 7344 * can_nice - check if a task can reduce its nice value
 7345 * @p: task
 7346 * @nice: nice value
 7347 */
 7348int can_nice(const struct task_struct *p, const int nice)
 7349{
 7350	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
 7351}
 7352
 7353#ifdef __ARCH_WANT_SYS_NICE
 7354
 7355/*
 7356 * sys_nice - change the priority of the current process.
 7357 * @increment: priority increment
 7358 *
 7359 * sys_setpriority is a more generic, but much slower function that
 7360 * does similar things.
 7361 */
 7362SYSCALL_DEFINE1(nice, int, increment)
 7363{
 7364	long nice, retval;
 7365
 7366	/*
 7367	 * Setpriority might change our priority at the same moment.
 7368	 * We don't have to worry. Conceptually one call occurs first
 7369	 * and we have a single winner.
 7370	 */
 7371	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
 7372	nice = task_nice(current) + increment;
 7373
 7374	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
 7375	if (increment < 0 && !can_nice(current, nice))
 7376		return -EPERM;
 7377
 7378	retval = security_task_setnice(current, nice);
 7379	if (retval)
 7380		return retval;
 7381
 7382	set_user_nice(current, nice);
 7383	return 0;
 7384}
 7385
 7386#endif
 7387
 7388/**
 7389 * task_prio - return the priority value of a given task.
 7390 * @p: the task in question.
 7391 *
 7392 * Return: The priority value as seen by users in /proc.
 7393 *
 7394 * sched policy         return value   kernel prio    user prio/nice
 7395 *
 7396 * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
 7397 * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
 7398 * deadline                     -101             -1           0
 7399 */
 7400int task_prio(const struct task_struct *p)
 7401{
 7402	return p->prio - MAX_RT_PRIO;
 7403}
 7404
 7405/**
 7406 * idle_cpu - is a given CPU idle currently?
 7407 * @cpu: the processor in question.
 7408 *
 7409 * Return: 1 if the CPU is currently idle. 0 otherwise.
 7410 */
 7411int idle_cpu(int cpu)
 7412{
 7413	struct rq *rq = cpu_rq(cpu);
 7414
 7415	if (rq->curr != rq->idle)
 7416		return 0;
 7417
 7418	if (rq->nr_running)
 7419		return 0;
 7420
 7421#ifdef CONFIG_SMP
 7422	if (rq->ttwu_pending)
 7423		return 0;
 7424#endif
 7425
 7426	return 1;
 7427}
 7428
 7429/**
 7430 * available_idle_cpu - is a given CPU idle for enqueuing work.
 7431 * @cpu: the CPU in question.
 7432 *
 7433 * Return: 1 if the CPU is currently idle. 0 otherwise.
 7434 */
 7435int available_idle_cpu(int cpu)
 7436{
 7437	if (!idle_cpu(cpu))
 7438		return 0;
 7439
 7440	if (vcpu_is_preempted(cpu))
 7441		return 0;
 7442
 7443	return 1;
 7444}
 7445
 7446/**
 7447 * idle_task - return the idle task for a given CPU.
 7448 * @cpu: the processor in question.
 7449 *
 7450 * Return: The idle task for the CPU @cpu.
 7451 */
 7452struct task_struct *idle_task(int cpu)
 7453{
 7454	return cpu_rq(cpu)->idle;
 7455}
 7456
 7457#ifdef CONFIG_SCHED_CORE
 7458int sched_core_idle_cpu(int cpu)
 7459{
 7460	struct rq *rq = cpu_rq(cpu);
 7461
 7462	if (sched_core_enabled(rq) && rq->curr == rq->idle)
 7463		return 1;
 7464
 7465	return idle_cpu(cpu);
 7466}
 7467
 7468#endif
 7469
 7470#ifdef CONFIG_SMP
 7471/*
 7472 * This function computes an effective utilization for the given CPU, to be
 7473 * used for frequency selection given the linear relation: f = u * f_max.
 7474 *
 7475 * The scheduler tracks the following metrics:
 7476 *
 7477 *   cpu_util_{cfs,rt,dl,irq}()
 7478 *   cpu_bw_dl()
 7479 *
 7480 * Where the cfs,rt and dl util numbers are tracked with the same metric and
 7481 * synchronized windows and are thus directly comparable.
 7482 *
 7483 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
 7484 * which excludes things like IRQ and steal-time. These latter are then accrued
 7485 * in the irq utilization.
 7486 *
 7487 * The DL bandwidth number otoh is not a measured metric but a value computed
 7488 * based on the task model parameters and gives the minimal utilization
 7489 * required to meet deadlines.
 7490 */
 7491unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
 7492				 unsigned long *min,
 7493				 unsigned long *max)
 7494{
 7495	unsigned long util, irq, scale;
 7496	struct rq *rq = cpu_rq(cpu);
 7497
 7498	scale = arch_scale_cpu_capacity(cpu);
 7499
 7500	/*
 7501	 * Early check to see if IRQ/steal time saturates the CPU, can be
 7502	 * because of inaccuracies in how we track these -- see
 7503	 * update_irq_load_avg().
 7504	 */
 7505	irq = cpu_util_irq(rq);
 7506	if (unlikely(irq >= scale)) {
 7507		if (min)
 7508			*min = scale;
 7509		if (max)
 7510			*max = scale;
 7511		return scale;
 7512	}
 7513
 7514	if (min) {
 7515		/*
 7516		 * The minimum utilization returns the highest level between:
 7517		 * - the computed DL bandwidth needed with the IRQ pressure which
 7518		 *   steals time to the deadline task.
 7519		 * - The minimum performance requirement for CFS and/or RT.
 7520		 */
 7521		*min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
 7522
 7523		/*
 7524		 * When an RT task is runnable and uclamp is not used, we must
 7525		 * ensure that the task will run at maximum compute capacity.
 7526		 */
 7527		if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
 7528			*min = max(*min, scale);
 7529	}
 7530
 7531	/*
 7532	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
 7533	 * CFS tasks and we use the same metric to track the effective
 7534	 * utilization (PELT windows are synchronized) we can directly add them
 7535	 * to obtain the CPU's actual utilization.
 7536	 */
 7537	util = util_cfs + cpu_util_rt(rq);
 7538	util += cpu_util_dl(rq);
 7539
 7540	/*
 7541	 * The maximum hint is a soft bandwidth requirement, which can be lower
 7542	 * than the actual utilization because of uclamp_max requirements.
 7543	 */
 7544	if (max)
 7545		*max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
 7546
 7547	if (util >= scale)
 7548		return scale;
 7549
 7550	/*
 7551	 * There is still idle time; further improve the number by using the
 7552	 * irq metric. Because IRQ/steal time is hidden from the task clock we
 7553	 * need to scale the task numbers:
 7554	 *
 7555	 *              max - irq
 7556	 *   U' = irq + --------- * U
 7557	 *                 max
 7558	 */
 7559	util = scale_irq_capacity(util, irq, scale);
 7560	util += irq;
 7561
 7562	return min(scale, util);
 7563}
 7564
 7565unsigned long sched_cpu_util(int cpu)
 7566{
 7567	return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
 7568}
 7569#endif /* CONFIG_SMP */
 7570
 7571/**
 7572 * find_process_by_pid - find a process with a matching PID value.
 7573 * @pid: the pid in question.
 7574 *
 7575 * The task of @pid, if found. %NULL otherwise.
 7576 */
 7577static struct task_struct *find_process_by_pid(pid_t pid)
 7578{
 7579	return pid ? find_task_by_vpid(pid) : current;
 7580}
 7581
 7582static struct task_struct *find_get_task(pid_t pid)
 7583{
 7584	struct task_struct *p;
 7585	guard(rcu)();
 7586
 7587	p = find_process_by_pid(pid);
 7588	if (likely(p))
 7589		get_task_struct(p);
 7590
 7591	return p;
 7592}
 7593
 7594DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T),
 7595	     find_get_task(pid), pid_t pid)
 7596
 7597/*
 7598 * sched_setparam() passes in -1 for its policy, to let the functions
 7599 * it calls know not to change it.
 7600 */
 7601#define SETPARAM_POLICY	-1
 7602
 7603static void __setscheduler_params(struct task_struct *p,
 7604		const struct sched_attr *attr)
 7605{
 7606	int policy = attr->sched_policy;
 7607
 7608	if (policy == SETPARAM_POLICY)
 7609		policy = p->policy;
 7610
 7611	p->policy = policy;
 7612
 7613	if (dl_policy(policy))
 7614		__setparam_dl(p, attr);
 7615	else if (fair_policy(policy))
 7616		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
 7617
 7618	/*
 7619	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
 7620	 * !rt_policy. Always setting this ensures that things like
 7621	 * getparam()/getattr() don't report silly values for !rt tasks.
 7622	 */
 7623	p->rt_priority = attr->sched_priority;
 7624	p->normal_prio = normal_prio(p);
 7625	set_load_weight(p, true);
 7626}
 7627
 7628/*
 7629 * Check the target process has a UID that matches the current process's:
 7630 */
 7631static bool check_same_owner(struct task_struct *p)
 7632{
 7633	const struct cred *cred = current_cred(), *pcred;
 7634	guard(rcu)();
 7635
 7636	pcred = __task_cred(p);
 7637	return (uid_eq(cred->euid, pcred->euid) ||
 7638		uid_eq(cred->euid, pcred->uid));
 7639}
 7640
 7641/*
 7642 * Allow unprivileged RT tasks to decrease priority.
 7643 * Only issue a capable test if needed and only once to avoid an audit
 7644 * event on permitted non-privileged operations:
 7645 */
 7646static int user_check_sched_setscheduler(struct task_struct *p,
 7647					 const struct sched_attr *attr,
 7648					 int policy, int reset_on_fork)
 7649{
 7650	if (fair_policy(policy)) {
 7651		if (attr->sched_nice < task_nice(p) &&
 7652		    !is_nice_reduction(p, attr->sched_nice))
 7653			goto req_priv;
 7654	}
 7655
 7656	if (rt_policy(policy)) {
 7657		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
 7658
 7659		/* Can't set/change the rt policy: */
 7660		if (policy != p->policy && !rlim_rtprio)
 7661			goto req_priv;
 7662
 7663		/* Can't increase priority: */
 7664		if (attr->sched_priority > p->rt_priority &&
 7665		    attr->sched_priority > rlim_rtprio)
 7666			goto req_priv;
 7667	}
 7668
 7669	/*
 7670	 * Can't set/change SCHED_DEADLINE policy at all for now
 7671	 * (safest behavior); in the future we would like to allow
 7672	 * unprivileged DL tasks to increase their relative deadline
 7673	 * or reduce their runtime (both ways reducing utilization)
 7674	 */
 7675	if (dl_policy(policy))
 7676		goto req_priv;
 7677
 7678	/*
 7679	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
 7680	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
 7681	 */
 7682	if (task_has_idle_policy(p) && !idle_policy(policy)) {
 7683		if (!is_nice_reduction(p, task_nice(p)))
 7684			goto req_priv;
 7685	}
 7686
 7687	/* Can't change other user's priorities: */
 7688	if (!check_same_owner(p))
 7689		goto req_priv;
 7690
 7691	/* Normal users shall not reset the sched_reset_on_fork flag: */
 7692	if (p->sched_reset_on_fork && !reset_on_fork)
 7693		goto req_priv;
 7694
 7695	return 0;
 7696
 7697req_priv:
 7698	if (!capable(CAP_SYS_NICE))
 7699		return -EPERM;
 7700
 7701	return 0;
 7702}
 7703
 7704static int __sched_setscheduler(struct task_struct *p,
 7705				const struct sched_attr *attr,
 7706				bool user, bool pi)
 7707{
 7708	int oldpolicy = -1, policy = attr->sched_policy;
 7709	int retval, oldprio, newprio, queued, running;
 7710	const struct sched_class *prev_class;
 7711	struct balance_callback *head;
 7712	struct rq_flags rf;
 7713	int reset_on_fork;
 7714	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
 7715	struct rq *rq;
 7716	bool cpuset_locked = false;
 7717
 7718	/* The pi code expects interrupts enabled */
 7719	BUG_ON(pi && in_interrupt());
 7720recheck:
 7721	/* Double check policy once rq lock held: */
 7722	if (policy < 0) {
 7723		reset_on_fork = p->sched_reset_on_fork;
 7724		policy = oldpolicy = p->policy;
 7725	} else {
 7726		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
 7727
 7728		if (!valid_policy(policy))
 7729			return -EINVAL;
 7730	}
 7731
 7732	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
 7733		return -EINVAL;
 7734
 7735	/*
 7736	 * Valid priorities for SCHED_FIFO and SCHED_RR are
 7737	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
 7738	 * SCHED_BATCH and SCHED_IDLE is 0.
 7739	 */
 7740	if (attr->sched_priority > MAX_RT_PRIO-1)
 7741		return -EINVAL;
 7742	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
 7743	    (rt_policy(policy) != (attr->sched_priority != 0)))
 7744		return -EINVAL;
 7745
 7746	if (user) {
 7747		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
 7748		if (retval)
 7749			return retval;
 7750
 7751		if (attr->sched_flags & SCHED_FLAG_SUGOV)
 7752			return -EINVAL;
 7753
 7754		retval = security_task_setscheduler(p);
 7755		if (retval)
 7756			return retval;
 7757	}
 7758
 7759	/* Update task specific "requested" clamps */
 7760	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
 7761		retval = uclamp_validate(p, attr);
 7762		if (retval)
 7763			return retval;
 7764	}
 7765
 7766	/*
 7767	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
 7768	 * information.
 7769	 */
 7770	if (dl_policy(policy) || dl_policy(p->policy)) {
 7771		cpuset_locked = true;
 7772		cpuset_lock();
 7773	}
 7774
 7775	/*
 7776	 * Make sure no PI-waiters arrive (or leave) while we are
 7777	 * changing the priority of the task:
 7778	 *
 7779	 * To be able to change p->policy safely, the appropriate
 7780	 * runqueue lock must be held.
 7781	 */
 7782	rq = task_rq_lock(p, &rf);
 7783	update_rq_clock(rq);
 7784
 7785	/*
 7786	 * Changing the policy of the stop threads its a very bad idea:
 7787	 */
 7788	if (p == rq->stop) {
 7789		retval = -EINVAL;
 7790		goto unlock;
 7791	}
 7792
 7793	/*
 7794	 * If not changing anything there's no need to proceed further,
 7795	 * but store a possible modification of reset_on_fork.
 7796	 */
 7797	if (unlikely(policy == p->policy)) {
 7798		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
 7799			goto change;
 7800		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
 7801			goto change;
 7802		if (dl_policy(policy) && dl_param_changed(p, attr))
 7803			goto change;
 7804		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
 7805			goto change;
 7806
 7807		p->sched_reset_on_fork = reset_on_fork;
 7808		retval = 0;
 7809		goto unlock;
 7810	}
 7811change:
 7812
 7813	if (user) {
 7814#ifdef CONFIG_RT_GROUP_SCHED
 7815		/*
 7816		 * Do not allow realtime tasks into groups that have no runtime
 7817		 * assigned.
 7818		 */
 7819		if (rt_bandwidth_enabled() && rt_policy(policy) &&
 7820				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
 7821				!task_group_is_autogroup(task_group(p))) {
 7822			retval = -EPERM;
 7823			goto unlock;
 7824		}
 7825#endif
 7826#ifdef CONFIG_SMP
 7827		if (dl_bandwidth_enabled() && dl_policy(policy) &&
 7828				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
 7829			cpumask_t *span = rq->rd->span;
 7830
 7831			/*
 7832			 * Don't allow tasks with an affinity mask smaller than
 7833			 * the entire root_domain to become SCHED_DEADLINE. We
 7834			 * will also fail if there's no bandwidth available.
 7835			 */
 7836			if (!cpumask_subset(span, p->cpus_ptr) ||
 7837			    rq->rd->dl_bw.bw == 0) {
 7838				retval = -EPERM;
 7839				goto unlock;
 7840			}
 7841		}
 7842#endif
 7843	}
 7844
 7845	/* Re-check policy now with rq lock held: */
 7846	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
 7847		policy = oldpolicy = -1;
 7848		task_rq_unlock(rq, p, &rf);
 7849		if (cpuset_locked)
 7850			cpuset_unlock();
 7851		goto recheck;
 7852	}
 7853
 7854	/*
 7855	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
 7856	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
 7857	 * is available.
 7858	 */
 7859	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
 7860		retval = -EBUSY;
 7861		goto unlock;
 7862	}
 7863
 7864	p->sched_reset_on_fork = reset_on_fork;
 7865	oldprio = p->prio;
 7866
 7867	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
 7868	if (pi) {
 7869		/*
 7870		 * Take priority boosted tasks into account. If the new
 7871		 * effective priority is unchanged, we just store the new
 7872		 * normal parameters and do not touch the scheduler class and
 7873		 * the runqueue. This will be done when the task deboost
 7874		 * itself.
 7875		 */
 7876		newprio = rt_effective_prio(p, newprio);
 7877		if (newprio == oldprio)
 7878			queue_flags &= ~DEQUEUE_MOVE;
 7879	}
 7880
 7881	queued = task_on_rq_queued(p);
 7882	running = task_current(rq, p);
 7883	if (queued)
 7884		dequeue_task(rq, p, queue_flags);
 7885	if (running)
 7886		put_prev_task(rq, p);
 7887
 7888	prev_class = p->sched_class;
 7889
 7890	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
 7891		__setscheduler_params(p, attr);
 7892		__setscheduler_prio(p, newprio);
 7893	}
 7894	__setscheduler_uclamp(p, attr);
 7895
 7896	if (queued) {
 7897		/*
 7898		 * We enqueue to tail when the priority of a task is
 7899		 * increased (user space view).
 7900		 */
 7901		if (oldprio < p->prio)
 7902			queue_flags |= ENQUEUE_HEAD;
 7903
 7904		enqueue_task(rq, p, queue_flags);
 7905	}
 7906	if (running)
 7907		set_next_task(rq, p);
 7908
 7909	check_class_changed(rq, p, prev_class, oldprio);
 7910
 7911	/* Avoid rq from going away on us: */
 7912	preempt_disable();
 7913	head = splice_balance_callbacks(rq);
 7914	task_rq_unlock(rq, p, &rf);
 7915
 7916	if (pi) {
 7917		if (cpuset_locked)
 7918			cpuset_unlock();
 7919		rt_mutex_adjust_pi(p);
 7920	}
 7921
 7922	/* Run balance callbacks after we've adjusted the PI chain: */
 7923	balance_callbacks(rq, head);
 7924	preempt_enable();
 7925
 7926	return 0;
 7927
 7928unlock:
 7929	task_rq_unlock(rq, p, &rf);
 7930	if (cpuset_locked)
 7931		cpuset_unlock();
 7932	return retval;
 7933}
 7934
 7935static int _sched_setscheduler(struct task_struct *p, int policy,
 7936			       const struct sched_param *param, bool check)
 7937{
 7938	struct sched_attr attr = {
 7939		.sched_policy   = policy,
 7940		.sched_priority = param->sched_priority,
 7941		.sched_nice	= PRIO_TO_NICE(p->static_prio),
 7942	};
 7943
 7944	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
 7945	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
 7946		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
 7947		policy &= ~SCHED_RESET_ON_FORK;
 7948		attr.sched_policy = policy;
 7949	}
 7950
 7951	return __sched_setscheduler(p, &attr, check, true);
 7952}
 7953/**
 7954 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 7955 * @p: the task in question.
 7956 * @policy: new policy.
 7957 * @param: structure containing the new RT priority.
 7958 *
 7959 * Use sched_set_fifo(), read its comment.
 7960 *
 7961 * Return: 0 on success. An error code otherwise.
 7962 *
 7963 * NOTE that the task may be already dead.
 7964 */
 7965int sched_setscheduler(struct task_struct *p, int policy,
 7966		       const struct sched_param *param)
 7967{
 7968	return _sched_setscheduler(p, policy, param, true);
 7969}
 7970
 7971int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
 7972{
 7973	return __sched_setscheduler(p, attr, true, true);
 7974}
 7975
 7976int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
 7977{
 7978	return __sched_setscheduler(p, attr, false, true);
 7979}
 7980EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
 7981
 7982/**
 7983 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 7984 * @p: the task in question.
 7985 * @policy: new policy.
 7986 * @param: structure containing the new RT priority.
 7987 *
 7988 * Just like sched_setscheduler, only don't bother checking if the
 7989 * current context has permission.  For example, this is needed in
 7990 * stop_machine(): we create temporary high priority worker threads,
 7991 * but our caller might not have that capability.
 7992 *
 7993 * Return: 0 on success. An error code otherwise.
 7994 */
 7995int sched_setscheduler_nocheck(struct task_struct *p, int policy,
 7996			       const struct sched_param *param)
 7997{
 7998	return _sched_setscheduler(p, policy, param, false);
 7999}
 8000
 8001/*
 8002 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
 8003 * incapable of resource management, which is the one thing an OS really should
 8004 * be doing.
 8005 *
 8006 * This is of course the reason it is limited to privileged users only.
 8007 *
 8008 * Worse still; it is fundamentally impossible to compose static priority
 8009 * workloads. You cannot take two correctly working static prio workloads
 8010 * and smash them together and still expect them to work.
 8011 *
 8012 * For this reason 'all' FIFO tasks the kernel creates are basically at:
 8013 *
 8014 *   MAX_RT_PRIO / 2
 8015 *
 8016 * The administrator _MUST_ configure the system, the kernel simply doesn't
 8017 * know enough information to make a sensible choice.
 8018 */
 8019void sched_set_fifo(struct task_struct *p)
 8020{
 8021	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
 8022	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
 8023}
 8024EXPORT_SYMBOL_GPL(sched_set_fifo);
 8025
 8026/*
 8027 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
 8028 */
 8029void sched_set_fifo_low(struct task_struct *p)
 8030{
 8031	struct sched_param sp = { .sched_priority = 1 };
 8032	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
 8033}
 8034EXPORT_SYMBOL_GPL(sched_set_fifo_low);
 8035
 8036void sched_set_normal(struct task_struct *p, int nice)
 8037{
 8038	struct sched_attr attr = {
 8039		.sched_policy = SCHED_NORMAL,
 8040		.sched_nice = nice,
 8041	};
 8042	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
 8043}
 8044EXPORT_SYMBOL_GPL(sched_set_normal);
 8045
 8046static int
 8047do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
 8048{
 8049	struct sched_param lparam;
 8050
 8051	if (!param || pid < 0)
 8052		return -EINVAL;
 8053	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
 8054		return -EFAULT;
 8055
 8056	CLASS(find_get_task, p)(pid);
 8057	if (!p)
 8058		return -ESRCH;
 8059
 8060	return sched_setscheduler(p, policy, &lparam);
 8061}
 8062
 8063/*
 8064 * Mimics kernel/events/core.c perf_copy_attr().
 8065 */
 8066static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
 8067{
 8068	u32 size;
 8069	int ret;
 8070
 8071	/* Zero the full structure, so that a short copy will be nice: */
 8072	memset(attr, 0, sizeof(*attr));
 8073
 8074	ret = get_user(size, &uattr->size);
 8075	if (ret)
 8076		return ret;
 8077
 8078	/* ABI compatibility quirk: */
 8079	if (!size)
 8080		size = SCHED_ATTR_SIZE_VER0;
 8081	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
 8082		goto err_size;
 8083
 8084	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
 8085	if (ret) {
 8086		if (ret == -E2BIG)
 8087			goto err_size;
 8088		return ret;
 8089	}
 8090
 8091	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
 8092	    size < SCHED_ATTR_SIZE_VER1)
 8093		return -EINVAL;
 8094
 8095	/*
 8096	 * XXX: Do we want to be lenient like existing syscalls; or do we want
 8097	 * to be strict and return an error on out-of-bounds values?
 8098	 */
 8099	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
 8100
 8101	return 0;
 8102
 8103err_size:
 8104	put_user(sizeof(*attr), &uattr->size);
 8105	return -E2BIG;
 8106}
 8107
 8108static void get_params(struct task_struct *p, struct sched_attr *attr)
 8109{
 8110	if (task_has_dl_policy(p))
 8111		__getparam_dl(p, attr);
 8112	else if (task_has_rt_policy(p))
 8113		attr->sched_priority = p->rt_priority;
 8114	else
 8115		attr->sched_nice = task_nice(p);
 8116}
 8117
 8118/**
 8119 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 8120 * @pid: the pid in question.
 8121 * @policy: new policy.
 8122 * @param: structure containing the new RT priority.
 8123 *
 8124 * Return: 0 on success. An error code otherwise.
 8125 */
 8126SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
 8127{
 8128	if (policy < 0)
 8129		return -EINVAL;
 8130
 8131	return do_sched_setscheduler(pid, policy, param);
 8132}
 8133
 8134/**
 8135 * sys_sched_setparam - set/change the RT priority of a thread
 8136 * @pid: the pid in question.
 8137 * @param: structure containing the new RT priority.
 8138 *
 8139 * Return: 0 on success. An error code otherwise.
 8140 */
 8141SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
 8142{
 8143	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
 8144}
 8145
 8146/**
 8147 * sys_sched_setattr - same as above, but with extended sched_attr
 8148 * @pid: the pid in question.
 8149 * @uattr: structure containing the extended parameters.
 8150 * @flags: for future extension.
 8151 */
 8152SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
 8153			       unsigned int, flags)
 8154{
 8155	struct sched_attr attr;
 8156	int retval;
 8157
 8158	if (!uattr || pid < 0 || flags)
 8159		return -EINVAL;
 8160
 8161	retval = sched_copy_attr(uattr, &attr);
 8162	if (retval)
 8163		return retval;
 8164
 8165	if ((int)attr.sched_policy < 0)
 8166		return -EINVAL;
 8167	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
 8168		attr.sched_policy = SETPARAM_POLICY;
 8169
 8170	CLASS(find_get_task, p)(pid);
 8171	if (!p)
 8172		return -ESRCH;
 8173
 8174	if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
 8175		get_params(p, &attr);
 8176
 8177	return sched_setattr(p, &attr);
 8178}
 8179
 8180/**
 8181 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 8182 * @pid: the pid in question.
 8183 *
 8184 * Return: On success, the policy of the thread. Otherwise, a negative error
 8185 * code.
 8186 */
 8187SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
 8188{
 8189	struct task_struct *p;
 8190	int retval;
 8191
 8192	if (pid < 0)
 8193		return -EINVAL;
 8194
 8195	guard(rcu)();
 8196	p = find_process_by_pid(pid);
 8197	if (!p)
 8198		return -ESRCH;
 8199
 8200	retval = security_task_getscheduler(p);
 8201	if (!retval) {
 8202		retval = p->policy;
 8203		if (p->sched_reset_on_fork)
 8204			retval |= SCHED_RESET_ON_FORK;
 8205	}
 8206	return retval;
 8207}
 8208
 8209/**
 8210 * sys_sched_getparam - get the RT priority of a thread
 8211 * @pid: the pid in question.
 8212 * @param: structure containing the RT priority.
 8213 *
 8214 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 8215 * code.
 8216 */
 8217SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
 8218{
 8219	struct sched_param lp = { .sched_priority = 0 };
 8220	struct task_struct *p;
 8221	int retval;
 8222
 8223	if (!param || pid < 0)
 8224		return -EINVAL;
 8225
 8226	scoped_guard (rcu) {
 8227		p = find_process_by_pid(pid);
 8228		if (!p)
 8229			return -ESRCH;
 8230
 8231		retval = security_task_getscheduler(p);
 8232		if (retval)
 8233			return retval;
 8234
 8235		if (task_has_rt_policy(p))
 8236			lp.sched_priority = p->rt_priority;
 8237	}
 8238
 8239	/*
 8240	 * This one might sleep, we cannot do it with a spinlock held ...
 8241	 */
 8242	return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
 8243}
 8244
 8245/*
 8246 * Copy the kernel size attribute structure (which might be larger
 8247 * than what user-space knows about) to user-space.
 8248 *
 8249 * Note that all cases are valid: user-space buffer can be larger or
 8250 * smaller than the kernel-space buffer. The usual case is that both
 8251 * have the same size.
 8252 */
 8253static int
 8254sched_attr_copy_to_user(struct sched_attr __user *uattr,
 8255			struct sched_attr *kattr,
 8256			unsigned int usize)
 8257{
 8258	unsigned int ksize = sizeof(*kattr);
 8259
 8260	if (!access_ok(uattr, usize))
 8261		return -EFAULT;
 8262
 8263	/*
 8264	 * sched_getattr() ABI forwards and backwards compatibility:
 8265	 *
 8266	 * If usize == ksize then we just copy everything to user-space and all is good.
 8267	 *
 8268	 * If usize < ksize then we only copy as much as user-space has space for,
 8269	 * this keeps ABI compatibility as well. We skip the rest.
 8270	 *
 8271	 * If usize > ksize then user-space is using a newer version of the ABI,
 8272	 * which part the kernel doesn't know about. Just ignore it - tooling can
 8273	 * detect the kernel's knowledge of attributes from the attr->size value
 8274	 * which is set to ksize in this case.
 8275	 */
 8276	kattr->size = min(usize, ksize);
 8277
 8278	if (copy_to_user(uattr, kattr, kattr->size))
 8279		return -EFAULT;
 8280
 8281	return 0;
 8282}
 8283
 8284/**
 8285 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
 8286 * @pid: the pid in question.
 8287 * @uattr: structure containing the extended parameters.
 8288 * @usize: sizeof(attr) for fwd/bwd comp.
 8289 * @flags: for future extension.
 8290 */
 8291SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
 8292		unsigned int, usize, unsigned int, flags)
 8293{
 8294	struct sched_attr kattr = { };
 8295	struct task_struct *p;
 8296	int retval;
 8297
 8298	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
 8299	    usize < SCHED_ATTR_SIZE_VER0 || flags)
 8300		return -EINVAL;
 8301
 8302	scoped_guard (rcu) {
 8303		p = find_process_by_pid(pid);
 8304		if (!p)
 8305			return -ESRCH;
 8306
 8307		retval = security_task_getscheduler(p);
 8308		if (retval)
 8309			return retval;
 8310
 8311		kattr.sched_policy = p->policy;
 8312		if (p->sched_reset_on_fork)
 8313			kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
 8314		get_params(p, &kattr);
 8315		kattr.sched_flags &= SCHED_FLAG_ALL;
 8316
 8317#ifdef CONFIG_UCLAMP_TASK
 8318		/*
 8319		 * This could race with another potential updater, but this is fine
 8320		 * because it'll correctly read the old or the new value. We don't need
 8321		 * to guarantee who wins the race as long as it doesn't return garbage.
 8322		 */
 8323		kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
 8324		kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
 8325#endif
 8326	}
 8327
 8328	return sched_attr_copy_to_user(uattr, &kattr, usize);
 8329}
 8330
 8331#ifdef CONFIG_SMP
 8332int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
 8333{
 8334	/*
 8335	 * If the task isn't a deadline task or admission control is
 8336	 * disabled then we don't care about affinity changes.
 8337	 */
 8338	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
 8339		return 0;
 8340
 8341	/*
 8342	 * Since bandwidth control happens on root_domain basis,
 8343	 * if admission test is enabled, we only admit -deadline
 8344	 * tasks allowed to run on all the CPUs in the task's
 8345	 * root_domain.
 8346	 */
 8347	guard(rcu)();
 8348	if (!cpumask_subset(task_rq(p)->rd->span, mask))
 8349		return -EBUSY;
 8350
 8351	return 0;
 8352}
 8353#endif
 8354
 8355static int
 8356__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
 8357{
 8358	int retval;
 8359	cpumask_var_t cpus_allowed, new_mask;
 8360
 8361	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
 8362		return -ENOMEM;
 8363
 8364	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
 8365		retval = -ENOMEM;
 8366		goto out_free_cpus_allowed;
 8367	}
 8368
 8369	cpuset_cpus_allowed(p, cpus_allowed);
 8370	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
 8371
 8372	ctx->new_mask = new_mask;
 8373	ctx->flags |= SCA_CHECK;
 8374
 8375	retval = dl_task_check_affinity(p, new_mask);
 8376	if (retval)
 8377		goto out_free_new_mask;
 8378
 8379	retval = __set_cpus_allowed_ptr(p, ctx);
 8380	if (retval)
 8381		goto out_free_new_mask;
 8382
 8383	cpuset_cpus_allowed(p, cpus_allowed);
 8384	if (!cpumask_subset(new_mask, cpus_allowed)) {
 8385		/*
 8386		 * We must have raced with a concurrent cpuset update.
 8387		 * Just reset the cpumask to the cpuset's cpus_allowed.
 8388		 */
 8389		cpumask_copy(new_mask, cpus_allowed);
 8390
 8391		/*
 8392		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
 8393		 * will restore the previous user_cpus_ptr value.
 8394		 *
 8395		 * In the unlikely event a previous user_cpus_ptr exists,
 8396		 * we need to further restrict the mask to what is allowed
 8397		 * by that old user_cpus_ptr.
 8398		 */
 8399		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
 8400			bool empty = !cpumask_and(new_mask, new_mask,
 8401						  ctx->user_mask);
 8402
 8403			if (WARN_ON_ONCE(empty))
 8404				cpumask_copy(new_mask, cpus_allowed);
 8405		}
 8406		__set_cpus_allowed_ptr(p, ctx);
 8407		retval = -EINVAL;
 8408	}
 8409
 8410out_free_new_mask:
 8411	free_cpumask_var(new_mask);
 8412out_free_cpus_allowed:
 8413	free_cpumask_var(cpus_allowed);
 8414	return retval;
 8415}
 8416
 8417long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
 8418{
 8419	struct affinity_context ac;
 8420	struct cpumask *user_mask;
 8421	int retval;
 8422
 8423	CLASS(find_get_task, p)(pid);
 8424	if (!p)
 8425		return -ESRCH;
 8426
 8427	if (p->flags & PF_NO_SETAFFINITY)
 8428		return -EINVAL;
 8429
 8430	if (!check_same_owner(p)) {
 8431		guard(rcu)();
 8432		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
 8433			return -EPERM;
 8434	}
 8435
 8436	retval = security_task_setscheduler(p);
 8437	if (retval)
 8438		return retval;
 8439
 8440	/*
 8441	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
 8442	 * alloc_user_cpus_ptr() returns NULL.
 8443	 */
 8444	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
 8445	if (user_mask) {
 8446		cpumask_copy(user_mask, in_mask);
 8447	} else if (IS_ENABLED(CONFIG_SMP)) {
 8448		return -ENOMEM;
 8449	}
 8450
 8451	ac = (struct affinity_context){
 8452		.new_mask  = in_mask,
 8453		.user_mask = user_mask,
 8454		.flags     = SCA_USER,
 8455	};
 8456
 8457	retval = __sched_setaffinity(p, &ac);
 8458	kfree(ac.user_mask);
 8459
 8460	return retval;
 8461}
 8462
 8463static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
 8464			     struct cpumask *new_mask)
 8465{
 8466	if (len < cpumask_size())
 8467		cpumask_clear(new_mask);
 8468	else if (len > cpumask_size())
 8469		len = cpumask_size();
 8470
 8471	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
 8472}
 8473
 8474/**
 8475 * sys_sched_setaffinity - set the CPU affinity of a process
 8476 * @pid: pid of the process
 8477 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 8478 * @user_mask_ptr: user-space pointer to the new CPU mask
 8479 *
 8480 * Return: 0 on success. An error code otherwise.
 8481 */
 8482SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
 8483		unsigned long __user *, user_mask_ptr)
 8484{
 8485	cpumask_var_t new_mask;
 8486	int retval;
 8487
 8488	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
 8489		return -ENOMEM;
 8490
 8491	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
 8492	if (retval == 0)
 8493		retval = sched_setaffinity(pid, new_mask);
 8494	free_cpumask_var(new_mask);
 8495	return retval;
 8496}
 8497
 8498long sched_getaffinity(pid_t pid, struct cpumask *mask)
 8499{
 8500	struct task_struct *p;
 8501	int retval;
 8502
 8503	guard(rcu)();
 8504	p = find_process_by_pid(pid);
 8505	if (!p)
 8506		return -ESRCH;
 8507
 8508	retval = security_task_getscheduler(p);
 8509	if (retval)
 8510		return retval;
 8511
 8512	guard(raw_spinlock_irqsave)(&p->pi_lock);
 8513	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
 8514
 8515	return 0;
 8516}
 8517
 8518/**
 8519 * sys_sched_getaffinity - get the CPU affinity of a process
 8520 * @pid: pid of the process
 8521 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 8522 * @user_mask_ptr: user-space pointer to hold the current CPU mask
 8523 *
 8524 * Return: size of CPU mask copied to user_mask_ptr on success. An
 8525 * error code otherwise.
 8526 */
 8527SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
 8528		unsigned long __user *, user_mask_ptr)
 8529{
 8530	int ret;
 8531	cpumask_var_t mask;
 8532
 8533	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
 8534		return -EINVAL;
 8535	if (len & (sizeof(unsigned long)-1))
 8536		return -EINVAL;
 8537
 8538	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
 8539		return -ENOMEM;
 8540
 8541	ret = sched_getaffinity(pid, mask);
 8542	if (ret == 0) {
 8543		unsigned int retlen = min(len, cpumask_size());
 8544
 8545		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
 8546			ret = -EFAULT;
 8547		else
 8548			ret = retlen;
 8549	}
 8550	free_cpumask_var(mask);
 8551
 8552	return ret;
 8553}
 8554
 8555static void do_sched_yield(void)
 8556{
 8557	struct rq_flags rf;
 8558	struct rq *rq;
 8559
 8560	rq = this_rq_lock_irq(&rf);
 8561
 8562	schedstat_inc(rq->yld_count);
 8563	current->sched_class->yield_task(rq);
 8564
 8565	preempt_disable();
 8566	rq_unlock_irq(rq, &rf);
 8567	sched_preempt_enable_no_resched();
 8568
 8569	schedule();
 8570}
 8571
 8572/**
 8573 * sys_sched_yield - yield the current processor to other threads.
 8574 *
 8575 * This function yields the current CPU to other tasks. If there are no
 8576 * other threads running on this CPU then this function will return.
 8577 *
 8578 * Return: 0.
 8579 */
 8580SYSCALL_DEFINE0(sched_yield)
 8581{
 8582	do_sched_yield();
 8583	return 0;
 8584}
 8585
 8586#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
 8587int __sched __cond_resched(void)
 8588{
 8589	if (should_resched(0)) {
 8590		preempt_schedule_common();
 8591		return 1;
 8592	}
 8593	/*
 8594	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
 8595	 * whether the current CPU is in an RCU read-side critical section,
 8596	 * so the tick can report quiescent states even for CPUs looping
 8597	 * in kernel context.  In contrast, in non-preemptible kernels,
 8598	 * RCU readers leave no in-memory hints, which means that CPU-bound
 8599	 * processes executing in kernel context might never report an
 8600	 * RCU quiescent state.  Therefore, the following code causes
 8601	 * cond_resched() to report a quiescent state, but only when RCU
 8602	 * is in urgent need of one.
 8603	 */
 8604#ifndef CONFIG_PREEMPT_RCU
 8605	rcu_all_qs();
 8606#endif
 8607	return 0;
 8608}
 8609EXPORT_SYMBOL(__cond_resched);
 8610#endif
 8611
 8612#ifdef CONFIG_PREEMPT_DYNAMIC
 8613#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
 8614#define cond_resched_dynamic_enabled	__cond_resched
 8615#define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
 8616DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
 8617EXPORT_STATIC_CALL_TRAMP(cond_resched);
 8618
 8619#define might_resched_dynamic_enabled	__cond_resched
 8620#define might_resched_dynamic_disabled	((void *)&__static_call_return0)
 8621DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
 8622EXPORT_STATIC_CALL_TRAMP(might_resched);
 8623#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
 8624static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
 8625int __sched dynamic_cond_resched(void)
 8626{
 8627	klp_sched_try_switch();
 8628	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
 8629		return 0;
 8630	return __cond_resched();
 8631}
 8632EXPORT_SYMBOL(dynamic_cond_resched);
 8633
 8634static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
 8635int __sched dynamic_might_resched(void)
 8636{
 8637	if (!static_branch_unlikely(&sk_dynamic_might_resched))
 8638		return 0;
 8639	return __cond_resched();
 8640}
 8641EXPORT_SYMBOL(dynamic_might_resched);
 8642#endif
 8643#endif
 8644
 8645/*
 8646 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
 8647 * call schedule, and on return reacquire the lock.
 8648 *
 8649 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
 8650 * operations here to prevent schedule() from being called twice (once via
 8651 * spin_unlock(), once by hand).
 8652 */
 8653int __cond_resched_lock(spinlock_t *lock)
 8654{
 8655	int resched = should_resched(PREEMPT_LOCK_OFFSET);
 8656	int ret = 0;
 8657
 8658	lockdep_assert_held(lock);
 8659
 8660	if (spin_needbreak(lock) || resched) {
 8661		spin_unlock(lock);
 8662		if (!_cond_resched())
 8663			cpu_relax();
 8664		ret = 1;
 8665		spin_lock(lock);
 8666	}
 8667	return ret;
 8668}
 8669EXPORT_SYMBOL(__cond_resched_lock);
 8670
 8671int __cond_resched_rwlock_read(rwlock_t *lock)
 8672{
 8673	int resched = should_resched(PREEMPT_LOCK_OFFSET);
 8674	int ret = 0;
 8675
 8676	lockdep_assert_held_read(lock);
 8677
 8678	if (rwlock_needbreak(lock) || resched) {
 8679		read_unlock(lock);
 8680		if (!_cond_resched())
 8681			cpu_relax();
 8682		ret = 1;
 8683		read_lock(lock);
 8684	}
 8685	return ret;
 8686}
 8687EXPORT_SYMBOL(__cond_resched_rwlock_read);
 8688
 8689int __cond_resched_rwlock_write(rwlock_t *lock)
 8690{
 8691	int resched = should_resched(PREEMPT_LOCK_OFFSET);
 8692	int ret = 0;
 8693
 8694	lockdep_assert_held_write(lock);
 8695
 8696	if (rwlock_needbreak(lock) || resched) {
 8697		write_unlock(lock);
 8698		if (!_cond_resched())
 8699			cpu_relax();
 8700		ret = 1;
 8701		write_lock(lock);
 8702	}
 8703	return ret;
 8704}
 8705EXPORT_SYMBOL(__cond_resched_rwlock_write);
 8706
 8707#ifdef CONFIG_PREEMPT_DYNAMIC
 8708
 8709#ifdef CONFIG_GENERIC_ENTRY
 8710#include <linux/entry-common.h>
 8711#endif
 8712
 8713/*
 8714 * SC:cond_resched
 8715 * SC:might_resched
 8716 * SC:preempt_schedule
 8717 * SC:preempt_schedule_notrace
 8718 * SC:irqentry_exit_cond_resched
 8719 *
 8720 *
 8721 * NONE:
 8722 *   cond_resched               <- __cond_resched
 8723 *   might_resched              <- RET0
 8724 *   preempt_schedule           <- NOP
 8725 *   preempt_schedule_notrace   <- NOP
 8726 *   irqentry_exit_cond_resched <- NOP
 8727 *
 8728 * VOLUNTARY:
 8729 *   cond_resched               <- __cond_resched
 8730 *   might_resched              <- __cond_resched
 8731 *   preempt_schedule           <- NOP
 8732 *   preempt_schedule_notrace   <- NOP
 8733 *   irqentry_exit_cond_resched <- NOP
 8734 *
 8735 * FULL:
 8736 *   cond_resched               <- RET0
 8737 *   might_resched              <- RET0
 8738 *   preempt_schedule           <- preempt_schedule
 8739 *   preempt_schedule_notrace   <- preempt_schedule_notrace
 8740 *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
 8741 */
 8742
 8743enum {
 8744	preempt_dynamic_undefined = -1,
 8745	preempt_dynamic_none,
 8746	preempt_dynamic_voluntary,
 8747	preempt_dynamic_full,
 8748};
 8749
 8750int preempt_dynamic_mode = preempt_dynamic_undefined;
 8751
 8752int sched_dynamic_mode(const char *str)
 8753{
 8754	if (!strcmp(str, "none"))
 8755		return preempt_dynamic_none;
 8756
 8757	if (!strcmp(str, "voluntary"))
 8758		return preempt_dynamic_voluntary;
 8759
 8760	if (!strcmp(str, "full"))
 8761		return preempt_dynamic_full;
 8762
 8763	return -EINVAL;
 8764}
 8765
 8766#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
 8767#define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
 8768#define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
 8769#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
 8770#define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
 8771#define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
 8772#else
 8773#error "Unsupported PREEMPT_DYNAMIC mechanism"
 8774#endif
 8775
 8776static DEFINE_MUTEX(sched_dynamic_mutex);
 8777static bool klp_override;
 8778
 8779static void __sched_dynamic_update(int mode)
 8780{
 8781	/*
 8782	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
 8783	 * the ZERO state, which is invalid.
 8784	 */
 8785	if (!klp_override)
 8786		preempt_dynamic_enable(cond_resched);
 8787	preempt_dynamic_enable(might_resched);
 8788	preempt_dynamic_enable(preempt_schedule);
 8789	preempt_dynamic_enable(preempt_schedule_notrace);
 8790	preempt_dynamic_enable(irqentry_exit_cond_resched);
 8791
 8792	switch (mode) {
 8793	case preempt_dynamic_none:
 8794		if (!klp_override)
 8795			preempt_dynamic_enable(cond_resched);
 8796		preempt_dynamic_disable(might_resched);
 8797		preempt_dynamic_disable(preempt_schedule);
 8798		preempt_dynamic_disable(preempt_schedule_notrace);
 8799		preempt_dynamic_disable(irqentry_exit_cond_resched);
 8800		if (mode != preempt_dynamic_mode)
 8801			pr_info("Dynamic Preempt: none\n");
 8802		break;
 8803
 8804	case preempt_dynamic_voluntary:
 8805		if (!klp_override)
 8806			preempt_dynamic_enable(cond_resched);
 8807		preempt_dynamic_enable(might_resched);
 8808		preempt_dynamic_disable(preempt_schedule);
 8809		preempt_dynamic_disable(preempt_schedule_notrace);
 8810		preempt_dynamic_disable(irqentry_exit_cond_resched);
 8811		if (mode != preempt_dynamic_mode)
 8812			pr_info("Dynamic Preempt: voluntary\n");
 8813		break;
 8814
 8815	case preempt_dynamic_full:
 8816		if (!klp_override)
 8817			preempt_dynamic_disable(cond_resched);
 8818		preempt_dynamic_disable(might_resched);
 8819		preempt_dynamic_enable(preempt_schedule);
 8820		preempt_dynamic_enable(preempt_schedule_notrace);
 8821		preempt_dynamic_enable(irqentry_exit_cond_resched);
 8822		if (mode != preempt_dynamic_mode)
 8823			pr_info("Dynamic Preempt: full\n");
 8824		break;
 8825	}
 8826
 8827	preempt_dynamic_mode = mode;
 8828}
 8829
 8830void sched_dynamic_update(int mode)
 8831{
 8832	mutex_lock(&sched_dynamic_mutex);
 8833	__sched_dynamic_update(mode);
 8834	mutex_unlock(&sched_dynamic_mutex);
 8835}
 8836
 8837#ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
 8838
 8839static int klp_cond_resched(void)
 8840{
 8841	__klp_sched_try_switch();
 8842	return __cond_resched();
 8843}
 8844
 8845void sched_dynamic_klp_enable(void)
 8846{
 8847	mutex_lock(&sched_dynamic_mutex);
 8848
 8849	klp_override = true;
 8850	static_call_update(cond_resched, klp_cond_resched);
 8851
 8852	mutex_unlock(&sched_dynamic_mutex);
 8853}
 8854
 8855void sched_dynamic_klp_disable(void)
 8856{
 8857	mutex_lock(&sched_dynamic_mutex);
 8858
 8859	klp_override = false;
 8860	__sched_dynamic_update(preempt_dynamic_mode);
 8861
 8862	mutex_unlock(&sched_dynamic_mutex);
 8863}
 8864
 8865#endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
 8866
 8867static int __init setup_preempt_mode(char *str)
 8868{
 8869	int mode = sched_dynamic_mode(str);
 8870	if (mode < 0) {
 8871		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
 8872		return 0;
 8873	}
 8874
 8875	sched_dynamic_update(mode);
 8876	return 1;
 8877}
 8878__setup("preempt=", setup_preempt_mode);
 8879
 8880static void __init preempt_dynamic_init(void)
 8881{
 8882	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
 8883		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
 8884			sched_dynamic_update(preempt_dynamic_none);
 8885		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
 8886			sched_dynamic_update(preempt_dynamic_voluntary);
 8887		} else {
 8888			/* Default static call setting, nothing to do */
 8889			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
 8890			preempt_dynamic_mode = preempt_dynamic_full;
 8891			pr_info("Dynamic Preempt: full\n");
 8892		}
 8893	}
 8894}
 8895
 8896#define PREEMPT_MODEL_ACCESSOR(mode) \
 8897	bool preempt_model_##mode(void)						 \
 8898	{									 \
 8899		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
 8900		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
 8901	}									 \
 8902	EXPORT_SYMBOL_GPL(preempt_model_##mode)
 8903
 8904PREEMPT_MODEL_ACCESSOR(none);
 8905PREEMPT_MODEL_ACCESSOR(voluntary);
 8906PREEMPT_MODEL_ACCESSOR(full);
 8907
 8908#else /* !CONFIG_PREEMPT_DYNAMIC */
 8909
 8910static inline void preempt_dynamic_init(void) { }
 8911
 8912#endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
 8913
 8914/**
 8915 * yield - yield the current processor to other threads.
 8916 *
 8917 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 8918 *
 8919 * The scheduler is at all times free to pick the calling task as the most
 8920 * eligible task to run, if removing the yield() call from your code breaks
 8921 * it, it's already broken.
 8922 *
 8923 * Typical broken usage is:
 8924 *
 8925 * while (!event)
 8926 *	yield();
 8927 *
 8928 * where one assumes that yield() will let 'the other' process run that will
 8929 * make event true. If the current task is a SCHED_FIFO task that will never
 8930 * happen. Never use yield() as a progress guarantee!!
 8931 *
 8932 * If you want to use yield() to wait for something, use wait_event().
 8933 * If you want to use yield() to be 'nice' for others, use cond_resched().
 8934 * If you still want to use yield(), do not!
 8935 */
 8936void __sched yield(void)
 8937{
 8938	set_current_state(TASK_RUNNING);
 8939	do_sched_yield();
 8940}
 8941EXPORT_SYMBOL(yield);
 8942
 8943/**
 8944 * yield_to - yield the current processor to another thread in
 8945 * your thread group, or accelerate that thread toward the
 8946 * processor it's on.
 8947 * @p: target task
 8948 * @preempt: whether task preemption is allowed or not
 8949 *
 8950 * It's the caller's job to ensure that the target task struct
 8951 * can't go away on us before we can do any checks.
 8952 *
 8953 * Return:
 8954 *	true (>0) if we indeed boosted the target task.
 8955 *	false (0) if we failed to boost the target.
 8956 *	-ESRCH if there's no task to yield to.
 8957 */
 8958int __sched yield_to(struct task_struct *p, bool preempt)
 8959{
 8960	struct task_struct *curr = current;
 8961	struct rq *rq, *p_rq;
 8962	int yielded = 0;
 8963
 8964	scoped_guard (irqsave) {
 8965		rq = this_rq();
 8966
 8967again:
 8968		p_rq = task_rq(p);
 8969		/*
 8970		 * If we're the only runnable task on the rq and target rq also
 8971		 * has only one task, there's absolutely no point in yielding.
 8972		 */
 8973		if (rq->nr_running == 1 && p_rq->nr_running == 1)
 8974			return -ESRCH;
 8975
 8976		guard(double_rq_lock)(rq, p_rq);
 8977		if (task_rq(p) != p_rq)
 8978			goto again;
 8979
 8980		if (!curr->sched_class->yield_to_task)
 8981			return 0;
 8982
 8983		if (curr->sched_class != p->sched_class)
 8984			return 0;
 8985
 8986		if (task_on_cpu(p_rq, p) || !task_is_running(p))
 8987			return 0;
 8988
 8989		yielded = curr->sched_class->yield_to_task(rq, p);
 8990		if (yielded) {
 8991			schedstat_inc(rq->yld_count);
 8992			/*
 8993			 * Make p's CPU reschedule; pick_next_entity
 8994			 * takes care of fairness.
 8995			 */
 8996			if (preempt && rq != p_rq)
 8997				resched_curr(p_rq);
 8998		}
 8999	}
 9000
 9001	if (yielded)
 9002		schedule();
 9003
 9004	return yielded;
 9005}
 9006EXPORT_SYMBOL_GPL(yield_to);
 9007
 9008int io_schedule_prepare(void)
 9009{
 9010	int old_iowait = current->in_iowait;
 9011
 9012	current->in_iowait = 1;
 9013	blk_flush_plug(current->plug, true);
 9014	return old_iowait;
 9015}
 9016
 9017void io_schedule_finish(int token)
 9018{
 9019	current->in_iowait = token;
 9020}
 9021
 9022/*
 9023 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
 9024 * that process accounting knows that this is a task in IO wait state.
 9025 */
 9026long __sched io_schedule_timeout(long timeout)
 9027{
 9028	int token;
 9029	long ret;
 9030
 9031	token = io_schedule_prepare();
 9032	ret = schedule_timeout(timeout);
 9033	io_schedule_finish(token);
 9034
 9035	return ret;
 9036}
 9037EXPORT_SYMBOL(io_schedule_timeout);
 9038
 9039void __sched io_schedule(void)
 9040{
 9041	int token;
 9042
 9043	token = io_schedule_prepare();
 9044	schedule();
 9045	io_schedule_finish(token);
 9046}
 9047EXPORT_SYMBOL(io_schedule);
 9048
 9049/**
 9050 * sys_sched_get_priority_max - return maximum RT priority.
 9051 * @policy: scheduling class.
 9052 *
 9053 * Return: On success, this syscall returns the maximum
 9054 * rt_priority that can be used by a given scheduling class.
 9055 * On failure, a negative error code is returned.
 9056 */
 9057SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
 9058{
 9059	int ret = -EINVAL;
 9060
 9061	switch (policy) {
 9062	case SCHED_FIFO:
 9063	case SCHED_RR:
 9064		ret = MAX_RT_PRIO-1;
 9065		break;
 9066	case SCHED_DEADLINE:
 9067	case SCHED_NORMAL:
 9068	case SCHED_BATCH:
 9069	case SCHED_IDLE:
 9070		ret = 0;
 9071		break;
 9072	}
 9073	return ret;
 9074}
 9075
 9076/**
 9077 * sys_sched_get_priority_min - return minimum RT priority.
 9078 * @policy: scheduling class.
 9079 *
 9080 * Return: On success, this syscall returns the minimum
 9081 * rt_priority that can be used by a given scheduling class.
 9082 * On failure, a negative error code is returned.
 9083 */
 9084SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
 9085{
 9086	int ret = -EINVAL;
 9087
 9088	switch (policy) {
 9089	case SCHED_FIFO:
 9090	case SCHED_RR:
 9091		ret = 1;
 9092		break;
 9093	case SCHED_DEADLINE:
 9094	case SCHED_NORMAL:
 9095	case SCHED_BATCH:
 9096	case SCHED_IDLE:
 9097		ret = 0;
 9098	}
 9099	return ret;
 9100}
 9101
 9102static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
 9103{
 9104	unsigned int time_slice = 0;
 9105	int retval;
 9106
 9107	if (pid < 0)
 9108		return -EINVAL;
 9109
 9110	scoped_guard (rcu) {
 9111		struct task_struct *p = find_process_by_pid(pid);
 9112		if (!p)
 9113			return -ESRCH;
 9114
 9115		retval = security_task_getscheduler(p);
 9116		if (retval)
 9117			return retval;
 9118
 9119		scoped_guard (task_rq_lock, p) {
 9120			struct rq *rq = scope.rq;
 9121			if (p->sched_class->get_rr_interval)
 9122				time_slice = p->sched_class->get_rr_interval(rq, p);
 9123		}
 9124	}
 9125
 9126	jiffies_to_timespec64(time_slice, t);
 9127	return 0;
 9128}
 9129
 9130/**
 9131 * sys_sched_rr_get_interval - return the default timeslice of a process.
 9132 * @pid: pid of the process.
 9133 * @interval: userspace pointer to the timeslice value.
 9134 *
 9135 * this syscall writes the default timeslice value of a given process
 9136 * into the user-space timespec buffer. A value of '0' means infinity.
 9137 *
 9138 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 9139 * an error code.
 9140 */
 9141SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
 9142		struct __kernel_timespec __user *, interval)
 9143{
 9144	struct timespec64 t;
 9145	int retval = sched_rr_get_interval(pid, &t);
 9146
 9147	if (retval == 0)
 9148		retval = put_timespec64(&t, interval);
 9149
 9150	return retval;
 9151}
 9152
 9153#ifdef CONFIG_COMPAT_32BIT_TIME
 9154SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
 9155		struct old_timespec32 __user *, interval)
 9156{
 9157	struct timespec64 t;
 9158	int retval = sched_rr_get_interval(pid, &t);
 9159
 9160	if (retval == 0)
 9161		retval = put_old_timespec32(&t, interval);
 9162	return retval;
 9163}
 9164#endif
 9165
 9166void sched_show_task(struct task_struct *p)
 9167{
 9168	unsigned long free = 0;
 9169	int ppid;
 9170
 9171	if (!try_get_task_stack(p))
 9172		return;
 9173
 9174	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
 9175
 9176	if (task_is_running(p))
 9177		pr_cont("  running task    ");
 9178#ifdef CONFIG_DEBUG_STACK_USAGE
 9179	free = stack_not_used(p);
 9180#endif
 9181	ppid = 0;
 9182	rcu_read_lock();
 9183	if (pid_alive(p))
 9184		ppid = task_pid_nr(rcu_dereference(p->real_parent));
 9185	rcu_read_unlock();
 9186	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n",
 9187		free, task_pid_nr(p), task_tgid_nr(p),
 9188		ppid, read_task_thread_flags(p));
 9189
 9190	print_worker_info(KERN_INFO, p);
 9191	print_stop_info(KERN_INFO, p);
 9192	show_stack(p, NULL, KERN_INFO);
 9193	put_task_stack(p);
 9194}
 9195EXPORT_SYMBOL_GPL(sched_show_task);
 9196
 9197static inline bool
 9198state_filter_match(unsigned long state_filter, struct task_struct *p)
 9199{
 9200	unsigned int state = READ_ONCE(p->__state);
 9201
 9202	/* no filter, everything matches */
 9203	if (!state_filter)
 9204		return true;
 9205
 9206	/* filter, but doesn't match */
 9207	if (!(state & state_filter))
 9208		return false;
 9209
 9210	/*
 9211	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
 9212	 * TASK_KILLABLE).
 9213	 */
 9214	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
 9215		return false;
 9216
 9217	return true;
 9218}
 9219
 9220
 9221void show_state_filter(unsigned int state_filter)
 9222{
 9223	struct task_struct *g, *p;
 9224
 9225	rcu_read_lock();
 9226	for_each_process_thread(g, p) {
 9227		/*
 9228		 * reset the NMI-timeout, listing all files on a slow
 9229		 * console might take a lot of time:
 9230		 * Also, reset softlockup watchdogs on all CPUs, because
 9231		 * another CPU might be blocked waiting for us to process
 9232		 * an IPI.
 9233		 */
 9234		touch_nmi_watchdog();
 9235		touch_all_softlockup_watchdogs();
 9236		if (state_filter_match(state_filter, p))
 9237			sched_show_task(p);
 9238	}
 9239
 9240#ifdef CONFIG_SCHED_DEBUG
 9241	if (!state_filter)
 9242		sysrq_sched_debug_show();
 9243#endif
 9244	rcu_read_unlock();
 9245	/*
 9246	 * Only show locks if all tasks are dumped:
 9247	 */
 9248	if (!state_filter)
 9249		debug_show_all_locks();
 9250}
 9251
 9252/**
 9253 * init_idle - set up an idle thread for a given CPU
 9254 * @idle: task in question
 9255 * @cpu: CPU the idle task belongs to
 9256 *
 9257 * NOTE: this function does not set the idle thread's NEED_RESCHED
 9258 * flag, to make booting more robust.
 9259 */
 9260void __init init_idle(struct task_struct *idle, int cpu)
 9261{
 9262#ifdef CONFIG_SMP
 9263	struct affinity_context ac = (struct affinity_context) {
 9264		.new_mask  = cpumask_of(cpu),
 9265		.flags     = 0,
 9266	};
 9267#endif
 9268	struct rq *rq = cpu_rq(cpu);
 9269	unsigned long flags;
 9270
 9271	__sched_fork(0, idle);
 9272
 9273	raw_spin_lock_irqsave(&idle->pi_lock, flags);
 9274	raw_spin_rq_lock(rq);
 9275
 9276	idle->__state = TASK_RUNNING;
 9277	idle->se.exec_start = sched_clock();
 9278	/*
 9279	 * PF_KTHREAD should already be set at this point; regardless, make it
 9280	 * look like a proper per-CPU kthread.
 9281	 */
 9282	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
 9283	kthread_set_per_cpu(idle, cpu);
 9284
 9285#ifdef CONFIG_SMP
 9286	/*
 9287	 * It's possible that init_idle() gets called multiple times on a task,
 9288	 * in that case do_set_cpus_allowed() will not do the right thing.
 9289	 *
 9290	 * And since this is boot we can forgo the serialization.
 9291	 */
 9292	set_cpus_allowed_common(idle, &ac);
 9293#endif
 9294	/*
 9295	 * We're having a chicken and egg problem, even though we are
 9296	 * holding rq->lock, the CPU isn't yet set to this CPU so the
 9297	 * lockdep check in task_group() will fail.
 9298	 *
 9299	 * Similar case to sched_fork(). / Alternatively we could
 9300	 * use task_rq_lock() here and obtain the other rq->lock.
 9301	 *
 9302	 * Silence PROVE_RCU
 9303	 */
 9304	rcu_read_lock();
 9305	__set_task_cpu(idle, cpu);
 9306	rcu_read_unlock();
 9307
 9308	rq->idle = idle;
 9309	rcu_assign_pointer(rq->curr, idle);
 9310	idle->on_rq = TASK_ON_RQ_QUEUED;
 9311#ifdef CONFIG_SMP
 9312	idle->on_cpu = 1;
 9313#endif
 9314	raw_spin_rq_unlock(rq);
 9315	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
 9316
 9317	/* Set the preempt count _outside_ the spinlocks! */
 9318	init_idle_preempt_count(idle, cpu);
 9319
 9320	/*
 9321	 * The idle tasks have their own, simple scheduling class:
 9322	 */
 9323	idle->sched_class = &idle_sched_class;
 9324	ftrace_graph_init_idle_task(idle, cpu);
 9325	vtime_init_idle(idle, cpu);
 9326#ifdef CONFIG_SMP
 9327	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
 9328#endif
 9329}
 9330
 9331#ifdef CONFIG_SMP
 9332
 9333int cpuset_cpumask_can_shrink(const struct cpumask *cur,
 9334			      const struct cpumask *trial)
 9335{
 9336	int ret = 1;
 9337
 9338	if (cpumask_empty(cur))
 9339		return ret;
 9340
 9341	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
 9342
 9343	return ret;
 9344}
 9345
 9346int task_can_attach(struct task_struct *p)
 9347{
 9348	int ret = 0;
 9349
 9350	/*
 9351	 * Kthreads which disallow setaffinity shouldn't be moved
 9352	 * to a new cpuset; we don't want to change their CPU
 9353	 * affinity and isolating such threads by their set of
 9354	 * allowed nodes is unnecessary.  Thus, cpusets are not
 9355	 * applicable for such threads.  This prevents checking for
 9356	 * success of set_cpus_allowed_ptr() on all attached tasks
 9357	 * before cpus_mask may be changed.
 9358	 */
 9359	if (p->flags & PF_NO_SETAFFINITY)
 9360		ret = -EINVAL;
 9361
 9362	return ret;
 9363}
 9364
 9365bool sched_smp_initialized __read_mostly;
 9366
 9367#ifdef CONFIG_NUMA_BALANCING
 9368/* Migrate current task p to target_cpu */
 9369int migrate_task_to(struct task_struct *p, int target_cpu)
 9370{
 9371	struct migration_arg arg = { p, target_cpu };
 9372	int curr_cpu = task_cpu(p);
 9373
 9374	if (curr_cpu == target_cpu)
 9375		return 0;
 9376
 9377	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
 9378		return -EINVAL;
 9379
 9380	/* TODO: This is not properly updating schedstats */
 9381
 9382	trace_sched_move_numa(p, curr_cpu, target_cpu);
 9383	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
 9384}
 9385
 9386/*
 9387 * Requeue a task on a given node and accurately track the number of NUMA
 9388 * tasks on the runqueues
 9389 */
 9390void sched_setnuma(struct task_struct *p, int nid)
 9391{
 9392	bool queued, running;
 9393	struct rq_flags rf;
 9394	struct rq *rq;
 9395
 9396	rq = task_rq_lock(p, &rf);
 9397	queued = task_on_rq_queued(p);
 9398	running = task_current(rq, p);
 9399
 9400	if (queued)
 9401		dequeue_task(rq, p, DEQUEUE_SAVE);
 9402	if (running)
 9403		put_prev_task(rq, p);
 9404
 9405	p->numa_preferred_nid = nid;
 9406
 9407	if (queued)
 9408		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
 9409	if (running)
 9410		set_next_task(rq, p);
 9411	task_rq_unlock(rq, p, &rf);
 9412}
 9413#endif /* CONFIG_NUMA_BALANCING */
 9414
 9415#ifdef CONFIG_HOTPLUG_CPU
 9416/*
 9417 * Ensure that the idle task is using init_mm right before its CPU goes
 9418 * offline.
 9419 */
 9420void idle_task_exit(void)
 9421{
 9422	struct mm_struct *mm = current->active_mm;
 9423
 9424	BUG_ON(cpu_online(smp_processor_id()));
 9425	BUG_ON(current != this_rq()->idle);
 9426
 9427	if (mm != &init_mm) {
 9428		switch_mm(mm, &init_mm, current);
 9429		finish_arch_post_lock_switch();
 9430	}
 9431
 9432	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
 9433}
 9434
 9435static int __balance_push_cpu_stop(void *arg)
 9436{
 9437	struct task_struct *p = arg;
 9438	struct rq *rq = this_rq();
 9439	struct rq_flags rf;
 9440	int cpu;
 9441
 9442	raw_spin_lock_irq(&p->pi_lock);
 9443	rq_lock(rq, &rf);
 9444
 9445	update_rq_clock(rq);
 9446
 9447	if (task_rq(p) == rq && task_on_rq_queued(p)) {
 9448		cpu = select_fallback_rq(rq->cpu, p);
 9449		rq = __migrate_task(rq, &rf, p, cpu);
 9450	}
 9451
 9452	rq_unlock(rq, &rf);
 9453	raw_spin_unlock_irq(&p->pi_lock);
 9454
 9455	put_task_struct(p);
 9456
 9457	return 0;
 9458}
 9459
 9460static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
 9461
 9462/*
 9463 * Ensure we only run per-cpu kthreads once the CPU goes !active.
 9464 *
 9465 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
 9466 * effective when the hotplug motion is down.
 9467 */
 9468static void balance_push(struct rq *rq)
 9469{
 9470	struct task_struct *push_task = rq->curr;
 9471
 9472	lockdep_assert_rq_held(rq);
 9473
 9474	/*
 9475	 * Ensure the thing is persistent until balance_push_set(.on = false);
 9476	 */
 9477	rq->balance_callback = &balance_push_callback;
 9478
 9479	/*
 9480	 * Only active while going offline and when invoked on the outgoing
 9481	 * CPU.
 9482	 */
 9483	if (!cpu_dying(rq->cpu) || rq != this_rq())
 9484		return;
 9485
 9486	/*
 9487	 * Both the cpu-hotplug and stop task are in this case and are
 9488	 * required to complete the hotplug process.
 9489	 */
 9490	if (kthread_is_per_cpu(push_task) ||
 9491	    is_migration_disabled(push_task)) {
 9492
 9493		/*
 9494		 * If this is the idle task on the outgoing CPU try to wake
 9495		 * up the hotplug control thread which might wait for the
 9496		 * last task to vanish. The rcuwait_active() check is
 9497		 * accurate here because the waiter is pinned on this CPU
 9498		 * and can't obviously be running in parallel.
 9499		 *
 9500		 * On RT kernels this also has to check whether there are
 9501		 * pinned and scheduled out tasks on the runqueue. They
 9502		 * need to leave the migrate disabled section first.
 9503		 */
 9504		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
 9505		    rcuwait_active(&rq->hotplug_wait)) {
 9506			raw_spin_rq_unlock(rq);
 9507			rcuwait_wake_up(&rq->hotplug_wait);
 9508			raw_spin_rq_lock(rq);
 9509		}
 9510		return;
 9511	}
 9512
 9513	get_task_struct(push_task);
 9514	/*
 9515	 * Temporarily drop rq->lock such that we can wake-up the stop task.
 9516	 * Both preemption and IRQs are still disabled.
 9517	 */
 9518	preempt_disable();
 9519	raw_spin_rq_unlock(rq);
 9520	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
 9521			    this_cpu_ptr(&push_work));
 9522	preempt_enable();
 9523	/*
 9524	 * At this point need_resched() is true and we'll take the loop in
 9525	 * schedule(). The next pick is obviously going to be the stop task
 9526	 * which kthread_is_per_cpu() and will push this task away.
 9527	 */
 9528	raw_spin_rq_lock(rq);
 9529}
 9530
 9531static void balance_push_set(int cpu, bool on)
 9532{
 9533	struct rq *rq = cpu_rq(cpu);
 9534	struct rq_flags rf;
 9535
 9536	rq_lock_irqsave(rq, &rf);
 9537	if (on) {
 9538		WARN_ON_ONCE(rq->balance_callback);
 9539		rq->balance_callback = &balance_push_callback;
 9540	} else if (rq->balance_callback == &balance_push_callback) {
 9541		rq->balance_callback = NULL;
 9542	}
 9543	rq_unlock_irqrestore(rq, &rf);
 9544}
 9545
 9546/*
 9547 * Invoked from a CPUs hotplug control thread after the CPU has been marked
 9548 * inactive. All tasks which are not per CPU kernel threads are either
 9549 * pushed off this CPU now via balance_push() or placed on a different CPU
 9550 * during wakeup. Wait until the CPU is quiescent.
 9551 */
 9552static void balance_hotplug_wait(void)
 9553{
 9554	struct rq *rq = this_rq();
 9555
 9556	rcuwait_wait_event(&rq->hotplug_wait,
 9557			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
 9558			   TASK_UNINTERRUPTIBLE);
 9559}
 9560
 9561#else
 9562
 9563static inline void balance_push(struct rq *rq)
 9564{
 9565}
 9566
 9567static inline void balance_push_set(int cpu, bool on)
 9568{
 9569}
 9570
 9571static inline void balance_hotplug_wait(void)
 9572{
 9573}
 9574
 9575#endif /* CONFIG_HOTPLUG_CPU */
 9576
 9577void set_rq_online(struct rq *rq)
 9578{
 9579	if (!rq->online) {
 9580		const struct sched_class *class;
 9581
 9582		cpumask_set_cpu(rq->cpu, rq->rd->online);
 9583		rq->online = 1;
 9584
 9585		for_each_class(class) {
 9586			if (class->rq_online)
 9587				class->rq_online(rq);
 9588		}
 9589	}
 9590}
 9591
 9592void set_rq_offline(struct rq *rq)
 9593{
 9594	if (rq->online) {
 9595		const struct sched_class *class;
 9596
 9597		update_rq_clock(rq);
 9598		for_each_class(class) {
 9599			if (class->rq_offline)
 9600				class->rq_offline(rq);
 9601		}
 9602
 9603		cpumask_clear_cpu(rq->cpu, rq->rd->online);
 9604		rq->online = 0;
 9605	}
 9606}
 9607
 9608/*
 9609 * used to mark begin/end of suspend/resume:
 9610 */
 9611static int num_cpus_frozen;
 9612
 9613/*
 9614 * Update cpusets according to cpu_active mask.  If cpusets are
 9615 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 9616 * around partition_sched_domains().
 9617 *
 9618 * If we come here as part of a suspend/resume, don't touch cpusets because we
 9619 * want to restore it back to its original state upon resume anyway.
 9620 */
 9621static void cpuset_cpu_active(void)
 9622{
 9623	if (cpuhp_tasks_frozen) {
 9624		/*
 9625		 * num_cpus_frozen tracks how many CPUs are involved in suspend
 9626		 * resume sequence. As long as this is not the last online
 9627		 * operation in the resume sequence, just build a single sched
 9628		 * domain, ignoring cpusets.
 9629		 */
 9630		partition_sched_domains(1, NULL, NULL);
 9631		if (--num_cpus_frozen)
 9632			return;
 9633		/*
 9634		 * This is the last CPU online operation. So fall through and
 9635		 * restore the original sched domains by considering the
 9636		 * cpuset configurations.
 9637		 */
 9638		cpuset_force_rebuild();
 9639	}
 9640	cpuset_update_active_cpus();
 9641}
 9642
 9643static int cpuset_cpu_inactive(unsigned int cpu)
 9644{
 9645	if (!cpuhp_tasks_frozen) {
 9646		int ret = dl_bw_check_overflow(cpu);
 9647
 9648		if (ret)
 9649			return ret;
 9650		cpuset_update_active_cpus();
 9651	} else {
 9652		num_cpus_frozen++;
 9653		partition_sched_domains(1, NULL, NULL);
 9654	}
 9655	return 0;
 9656}
 9657
 9658int sched_cpu_activate(unsigned int cpu)
 9659{
 9660	struct rq *rq = cpu_rq(cpu);
 9661	struct rq_flags rf;
 9662
 9663	/*
 9664	 * Clear the balance_push callback and prepare to schedule
 9665	 * regular tasks.
 9666	 */
 9667	balance_push_set(cpu, false);
 9668
 9669#ifdef CONFIG_SCHED_SMT
 9670	/*
 9671	 * When going up, increment the number of cores with SMT present.
 9672	 */
 9673	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
 9674		static_branch_inc_cpuslocked(&sched_smt_present);
 9675#endif
 9676	set_cpu_active(cpu, true);
 9677
 9678	if (sched_smp_initialized) {
 9679		sched_update_numa(cpu, true);
 9680		sched_domains_numa_masks_set(cpu);
 9681		cpuset_cpu_active();
 9682	}
 9683
 9684	/*
 9685	 * Put the rq online, if not already. This happens:
 9686	 *
 9687	 * 1) In the early boot process, because we build the real domains
 9688	 *    after all CPUs have been brought up.
 9689	 *
 9690	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
 9691	 *    domains.
 9692	 */
 9693	rq_lock_irqsave(rq, &rf);
 9694	if (rq->rd) {
 9695		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
 9696		set_rq_online(rq);
 9697	}
 9698	rq_unlock_irqrestore(rq, &rf);
 9699
 9700	return 0;
 9701}
 9702
 9703int sched_cpu_deactivate(unsigned int cpu)
 9704{
 9705	struct rq *rq = cpu_rq(cpu);
 9706	struct rq_flags rf;
 9707	int ret;
 9708
 9709	/*
 9710	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
 9711	 * load balancing when not active
 9712	 */
 9713	nohz_balance_exit_idle(rq);
 9714
 9715	set_cpu_active(cpu, false);
 9716
 9717	/*
 9718	 * From this point forward, this CPU will refuse to run any task that
 9719	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
 9720	 * push those tasks away until this gets cleared, see
 9721	 * sched_cpu_dying().
 9722	 */
 9723	balance_push_set(cpu, true);
 9724
 9725	/*
 9726	 * We've cleared cpu_active_mask / set balance_push, wait for all
 9727	 * preempt-disabled and RCU users of this state to go away such that
 9728	 * all new such users will observe it.
 9729	 *
 9730	 * Specifically, we rely on ttwu to no longer target this CPU, see
 9731	 * ttwu_queue_cond() and is_cpu_allowed().
 9732	 *
 9733	 * Do sync before park smpboot threads to take care the rcu boost case.
 9734	 */
 9735	synchronize_rcu();
 9736
 9737	rq_lock_irqsave(rq, &rf);
 9738	if (rq->rd) {
 9739		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
 9740		set_rq_offline(rq);
 9741	}
 9742	rq_unlock_irqrestore(rq, &rf);
 9743
 9744#ifdef CONFIG_SCHED_SMT
 9745	/*
 9746	 * When going down, decrement the number of cores with SMT present.
 9747	 */
 9748	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
 9749		static_branch_dec_cpuslocked(&sched_smt_present);
 9750
 9751	sched_core_cpu_deactivate(cpu);
 9752#endif
 9753
 9754	if (!sched_smp_initialized)
 9755		return 0;
 9756
 9757	sched_update_numa(cpu, false);
 9758	ret = cpuset_cpu_inactive(cpu);
 9759	if (ret) {
 9760		balance_push_set(cpu, false);
 9761		set_cpu_active(cpu, true);
 9762		sched_update_numa(cpu, true);
 9763		return ret;
 9764	}
 9765	sched_domains_numa_masks_clear(cpu);
 9766	return 0;
 9767}
 9768
 9769static void sched_rq_cpu_starting(unsigned int cpu)
 9770{
 9771	struct rq *rq = cpu_rq(cpu);
 9772
 9773	rq->calc_load_update = calc_load_update;
 9774	update_max_interval();
 9775}
 9776
 9777int sched_cpu_starting(unsigned int cpu)
 9778{
 9779	sched_core_cpu_starting(cpu);
 9780	sched_rq_cpu_starting(cpu);
 9781	sched_tick_start(cpu);
 9782	return 0;
 9783}
 9784
 9785#ifdef CONFIG_HOTPLUG_CPU
 9786
 9787/*
 9788 * Invoked immediately before the stopper thread is invoked to bring the
 9789 * CPU down completely. At this point all per CPU kthreads except the
 9790 * hotplug thread (current) and the stopper thread (inactive) have been
 9791 * either parked or have been unbound from the outgoing CPU. Ensure that
 9792 * any of those which might be on the way out are gone.
 9793 *
 9794 * If after this point a bound task is being woken on this CPU then the
 9795 * responsible hotplug callback has failed to do it's job.
 9796 * sched_cpu_dying() will catch it with the appropriate fireworks.
 9797 */
 9798int sched_cpu_wait_empty(unsigned int cpu)
 9799{
 9800	balance_hotplug_wait();
 9801	return 0;
 9802}
 9803
 9804/*
 9805 * Since this CPU is going 'away' for a while, fold any nr_active delta we
 9806 * might have. Called from the CPU stopper task after ensuring that the
 9807 * stopper is the last running task on the CPU, so nr_active count is
 9808 * stable. We need to take the teardown thread which is calling this into
 9809 * account, so we hand in adjust = 1 to the load calculation.
 9810 *
 9811 * Also see the comment "Global load-average calculations".
 9812 */
 9813static void calc_load_migrate(struct rq *rq)
 9814{
 9815	long delta = calc_load_fold_active(rq, 1);
 9816
 9817	if (delta)
 9818		atomic_long_add(delta, &calc_load_tasks);
 9819}
 9820
 9821static void dump_rq_tasks(struct rq *rq, const char *loglvl)
 9822{
 9823	struct task_struct *g, *p;
 9824	int cpu = cpu_of(rq);
 9825
 9826	lockdep_assert_rq_held(rq);
 9827
 9828	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
 9829	for_each_process_thread(g, p) {
 9830		if (task_cpu(p) != cpu)
 9831			continue;
 9832
 9833		if (!task_on_rq_queued(p))
 9834			continue;
 9835
 9836		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
 9837	}
 9838}
 9839
 9840int sched_cpu_dying(unsigned int cpu)
 9841{
 9842	struct rq *rq = cpu_rq(cpu);
 9843	struct rq_flags rf;
 9844
 9845	/* Handle pending wakeups and then migrate everything off */
 9846	sched_tick_stop(cpu);
 9847
 9848	rq_lock_irqsave(rq, &rf);
 9849	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
 9850		WARN(true, "Dying CPU not properly vacated!");
 9851		dump_rq_tasks(rq, KERN_WARNING);
 9852	}
 9853	rq_unlock_irqrestore(rq, &rf);
 9854
 9855	calc_load_migrate(rq);
 9856	update_max_interval();
 9857	hrtick_clear(rq);
 9858	sched_core_cpu_dying(cpu);
 9859	return 0;
 9860}
 9861#endif
 9862
 9863void __init sched_init_smp(void)
 9864{
 9865	sched_init_numa(NUMA_NO_NODE);
 9866
 9867	/*
 9868	 * There's no userspace yet to cause hotplug operations; hence all the
 9869	 * CPU masks are stable and all blatant races in the below code cannot
 9870	 * happen.
 9871	 */
 9872	mutex_lock(&sched_domains_mutex);
 9873	sched_init_domains(cpu_active_mask);
 9874	mutex_unlock(&sched_domains_mutex);
 9875
 9876	/* Move init over to a non-isolated CPU */
 9877	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
 9878		BUG();
 9879	current->flags &= ~PF_NO_SETAFFINITY;
 9880	sched_init_granularity();
 9881
 9882	init_sched_rt_class();
 9883	init_sched_dl_class();
 9884
 9885	sched_smp_initialized = true;
 9886}
 9887
 9888static int __init migration_init(void)
 9889{
 9890	sched_cpu_starting(smp_processor_id());
 9891	return 0;
 9892}
 9893early_initcall(migration_init);
 9894
 9895#else
 9896void __init sched_init_smp(void)
 9897{
 9898	sched_init_granularity();
 9899}
 9900#endif /* CONFIG_SMP */
 9901
 9902int in_sched_functions(unsigned long addr)
 9903{
 9904	return in_lock_functions(addr) ||
 9905		(addr >= (unsigned long)__sched_text_start
 9906		&& addr < (unsigned long)__sched_text_end);
 9907}
 9908
 9909#ifdef CONFIG_CGROUP_SCHED
 9910/*
 9911 * Default task group.
 9912 * Every task in system belongs to this group at bootup.
 9913 */
 9914struct task_group root_task_group;
 9915LIST_HEAD(task_groups);
 9916
 9917/* Cacheline aligned slab cache for task_group */
 9918static struct kmem_cache *task_group_cache __ro_after_init;
 9919#endif
 9920
 9921void __init sched_init(void)
 9922{
 9923	unsigned long ptr = 0;
 9924	int i;
 9925
 9926	/* Make sure the linker didn't screw up */
 9927	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
 9928	       &fair_sched_class != &rt_sched_class + 1 ||
 9929	       &rt_sched_class   != &dl_sched_class + 1);
 9930#ifdef CONFIG_SMP
 9931	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
 9932#endif
 9933
 9934	wait_bit_init();
 9935
 9936#ifdef CONFIG_FAIR_GROUP_SCHED
 9937	ptr += 2 * nr_cpu_ids * sizeof(void **);
 9938#endif
 9939#ifdef CONFIG_RT_GROUP_SCHED
 9940	ptr += 2 * nr_cpu_ids * sizeof(void **);
 9941#endif
 9942	if (ptr) {
 9943		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
 9944
 9945#ifdef CONFIG_FAIR_GROUP_SCHED
 9946		root_task_group.se = (struct sched_entity **)ptr;
 9947		ptr += nr_cpu_ids * sizeof(void **);
 9948
 9949		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
 9950		ptr += nr_cpu_ids * sizeof(void **);
 9951
 9952		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
 9953		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
 9954#endif /* CONFIG_FAIR_GROUP_SCHED */
 9955#ifdef CONFIG_RT_GROUP_SCHED
 9956		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
 9957		ptr += nr_cpu_ids * sizeof(void **);
 9958
 9959		root_task_group.rt_rq = (struct rt_rq **)ptr;
 9960		ptr += nr_cpu_ids * sizeof(void **);
 9961
 9962#endif /* CONFIG_RT_GROUP_SCHED */
 9963	}
 9964
 9965	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
 9966
 9967#ifdef CONFIG_SMP
 9968	init_defrootdomain();
 9969#endif
 9970
 9971#ifdef CONFIG_RT_GROUP_SCHED
 9972	init_rt_bandwidth(&root_task_group.rt_bandwidth,
 9973			global_rt_period(), global_rt_runtime());
 9974#endif /* CONFIG_RT_GROUP_SCHED */
 9975
 9976#ifdef CONFIG_CGROUP_SCHED
 9977	task_group_cache = KMEM_CACHE(task_group, 0);
 9978
 9979	list_add(&root_task_group.list, &task_groups);
 9980	INIT_LIST_HEAD(&root_task_group.children);
 9981	INIT_LIST_HEAD(&root_task_group.siblings);
 9982	autogroup_init(&init_task);
 9983#endif /* CONFIG_CGROUP_SCHED */
 9984
 9985	for_each_possible_cpu(i) {
 9986		struct rq *rq;
 9987
 9988		rq = cpu_rq(i);
 9989		raw_spin_lock_init(&rq->__lock);
 9990		rq->nr_running = 0;
 9991		rq->calc_load_active = 0;
 9992		rq->calc_load_update = jiffies + LOAD_FREQ;
 9993		init_cfs_rq(&rq->cfs);
 9994		init_rt_rq(&rq->rt);
 9995		init_dl_rq(&rq->dl);
 9996#ifdef CONFIG_FAIR_GROUP_SCHED
 9997		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
 9998		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
 9999		/*
10000		 * How much CPU bandwidth does root_task_group get?
10001		 *
10002		 * In case of task-groups formed thr' the cgroup filesystem, it
10003		 * gets 100% of the CPU resources in the system. This overall
10004		 * system CPU resource is divided among the tasks of
10005		 * root_task_group and its child task-groups in a fair manner,
10006		 * based on each entity's (task or task-group's) weight
10007		 * (se->load.weight).
10008		 *
10009		 * In other words, if root_task_group has 10 tasks of weight
10010		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
10011		 * then A0's share of the CPU resource is:
10012		 *
10013		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
10014		 *
10015		 * We achieve this by letting root_task_group's tasks sit
10016		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
10017		 */
10018		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
10019#endif /* CONFIG_FAIR_GROUP_SCHED */
10020
10021		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
10022#ifdef CONFIG_RT_GROUP_SCHED
10023		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
10024#endif
10025#ifdef CONFIG_SMP
10026		rq->sd = NULL;
10027		rq->rd = NULL;
10028		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
10029		rq->balance_callback = &balance_push_callback;
10030		rq->active_balance = 0;
10031		rq->next_balance = jiffies;
10032		rq->push_cpu = 0;
10033		rq->cpu = i;
10034		rq->online = 0;
10035		rq->idle_stamp = 0;
10036		rq->avg_idle = 2*sysctl_sched_migration_cost;
10037		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
10038
10039		INIT_LIST_HEAD(&rq->cfs_tasks);
10040
10041		rq_attach_root(rq, &def_root_domain);
10042#ifdef CONFIG_NO_HZ_COMMON
10043		rq->last_blocked_load_update_tick = jiffies;
10044		atomic_set(&rq->nohz_flags, 0);
10045
10046		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
10047#endif
10048#ifdef CONFIG_HOTPLUG_CPU
10049		rcuwait_init(&rq->hotplug_wait);
10050#endif
10051#endif /* CONFIG_SMP */
10052		hrtick_rq_init(rq);
10053		atomic_set(&rq->nr_iowait, 0);
10054
10055#ifdef CONFIG_SCHED_CORE
10056		rq->core = rq;
10057		rq->core_pick = NULL;
10058		rq->core_enabled = 0;
10059		rq->core_tree = RB_ROOT;
10060		rq->core_forceidle_count = 0;
10061		rq->core_forceidle_occupation = 0;
10062		rq->core_forceidle_start = 0;
10063
10064		rq->core_cookie = 0UL;
10065#endif
10066		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
10067	}
10068
10069	set_load_weight(&init_task, false);
10070
10071	/*
10072	 * The boot idle thread does lazy MMU switching as well:
10073	 */
10074	mmgrab_lazy_tlb(&init_mm);
10075	enter_lazy_tlb(&init_mm, current);
10076
10077	/*
10078	 * The idle task doesn't need the kthread struct to function, but it
10079	 * is dressed up as a per-CPU kthread and thus needs to play the part
10080	 * if we want to avoid special-casing it in code that deals with per-CPU
10081	 * kthreads.
10082	 */
10083	WARN_ON(!set_kthread_struct(current));
10084
10085	/*
10086	 * Make us the idle thread. Technically, schedule() should not be
10087	 * called from this thread, however somewhere below it might be,
10088	 * but because we are the idle thread, we just pick up running again
10089	 * when this runqueue becomes "idle".
10090	 */
10091	init_idle(current, smp_processor_id());
10092
10093	calc_load_update = jiffies + LOAD_FREQ;
10094
10095#ifdef CONFIG_SMP
10096	idle_thread_set_boot_cpu();
10097	balance_push_set(smp_processor_id(), false);
10098#endif
10099	init_sched_fair_class();
10100
10101	psi_init();
10102
10103	init_uclamp();
10104
10105	preempt_dynamic_init();
10106
10107	scheduler_running = 1;
10108}
10109
10110#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
10111
10112void __might_sleep(const char *file, int line)
10113{
10114	unsigned int state = get_current_state();
10115	/*
10116	 * Blocking primitives will set (and therefore destroy) current->state,
10117	 * since we will exit with TASK_RUNNING make sure we enter with it,
10118	 * otherwise we will destroy state.
10119	 */
10120	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
10121			"do not call blocking ops when !TASK_RUNNING; "
10122			"state=%x set at [<%p>] %pS\n", state,
10123			(void *)current->task_state_change,
10124			(void *)current->task_state_change);
10125
10126	__might_resched(file, line, 0);
10127}
10128EXPORT_SYMBOL(__might_sleep);
10129
10130static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10131{
10132	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10133		return;
10134
10135	if (preempt_count() == preempt_offset)
10136		return;
10137
10138	pr_err("Preemption disabled at:");
10139	print_ip_sym(KERN_ERR, ip);
10140}
10141
10142static inline bool resched_offsets_ok(unsigned int offsets)
10143{
10144	unsigned int nested = preempt_count();
10145
10146	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10147
10148	return nested == offsets;
10149}
10150
10151void __might_resched(const char *file, int line, unsigned int offsets)
10152{
10153	/* Ratelimiting timestamp: */
10154	static unsigned long prev_jiffy;
10155
10156	unsigned long preempt_disable_ip;
10157
10158	/* WARN_ON_ONCE() by default, no rate limit required: */
10159	rcu_sleep_check();
10160
10161	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10162	     !is_idle_task(current) && !current->non_block_count) ||
10163	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10164	    oops_in_progress)
10165		return;
10166
10167	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10168		return;
10169	prev_jiffy = jiffies;
10170
10171	/* Save this before calling printk(), since that will clobber it: */
10172	preempt_disable_ip = get_preempt_disable_ip(current);
10173
10174	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10175	       file, line);
10176	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10177	       in_atomic(), irqs_disabled(), current->non_block_count,
10178	       current->pid, current->comm);
10179	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10180	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
10181
10182	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10183		pr_err("RCU nest depth: %d, expected: %u\n",
10184		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10185	}
10186
10187	if (task_stack_end_corrupted(current))
10188		pr_emerg("Thread overran stack, or stack corrupted\n");
10189
10190	debug_show_held_locks(current);
10191	if (irqs_disabled())
10192		print_irqtrace_events(current);
10193
10194	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10195				 preempt_disable_ip);
10196
10197	dump_stack();
10198	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10199}
10200EXPORT_SYMBOL(__might_resched);
10201
10202void __cant_sleep(const char *file, int line, int preempt_offset)
10203{
10204	static unsigned long prev_jiffy;
10205
10206	if (irqs_disabled())
10207		return;
10208
10209	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10210		return;
10211
10212	if (preempt_count() > preempt_offset)
10213		return;
10214
10215	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10216		return;
10217	prev_jiffy = jiffies;
10218
10219	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10220	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10221			in_atomic(), irqs_disabled(),
10222			current->pid, current->comm);
10223
10224	debug_show_held_locks(current);
10225	dump_stack();
10226	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10227}
10228EXPORT_SYMBOL_GPL(__cant_sleep);
10229
10230#ifdef CONFIG_SMP
10231void __cant_migrate(const char *file, int line)
10232{
10233	static unsigned long prev_jiffy;
10234
10235	if (irqs_disabled())
10236		return;
10237
10238	if (is_migration_disabled(current))
10239		return;
10240
10241	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10242		return;
10243
10244	if (preempt_count() > 0)
10245		return;
10246
10247	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10248		return;
10249	prev_jiffy = jiffies;
10250
10251	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10252	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10253	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
10254	       current->pid, current->comm);
10255
10256	debug_show_held_locks(current);
10257	dump_stack();
10258	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10259}
10260EXPORT_SYMBOL_GPL(__cant_migrate);
10261#endif
10262#endif
10263
10264#ifdef CONFIG_MAGIC_SYSRQ
10265void normalize_rt_tasks(void)
10266{
10267	struct task_struct *g, *p;
10268	struct sched_attr attr = {
10269		.sched_policy = SCHED_NORMAL,
10270	};
10271
10272	read_lock(&tasklist_lock);
10273	for_each_process_thread(g, p) {
10274		/*
10275		 * Only normalize user tasks:
10276		 */
10277		if (p->flags & PF_KTHREAD)
10278			continue;
10279
10280		p->se.exec_start = 0;
10281		schedstat_set(p->stats.wait_start,  0);
10282		schedstat_set(p->stats.sleep_start, 0);
10283		schedstat_set(p->stats.block_start, 0);
10284
10285		if (!dl_task(p) && !rt_task(p)) {
10286			/*
10287			 * Renice negative nice level userspace
10288			 * tasks back to 0:
10289			 */
10290			if (task_nice(p) < 0)
10291				set_user_nice(p, 0);
10292			continue;
10293		}
10294
10295		__sched_setscheduler(p, &attr, false, false);
10296	}
10297	read_unlock(&tasklist_lock);
10298}
10299
10300#endif /* CONFIG_MAGIC_SYSRQ */
10301
10302#if defined(CONFIG_KGDB_KDB)
10303/*
10304 * These functions are only useful for kdb.
10305 *
10306 * They can only be called when the whole system has been
10307 * stopped - every CPU needs to be quiescent, and no scheduling
10308 * activity can take place. Using them for anything else would
10309 * be a serious bug, and as a result, they aren't even visible
10310 * under any other configuration.
10311 */
10312
10313/**
10314 * curr_task - return the current task for a given CPU.
10315 * @cpu: the processor in question.
10316 *
10317 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10318 *
10319 * Return: The current task for @cpu.
10320 */
10321struct task_struct *curr_task(int cpu)
10322{
10323	return cpu_curr(cpu);
10324}
10325
10326#endif /* defined(CONFIG_KGDB_KDB) */
10327
10328#ifdef CONFIG_CGROUP_SCHED
10329/* task_group_lock serializes the addition/removal of task groups */
10330static DEFINE_SPINLOCK(task_group_lock);
10331
10332static inline void alloc_uclamp_sched_group(struct task_group *tg,
10333					    struct task_group *parent)
10334{
10335#ifdef CONFIG_UCLAMP_TASK_GROUP
10336	enum uclamp_id clamp_id;
10337
10338	for_each_clamp_id(clamp_id) {
10339		uclamp_se_set(&tg->uclamp_req[clamp_id],
10340			      uclamp_none(clamp_id), false);
10341		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10342	}
10343#endif
10344}
10345
10346static void sched_free_group(struct task_group *tg)
10347{
10348	free_fair_sched_group(tg);
10349	free_rt_sched_group(tg);
10350	autogroup_free(tg);
10351	kmem_cache_free(task_group_cache, tg);
10352}
10353
10354static void sched_free_group_rcu(struct rcu_head *rcu)
10355{
10356	sched_free_group(container_of(rcu, struct task_group, rcu));
10357}
10358
10359static void sched_unregister_group(struct task_group *tg)
10360{
10361	unregister_fair_sched_group(tg);
10362	unregister_rt_sched_group(tg);
10363	/*
10364	 * We have to wait for yet another RCU grace period to expire, as
10365	 * print_cfs_stats() might run concurrently.
10366	 */
10367	call_rcu(&tg->rcu, sched_free_group_rcu);
10368}
10369
10370/* allocate runqueue etc for a new task group */
10371struct task_group *sched_create_group(struct task_group *parent)
10372{
10373	struct task_group *tg;
10374
10375	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10376	if (!tg)
10377		return ERR_PTR(-ENOMEM);
10378
10379	if (!alloc_fair_sched_group(tg, parent))
10380		goto err;
10381
10382	if (!alloc_rt_sched_group(tg, parent))
10383		goto err;
10384
10385	alloc_uclamp_sched_group(tg, parent);
10386
10387	return tg;
10388
10389err:
10390	sched_free_group(tg);
10391	return ERR_PTR(-ENOMEM);
10392}
10393
10394void sched_online_group(struct task_group *tg, struct task_group *parent)
10395{
10396	unsigned long flags;
10397
10398	spin_lock_irqsave(&task_group_lock, flags);
10399	list_add_rcu(&tg->list, &task_groups);
10400
10401	/* Root should already exist: */
10402	WARN_ON(!parent);
10403
10404	tg->parent = parent;
10405	INIT_LIST_HEAD(&tg->children);
10406	list_add_rcu(&tg->siblings, &parent->children);
10407	spin_unlock_irqrestore(&task_group_lock, flags);
10408
10409	online_fair_sched_group(tg);
10410}
10411
10412/* rcu callback to free various structures associated with a task group */
10413static void sched_unregister_group_rcu(struct rcu_head *rhp)
10414{
10415	/* Now it should be safe to free those cfs_rqs: */
10416	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10417}
10418
10419void sched_destroy_group(struct task_group *tg)
10420{
10421	/* Wait for possible concurrent references to cfs_rqs complete: */
10422	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10423}
10424
10425void sched_release_group(struct task_group *tg)
10426{
10427	unsigned long flags;
10428
10429	/*
10430	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10431	 * sched_cfs_period_timer()).
10432	 *
10433	 * For this to be effective, we have to wait for all pending users of
10434	 * this task group to leave their RCU critical section to ensure no new
10435	 * user will see our dying task group any more. Specifically ensure
10436	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10437	 *
10438	 * We therefore defer calling unregister_fair_sched_group() to
10439	 * sched_unregister_group() which is guarantied to get called only after the
10440	 * current RCU grace period has expired.
10441	 */
10442	spin_lock_irqsave(&task_group_lock, flags);
10443	list_del_rcu(&tg->list);
10444	list_del_rcu(&tg->siblings);
10445	spin_unlock_irqrestore(&task_group_lock, flags);
10446}
10447
10448static struct task_group *sched_get_task_group(struct task_struct *tsk)
10449{
10450	struct task_group *tg;
10451
10452	/*
10453	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10454	 * which is pointless here. Thus, we pass "true" to task_css_check()
10455	 * to prevent lockdep warnings.
10456	 */
10457	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10458			  struct task_group, css);
10459	tg = autogroup_task_group(tsk, tg);
10460
10461	return tg;
10462}
10463
10464static void sched_change_group(struct task_struct *tsk, struct task_group *group)
10465{
10466	tsk->sched_task_group = group;
10467
10468#ifdef CONFIG_FAIR_GROUP_SCHED
10469	if (tsk->sched_class->task_change_group)
10470		tsk->sched_class->task_change_group(tsk);
10471	else
10472#endif
10473		set_task_rq(tsk, task_cpu(tsk));
10474}
10475
10476/*
10477 * Change task's runqueue when it moves between groups.
10478 *
10479 * The caller of this function should have put the task in its new group by
10480 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10481 * its new group.
10482 */
10483void sched_move_task(struct task_struct *tsk)
10484{
10485	int queued, running, queue_flags =
10486		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10487	struct task_group *group;
10488	struct rq *rq;
10489
10490	CLASS(task_rq_lock, rq_guard)(tsk);
10491	rq = rq_guard.rq;
10492
10493	/*
10494	 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
10495	 * group changes.
10496	 */
10497	group = sched_get_task_group(tsk);
10498	if (group == tsk->sched_task_group)
10499		return;
10500
10501	update_rq_clock(rq);
10502
10503	running = task_current(rq, tsk);
10504	queued = task_on_rq_queued(tsk);
10505
10506	if (queued)
10507		dequeue_task(rq, tsk, queue_flags);
10508	if (running)
10509		put_prev_task(rq, tsk);
10510
10511	sched_change_group(tsk, group);
10512
10513	if (queued)
10514		enqueue_task(rq, tsk, queue_flags);
10515	if (running) {
10516		set_next_task(rq, tsk);
10517		/*
10518		 * After changing group, the running task may have joined a
10519		 * throttled one but it's still the running task. Trigger a
10520		 * resched to make sure that task can still run.
10521		 */
10522		resched_curr(rq);
10523	}
10524}
10525
10526static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10527{
10528	return css ? container_of(css, struct task_group, css) : NULL;
10529}
10530
10531static struct cgroup_subsys_state *
10532cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10533{
10534	struct task_group *parent = css_tg(parent_css);
10535	struct task_group *tg;
10536
10537	if (!parent) {
10538		/* This is early initialization for the top cgroup */
10539		return &root_task_group.css;
10540	}
10541
10542	tg = sched_create_group(parent);
10543	if (IS_ERR(tg))
10544		return ERR_PTR(-ENOMEM);
10545
10546	return &tg->css;
10547}
10548
10549/* Expose task group only after completing cgroup initialization */
10550static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10551{
10552	struct task_group *tg = css_tg(css);
10553	struct task_group *parent = css_tg(css->parent);
10554
10555	if (parent)
10556		sched_online_group(tg, parent);
10557
10558#ifdef CONFIG_UCLAMP_TASK_GROUP
10559	/* Propagate the effective uclamp value for the new group */
10560	guard(mutex)(&uclamp_mutex);
10561	guard(rcu)();
10562	cpu_util_update_eff(css);
10563#endif
10564
10565	return 0;
10566}
10567
10568static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10569{
10570	struct task_group *tg = css_tg(css);
10571
10572	sched_release_group(tg);
10573}
10574
10575static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10576{
10577	struct task_group *tg = css_tg(css);
10578
10579	/*
10580	 * Relies on the RCU grace period between css_released() and this.
10581	 */
10582	sched_unregister_group(tg);
10583}
10584
10585#ifdef CONFIG_RT_GROUP_SCHED
10586static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10587{
10588	struct task_struct *task;
10589	struct cgroup_subsys_state *css;
10590
10591	cgroup_taskset_for_each(task, css, tset) {
10592		if (!sched_rt_can_attach(css_tg(css), task))
10593			return -EINVAL;
10594	}
10595	return 0;
10596}
10597#endif
10598
10599static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10600{
10601	struct task_struct *task;
10602	struct cgroup_subsys_state *css;
10603
10604	cgroup_taskset_for_each(task, css, tset)
10605		sched_move_task(task);
10606}
10607
10608#ifdef CONFIG_UCLAMP_TASK_GROUP
10609static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10610{
10611	struct cgroup_subsys_state *top_css = css;
10612	struct uclamp_se *uc_parent = NULL;
10613	struct uclamp_se *uc_se = NULL;
10614	unsigned int eff[UCLAMP_CNT];
10615	enum uclamp_id clamp_id;
10616	unsigned int clamps;
10617
10618	lockdep_assert_held(&uclamp_mutex);
10619	SCHED_WARN_ON(!rcu_read_lock_held());
10620
10621	css_for_each_descendant_pre(css, top_css) {
10622		uc_parent = css_tg(css)->parent
10623			? css_tg(css)->parent->uclamp : NULL;
10624
10625		for_each_clamp_id(clamp_id) {
10626			/* Assume effective clamps matches requested clamps */
10627			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10628			/* Cap effective clamps with parent's effective clamps */
10629			if (uc_parent &&
10630			    eff[clamp_id] > uc_parent[clamp_id].value) {
10631				eff[clamp_id] = uc_parent[clamp_id].value;
10632			}
10633		}
10634		/* Ensure protection is always capped by limit */
10635		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10636
10637		/* Propagate most restrictive effective clamps */
10638		clamps = 0x0;
10639		uc_se = css_tg(css)->uclamp;
10640		for_each_clamp_id(clamp_id) {
10641			if (eff[clamp_id] == uc_se[clamp_id].value)
10642				continue;
10643			uc_se[clamp_id].value = eff[clamp_id];
10644			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10645			clamps |= (0x1 << clamp_id);
10646		}
10647		if (!clamps) {
10648			css = css_rightmost_descendant(css);
10649			continue;
10650		}
10651
10652		/* Immediately update descendants RUNNABLE tasks */
10653		uclamp_update_active_tasks(css);
10654	}
10655}
10656
10657/*
10658 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10659 * C expression. Since there is no way to convert a macro argument (N) into a
10660 * character constant, use two levels of macros.
10661 */
10662#define _POW10(exp) ((unsigned int)1e##exp)
10663#define POW10(exp) _POW10(exp)
10664
10665struct uclamp_request {
10666#define UCLAMP_PERCENT_SHIFT	2
10667#define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10668	s64 percent;
10669	u64 util;
10670	int ret;
10671};
10672
10673static inline struct uclamp_request
10674capacity_from_percent(char *buf)
10675{
10676	struct uclamp_request req = {
10677		.percent = UCLAMP_PERCENT_SCALE,
10678		.util = SCHED_CAPACITY_SCALE,
10679		.ret = 0,
10680	};
10681
10682	buf = strim(buf);
10683	if (strcmp(buf, "max")) {
10684		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10685					     &req.percent);
10686		if (req.ret)
10687			return req;
10688		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10689			req.ret = -ERANGE;
10690			return req;
10691		}
10692
10693		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10694		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10695	}
10696
10697	return req;
10698}
10699
10700static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10701				size_t nbytes, loff_t off,
10702				enum uclamp_id clamp_id)
10703{
10704	struct uclamp_request req;
10705	struct task_group *tg;
10706
10707	req = capacity_from_percent(buf);
10708	if (req.ret)
10709		return req.ret;
10710
10711	static_branch_enable(&sched_uclamp_used);
10712
10713	guard(mutex)(&uclamp_mutex);
10714	guard(rcu)();
10715
10716	tg = css_tg(of_css(of));
10717	if (tg->uclamp_req[clamp_id].value != req.util)
10718		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10719
10720	/*
10721	 * Because of not recoverable conversion rounding we keep track of the
10722	 * exact requested value
10723	 */
10724	tg->uclamp_pct[clamp_id] = req.percent;
10725
10726	/* Update effective clamps to track the most restrictive value */
10727	cpu_util_update_eff(of_css(of));
10728
10729	return nbytes;
10730}
10731
10732static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10733				    char *buf, size_t nbytes,
10734				    loff_t off)
10735{
10736	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10737}
10738
10739static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10740				    char *buf, size_t nbytes,
10741				    loff_t off)
10742{
10743	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10744}
10745
10746static inline void cpu_uclamp_print(struct seq_file *sf,
10747				    enum uclamp_id clamp_id)
10748{
10749	struct task_group *tg;
10750	u64 util_clamp;
10751	u64 percent;
10752	u32 rem;
10753
10754	scoped_guard (rcu) {
10755		tg = css_tg(seq_css(sf));
10756		util_clamp = tg->uclamp_req[clamp_id].value;
10757	}
10758
10759	if (util_clamp == SCHED_CAPACITY_SCALE) {
10760		seq_puts(sf, "max\n");
10761		return;
10762	}
10763
10764	percent = tg->uclamp_pct[clamp_id];
10765	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10766	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10767}
10768
10769static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10770{
10771	cpu_uclamp_print(sf, UCLAMP_MIN);
10772	return 0;
10773}
10774
10775static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10776{
10777	cpu_uclamp_print(sf, UCLAMP_MAX);
10778	return 0;
10779}
10780#endif /* CONFIG_UCLAMP_TASK_GROUP */
10781
10782#ifdef CONFIG_FAIR_GROUP_SCHED
10783static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10784				struct cftype *cftype, u64 shareval)
10785{
10786	if (shareval > scale_load_down(ULONG_MAX))
10787		shareval = MAX_SHARES;
10788	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10789}
10790
10791static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10792			       struct cftype *cft)
10793{
10794	struct task_group *tg = css_tg(css);
10795
10796	return (u64) scale_load_down(tg->shares);
10797}
10798
10799#ifdef CONFIG_CFS_BANDWIDTH
10800static DEFINE_MUTEX(cfs_constraints_mutex);
10801
10802const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10803static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10804/* More than 203 days if BW_SHIFT equals 20. */
10805static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10806
10807static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10808
10809static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10810				u64 burst)
10811{
10812	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10813	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10814
10815	if (tg == &root_task_group)
10816		return -EINVAL;
10817
10818	/*
10819	 * Ensure we have at some amount of bandwidth every period.  This is
10820	 * to prevent reaching a state of large arrears when throttled via
10821	 * entity_tick() resulting in prolonged exit starvation.
10822	 */
10823	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10824		return -EINVAL;
10825
10826	/*
10827	 * Likewise, bound things on the other side by preventing insane quota
10828	 * periods.  This also allows us to normalize in computing quota
10829	 * feasibility.
10830	 */
10831	if (period > max_cfs_quota_period)
10832		return -EINVAL;
10833
10834	/*
10835	 * Bound quota to defend quota against overflow during bandwidth shift.
10836	 */
10837	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10838		return -EINVAL;
10839
10840	if (quota != RUNTIME_INF && (burst > quota ||
10841				     burst + quota > max_cfs_runtime))
10842		return -EINVAL;
10843
10844	/*
10845	 * Prevent race between setting of cfs_rq->runtime_enabled and
10846	 * unthrottle_offline_cfs_rqs().
10847	 */
10848	guard(cpus_read_lock)();
10849	guard(mutex)(&cfs_constraints_mutex);
10850
10851	ret = __cfs_schedulable(tg, period, quota);
10852	if (ret)
10853		return ret;
10854
10855	runtime_enabled = quota != RUNTIME_INF;
10856	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10857	/*
10858	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10859	 * before making related changes, and on->off must occur afterwards
10860	 */
10861	if (runtime_enabled && !runtime_was_enabled)
10862		cfs_bandwidth_usage_inc();
10863
10864	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
10865		cfs_b->period = ns_to_ktime(period);
10866		cfs_b->quota = quota;
10867		cfs_b->burst = burst;
10868
10869		__refill_cfs_bandwidth_runtime(cfs_b);
10870
10871		/*
10872		 * Restart the period timer (if active) to handle new
10873		 * period expiry:
10874		 */
10875		if (runtime_enabled)
10876			start_cfs_bandwidth(cfs_b);
10877	}
10878
10879	for_each_online_cpu(i) {
10880		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10881		struct rq *rq = cfs_rq->rq;
10882
10883		guard(rq_lock_irq)(rq);
10884		cfs_rq->runtime_enabled = runtime_enabled;
10885		cfs_rq->runtime_remaining = 0;
10886
10887		if (cfs_rq->throttled)
10888			unthrottle_cfs_rq(cfs_rq);
10889	}
10890
10891	if (runtime_was_enabled && !runtime_enabled)
10892		cfs_bandwidth_usage_dec();
10893
10894	return 0;
10895}
10896
10897static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10898{
10899	u64 quota, period, burst;
10900
10901	period = ktime_to_ns(tg->cfs_bandwidth.period);
10902	burst = tg->cfs_bandwidth.burst;
10903	if (cfs_quota_us < 0)
10904		quota = RUNTIME_INF;
10905	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10906		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10907	else
10908		return -EINVAL;
10909
10910	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10911}
10912
10913static long tg_get_cfs_quota(struct task_group *tg)
10914{
10915	u64 quota_us;
10916
10917	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10918		return -1;
10919
10920	quota_us = tg->cfs_bandwidth.quota;
10921	do_div(quota_us, NSEC_PER_USEC);
10922
10923	return quota_us;
10924}
10925
10926static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10927{
10928	u64 quota, period, burst;
10929
10930	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10931		return -EINVAL;
10932
10933	period = (u64)cfs_period_us * NSEC_PER_USEC;
10934	quota = tg->cfs_bandwidth.quota;
10935	burst = tg->cfs_bandwidth.burst;
10936
10937	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10938}
10939
10940static long tg_get_cfs_period(struct task_group *tg)
10941{
10942	u64 cfs_period_us;
10943
10944	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10945	do_div(cfs_period_us, NSEC_PER_USEC);
10946
10947	return cfs_period_us;
10948}
10949
10950static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10951{
10952	u64 quota, period, burst;
10953
10954	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10955		return -EINVAL;
10956
10957	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10958	period = ktime_to_ns(tg->cfs_bandwidth.period);
10959	quota = tg->cfs_bandwidth.quota;
10960
10961	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10962}
10963
10964static long tg_get_cfs_burst(struct task_group *tg)
10965{
10966	u64 burst_us;
10967
10968	burst_us = tg->cfs_bandwidth.burst;
10969	do_div(burst_us, NSEC_PER_USEC);
10970
10971	return burst_us;
10972}
10973
10974static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10975				  struct cftype *cft)
10976{
10977	return tg_get_cfs_quota(css_tg(css));
10978}
10979
10980static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10981				   struct cftype *cftype, s64 cfs_quota_us)
10982{
10983	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10984}
10985
10986static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10987				   struct cftype *cft)
10988{
10989	return tg_get_cfs_period(css_tg(css));
10990}
10991
10992static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10993				    struct cftype *cftype, u64 cfs_period_us)
10994{
10995	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10996}
10997
10998static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10999				  struct cftype *cft)
11000{
11001	return tg_get_cfs_burst(css_tg(css));
11002}
11003
11004static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
11005				   struct cftype *cftype, u64 cfs_burst_us)
11006{
11007	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
11008}
11009
11010struct cfs_schedulable_data {
11011	struct task_group *tg;
11012	u64 period, quota;
11013};
11014
11015/*
11016 * normalize group quota/period to be quota/max_period
11017 * note: units are usecs
11018 */
11019static u64 normalize_cfs_quota(struct task_group *tg,
11020			       struct cfs_schedulable_data *d)
11021{
11022	u64 quota, period;
11023
11024	if (tg == d->tg) {
11025		period = d->period;
11026		quota = d->quota;
11027	} else {
11028		period = tg_get_cfs_period(tg);
11029		quota = tg_get_cfs_quota(tg);
11030	}
11031
11032	/* note: these should typically be equivalent */
11033	if (quota == RUNTIME_INF || quota == -1)
11034		return RUNTIME_INF;
11035
11036	return to_ratio(period, quota);
11037}
11038
11039static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
11040{
11041	struct cfs_schedulable_data *d = data;
11042	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11043	s64 quota = 0, parent_quota = -1;
11044
11045	if (!tg->parent) {
11046		quota = RUNTIME_INF;
11047	} else {
11048		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
11049
11050		quota = normalize_cfs_quota(tg, d);
11051		parent_quota = parent_b->hierarchical_quota;
11052
11053		/*
11054		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
11055		 * always take the non-RUNTIME_INF min.  On cgroup1, only
11056		 * inherit when no limit is set. In both cases this is used
11057		 * by the scheduler to determine if a given CFS task has a
11058		 * bandwidth constraint at some higher level.
11059		 */
11060		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11061			if (quota == RUNTIME_INF)
11062				quota = parent_quota;
11063			else if (parent_quota != RUNTIME_INF)
11064				quota = min(quota, parent_quota);
11065		} else {
11066			if (quota == RUNTIME_INF)
11067				quota = parent_quota;
11068			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11069				return -EINVAL;
11070		}
11071	}
11072	cfs_b->hierarchical_quota = quota;
11073
11074	return 0;
11075}
11076
11077static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11078{
11079	struct cfs_schedulable_data data = {
11080		.tg = tg,
11081		.period = period,
11082		.quota = quota,
11083	};
11084
11085	if (quota != RUNTIME_INF) {
11086		do_div(data.period, NSEC_PER_USEC);
11087		do_div(data.quota, NSEC_PER_USEC);
11088	}
11089
11090	guard(rcu)();
11091	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11092}
11093
11094static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
11095{
11096	struct task_group *tg = css_tg(seq_css(sf));
11097	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11098
11099	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11100	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11101	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
11102
11103	if (schedstat_enabled() && tg != &root_task_group) {
11104		struct sched_statistics *stats;
11105		u64 ws = 0;
11106		int i;
11107
11108		for_each_possible_cpu(i) {
11109			stats = __schedstats_from_se(tg->se[i]);
11110			ws += schedstat_val(stats->wait_sum);
11111		}
11112
11113		seq_printf(sf, "wait_sum %llu\n", ws);
11114	}
11115
11116	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11117	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11118
11119	return 0;
11120}
11121
11122static u64 throttled_time_self(struct task_group *tg)
11123{
11124	int i;
11125	u64 total = 0;
11126
11127	for_each_possible_cpu(i) {
11128		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
11129	}
11130
11131	return total;
11132}
11133
11134static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
11135{
11136	struct task_group *tg = css_tg(seq_css(sf));
11137
11138	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
11139
11140	return 0;
11141}
11142#endif /* CONFIG_CFS_BANDWIDTH */
11143#endif /* CONFIG_FAIR_GROUP_SCHED */
11144
11145#ifdef CONFIG_RT_GROUP_SCHED
11146static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11147				struct cftype *cft, s64 val)
11148{
11149	return sched_group_set_rt_runtime(css_tg(css), val);
11150}
11151
11152static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11153			       struct cftype *cft)
11154{
11155	return sched_group_rt_runtime(css_tg(css));
11156}
11157
11158static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11159				    struct cftype *cftype, u64 rt_period_us)
11160{
11161	return sched_group_set_rt_period(css_tg(css), rt_period_us);
11162}
11163
11164static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11165				   struct cftype *cft)
11166{
11167	return sched_group_rt_period(css_tg(css));
11168}
11169#endif /* CONFIG_RT_GROUP_SCHED */
11170
11171#ifdef CONFIG_FAIR_GROUP_SCHED
11172static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11173			       struct cftype *cft)
11174{
11175	return css_tg(css)->idle;
11176}
11177
11178static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11179				struct cftype *cft, s64 idle)
11180{
11181	return sched_group_set_idle(css_tg(css), idle);
11182}
11183#endif
11184
11185static struct cftype cpu_legacy_files[] = {
11186#ifdef CONFIG_FAIR_GROUP_SCHED
11187	{
11188		.name = "shares",
11189		.read_u64 = cpu_shares_read_u64,
11190		.write_u64 = cpu_shares_write_u64,
11191	},
11192	{
11193		.name = "idle",
11194		.read_s64 = cpu_idle_read_s64,
11195		.write_s64 = cpu_idle_write_s64,
11196	},
11197#endif
11198#ifdef CONFIG_CFS_BANDWIDTH
11199	{
11200		.name = "cfs_quota_us",
11201		.read_s64 = cpu_cfs_quota_read_s64,
11202		.write_s64 = cpu_cfs_quota_write_s64,
11203	},
11204	{
11205		.name = "cfs_period_us",
11206		.read_u64 = cpu_cfs_period_read_u64,
11207		.write_u64 = cpu_cfs_period_write_u64,
11208	},
11209	{
11210		.name = "cfs_burst_us",
11211		.read_u64 = cpu_cfs_burst_read_u64,
11212		.write_u64 = cpu_cfs_burst_write_u64,
11213	},
11214	{
11215		.name = "stat",
11216		.seq_show = cpu_cfs_stat_show,
11217	},
11218	{
11219		.name = "stat.local",
11220		.seq_show = cpu_cfs_local_stat_show,
11221	},
11222#endif
11223#ifdef CONFIG_RT_GROUP_SCHED
11224	{
11225		.name = "rt_runtime_us",
11226		.read_s64 = cpu_rt_runtime_read,
11227		.write_s64 = cpu_rt_runtime_write,
11228	},
11229	{
11230		.name = "rt_period_us",
11231		.read_u64 = cpu_rt_period_read_uint,
11232		.write_u64 = cpu_rt_period_write_uint,
11233	},
11234#endif
11235#ifdef CONFIG_UCLAMP_TASK_GROUP
11236	{
11237		.name = "uclamp.min",
11238		.flags = CFTYPE_NOT_ON_ROOT,
11239		.seq_show = cpu_uclamp_min_show,
11240		.write = cpu_uclamp_min_write,
11241	},
11242	{
11243		.name = "uclamp.max",
11244		.flags = CFTYPE_NOT_ON_ROOT,
11245		.seq_show = cpu_uclamp_max_show,
11246		.write = cpu_uclamp_max_write,
11247	},
11248#endif
11249	{ }	/* Terminate */
11250};
11251
11252static int cpu_extra_stat_show(struct seq_file *sf,
11253			       struct cgroup_subsys_state *css)
11254{
11255#ifdef CONFIG_CFS_BANDWIDTH
11256	{
11257		struct task_group *tg = css_tg(css);
11258		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11259		u64 throttled_usec, burst_usec;
11260
11261		throttled_usec = cfs_b->throttled_time;
11262		do_div(throttled_usec, NSEC_PER_USEC);
11263		burst_usec = cfs_b->burst_time;
11264		do_div(burst_usec, NSEC_PER_USEC);
11265
11266		seq_printf(sf, "nr_periods %d\n"
11267			   "nr_throttled %d\n"
11268			   "throttled_usec %llu\n"
11269			   "nr_bursts %d\n"
11270			   "burst_usec %llu\n",
11271			   cfs_b->nr_periods, cfs_b->nr_throttled,
11272			   throttled_usec, cfs_b->nr_burst, burst_usec);
11273	}
11274#endif
11275	return 0;
11276}
11277
11278static int cpu_local_stat_show(struct seq_file *sf,
11279			       struct cgroup_subsys_state *css)
11280{
11281#ifdef CONFIG_CFS_BANDWIDTH
11282	{
11283		struct task_group *tg = css_tg(css);
11284		u64 throttled_self_usec;
11285
11286		throttled_self_usec = throttled_time_self(tg);
11287		do_div(throttled_self_usec, NSEC_PER_USEC);
11288
11289		seq_printf(sf, "throttled_usec %llu\n",
11290			   throttled_self_usec);
11291	}
11292#endif
11293	return 0;
11294}
11295
11296#ifdef CONFIG_FAIR_GROUP_SCHED
11297static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11298			       struct cftype *cft)
11299{
11300	struct task_group *tg = css_tg(css);
11301	u64 weight = scale_load_down(tg->shares);
11302
11303	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11304}
11305
11306static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11307				struct cftype *cft, u64 weight)
11308{
11309	/*
11310	 * cgroup weight knobs should use the common MIN, DFL and MAX
11311	 * values which are 1, 100 and 10000 respectively.  While it loses
11312	 * a bit of range on both ends, it maps pretty well onto the shares
11313	 * value used by scheduler and the round-trip conversions preserve
11314	 * the original value over the entire range.
11315	 */
11316	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11317		return -ERANGE;
11318
11319	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11320
11321	return sched_group_set_shares(css_tg(css), scale_load(weight));
11322}
11323
11324static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11325				    struct cftype *cft)
11326{
11327	unsigned long weight = scale_load_down(css_tg(css)->shares);
11328	int last_delta = INT_MAX;
11329	int prio, delta;
11330
11331	/* find the closest nice value to the current weight */
11332	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11333		delta = abs(sched_prio_to_weight[prio] - weight);
11334		if (delta >= last_delta)
11335			break;
11336		last_delta = delta;
11337	}
11338
11339	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11340}
11341
11342static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11343				     struct cftype *cft, s64 nice)
11344{
11345	unsigned long weight;
11346	int idx;
11347
11348	if (nice < MIN_NICE || nice > MAX_NICE)
11349		return -ERANGE;
11350
11351	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11352	idx = array_index_nospec(idx, 40);
11353	weight = sched_prio_to_weight[idx];
11354
11355	return sched_group_set_shares(css_tg(css), scale_load(weight));
11356}
11357#endif
11358
11359static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11360						  long period, long quota)
11361{
11362	if (quota < 0)
11363		seq_puts(sf, "max");
11364	else
11365		seq_printf(sf, "%ld", quota);
11366
11367	seq_printf(sf, " %ld\n", period);
11368}
11369
11370/* caller should put the current value in *@periodp before calling */
11371static int __maybe_unused cpu_period_quota_parse(char *buf,
11372						 u64 *periodp, u64 *quotap)
11373{
11374	char tok[21];	/* U64_MAX */
11375
11376	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11377		return -EINVAL;
11378
11379	*periodp *= NSEC_PER_USEC;
11380
11381	if (sscanf(tok, "%llu", quotap))
11382		*quotap *= NSEC_PER_USEC;
11383	else if (!strcmp(tok, "max"))
11384		*quotap = RUNTIME_INF;
11385	else
11386		return -EINVAL;
11387
11388	return 0;
11389}
11390
11391#ifdef CONFIG_CFS_BANDWIDTH
11392static int cpu_max_show(struct seq_file *sf, void *v)
11393{
11394	struct task_group *tg = css_tg(seq_css(sf));
11395
11396	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11397	return 0;
11398}
11399
11400static ssize_t cpu_max_write(struct kernfs_open_file *of,
11401			     char *buf, size_t nbytes, loff_t off)
11402{
11403	struct task_group *tg = css_tg(of_css(of));
11404	u64 period = tg_get_cfs_period(tg);
11405	u64 burst = tg->cfs_bandwidth.burst;
11406	u64 quota;
11407	int ret;
11408
11409	ret = cpu_period_quota_parse(buf, &period, &quota);
11410	if (!ret)
11411		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11412	return ret ?: nbytes;
11413}
11414#endif
11415
11416static struct cftype cpu_files[] = {
11417#ifdef CONFIG_FAIR_GROUP_SCHED
11418	{
11419		.name = "weight",
11420		.flags = CFTYPE_NOT_ON_ROOT,
11421		.read_u64 = cpu_weight_read_u64,
11422		.write_u64 = cpu_weight_write_u64,
11423	},
11424	{
11425		.name = "weight.nice",
11426		.flags = CFTYPE_NOT_ON_ROOT,
11427		.read_s64 = cpu_weight_nice_read_s64,
11428		.write_s64 = cpu_weight_nice_write_s64,
11429	},
11430	{
11431		.name = "idle",
11432		.flags = CFTYPE_NOT_ON_ROOT,
11433		.read_s64 = cpu_idle_read_s64,
11434		.write_s64 = cpu_idle_write_s64,
11435	},
11436#endif
11437#ifdef CONFIG_CFS_BANDWIDTH
11438	{
11439		.name = "max",
11440		.flags = CFTYPE_NOT_ON_ROOT,
11441		.seq_show = cpu_max_show,
11442		.write = cpu_max_write,
11443	},
11444	{
11445		.name = "max.burst",
11446		.flags = CFTYPE_NOT_ON_ROOT,
11447		.read_u64 = cpu_cfs_burst_read_u64,
11448		.write_u64 = cpu_cfs_burst_write_u64,
11449	},
11450#endif
11451#ifdef CONFIG_UCLAMP_TASK_GROUP
11452	{
11453		.name = "uclamp.min",
11454		.flags = CFTYPE_NOT_ON_ROOT,
11455		.seq_show = cpu_uclamp_min_show,
11456		.write = cpu_uclamp_min_write,
11457	},
11458	{
11459		.name = "uclamp.max",
11460		.flags = CFTYPE_NOT_ON_ROOT,
11461		.seq_show = cpu_uclamp_max_show,
11462		.write = cpu_uclamp_max_write,
11463	},
11464#endif
11465	{ }	/* terminate */
11466};
11467
11468struct cgroup_subsys cpu_cgrp_subsys = {
11469	.css_alloc	= cpu_cgroup_css_alloc,
11470	.css_online	= cpu_cgroup_css_online,
11471	.css_released	= cpu_cgroup_css_released,
11472	.css_free	= cpu_cgroup_css_free,
11473	.css_extra_stat_show = cpu_extra_stat_show,
11474	.css_local_stat_show = cpu_local_stat_show,
11475#ifdef CONFIG_RT_GROUP_SCHED
11476	.can_attach	= cpu_cgroup_can_attach,
11477#endif
11478	.attach		= cpu_cgroup_attach,
11479	.legacy_cftypes	= cpu_legacy_files,
11480	.dfl_cftypes	= cpu_files,
11481	.early_init	= true,
11482	.threaded	= true,
11483};
11484
11485#endif	/* CONFIG_CGROUP_SCHED */
11486
11487void dump_cpu_task(int cpu)
11488{
11489	if (cpu == smp_processor_id() && in_hardirq()) {
11490		struct pt_regs *regs;
11491
11492		regs = get_irq_regs();
11493		if (regs) {
11494			show_regs(regs);
11495			return;
11496		}
11497	}
11498
11499	if (trigger_single_cpu_backtrace(cpu))
11500		return;
11501
11502	pr_info("Task dump for CPU %d:\n", cpu);
11503	sched_show_task(cpu_curr(cpu));
11504}
11505
11506/*
11507 * Nice levels are multiplicative, with a gentle 10% change for every
11508 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11509 * nice 1, it will get ~10% less CPU time than another CPU-bound task
11510 * that remained on nice 0.
11511 *
11512 * The "10% effect" is relative and cumulative: from _any_ nice level,
11513 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11514 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11515 * If a task goes up by ~10% and another task goes down by ~10% then
11516 * the relative distance between them is ~25%.)
11517 */
11518const int sched_prio_to_weight[40] = {
11519 /* -20 */     88761,     71755,     56483,     46273,     36291,
11520 /* -15 */     29154,     23254,     18705,     14949,     11916,
11521 /* -10 */      9548,      7620,      6100,      4904,      3906,
11522 /*  -5 */      3121,      2501,      1991,      1586,      1277,
11523 /*   0 */      1024,       820,       655,       526,       423,
11524 /*   5 */       335,       272,       215,       172,       137,
11525 /*  10 */       110,        87,        70,        56,        45,
11526 /*  15 */        36,        29,        23,        18,        15,
11527};
11528
11529/*
11530 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11531 *
11532 * In cases where the weight does not change often, we can use the
11533 * precalculated inverse to speed up arithmetics by turning divisions
11534 * into multiplications:
11535 */
11536const u32 sched_prio_to_wmult[40] = {
11537 /* -20 */     48388,     59856,     76040,     92818,    118348,
11538 /* -15 */    147320,    184698,    229616,    287308,    360437,
11539 /* -10 */    449829,    563644,    704093,    875809,   1099582,
11540 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11541 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11542 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11543 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11544 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11545};
11546
11547void call_trace_sched_update_nr_running(struct rq *rq, int count)
11548{
11549        trace_sched_update_nr_running_tp(rq, count);
11550}
11551
11552#ifdef CONFIG_SCHED_MM_CID
11553
11554/*
11555 * @cid_lock: Guarantee forward-progress of cid allocation.
11556 *
11557 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
11558 * is only used when contention is detected by the lock-free allocation so
11559 * forward progress can be guaranteed.
11560 */
11561DEFINE_RAW_SPINLOCK(cid_lock);
11562
11563/*
11564 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
11565 *
11566 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
11567 * detected, it is set to 1 to ensure that all newly coming allocations are
11568 * serialized by @cid_lock until the allocation which detected contention
11569 * completes and sets @use_cid_lock back to 0. This guarantees forward progress
11570 * of a cid allocation.
11571 */
11572int use_cid_lock;
11573
11574/*
11575 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
11576 * concurrently with respect to the execution of the source runqueue context
11577 * switch.
11578 *
11579 * There is one basic properties we want to guarantee here:
11580 *
11581 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
11582 * used by a task. That would lead to concurrent allocation of the cid and
11583 * userspace corruption.
11584 *
11585 * Provide this guarantee by introducing a Dekker memory ordering to guarantee
11586 * that a pair of loads observe at least one of a pair of stores, which can be
11587 * shown as:
11588 *
11589 *      X = Y = 0
11590 *
11591 *      w[X]=1          w[Y]=1
11592 *      MB              MB
11593 *      r[Y]=y          r[X]=x
11594 *
11595 * Which guarantees that x==0 && y==0 is impossible. But rather than using
11596 * values 0 and 1, this algorithm cares about specific state transitions of the
11597 * runqueue current task (as updated by the scheduler context switch), and the
11598 * per-mm/cpu cid value.
11599 *
11600 * Let's introduce task (Y) which has task->mm == mm and task (N) which has
11601 * task->mm != mm for the rest of the discussion. There are two scheduler state
11602 * transitions on context switch we care about:
11603 *
11604 * (TSA) Store to rq->curr with transition from (N) to (Y)
11605 *
11606 * (TSB) Store to rq->curr with transition from (Y) to (N)
11607 *
11608 * On the remote-clear side, there is one transition we care about:
11609 *
11610 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
11611 *
11612 * There is also a transition to UNSET state which can be performed from all
11613 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
11614 * guarantees that only a single thread will succeed:
11615 *
11616 * (TMB) cmpxchg to *pcpu_cid to mark UNSET
11617 *
11618 * Just to be clear, what we do _not_ want to happen is a transition to UNSET
11619 * when a thread is actively using the cid (property (1)).
11620 *
11621 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
11622 *
11623 * Scenario A) (TSA)+(TMA) (from next task perspective)
11624 *
11625 * CPU0                                      CPU1
11626 *
11627 * Context switch CS-1                       Remote-clear
11628 *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
11629 *                                             (implied barrier after cmpxchg)
11630 *   - switch_mm_cid()
11631 *     - memory barrier (see switch_mm_cid()
11632 *       comment explaining how this barrier
11633 *       is combined with other scheduler
11634 *       barriers)
11635 *     - mm_cid_get (next)
11636 *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
11637 *
11638 * This Dekker ensures that either task (Y) is observed by the
11639 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
11640 * observed.
11641 *
11642 * If task (Y) store is observed by rcu_dereference(), it means that there is
11643 * still an active task on the cpu. Remote-clear will therefore not transition
11644 * to UNSET, which fulfills property (1).
11645 *
11646 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
11647 * it will move its state to UNSET, which clears the percpu cid perhaps
11648 * uselessly (which is not an issue for correctness). Because task (Y) is not
11649 * observed, CPU1 can move ahead to set the state to UNSET. Because moving
11650 * state to UNSET is done with a cmpxchg expecting that the old state has the
11651 * LAZY flag set, only one thread will successfully UNSET.
11652 *
11653 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
11654 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
11655 * CPU1 will observe task (Y) and do nothing more, which is fine.
11656 *
11657 * What we are effectively preventing with this Dekker is a scenario where
11658 * neither LAZY flag nor store (Y) are observed, which would fail property (1)
11659 * because this would UNSET a cid which is actively used.
11660 */
11661
11662void sched_mm_cid_migrate_from(struct task_struct *t)
11663{
11664	t->migrate_from_cpu = task_cpu(t);
11665}
11666
11667static
11668int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
11669					  struct task_struct *t,
11670					  struct mm_cid *src_pcpu_cid)
11671{
11672	struct mm_struct *mm = t->mm;
11673	struct task_struct *src_task;
11674	int src_cid, last_mm_cid;
11675
11676	if (!mm)
11677		return -1;
11678
11679	last_mm_cid = t->last_mm_cid;
11680	/*
11681	 * If the migrated task has no last cid, or if the current
11682	 * task on src rq uses the cid, it means the source cid does not need
11683	 * to be moved to the destination cpu.
11684	 */
11685	if (last_mm_cid == -1)
11686		return -1;
11687	src_cid = READ_ONCE(src_pcpu_cid->cid);
11688	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
11689		return -1;
11690
11691	/*
11692	 * If we observe an active task using the mm on this rq, it means we
11693	 * are not the last task to be migrated from this cpu for this mm, so
11694	 * there is no need to move src_cid to the destination cpu.
11695	 */
11696	guard(rcu)();
11697	src_task = rcu_dereference(src_rq->curr);
11698	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11699		t->last_mm_cid = -1;
11700		return -1;
11701	}
11702
11703	return src_cid;
11704}
11705
11706static
11707int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
11708					      struct task_struct *t,
11709					      struct mm_cid *src_pcpu_cid,
11710					      int src_cid)
11711{
11712	struct task_struct *src_task;
11713	struct mm_struct *mm = t->mm;
11714	int lazy_cid;
11715
11716	if (src_cid == -1)
11717		return -1;
11718
11719	/*
11720	 * Attempt to clear the source cpu cid to move it to the destination
11721	 * cpu.
11722	 */
11723	lazy_cid = mm_cid_set_lazy_put(src_cid);
11724	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
11725		return -1;
11726
11727	/*
11728	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11729	 * rq->curr->mm matches the scheduler barrier in context_switch()
11730	 * between store to rq->curr and load of prev and next task's
11731	 * per-mm/cpu cid.
11732	 *
11733	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11734	 * rq->curr->mm_cid_active matches the barrier in
11735	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11736	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11737	 * load of per-mm/cpu cid.
11738	 */
11739
11740	/*
11741	 * If we observe an active task using the mm on this rq after setting
11742	 * the lazy-put flag, this task will be responsible for transitioning
11743	 * from lazy-put flag set to MM_CID_UNSET.
11744	 */
11745	scoped_guard (rcu) {
11746		src_task = rcu_dereference(src_rq->curr);
11747		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11748			/*
11749			 * We observed an active task for this mm, there is therefore
11750			 * no point in moving this cid to the destination cpu.
11751			 */
11752			t->last_mm_cid = -1;
11753			return -1;
11754		}
11755	}
11756
11757	/*
11758	 * The src_cid is unused, so it can be unset.
11759	 */
11760	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11761		return -1;
11762	return src_cid;
11763}
11764
11765/*
11766 * Migration to dst cpu. Called with dst_rq lock held.
11767 * Interrupts are disabled, which keeps the window of cid ownership without the
11768 * source rq lock held small.
11769 */
11770void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
11771{
11772	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
11773	struct mm_struct *mm = t->mm;
11774	int src_cid, dst_cid, src_cpu;
11775	struct rq *src_rq;
11776
11777	lockdep_assert_rq_held(dst_rq);
11778
11779	if (!mm)
11780		return;
11781	src_cpu = t->migrate_from_cpu;
11782	if (src_cpu == -1) {
11783		t->last_mm_cid = -1;
11784		return;
11785	}
11786	/*
11787	 * Move the src cid if the dst cid is unset. This keeps id
11788	 * allocation closest to 0 in cases where few threads migrate around
11789	 * many cpus.
11790	 *
11791	 * If destination cid is already set, we may have to just clear
11792	 * the src cid to ensure compactness in frequent migrations
11793	 * scenarios.
11794	 *
11795	 * It is not useful to clear the src cid when the number of threads is
11796	 * greater or equal to the number of allowed cpus, because user-space
11797	 * can expect that the number of allowed cids can reach the number of
11798	 * allowed cpus.
11799	 */
11800	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
11801	dst_cid = READ_ONCE(dst_pcpu_cid->cid);
11802	if (!mm_cid_is_unset(dst_cid) &&
11803	    atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
11804		return;
11805	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
11806	src_rq = cpu_rq(src_cpu);
11807	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
11808	if (src_cid == -1)
11809		return;
11810	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
11811							    src_cid);
11812	if (src_cid == -1)
11813		return;
11814	if (!mm_cid_is_unset(dst_cid)) {
11815		__mm_cid_put(mm, src_cid);
11816		return;
11817	}
11818	/* Move src_cid to dst cpu. */
11819	mm_cid_snapshot_time(dst_rq, mm);
11820	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
11821}
11822
11823static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
11824				      int cpu)
11825{
11826	struct rq *rq = cpu_rq(cpu);
11827	struct task_struct *t;
11828	int cid, lazy_cid;
11829
11830	cid = READ_ONCE(pcpu_cid->cid);
11831	if (!mm_cid_is_valid(cid))
11832		return;
11833
11834	/*
11835	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
11836	 * there happens to be other tasks left on the source cpu using this
11837	 * mm, the next task using this mm will reallocate its cid on context
11838	 * switch.
11839	 */
11840	lazy_cid = mm_cid_set_lazy_put(cid);
11841	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
11842		return;
11843
11844	/*
11845	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11846	 * rq->curr->mm matches the scheduler barrier in context_switch()
11847	 * between store to rq->curr and load of prev and next task's
11848	 * per-mm/cpu cid.
11849	 *
11850	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11851	 * rq->curr->mm_cid_active matches the barrier in
11852	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11853	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11854	 * load of per-mm/cpu cid.
11855	 */
11856
11857	/*
11858	 * If we observe an active task using the mm on this rq after setting
11859	 * the lazy-put flag, that task will be responsible for transitioning
11860	 * from lazy-put flag set to MM_CID_UNSET.
11861	 */
11862	scoped_guard (rcu) {
11863		t = rcu_dereference(rq->curr);
11864		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
11865			return;
11866	}
11867
11868	/*
11869	 * The cid is unused, so it can be unset.
11870	 * Disable interrupts to keep the window of cid ownership without rq
11871	 * lock small.
11872	 */
11873	scoped_guard (irqsave) {
11874		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11875			__mm_cid_put(mm, cid);
11876	}
11877}
11878
11879static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
11880{
11881	struct rq *rq = cpu_rq(cpu);
11882	struct mm_cid *pcpu_cid;
11883	struct task_struct *curr;
11884	u64 rq_clock;
11885
11886	/*
11887	 * rq->clock load is racy on 32-bit but one spurious clear once in a
11888	 * while is irrelevant.
11889	 */
11890	rq_clock = READ_ONCE(rq->clock);
11891	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11892
11893	/*
11894	 * In order to take care of infrequently scheduled tasks, bump the time
11895	 * snapshot associated with this cid if an active task using the mm is
11896	 * observed on this rq.
11897	 */
11898	scoped_guard (rcu) {
11899		curr = rcu_dereference(rq->curr);
11900		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
11901			WRITE_ONCE(pcpu_cid->time, rq_clock);
11902			return;
11903		}
11904	}
11905
11906	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
11907		return;
11908	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11909}
11910
11911static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
11912					     int weight)
11913{
11914	struct mm_cid *pcpu_cid;
11915	int cid;
11916
11917	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11918	cid = READ_ONCE(pcpu_cid->cid);
11919	if (!mm_cid_is_valid(cid) || cid < weight)
11920		return;
11921	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11922}
11923
11924static void task_mm_cid_work(struct callback_head *work)
11925{
11926	unsigned long now = jiffies, old_scan, next_scan;
11927	struct task_struct *t = current;
11928	struct cpumask *cidmask;
11929	struct mm_struct *mm;
11930	int weight, cpu;
11931
11932	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
11933
11934	work->next = work;	/* Prevent double-add */
11935	if (t->flags & PF_EXITING)
11936		return;
11937	mm = t->mm;
11938	if (!mm)
11939		return;
11940	old_scan = READ_ONCE(mm->mm_cid_next_scan);
11941	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11942	if (!old_scan) {
11943		unsigned long res;
11944
11945		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
11946		if (res != old_scan)
11947			old_scan = res;
11948		else
11949			old_scan = next_scan;
11950	}
11951	if (time_before(now, old_scan))
11952		return;
11953	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
11954		return;
11955	cidmask = mm_cidmask(mm);
11956	/* Clear cids that were not recently used. */
11957	for_each_possible_cpu(cpu)
11958		sched_mm_cid_remote_clear_old(mm, cpu);
11959	weight = cpumask_weight(cidmask);
11960	/*
11961	 * Clear cids that are greater or equal to the cidmask weight to
11962	 * recompact it.
11963	 */
11964	for_each_possible_cpu(cpu)
11965		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
11966}
11967
11968void init_sched_mm_cid(struct task_struct *t)
11969{
11970	struct mm_struct *mm = t->mm;
11971	int mm_users = 0;
11972
11973	if (mm) {
11974		mm_users = atomic_read(&mm->mm_users);
11975		if (mm_users == 1)
11976			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11977	}
11978	t->cid_work.next = &t->cid_work;	/* Protect against double add */
11979	init_task_work(&t->cid_work, task_mm_cid_work);
11980}
11981
11982void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
11983{
11984	struct callback_head *work = &curr->cid_work;
11985	unsigned long now = jiffies;
11986
11987	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
11988	    work->next != work)
11989		return;
11990	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
11991		return;
11992	task_work_add(curr, work, TWA_RESUME);
11993}
11994
11995void sched_mm_cid_exit_signals(struct task_struct *t)
11996{
11997	struct mm_struct *mm = t->mm;
11998	struct rq *rq;
11999
12000	if (!mm)
12001		return;
12002
12003	preempt_disable();
12004	rq = this_rq();
12005	guard(rq_lock_irqsave)(rq);
12006	preempt_enable_no_resched();	/* holding spinlock */
12007	WRITE_ONCE(t->mm_cid_active, 0);
12008	/*
12009	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12010	 * Matches barrier in sched_mm_cid_remote_clear_old().
12011	 */
12012	smp_mb();
12013	mm_cid_put(mm);
12014	t->last_mm_cid = t->mm_cid = -1;
12015}
12016
12017void sched_mm_cid_before_execve(struct task_struct *t)
12018{
12019	struct mm_struct *mm = t->mm;
12020	struct rq *rq;
12021
12022	if (!mm)
12023		return;
12024
12025	preempt_disable();
12026	rq = this_rq();
12027	guard(rq_lock_irqsave)(rq);
12028	preempt_enable_no_resched();	/* holding spinlock */
12029	WRITE_ONCE(t->mm_cid_active, 0);
12030	/*
12031	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12032	 * Matches barrier in sched_mm_cid_remote_clear_old().
12033	 */
12034	smp_mb();
12035	mm_cid_put(mm);
12036	t->last_mm_cid = t->mm_cid = -1;
12037}
12038
12039void sched_mm_cid_after_execve(struct task_struct *t)
12040{
12041	struct mm_struct *mm = t->mm;
12042	struct rq *rq;
12043
12044	if (!mm)
12045		return;
12046
12047	preempt_disable();
12048	rq = this_rq();
12049	scoped_guard (rq_lock_irqsave, rq) {
12050		preempt_enable_no_resched();	/* holding spinlock */
12051		WRITE_ONCE(t->mm_cid_active, 1);
12052		/*
12053		 * Store t->mm_cid_active before loading per-mm/cpu cid.
12054		 * Matches barrier in sched_mm_cid_remote_clear_old().
12055		 */
12056		smp_mb();
12057		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
12058	}
12059	rseq_set_notify_resume(t);
12060}
12061
12062void sched_mm_cid_fork(struct task_struct *t)
12063{
12064	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
12065	t->mm_cid_active = 1;
12066}
12067#endif