Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  kernel/sched/core.c
   4 *
   5 *  Core kernel scheduler code and related syscalls
   6 *
   7 *  Copyright (C) 1991-2002  Linus Torvalds
   8 */
   9#define CREATE_TRACE_POINTS
  10#include <trace/events/sched.h>
  11#undef CREATE_TRACE_POINTS
  12
  13#include "sched.h"
  14
  15#include <linux/nospec.h>
  16
  17#include <linux/kcov.h>
  18#include <linux/scs.h>
  19
  20#include <asm/switch_to.h>
  21#include <asm/tlb.h>
  22
  23#include "../workqueue_internal.h"
  24#include "../../fs/io-wq.h"
  25#include "../smpboot.h"
  26
  27#include "pelt.h"
  28#include "smp.h"
  29
  30/*
  31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
  32 * associated with them) to allow external modules to probe them.
  33 */
  34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
  35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
  36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
  37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
  38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
  39EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
  40EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
  41EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
  42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
  43
  44DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  45
  46#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
  47/*
  48 * Debugging: various feature bits
  49 *
  50 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
  51 * sysctl_sched_features, defined in sched.h, to allow constants propagation
  52 * at compile time and compiler optimization based on features default.
  53 */
  54#define SCHED_FEAT(name, enabled)	\
  55	(1UL << __SCHED_FEAT_##name) * enabled |
  56const_debug unsigned int sysctl_sched_features =
  57#include "features.h"
  58	0;
  59#undef SCHED_FEAT
  60#endif
  61
  62/*
  63 * Number of tasks to iterate in a single balance run.
  64 * Limited because this is done with IRQs disabled.
  65 */
  66const_debug unsigned int sysctl_sched_nr_migrate = 32;
  67
  68/*
  69 * period over which we measure -rt task CPU usage in us.
  70 * default: 1s
  71 */
  72unsigned int sysctl_sched_rt_period = 1000000;
  73
  74__read_mostly int scheduler_running;
  75
  76/*
  77 * part of the period that we allow rt tasks to run in us.
  78 * default: 0.95s
  79 */
  80int sysctl_sched_rt_runtime = 950000;
  81
  82
  83/*
  84 * Serialization rules:
  85 *
  86 * Lock order:
  87 *
  88 *   p->pi_lock
  89 *     rq->lock
  90 *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
  91 *
  92 *  rq1->lock
  93 *    rq2->lock  where: rq1 < rq2
  94 *
  95 * Regular state:
  96 *
  97 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
  98 * local CPU's rq->lock, it optionally removes the task from the runqueue and
  99 * always looks at the local rq data structures to find the most elegible task
 100 * to run next.
 101 *
 102 * Task enqueue is also under rq->lock, possibly taken from another CPU.
 103 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
 104 * the local CPU to avoid bouncing the runqueue state around [ see
 105 * ttwu_queue_wakelist() ]
 106 *
 107 * Task wakeup, specifically wakeups that involve migration, are horribly
 108 * complicated to avoid having to take two rq->locks.
 109 *
 110 * Special state:
 111 *
 112 * System-calls and anything external will use task_rq_lock() which acquires
 113 * both p->pi_lock and rq->lock. As a consequence the state they change is
 114 * stable while holding either lock:
 115 *
 116 *  - sched_setaffinity()/
 117 *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
 118 *  - set_user_nice():		p->se.load, p->*prio
 119 *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
 120 *				p->se.load, p->rt_priority,
 121 *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
 122 *  - sched_setnuma():		p->numa_preferred_nid
 123 *  - sched_move_task()/
 124 *    cpu_cgroup_fork():	p->sched_task_group
 125 *  - uclamp_update_active()	p->uclamp*
 126 *
 127 * p->state <- TASK_*:
 128 *
 129 *   is changed locklessly using set_current_state(), __set_current_state() or
 130 *   set_special_state(), see their respective comments, or by
 131 *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
 132 *   concurrent self.
 133 *
 134 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
 135 *
 136 *   is set by activate_task() and cleared by deactivate_task(), under
 137 *   rq->lock. Non-zero indicates the task is runnable, the special
 138 *   ON_RQ_MIGRATING state is used for migration without holding both
 139 *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
 140 *
 141 * p->on_cpu <- { 0, 1 }:
 142 *
 143 *   is set by prepare_task() and cleared by finish_task() such that it will be
 144 *   set before p is scheduled-in and cleared after p is scheduled-out, both
 145 *   under rq->lock. Non-zero indicates the task is running on its CPU.
 146 *
 147 *   [ The astute reader will observe that it is possible for two tasks on one
 148 *     CPU to have ->on_cpu = 1 at the same time. ]
 149 *
 150 * task_cpu(p): is changed by set_task_cpu(), the rules are:
 151 *
 152 *  - Don't call set_task_cpu() on a blocked task:
 153 *
 154 *    We don't care what CPU we're not running on, this simplifies hotplug,
 155 *    the CPU assignment of blocked tasks isn't required to be valid.
 156 *
 157 *  - for try_to_wake_up(), called under p->pi_lock:
 158 *
 159 *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
 160 *
 161 *  - for migration called under rq->lock:
 162 *    [ see task_on_rq_migrating() in task_rq_lock() ]
 163 *
 164 *    o move_queued_task()
 165 *    o detach_task()
 166 *
 167 *  - for migration called under double_rq_lock():
 168 *
 169 *    o __migrate_swap_task()
 170 *    o push_rt_task() / pull_rt_task()
 171 *    o push_dl_task() / pull_dl_task()
 172 *    o dl_task_offline_migration()
 173 *
 174 */
 175
 176/*
 177 * __task_rq_lock - lock the rq @p resides on.
 178 */
 179struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
 180	__acquires(rq->lock)
 181{
 182	struct rq *rq;
 183
 184	lockdep_assert_held(&p->pi_lock);
 185
 186	for (;;) {
 187		rq = task_rq(p);
 188		raw_spin_lock(&rq->lock);
 189		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
 190			rq_pin_lock(rq, rf);
 191			return rq;
 192		}
 193		raw_spin_unlock(&rq->lock);
 194
 195		while (unlikely(task_on_rq_migrating(p)))
 196			cpu_relax();
 197	}
 198}
 199
 200/*
 201 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 202 */
 203struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
 204	__acquires(p->pi_lock)
 205	__acquires(rq->lock)
 206{
 207	struct rq *rq;
 208
 209	for (;;) {
 210		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
 211		rq = task_rq(p);
 212		raw_spin_lock(&rq->lock);
 213		/*
 214		 *	move_queued_task()		task_rq_lock()
 215		 *
 216		 *	ACQUIRE (rq->lock)
 217		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
 218		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
 219		 *	[S] ->cpu = new_cpu		[L] task_rq()
 220		 *					[L] ->on_rq
 221		 *	RELEASE (rq->lock)
 222		 *
 223		 * If we observe the old CPU in task_rq_lock(), the acquire of
 224		 * the old rq->lock will fully serialize against the stores.
 225		 *
 226		 * If we observe the new CPU in task_rq_lock(), the address
 227		 * dependency headed by '[L] rq = task_rq()' and the acquire
 228		 * will pair with the WMB to ensure we then also see migrating.
 229		 */
 230		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
 231			rq_pin_lock(rq, rf);
 232			return rq;
 233		}
 234		raw_spin_unlock(&rq->lock);
 235		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
 236
 237		while (unlikely(task_on_rq_migrating(p)))
 238			cpu_relax();
 239	}
 240}
 241
 242/*
 243 * RQ-clock updating methods:
 244 */
 245
 246static void update_rq_clock_task(struct rq *rq, s64 delta)
 247{
 248/*
 249 * In theory, the compile should just see 0 here, and optimize out the call
 250 * to sched_rt_avg_update. But I don't trust it...
 251 */
 252	s64 __maybe_unused steal = 0, irq_delta = 0;
 253
 254#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 255	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 256
 257	/*
 258	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
 259	 * this case when a previous update_rq_clock() happened inside a
 260	 * {soft,}irq region.
 261	 *
 262	 * When this happens, we stop ->clock_task and only update the
 263	 * prev_irq_time stamp to account for the part that fit, so that a next
 264	 * update will consume the rest. This ensures ->clock_task is
 265	 * monotonic.
 266	 *
 267	 * It does however cause some slight miss-attribution of {soft,}irq
 268	 * time, a more accurate solution would be to update the irq_time using
 269	 * the current rq->clock timestamp, except that would require using
 270	 * atomic ops.
 271	 */
 272	if (irq_delta > delta)
 273		irq_delta = delta;
 274
 275	rq->prev_irq_time += irq_delta;
 276	delta -= irq_delta;
 277#endif
 278#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 279	if (static_key_false((&paravirt_steal_rq_enabled))) {
 280		steal = paravirt_steal_clock(cpu_of(rq));
 281		steal -= rq->prev_steal_time_rq;
 282
 283		if (unlikely(steal > delta))
 284			steal = delta;
 285
 286		rq->prev_steal_time_rq += steal;
 287		delta -= steal;
 288	}
 289#endif
 290
 291	rq->clock_task += delta;
 292
 293#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
 294	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
 295		update_irq_load_avg(rq, irq_delta + steal);
 296#endif
 297	update_rq_clock_pelt(rq, delta);
 298}
 299
 300void update_rq_clock(struct rq *rq)
 301{
 302	s64 delta;
 303
 304	lockdep_assert_held(&rq->lock);
 305
 306	if (rq->clock_update_flags & RQCF_ACT_SKIP)
 307		return;
 308
 309#ifdef CONFIG_SCHED_DEBUG
 310	if (sched_feat(WARN_DOUBLE_CLOCK))
 311		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
 312	rq->clock_update_flags |= RQCF_UPDATED;
 313#endif
 314
 315	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 316	if (delta < 0)
 317		return;
 318	rq->clock += delta;
 319	update_rq_clock_task(rq, delta);
 320}
 321
 322static inline void
 323rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func)
 324{
 325	csd->flags = 0;
 326	csd->func = func;
 327	csd->info = rq;
 328}
 329
 330#ifdef CONFIG_SCHED_HRTICK
 331/*
 332 * Use HR-timers to deliver accurate preemption points.
 333 */
 334
 335static void hrtick_clear(struct rq *rq)
 336{
 337	if (hrtimer_active(&rq->hrtick_timer))
 338		hrtimer_cancel(&rq->hrtick_timer);
 339}
 340
 341/*
 342 * High-resolution timer tick.
 343 * Runs from hardirq context with interrupts disabled.
 344 */
 345static enum hrtimer_restart hrtick(struct hrtimer *timer)
 346{
 347	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 348	struct rq_flags rf;
 349
 350	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 351
 352	rq_lock(rq, &rf);
 353	update_rq_clock(rq);
 354	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 355	rq_unlock(rq, &rf);
 356
 357	return HRTIMER_NORESTART;
 358}
 359
 360#ifdef CONFIG_SMP
 361
 362static void __hrtick_restart(struct rq *rq)
 363{
 364	struct hrtimer *timer = &rq->hrtick_timer;
 365
 366	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
 367}
 368
 369/*
 370 * called from hardirq (IPI) context
 371 */
 372static void __hrtick_start(void *arg)
 373{
 374	struct rq *rq = arg;
 375	struct rq_flags rf;
 376
 377	rq_lock(rq, &rf);
 378	__hrtick_restart(rq);
 379	rq_unlock(rq, &rf);
 380}
 381
 382/*
 383 * Called to set the hrtick timer state.
 384 *
 385 * called with rq->lock held and irqs disabled
 386 */
 387void hrtick_start(struct rq *rq, u64 delay)
 388{
 389	struct hrtimer *timer = &rq->hrtick_timer;
 390	ktime_t time;
 391	s64 delta;
 392
 393	/*
 394	 * Don't schedule slices shorter than 10000ns, that just
 395	 * doesn't make sense and can cause timer DoS.
 396	 */
 397	delta = max_t(s64, delay, 10000LL);
 398	time = ktime_add_ns(timer->base->get_time(), delta);
 399
 400	hrtimer_set_expires(timer, time);
 401
 402	if (rq == this_rq())
 403		__hrtick_restart(rq);
 404	else
 405		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
 406}
 407
 408#else
 409/*
 410 * Called to set the hrtick timer state.
 411 *
 412 * called with rq->lock held and irqs disabled
 413 */
 414void hrtick_start(struct rq *rq, u64 delay)
 415{
 416	/*
 417	 * Don't schedule slices shorter than 10000ns, that just
 418	 * doesn't make sense. Rely on vruntime for fairness.
 419	 */
 420	delay = max_t(u64, delay, 10000LL);
 421	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
 422		      HRTIMER_MODE_REL_PINNED_HARD);
 423}
 424
 425#endif /* CONFIG_SMP */
 426
 427static void hrtick_rq_init(struct rq *rq)
 428{
 429#ifdef CONFIG_SMP
 430	rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
 431#endif
 432	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
 433	rq->hrtick_timer.function = hrtick;
 434}
 435#else	/* CONFIG_SCHED_HRTICK */
 436static inline void hrtick_clear(struct rq *rq)
 437{
 438}
 439
 440static inline void hrtick_rq_init(struct rq *rq)
 441{
 442}
 443#endif	/* CONFIG_SCHED_HRTICK */
 444
 445/*
 446 * cmpxchg based fetch_or, macro so it works for different integer types
 447 */
 448#define fetch_or(ptr, mask)						\
 449	({								\
 450		typeof(ptr) _ptr = (ptr);				\
 451		typeof(mask) _mask = (mask);				\
 452		typeof(*_ptr) _old, _val = *_ptr;			\
 453									\
 454		for (;;) {						\
 455			_old = cmpxchg(_ptr, _val, _val | _mask);	\
 456			if (_old == _val)				\
 457				break;					\
 458			_val = _old;					\
 459		}							\
 460	_old;								\
 461})
 462
 463#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
 464/*
 465 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 466 * this avoids any races wrt polling state changes and thereby avoids
 467 * spurious IPIs.
 468 */
 469static bool set_nr_and_not_polling(struct task_struct *p)
 470{
 471	struct thread_info *ti = task_thread_info(p);
 472	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
 473}
 474
 475/*
 476 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 477 *
 478 * If this returns true, then the idle task promises to call
 479 * sched_ttwu_pending() and reschedule soon.
 480 */
 481static bool set_nr_if_polling(struct task_struct *p)
 482{
 483	struct thread_info *ti = task_thread_info(p);
 484	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
 485
 486	for (;;) {
 487		if (!(val & _TIF_POLLING_NRFLAG))
 488			return false;
 489		if (val & _TIF_NEED_RESCHED)
 490			return true;
 491		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
 492		if (old == val)
 493			break;
 494		val = old;
 495	}
 496	return true;
 497}
 498
 499#else
 500static bool set_nr_and_not_polling(struct task_struct *p)
 501{
 502	set_tsk_need_resched(p);
 503	return true;
 504}
 505
 506#ifdef CONFIG_SMP
 507static bool set_nr_if_polling(struct task_struct *p)
 508{
 509	return false;
 510}
 511#endif
 512#endif
 513
 514static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
 515{
 516	struct wake_q_node *node = &task->wake_q;
 517
 518	/*
 519	 * Atomically grab the task, if ->wake_q is !nil already it means
 520	 * its already queued (either by us or someone else) and will get the
 521	 * wakeup due to that.
 522	 *
 523	 * In order to ensure that a pending wakeup will observe our pending
 524	 * state, even in the failed case, an explicit smp_mb() must be used.
 525	 */
 526	smp_mb__before_atomic();
 527	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
 528		return false;
 529
 530	/*
 531	 * The head is context local, there can be no concurrency.
 532	 */
 533	*head->lastp = node;
 534	head->lastp = &node->next;
 535	return true;
 536}
 537
 538/**
 539 * wake_q_add() - queue a wakeup for 'later' waking.
 540 * @head: the wake_q_head to add @task to
 541 * @task: the task to queue for 'later' wakeup
 542 *
 543 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
 544 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
 545 * instantly.
 546 *
 547 * This function must be used as-if it were wake_up_process(); IOW the task
 548 * must be ready to be woken at this location.
 549 */
 550void wake_q_add(struct wake_q_head *head, struct task_struct *task)
 551{
 552	if (__wake_q_add(head, task))
 553		get_task_struct(task);
 554}
 555
 556/**
 557 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
 558 * @head: the wake_q_head to add @task to
 559 * @task: the task to queue for 'later' wakeup
 560 *
 561 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
 562 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
 563 * instantly.
 564 *
 565 * This function must be used as-if it were wake_up_process(); IOW the task
 566 * must be ready to be woken at this location.
 567 *
 568 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
 569 * that already hold reference to @task can call the 'safe' version and trust
 570 * wake_q to do the right thing depending whether or not the @task is already
 571 * queued for wakeup.
 572 */
 573void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
 574{
 575	if (!__wake_q_add(head, task))
 576		put_task_struct(task);
 577}
 578
 579void wake_up_q(struct wake_q_head *head)
 580{
 581	struct wake_q_node *node = head->first;
 582
 583	while (node != WAKE_Q_TAIL) {
 584		struct task_struct *task;
 585
 586		task = container_of(node, struct task_struct, wake_q);
 587		BUG_ON(!task);
 588		/* Task can safely be re-inserted now: */
 589		node = node->next;
 590		task->wake_q.next = NULL;
 591
 592		/*
 593		 * wake_up_process() executes a full barrier, which pairs with
 594		 * the queueing in wake_q_add() so as not to miss wakeups.
 595		 */
 596		wake_up_process(task);
 597		put_task_struct(task);
 598	}
 599}
 600
 601/*
 602 * resched_curr - mark rq's current task 'to be rescheduled now'.
 603 *
 604 * On UP this means the setting of the need_resched flag, on SMP it
 605 * might also involve a cross-CPU call to trigger the scheduler on
 606 * the target CPU.
 607 */
 608void resched_curr(struct rq *rq)
 609{
 610	struct task_struct *curr = rq->curr;
 611	int cpu;
 612
 613	lockdep_assert_held(&rq->lock);
 614
 615	if (test_tsk_need_resched(curr))
 616		return;
 617
 618	cpu = cpu_of(rq);
 619
 620	if (cpu == smp_processor_id()) {
 621		set_tsk_need_resched(curr);
 622		set_preempt_need_resched();
 623		return;
 624	}
 625
 626	if (set_nr_and_not_polling(curr))
 627		smp_send_reschedule(cpu);
 628	else
 629		trace_sched_wake_idle_without_ipi(cpu);
 630}
 631
 632void resched_cpu(int cpu)
 633{
 634	struct rq *rq = cpu_rq(cpu);
 635	unsigned long flags;
 636
 637	raw_spin_lock_irqsave(&rq->lock, flags);
 638	if (cpu_online(cpu) || cpu == smp_processor_id())
 639		resched_curr(rq);
 640	raw_spin_unlock_irqrestore(&rq->lock, flags);
 641}
 642
 643#ifdef CONFIG_SMP
 644#ifdef CONFIG_NO_HZ_COMMON
 645/*
 646 * In the semi idle case, use the nearest busy CPU for migrating timers
 647 * from an idle CPU.  This is good for power-savings.
 648 *
 649 * We don't do similar optimization for completely idle system, as
 650 * selecting an idle CPU will add more delays to the timers than intended
 651 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
 652 */
 653int get_nohz_timer_target(void)
 654{
 655	int i, cpu = smp_processor_id(), default_cpu = -1;
 656	struct sched_domain *sd;
 657
 658	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
 659		if (!idle_cpu(cpu))
 660			return cpu;
 661		default_cpu = cpu;
 662	}
 663
 664	rcu_read_lock();
 665	for_each_domain(cpu, sd) {
 666		for_each_cpu_and(i, sched_domain_span(sd),
 667			housekeeping_cpumask(HK_FLAG_TIMER)) {
 668			if (cpu == i)
 669				continue;
 670
 671			if (!idle_cpu(i)) {
 672				cpu = i;
 673				goto unlock;
 674			}
 675		}
 676	}
 677
 678	if (default_cpu == -1)
 679		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
 680	cpu = default_cpu;
 681unlock:
 682	rcu_read_unlock();
 683	return cpu;
 684}
 685
 686/*
 687 * When add_timer_on() enqueues a timer into the timer wheel of an
 688 * idle CPU then this timer might expire before the next timer event
 689 * which is scheduled to wake up that CPU. In case of a completely
 690 * idle system the next event might even be infinite time into the
 691 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 692 * leaves the inner idle loop so the newly added timer is taken into
 693 * account when the CPU goes back to idle and evaluates the timer
 694 * wheel for the next timer event.
 695 */
 696static void wake_up_idle_cpu(int cpu)
 697{
 698	struct rq *rq = cpu_rq(cpu);
 699
 700	if (cpu == smp_processor_id())
 701		return;
 702
 703	if (set_nr_and_not_polling(rq->idle))
 704		smp_send_reschedule(cpu);
 705	else
 706		trace_sched_wake_idle_without_ipi(cpu);
 707}
 708
 709static bool wake_up_full_nohz_cpu(int cpu)
 710{
 711	/*
 712	 * We just need the target to call irq_exit() and re-evaluate
 713	 * the next tick. The nohz full kick at least implies that.
 714	 * If needed we can still optimize that later with an
 715	 * empty IRQ.
 716	 */
 717	if (cpu_is_offline(cpu))
 718		return true;  /* Don't try to wake offline CPUs. */
 719	if (tick_nohz_full_cpu(cpu)) {
 720		if (cpu != smp_processor_id() ||
 721		    tick_nohz_tick_stopped())
 722			tick_nohz_full_kick_cpu(cpu);
 723		return true;
 724	}
 725
 726	return false;
 727}
 728
 729/*
 730 * Wake up the specified CPU.  If the CPU is going offline, it is the
 731 * caller's responsibility to deal with the lost wakeup, for example,
 732 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 733 */
 734void wake_up_nohz_cpu(int cpu)
 735{
 736	if (!wake_up_full_nohz_cpu(cpu))
 737		wake_up_idle_cpu(cpu);
 738}
 739
 740static void nohz_csd_func(void *info)
 741{
 742	struct rq *rq = info;
 743	int cpu = cpu_of(rq);
 744	unsigned int flags;
 745
 746	/*
 747	 * Release the rq::nohz_csd.
 748	 */
 749	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
 750	WARN_ON(!(flags & NOHZ_KICK_MASK));
 751
 752	rq->idle_balance = idle_cpu(cpu);
 753	if (rq->idle_balance && !need_resched()) {
 754		rq->nohz_idle_balance = flags;
 755		raise_softirq_irqoff(SCHED_SOFTIRQ);
 756	}
 757}
 758
 759#endif /* CONFIG_NO_HZ_COMMON */
 760
 761#ifdef CONFIG_NO_HZ_FULL
 762bool sched_can_stop_tick(struct rq *rq)
 763{
 764	int fifo_nr_running;
 765
 766	/* Deadline tasks, even if single, need the tick */
 767	if (rq->dl.dl_nr_running)
 768		return false;
 769
 770	/*
 771	 * If there are more than one RR tasks, we need the tick to effect the
 772	 * actual RR behaviour.
 773	 */
 774	if (rq->rt.rr_nr_running) {
 775		if (rq->rt.rr_nr_running == 1)
 776			return true;
 777		else
 778			return false;
 779	}
 780
 781	/*
 782	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
 783	 * forced preemption between FIFO tasks.
 784	 */
 785	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
 786	if (fifo_nr_running)
 787		return true;
 788
 789	/*
 790	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
 791	 * if there's more than one we need the tick for involuntary
 792	 * preemption.
 793	 */
 794	if (rq->nr_running > 1)
 795		return false;
 796
 797	return true;
 798}
 799#endif /* CONFIG_NO_HZ_FULL */
 800#endif /* CONFIG_SMP */
 801
 802#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 803			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 804/*
 805 * Iterate task_group tree rooted at *from, calling @down when first entering a
 806 * node and @up when leaving it for the final time.
 807 *
 808 * Caller must hold rcu_lock or sufficient equivalent.
 809 */
 810int walk_tg_tree_from(struct task_group *from,
 811			     tg_visitor down, tg_visitor up, void *data)
 812{
 813	struct task_group *parent, *child;
 814	int ret;
 815
 816	parent = from;
 817
 818down:
 819	ret = (*down)(parent, data);
 820	if (ret)
 821		goto out;
 822	list_for_each_entry_rcu(child, &parent->children, siblings) {
 823		parent = child;
 824		goto down;
 825
 826up:
 827		continue;
 828	}
 829	ret = (*up)(parent, data);
 830	if (ret || parent == from)
 831		goto out;
 832
 833	child = parent;
 834	parent = parent->parent;
 835	if (parent)
 836		goto up;
 837out:
 838	return ret;
 839}
 840
 841int tg_nop(struct task_group *tg, void *data)
 842{
 843	return 0;
 844}
 845#endif
 846
 847static void set_load_weight(struct task_struct *p, bool update_load)
 848{
 849	int prio = p->static_prio - MAX_RT_PRIO;
 850	struct load_weight *load = &p->se.load;
 851
 852	/*
 853	 * SCHED_IDLE tasks get minimal weight:
 854	 */
 855	if (task_has_idle_policy(p)) {
 856		load->weight = scale_load(WEIGHT_IDLEPRIO);
 857		load->inv_weight = WMULT_IDLEPRIO;
 858		return;
 859	}
 860
 861	/*
 862	 * SCHED_OTHER tasks have to update their load when changing their
 863	 * weight
 864	 */
 865	if (update_load && p->sched_class == &fair_sched_class) {
 866		reweight_task(p, prio);
 867	} else {
 868		load->weight = scale_load(sched_prio_to_weight[prio]);
 869		load->inv_weight = sched_prio_to_wmult[prio];
 870	}
 871}
 872
 873#ifdef CONFIG_UCLAMP_TASK
 874/*
 875 * Serializes updates of utilization clamp values
 876 *
 877 * The (slow-path) user-space triggers utilization clamp value updates which
 878 * can require updates on (fast-path) scheduler's data structures used to
 879 * support enqueue/dequeue operations.
 880 * While the per-CPU rq lock protects fast-path update operations, user-space
 881 * requests are serialized using a mutex to reduce the risk of conflicting
 882 * updates or API abuses.
 883 */
 884static DEFINE_MUTEX(uclamp_mutex);
 885
 886/* Max allowed minimum utilization */
 887unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
 888
 889/* Max allowed maximum utilization */
 890unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
 891
 892/*
 893 * By default RT tasks run at the maximum performance point/capacity of the
 894 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
 895 * SCHED_CAPACITY_SCALE.
 896 *
 897 * This knob allows admins to change the default behavior when uclamp is being
 898 * used. In battery powered devices, particularly, running at the maximum
 899 * capacity and frequency will increase energy consumption and shorten the
 900 * battery life.
 901 *
 902 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
 903 *
 904 * This knob will not override the system default sched_util_clamp_min defined
 905 * above.
 906 */
 907unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
 908
 909/* All clamps are required to be less or equal than these values */
 910static struct uclamp_se uclamp_default[UCLAMP_CNT];
 911
 912/*
 913 * This static key is used to reduce the uclamp overhead in the fast path. It
 914 * primarily disables the call to uclamp_rq_{inc, dec}() in
 915 * enqueue/dequeue_task().
 916 *
 917 * This allows users to continue to enable uclamp in their kernel config with
 918 * minimum uclamp overhead in the fast path.
 919 *
 920 * As soon as userspace modifies any of the uclamp knobs, the static key is
 921 * enabled, since we have an actual users that make use of uclamp
 922 * functionality.
 923 *
 924 * The knobs that would enable this static key are:
 925 *
 926 *   * A task modifying its uclamp value with sched_setattr().
 927 *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
 928 *   * An admin modifying the cgroup cpu.uclamp.{min, max}
 929 */
 930DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
 931
 932/* Integer rounded range for each bucket */
 933#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
 934
 935#define for_each_clamp_id(clamp_id) \
 936	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
 937
 938static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
 939{
 940	return clamp_value / UCLAMP_BUCKET_DELTA;
 941}
 942
 943static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
 944{
 945	return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
 946}
 947
 948static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
 949{
 950	if (clamp_id == UCLAMP_MIN)
 951		return 0;
 952	return SCHED_CAPACITY_SCALE;
 953}
 954
 955static inline void uclamp_se_set(struct uclamp_se *uc_se,
 956				 unsigned int value, bool user_defined)
 957{
 958	uc_se->value = value;
 959	uc_se->bucket_id = uclamp_bucket_id(value);
 960	uc_se->user_defined = user_defined;
 961}
 962
 963static inline unsigned int
 964uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
 965		  unsigned int clamp_value)
 966{
 967	/*
 968	 * Avoid blocked utilization pushing up the frequency when we go
 969	 * idle (which drops the max-clamp) by retaining the last known
 970	 * max-clamp.
 971	 */
 972	if (clamp_id == UCLAMP_MAX) {
 973		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
 974		return clamp_value;
 975	}
 976
 977	return uclamp_none(UCLAMP_MIN);
 978}
 979
 980static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
 981				     unsigned int clamp_value)
 982{
 983	/* Reset max-clamp retention only on idle exit */
 984	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
 985		return;
 986
 987	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
 988}
 989
 990static inline
 991unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
 992				   unsigned int clamp_value)
 993{
 994	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
 995	int bucket_id = UCLAMP_BUCKETS - 1;
 996
 997	/*
 998	 * Since both min and max clamps are max aggregated, find the
 999	 * top most bucket with tasks in.
1000	 */
1001	for ( ; bucket_id >= 0; bucket_id--) {
1002		if (!bucket[bucket_id].tasks)
1003			continue;
1004		return bucket[bucket_id].value;
1005	}
1006
1007	/* No tasks -- default clamp values */
1008	return uclamp_idle_value(rq, clamp_id, clamp_value);
1009}
1010
1011static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1012{
1013	unsigned int default_util_min;
1014	struct uclamp_se *uc_se;
1015
1016	lockdep_assert_held(&p->pi_lock);
1017
1018	uc_se = &p->uclamp_req[UCLAMP_MIN];
1019
1020	/* Only sync if user didn't override the default */
1021	if (uc_se->user_defined)
1022		return;
1023
1024	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1025	uclamp_se_set(uc_se, default_util_min, false);
1026}
1027
1028static void uclamp_update_util_min_rt_default(struct task_struct *p)
1029{
1030	struct rq_flags rf;
1031	struct rq *rq;
1032
1033	if (!rt_task(p))
1034		return;
1035
1036	/* Protect updates to p->uclamp_* */
1037	rq = task_rq_lock(p, &rf);
1038	__uclamp_update_util_min_rt_default(p);
1039	task_rq_unlock(rq, p, &rf);
1040}
1041
1042static void uclamp_sync_util_min_rt_default(void)
1043{
1044	struct task_struct *g, *p;
1045
1046	/*
1047	 * copy_process()			sysctl_uclamp
1048	 *					  uclamp_min_rt = X;
1049	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1050	 *   // link thread			  smp_mb__after_spinlock()
1051	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1052	 *   sched_post_fork()			  for_each_process_thread()
1053	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1054	 *
1055	 * Ensures that either sched_post_fork() will observe the new
1056	 * uclamp_min_rt or for_each_process_thread() will observe the new
1057	 * task.
1058	 */
1059	read_lock(&tasklist_lock);
1060	smp_mb__after_spinlock();
1061	read_unlock(&tasklist_lock);
1062
1063	rcu_read_lock();
1064	for_each_process_thread(g, p)
1065		uclamp_update_util_min_rt_default(p);
1066	rcu_read_unlock();
1067}
1068
1069static inline struct uclamp_se
1070uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1071{
1072	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1073#ifdef CONFIG_UCLAMP_TASK_GROUP
1074	struct uclamp_se uc_max;
1075
1076	/*
1077	 * Tasks in autogroups or root task group will be
1078	 * restricted by system defaults.
1079	 */
1080	if (task_group_is_autogroup(task_group(p)))
1081		return uc_req;
1082	if (task_group(p) == &root_task_group)
1083		return uc_req;
1084
1085	uc_max = task_group(p)->uclamp[clamp_id];
1086	if (uc_req.value > uc_max.value || !uc_req.user_defined)
1087		return uc_max;
1088#endif
1089
1090	return uc_req;
1091}
1092
1093/*
1094 * The effective clamp bucket index of a task depends on, by increasing
1095 * priority:
1096 * - the task specific clamp value, when explicitly requested from userspace
1097 * - the task group effective clamp value, for tasks not either in the root
1098 *   group or in an autogroup
1099 * - the system default clamp value, defined by the sysadmin
1100 */
1101static inline struct uclamp_se
1102uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1103{
1104	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1105	struct uclamp_se uc_max = uclamp_default[clamp_id];
1106
1107	/* System default restrictions always apply */
1108	if (unlikely(uc_req.value > uc_max.value))
1109		return uc_max;
1110
1111	return uc_req;
1112}
1113
1114unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1115{
1116	struct uclamp_se uc_eff;
1117
1118	/* Task currently refcounted: use back-annotated (effective) value */
1119	if (p->uclamp[clamp_id].active)
1120		return (unsigned long)p->uclamp[clamp_id].value;
1121
1122	uc_eff = uclamp_eff_get(p, clamp_id);
1123
1124	return (unsigned long)uc_eff.value;
1125}
1126
1127/*
1128 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1129 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1130 * updates the rq's clamp value if required.
1131 *
1132 * Tasks can have a task-specific value requested from user-space, track
1133 * within each bucket the maximum value for tasks refcounted in it.
1134 * This "local max aggregation" allows to track the exact "requested" value
1135 * for each bucket when all its RUNNABLE tasks require the same clamp.
1136 */
1137static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1138				    enum uclamp_id clamp_id)
1139{
1140	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1141	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1142	struct uclamp_bucket *bucket;
1143
1144	lockdep_assert_held(&rq->lock);
1145
1146	/* Update task effective clamp */
1147	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1148
1149	bucket = &uc_rq->bucket[uc_se->bucket_id];
1150	bucket->tasks++;
1151	uc_se->active = true;
1152
1153	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1154
1155	/*
1156	 * Local max aggregation: rq buckets always track the max
1157	 * "requested" clamp value of its RUNNABLE tasks.
1158	 */
1159	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1160		bucket->value = uc_se->value;
1161
1162	if (uc_se->value > READ_ONCE(uc_rq->value))
1163		WRITE_ONCE(uc_rq->value, uc_se->value);
1164}
1165
1166/*
1167 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1168 * is released. If this is the last task reference counting the rq's max
1169 * active clamp value, then the rq's clamp value is updated.
1170 *
1171 * Both refcounted tasks and rq's cached clamp values are expected to be
1172 * always valid. If it's detected they are not, as defensive programming,
1173 * enforce the expected state and warn.
1174 */
1175static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1176				    enum uclamp_id clamp_id)
1177{
1178	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1179	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1180	struct uclamp_bucket *bucket;
1181	unsigned int bkt_clamp;
1182	unsigned int rq_clamp;
1183
1184	lockdep_assert_held(&rq->lock);
1185
1186	/*
1187	 * If sched_uclamp_used was enabled after task @p was enqueued,
1188	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1189	 *
1190	 * In this case the uc_se->active flag should be false since no uclamp
1191	 * accounting was performed at enqueue time and we can just return
1192	 * here.
1193	 *
1194	 * Need to be careful of the following enqeueue/dequeue ordering
1195	 * problem too
1196	 *
1197	 *	enqueue(taskA)
1198	 *	// sched_uclamp_used gets enabled
1199	 *	enqueue(taskB)
1200	 *	dequeue(taskA)
1201	 *	// Must not decrement bukcet->tasks here
1202	 *	dequeue(taskB)
1203	 *
1204	 * where we could end up with stale data in uc_se and
1205	 * bucket[uc_se->bucket_id].
1206	 *
1207	 * The following check here eliminates the possibility of such race.
1208	 */
1209	if (unlikely(!uc_se->active))
1210		return;
1211
1212	bucket = &uc_rq->bucket[uc_se->bucket_id];
1213
1214	SCHED_WARN_ON(!bucket->tasks);
1215	if (likely(bucket->tasks))
1216		bucket->tasks--;
1217
1218	uc_se->active = false;
1219
1220	/*
1221	 * Keep "local max aggregation" simple and accept to (possibly)
1222	 * overboost some RUNNABLE tasks in the same bucket.
1223	 * The rq clamp bucket value is reset to its base value whenever
1224	 * there are no more RUNNABLE tasks refcounting it.
1225	 */
1226	if (likely(bucket->tasks))
1227		return;
1228
1229	rq_clamp = READ_ONCE(uc_rq->value);
1230	/*
1231	 * Defensive programming: this should never happen. If it happens,
1232	 * e.g. due to future modification, warn and fixup the expected value.
1233	 */
1234	SCHED_WARN_ON(bucket->value > rq_clamp);
1235	if (bucket->value >= rq_clamp) {
1236		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1237		WRITE_ONCE(uc_rq->value, bkt_clamp);
1238	}
1239}
1240
1241static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1242{
1243	enum uclamp_id clamp_id;
1244
1245	/*
1246	 * Avoid any overhead until uclamp is actually used by the userspace.
1247	 *
1248	 * The condition is constructed such that a NOP is generated when
1249	 * sched_uclamp_used is disabled.
1250	 */
1251	if (!static_branch_unlikely(&sched_uclamp_used))
1252		return;
1253
1254	if (unlikely(!p->sched_class->uclamp_enabled))
1255		return;
1256
1257	for_each_clamp_id(clamp_id)
1258		uclamp_rq_inc_id(rq, p, clamp_id);
1259
1260	/* Reset clamp idle holding when there is one RUNNABLE task */
1261	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1262		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1263}
1264
1265static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1266{
1267	enum uclamp_id clamp_id;
1268
1269	/*
1270	 * Avoid any overhead until uclamp is actually used by the userspace.
1271	 *
1272	 * The condition is constructed such that a NOP is generated when
1273	 * sched_uclamp_used is disabled.
1274	 */
1275	if (!static_branch_unlikely(&sched_uclamp_used))
1276		return;
1277
1278	if (unlikely(!p->sched_class->uclamp_enabled))
1279		return;
1280
1281	for_each_clamp_id(clamp_id)
1282		uclamp_rq_dec_id(rq, p, clamp_id);
1283}
1284
1285static inline void
1286uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1287{
1288	struct rq_flags rf;
1289	struct rq *rq;
1290
1291	/*
1292	 * Lock the task and the rq where the task is (or was) queued.
1293	 *
1294	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1295	 * price to pay to safely serialize util_{min,max} updates with
1296	 * enqueues, dequeues and migration operations.
1297	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1298	 */
1299	rq = task_rq_lock(p, &rf);
1300
1301	/*
1302	 * Setting the clamp bucket is serialized by task_rq_lock().
1303	 * If the task is not yet RUNNABLE and its task_struct is not
1304	 * affecting a valid clamp bucket, the next time it's enqueued,
1305	 * it will already see the updated clamp bucket value.
1306	 */
1307	if (p->uclamp[clamp_id].active) {
1308		uclamp_rq_dec_id(rq, p, clamp_id);
1309		uclamp_rq_inc_id(rq, p, clamp_id);
1310	}
1311
1312	task_rq_unlock(rq, p, &rf);
1313}
1314
1315#ifdef CONFIG_UCLAMP_TASK_GROUP
1316static inline void
1317uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1318			   unsigned int clamps)
1319{
1320	enum uclamp_id clamp_id;
1321	struct css_task_iter it;
1322	struct task_struct *p;
1323
1324	css_task_iter_start(css, 0, &it);
1325	while ((p = css_task_iter_next(&it))) {
1326		for_each_clamp_id(clamp_id) {
1327			if ((0x1 << clamp_id) & clamps)
1328				uclamp_update_active(p, clamp_id);
1329		}
1330	}
1331	css_task_iter_end(&it);
1332}
1333
1334static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1335static void uclamp_update_root_tg(void)
1336{
1337	struct task_group *tg = &root_task_group;
1338
1339	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1340		      sysctl_sched_uclamp_util_min, false);
1341	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1342		      sysctl_sched_uclamp_util_max, false);
1343
1344	rcu_read_lock();
1345	cpu_util_update_eff(&root_task_group.css);
1346	rcu_read_unlock();
1347}
1348#else
1349static void uclamp_update_root_tg(void) { }
1350#endif
1351
1352int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1353				void *buffer, size_t *lenp, loff_t *ppos)
1354{
1355	bool update_root_tg = false;
1356	int old_min, old_max, old_min_rt;
1357	int result;
1358
1359	mutex_lock(&uclamp_mutex);
1360	old_min = sysctl_sched_uclamp_util_min;
1361	old_max = sysctl_sched_uclamp_util_max;
1362	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1363
1364	result = proc_dointvec(table, write, buffer, lenp, ppos);
1365	if (result)
1366		goto undo;
1367	if (!write)
1368		goto done;
1369
1370	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1371	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1372	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1373
1374		result = -EINVAL;
1375		goto undo;
1376	}
1377
1378	if (old_min != sysctl_sched_uclamp_util_min) {
1379		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1380			      sysctl_sched_uclamp_util_min, false);
1381		update_root_tg = true;
1382	}
1383	if (old_max != sysctl_sched_uclamp_util_max) {
1384		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1385			      sysctl_sched_uclamp_util_max, false);
1386		update_root_tg = true;
1387	}
1388
1389	if (update_root_tg) {
1390		static_branch_enable(&sched_uclamp_used);
1391		uclamp_update_root_tg();
1392	}
1393
1394	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1395		static_branch_enable(&sched_uclamp_used);
1396		uclamp_sync_util_min_rt_default();
1397	}
1398
1399	/*
1400	 * We update all RUNNABLE tasks only when task groups are in use.
1401	 * Otherwise, keep it simple and do just a lazy update at each next
1402	 * task enqueue time.
1403	 */
1404
1405	goto done;
1406
1407undo:
1408	sysctl_sched_uclamp_util_min = old_min;
1409	sysctl_sched_uclamp_util_max = old_max;
1410	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1411done:
1412	mutex_unlock(&uclamp_mutex);
1413
1414	return result;
1415}
1416
1417static int uclamp_validate(struct task_struct *p,
1418			   const struct sched_attr *attr)
1419{
1420	unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1421	unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1422
1423	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1424		lower_bound = attr->sched_util_min;
1425	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1426		upper_bound = attr->sched_util_max;
1427
1428	if (lower_bound > upper_bound)
1429		return -EINVAL;
1430	if (upper_bound > SCHED_CAPACITY_SCALE)
1431		return -EINVAL;
1432
1433	/*
1434	 * We have valid uclamp attributes; make sure uclamp is enabled.
1435	 *
1436	 * We need to do that here, because enabling static branches is a
1437	 * blocking operation which obviously cannot be done while holding
1438	 * scheduler locks.
1439	 */
1440	static_branch_enable(&sched_uclamp_used);
1441
1442	return 0;
1443}
1444
1445static void __setscheduler_uclamp(struct task_struct *p,
1446				  const struct sched_attr *attr)
1447{
1448	enum uclamp_id clamp_id;
1449
1450	/*
1451	 * On scheduling class change, reset to default clamps for tasks
1452	 * without a task-specific value.
1453	 */
1454	for_each_clamp_id(clamp_id) {
1455		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1456
1457		/* Keep using defined clamps across class changes */
1458		if (uc_se->user_defined)
1459			continue;
1460
1461		/*
1462		 * RT by default have a 100% boost value that could be modified
1463		 * at runtime.
1464		 */
1465		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1466			__uclamp_update_util_min_rt_default(p);
1467		else
1468			uclamp_se_set(uc_se, uclamp_none(clamp_id), false);
1469
1470	}
1471
1472	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1473		return;
1474
1475	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1476		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1477			      attr->sched_util_min, true);
1478	}
1479
1480	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1481		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1482			      attr->sched_util_max, true);
1483	}
1484}
1485
1486static void uclamp_fork(struct task_struct *p)
1487{
1488	enum uclamp_id clamp_id;
1489
1490	/*
1491	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1492	 * as the task is still at its early fork stages.
1493	 */
1494	for_each_clamp_id(clamp_id)
1495		p->uclamp[clamp_id].active = false;
1496
1497	if (likely(!p->sched_reset_on_fork))
1498		return;
1499
1500	for_each_clamp_id(clamp_id) {
1501		uclamp_se_set(&p->uclamp_req[clamp_id],
1502			      uclamp_none(clamp_id), false);
1503	}
1504}
1505
1506static void uclamp_post_fork(struct task_struct *p)
1507{
1508	uclamp_update_util_min_rt_default(p);
1509}
1510
1511static void __init init_uclamp_rq(struct rq *rq)
1512{
1513	enum uclamp_id clamp_id;
1514	struct uclamp_rq *uc_rq = rq->uclamp;
1515
1516	for_each_clamp_id(clamp_id) {
1517		uc_rq[clamp_id] = (struct uclamp_rq) {
1518			.value = uclamp_none(clamp_id)
1519		};
1520	}
1521
1522	rq->uclamp_flags = 0;
1523}
1524
1525static void __init init_uclamp(void)
1526{
1527	struct uclamp_se uc_max = {};
1528	enum uclamp_id clamp_id;
1529	int cpu;
1530
1531	for_each_possible_cpu(cpu)
1532		init_uclamp_rq(cpu_rq(cpu));
1533
1534	for_each_clamp_id(clamp_id) {
1535		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1536			      uclamp_none(clamp_id), false);
1537	}
1538
1539	/* System defaults allow max clamp values for both indexes */
1540	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1541	for_each_clamp_id(clamp_id) {
1542		uclamp_default[clamp_id] = uc_max;
1543#ifdef CONFIG_UCLAMP_TASK_GROUP
1544		root_task_group.uclamp_req[clamp_id] = uc_max;
1545		root_task_group.uclamp[clamp_id] = uc_max;
1546#endif
1547	}
1548}
1549
1550#else /* CONFIG_UCLAMP_TASK */
1551static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1552static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1553static inline int uclamp_validate(struct task_struct *p,
1554				  const struct sched_attr *attr)
1555{
1556	return -EOPNOTSUPP;
1557}
1558static void __setscheduler_uclamp(struct task_struct *p,
1559				  const struct sched_attr *attr) { }
1560static inline void uclamp_fork(struct task_struct *p) { }
1561static inline void uclamp_post_fork(struct task_struct *p) { }
1562static inline void init_uclamp(void) { }
1563#endif /* CONFIG_UCLAMP_TASK */
1564
1565static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1566{
1567	if (!(flags & ENQUEUE_NOCLOCK))
1568		update_rq_clock(rq);
1569
1570	if (!(flags & ENQUEUE_RESTORE)) {
1571		sched_info_queued(rq, p);
1572		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1573	}
1574
1575	uclamp_rq_inc(rq, p);
1576	p->sched_class->enqueue_task(rq, p, flags);
1577}
1578
1579static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1580{
1581	if (!(flags & DEQUEUE_NOCLOCK))
1582		update_rq_clock(rq);
1583
1584	if (!(flags & DEQUEUE_SAVE)) {
1585		sched_info_dequeued(rq, p);
1586		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1587	}
1588
1589	uclamp_rq_dec(rq, p);
1590	p->sched_class->dequeue_task(rq, p, flags);
1591}
1592
1593void activate_task(struct rq *rq, struct task_struct *p, int flags)
1594{
1595	enqueue_task(rq, p, flags);
1596
1597	p->on_rq = TASK_ON_RQ_QUEUED;
1598}
1599
1600void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1601{
1602	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1603
1604	dequeue_task(rq, p, flags);
1605}
1606
1607/*
1608 * __normal_prio - return the priority that is based on the static prio
1609 */
1610static inline int __normal_prio(struct task_struct *p)
1611{
1612	return p->static_prio;
1613}
1614
1615/*
1616 * Calculate the expected normal priority: i.e. priority
1617 * without taking RT-inheritance into account. Might be
1618 * boosted by interactivity modifiers. Changes upon fork,
1619 * setprio syscalls, and whenever the interactivity
1620 * estimator recalculates.
1621 */
1622static inline int normal_prio(struct task_struct *p)
1623{
1624	int prio;
1625
1626	if (task_has_dl_policy(p))
1627		prio = MAX_DL_PRIO-1;
1628	else if (task_has_rt_policy(p))
1629		prio = MAX_RT_PRIO-1 - p->rt_priority;
1630	else
1631		prio = __normal_prio(p);
1632	return prio;
1633}
1634
1635/*
1636 * Calculate the current priority, i.e. the priority
1637 * taken into account by the scheduler. This value might
1638 * be boosted by RT tasks, or might be boosted by
1639 * interactivity modifiers. Will be RT if the task got
1640 * RT-boosted. If not then it returns p->normal_prio.
1641 */
1642static int effective_prio(struct task_struct *p)
1643{
1644	p->normal_prio = normal_prio(p);
1645	/*
1646	 * If we are RT tasks or we were boosted to RT priority,
1647	 * keep the priority unchanged. Otherwise, update priority
1648	 * to the normal priority:
1649	 */
1650	if (!rt_prio(p->prio))
1651		return p->normal_prio;
1652	return p->prio;
1653}
1654
1655/**
1656 * task_curr - is this task currently executing on a CPU?
1657 * @p: the task in question.
1658 *
1659 * Return: 1 if the task is currently executing. 0 otherwise.
1660 */
1661inline int task_curr(const struct task_struct *p)
1662{
1663	return cpu_curr(task_cpu(p)) == p;
1664}
1665
1666/*
1667 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1668 * use the balance_callback list if you want balancing.
1669 *
1670 * this means any call to check_class_changed() must be followed by a call to
1671 * balance_callback().
1672 */
1673static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1674				       const struct sched_class *prev_class,
1675				       int oldprio)
1676{
1677	if (prev_class != p->sched_class) {
1678		if (prev_class->switched_from)
1679			prev_class->switched_from(rq, p);
1680
1681		p->sched_class->switched_to(rq, p);
1682	} else if (oldprio != p->prio || dl_task(p))
1683		p->sched_class->prio_changed(rq, p, oldprio);
1684}
1685
1686void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1687{
1688	if (p->sched_class == rq->curr->sched_class)
1689		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1690	else if (p->sched_class > rq->curr->sched_class)
1691		resched_curr(rq);
1692
1693	/*
1694	 * A queue event has occurred, and we're going to schedule.  In
1695	 * this case, we can save a useless back to back clock update.
1696	 */
1697	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1698		rq_clock_skip_update(rq);
1699}
1700
1701#ifdef CONFIG_SMP
1702
1703/*
1704 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1705 * __set_cpus_allowed_ptr() and select_fallback_rq().
1706 */
1707static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1708{
1709	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1710		return false;
1711
1712	if (is_per_cpu_kthread(p))
1713		return cpu_online(cpu);
1714
1715	return cpu_active(cpu);
1716}
1717
1718/*
1719 * This is how migration works:
1720 *
1721 * 1) we invoke migration_cpu_stop() on the target CPU using
1722 *    stop_one_cpu().
1723 * 2) stopper starts to run (implicitly forcing the migrated thread
1724 *    off the CPU)
1725 * 3) it checks whether the migrated task is still in the wrong runqueue.
1726 * 4) if it's in the wrong runqueue then the migration thread removes
1727 *    it and puts it into the right queue.
1728 * 5) stopper completes and stop_one_cpu() returns and the migration
1729 *    is done.
1730 */
1731
1732/*
1733 * move_queued_task - move a queued task to new rq.
1734 *
1735 * Returns (locked) new rq. Old rq's lock is released.
1736 */
1737static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1738				   struct task_struct *p, int new_cpu)
1739{
1740	lockdep_assert_held(&rq->lock);
1741
1742	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1743	set_task_cpu(p, new_cpu);
1744	rq_unlock(rq, rf);
1745
1746	rq = cpu_rq(new_cpu);
1747
1748	rq_lock(rq, rf);
1749	BUG_ON(task_cpu(p) != new_cpu);
1750	activate_task(rq, p, 0);
1751	check_preempt_curr(rq, p, 0);
1752
1753	return rq;
1754}
1755
1756struct migration_arg {
1757	struct task_struct *task;
1758	int dest_cpu;
1759};
1760
1761/*
1762 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1763 * this because either it can't run here any more (set_cpus_allowed()
1764 * away from this CPU, or CPU going down), or because we're
1765 * attempting to rebalance this task on exec (sched_exec).
1766 *
1767 * So we race with normal scheduler movements, but that's OK, as long
1768 * as the task is no longer on this CPU.
1769 */
1770static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1771				 struct task_struct *p, int dest_cpu)
1772{
1773	/* Affinity changed (again). */
1774	if (!is_cpu_allowed(p, dest_cpu))
1775		return rq;
1776
1777	update_rq_clock(rq);
1778	rq = move_queued_task(rq, rf, p, dest_cpu);
1779
1780	return rq;
1781}
1782
1783/*
1784 * migration_cpu_stop - this will be executed by a highprio stopper thread
1785 * and performs thread migration by bumping thread off CPU then
1786 * 'pushing' onto another runqueue.
1787 */
1788static int migration_cpu_stop(void *data)
1789{
1790	struct migration_arg *arg = data;
1791	struct task_struct *p = arg->task;
1792	struct rq *rq = this_rq();
1793	struct rq_flags rf;
1794
1795	/*
1796	 * The original target CPU might have gone down and we might
1797	 * be on another CPU but it doesn't matter.
1798	 */
1799	local_irq_disable();
1800	/*
1801	 * We need to explicitly wake pending tasks before running
1802	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1803	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1804	 */
1805	flush_smp_call_function_from_idle();
1806
1807	raw_spin_lock(&p->pi_lock);
1808	rq_lock(rq, &rf);
1809	/*
1810	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1811	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1812	 * we're holding p->pi_lock.
1813	 */
1814	if (task_rq(p) == rq) {
1815		if (task_on_rq_queued(p))
1816			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1817		else
1818			p->wake_cpu = arg->dest_cpu;
1819	}
1820	rq_unlock(rq, &rf);
1821	raw_spin_unlock(&p->pi_lock);
1822
1823	local_irq_enable();
1824	return 0;
1825}
1826
1827/*
1828 * sched_class::set_cpus_allowed must do the below, but is not required to
1829 * actually call this function.
1830 */
1831void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1832{
1833	cpumask_copy(&p->cpus_mask, new_mask);
1834	p->nr_cpus_allowed = cpumask_weight(new_mask);
1835}
1836
1837void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1838{
1839	struct rq *rq = task_rq(p);
1840	bool queued, running;
1841
1842	lockdep_assert_held(&p->pi_lock);
1843
1844	queued = task_on_rq_queued(p);
1845	running = task_current(rq, p);
1846
1847	if (queued) {
1848		/*
1849		 * Because __kthread_bind() calls this on blocked tasks without
1850		 * holding rq->lock.
1851		 */
1852		lockdep_assert_held(&rq->lock);
1853		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1854	}
1855	if (running)
1856		put_prev_task(rq, p);
1857
1858	p->sched_class->set_cpus_allowed(p, new_mask);
1859
1860	if (queued)
1861		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1862	if (running)
1863		set_next_task(rq, p);
1864}
1865
1866/*
1867 * Change a given task's CPU affinity. Migrate the thread to a
1868 * proper CPU and schedule it away if the CPU it's executing on
1869 * is removed from the allowed bitmask.
1870 *
1871 * NOTE: the caller must have a valid reference to the task, the
1872 * task must not exit() & deallocate itself prematurely. The
1873 * call is not atomic; no spinlocks may be held.
1874 */
1875static int __set_cpus_allowed_ptr(struct task_struct *p,
1876				  const struct cpumask *new_mask, bool check)
1877{
1878	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1879	unsigned int dest_cpu;
1880	struct rq_flags rf;
1881	struct rq *rq;
1882	int ret = 0;
1883
1884	rq = task_rq_lock(p, &rf);
1885	update_rq_clock(rq);
1886
1887	if (p->flags & PF_KTHREAD) {
1888		/*
1889		 * Kernel threads are allowed on online && !active CPUs
1890		 */
1891		cpu_valid_mask = cpu_online_mask;
1892	}
1893
1894	/*
1895	 * Must re-check here, to close a race against __kthread_bind(),
1896	 * sched_setaffinity() is not guaranteed to observe the flag.
1897	 */
1898	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1899		ret = -EINVAL;
1900		goto out;
1901	}
1902
1903	if (cpumask_equal(&p->cpus_mask, new_mask))
1904		goto out;
1905
1906	/*
1907	 * Picking a ~random cpu helps in cases where we are changing affinity
1908	 * for groups of tasks (ie. cpuset), so that load balancing is not
1909	 * immediately required to distribute the tasks within their new mask.
1910	 */
1911	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1912	if (dest_cpu >= nr_cpu_ids) {
1913		ret = -EINVAL;
1914		goto out;
1915	}
1916
1917	do_set_cpus_allowed(p, new_mask);
1918
1919	if (p->flags & PF_KTHREAD) {
1920		/*
1921		 * For kernel threads that do indeed end up on online &&
1922		 * !active we want to ensure they are strict per-CPU threads.
1923		 */
1924		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1925			!cpumask_intersects(new_mask, cpu_active_mask) &&
1926			p->nr_cpus_allowed != 1);
1927	}
1928
1929	/* Can the task run on the task's current CPU? If so, we're done */
1930	if (cpumask_test_cpu(task_cpu(p), new_mask))
1931		goto out;
1932
1933	if (task_running(rq, p) || p->state == TASK_WAKING) {
1934		struct migration_arg arg = { p, dest_cpu };
1935		/* Need help from migration thread: drop lock and wait. */
1936		task_rq_unlock(rq, p, &rf);
1937		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1938		return 0;
1939	} else if (task_on_rq_queued(p)) {
1940		/*
1941		 * OK, since we're going to drop the lock immediately
1942		 * afterwards anyway.
1943		 */
1944		rq = move_queued_task(rq, &rf, p, dest_cpu);
1945	}
1946out:
1947	task_rq_unlock(rq, p, &rf);
1948
1949	return ret;
1950}
1951
1952int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1953{
1954	return __set_cpus_allowed_ptr(p, new_mask, false);
1955}
1956EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1957
1958void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1959{
1960#ifdef CONFIG_SCHED_DEBUG
1961	/*
1962	 * We should never call set_task_cpu() on a blocked task,
1963	 * ttwu() will sort out the placement.
1964	 */
1965	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1966			!p->on_rq);
1967
1968	/*
1969	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1970	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1971	 * time relying on p->on_rq.
1972	 */
1973	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1974		     p->sched_class == &fair_sched_class &&
1975		     (p->on_rq && !task_on_rq_migrating(p)));
1976
1977#ifdef CONFIG_LOCKDEP
1978	/*
1979	 * The caller should hold either p->pi_lock or rq->lock, when changing
1980	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1981	 *
1982	 * sched_move_task() holds both and thus holding either pins the cgroup,
1983	 * see task_group().
1984	 *
1985	 * Furthermore, all task_rq users should acquire both locks, see
1986	 * task_rq_lock().
1987	 */
1988	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1989				      lockdep_is_held(&task_rq(p)->lock)));
1990#endif
1991	/*
1992	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1993	 */
1994	WARN_ON_ONCE(!cpu_online(new_cpu));
1995#endif
1996
1997	trace_sched_migrate_task(p, new_cpu);
1998
1999	if (task_cpu(p) != new_cpu) {
2000		if (p->sched_class->migrate_task_rq)
2001			p->sched_class->migrate_task_rq(p, new_cpu);
2002		p->se.nr_migrations++;
2003		rseq_migrate(p);
2004		perf_event_task_migrate(p);
2005	}
2006
2007	__set_task_cpu(p, new_cpu);
2008}
2009
2010#ifdef CONFIG_NUMA_BALANCING
2011static void __migrate_swap_task(struct task_struct *p, int cpu)
2012{
2013	if (task_on_rq_queued(p)) {
2014		struct rq *src_rq, *dst_rq;
2015		struct rq_flags srf, drf;
2016
2017		src_rq = task_rq(p);
2018		dst_rq = cpu_rq(cpu);
2019
2020		rq_pin_lock(src_rq, &srf);
2021		rq_pin_lock(dst_rq, &drf);
2022
2023		deactivate_task(src_rq, p, 0);
2024		set_task_cpu(p, cpu);
2025		activate_task(dst_rq, p, 0);
2026		check_preempt_curr(dst_rq, p, 0);
2027
2028		rq_unpin_lock(dst_rq, &drf);
2029		rq_unpin_lock(src_rq, &srf);
2030
2031	} else {
2032		/*
2033		 * Task isn't running anymore; make it appear like we migrated
2034		 * it before it went to sleep. This means on wakeup we make the
2035		 * previous CPU our target instead of where it really is.
2036		 */
2037		p->wake_cpu = cpu;
2038	}
2039}
2040
2041struct migration_swap_arg {
2042	struct task_struct *src_task, *dst_task;
2043	int src_cpu, dst_cpu;
2044};
2045
2046static int migrate_swap_stop(void *data)
2047{
2048	struct migration_swap_arg *arg = data;
2049	struct rq *src_rq, *dst_rq;
2050	int ret = -EAGAIN;
2051
2052	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2053		return -EAGAIN;
2054
2055	src_rq = cpu_rq(arg->src_cpu);
2056	dst_rq = cpu_rq(arg->dst_cpu);
2057
2058	double_raw_lock(&arg->src_task->pi_lock,
2059			&arg->dst_task->pi_lock);
2060	double_rq_lock(src_rq, dst_rq);
2061
2062	if (task_cpu(arg->dst_task) != arg->dst_cpu)
2063		goto unlock;
2064
2065	if (task_cpu(arg->src_task) != arg->src_cpu)
2066		goto unlock;
2067
2068	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2069		goto unlock;
2070
2071	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2072		goto unlock;
2073
2074	__migrate_swap_task(arg->src_task, arg->dst_cpu);
2075	__migrate_swap_task(arg->dst_task, arg->src_cpu);
2076
2077	ret = 0;
2078
2079unlock:
2080	double_rq_unlock(src_rq, dst_rq);
2081	raw_spin_unlock(&arg->dst_task->pi_lock);
2082	raw_spin_unlock(&arg->src_task->pi_lock);
2083
2084	return ret;
2085}
2086
2087/*
2088 * Cross migrate two tasks
2089 */
2090int migrate_swap(struct task_struct *cur, struct task_struct *p,
2091		int target_cpu, int curr_cpu)
2092{
2093	struct migration_swap_arg arg;
2094	int ret = -EINVAL;
2095
2096	arg = (struct migration_swap_arg){
2097		.src_task = cur,
2098		.src_cpu = curr_cpu,
2099		.dst_task = p,
2100		.dst_cpu = target_cpu,
2101	};
2102
2103	if (arg.src_cpu == arg.dst_cpu)
2104		goto out;
2105
2106	/*
2107	 * These three tests are all lockless; this is OK since all of them
2108	 * will be re-checked with proper locks held further down the line.
2109	 */
2110	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2111		goto out;
2112
2113	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2114		goto out;
2115
2116	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2117		goto out;
2118
2119	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2120	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2121
2122out:
2123	return ret;
2124}
2125#endif /* CONFIG_NUMA_BALANCING */
2126
2127/*
2128 * wait_task_inactive - wait for a thread to unschedule.
2129 *
2130 * If @match_state is nonzero, it's the @p->state value just checked and
2131 * not expected to change.  If it changes, i.e. @p might have woken up,
2132 * then return zero.  When we succeed in waiting for @p to be off its CPU,
2133 * we return a positive number (its total switch count).  If a second call
2134 * a short while later returns the same number, the caller can be sure that
2135 * @p has remained unscheduled the whole time.
2136 *
2137 * The caller must ensure that the task *will* unschedule sometime soon,
2138 * else this function might spin for a *long* time. This function can't
2139 * be called with interrupts off, or it may introduce deadlock with
2140 * smp_call_function() if an IPI is sent by the same process we are
2141 * waiting to become inactive.
2142 */
2143unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2144{
2145	int running, queued;
2146	struct rq_flags rf;
2147	unsigned long ncsw;
2148	struct rq *rq;
2149
2150	for (;;) {
2151		/*
2152		 * We do the initial early heuristics without holding
2153		 * any task-queue locks at all. We'll only try to get
2154		 * the runqueue lock when things look like they will
2155		 * work out!
2156		 */
2157		rq = task_rq(p);
2158
2159		/*
2160		 * If the task is actively running on another CPU
2161		 * still, just relax and busy-wait without holding
2162		 * any locks.
2163		 *
2164		 * NOTE! Since we don't hold any locks, it's not
2165		 * even sure that "rq" stays as the right runqueue!
2166		 * But we don't care, since "task_running()" will
2167		 * return false if the runqueue has changed and p
2168		 * is actually now running somewhere else!
2169		 */
2170		while (task_running(rq, p)) {
2171			if (match_state && unlikely(p->state != match_state))
2172				return 0;
2173			cpu_relax();
2174		}
2175
2176		/*
2177		 * Ok, time to look more closely! We need the rq
2178		 * lock now, to be *sure*. If we're wrong, we'll
2179		 * just go back and repeat.
2180		 */
2181		rq = task_rq_lock(p, &rf);
2182		trace_sched_wait_task(p);
2183		running = task_running(rq, p);
2184		queued = task_on_rq_queued(p);
2185		ncsw = 0;
2186		if (!match_state || p->state == match_state)
2187			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2188		task_rq_unlock(rq, p, &rf);
2189
2190		/*
2191		 * If it changed from the expected state, bail out now.
2192		 */
2193		if (unlikely(!ncsw))
2194			break;
2195
2196		/*
2197		 * Was it really running after all now that we
2198		 * checked with the proper locks actually held?
2199		 *
2200		 * Oops. Go back and try again..
2201		 */
2202		if (unlikely(running)) {
2203			cpu_relax();
2204			continue;
2205		}
2206
2207		/*
2208		 * It's not enough that it's not actively running,
2209		 * it must be off the runqueue _entirely_, and not
2210		 * preempted!
2211		 *
2212		 * So if it was still runnable (but just not actively
2213		 * running right now), it's preempted, and we should
2214		 * yield - it could be a while.
2215		 */
2216		if (unlikely(queued)) {
2217			ktime_t to = NSEC_PER_SEC / HZ;
2218
2219			set_current_state(TASK_UNINTERRUPTIBLE);
2220			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2221			continue;
2222		}
2223
2224		/*
2225		 * Ahh, all good. It wasn't running, and it wasn't
2226		 * runnable, which means that it will never become
2227		 * running in the future either. We're all done!
2228		 */
2229		break;
2230	}
2231
2232	return ncsw;
2233}
2234
2235/***
2236 * kick_process - kick a running thread to enter/exit the kernel
2237 * @p: the to-be-kicked thread
2238 *
2239 * Cause a process which is running on another CPU to enter
2240 * kernel-mode, without any delay. (to get signals handled.)
2241 *
2242 * NOTE: this function doesn't have to take the runqueue lock,
2243 * because all it wants to ensure is that the remote task enters
2244 * the kernel. If the IPI races and the task has been migrated
2245 * to another CPU then no harm is done and the purpose has been
2246 * achieved as well.
2247 */
2248void kick_process(struct task_struct *p)
2249{
2250	int cpu;
2251
2252	preempt_disable();
2253	cpu = task_cpu(p);
2254	if ((cpu != smp_processor_id()) && task_curr(p))
2255		smp_send_reschedule(cpu);
2256	preempt_enable();
2257}
2258EXPORT_SYMBOL_GPL(kick_process);
2259
2260/*
2261 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2262 *
2263 * A few notes on cpu_active vs cpu_online:
2264 *
2265 *  - cpu_active must be a subset of cpu_online
2266 *
2267 *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2268 *    see __set_cpus_allowed_ptr(). At this point the newly online
2269 *    CPU isn't yet part of the sched domains, and balancing will not
2270 *    see it.
2271 *
2272 *  - on CPU-down we clear cpu_active() to mask the sched domains and
2273 *    avoid the load balancer to place new tasks on the to be removed
2274 *    CPU. Existing tasks will remain running there and will be taken
2275 *    off.
2276 *
2277 * This means that fallback selection must not select !active CPUs.
2278 * And can assume that any active CPU must be online. Conversely
2279 * select_task_rq() below may allow selection of !active CPUs in order
2280 * to satisfy the above rules.
2281 */
2282static int select_fallback_rq(int cpu, struct task_struct *p)
2283{
2284	int nid = cpu_to_node(cpu);
2285	const struct cpumask *nodemask = NULL;
2286	enum { cpuset, possible, fail } state = cpuset;
2287	int dest_cpu;
2288
2289	/*
2290	 * If the node that the CPU is on has been offlined, cpu_to_node()
2291	 * will return -1. There is no CPU on the node, and we should
2292	 * select the CPU on the other node.
2293	 */
2294	if (nid != -1) {
2295		nodemask = cpumask_of_node(nid);
2296
2297		/* Look for allowed, online CPU in same node. */
2298		for_each_cpu(dest_cpu, nodemask) {
2299			if (!cpu_active(dest_cpu))
2300				continue;
2301			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2302				return dest_cpu;
2303		}
2304	}
2305
2306	for (;;) {
2307		/* Any allowed, online CPU? */
2308		for_each_cpu(dest_cpu, p->cpus_ptr) {
2309			if (!is_cpu_allowed(p, dest_cpu))
2310				continue;
2311
2312			goto out;
2313		}
2314
2315		/* No more Mr. Nice Guy. */
2316		switch (state) {
2317		case cpuset:
2318			if (IS_ENABLED(CONFIG_CPUSETS)) {
2319				cpuset_cpus_allowed_fallback(p);
2320				state = possible;
2321				break;
2322			}
2323			fallthrough;
2324		case possible:
2325			do_set_cpus_allowed(p, cpu_possible_mask);
2326			state = fail;
2327			break;
2328
2329		case fail:
2330			BUG();
2331			break;
2332		}
2333	}
2334
2335out:
2336	if (state != cpuset) {
2337		/*
2338		 * Don't tell them about moving exiting tasks or
2339		 * kernel threads (both mm NULL), since they never
2340		 * leave kernel.
2341		 */
2342		if (p->mm && printk_ratelimit()) {
2343			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2344					task_pid_nr(p), p->comm, cpu);
2345		}
2346	}
2347
2348	return dest_cpu;
2349}
2350
2351/*
2352 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2353 */
2354static inline
2355int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2356{
2357	lockdep_assert_held(&p->pi_lock);
2358
2359	if (p->nr_cpus_allowed > 1)
2360		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2361	else
2362		cpu = cpumask_any(p->cpus_ptr);
2363
2364	/*
2365	 * In order not to call set_task_cpu() on a blocking task we need
2366	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2367	 * CPU.
2368	 *
2369	 * Since this is common to all placement strategies, this lives here.
2370	 *
2371	 * [ this allows ->select_task() to simply return task_cpu(p) and
2372	 *   not worry about this generic constraint ]
2373	 */
2374	if (unlikely(!is_cpu_allowed(p, cpu)))
2375		cpu = select_fallback_rq(task_cpu(p), p);
2376
2377	return cpu;
2378}
2379
2380void sched_set_stop_task(int cpu, struct task_struct *stop)
2381{
2382	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2383	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2384
2385	if (stop) {
2386		/*
2387		 * Make it appear like a SCHED_FIFO task, its something
2388		 * userspace knows about and won't get confused about.
2389		 *
2390		 * Also, it will make PI more or less work without too
2391		 * much confusion -- but then, stop work should not
2392		 * rely on PI working anyway.
2393		 */
2394		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2395
2396		stop->sched_class = &stop_sched_class;
2397	}
2398
2399	cpu_rq(cpu)->stop = stop;
2400
2401	if (old_stop) {
2402		/*
2403		 * Reset it back to a normal scheduling class so that
2404		 * it can die in pieces.
2405		 */
2406		old_stop->sched_class = &rt_sched_class;
2407	}
2408}
2409
2410#else
2411
2412static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2413					 const struct cpumask *new_mask, bool check)
2414{
2415	return set_cpus_allowed_ptr(p, new_mask);
2416}
2417
2418#endif /* CONFIG_SMP */
2419
2420static void
2421ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2422{
2423	struct rq *rq;
2424
2425	if (!schedstat_enabled())
2426		return;
2427
2428	rq = this_rq();
2429
2430#ifdef CONFIG_SMP
2431	if (cpu == rq->cpu) {
2432		__schedstat_inc(rq->ttwu_local);
2433		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2434	} else {
2435		struct sched_domain *sd;
2436
2437		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2438		rcu_read_lock();
2439		for_each_domain(rq->cpu, sd) {
2440			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2441				__schedstat_inc(sd->ttwu_wake_remote);
2442				break;
2443			}
2444		}
2445		rcu_read_unlock();
2446	}
2447
2448	if (wake_flags & WF_MIGRATED)
2449		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2450#endif /* CONFIG_SMP */
2451
2452	__schedstat_inc(rq->ttwu_count);
2453	__schedstat_inc(p->se.statistics.nr_wakeups);
2454
2455	if (wake_flags & WF_SYNC)
2456		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2457}
2458
2459/*
2460 * Mark the task runnable and perform wakeup-preemption.
2461 */
2462static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2463			   struct rq_flags *rf)
2464{
2465	check_preempt_curr(rq, p, wake_flags);
2466	p->state = TASK_RUNNING;
2467	trace_sched_wakeup(p);
2468
2469#ifdef CONFIG_SMP
2470	if (p->sched_class->task_woken) {
2471		/*
2472		 * Our task @p is fully woken up and running; so its safe to
2473		 * drop the rq->lock, hereafter rq is only used for statistics.
2474		 */
2475		rq_unpin_lock(rq, rf);
2476		p->sched_class->task_woken(rq, p);
2477		rq_repin_lock(rq, rf);
2478	}
2479
2480	if (rq->idle_stamp) {
2481		u64 delta = rq_clock(rq) - rq->idle_stamp;
2482		u64 max = 2*rq->max_idle_balance_cost;
2483
2484		update_avg(&rq->avg_idle, delta);
2485
2486		if (rq->avg_idle > max)
2487			rq->avg_idle = max;
2488
2489		rq->idle_stamp = 0;
2490	}
2491#endif
2492}
2493
2494static void
2495ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2496		 struct rq_flags *rf)
2497{
2498	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2499
2500	lockdep_assert_held(&rq->lock);
2501
2502	if (p->sched_contributes_to_load)
2503		rq->nr_uninterruptible--;
2504
2505#ifdef CONFIG_SMP
2506	if (wake_flags & WF_MIGRATED)
2507		en_flags |= ENQUEUE_MIGRATED;
2508#endif
2509
2510	activate_task(rq, p, en_flags);
2511	ttwu_do_wakeup(rq, p, wake_flags, rf);
2512}
2513
2514/*
2515 * Consider @p being inside a wait loop:
2516 *
2517 *   for (;;) {
2518 *      set_current_state(TASK_UNINTERRUPTIBLE);
2519 *
2520 *      if (CONDITION)
2521 *         break;
2522 *
2523 *      schedule();
2524 *   }
2525 *   __set_current_state(TASK_RUNNING);
2526 *
2527 * between set_current_state() and schedule(). In this case @p is still
2528 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
2529 * an atomic manner.
2530 *
2531 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
2532 * then schedule() must still happen and p->state can be changed to
2533 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
2534 * need to do a full wakeup with enqueue.
2535 *
2536 * Returns: %true when the wakeup is done,
2537 *          %false otherwise.
2538 */
2539static int ttwu_runnable(struct task_struct *p, int wake_flags)
2540{
2541	struct rq_flags rf;
2542	struct rq *rq;
2543	int ret = 0;
2544
2545	rq = __task_rq_lock(p, &rf);
2546	if (task_on_rq_queued(p)) {
2547		/* check_preempt_curr() may use rq clock */
2548		update_rq_clock(rq);
2549		ttwu_do_wakeup(rq, p, wake_flags, &rf);
2550		ret = 1;
2551	}
2552	__task_rq_unlock(rq, &rf);
2553
2554	return ret;
2555}
2556
2557#ifdef CONFIG_SMP
2558void sched_ttwu_pending(void *arg)
2559{
2560	struct llist_node *llist = arg;
2561	struct rq *rq = this_rq();
2562	struct task_struct *p, *t;
2563	struct rq_flags rf;
2564
2565	if (!llist)
2566		return;
2567
2568	/*
2569	 * rq::ttwu_pending racy indication of out-standing wakeups.
2570	 * Races such that false-negatives are possible, since they
2571	 * are shorter lived that false-positives would be.
2572	 */
2573	WRITE_ONCE(rq->ttwu_pending, 0);
2574
2575	rq_lock_irqsave(rq, &rf);
2576	update_rq_clock(rq);
2577
2578	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
2579		if (WARN_ON_ONCE(p->on_cpu))
2580			smp_cond_load_acquire(&p->on_cpu, !VAL);
2581
2582		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
2583			set_task_cpu(p, cpu_of(rq));
2584
2585		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2586	}
2587
2588	rq_unlock_irqrestore(rq, &rf);
2589}
2590
2591void send_call_function_single_ipi(int cpu)
2592{
2593	struct rq *rq = cpu_rq(cpu);
2594
2595	if (!set_nr_if_polling(rq->idle))
2596		arch_send_call_function_single_ipi(cpu);
2597	else
2598		trace_sched_wake_idle_without_ipi(cpu);
2599}
2600
2601/*
2602 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2603 * necessary. The wakee CPU on receipt of the IPI will queue the task
2604 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2605 * of the wakeup instead of the waker.
2606 */
2607static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2608{
2609	struct rq *rq = cpu_rq(cpu);
2610
2611	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2612
2613	WRITE_ONCE(rq->ttwu_pending, 1);
2614	__smp_call_single_queue(cpu, &p->wake_entry.llist);
2615}
2616
2617void wake_up_if_idle(int cpu)
2618{
2619	struct rq *rq = cpu_rq(cpu);
2620	struct rq_flags rf;
2621
2622	rcu_read_lock();
2623
2624	if (!is_idle_task(rcu_dereference(rq->curr)))
2625		goto out;
2626
2627	if (set_nr_if_polling(rq->idle)) {
2628		trace_sched_wake_idle_without_ipi(cpu);
2629	} else {
2630		rq_lock_irqsave(rq, &rf);
2631		if (is_idle_task(rq->curr))
2632			smp_send_reschedule(cpu);
2633		/* Else CPU is not idle, do nothing here: */
2634		rq_unlock_irqrestore(rq, &rf);
2635	}
2636
2637out:
2638	rcu_read_unlock();
2639}
2640
2641bool cpus_share_cache(int this_cpu, int that_cpu)
2642{
2643	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2644}
2645
2646static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2647{
2648	/*
2649	 * If the CPU does not share cache, then queue the task on the
2650	 * remote rqs wakelist to avoid accessing remote data.
2651	 */
2652	if (!cpus_share_cache(smp_processor_id(), cpu))
2653		return true;
2654
2655	/*
2656	 * If the task is descheduling and the only running task on the
2657	 * CPU then use the wakelist to offload the task activation to
2658	 * the soon-to-be-idle CPU as the current CPU is likely busy.
2659	 * nr_running is checked to avoid unnecessary task stacking.
2660	 */
2661	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2662		return true;
2663
2664	return false;
2665}
2666
2667static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2668{
2669	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
2670		if (WARN_ON_ONCE(cpu == smp_processor_id()))
2671			return false;
2672
2673		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2674		__ttwu_queue_wakelist(p, cpu, wake_flags);
2675		return true;
2676	}
2677
2678	return false;
2679}
2680
2681#else /* !CONFIG_SMP */
2682
2683static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2684{
2685	return false;
2686}
2687
2688#endif /* CONFIG_SMP */
2689
2690static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2691{
2692	struct rq *rq = cpu_rq(cpu);
2693	struct rq_flags rf;
2694
2695	if (ttwu_queue_wakelist(p, cpu, wake_flags))
2696		return;
2697
2698	rq_lock(rq, &rf);
2699	update_rq_clock(rq);
2700	ttwu_do_activate(rq, p, wake_flags, &rf);
2701	rq_unlock(rq, &rf);
2702}
2703
2704/*
2705 * Notes on Program-Order guarantees on SMP systems.
2706 *
2707 *  MIGRATION
2708 *
2709 * The basic program-order guarantee on SMP systems is that when a task [t]
2710 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2711 * execution on its new CPU [c1].
2712 *
2713 * For migration (of runnable tasks) this is provided by the following means:
2714 *
2715 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2716 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2717 *     rq(c1)->lock (if not at the same time, then in that order).
2718 *  C) LOCK of the rq(c1)->lock scheduling in task
2719 *
2720 * Release/acquire chaining guarantees that B happens after A and C after B.
2721 * Note: the CPU doing B need not be c0 or c1
2722 *
2723 * Example:
2724 *
2725 *   CPU0            CPU1            CPU2
2726 *
2727 *   LOCK rq(0)->lock
2728 *   sched-out X
2729 *   sched-in Y
2730 *   UNLOCK rq(0)->lock
2731 *
2732 *                                   LOCK rq(0)->lock // orders against CPU0
2733 *                                   dequeue X
2734 *                                   UNLOCK rq(0)->lock
2735 *
2736 *                                   LOCK rq(1)->lock
2737 *                                   enqueue X
2738 *                                   UNLOCK rq(1)->lock
2739 *
2740 *                   LOCK rq(1)->lock // orders against CPU2
2741 *                   sched-out Z
2742 *                   sched-in X
2743 *                   UNLOCK rq(1)->lock
2744 *
2745 *
2746 *  BLOCKING -- aka. SLEEP + WAKEUP
2747 *
2748 * For blocking we (obviously) need to provide the same guarantee as for
2749 * migration. However the means are completely different as there is no lock
2750 * chain to provide order. Instead we do:
2751 *
2752 *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
2753 *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
2754 *
2755 * Example:
2756 *
2757 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2758 *
2759 *   LOCK rq(0)->lock LOCK X->pi_lock
2760 *   dequeue X
2761 *   sched-out X
2762 *   smp_store_release(X->on_cpu, 0);
2763 *
2764 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2765 *                    X->state = WAKING
2766 *                    set_task_cpu(X,2)
2767 *
2768 *                    LOCK rq(2)->lock
2769 *                    enqueue X
2770 *                    X->state = RUNNING
2771 *                    UNLOCK rq(2)->lock
2772 *
2773 *                                          LOCK rq(2)->lock // orders against CPU1
2774 *                                          sched-out Z
2775 *                                          sched-in X
2776 *                                          UNLOCK rq(2)->lock
2777 *
2778 *                    UNLOCK X->pi_lock
2779 *   UNLOCK rq(0)->lock
2780 *
2781 *
2782 * However, for wakeups there is a second guarantee we must provide, namely we
2783 * must ensure that CONDITION=1 done by the caller can not be reordered with
2784 * accesses to the task state; see try_to_wake_up() and set_current_state().
2785 */
2786
2787/**
2788 * try_to_wake_up - wake up a thread
2789 * @p: the thread to be awakened
2790 * @state: the mask of task states that can be woken
2791 * @wake_flags: wake modifier flags (WF_*)
2792 *
2793 * Conceptually does:
2794 *
2795 *   If (@state & @p->state) @p->state = TASK_RUNNING.
2796 *
2797 * If the task was not queued/runnable, also place it back on a runqueue.
2798 *
2799 * This function is atomic against schedule() which would dequeue the task.
2800 *
2801 * It issues a full memory barrier before accessing @p->state, see the comment
2802 * with set_current_state().
2803 *
2804 * Uses p->pi_lock to serialize against concurrent wake-ups.
2805 *
2806 * Relies on p->pi_lock stabilizing:
2807 *  - p->sched_class
2808 *  - p->cpus_ptr
2809 *  - p->sched_task_group
2810 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
2811 *
2812 * Tries really hard to only take one task_rq(p)->lock for performance.
2813 * Takes rq->lock in:
2814 *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
2815 *  - ttwu_queue()       -- new rq, for enqueue of the task;
2816 *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
2817 *
2818 * As a consequence we race really badly with just about everything. See the
2819 * many memory barriers and their comments for details.
2820 *
2821 * Return: %true if @p->state changes (an actual wakeup was done),
2822 *	   %false otherwise.
2823 */
2824static int
2825try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2826{
2827	unsigned long flags;
2828	int cpu, success = 0;
2829
2830	preempt_disable();
2831	if (p == current) {
2832		/*
2833		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2834		 * == smp_processor_id()'. Together this means we can special
2835		 * case the whole 'p->on_rq && ttwu_runnable()' case below
2836		 * without taking any locks.
2837		 *
2838		 * In particular:
2839		 *  - we rely on Program-Order guarantees for all the ordering,
2840		 *  - we're serialized against set_special_state() by virtue of
2841		 *    it disabling IRQs (this allows not taking ->pi_lock).
2842		 */
2843		if (!(p->state & state))
2844			goto out;
2845
2846		success = 1;
2847		trace_sched_waking(p);
2848		p->state = TASK_RUNNING;
2849		trace_sched_wakeup(p);
2850		goto out;
2851	}
2852
2853	/*
2854	 * If we are going to wake up a thread waiting for CONDITION we
2855	 * need to ensure that CONDITION=1 done by the caller can not be
2856	 * reordered with p->state check below. This pairs with smp_store_mb()
2857	 * in set_current_state() that the waiting thread does.
2858	 */
2859	raw_spin_lock_irqsave(&p->pi_lock, flags);
2860	smp_mb__after_spinlock();
2861	if (!(p->state & state))
2862		goto unlock;
2863
2864	trace_sched_waking(p);
2865
2866	/* We're going to change ->state: */
2867	success = 1;
2868
2869	/*
2870	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2871	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2872	 * in smp_cond_load_acquire() below.
2873	 *
2874	 * sched_ttwu_pending()			try_to_wake_up()
2875	 *   STORE p->on_rq = 1			  LOAD p->state
2876	 *   UNLOCK rq->lock
2877	 *
2878	 * __schedule() (switch to task 'p')
2879	 *   LOCK rq->lock			  smp_rmb();
2880	 *   smp_mb__after_spinlock();
2881	 *   UNLOCK rq->lock
2882	 *
2883	 * [task p]
2884	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
2885	 *
2886	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2887	 * __schedule().  See the comment for smp_mb__after_spinlock().
2888	 *
2889	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
2890	 */
2891	smp_rmb();
2892	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
2893		goto unlock;
2894
2895	if (p->in_iowait) {
2896		delayacct_blkio_end(p);
2897		atomic_dec(&task_rq(p)->nr_iowait);
2898	}
2899
2900#ifdef CONFIG_SMP
2901	/*
2902	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2903	 * possible to, falsely, observe p->on_cpu == 0.
2904	 *
2905	 * One must be running (->on_cpu == 1) in order to remove oneself
2906	 * from the runqueue.
2907	 *
2908	 * __schedule() (switch to task 'p')	try_to_wake_up()
2909	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2910	 *   UNLOCK rq->lock
2911	 *
2912	 * __schedule() (put 'p' to sleep)
2913	 *   LOCK rq->lock			  smp_rmb();
2914	 *   smp_mb__after_spinlock();
2915	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2916	 *
2917	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2918	 * __schedule().  See the comment for smp_mb__after_spinlock().
2919	 *
2920	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
2921	 * schedule()'s deactivate_task() has 'happened' and p will no longer
2922	 * care about it's own p->state. See the comment in __schedule().
2923	 */
2924	smp_acquire__after_ctrl_dep();
2925
2926	/*
2927	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
2928	 * == 0), which means we need to do an enqueue, change p->state to
2929	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
2930	 * enqueue, such as ttwu_queue_wakelist().
2931	 */
2932	p->state = TASK_WAKING;
2933
2934	/*
2935	 * If the owning (remote) CPU is still in the middle of schedule() with
2936	 * this task as prev, considering queueing p on the remote CPUs wake_list
2937	 * which potentially sends an IPI instead of spinning on p->on_cpu to
2938	 * let the waker make forward progress. This is safe because IRQs are
2939	 * disabled and the IPI will deliver after on_cpu is cleared.
2940	 *
2941	 * Ensure we load task_cpu(p) after p->on_cpu:
2942	 *
2943	 * set_task_cpu(p, cpu);
2944	 *   STORE p->cpu = @cpu
2945	 * __schedule() (switch to task 'p')
2946	 *   LOCK rq->lock
2947	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
2948	 *   STORE p->on_cpu = 1		LOAD p->cpu
2949	 *
2950	 * to ensure we observe the correct CPU on which the task is currently
2951	 * scheduling.
2952	 */
2953	if (smp_load_acquire(&p->on_cpu) &&
2954	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
2955		goto unlock;
2956
2957	/*
2958	 * If the owning (remote) CPU is still in the middle of schedule() with
2959	 * this task as prev, wait until its done referencing the task.
2960	 *
2961	 * Pairs with the smp_store_release() in finish_task().
2962	 *
2963	 * This ensures that tasks getting woken will be fully ordered against
2964	 * their previous state and preserve Program Order.
2965	 */
2966	smp_cond_load_acquire(&p->on_cpu, !VAL);
2967
2968	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2969	if (task_cpu(p) != cpu) {
2970		wake_flags |= WF_MIGRATED;
2971		psi_ttwu_dequeue(p);
2972		set_task_cpu(p, cpu);
2973	}
2974#else
2975	cpu = task_cpu(p);
2976#endif /* CONFIG_SMP */
2977
2978	ttwu_queue(p, cpu, wake_flags);
2979unlock:
2980	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2981out:
2982	if (success)
2983		ttwu_stat(p, task_cpu(p), wake_flags);
2984	preempt_enable();
2985
2986	return success;
2987}
2988
2989/**
2990 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
2991 * @p: Process for which the function is to be invoked.
2992 * @func: Function to invoke.
2993 * @arg: Argument to function.
2994 *
2995 * If the specified task can be quickly locked into a definite state
2996 * (either sleeping or on a given runqueue), arrange to keep it in that
2997 * state while invoking @func(@arg).  This function can use ->on_rq and
2998 * task_curr() to work out what the state is, if required.  Given that
2999 * @func can be invoked with a runqueue lock held, it had better be quite
3000 * lightweight.
3001 *
3002 * Returns:
3003 *	@false if the task slipped out from under the locks.
3004 *	@true if the task was locked onto a runqueue or is sleeping.
3005 *		However, @func can override this by returning @false.
3006 */
3007bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3008{
3009	bool ret = false;
3010	struct rq_flags rf;
3011	struct rq *rq;
3012
3013	lockdep_assert_irqs_enabled();
3014	raw_spin_lock_irq(&p->pi_lock);
3015	if (p->on_rq) {
3016		rq = __task_rq_lock(p, &rf);
3017		if (task_rq(p) == rq)
3018			ret = func(p, arg);
3019		rq_unlock(rq, &rf);
3020	} else {
3021		switch (p->state) {
3022		case TASK_RUNNING:
3023		case TASK_WAKING:
3024			break;
3025		default:
3026			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3027			if (!p->on_rq)
3028				ret = func(p, arg);
3029		}
3030	}
3031	raw_spin_unlock_irq(&p->pi_lock);
3032	return ret;
3033}
3034
3035/**
3036 * wake_up_process - Wake up a specific process
3037 * @p: The process to be woken up.
3038 *
3039 * Attempt to wake up the nominated process and move it to the set of runnable
3040 * processes.
3041 *
3042 * Return: 1 if the process was woken up, 0 if it was already running.
3043 *
3044 * This function executes a full memory barrier before accessing the task state.
3045 */
3046int wake_up_process(struct task_struct *p)
3047{
3048	return try_to_wake_up(p, TASK_NORMAL, 0);
3049}
3050EXPORT_SYMBOL(wake_up_process);
3051
3052int wake_up_state(struct task_struct *p, unsigned int state)
3053{
3054	return try_to_wake_up(p, state, 0);
3055}
3056
3057/*
3058 * Perform scheduler related setup for a newly forked process p.
3059 * p is forked by current.
3060 *
3061 * __sched_fork() is basic setup used by init_idle() too:
3062 */
3063static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3064{
3065	p->on_rq			= 0;
3066
3067	p->se.on_rq			= 0;
3068	p->se.exec_start		= 0;
3069	p->se.sum_exec_runtime		= 0;
3070	p->se.prev_sum_exec_runtime	= 0;
3071	p->se.nr_migrations		= 0;
3072	p->se.vruntime			= 0;
3073	INIT_LIST_HEAD(&p->se.group_node);
3074
3075#ifdef CONFIG_FAIR_GROUP_SCHED
3076	p->se.cfs_rq			= NULL;
3077#endif
3078
3079#ifdef CONFIG_SCHEDSTATS
3080	/* Even if schedstat is disabled, there should not be garbage */
3081	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3082#endif
3083
3084	RB_CLEAR_NODE(&p->dl.rb_node);
3085	init_dl_task_timer(&p->dl);
3086	init_dl_inactive_task_timer(&p->dl);
3087	__dl_clear_params(p);
3088
3089	INIT_LIST_HEAD(&p->rt.run_list);
3090	p->rt.timeout		= 0;
3091	p->rt.time_slice	= sched_rr_timeslice;
3092	p->rt.on_rq		= 0;
3093	p->rt.on_list		= 0;
3094
3095#ifdef CONFIG_PREEMPT_NOTIFIERS
3096	INIT_HLIST_HEAD(&p->preempt_notifiers);
3097#endif
3098
3099#ifdef CONFIG_COMPACTION
3100	p->capture_control = NULL;
3101#endif
3102	init_numa_balancing(clone_flags, p);
3103#ifdef CONFIG_SMP
3104	p->wake_entry.u_flags = CSD_TYPE_TTWU;
3105#endif
3106}
3107
3108DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3109
3110#ifdef CONFIG_NUMA_BALANCING
3111
3112void set_numabalancing_state(bool enabled)
3113{
3114	if (enabled)
3115		static_branch_enable(&sched_numa_balancing);
3116	else
3117		static_branch_disable(&sched_numa_balancing);
3118}
3119
3120#ifdef CONFIG_PROC_SYSCTL
3121int sysctl_numa_balancing(struct ctl_table *table, int write,
3122			  void *buffer, size_t *lenp, loff_t *ppos)
3123{
3124	struct ctl_table t;
3125	int err;
3126	int state = static_branch_likely(&sched_numa_balancing);
3127
3128	if (write && !capable(CAP_SYS_ADMIN))
3129		return -EPERM;
3130
3131	t = *table;
3132	t.data = &state;
3133	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3134	if (err < 0)
3135		return err;
3136	if (write)
3137		set_numabalancing_state(state);
3138	return err;
3139}
3140#endif
3141#endif
3142
3143#ifdef CONFIG_SCHEDSTATS
3144
3145DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3146static bool __initdata __sched_schedstats = false;
3147
3148static void set_schedstats(bool enabled)
3149{
3150	if (enabled)
3151		static_branch_enable(&sched_schedstats);
3152	else
3153		static_branch_disable(&sched_schedstats);
3154}
3155
3156void force_schedstat_enabled(void)
3157{
3158	if (!schedstat_enabled()) {
3159		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3160		static_branch_enable(&sched_schedstats);
3161	}
3162}
3163
3164static int __init setup_schedstats(char *str)
3165{
3166	int ret = 0;
3167	if (!str)
3168		goto out;
3169
3170	/*
3171	 * This code is called before jump labels have been set up, so we can't
3172	 * change the static branch directly just yet.  Instead set a temporary
3173	 * variable so init_schedstats() can do it later.
3174	 */
3175	if (!strcmp(str, "enable")) {
3176		__sched_schedstats = true;
3177		ret = 1;
3178	} else if (!strcmp(str, "disable")) {
3179		__sched_schedstats = false;
3180		ret = 1;
3181	}
3182out:
3183	if (!ret)
3184		pr_warn("Unable to parse schedstats=\n");
3185
3186	return ret;
3187}
3188__setup("schedstats=", setup_schedstats);
3189
3190static void __init init_schedstats(void)
3191{
3192	set_schedstats(__sched_schedstats);
3193}
3194
3195#ifdef CONFIG_PROC_SYSCTL
3196int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3197		size_t *lenp, loff_t *ppos)
3198{
3199	struct ctl_table t;
3200	int err;
3201	int state = static_branch_likely(&sched_schedstats);
3202
3203	if (write && !capable(CAP_SYS_ADMIN))
3204		return -EPERM;
3205
3206	t = *table;
3207	t.data = &state;
3208	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3209	if (err < 0)
3210		return err;
3211	if (write)
3212		set_schedstats(state);
3213	return err;
3214}
3215#endif /* CONFIG_PROC_SYSCTL */
3216#else  /* !CONFIG_SCHEDSTATS */
3217static inline void init_schedstats(void) {}
3218#endif /* CONFIG_SCHEDSTATS */
3219
3220/*
3221 * fork()/clone()-time setup:
3222 */
3223int sched_fork(unsigned long clone_flags, struct task_struct *p)
3224{
3225	unsigned long flags;
3226
3227	__sched_fork(clone_flags, p);
3228	/*
3229	 * We mark the process as NEW here. This guarantees that
3230	 * nobody will actually run it, and a signal or other external
3231	 * event cannot wake it up and insert it on the runqueue either.
3232	 */
3233	p->state = TASK_NEW;
3234
3235	/*
3236	 * Make sure we do not leak PI boosting priority to the child.
3237	 */
3238	p->prio = current->normal_prio;
3239
3240	uclamp_fork(p);
3241
3242	/*
3243	 * Revert to default priority/policy on fork if requested.
3244	 */
3245	if (unlikely(p->sched_reset_on_fork)) {
3246		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3247			p->policy = SCHED_NORMAL;
3248			p->static_prio = NICE_TO_PRIO(0);
3249			p->rt_priority = 0;
3250		} else if (PRIO_TO_NICE(p->static_prio) < 0)
3251			p->static_prio = NICE_TO_PRIO(0);
3252
3253		p->prio = p->normal_prio = __normal_prio(p);
3254		set_load_weight(p, false);
3255
3256		/*
3257		 * We don't need the reset flag anymore after the fork. It has
3258		 * fulfilled its duty:
3259		 */
3260		p->sched_reset_on_fork = 0;
3261	}
3262
3263	if (dl_prio(p->prio))
3264		return -EAGAIN;
3265	else if (rt_prio(p->prio))
3266		p->sched_class = &rt_sched_class;
3267	else
3268		p->sched_class = &fair_sched_class;
3269
3270	init_entity_runnable_average(&p->se);
3271
3272	/*
3273	 * The child is not yet in the pid-hash so no cgroup attach races,
3274	 * and the cgroup is pinned to this child due to cgroup_fork()
3275	 * is ran before sched_fork().
3276	 *
3277	 * Silence PROVE_RCU.
3278	 */
3279	raw_spin_lock_irqsave(&p->pi_lock, flags);
3280	rseq_migrate(p);
3281	/*
3282	 * We're setting the CPU for the first time, we don't migrate,
3283	 * so use __set_task_cpu().
3284	 */
3285	__set_task_cpu(p, smp_processor_id());
3286	if (p->sched_class->task_fork)
3287		p->sched_class->task_fork(p);
3288	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3289
3290#ifdef CONFIG_SCHED_INFO
3291	if (likely(sched_info_on()))
3292		memset(&p->sched_info, 0, sizeof(p->sched_info));
3293#endif
3294#if defined(CONFIG_SMP)
3295	p->on_cpu = 0;
3296#endif
3297	init_task_preempt_count(p);
3298#ifdef CONFIG_SMP
3299	plist_node_init(&p->pushable_tasks, MAX_PRIO);
3300	RB_CLEAR_NODE(&p->pushable_dl_tasks);
3301#endif
3302	return 0;
3303}
3304
3305void sched_post_fork(struct task_struct *p)
3306{
3307	uclamp_post_fork(p);
3308}
3309
3310unsigned long to_ratio(u64 period, u64 runtime)
3311{
3312	if (runtime == RUNTIME_INF)
3313		return BW_UNIT;
3314
3315	/*
3316	 * Doing this here saves a lot of checks in all
3317	 * the calling paths, and returning zero seems
3318	 * safe for them anyway.
3319	 */
3320	if (period == 0)
3321		return 0;
3322
3323	return div64_u64(runtime << BW_SHIFT, period);
3324}
3325
3326/*
3327 * wake_up_new_task - wake up a newly created task for the first time.
3328 *
3329 * This function will do some initial scheduler statistics housekeeping
3330 * that must be done for every newly created context, then puts the task
3331 * on the runqueue and wakes it.
3332 */
3333void wake_up_new_task(struct task_struct *p)
3334{
3335	struct rq_flags rf;
3336	struct rq *rq;
3337
3338	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3339	p->state = TASK_RUNNING;
3340#ifdef CONFIG_SMP
3341	/*
3342	 * Fork balancing, do it here and not earlier because:
3343	 *  - cpus_ptr can change in the fork path
3344	 *  - any previously selected CPU might disappear through hotplug
3345	 *
3346	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3347	 * as we're not fully set-up yet.
3348	 */
3349	p->recent_used_cpu = task_cpu(p);
3350	rseq_migrate(p);
3351	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
3352#endif
3353	rq = __task_rq_lock(p, &rf);
3354	update_rq_clock(rq);
3355	post_init_entity_util_avg(p);
3356
3357	activate_task(rq, p, ENQUEUE_NOCLOCK);
3358	trace_sched_wakeup_new(p);
3359	check_preempt_curr(rq, p, WF_FORK);
3360#ifdef CONFIG_SMP
3361	if (p->sched_class->task_woken) {
3362		/*
3363		 * Nothing relies on rq->lock after this, so its fine to
3364		 * drop it.
3365		 */
3366		rq_unpin_lock(rq, &rf);
3367		p->sched_class->task_woken(rq, p);
3368		rq_repin_lock(rq, &rf);
3369	}
3370#endif
3371	task_rq_unlock(rq, p, &rf);
3372}
3373
3374#ifdef CONFIG_PREEMPT_NOTIFIERS
3375
3376static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3377
3378void preempt_notifier_inc(void)
3379{
3380	static_branch_inc(&preempt_notifier_key);
3381}
3382EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3383
3384void preempt_notifier_dec(void)
3385{
3386	static_branch_dec(&preempt_notifier_key);
3387}
3388EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3389
3390/**
3391 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3392 * @notifier: notifier struct to register
3393 */
3394void preempt_notifier_register(struct preempt_notifier *notifier)
3395{
3396	if (!static_branch_unlikely(&preempt_notifier_key))
3397		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3398
3399	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3400}
3401EXPORT_SYMBOL_GPL(preempt_notifier_register);
3402
3403/**
3404 * preempt_notifier_unregister - no longer interested in preemption notifications
3405 * @notifier: notifier struct to unregister
3406 *
3407 * This is *not* safe to call from within a preemption notifier.
3408 */
3409void preempt_notifier_unregister(struct preempt_notifier *notifier)
3410{
3411	hlist_del(&notifier->link);
3412}
3413EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3414
3415static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3416{
3417	struct preempt_notifier *notifier;
3418
3419	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3420		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3421}
3422
3423static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3424{
3425	if (static_branch_unlikely(&preempt_notifier_key))
3426		__fire_sched_in_preempt_notifiers(curr);
3427}
3428
3429static void
3430__fire_sched_out_preempt_notifiers(struct task_struct *curr,
3431				   struct task_struct *next)
3432{
3433	struct preempt_notifier *notifier;
3434
3435	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3436		notifier->ops->sched_out(notifier, next);
3437}
3438
3439static __always_inline void
3440fire_sched_out_preempt_notifiers(struct task_struct *curr,
3441				 struct task_struct *next)
3442{
3443	if (static_branch_unlikely(&preempt_notifier_key))
3444		__fire_sched_out_preempt_notifiers(curr, next);
3445}
3446
3447#else /* !CONFIG_PREEMPT_NOTIFIERS */
3448
3449static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3450{
3451}
3452
3453static inline void
3454fire_sched_out_preempt_notifiers(struct task_struct *curr,
3455				 struct task_struct *next)
3456{
3457}
3458
3459#endif /* CONFIG_PREEMPT_NOTIFIERS */
3460
3461static inline void prepare_task(struct task_struct *next)
3462{
3463#ifdef CONFIG_SMP
3464	/*
3465	 * Claim the task as running, we do this before switching to it
3466	 * such that any running task will have this set.
3467	 *
3468	 * See the ttwu() WF_ON_CPU case and its ordering comment.
3469	 */
3470	WRITE_ONCE(next->on_cpu, 1);
3471#endif
3472}
3473
3474static inline void finish_task(struct task_struct *prev)
3475{
3476#ifdef CONFIG_SMP
3477	/*
3478	 * This must be the very last reference to @prev from this CPU. After
3479	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3480	 * must ensure this doesn't happen until the switch is completely
3481	 * finished.
3482	 *
3483	 * In particular, the load of prev->state in finish_task_switch() must
3484	 * happen before this.
3485	 *
3486	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3487	 */
3488	smp_store_release(&prev->on_cpu, 0);
3489#endif
3490}
3491
3492static inline void
3493prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3494{
3495	/*
3496	 * Since the runqueue lock will be released by the next
3497	 * task (which is an invalid locking op but in the case
3498	 * of the scheduler it's an obvious special-case), so we
3499	 * do an early lockdep release here:
3500	 */
3501	rq_unpin_lock(rq, rf);
3502	spin_release(&rq->lock.dep_map, _THIS_IP_);
3503#ifdef CONFIG_DEBUG_SPINLOCK
3504	/* this is a valid case when another task releases the spinlock */
3505	rq->lock.owner = next;
3506#endif
3507}
3508
3509static inline void finish_lock_switch(struct rq *rq)
3510{
3511	/*
3512	 * If we are tracking spinlock dependencies then we have to
3513	 * fix up the runqueue lock - which gets 'carried over' from
3514	 * prev into current:
3515	 */
3516	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3517	raw_spin_unlock_irq(&rq->lock);
3518}
3519
3520/*
3521 * NOP if the arch has not defined these:
3522 */
3523
3524#ifndef prepare_arch_switch
3525# define prepare_arch_switch(next)	do { } while (0)
3526#endif
3527
3528#ifndef finish_arch_post_lock_switch
3529# define finish_arch_post_lock_switch()	do { } while (0)
3530#endif
3531
3532/**
3533 * prepare_task_switch - prepare to switch tasks
3534 * @rq: the runqueue preparing to switch
3535 * @prev: the current task that is being switched out
3536 * @next: the task we are going to switch to.
3537 *
3538 * This is called with the rq lock held and interrupts off. It must
3539 * be paired with a subsequent finish_task_switch after the context
3540 * switch.
3541 *
3542 * prepare_task_switch sets up locking and calls architecture specific
3543 * hooks.
3544 */
3545static inline void
3546prepare_task_switch(struct rq *rq, struct task_struct *prev,
3547		    struct task_struct *next)
3548{
3549	kcov_prepare_switch(prev);
3550	sched_info_switch(rq, prev, next);
3551	perf_event_task_sched_out(prev, next);
3552	rseq_preempt(prev);
3553	fire_sched_out_preempt_notifiers(prev, next);
3554	prepare_task(next);
3555	prepare_arch_switch(next);
3556}
3557
3558/**
3559 * finish_task_switch - clean up after a task-switch
3560 * @prev: the thread we just switched away from.
3561 *
3562 * finish_task_switch must be called after the context switch, paired
3563 * with a prepare_task_switch call before the context switch.
3564 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3565 * and do any other architecture-specific cleanup actions.
3566 *
3567 * Note that we may have delayed dropping an mm in context_switch(). If
3568 * so, we finish that here outside of the runqueue lock. (Doing it
3569 * with the lock held can cause deadlocks; see schedule() for
3570 * details.)
3571 *
3572 * The context switch have flipped the stack from under us and restored the
3573 * local variables which were saved when this task called schedule() in the
3574 * past. prev == current is still correct but we need to recalculate this_rq
3575 * because prev may have moved to another CPU.
3576 */
3577static struct rq *finish_task_switch(struct task_struct *prev)
3578	__releases(rq->lock)
3579{
3580	struct rq *rq = this_rq();
3581	struct mm_struct *mm = rq->prev_mm;
3582	long prev_state;
3583
3584	/*
3585	 * The previous task will have left us with a preempt_count of 2
3586	 * because it left us after:
3587	 *
3588	 *	schedule()
3589	 *	  preempt_disable();			// 1
3590	 *	  __schedule()
3591	 *	    raw_spin_lock_irq(&rq->lock)	// 2
3592	 *
3593	 * Also, see FORK_PREEMPT_COUNT.
3594	 */
3595	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3596		      "corrupted preempt_count: %s/%d/0x%x\n",
3597		      current->comm, current->pid, preempt_count()))
3598		preempt_count_set(FORK_PREEMPT_COUNT);
3599
3600	rq->prev_mm = NULL;
3601
3602	/*
3603	 * A task struct has one reference for the use as "current".
3604	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3605	 * schedule one last time. The schedule call will never return, and
3606	 * the scheduled task must drop that reference.
3607	 *
3608	 * We must observe prev->state before clearing prev->on_cpu (in
3609	 * finish_task), otherwise a concurrent wakeup can get prev
3610	 * running on another CPU and we could rave with its RUNNING -> DEAD
3611	 * transition, resulting in a double drop.
3612	 */
3613	prev_state = prev->state;
3614	vtime_task_switch(prev);
3615	perf_event_task_sched_in(prev, current);
3616	finish_task(prev);
3617	finish_lock_switch(rq);
3618	finish_arch_post_lock_switch();
3619	kcov_finish_switch(current);
3620
3621	fire_sched_in_preempt_notifiers(current);
3622	/*
3623	 * When switching through a kernel thread, the loop in
3624	 * membarrier_{private,global}_expedited() may have observed that
3625	 * kernel thread and not issued an IPI. It is therefore possible to
3626	 * schedule between user->kernel->user threads without passing though
3627	 * switch_mm(). Membarrier requires a barrier after storing to
3628	 * rq->curr, before returning to userspace, so provide them here:
3629	 *
3630	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3631	 *   provided by mmdrop(),
3632	 * - a sync_core for SYNC_CORE.
3633	 */
3634	if (mm) {
3635		membarrier_mm_sync_core_before_usermode(mm);
3636		mmdrop(mm);
3637	}
3638	if (unlikely(prev_state == TASK_DEAD)) {
3639		if (prev->sched_class->task_dead)
3640			prev->sched_class->task_dead(prev);
3641
3642		/*
3643		 * Remove function-return probe instances associated with this
3644		 * task and put them back on the free list.
3645		 */
3646		kprobe_flush_task(prev);
3647
3648		/* Task is done with its stack. */
3649		put_task_stack(prev);
3650
3651		put_task_struct_rcu_user(prev);
3652	}
3653
3654	tick_nohz_task_switch();
3655	return rq;
3656}
3657
3658#ifdef CONFIG_SMP
3659
3660/* rq->lock is NOT held, but preemption is disabled */
3661static void __balance_callback(struct rq *rq)
3662{
3663	struct callback_head *head, *next;
3664	void (*func)(struct rq *rq);
3665	unsigned long flags;
3666
3667	raw_spin_lock_irqsave(&rq->lock, flags);
3668	head = rq->balance_callback;
3669	rq->balance_callback = NULL;
3670	while (head) {
3671		func = (void (*)(struct rq *))head->func;
3672		next = head->next;
3673		head->next = NULL;
3674		head = next;
3675
3676		func(rq);
3677	}
3678	raw_spin_unlock_irqrestore(&rq->lock, flags);
3679}
3680
3681static inline void balance_callback(struct rq *rq)
3682{
3683	if (unlikely(rq->balance_callback))
3684		__balance_callback(rq);
3685}
3686
3687#else
3688
3689static inline void balance_callback(struct rq *rq)
3690{
3691}
3692
3693#endif
3694
3695/**
3696 * schedule_tail - first thing a freshly forked thread must call.
3697 * @prev: the thread we just switched away from.
3698 */
3699asmlinkage __visible void schedule_tail(struct task_struct *prev)
3700	__releases(rq->lock)
3701{
3702	struct rq *rq;
3703
3704	/*
3705	 * New tasks start with FORK_PREEMPT_COUNT, see there and
3706	 * finish_task_switch() for details.
3707	 *
3708	 * finish_task_switch() will drop rq->lock() and lower preempt_count
3709	 * and the preempt_enable() will end up enabling preemption (on
3710	 * PREEMPT_COUNT kernels).
3711	 */
3712
3713	rq = finish_task_switch(prev);
3714	balance_callback(rq);
3715	preempt_enable();
3716
3717	if (current->set_child_tid)
3718		put_user(task_pid_vnr(current), current->set_child_tid);
3719
3720	calculate_sigpending();
3721}
3722
3723/*
3724 * context_switch - switch to the new MM and the new thread's register state.
3725 */
3726static __always_inline struct rq *
3727context_switch(struct rq *rq, struct task_struct *prev,
3728	       struct task_struct *next, struct rq_flags *rf)
3729{
3730	prepare_task_switch(rq, prev, next);
3731
3732	/*
3733	 * For paravirt, this is coupled with an exit in switch_to to
3734	 * combine the page table reload and the switch backend into
3735	 * one hypercall.
3736	 */
3737	arch_start_context_switch(prev);
3738
3739	/*
3740	 * kernel -> kernel   lazy + transfer active
3741	 *   user -> kernel   lazy + mmgrab() active
3742	 *
3743	 * kernel ->   user   switch + mmdrop() active
3744	 *   user ->   user   switch
3745	 */
3746	if (!next->mm) {                                // to kernel
3747		enter_lazy_tlb(prev->active_mm, next);
3748
3749		next->active_mm = prev->active_mm;
3750		if (prev->mm)                           // from user
3751			mmgrab(prev->active_mm);
3752		else
3753			prev->active_mm = NULL;
3754	} else {                                        // to user
3755		membarrier_switch_mm(rq, prev->active_mm, next->mm);
3756		/*
3757		 * sys_membarrier() requires an smp_mb() between setting
3758		 * rq->curr / membarrier_switch_mm() and returning to userspace.
3759		 *
3760		 * The below provides this either through switch_mm(), or in
3761		 * case 'prev->active_mm == next->mm' through
3762		 * finish_task_switch()'s mmdrop().
3763		 */
3764		switch_mm_irqs_off(prev->active_mm, next->mm, next);
3765
3766		if (!prev->mm) {                        // from kernel
3767			/* will mmdrop() in finish_task_switch(). */
3768			rq->prev_mm = prev->active_mm;
3769			prev->active_mm = NULL;
3770		}
3771	}
3772
3773	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3774
3775	prepare_lock_switch(rq, next, rf);
3776
3777	/* Here we just switch the register state and the stack. */
3778	switch_to(prev, next, prev);
3779	barrier();
3780
3781	return finish_task_switch(prev);
3782}
3783
3784/*
3785 * nr_running and nr_context_switches:
3786 *
3787 * externally visible scheduler statistics: current number of runnable
3788 * threads, total number of context switches performed since bootup.
3789 */
3790unsigned long nr_running(void)
3791{
3792	unsigned long i, sum = 0;
3793
3794	for_each_online_cpu(i)
3795		sum += cpu_rq(i)->nr_running;
3796
3797	return sum;
3798}
3799
3800/*
3801 * Check if only the current task is running on the CPU.
3802 *
3803 * Caution: this function does not check that the caller has disabled
3804 * preemption, thus the result might have a time-of-check-to-time-of-use
3805 * race.  The caller is responsible to use it correctly, for example:
3806 *
3807 * - from a non-preemptible section (of course)
3808 *
3809 * - from a thread that is bound to a single CPU
3810 *
3811 * - in a loop with very short iterations (e.g. a polling loop)
3812 */
3813bool single_task_running(void)
3814{
3815	return raw_rq()->nr_running == 1;
3816}
3817EXPORT_SYMBOL(single_task_running);
3818
3819unsigned long long nr_context_switches(void)
3820{
3821	int i;
3822	unsigned long long sum = 0;
3823
3824	for_each_possible_cpu(i)
3825		sum += cpu_rq(i)->nr_switches;
3826
3827	return sum;
3828}
3829
3830/*
3831 * Consumers of these two interfaces, like for example the cpuidle menu
3832 * governor, are using nonsensical data. Preferring shallow idle state selection
3833 * for a CPU that has IO-wait which might not even end up running the task when
3834 * it does become runnable.
3835 */
3836
3837unsigned long nr_iowait_cpu(int cpu)
3838{
3839	return atomic_read(&cpu_rq(cpu)->nr_iowait);
3840}
3841
3842/*
3843 * IO-wait accounting, and how its mostly bollocks (on SMP).
3844 *
3845 * The idea behind IO-wait account is to account the idle time that we could
3846 * have spend running if it were not for IO. That is, if we were to improve the
3847 * storage performance, we'd have a proportional reduction in IO-wait time.
3848 *
3849 * This all works nicely on UP, where, when a task blocks on IO, we account
3850 * idle time as IO-wait, because if the storage were faster, it could've been
3851 * running and we'd not be idle.
3852 *
3853 * This has been extended to SMP, by doing the same for each CPU. This however
3854 * is broken.
3855 *
3856 * Imagine for instance the case where two tasks block on one CPU, only the one
3857 * CPU will have IO-wait accounted, while the other has regular idle. Even
3858 * though, if the storage were faster, both could've ran at the same time,
3859 * utilising both CPUs.
3860 *
3861 * This means, that when looking globally, the current IO-wait accounting on
3862 * SMP is a lower bound, by reason of under accounting.
3863 *
3864 * Worse, since the numbers are provided per CPU, they are sometimes
3865 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3866 * associated with any one particular CPU, it can wake to another CPU than it
3867 * blocked on. This means the per CPU IO-wait number is meaningless.
3868 *
3869 * Task CPU affinities can make all that even more 'interesting'.
3870 */
3871
3872unsigned long nr_iowait(void)
3873{
3874	unsigned long i, sum = 0;
3875
3876	for_each_possible_cpu(i)
3877		sum += nr_iowait_cpu(i);
3878
3879	return sum;
3880}
3881
3882#ifdef CONFIG_SMP
3883
3884/*
3885 * sched_exec - execve() is a valuable balancing opportunity, because at
3886 * this point the task has the smallest effective memory and cache footprint.
3887 */
3888void sched_exec(void)
3889{
3890	struct task_struct *p = current;
3891	unsigned long flags;
3892	int dest_cpu;
3893
3894	raw_spin_lock_irqsave(&p->pi_lock, flags);
3895	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3896	if (dest_cpu == smp_processor_id())
3897		goto unlock;
3898
3899	if (likely(cpu_active(dest_cpu))) {
3900		struct migration_arg arg = { p, dest_cpu };
3901
3902		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3903		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3904		return;
3905	}
3906unlock:
3907	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3908}
3909
3910#endif
3911
3912DEFINE_PER_CPU(struct kernel_stat, kstat);
3913DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3914
3915EXPORT_PER_CPU_SYMBOL(kstat);
3916EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3917
3918/*
3919 * The function fair_sched_class.update_curr accesses the struct curr
3920 * and its field curr->exec_start; when called from task_sched_runtime(),
3921 * we observe a high rate of cache misses in practice.
3922 * Prefetching this data results in improved performance.
3923 */
3924static inline void prefetch_curr_exec_start(struct task_struct *p)
3925{
3926#ifdef CONFIG_FAIR_GROUP_SCHED
3927	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3928#else
3929	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3930#endif
3931	prefetch(curr);
3932	prefetch(&curr->exec_start);
3933}
3934
3935/*
3936 * Return accounted runtime for the task.
3937 * In case the task is currently running, return the runtime plus current's
3938 * pending runtime that have not been accounted yet.
3939 */
3940unsigned long long task_sched_runtime(struct task_struct *p)
3941{
3942	struct rq_flags rf;
3943	struct rq *rq;
3944	u64 ns;
3945
3946#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3947	/*
3948	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3949	 * So we have a optimization chance when the task's delta_exec is 0.
3950	 * Reading ->on_cpu is racy, but this is ok.
3951	 *
3952	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3953	 * If we race with it entering CPU, unaccounted time is 0. This is
3954	 * indistinguishable from the read occurring a few cycles earlier.
3955	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3956	 * been accounted, so we're correct here as well.
3957	 */
3958	if (!p->on_cpu || !task_on_rq_queued(p))
3959		return p->se.sum_exec_runtime;
3960#endif
3961
3962	rq = task_rq_lock(p, &rf);
3963	/*
3964	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3965	 * project cycles that may never be accounted to this
3966	 * thread, breaking clock_gettime().
3967	 */
3968	if (task_current(rq, p) && task_on_rq_queued(p)) {
3969		prefetch_curr_exec_start(p);
3970		update_rq_clock(rq);
3971		p->sched_class->update_curr(rq);
3972	}
3973	ns = p->se.sum_exec_runtime;
3974	task_rq_unlock(rq, p, &rf);
3975
3976	return ns;
3977}
3978
3979/*
3980 * This function gets called by the timer code, with HZ frequency.
3981 * We call it with interrupts disabled.
3982 */
3983void scheduler_tick(void)
3984{
3985	int cpu = smp_processor_id();
3986	struct rq *rq = cpu_rq(cpu);
3987	struct task_struct *curr = rq->curr;
3988	struct rq_flags rf;
3989	unsigned long thermal_pressure;
3990
3991	arch_scale_freq_tick();
3992	sched_clock_tick();
3993
3994	rq_lock(rq, &rf);
3995
3996	update_rq_clock(rq);
3997	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3998	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
3999	curr->sched_class->task_tick(rq, curr, 0);
4000	calc_global_load_tick(rq);
4001	psi_task_tick(rq);
4002
4003	rq_unlock(rq, &rf);
4004
4005	perf_event_task_tick();
4006
4007#ifdef CONFIG_SMP
4008	rq->idle_balance = idle_cpu(cpu);
4009	trigger_load_balance(rq);
4010#endif
4011}
4012
4013#ifdef CONFIG_NO_HZ_FULL
4014
4015struct tick_work {
4016	int			cpu;
4017	atomic_t		state;
4018	struct delayed_work	work;
4019};
4020/* Values for ->state, see diagram below. */
4021#define TICK_SCHED_REMOTE_OFFLINE	0
4022#define TICK_SCHED_REMOTE_OFFLINING	1
4023#define TICK_SCHED_REMOTE_RUNNING	2
4024
4025/*
4026 * State diagram for ->state:
4027 *
4028 *
4029 *          TICK_SCHED_REMOTE_OFFLINE
4030 *                    |   ^
4031 *                    |   |
4032 *                    |   | sched_tick_remote()
4033 *                    |   |
4034 *                    |   |
4035 *                    +--TICK_SCHED_REMOTE_OFFLINING
4036 *                    |   ^
4037 *                    |   |
4038 * sched_tick_start() |   | sched_tick_stop()
4039 *                    |   |
4040 *                    V   |
4041 *          TICK_SCHED_REMOTE_RUNNING
4042 *
4043 *
4044 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4045 * and sched_tick_start() are happy to leave the state in RUNNING.
4046 */
4047
4048static struct tick_work __percpu *tick_work_cpu;
4049
4050static void sched_tick_remote(struct work_struct *work)
4051{
4052	struct delayed_work *dwork = to_delayed_work(work);
4053	struct tick_work *twork = container_of(dwork, struct tick_work, work);
4054	int cpu = twork->cpu;
4055	struct rq *rq = cpu_rq(cpu);
4056	struct task_struct *curr;
4057	struct rq_flags rf;
4058	u64 delta;
4059	int os;
4060
4061	/*
4062	 * Handle the tick only if it appears the remote CPU is running in full
4063	 * dynticks mode. The check is racy by nature, but missing a tick or
4064	 * having one too much is no big deal because the scheduler tick updates
4065	 * statistics and checks timeslices in a time-independent way, regardless
4066	 * of when exactly it is running.
4067	 */
4068	if (!tick_nohz_tick_stopped_cpu(cpu))
4069		goto out_requeue;
4070
4071	rq_lock_irq(rq, &rf);
4072	curr = rq->curr;
4073	if (cpu_is_offline(cpu))
4074		goto out_unlock;
4075
4076	update_rq_clock(rq);
4077
4078	if (!is_idle_task(curr)) {
4079		/*
4080		 * Make sure the next tick runs within a reasonable
4081		 * amount of time.
4082		 */
4083		delta = rq_clock_task(rq) - curr->se.exec_start;
4084		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4085	}
4086	curr->sched_class->task_tick(rq, curr, 0);
4087
4088	calc_load_nohz_remote(rq);
4089out_unlock:
4090	rq_unlock_irq(rq, &rf);
4091out_requeue:
4092
4093	/*
4094	 * Run the remote tick once per second (1Hz). This arbitrary
4095	 * frequency is large enough to avoid overload but short enough
4096	 * to keep scheduler internal stats reasonably up to date.  But
4097	 * first update state to reflect hotplug activity if required.
4098	 */
4099	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4100	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4101	if (os == TICK_SCHED_REMOTE_RUNNING)
4102		queue_delayed_work(system_unbound_wq, dwork, HZ);
4103}
4104
4105static void sched_tick_start(int cpu)
4106{
4107	int os;
4108	struct tick_work *twork;
4109
4110	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4111		return;
4112
4113	WARN_ON_ONCE(!tick_work_cpu);
4114
4115	twork = per_cpu_ptr(tick_work_cpu, cpu);
4116	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4117	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4118	if (os == TICK_SCHED_REMOTE_OFFLINE) {
4119		twork->cpu = cpu;
4120		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4121		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4122	}
4123}
4124
4125#ifdef CONFIG_HOTPLUG_CPU
4126static void sched_tick_stop(int cpu)
4127{
4128	struct tick_work *twork;
4129	int os;
4130
4131	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4132		return;
4133
4134	WARN_ON_ONCE(!tick_work_cpu);
4135
4136	twork = per_cpu_ptr(tick_work_cpu, cpu);
4137	/* There cannot be competing actions, but don't rely on stop-machine. */
4138	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4139	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4140	/* Don't cancel, as this would mess up the state machine. */
4141}
4142#endif /* CONFIG_HOTPLUG_CPU */
4143
4144int __init sched_tick_offload_init(void)
4145{
4146	tick_work_cpu = alloc_percpu(struct tick_work);
4147	BUG_ON(!tick_work_cpu);
4148	return 0;
4149}
4150
4151#else /* !CONFIG_NO_HZ_FULL */
4152static inline void sched_tick_start(int cpu) { }
4153static inline void sched_tick_stop(int cpu) { }
4154#endif
4155
4156#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4157				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4158/*
4159 * If the value passed in is equal to the current preempt count
4160 * then we just disabled preemption. Start timing the latency.
4161 */
4162static inline void preempt_latency_start(int val)
4163{
4164	if (preempt_count() == val) {
4165		unsigned long ip = get_lock_parent_ip();
4166#ifdef CONFIG_DEBUG_PREEMPT
4167		current->preempt_disable_ip = ip;
4168#endif
4169		trace_preempt_off(CALLER_ADDR0, ip);
4170	}
4171}
4172
4173void preempt_count_add(int val)
4174{
4175#ifdef CONFIG_DEBUG_PREEMPT
4176	/*
4177	 * Underflow?
4178	 */
4179	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4180		return;
4181#endif
4182	__preempt_count_add(val);
4183#ifdef CONFIG_DEBUG_PREEMPT
4184	/*
4185	 * Spinlock count overflowing soon?
4186	 */
4187	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4188				PREEMPT_MASK - 10);
4189#endif
4190	preempt_latency_start(val);
4191}
4192EXPORT_SYMBOL(preempt_count_add);
4193NOKPROBE_SYMBOL(preempt_count_add);
4194
4195/*
4196 * If the value passed in equals to the current preempt count
4197 * then we just enabled preemption. Stop timing the latency.
4198 */
4199static inline void preempt_latency_stop(int val)
4200{
4201	if (preempt_count() == val)
4202		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4203}
4204
4205void preempt_count_sub(int val)
4206{
4207#ifdef CONFIG_DEBUG_PREEMPT
4208	/*
4209	 * Underflow?
4210	 */
4211	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4212		return;
4213	/*
4214	 * Is the spinlock portion underflowing?
4215	 */
4216	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4217			!(preempt_count() & PREEMPT_MASK)))
4218		return;
4219#endif
4220
4221	preempt_latency_stop(val);
4222	__preempt_count_sub(val);
4223}
4224EXPORT_SYMBOL(preempt_count_sub);
4225NOKPROBE_SYMBOL(preempt_count_sub);
4226
4227#else
4228static inline void preempt_latency_start(int val) { }
4229static inline void preempt_latency_stop(int val) { }
4230#endif
4231
4232static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4233{
4234#ifdef CONFIG_DEBUG_PREEMPT
4235	return p->preempt_disable_ip;
4236#else
4237	return 0;
4238#endif
4239}
4240
4241/*
4242 * Print scheduling while atomic bug:
4243 */
4244static noinline void __schedule_bug(struct task_struct *prev)
4245{
4246	/* Save this before calling printk(), since that will clobber it */
4247	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4248
4249	if (oops_in_progress)
4250		return;
4251
4252	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4253		prev->comm, prev->pid, preempt_count());
4254
4255	debug_show_held_locks(prev);
4256	print_modules();
4257	if (irqs_disabled())
4258		print_irqtrace_events(prev);
4259	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4260	    && in_atomic_preempt_off()) {
4261		pr_err("Preemption disabled at:");
4262		print_ip_sym(KERN_ERR, preempt_disable_ip);
4263	}
4264	if (panic_on_warn)
4265		panic("scheduling while atomic\n");
4266
4267	dump_stack();
4268	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4269}
4270
4271/*
4272 * Various schedule()-time debugging checks and statistics:
4273 */
4274static inline void schedule_debug(struct task_struct *prev, bool preempt)
4275{
4276#ifdef CONFIG_SCHED_STACK_END_CHECK
4277	if (task_stack_end_corrupted(prev))
4278		panic("corrupted stack end detected inside scheduler\n");
4279
4280	if (task_scs_end_corrupted(prev))
4281		panic("corrupted shadow stack detected inside scheduler\n");
4282#endif
4283
4284#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4285	if (!preempt && prev->state && prev->non_block_count) {
4286		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4287			prev->comm, prev->pid, prev->non_block_count);
4288		dump_stack();
4289		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4290	}
4291#endif
4292
4293	if (unlikely(in_atomic_preempt_off())) {
4294		__schedule_bug(prev);
4295		preempt_count_set(PREEMPT_DISABLED);
4296	}
4297	rcu_sleep_check();
4298
4299	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4300
4301	schedstat_inc(this_rq()->sched_count);
4302}
4303
4304static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4305				  struct rq_flags *rf)
4306{
4307#ifdef CONFIG_SMP
4308	const struct sched_class *class;
4309	/*
4310	 * We must do the balancing pass before put_prev_task(), such
4311	 * that when we release the rq->lock the task is in the same
4312	 * state as before we took rq->lock.
4313	 *
4314	 * We can terminate the balance pass as soon as we know there is
4315	 * a runnable task of @class priority or higher.
4316	 */
4317	for_class_range(class, prev->sched_class, &idle_sched_class) {
4318		if (class->balance(rq, prev, rf))
4319			break;
4320	}
4321#endif
4322
4323	put_prev_task(rq, prev);
4324}
4325
4326/*
4327 * Pick up the highest-prio task:
4328 */
4329static inline struct task_struct *
4330pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4331{
4332	const struct sched_class *class;
4333	struct task_struct *p;
4334
4335	/*
4336	 * Optimization: we know that if all tasks are in the fair class we can
4337	 * call that function directly, but only if the @prev task wasn't of a
4338	 * higher scheduling class, because otherwise those loose the
4339	 * opportunity to pull in more work from other CPUs.
4340	 */
4341	if (likely(prev->sched_class <= &fair_sched_class &&
4342		   rq->nr_running == rq->cfs.h_nr_running)) {
4343
4344		p = pick_next_task_fair(rq, prev, rf);
4345		if (unlikely(p == RETRY_TASK))
4346			goto restart;
4347
4348		/* Assumes fair_sched_class->next == idle_sched_class */
4349		if (!p) {
4350			put_prev_task(rq, prev);
4351			p = pick_next_task_idle(rq);
4352		}
4353
4354		return p;
4355	}
4356
4357restart:
4358	put_prev_task_balance(rq, prev, rf);
4359
4360	for_each_class(class) {
4361		p = class->pick_next_task(rq);
4362		if (p)
4363			return p;
4364	}
4365
4366	/* The idle class should always have a runnable task: */
4367	BUG();
4368}
4369
4370/*
4371 * __schedule() is the main scheduler function.
4372 *
4373 * The main means of driving the scheduler and thus entering this function are:
4374 *
4375 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4376 *
4377 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4378 *      paths. For example, see arch/x86/entry_64.S.
4379 *
4380 *      To drive preemption between tasks, the scheduler sets the flag in timer
4381 *      interrupt handler scheduler_tick().
4382 *
4383 *   3. Wakeups don't really cause entry into schedule(). They add a
4384 *      task to the run-queue and that's it.
4385 *
4386 *      Now, if the new task added to the run-queue preempts the current
4387 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4388 *      called on the nearest possible occasion:
4389 *
4390 *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4391 *
4392 *         - in syscall or exception context, at the next outmost
4393 *           preempt_enable(). (this might be as soon as the wake_up()'s
4394 *           spin_unlock()!)
4395 *
4396 *         - in IRQ context, return from interrupt-handler to
4397 *           preemptible context
4398 *
4399 *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4400 *         then at the next:
4401 *
4402 *          - cond_resched() call
4403 *          - explicit schedule() call
4404 *          - return from syscall or exception to user-space
4405 *          - return from interrupt-handler to user-space
4406 *
4407 * WARNING: must be called with preemption disabled!
4408 */
4409static void __sched notrace __schedule(bool preempt)
4410{
4411	struct task_struct *prev, *next;
4412	unsigned long *switch_count;
4413	unsigned long prev_state;
4414	struct rq_flags rf;
4415	struct rq *rq;
4416	int cpu;
4417
4418	cpu = smp_processor_id();
4419	rq = cpu_rq(cpu);
4420	prev = rq->curr;
4421
4422	schedule_debug(prev, preempt);
4423
4424	if (sched_feat(HRTICK))
4425		hrtick_clear(rq);
4426
4427	local_irq_disable();
4428	rcu_note_context_switch(preempt);
4429
4430	/*
4431	 * Make sure that signal_pending_state()->signal_pending() below
4432	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4433	 * done by the caller to avoid the race with signal_wake_up():
4434	 *
4435	 * __set_current_state(@state)		signal_wake_up()
4436	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
4437	 *					  wake_up_state(p, state)
4438	 *   LOCK rq->lock			    LOCK p->pi_state
4439	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
4440	 *     if (signal_pending_state())	    if (p->state & @state)
4441	 *
4442	 * Also, the membarrier system call requires a full memory barrier
4443	 * after coming from user-space, before storing to rq->curr.
4444	 */
4445	rq_lock(rq, &rf);
4446	smp_mb__after_spinlock();
4447
4448	/* Promote REQ to ACT */
4449	rq->clock_update_flags <<= 1;
4450	update_rq_clock(rq);
4451
4452	switch_count = &prev->nivcsw;
4453
4454	/*
4455	 * We must load prev->state once (task_struct::state is volatile), such
4456	 * that:
4457	 *
4458	 *  - we form a control dependency vs deactivate_task() below.
4459	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
4460	 */
4461	prev_state = prev->state;
4462	if (!preempt && prev_state) {
4463		if (signal_pending_state(prev_state, prev)) {
4464			prev->state = TASK_RUNNING;
4465		} else {
4466			prev->sched_contributes_to_load =
4467				(prev_state & TASK_UNINTERRUPTIBLE) &&
4468				!(prev_state & TASK_NOLOAD) &&
4469				!(prev->flags & PF_FROZEN);
4470
4471			if (prev->sched_contributes_to_load)
4472				rq->nr_uninterruptible++;
4473
4474			/*
4475			 * __schedule()			ttwu()
4476			 *   prev_state = prev->state;    if (p->on_rq && ...)
4477			 *   if (prev_state)		    goto out;
4478			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
4479			 *				  p->state = TASK_WAKING
4480			 *
4481			 * Where __schedule() and ttwu() have matching control dependencies.
4482			 *
4483			 * After this, schedule() must not care about p->state any more.
4484			 */
4485			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4486
4487			if (prev->in_iowait) {
4488				atomic_inc(&rq->nr_iowait);
4489				delayacct_blkio_start();
4490			}
4491		}
4492		switch_count = &prev->nvcsw;
4493	}
4494
4495	next = pick_next_task(rq, prev, &rf);
4496	clear_tsk_need_resched(prev);
4497	clear_preempt_need_resched();
4498
4499	if (likely(prev != next)) {
4500		rq->nr_switches++;
4501		/*
4502		 * RCU users of rcu_dereference(rq->curr) may not see
4503		 * changes to task_struct made by pick_next_task().
4504		 */
4505		RCU_INIT_POINTER(rq->curr, next);
4506		/*
4507		 * The membarrier system call requires each architecture
4508		 * to have a full memory barrier after updating
4509		 * rq->curr, before returning to user-space.
4510		 *
4511		 * Here are the schemes providing that barrier on the
4512		 * various architectures:
4513		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4514		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4515		 * - finish_lock_switch() for weakly-ordered
4516		 *   architectures where spin_unlock is a full barrier,
4517		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4518		 *   is a RELEASE barrier),
4519		 */
4520		++*switch_count;
4521
4522		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4523
4524		trace_sched_switch(preempt, prev, next);
4525
4526		/* Also unlocks the rq: */
4527		rq = context_switch(rq, prev, next, &rf);
4528	} else {
4529		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4530		rq_unlock_irq(rq, &rf);
4531	}
4532
4533	balance_callback(rq);
4534}
4535
4536void __noreturn do_task_dead(void)
4537{
4538	/* Causes final put_task_struct in finish_task_switch(): */
4539	set_special_state(TASK_DEAD);
4540
4541	/* Tell freezer to ignore us: */
4542	current->flags |= PF_NOFREEZE;
4543
4544	__schedule(false);
4545	BUG();
4546
4547	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4548	for (;;)
4549		cpu_relax();
4550}
4551
4552static inline void sched_submit_work(struct task_struct *tsk)
4553{
4554	if (!tsk->state)
4555		return;
4556
4557	/*
4558	 * If a worker went to sleep, notify and ask workqueue whether
4559	 * it wants to wake up a task to maintain concurrency.
4560	 * As this function is called inside the schedule() context,
4561	 * we disable preemption to avoid it calling schedule() again
4562	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4563	 * requires it.
4564	 */
4565	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4566		preempt_disable();
4567		if (tsk->flags & PF_WQ_WORKER)
4568			wq_worker_sleeping(tsk);
4569		else
4570			io_wq_worker_sleeping(tsk);
4571		preempt_enable_no_resched();
4572	}
4573
4574	if (tsk_is_pi_blocked(tsk))
4575		return;
4576
4577	/*
4578	 * If we are going to sleep and we have plugged IO queued,
4579	 * make sure to submit it to avoid deadlocks.
4580	 */
4581	if (blk_needs_flush_plug(tsk))
4582		blk_schedule_flush_plug(tsk);
4583}
4584
4585static void sched_update_worker(struct task_struct *tsk)
4586{
4587	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4588		if (tsk->flags & PF_WQ_WORKER)
4589			wq_worker_running(tsk);
4590		else
4591			io_wq_worker_running(tsk);
4592	}
4593}
4594
4595asmlinkage __visible void __sched schedule(void)
4596{
4597	struct task_struct *tsk = current;
4598
4599	sched_submit_work(tsk);
4600	do {
4601		preempt_disable();
4602		__schedule(false);
4603		sched_preempt_enable_no_resched();
4604	} while (need_resched());
4605	sched_update_worker(tsk);
4606}
4607EXPORT_SYMBOL(schedule);
4608
4609/*
4610 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4611 * state (have scheduled out non-voluntarily) by making sure that all
4612 * tasks have either left the run queue or have gone into user space.
4613 * As idle tasks do not do either, they must not ever be preempted
4614 * (schedule out non-voluntarily).
4615 *
4616 * schedule_idle() is similar to schedule_preempt_disable() except that it
4617 * never enables preemption because it does not call sched_submit_work().
4618 */
4619void __sched schedule_idle(void)
4620{
4621	/*
4622	 * As this skips calling sched_submit_work(), which the idle task does
4623	 * regardless because that function is a nop when the task is in a
4624	 * TASK_RUNNING state, make sure this isn't used someplace that the
4625	 * current task can be in any other state. Note, idle is always in the
4626	 * TASK_RUNNING state.
4627	 */
4628	WARN_ON_ONCE(current->state);
4629	do {
4630		__schedule(false);
4631	} while (need_resched());
4632}
4633
4634#ifdef CONFIG_CONTEXT_TRACKING
4635asmlinkage __visible void __sched schedule_user(void)
4636{
4637	/*
4638	 * If we come here after a random call to set_need_resched(),
4639	 * or we have been woken up remotely but the IPI has not yet arrived,
4640	 * we haven't yet exited the RCU idle mode. Do it here manually until
4641	 * we find a better solution.
4642	 *
4643	 * NB: There are buggy callers of this function.  Ideally we
4644	 * should warn if prev_state != CONTEXT_USER, but that will trigger
4645	 * too frequently to make sense yet.
4646	 */
4647	enum ctx_state prev_state = exception_enter();
4648	schedule();
4649	exception_exit(prev_state);
4650}
4651#endif
4652
4653/**
4654 * schedule_preempt_disabled - called with preemption disabled
4655 *
4656 * Returns with preemption disabled. Note: preempt_count must be 1
4657 */
4658void __sched schedule_preempt_disabled(void)
4659{
4660	sched_preempt_enable_no_resched();
4661	schedule();
4662	preempt_disable();
4663}
4664
4665static void __sched notrace preempt_schedule_common(void)
4666{
4667	do {
4668		/*
4669		 * Because the function tracer can trace preempt_count_sub()
4670		 * and it also uses preempt_enable/disable_notrace(), if
4671		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4672		 * by the function tracer will call this function again and
4673		 * cause infinite recursion.
4674		 *
4675		 * Preemption must be disabled here before the function
4676		 * tracer can trace. Break up preempt_disable() into two
4677		 * calls. One to disable preemption without fear of being
4678		 * traced. The other to still record the preemption latency,
4679		 * which can also be traced by the function tracer.
4680		 */
4681		preempt_disable_notrace();
4682		preempt_latency_start(1);
4683		__schedule(true);
4684		preempt_latency_stop(1);
4685		preempt_enable_no_resched_notrace();
4686
4687		/*
4688		 * Check again in case we missed a preemption opportunity
4689		 * between schedule and now.
4690		 */
4691	} while (need_resched());
4692}
4693
4694#ifdef CONFIG_PREEMPTION
4695/*
4696 * This is the entry point to schedule() from in-kernel preemption
4697 * off of preempt_enable.
4698 */
4699asmlinkage __visible void __sched notrace preempt_schedule(void)
4700{
4701	/*
4702	 * If there is a non-zero preempt_count or interrupts are disabled,
4703	 * we do not want to preempt the current task. Just return..
4704	 */
4705	if (likely(!preemptible()))
4706		return;
4707
4708	preempt_schedule_common();
4709}
4710NOKPROBE_SYMBOL(preempt_schedule);
4711EXPORT_SYMBOL(preempt_schedule);
4712
4713/**
4714 * preempt_schedule_notrace - preempt_schedule called by tracing
4715 *
4716 * The tracing infrastructure uses preempt_enable_notrace to prevent
4717 * recursion and tracing preempt enabling caused by the tracing
4718 * infrastructure itself. But as tracing can happen in areas coming
4719 * from userspace or just about to enter userspace, a preempt enable
4720 * can occur before user_exit() is called. This will cause the scheduler
4721 * to be called when the system is still in usermode.
4722 *
4723 * To prevent this, the preempt_enable_notrace will use this function
4724 * instead of preempt_schedule() to exit user context if needed before
4725 * calling the scheduler.
4726 */
4727asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4728{
4729	enum ctx_state prev_ctx;
4730
4731	if (likely(!preemptible()))
4732		return;
4733
4734	do {
4735		/*
4736		 * Because the function tracer can trace preempt_count_sub()
4737		 * and it also uses preempt_enable/disable_notrace(), if
4738		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4739		 * by the function tracer will call this function again and
4740		 * cause infinite recursion.
4741		 *
4742		 * Preemption must be disabled here before the function
4743		 * tracer can trace. Break up preempt_disable() into two
4744		 * calls. One to disable preemption without fear of being
4745		 * traced. The other to still record the preemption latency,
4746		 * which can also be traced by the function tracer.
4747		 */
4748		preempt_disable_notrace();
4749		preempt_latency_start(1);
4750		/*
4751		 * Needs preempt disabled in case user_exit() is traced
4752		 * and the tracer calls preempt_enable_notrace() causing
4753		 * an infinite recursion.
4754		 */
4755		prev_ctx = exception_enter();
4756		__schedule(true);
4757		exception_exit(prev_ctx);
4758
4759		preempt_latency_stop(1);
4760		preempt_enable_no_resched_notrace();
4761	} while (need_resched());
4762}
4763EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4764
4765#endif /* CONFIG_PREEMPTION */
4766
4767/*
4768 * This is the entry point to schedule() from kernel preemption
4769 * off of irq context.
4770 * Note, that this is called and return with irqs disabled. This will
4771 * protect us against recursive calling from irq.
4772 */
4773asmlinkage __visible void __sched preempt_schedule_irq(void)
4774{
4775	enum ctx_state prev_state;
4776
4777	/* Catch callers which need to be fixed */
4778	BUG_ON(preempt_count() || !irqs_disabled());
4779
4780	prev_state = exception_enter();
4781
4782	do {
4783		preempt_disable();
4784		local_irq_enable();
4785		__schedule(true);
4786		local_irq_disable();
4787		sched_preempt_enable_no_resched();
4788	} while (need_resched());
4789
4790	exception_exit(prev_state);
4791}
4792
4793int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4794			  void *key)
4795{
4796	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
4797	return try_to_wake_up(curr->private, mode, wake_flags);
4798}
4799EXPORT_SYMBOL(default_wake_function);
4800
4801#ifdef CONFIG_RT_MUTEXES
4802
4803static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4804{
4805	if (pi_task)
4806		prio = min(prio, pi_task->prio);
4807
4808	return prio;
4809}
4810
4811static inline int rt_effective_prio(struct task_struct *p, int prio)
4812{
4813	struct task_struct *pi_task = rt_mutex_get_top_task(p);
4814
4815	return __rt_effective_prio(pi_task, prio);
4816}
4817
4818/*
4819 * rt_mutex_setprio - set the current priority of a task
4820 * @p: task to boost
4821 * @pi_task: donor task
4822 *
4823 * This function changes the 'effective' priority of a task. It does
4824 * not touch ->normal_prio like __setscheduler().
4825 *
4826 * Used by the rt_mutex code to implement priority inheritance
4827 * logic. Call site only calls if the priority of the task changed.
4828 */
4829void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4830{
4831	int prio, oldprio, queued, running, queue_flag =
4832		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4833	const struct sched_class *prev_class;
4834	struct rq_flags rf;
4835	struct rq *rq;
4836
4837	/* XXX used to be waiter->prio, not waiter->task->prio */
4838	prio = __rt_effective_prio(pi_task, p->normal_prio);
4839
4840	/*
4841	 * If nothing changed; bail early.
4842	 */
4843	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4844		return;
4845
4846	rq = __task_rq_lock(p, &rf);
4847	update_rq_clock(rq);
4848	/*
4849	 * Set under pi_lock && rq->lock, such that the value can be used under
4850	 * either lock.
4851	 *
4852	 * Note that there is loads of tricky to make this pointer cache work
4853	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4854	 * ensure a task is de-boosted (pi_task is set to NULL) before the
4855	 * task is allowed to run again (and can exit). This ensures the pointer
4856	 * points to a blocked task -- which guaratees the task is present.
4857	 */
4858	p->pi_top_task = pi_task;
4859
4860	/*
4861	 * For FIFO/RR we only need to set prio, if that matches we're done.
4862	 */
4863	if (prio == p->prio && !dl_prio(prio))
4864		goto out_unlock;
4865
4866	/*
4867	 * Idle task boosting is a nono in general. There is one
4868	 * exception, when PREEMPT_RT and NOHZ is active:
4869	 *
4870	 * The idle task calls get_next_timer_interrupt() and holds
4871	 * the timer wheel base->lock on the CPU and another CPU wants
4872	 * to access the timer (probably to cancel it). We can safely
4873	 * ignore the boosting request, as the idle CPU runs this code
4874	 * with interrupts disabled and will complete the lock
4875	 * protected section without being interrupted. So there is no
4876	 * real need to boost.
4877	 */
4878	if (unlikely(p == rq->idle)) {
4879		WARN_ON(p != rq->curr);
4880		WARN_ON(p->pi_blocked_on);
4881		goto out_unlock;
4882	}
4883
4884	trace_sched_pi_setprio(p, pi_task);
4885	oldprio = p->prio;
4886
4887	if (oldprio == prio)
4888		queue_flag &= ~DEQUEUE_MOVE;
4889
4890	prev_class = p->sched_class;
4891	queued = task_on_rq_queued(p);
4892	running = task_current(rq, p);
4893	if (queued)
4894		dequeue_task(rq, p, queue_flag);
4895	if (running)
4896		put_prev_task(rq, p);
4897
4898	/*
4899	 * Boosting condition are:
4900	 * 1. -rt task is running and holds mutex A
4901	 *      --> -dl task blocks on mutex A
4902	 *
4903	 * 2. -dl task is running and holds mutex A
4904	 *      --> -dl task blocks on mutex A and could preempt the
4905	 *          running task
4906	 */
4907	if (dl_prio(prio)) {
4908		if (!dl_prio(p->normal_prio) ||
4909		    (pi_task && dl_prio(pi_task->prio) &&
4910		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
4911			p->dl.dl_boosted = 1;
4912			queue_flag |= ENQUEUE_REPLENISH;
4913		} else
4914			p->dl.dl_boosted = 0;
4915		p->sched_class = &dl_sched_class;
4916	} else if (rt_prio(prio)) {
4917		if (dl_prio(oldprio))
4918			p->dl.dl_boosted = 0;
4919		if (oldprio < prio)
4920			queue_flag |= ENQUEUE_HEAD;
4921		p->sched_class = &rt_sched_class;
4922	} else {
4923		if (dl_prio(oldprio))
4924			p->dl.dl_boosted = 0;
4925		if (rt_prio(oldprio))
4926			p->rt.timeout = 0;
4927		p->sched_class = &fair_sched_class;
4928	}
4929
4930	p->prio = prio;
4931
4932	if (queued)
4933		enqueue_task(rq, p, queue_flag);
4934	if (running)
4935		set_next_task(rq, p);
4936
4937	check_class_changed(rq, p, prev_class, oldprio);
4938out_unlock:
4939	/* Avoid rq from going away on us: */
4940	preempt_disable();
4941	__task_rq_unlock(rq, &rf);
4942
4943	balance_callback(rq);
4944	preempt_enable();
4945}
4946#else
4947static inline int rt_effective_prio(struct task_struct *p, int prio)
4948{
4949	return prio;
4950}
4951#endif
4952
4953void set_user_nice(struct task_struct *p, long nice)
4954{
4955	bool queued, running;
4956	int old_prio;
4957	struct rq_flags rf;
4958	struct rq *rq;
4959
4960	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4961		return;
4962	/*
4963	 * We have to be careful, if called from sys_setpriority(),
4964	 * the task might be in the middle of scheduling on another CPU.
4965	 */
4966	rq = task_rq_lock(p, &rf);
4967	update_rq_clock(rq);
4968
4969	/*
4970	 * The RT priorities are set via sched_setscheduler(), but we still
4971	 * allow the 'normal' nice value to be set - but as expected
4972	 * it wont have any effect on scheduling until the task is
4973	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4974	 */
4975	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4976		p->static_prio = NICE_TO_PRIO(nice);
4977		goto out_unlock;
4978	}
4979	queued = task_on_rq_queued(p);
4980	running = task_current(rq, p);
4981	if (queued)
4982		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4983	if (running)
4984		put_prev_task(rq, p);
4985
4986	p->static_prio = NICE_TO_PRIO(nice);
4987	set_load_weight(p, true);
4988	old_prio = p->prio;
4989	p->prio = effective_prio(p);
4990
4991	if (queued)
4992		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4993	if (running)
4994		set_next_task(rq, p);
4995
4996	/*
4997	 * If the task increased its priority or is running and
4998	 * lowered its priority, then reschedule its CPU:
4999	 */
5000	p->sched_class->prio_changed(rq, p, old_prio);
5001
5002out_unlock:
5003	task_rq_unlock(rq, p, &rf);
5004}
5005EXPORT_SYMBOL(set_user_nice);
5006
5007/*
5008 * can_nice - check if a task can reduce its nice value
5009 * @p: task
5010 * @nice: nice value
5011 */
5012int can_nice(const struct task_struct *p, const int nice)
5013{
5014	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
5015	int nice_rlim = nice_to_rlimit(nice);
5016
5017	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5018		capable(CAP_SYS_NICE));
5019}
5020
5021#ifdef __ARCH_WANT_SYS_NICE
5022
5023/*
5024 * sys_nice - change the priority of the current process.
5025 * @increment: priority increment
5026 *
5027 * sys_setpriority is a more generic, but much slower function that
5028 * does similar things.
5029 */
5030SYSCALL_DEFINE1(nice, int, increment)
5031{
5032	long nice, retval;
5033
5034	/*
5035	 * Setpriority might change our priority at the same moment.
5036	 * We don't have to worry. Conceptually one call occurs first
5037	 * and we have a single winner.
5038	 */
5039	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5040	nice = task_nice(current) + increment;
5041
5042	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5043	if (increment < 0 && !can_nice(current, nice))
5044		return -EPERM;
5045
5046	retval = security_task_setnice(current, nice);
5047	if (retval)
5048		return retval;
5049
5050	set_user_nice(current, nice);
5051	return 0;
5052}
5053
5054#endif
5055
5056/**
5057 * task_prio - return the priority value of a given task.
5058 * @p: the task in question.
5059 *
5060 * Return: The priority value as seen by users in /proc.
5061 * RT tasks are offset by -200. Normal tasks are centered
5062 * around 0, value goes from -16 to +15.
5063 */
5064int task_prio(const struct task_struct *p)
5065{
5066	return p->prio - MAX_RT_PRIO;
5067}
5068
5069/**
5070 * idle_cpu - is a given CPU idle currently?
5071 * @cpu: the processor in question.
5072 *
5073 * Return: 1 if the CPU is currently idle. 0 otherwise.
5074 */
5075int idle_cpu(int cpu)
5076{
5077	struct rq *rq = cpu_rq(cpu);
5078
5079	if (rq->curr != rq->idle)
5080		return 0;
5081
5082	if (rq->nr_running)
5083		return 0;
5084
5085#ifdef CONFIG_SMP
5086	if (rq->ttwu_pending)
5087		return 0;
5088#endif
5089
5090	return 1;
5091}
5092
5093/**
5094 * available_idle_cpu - is a given CPU idle for enqueuing work.
5095 * @cpu: the CPU in question.
5096 *
5097 * Return: 1 if the CPU is currently idle. 0 otherwise.
5098 */
5099int available_idle_cpu(int cpu)
5100{
5101	if (!idle_cpu(cpu))
5102		return 0;
5103
5104	if (vcpu_is_preempted(cpu))
5105		return 0;
5106
5107	return 1;
5108}
5109
5110/**
5111 * idle_task - return the idle task for a given CPU.
5112 * @cpu: the processor in question.
5113 *
5114 * Return: The idle task for the CPU @cpu.
5115 */
5116struct task_struct *idle_task(int cpu)
5117{
5118	return cpu_rq(cpu)->idle;
5119}
5120
5121/**
5122 * find_process_by_pid - find a process with a matching PID value.
5123 * @pid: the pid in question.
5124 *
5125 * The task of @pid, if found. %NULL otherwise.
5126 */
5127static struct task_struct *find_process_by_pid(pid_t pid)
5128{
5129	return pid ? find_task_by_vpid(pid) : current;
5130}
5131
5132/*
5133 * sched_setparam() passes in -1 for its policy, to let the functions
5134 * it calls know not to change it.
5135 */
5136#define SETPARAM_POLICY	-1
5137
5138static void __setscheduler_params(struct task_struct *p,
5139		const struct sched_attr *attr)
5140{
5141	int policy = attr->sched_policy;
5142
5143	if (policy == SETPARAM_POLICY)
5144		policy = p->policy;
5145
5146	p->policy = policy;
5147
5148	if (dl_policy(policy))
5149		__setparam_dl(p, attr);
5150	else if (fair_policy(policy))
5151		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5152
5153	/*
5154	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
5155	 * !rt_policy. Always setting this ensures that things like
5156	 * getparam()/getattr() don't report silly values for !rt tasks.
5157	 */
5158	p->rt_priority = attr->sched_priority;
5159	p->normal_prio = normal_prio(p);
5160	set_load_weight(p, true);
5161}
5162
5163/* Actually do priority change: must hold pi & rq lock. */
5164static void __setscheduler(struct rq *rq, struct task_struct *p,
5165			   const struct sched_attr *attr, bool keep_boost)
5166{
5167	/*
5168	 * If params can't change scheduling class changes aren't allowed
5169	 * either.
5170	 */
5171	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
5172		return;
5173
5174	__setscheduler_params(p, attr);
5175
5176	/*
5177	 * Keep a potential priority boosting if called from
5178	 * sched_setscheduler().
5179	 */
5180	p->prio = normal_prio(p);
5181	if (keep_boost)
5182		p->prio = rt_effective_prio(p, p->prio);
5183
5184	if (dl_prio(p->prio))
5185		p->sched_class = &dl_sched_class;
5186	else if (rt_prio(p->prio))
5187		p->sched_class = &rt_sched_class;
5188	else
5189		p->sched_class = &fair_sched_class;
5190}
5191
5192/*
5193 * Check the target process has a UID that matches the current process's:
5194 */
5195static bool check_same_owner(struct task_struct *p)
5196{
5197	const struct cred *cred = current_cred(), *pcred;
5198	bool match;
5199
5200	rcu_read_lock();
5201	pcred = __task_cred(p);
5202	match = (uid_eq(cred->euid, pcred->euid) ||
5203		 uid_eq(cred->euid, pcred->uid));
5204	rcu_read_unlock();
5205	return match;
5206}
5207
5208static int __sched_setscheduler(struct task_struct *p,
5209				const struct sched_attr *attr,
5210				bool user, bool pi)
5211{
5212	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
5213		      MAX_RT_PRIO - 1 - attr->sched_priority;
5214	int retval, oldprio, oldpolicy = -1, queued, running;
5215	int new_effective_prio, policy = attr->sched_policy;
5216	const struct sched_class *prev_class;
5217	struct rq_flags rf;
5218	int reset_on_fork;
5219	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5220	struct rq *rq;
5221
5222	/* The pi code expects interrupts enabled */
5223	BUG_ON(pi && in_interrupt());
5224recheck:
5225	/* Double check policy once rq lock held: */
5226	if (policy < 0) {
5227		reset_on_fork = p->sched_reset_on_fork;
5228		policy = oldpolicy = p->policy;
5229	} else {
5230		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
5231
5232		if (!valid_policy(policy))
5233			return -EINVAL;
5234	}
5235
5236	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
5237		return -EINVAL;
5238
5239	/*
5240	 * Valid priorities for SCHED_FIFO and SCHED_RR are
5241	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5242	 * SCHED_BATCH and SCHED_IDLE is 0.
5243	 */
5244	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
5245	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
5246		return -EINVAL;
5247	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5248	    (rt_policy(policy) != (attr->sched_priority != 0)))
5249		return -EINVAL;
5250
5251	/*
5252	 * Allow unprivileged RT tasks to decrease priority:
5253	 */
5254	if (user && !capable(CAP_SYS_NICE)) {
5255		if (fair_policy(policy)) {
5256			if (attr->sched_nice < task_nice(p) &&
5257			    !can_nice(p, attr->sched_nice))
5258				return -EPERM;
5259		}
5260
5261		if (rt_policy(policy)) {
5262			unsigned long rlim_rtprio =
5263					task_rlimit(p, RLIMIT_RTPRIO);
5264
5265			/* Can't set/change the rt policy: */
5266			if (policy != p->policy && !rlim_rtprio)
5267				return -EPERM;
5268
5269			/* Can't increase priority: */
5270			if (attr->sched_priority > p->rt_priority &&
5271			    attr->sched_priority > rlim_rtprio)
5272				return -EPERM;
5273		}
5274
5275		 /*
5276		  * Can't set/change SCHED_DEADLINE policy at all for now
5277		  * (safest behavior); in the future we would like to allow
5278		  * unprivileged DL tasks to increase their relative deadline
5279		  * or reduce their runtime (both ways reducing utilization)
5280		  */
5281		if (dl_policy(policy))
5282			return -EPERM;
5283
5284		/*
5285		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5286		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5287		 */
5288		if (task_has_idle_policy(p) && !idle_policy(policy)) {
5289			if (!can_nice(p, task_nice(p)))
5290				return -EPERM;
5291		}
5292
5293		/* Can't change other user's priorities: */
5294		if (!check_same_owner(p))
5295			return -EPERM;
5296
5297		/* Normal users shall not reset the sched_reset_on_fork flag: */
5298		if (p->sched_reset_on_fork && !reset_on_fork)
5299			return -EPERM;
5300	}
5301
5302	if (user) {
5303		if (attr->sched_flags & SCHED_FLAG_SUGOV)
5304			return -EINVAL;
5305
5306		retval = security_task_setscheduler(p);
5307		if (retval)
5308			return retval;
5309	}
5310
5311	/* Update task specific "requested" clamps */
5312	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5313		retval = uclamp_validate(p, attr);
5314		if (retval)
5315			return retval;
5316	}
5317
5318	if (pi)
5319		cpuset_read_lock();
5320
5321	/*
5322	 * Make sure no PI-waiters arrive (or leave) while we are
5323	 * changing the priority of the task:
5324	 *
5325	 * To be able to change p->policy safely, the appropriate
5326	 * runqueue lock must be held.
5327	 */
5328	rq = task_rq_lock(p, &rf);
5329	update_rq_clock(rq);
5330
5331	/*
5332	 * Changing the policy of the stop threads its a very bad idea:
5333	 */
5334	if (p == rq->stop) {
5335		retval = -EINVAL;
5336		goto unlock;
5337	}
5338
5339	/*
5340	 * If not changing anything there's no need to proceed further,
5341	 * but store a possible modification of reset_on_fork.
5342	 */
5343	if (unlikely(policy == p->policy)) {
5344		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
5345			goto change;
5346		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5347			goto change;
5348		if (dl_policy(policy) && dl_param_changed(p, attr))
5349			goto change;
5350		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5351			goto change;
5352
5353		p->sched_reset_on_fork = reset_on_fork;
5354		retval = 0;
5355		goto unlock;
5356	}
5357change:
5358
5359	if (user) {
5360#ifdef CONFIG_RT_GROUP_SCHED
5361		/*
5362		 * Do not allow realtime tasks into groups that have no runtime
5363		 * assigned.
5364		 */
5365		if (rt_bandwidth_enabled() && rt_policy(policy) &&
5366				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5367				!task_group_is_autogroup(task_group(p))) {
5368			retval = -EPERM;
5369			goto unlock;
5370		}
5371#endif
5372#ifdef CONFIG_SMP
5373		if (dl_bandwidth_enabled() && dl_policy(policy) &&
5374				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5375			cpumask_t *span = rq->rd->span;
5376
5377			/*
5378			 * Don't allow tasks with an affinity mask smaller than
5379			 * the entire root_domain to become SCHED_DEADLINE. We
5380			 * will also fail if there's no bandwidth available.
5381			 */
5382			if (!cpumask_subset(span, p->cpus_ptr) ||
5383			    rq->rd->dl_bw.bw == 0) {
5384				retval = -EPERM;
5385				goto unlock;
5386			}
5387		}
5388#endif
5389	}
5390
5391	/* Re-check policy now with rq lock held: */
5392	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5393		policy = oldpolicy = -1;
5394		task_rq_unlock(rq, p, &rf);
5395		if (pi)
5396			cpuset_read_unlock();
5397		goto recheck;
5398	}
5399
5400	/*
5401	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5402	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5403	 * is available.
5404	 */
5405	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5406		retval = -EBUSY;
5407		goto unlock;
5408	}
5409
5410	p->sched_reset_on_fork = reset_on_fork;
5411	oldprio = p->prio;
5412
5413	if (pi) {
5414		/*
5415		 * Take priority boosted tasks into account. If the new
5416		 * effective priority is unchanged, we just store the new
5417		 * normal parameters and do not touch the scheduler class and
5418		 * the runqueue. This will be done when the task deboost
5419		 * itself.
5420		 */
5421		new_effective_prio = rt_effective_prio(p, newprio);
5422		if (new_effective_prio == oldprio)
5423			queue_flags &= ~DEQUEUE_MOVE;
5424	}
5425
5426	queued = task_on_rq_queued(p);
5427	running = task_current(rq, p);
5428	if (queued)
5429		dequeue_task(rq, p, queue_flags);
5430	if (running)
5431		put_prev_task(rq, p);
5432
5433	prev_class = p->sched_class;
5434
5435	__setscheduler(rq, p, attr, pi);
5436	__setscheduler_uclamp(p, attr);
5437
5438	if (queued) {
5439		/*
5440		 * We enqueue to tail when the priority of a task is
5441		 * increased (user space view).
5442		 */
5443		if (oldprio < p->prio)
5444			queue_flags |= ENQUEUE_HEAD;
5445
5446		enqueue_task(rq, p, queue_flags);
5447	}
5448	if (running)
5449		set_next_task(rq, p);
5450
5451	check_class_changed(rq, p, prev_class, oldprio);
5452
5453	/* Avoid rq from going away on us: */
5454	preempt_disable();
5455	task_rq_unlock(rq, p, &rf);
5456
5457	if (pi) {
5458		cpuset_read_unlock();
5459		rt_mutex_adjust_pi(p);
5460	}
5461
5462	/* Run balance callbacks after we've adjusted the PI chain: */
5463	balance_callback(rq);
5464	preempt_enable();
5465
5466	return 0;
5467
5468unlock:
5469	task_rq_unlock(rq, p, &rf);
5470	if (pi)
5471		cpuset_read_unlock();
5472	return retval;
5473}
5474
5475static int _sched_setscheduler(struct task_struct *p, int policy,
5476			       const struct sched_param *param, bool check)
5477{
5478	struct sched_attr attr = {
5479		.sched_policy   = policy,
5480		.sched_priority = param->sched_priority,
5481		.sched_nice	= PRIO_TO_NICE(p->static_prio),
5482	};
5483
5484	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5485	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5486		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5487		policy &= ~SCHED_RESET_ON_FORK;
5488		attr.sched_policy = policy;
5489	}
5490
5491	return __sched_setscheduler(p, &attr, check, true);
5492}
5493/**
5494 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5495 * @p: the task in question.
5496 * @policy: new policy.
5497 * @param: structure containing the new RT priority.
5498 *
5499 * Use sched_set_fifo(), read its comment.
5500 *
5501 * Return: 0 on success. An error code otherwise.
5502 *
5503 * NOTE that the task may be already dead.
5504 */
5505int sched_setscheduler(struct task_struct *p, int policy,
5506		       const struct sched_param *param)
5507{
5508	return _sched_setscheduler(p, policy, param, true);
5509}
5510
5511int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5512{
5513	return __sched_setscheduler(p, attr, true, true);
5514}
5515
5516int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5517{
5518	return __sched_setscheduler(p, attr, false, true);
5519}
5520
5521/**
5522 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5523 * @p: the task in question.
5524 * @policy: new policy.
5525 * @param: structure containing the new RT priority.
5526 *
5527 * Just like sched_setscheduler, only don't bother checking if the
5528 * current context has permission.  For example, this is needed in
5529 * stop_machine(): we create temporary high priority worker threads,
5530 * but our caller might not have that capability.
5531 *
5532 * Return: 0 on success. An error code otherwise.
5533 */
5534int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5535			       const struct sched_param *param)
5536{
5537	return _sched_setscheduler(p, policy, param, false);
5538}
5539
5540/*
5541 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
5542 * incapable of resource management, which is the one thing an OS really should
5543 * be doing.
5544 *
5545 * This is of course the reason it is limited to privileged users only.
5546 *
5547 * Worse still; it is fundamentally impossible to compose static priority
5548 * workloads. You cannot take two correctly working static prio workloads
5549 * and smash them together and still expect them to work.
5550 *
5551 * For this reason 'all' FIFO tasks the kernel creates are basically at:
5552 *
5553 *   MAX_RT_PRIO / 2
5554 *
5555 * The administrator _MUST_ configure the system, the kernel simply doesn't
5556 * know enough information to make a sensible choice.
5557 */
5558void sched_set_fifo(struct task_struct *p)
5559{
5560	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
5561	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5562}
5563EXPORT_SYMBOL_GPL(sched_set_fifo);
5564
5565/*
5566 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
5567 */
5568void sched_set_fifo_low(struct task_struct *p)
5569{
5570	struct sched_param sp = { .sched_priority = 1 };
5571	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5572}
5573EXPORT_SYMBOL_GPL(sched_set_fifo_low);
5574
5575void sched_set_normal(struct task_struct *p, int nice)
5576{
5577	struct sched_attr attr = {
5578		.sched_policy = SCHED_NORMAL,
5579		.sched_nice = nice,
5580	};
5581	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
5582}
5583EXPORT_SYMBOL_GPL(sched_set_normal);
5584
5585static int
5586do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5587{
5588	struct sched_param lparam;
5589	struct task_struct *p;
5590	int retval;
5591
5592	if (!param || pid < 0)
5593		return -EINVAL;
5594	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5595		return -EFAULT;
5596
5597	rcu_read_lock();
5598	retval = -ESRCH;
5599	p = find_process_by_pid(pid);
5600	if (likely(p))
5601		get_task_struct(p);
5602	rcu_read_unlock();
5603
5604	if (likely(p)) {
5605		retval = sched_setscheduler(p, policy, &lparam);
5606		put_task_struct(p);
5607	}
5608
5609	return retval;
5610}
5611
5612/*
5613 * Mimics kernel/events/core.c perf_copy_attr().
5614 */
5615static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5616{
5617	u32 size;
5618	int ret;
5619
5620	/* Zero the full structure, so that a short copy will be nice: */
5621	memset(attr, 0, sizeof(*attr));
5622
5623	ret = get_user(size, &uattr->size);
5624	if (ret)
5625		return ret;
5626
5627	/* ABI compatibility quirk: */
5628	if (!size)
5629		size = SCHED_ATTR_SIZE_VER0;
5630	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5631		goto err_size;
5632
5633	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5634	if (ret) {
5635		if (ret == -E2BIG)
5636			goto err_size;
5637		return ret;
5638	}
5639
5640	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5641	    size < SCHED_ATTR_SIZE_VER1)
5642		return -EINVAL;
5643
5644	/*
5645	 * XXX: Do we want to be lenient like existing syscalls; or do we want
5646	 * to be strict and return an error on out-of-bounds values?
5647	 */
5648	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5649
5650	return 0;
5651
5652err_size:
5653	put_user(sizeof(*attr), &uattr->size);
5654	return -E2BIG;
5655}
5656
5657/**
5658 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5659 * @pid: the pid in question.
5660 * @policy: new policy.
5661 * @param: structure containing the new RT priority.
5662 *
5663 * Return: 0 on success. An error code otherwise.
5664 */
5665SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5666{
5667	if (policy < 0)
5668		return -EINVAL;
5669
5670	return do_sched_setscheduler(pid, policy, param);
5671}
5672
5673/**
5674 * sys_sched_setparam - set/change the RT priority of a thread
5675 * @pid: the pid in question.
5676 * @param: structure containing the new RT priority.
5677 *
5678 * Return: 0 on success. An error code otherwise.
5679 */
5680SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5681{
5682	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5683}
5684
5685/**
5686 * sys_sched_setattr - same as above, but with extended sched_attr
5687 * @pid: the pid in question.
5688 * @uattr: structure containing the extended parameters.
5689 * @flags: for future extension.
5690 */
5691SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5692			       unsigned int, flags)
5693{
5694	struct sched_attr attr;
5695	struct task_struct *p;
5696	int retval;
5697
5698	if (!uattr || pid < 0 || flags)
5699		return -EINVAL;
5700
5701	retval = sched_copy_attr(uattr, &attr);
5702	if (retval)
5703		return retval;
5704
5705	if ((int)attr.sched_policy < 0)
5706		return -EINVAL;
5707	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5708		attr.sched_policy = SETPARAM_POLICY;
5709
5710	rcu_read_lock();
5711	retval = -ESRCH;
5712	p = find_process_by_pid(pid);
5713	if (likely(p))
5714		get_task_struct(p);
5715	rcu_read_unlock();
5716
5717	if (likely(p)) {
5718		retval = sched_setattr(p, &attr);
5719		put_task_struct(p);
5720	}
5721
5722	return retval;
5723}
5724
5725/**
5726 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5727 * @pid: the pid in question.
5728 *
5729 * Return: On success, the policy of the thread. Otherwise, a negative error
5730 * code.
5731 */
5732SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5733{
5734	struct task_struct *p;
5735	int retval;
5736
5737	if (pid < 0)
5738		return -EINVAL;
5739
5740	retval = -ESRCH;
5741	rcu_read_lock();
5742	p = find_process_by_pid(pid);
5743	if (p) {
5744		retval = security_task_getscheduler(p);
5745		if (!retval)
5746			retval = p->policy
5747				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5748	}
5749	rcu_read_unlock();
5750	return retval;
5751}
5752
5753/**
5754 * sys_sched_getparam - get the RT priority of a thread
5755 * @pid: the pid in question.
5756 * @param: structure containing the RT priority.
5757 *
5758 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5759 * code.
5760 */
5761SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5762{
5763	struct sched_param lp = { .sched_priority = 0 };
5764	struct task_struct *p;
5765	int retval;
5766
5767	if (!param || pid < 0)
5768		return -EINVAL;
5769
5770	rcu_read_lock();
5771	p = find_process_by_pid(pid);
5772	retval = -ESRCH;
5773	if (!p)
5774		goto out_unlock;
5775
5776	retval = security_task_getscheduler(p);
5777	if (retval)
5778		goto out_unlock;
5779
5780	if (task_has_rt_policy(p))
5781		lp.sched_priority = p->rt_priority;
5782	rcu_read_unlock();
5783
5784	/*
5785	 * This one might sleep, we cannot do it with a spinlock held ...
5786	 */
5787	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5788
5789	return retval;
5790
5791out_unlock:
5792	rcu_read_unlock();
5793	return retval;
5794}
5795
5796/*
5797 * Copy the kernel size attribute structure (which might be larger
5798 * than what user-space knows about) to user-space.
5799 *
5800 * Note that all cases are valid: user-space buffer can be larger or
5801 * smaller than the kernel-space buffer. The usual case is that both
5802 * have the same size.
5803 */
5804static int
5805sched_attr_copy_to_user(struct sched_attr __user *uattr,
5806			struct sched_attr *kattr,
5807			unsigned int usize)
5808{
5809	unsigned int ksize = sizeof(*kattr);
5810
5811	if (!access_ok(uattr, usize))
5812		return -EFAULT;
5813
5814	/*
5815	 * sched_getattr() ABI forwards and backwards compatibility:
5816	 *
5817	 * If usize == ksize then we just copy everything to user-space and all is good.
5818	 *
5819	 * If usize < ksize then we only copy as much as user-space has space for,
5820	 * this keeps ABI compatibility as well. We skip the rest.
5821	 *
5822	 * If usize > ksize then user-space is using a newer version of the ABI,
5823	 * which part the kernel doesn't know about. Just ignore it - tooling can
5824	 * detect the kernel's knowledge of attributes from the attr->size value
5825	 * which is set to ksize in this case.
5826	 */
5827	kattr->size = min(usize, ksize);
5828
5829	if (copy_to_user(uattr, kattr, kattr->size))
5830		return -EFAULT;
5831
5832	return 0;
5833}
5834
5835/**
5836 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5837 * @pid: the pid in question.
5838 * @uattr: structure containing the extended parameters.
5839 * @usize: sizeof(attr) for fwd/bwd comp.
5840 * @flags: for future extension.
5841 */
5842SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5843		unsigned int, usize, unsigned int, flags)
5844{
5845	struct sched_attr kattr = { };
5846	struct task_struct *p;
5847	int retval;
5848
5849	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5850	    usize < SCHED_ATTR_SIZE_VER0 || flags)
5851		return -EINVAL;
5852
5853	rcu_read_lock();
5854	p = find_process_by_pid(pid);
5855	retval = -ESRCH;
5856	if (!p)
5857		goto out_unlock;
5858
5859	retval = security_task_getscheduler(p);
5860	if (retval)
5861		goto out_unlock;
5862
5863	kattr.sched_policy = p->policy;
5864	if (p->sched_reset_on_fork)
5865		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5866	if (task_has_dl_policy(p))
5867		__getparam_dl(p, &kattr);
5868	else if (task_has_rt_policy(p))
5869		kattr.sched_priority = p->rt_priority;
5870	else
5871		kattr.sched_nice = task_nice(p);
5872
5873#ifdef CONFIG_UCLAMP_TASK
5874	/*
5875	 * This could race with another potential updater, but this is fine
5876	 * because it'll correctly read the old or the new value. We don't need
5877	 * to guarantee who wins the race as long as it doesn't return garbage.
5878	 */
5879	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5880	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5881#endif
5882
5883	rcu_read_unlock();
5884
5885	return sched_attr_copy_to_user(uattr, &kattr, usize);
5886
5887out_unlock:
5888	rcu_read_unlock();
5889	return retval;
5890}
5891
5892long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5893{
5894	cpumask_var_t cpus_allowed, new_mask;
5895	struct task_struct *p;
5896	int retval;
5897
5898	rcu_read_lock();
5899
5900	p = find_process_by_pid(pid);
5901	if (!p) {
5902		rcu_read_unlock();
5903		return -ESRCH;
5904	}
5905
5906	/* Prevent p going away */
5907	get_task_struct(p);
5908	rcu_read_unlock();
5909
5910	if (p->flags & PF_NO_SETAFFINITY) {
5911		retval = -EINVAL;
5912		goto out_put_task;
5913	}
5914	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5915		retval = -ENOMEM;
5916		goto out_put_task;
5917	}
5918	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5919		retval = -ENOMEM;
5920		goto out_free_cpus_allowed;
5921	}
5922	retval = -EPERM;
5923	if (!check_same_owner(p)) {
5924		rcu_read_lock();
5925		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5926			rcu_read_unlock();
5927			goto out_free_new_mask;
5928		}
5929		rcu_read_unlock();
5930	}
5931
5932	retval = security_task_setscheduler(p);
5933	if (retval)
5934		goto out_free_new_mask;
5935
5936
5937	cpuset_cpus_allowed(p, cpus_allowed);
5938	cpumask_and(new_mask, in_mask, cpus_allowed);
5939
5940	/*
5941	 * Since bandwidth control happens on root_domain basis,
5942	 * if admission test is enabled, we only admit -deadline
5943	 * tasks allowed to run on all the CPUs in the task's
5944	 * root_domain.
5945	 */
5946#ifdef CONFIG_SMP
5947	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5948		rcu_read_lock();
5949		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5950			retval = -EBUSY;
5951			rcu_read_unlock();
5952			goto out_free_new_mask;
5953		}
5954		rcu_read_unlock();
5955	}
5956#endif
5957again:
5958	retval = __set_cpus_allowed_ptr(p, new_mask, true);
5959
5960	if (!retval) {
5961		cpuset_cpus_allowed(p, cpus_allowed);
5962		if (!cpumask_subset(new_mask, cpus_allowed)) {
5963			/*
5964			 * We must have raced with a concurrent cpuset
5965			 * update. Just reset the cpus_allowed to the
5966			 * cpuset's cpus_allowed
5967			 */
5968			cpumask_copy(new_mask, cpus_allowed);
5969			goto again;
5970		}
5971	}
5972out_free_new_mask:
5973	free_cpumask_var(new_mask);
5974out_free_cpus_allowed:
5975	free_cpumask_var(cpus_allowed);
5976out_put_task:
5977	put_task_struct(p);
5978	return retval;
5979}
5980
5981static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5982			     struct cpumask *new_mask)
5983{
5984	if (len < cpumask_size())
5985		cpumask_clear(new_mask);
5986	else if (len > cpumask_size())
5987		len = cpumask_size();
5988
5989	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5990}
5991
5992/**
5993 * sys_sched_setaffinity - set the CPU affinity of a process
5994 * @pid: pid of the process
5995 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5996 * @user_mask_ptr: user-space pointer to the new CPU mask
5997 *
5998 * Return: 0 on success. An error code otherwise.
5999 */
6000SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6001		unsigned long __user *, user_mask_ptr)
6002{
6003	cpumask_var_t new_mask;
6004	int retval;
6005
6006	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6007		return -ENOMEM;
6008
6009	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6010	if (retval == 0)
6011		retval = sched_setaffinity(pid, new_mask);
6012	free_cpumask_var(new_mask);
6013	return retval;
6014}
6015
6016long sched_getaffinity(pid_t pid, struct cpumask *mask)
6017{
6018	struct task_struct *p;
6019	unsigned long flags;
6020	int retval;
6021
6022	rcu_read_lock();
6023
6024	retval = -ESRCH;
6025	p = find_process_by_pid(pid);
6026	if (!p)
6027		goto out_unlock;
6028
6029	retval = security_task_getscheduler(p);
6030	if (retval)
6031		goto out_unlock;
6032
6033	raw_spin_lock_irqsave(&p->pi_lock, flags);
6034	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6035	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6036
6037out_unlock:
6038	rcu_read_unlock();
6039
6040	return retval;
6041}
6042
6043/**
6044 * sys_sched_getaffinity - get the CPU affinity of a process
6045 * @pid: pid of the process
6046 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6047 * @user_mask_ptr: user-space pointer to hold the current CPU mask
6048 *
6049 * Return: size of CPU mask copied to user_mask_ptr on success. An
6050 * error code otherwise.
6051 */
6052SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6053		unsigned long __user *, user_mask_ptr)
6054{
6055	int ret;
6056	cpumask_var_t mask;
6057
6058	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6059		return -EINVAL;
6060	if (len & (sizeof(unsigned long)-1))
6061		return -EINVAL;
6062
6063	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6064		return -ENOMEM;
6065
6066	ret = sched_getaffinity(pid, mask);
6067	if (ret == 0) {
6068		unsigned int retlen = min(len, cpumask_size());
6069
6070		if (copy_to_user(user_mask_ptr, mask, retlen))
6071			ret = -EFAULT;
6072		else
6073			ret = retlen;
6074	}
6075	free_cpumask_var(mask);
6076
6077	return ret;
6078}
6079
6080/**
6081 * sys_sched_yield - yield the current processor to other threads.
6082 *
6083 * This function yields the current CPU to other tasks. If there are no
6084 * other threads running on this CPU then this function will return.
6085 *
6086 * Return: 0.
6087 */
6088static void do_sched_yield(void)
6089{
6090	struct rq_flags rf;
6091	struct rq *rq;
6092
6093	rq = this_rq_lock_irq(&rf);
6094
6095	schedstat_inc(rq->yld_count);
6096	current->sched_class->yield_task(rq);
6097
6098	/*
6099	 * Since we are going to call schedule() anyway, there's
6100	 * no need to preempt or enable interrupts:
6101	 */
6102	preempt_disable();
6103	rq_unlock(rq, &rf);
6104	sched_preempt_enable_no_resched();
6105
6106	schedule();
6107}
6108
6109SYSCALL_DEFINE0(sched_yield)
6110{
6111	do_sched_yield();
6112	return 0;
6113}
6114
6115#ifndef CONFIG_PREEMPTION
6116int __sched _cond_resched(void)
6117{
6118	if (should_resched(0)) {
6119		preempt_schedule_common();
6120		return 1;
6121	}
6122	rcu_all_qs();
6123	return 0;
6124}
6125EXPORT_SYMBOL(_cond_resched);
6126#endif
6127
6128/*
6129 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6130 * call schedule, and on return reacquire the lock.
6131 *
6132 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
6133 * operations here to prevent schedule() from being called twice (once via
6134 * spin_unlock(), once by hand).
6135 */
6136int __cond_resched_lock(spinlock_t *lock)
6137{
6138	int resched = should_resched(PREEMPT_LOCK_OFFSET);
6139	int ret = 0;
6140
6141	lockdep_assert_held(lock);
6142
6143	if (spin_needbreak(lock) || resched) {
6144		spin_unlock(lock);
6145		if (resched)
6146			preempt_schedule_common();
6147		else
6148			cpu_relax();
6149		ret = 1;
6150		spin_lock(lock);
6151	}
6152	return ret;
6153}
6154EXPORT_SYMBOL(__cond_resched_lock);
6155
6156/**
6157 * yield - yield the current processor to other threads.
6158 *
6159 * Do not ever use this function, there's a 99% chance you're doing it wrong.
6160 *
6161 * The scheduler is at all times free to pick the calling task as the most
6162 * eligible task to run, if removing the yield() call from your code breaks
6163 * it, its already broken.
6164 *
6165 * Typical broken usage is:
6166 *
6167 * while (!event)
6168 *	yield();
6169 *
6170 * where one assumes that yield() will let 'the other' process run that will
6171 * make event true. If the current task is a SCHED_FIFO task that will never
6172 * happen. Never use yield() as a progress guarantee!!
6173 *
6174 * If you want to use yield() to wait for something, use wait_event().
6175 * If you want to use yield() to be 'nice' for others, use cond_resched().
6176 * If you still want to use yield(), do not!
6177 */
6178void __sched yield(void)
6179{
6180	set_current_state(TASK_RUNNING);
6181	do_sched_yield();
6182}
6183EXPORT_SYMBOL(yield);
6184
6185/**
6186 * yield_to - yield the current processor to another thread in
6187 * your thread group, or accelerate that thread toward the
6188 * processor it's on.
6189 * @p: target task
6190 * @preempt: whether task preemption is allowed or not
6191 *
6192 * It's the caller's job to ensure that the target task struct
6193 * can't go away on us before we can do any checks.
6194 *
6195 * Return:
6196 *	true (>0) if we indeed boosted the target task.
6197 *	false (0) if we failed to boost the target.
6198 *	-ESRCH if there's no task to yield to.
6199 */
6200int __sched yield_to(struct task_struct *p, bool preempt)
6201{
6202	struct task_struct *curr = current;
6203	struct rq *rq, *p_rq;
6204	unsigned long flags;
6205	int yielded = 0;
6206
6207	local_irq_save(flags);
6208	rq = this_rq();
6209
6210again:
6211	p_rq = task_rq(p);
6212	/*
6213	 * If we're the only runnable task on the rq and target rq also
6214	 * has only one task, there's absolutely no point in yielding.
6215	 */
6216	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6217		yielded = -ESRCH;
6218		goto out_irq;
6219	}
6220
6221	double_rq_lock(rq, p_rq);
6222	if (task_rq(p) != p_rq) {
6223		double_rq_unlock(rq, p_rq);
6224		goto again;
6225	}
6226
6227	if (!curr->sched_class->yield_to_task)
6228		goto out_unlock;
6229
6230	if (curr->sched_class != p->sched_class)
6231		goto out_unlock;
6232
6233	if (task_running(p_rq, p) || p->state)
6234		goto out_unlock;
6235
6236	yielded = curr->sched_class->yield_to_task(rq, p);
6237	if (yielded) {
6238		schedstat_inc(rq->yld_count);
6239		/*
6240		 * Make p's CPU reschedule; pick_next_entity takes care of
6241		 * fairness.
6242		 */
6243		if (preempt && rq != p_rq)
6244			resched_curr(p_rq);
6245	}
6246
6247out_unlock:
6248	double_rq_unlock(rq, p_rq);
6249out_irq:
6250	local_irq_restore(flags);
6251
6252	if (yielded > 0)
6253		schedule();
6254
6255	return yielded;
6256}
6257EXPORT_SYMBOL_GPL(yield_to);
6258
6259int io_schedule_prepare(void)
6260{
6261	int old_iowait = current->in_iowait;
6262
6263	current->in_iowait = 1;
6264	blk_schedule_flush_plug(current);
6265
6266	return old_iowait;
6267}
6268
6269void io_schedule_finish(int token)
6270{
6271	current->in_iowait = token;
6272}
6273
6274/*
6275 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6276 * that process accounting knows that this is a task in IO wait state.
6277 */
6278long __sched io_schedule_timeout(long timeout)
6279{
6280	int token;
6281	long ret;
6282
6283	token = io_schedule_prepare();
6284	ret = schedule_timeout(timeout);
6285	io_schedule_finish(token);
6286
6287	return ret;
6288}
6289EXPORT_SYMBOL(io_schedule_timeout);
6290
6291void __sched io_schedule(void)
6292{
6293	int token;
6294
6295	token = io_schedule_prepare();
6296	schedule();
6297	io_schedule_finish(token);
6298}
6299EXPORT_SYMBOL(io_schedule);
6300
6301/**
6302 * sys_sched_get_priority_max - return maximum RT priority.
6303 * @policy: scheduling class.
6304 *
6305 * Return: On success, this syscall returns the maximum
6306 * rt_priority that can be used by a given scheduling class.
6307 * On failure, a negative error code is returned.
6308 */
6309SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6310{
6311	int ret = -EINVAL;
6312
6313	switch (policy) {
6314	case SCHED_FIFO:
6315	case SCHED_RR:
6316		ret = MAX_USER_RT_PRIO-1;
6317		break;
6318	case SCHED_DEADLINE:
6319	case SCHED_NORMAL:
6320	case SCHED_BATCH:
6321	case SCHED_IDLE:
6322		ret = 0;
6323		break;
6324	}
6325	return ret;
6326}
6327
6328/**
6329 * sys_sched_get_priority_min - return minimum RT priority.
6330 * @policy: scheduling class.
6331 *
6332 * Return: On success, this syscall returns the minimum
6333 * rt_priority that can be used by a given scheduling class.
6334 * On failure, a negative error code is returned.
6335 */
6336SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6337{
6338	int ret = -EINVAL;
6339
6340	switch (policy) {
6341	case SCHED_FIFO:
6342	case SCHED_RR:
6343		ret = 1;
6344		break;
6345	case SCHED_DEADLINE:
6346	case SCHED_NORMAL:
6347	case SCHED_BATCH:
6348	case SCHED_IDLE:
6349		ret = 0;
6350	}
6351	return ret;
6352}
6353
6354static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
6355{
6356	struct task_struct *p;
6357	unsigned int time_slice;
6358	struct rq_flags rf;
6359	struct rq *rq;
6360	int retval;
6361
6362	if (pid < 0)
6363		return -EINVAL;
6364
6365	retval = -ESRCH;
6366	rcu_read_lock();
6367	p = find_process_by_pid(pid);
6368	if (!p)
6369		goto out_unlock;
6370
6371	retval = security_task_getscheduler(p);
6372	if (retval)
6373		goto out_unlock;
6374
6375	rq = task_rq_lock(p, &rf);
6376	time_slice = 0;
6377	if (p->sched_class->get_rr_interval)
6378		time_slice = p->sched_class->get_rr_interval(rq, p);
6379	task_rq_unlock(rq, p, &rf);
6380
6381	rcu_read_unlock();
6382	jiffies_to_timespec64(time_slice, t);
6383	return 0;
6384
6385out_unlock:
6386	rcu_read_unlock();
6387	return retval;
6388}
6389
6390/**
6391 * sys_sched_rr_get_interval - return the default timeslice of a process.
6392 * @pid: pid of the process.
6393 * @interval: userspace pointer to the timeslice value.
6394 *
6395 * this syscall writes the default timeslice value of a given process
6396 * into the user-space timespec buffer. A value of '0' means infinity.
6397 *
6398 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6399 * an error code.
6400 */
6401SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6402		struct __kernel_timespec __user *, interval)
6403{
6404	struct timespec64 t;
6405	int retval = sched_rr_get_interval(pid, &t);
6406
6407	if (retval == 0)
6408		retval = put_timespec64(&t, interval);
6409
6410	return retval;
6411}
6412
6413#ifdef CONFIG_COMPAT_32BIT_TIME
6414SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6415		struct old_timespec32 __user *, interval)
6416{
6417	struct timespec64 t;
6418	int retval = sched_rr_get_interval(pid, &t);
6419
6420	if (retval == 0)
6421		retval = put_old_timespec32(&t, interval);
6422	return retval;
6423}
6424#endif
6425
6426void sched_show_task(struct task_struct *p)
6427{
6428	unsigned long free = 0;
6429	int ppid;
6430
6431	if (!try_get_task_stack(p))
6432		return;
6433
6434	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
6435
6436	if (p->state == TASK_RUNNING)
6437		pr_cont("  running task    ");
6438#ifdef CONFIG_DEBUG_STACK_USAGE
6439	free = stack_not_used(p);
6440#endif
6441	ppid = 0;
6442	rcu_read_lock();
6443	if (pid_alive(p))
6444		ppid = task_pid_nr(rcu_dereference(p->real_parent));
6445	rcu_read_unlock();
6446	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
6447		free, task_pid_nr(p), ppid,
6448		(unsigned long)task_thread_info(p)->flags);
6449
6450	print_worker_info(KERN_INFO, p);
6451	show_stack(p, NULL, KERN_INFO);
6452	put_task_stack(p);
6453}
6454EXPORT_SYMBOL_GPL(sched_show_task);
6455
6456static inline bool
6457state_filter_match(unsigned long state_filter, struct task_struct *p)
6458{
6459	/* no filter, everything matches */
6460	if (!state_filter)
6461		return true;
6462
6463	/* filter, but doesn't match */
6464	if (!(p->state & state_filter))
6465		return false;
6466
6467	/*
6468	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6469	 * TASK_KILLABLE).
6470	 */
6471	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6472		return false;
6473
6474	return true;
6475}
6476
6477
6478void show_state_filter(unsigned long state_filter)
6479{
6480	struct task_struct *g, *p;
6481
6482	rcu_read_lock();
6483	for_each_process_thread(g, p) {
6484		/*
6485		 * reset the NMI-timeout, listing all files on a slow
6486		 * console might take a lot of time:
6487		 * Also, reset softlockup watchdogs on all CPUs, because
6488		 * another CPU might be blocked waiting for us to process
6489		 * an IPI.
6490		 */
6491		touch_nmi_watchdog();
6492		touch_all_softlockup_watchdogs();
6493		if (state_filter_match(state_filter, p))
6494			sched_show_task(p);
6495	}
6496
6497#ifdef CONFIG_SCHED_DEBUG
6498	if (!state_filter)
6499		sysrq_sched_debug_show();
6500#endif
6501	rcu_read_unlock();
6502	/*
6503	 * Only show locks if all tasks are dumped:
6504	 */
6505	if (!state_filter)
6506		debug_show_all_locks();
6507}
6508
6509/**
6510 * init_idle - set up an idle thread for a given CPU
6511 * @idle: task in question
6512 * @cpu: CPU the idle task belongs to
6513 *
6514 * NOTE: this function does not set the idle thread's NEED_RESCHED
6515 * flag, to make booting more robust.
6516 */
6517void init_idle(struct task_struct *idle, int cpu)
6518{
6519	struct rq *rq = cpu_rq(cpu);
6520	unsigned long flags;
6521
6522	__sched_fork(0, idle);
6523
6524	raw_spin_lock_irqsave(&idle->pi_lock, flags);
6525	raw_spin_lock(&rq->lock);
6526
6527	idle->state = TASK_RUNNING;
6528	idle->se.exec_start = sched_clock();
6529	idle->flags |= PF_IDLE;
6530
6531	scs_task_reset(idle);
6532	kasan_unpoison_task_stack(idle);
6533
6534#ifdef CONFIG_SMP
6535	/*
6536	 * Its possible that init_idle() gets called multiple times on a task,
6537	 * in that case do_set_cpus_allowed() will not do the right thing.
6538	 *
6539	 * And since this is boot we can forgo the serialization.
6540	 */
6541	set_cpus_allowed_common(idle, cpumask_of(cpu));
6542#endif
6543	/*
6544	 * We're having a chicken and egg problem, even though we are
6545	 * holding rq->lock, the CPU isn't yet set to this CPU so the
6546	 * lockdep check in task_group() will fail.
6547	 *
6548	 * Similar case to sched_fork(). / Alternatively we could
6549	 * use task_rq_lock() here and obtain the other rq->lock.
6550	 *
6551	 * Silence PROVE_RCU
6552	 */
6553	rcu_read_lock();
6554	__set_task_cpu(idle, cpu);
6555	rcu_read_unlock();
6556
6557	rq->idle = idle;
6558	rcu_assign_pointer(rq->curr, idle);
6559	idle->on_rq = TASK_ON_RQ_QUEUED;
6560#ifdef CONFIG_SMP
6561	idle->on_cpu = 1;
6562#endif
6563	raw_spin_unlock(&rq->lock);
6564	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6565
6566	/* Set the preempt count _outside_ the spinlocks! */
6567	init_idle_preempt_count(idle, cpu);
6568
6569	/*
6570	 * The idle tasks have their own, simple scheduling class:
6571	 */
6572	idle->sched_class = &idle_sched_class;
6573	ftrace_graph_init_idle_task(idle, cpu);
6574	vtime_init_idle(idle, cpu);
6575#ifdef CONFIG_SMP
6576	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6577#endif
6578}
6579
6580#ifdef CONFIG_SMP
6581
6582int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6583			      const struct cpumask *trial)
6584{
6585	int ret = 1;
6586
6587	if (!cpumask_weight(cur))
6588		return ret;
6589
6590	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6591
6592	return ret;
6593}
6594
6595int task_can_attach(struct task_struct *p,
6596		    const struct cpumask *cs_cpus_allowed)
6597{
6598	int ret = 0;
6599
6600	/*
6601	 * Kthreads which disallow setaffinity shouldn't be moved
6602	 * to a new cpuset; we don't want to change their CPU
6603	 * affinity and isolating such threads by their set of
6604	 * allowed nodes is unnecessary.  Thus, cpusets are not
6605	 * applicable for such threads.  This prevents checking for
6606	 * success of set_cpus_allowed_ptr() on all attached tasks
6607	 * before cpus_mask may be changed.
6608	 */
6609	if (p->flags & PF_NO_SETAFFINITY) {
6610		ret = -EINVAL;
6611		goto out;
6612	}
6613
6614	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6615					      cs_cpus_allowed))
6616		ret = dl_task_can_attach(p, cs_cpus_allowed);
6617
6618out:
6619	return ret;
6620}
6621
6622bool sched_smp_initialized __read_mostly;
6623
6624#ifdef CONFIG_NUMA_BALANCING
6625/* Migrate current task p to target_cpu */
6626int migrate_task_to(struct task_struct *p, int target_cpu)
6627{
6628	struct migration_arg arg = { p, target_cpu };
6629	int curr_cpu = task_cpu(p);
6630
6631	if (curr_cpu == target_cpu)
6632		return 0;
6633
6634	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6635		return -EINVAL;
6636
6637	/* TODO: This is not properly updating schedstats */
6638
6639	trace_sched_move_numa(p, curr_cpu, target_cpu);
6640	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6641}
6642
6643/*
6644 * Requeue a task on a given node and accurately track the number of NUMA
6645 * tasks on the runqueues
6646 */
6647void sched_setnuma(struct task_struct *p, int nid)
6648{
6649	bool queued, running;
6650	struct rq_flags rf;
6651	struct rq *rq;
6652
6653	rq = task_rq_lock(p, &rf);
6654	queued = task_on_rq_queued(p);
6655	running = task_current(rq, p);
6656
6657	if (queued)
6658		dequeue_task(rq, p, DEQUEUE_SAVE);
6659	if (running)
6660		put_prev_task(rq, p);
6661
6662	p->numa_preferred_nid = nid;
6663
6664	if (queued)
6665		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6666	if (running)
6667		set_next_task(rq, p);
6668	task_rq_unlock(rq, p, &rf);
6669}
6670#endif /* CONFIG_NUMA_BALANCING */
6671
6672#ifdef CONFIG_HOTPLUG_CPU
6673/*
6674 * Ensure that the idle task is using init_mm right before its CPU goes
6675 * offline.
6676 */
6677void idle_task_exit(void)
6678{
6679	struct mm_struct *mm = current->active_mm;
6680
6681	BUG_ON(cpu_online(smp_processor_id()));
6682	BUG_ON(current != this_rq()->idle);
6683
6684	if (mm != &init_mm) {
6685		switch_mm(mm, &init_mm, current);
6686		finish_arch_post_lock_switch();
6687	}
6688
6689	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6690}
6691
6692/*
6693 * Since this CPU is going 'away' for a while, fold any nr_active delta
6694 * we might have. Assumes we're called after migrate_tasks() so that the
6695 * nr_active count is stable. We need to take the teardown thread which
6696 * is calling this into account, so we hand in adjust = 1 to the load
6697 * calculation.
6698 *
6699 * Also see the comment "Global load-average calculations".
6700 */
6701static void calc_load_migrate(struct rq *rq)
6702{
6703	long delta = calc_load_fold_active(rq, 1);
6704	if (delta)
6705		atomic_long_add(delta, &calc_load_tasks);
6706}
6707
6708static struct task_struct *__pick_migrate_task(struct rq *rq)
6709{
6710	const struct sched_class *class;
6711	struct task_struct *next;
6712
6713	for_each_class(class) {
6714		next = class->pick_next_task(rq);
6715		if (next) {
6716			next->sched_class->put_prev_task(rq, next);
6717			return next;
6718		}
6719	}
6720
6721	/* The idle class should always have a runnable task */
6722	BUG();
6723}
6724
6725/*
6726 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6727 * try_to_wake_up()->select_task_rq().
6728 *
6729 * Called with rq->lock held even though we'er in stop_machine() and
6730 * there's no concurrency possible, we hold the required locks anyway
6731 * because of lock validation efforts.
6732 */
6733static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6734{
6735	struct rq *rq = dead_rq;
6736	struct task_struct *next, *stop = rq->stop;
6737	struct rq_flags orf = *rf;
6738	int dest_cpu;
6739
6740	/*
6741	 * Fudge the rq selection such that the below task selection loop
6742	 * doesn't get stuck on the currently eligible stop task.
6743	 *
6744	 * We're currently inside stop_machine() and the rq is either stuck
6745	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6746	 * either way we should never end up calling schedule() until we're
6747	 * done here.
6748	 */
6749	rq->stop = NULL;
6750
6751	/*
6752	 * put_prev_task() and pick_next_task() sched
6753	 * class method both need to have an up-to-date
6754	 * value of rq->clock[_task]
6755	 */
6756	update_rq_clock(rq);
6757
6758	for (;;) {
6759		/*
6760		 * There's this thread running, bail when that's the only
6761		 * remaining thread:
6762		 */
6763		if (rq->nr_running == 1)
6764			break;
6765
6766		next = __pick_migrate_task(rq);
6767
6768		/*
6769		 * Rules for changing task_struct::cpus_mask are holding
6770		 * both pi_lock and rq->lock, such that holding either
6771		 * stabilizes the mask.
6772		 *
6773		 * Drop rq->lock is not quite as disastrous as it usually is
6774		 * because !cpu_active at this point, which means load-balance
6775		 * will not interfere. Also, stop-machine.
6776		 */
6777		rq_unlock(rq, rf);
6778		raw_spin_lock(&next->pi_lock);
6779		rq_relock(rq, rf);
6780
6781		/*
6782		 * Since we're inside stop-machine, _nothing_ should have
6783		 * changed the task, WARN if weird stuff happened, because in
6784		 * that case the above rq->lock drop is a fail too.
6785		 */
6786		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6787			raw_spin_unlock(&next->pi_lock);
6788			continue;
6789		}
6790
6791		/* Find suitable destination for @next, with force if needed. */
6792		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6793		rq = __migrate_task(rq, rf, next, dest_cpu);
6794		if (rq != dead_rq) {
6795			rq_unlock(rq, rf);
6796			rq = dead_rq;
6797			*rf = orf;
6798			rq_relock(rq, rf);
6799		}
6800		raw_spin_unlock(&next->pi_lock);
6801	}
6802
6803	rq->stop = stop;
6804}
6805#endif /* CONFIG_HOTPLUG_CPU */
6806
6807void set_rq_online(struct rq *rq)
6808{
6809	if (!rq->online) {
6810		const struct sched_class *class;
6811
6812		cpumask_set_cpu(rq->cpu, rq->rd->online);
6813		rq->online = 1;
6814
6815		for_each_class(class) {
6816			if (class->rq_online)
6817				class->rq_online(rq);
6818		}
6819	}
6820}
6821
6822void set_rq_offline(struct rq *rq)
6823{
6824	if (rq->online) {
6825		const struct sched_class *class;
6826
6827		for_each_class(class) {
6828			if (class->rq_offline)
6829				class->rq_offline(rq);
6830		}
6831
6832		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6833		rq->online = 0;
6834	}
6835}
6836
6837/*
6838 * used to mark begin/end of suspend/resume:
6839 */
6840static int num_cpus_frozen;
6841
6842/*
6843 * Update cpusets according to cpu_active mask.  If cpusets are
6844 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6845 * around partition_sched_domains().
6846 *
6847 * If we come here as part of a suspend/resume, don't touch cpusets because we
6848 * want to restore it back to its original state upon resume anyway.
6849 */
6850static void cpuset_cpu_active(void)
6851{
6852	if (cpuhp_tasks_frozen) {
6853		/*
6854		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6855		 * resume sequence. As long as this is not the last online
6856		 * operation in the resume sequence, just build a single sched
6857		 * domain, ignoring cpusets.
6858		 */
6859		partition_sched_domains(1, NULL, NULL);
6860		if (--num_cpus_frozen)
6861			return;
6862		/*
6863		 * This is the last CPU online operation. So fall through and
6864		 * restore the original sched domains by considering the
6865		 * cpuset configurations.
6866		 */
6867		cpuset_force_rebuild();
6868	}
6869	cpuset_update_active_cpus();
6870}
6871
6872static int cpuset_cpu_inactive(unsigned int cpu)
6873{
6874	if (!cpuhp_tasks_frozen) {
6875		if (dl_cpu_busy(cpu))
6876			return -EBUSY;
6877		cpuset_update_active_cpus();
6878	} else {
6879		num_cpus_frozen++;
6880		partition_sched_domains(1, NULL, NULL);
6881	}
6882	return 0;
6883}
6884
6885int sched_cpu_activate(unsigned int cpu)
6886{
6887	struct rq *rq = cpu_rq(cpu);
6888	struct rq_flags rf;
6889
6890#ifdef CONFIG_SCHED_SMT
6891	/*
6892	 * When going up, increment the number of cores with SMT present.
6893	 */
6894	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6895		static_branch_inc_cpuslocked(&sched_smt_present);
6896#endif
6897	set_cpu_active(cpu, true);
6898
6899	if (sched_smp_initialized) {
6900		sched_domains_numa_masks_set(cpu);
6901		cpuset_cpu_active();
6902	}
6903
6904	/*
6905	 * Put the rq online, if not already. This happens:
6906	 *
6907	 * 1) In the early boot process, because we build the real domains
6908	 *    after all CPUs have been brought up.
6909	 *
6910	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6911	 *    domains.
6912	 */
6913	rq_lock_irqsave(rq, &rf);
6914	if (rq->rd) {
6915		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6916		set_rq_online(rq);
6917	}
6918	rq_unlock_irqrestore(rq, &rf);
6919
6920	return 0;
6921}
6922
6923int sched_cpu_deactivate(unsigned int cpu)
6924{
6925	int ret;
6926
6927	set_cpu_active(cpu, false);
6928	/*
6929	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6930	 * users of this state to go away such that all new such users will
6931	 * observe it.
6932	 *
6933	 * Do sync before park smpboot threads to take care the rcu boost case.
6934	 */
6935	synchronize_rcu();
6936
6937#ifdef CONFIG_SCHED_SMT
6938	/*
6939	 * When going down, decrement the number of cores with SMT present.
6940	 */
6941	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6942		static_branch_dec_cpuslocked(&sched_smt_present);
6943#endif
6944
6945	if (!sched_smp_initialized)
6946		return 0;
6947
6948	ret = cpuset_cpu_inactive(cpu);
6949	if (ret) {
6950		set_cpu_active(cpu, true);
6951		return ret;
6952	}
6953	sched_domains_numa_masks_clear(cpu);
6954	return 0;
6955}
6956
6957static void sched_rq_cpu_starting(unsigned int cpu)
6958{
6959	struct rq *rq = cpu_rq(cpu);
6960
6961	rq->calc_load_update = calc_load_update;
6962	update_max_interval();
6963}
6964
6965int sched_cpu_starting(unsigned int cpu)
6966{
6967	sched_rq_cpu_starting(cpu);
6968	sched_tick_start(cpu);
6969	return 0;
6970}
6971
6972#ifdef CONFIG_HOTPLUG_CPU
6973int sched_cpu_dying(unsigned int cpu)
6974{
6975	struct rq *rq = cpu_rq(cpu);
6976	struct rq_flags rf;
6977
6978	/* Handle pending wakeups and then migrate everything off */
6979	sched_tick_stop(cpu);
6980
6981	rq_lock_irqsave(rq, &rf);
6982	if (rq->rd) {
6983		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6984		set_rq_offline(rq);
6985	}
6986	migrate_tasks(rq, &rf);
6987	BUG_ON(rq->nr_running != 1);
6988	rq_unlock_irqrestore(rq, &rf);
6989
6990	calc_load_migrate(rq);
6991	update_max_interval();
6992	nohz_balance_exit_idle(rq);
6993	hrtick_clear(rq);
6994	return 0;
6995}
6996#endif
6997
6998void __init sched_init_smp(void)
6999{
7000	sched_init_numa();
7001
7002	/*
7003	 * There's no userspace yet to cause hotplug operations; hence all the
7004	 * CPU masks are stable and all blatant races in the below code cannot
7005	 * happen.
7006	 */
7007	mutex_lock(&sched_domains_mutex);
7008	sched_init_domains(cpu_active_mask);
7009	mutex_unlock(&sched_domains_mutex);
7010
7011	/* Move init over to a non-isolated CPU */
7012	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
7013		BUG();
7014	sched_init_granularity();
7015
7016	init_sched_rt_class();
7017	init_sched_dl_class();
7018
7019	sched_smp_initialized = true;
7020}
7021
7022static int __init migration_init(void)
7023{
7024	sched_cpu_starting(smp_processor_id());
7025	return 0;
7026}
7027early_initcall(migration_init);
7028
7029#else
7030void __init sched_init_smp(void)
7031{
7032	sched_init_granularity();
7033}
7034#endif /* CONFIG_SMP */
7035
7036int in_sched_functions(unsigned long addr)
7037{
7038	return in_lock_functions(addr) ||
7039		(addr >= (unsigned long)__sched_text_start
7040		&& addr < (unsigned long)__sched_text_end);
7041}
7042
7043#ifdef CONFIG_CGROUP_SCHED
7044/*
7045 * Default task group.
7046 * Every task in system belongs to this group at bootup.
7047 */
7048struct task_group root_task_group;
7049LIST_HEAD(task_groups);
7050
7051/* Cacheline aligned slab cache for task_group */
7052static struct kmem_cache *task_group_cache __read_mostly;
7053#endif
7054
7055DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7056DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7057
7058void __init sched_init(void)
7059{
7060	unsigned long ptr = 0;
7061	int i;
7062
7063	/* Make sure the linker didn't screw up */
7064	BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7065	       &fair_sched_class + 1 != &rt_sched_class ||
7066	       &rt_sched_class + 1   != &dl_sched_class);
7067#ifdef CONFIG_SMP
7068	BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7069#endif
7070
7071	wait_bit_init();
7072
7073#ifdef CONFIG_FAIR_GROUP_SCHED
7074	ptr += 2 * nr_cpu_ids * sizeof(void **);
7075#endif
7076#ifdef CONFIG_RT_GROUP_SCHED
7077	ptr += 2 * nr_cpu_ids * sizeof(void **);
7078#endif
7079	if (ptr) {
7080		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
7081
7082#ifdef CONFIG_FAIR_GROUP_SCHED
7083		root_task_group.se = (struct sched_entity **)ptr;
7084		ptr += nr_cpu_ids * sizeof(void **);
7085
7086		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7087		ptr += nr_cpu_ids * sizeof(void **);
7088
7089		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7090		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7091#endif /* CONFIG_FAIR_GROUP_SCHED */
7092#ifdef CONFIG_RT_GROUP_SCHED
7093		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7094		ptr += nr_cpu_ids * sizeof(void **);
7095
7096		root_task_group.rt_rq = (struct rt_rq **)ptr;
7097		ptr += nr_cpu_ids * sizeof(void **);
7098
7099#endif /* CONFIG_RT_GROUP_SCHED */
7100	}
7101#ifdef CONFIG_CPUMASK_OFFSTACK
7102	for_each_possible_cpu(i) {
7103		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7104			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7105		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7106			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7107	}
7108#endif /* CONFIG_CPUMASK_OFFSTACK */
7109
7110	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7111	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
7112
7113#ifdef CONFIG_SMP
7114	init_defrootdomain();
7115#endif
7116
7117#ifdef CONFIG_RT_GROUP_SCHED
7118	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7119			global_rt_period(), global_rt_runtime());
7120#endif /* CONFIG_RT_GROUP_SCHED */
7121
7122#ifdef CONFIG_CGROUP_SCHED
7123	task_group_cache = KMEM_CACHE(task_group, 0);
7124
7125	list_add(&root_task_group.list, &task_groups);
7126	INIT_LIST_HEAD(&root_task_group.children);
7127	INIT_LIST_HEAD(&root_task_group.siblings);
7128	autogroup_init(&init_task);
7129#endif /* CONFIG_CGROUP_SCHED */
7130
7131	for_each_possible_cpu(i) {
7132		struct rq *rq;
7133
7134		rq = cpu_rq(i);
7135		raw_spin_lock_init(&rq->lock);
7136		rq->nr_running = 0;
7137		rq->calc_load_active = 0;
7138		rq->calc_load_update = jiffies + LOAD_FREQ;
7139		init_cfs_rq(&rq->cfs);
7140		init_rt_rq(&rq->rt);
7141		init_dl_rq(&rq->dl);
7142#ifdef CONFIG_FAIR_GROUP_SCHED
7143		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7144		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7145		/*
7146		 * How much CPU bandwidth does root_task_group get?
7147		 *
7148		 * In case of task-groups formed thr' the cgroup filesystem, it
7149		 * gets 100% of the CPU resources in the system. This overall
7150		 * system CPU resource is divided among the tasks of
7151		 * root_task_group and its child task-groups in a fair manner,
7152		 * based on each entity's (task or task-group's) weight
7153		 * (se->load.weight).
7154		 *
7155		 * In other words, if root_task_group has 10 tasks of weight
7156		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7157		 * then A0's share of the CPU resource is:
7158		 *
7159		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7160		 *
7161		 * We achieve this by letting root_task_group's tasks sit
7162		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7163		 */
7164		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7165#endif /* CONFIG_FAIR_GROUP_SCHED */
7166
7167		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7168#ifdef CONFIG_RT_GROUP_SCHED
7169		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7170#endif
7171#ifdef CONFIG_SMP
7172		rq->sd = NULL;
7173		rq->rd = NULL;
7174		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7175		rq->balance_callback = NULL;
7176		rq->active_balance = 0;
7177		rq->next_balance = jiffies;
7178		rq->push_cpu = 0;
7179		rq->cpu = i;
7180		rq->online = 0;
7181		rq->idle_stamp = 0;
7182		rq->avg_idle = 2*sysctl_sched_migration_cost;
7183		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7184
7185		INIT_LIST_HEAD(&rq->cfs_tasks);
7186
7187		rq_attach_root(rq, &def_root_domain);
7188#ifdef CONFIG_NO_HZ_COMMON
7189		rq->last_blocked_load_update_tick = jiffies;
7190		atomic_set(&rq->nohz_flags, 0);
7191
7192		rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
7193#endif
7194#endif /* CONFIG_SMP */
7195		hrtick_rq_init(rq);
7196		atomic_set(&rq->nr_iowait, 0);
7197	}
7198
7199	set_load_weight(&init_task, false);
7200
7201	/*
7202	 * The boot idle thread does lazy MMU switching as well:
7203	 */
7204	mmgrab(&init_mm);
7205	enter_lazy_tlb(&init_mm, current);
7206
7207	/*
7208	 * Make us the idle thread. Technically, schedule() should not be
7209	 * called from this thread, however somewhere below it might be,
7210	 * but because we are the idle thread, we just pick up running again
7211	 * when this runqueue becomes "idle".
7212	 */
7213	init_idle(current, smp_processor_id());
7214
7215	calc_load_update = jiffies + LOAD_FREQ;
7216
7217#ifdef CONFIG_SMP
7218	idle_thread_set_boot_cpu();
7219#endif
7220	init_sched_fair_class();
7221
7222	init_schedstats();
7223
7224	psi_init();
7225
7226	init_uclamp();
7227
7228	scheduler_running = 1;
7229}
7230
7231#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7232static inline int preempt_count_equals(int preempt_offset)
7233{
7234	int nested = preempt_count() + rcu_preempt_depth();
7235
7236	return (nested == preempt_offset);
7237}
7238
7239void __might_sleep(const char *file, int line, int preempt_offset)
7240{
7241	/*
7242	 * Blocking primitives will set (and therefore destroy) current->state,
7243	 * since we will exit with TASK_RUNNING make sure we enter with it,
7244	 * otherwise we will destroy state.
7245	 */
7246	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7247			"do not call blocking ops when !TASK_RUNNING; "
7248			"state=%lx set at [<%p>] %pS\n",
7249			current->state,
7250			(void *)current->task_state_change,
7251			(void *)current->task_state_change);
7252
7253	___might_sleep(file, line, preempt_offset);
7254}
7255EXPORT_SYMBOL(__might_sleep);
7256
7257void ___might_sleep(const char *file, int line, int preempt_offset)
7258{
7259	/* Ratelimiting timestamp: */
7260	static unsigned long prev_jiffy;
7261
7262	unsigned long preempt_disable_ip;
7263
7264	/* WARN_ON_ONCE() by default, no rate limit required: */
7265	rcu_sleep_check();
7266
7267	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7268	     !is_idle_task(current) && !current->non_block_count) ||
7269	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7270	    oops_in_progress)
7271		return;
7272
7273	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7274		return;
7275	prev_jiffy = jiffies;
7276
7277	/* Save this before calling printk(), since that will clobber it: */
7278	preempt_disable_ip = get_preempt_disable_ip(current);
7279
7280	printk(KERN_ERR
7281		"BUG: sleeping function called from invalid context at %s:%d\n",
7282			file, line);
7283	printk(KERN_ERR
7284		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7285			in_atomic(), irqs_disabled(), current->non_block_count,
7286			current->pid, current->comm);
7287
7288	if (task_stack_end_corrupted(current))
7289		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7290
7291	debug_show_held_locks(current);
7292	if (irqs_disabled())
7293		print_irqtrace_events(current);
7294	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7295	    && !preempt_count_equals(preempt_offset)) {
7296		pr_err("Preemption disabled at:");
7297		print_ip_sym(KERN_ERR, preempt_disable_ip);
7298	}
7299	dump_stack();
7300	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7301}
7302EXPORT_SYMBOL(___might_sleep);
7303
7304void __cant_sleep(const char *file, int line, int preempt_offset)
7305{
7306	static unsigned long prev_jiffy;
7307
7308	if (irqs_disabled())
7309		return;
7310
7311	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7312		return;
7313
7314	if (preempt_count() > preempt_offset)
7315		return;
7316
7317	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7318		return;
7319	prev_jiffy = jiffies;
7320
7321	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
7322	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7323			in_atomic(), irqs_disabled(),
7324			current->pid, current->comm);
7325
7326	debug_show_held_locks(current);
7327	dump_stack();
7328	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7329}
7330EXPORT_SYMBOL_GPL(__cant_sleep);
7331#endif
7332
7333#ifdef CONFIG_MAGIC_SYSRQ
7334void normalize_rt_tasks(void)
7335{
7336	struct task_struct *g, *p;
7337	struct sched_attr attr = {
7338		.sched_policy = SCHED_NORMAL,
7339	};
7340
7341	read_lock(&tasklist_lock);
7342	for_each_process_thread(g, p) {
7343		/*
7344		 * Only normalize user tasks:
7345		 */
7346		if (p->flags & PF_KTHREAD)
7347			continue;
7348
7349		p->se.exec_start = 0;
7350		schedstat_set(p->se.statistics.wait_start,  0);
7351		schedstat_set(p->se.statistics.sleep_start, 0);
7352		schedstat_set(p->se.statistics.block_start, 0);
7353
7354		if (!dl_task(p) && !rt_task(p)) {
7355			/*
7356			 * Renice negative nice level userspace
7357			 * tasks back to 0:
7358			 */
7359			if (task_nice(p) < 0)
7360				set_user_nice(p, 0);
7361			continue;
7362		}
7363
7364		__sched_setscheduler(p, &attr, false, false);
7365	}
7366	read_unlock(&tasklist_lock);
7367}
7368
7369#endif /* CONFIG_MAGIC_SYSRQ */
7370
7371#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7372/*
7373 * These functions are only useful for the IA64 MCA handling, or kdb.
7374 *
7375 * They can only be called when the whole system has been
7376 * stopped - every CPU needs to be quiescent, and no scheduling
7377 * activity can take place. Using them for anything else would
7378 * be a serious bug, and as a result, they aren't even visible
7379 * under any other configuration.
7380 */
7381
7382/**
7383 * curr_task - return the current task for a given CPU.
7384 * @cpu: the processor in question.
7385 *
7386 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7387 *
7388 * Return: The current task for @cpu.
7389 */
7390struct task_struct *curr_task(int cpu)
7391{
7392	return cpu_curr(cpu);
7393}
7394
7395#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7396
7397#ifdef CONFIG_IA64
7398/**
7399 * ia64_set_curr_task - set the current task for a given CPU.
7400 * @cpu: the processor in question.
7401 * @p: the task pointer to set.
7402 *
7403 * Description: This function must only be used when non-maskable interrupts
7404 * are serviced on a separate stack. It allows the architecture to switch the
7405 * notion of the current task on a CPU in a non-blocking manner. This function
7406 * must be called with all CPU's synchronized, and interrupts disabled, the
7407 * and caller must save the original value of the current task (see
7408 * curr_task() above) and restore that value before reenabling interrupts and
7409 * re-starting the system.
7410 *
7411 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7412 */
7413void ia64_set_curr_task(int cpu, struct task_struct *p)
7414{
7415	cpu_curr(cpu) = p;
7416}
7417
7418#endif
7419
7420#ifdef CONFIG_CGROUP_SCHED
7421/* task_group_lock serializes the addition/removal of task groups */
7422static DEFINE_SPINLOCK(task_group_lock);
7423
7424static inline void alloc_uclamp_sched_group(struct task_group *tg,
7425					    struct task_group *parent)
7426{
7427#ifdef CONFIG_UCLAMP_TASK_GROUP
7428	enum uclamp_id clamp_id;
7429
7430	for_each_clamp_id(clamp_id) {
7431		uclamp_se_set(&tg->uclamp_req[clamp_id],
7432			      uclamp_none(clamp_id), false);
7433		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
7434	}
7435#endif
7436}
7437
7438static void sched_free_group(struct task_group *tg)
7439{
7440	free_fair_sched_group(tg);
7441	free_rt_sched_group(tg);
7442	autogroup_free(tg);
7443	kmem_cache_free(task_group_cache, tg);
7444}
7445
7446/* allocate runqueue etc for a new task group */
7447struct task_group *sched_create_group(struct task_group *parent)
7448{
7449	struct task_group *tg;
7450
7451	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7452	if (!tg)
7453		return ERR_PTR(-ENOMEM);
7454
7455	if (!alloc_fair_sched_group(tg, parent))
7456		goto err;
7457
7458	if (!alloc_rt_sched_group(tg, parent))
7459		goto err;
7460
7461	alloc_uclamp_sched_group(tg, parent);
7462
7463	return tg;
7464
7465err:
7466	sched_free_group(tg);
7467	return ERR_PTR(-ENOMEM);
7468}
7469
7470void sched_online_group(struct task_group *tg, struct task_group *parent)
7471{
7472	unsigned long flags;
7473
7474	spin_lock_irqsave(&task_group_lock, flags);
7475	list_add_rcu(&tg->list, &task_groups);
7476
7477	/* Root should already exist: */
7478	WARN_ON(!parent);
7479
7480	tg->parent = parent;
7481	INIT_LIST_HEAD(&tg->children);
7482	list_add_rcu(&tg->siblings, &parent->children);
7483	spin_unlock_irqrestore(&task_group_lock, flags);
7484
7485	online_fair_sched_group(tg);
7486}
7487
7488/* rcu callback to free various structures associated with a task group */
7489static void sched_free_group_rcu(struct rcu_head *rhp)
7490{
7491	/* Now it should be safe to free those cfs_rqs: */
7492	sched_free_group(container_of(rhp, struct task_group, rcu));
7493}
7494
7495void sched_destroy_group(struct task_group *tg)
7496{
7497	/* Wait for possible concurrent references to cfs_rqs complete: */
7498	call_rcu(&tg->rcu, sched_free_group_rcu);
7499}
7500
7501void sched_offline_group(struct task_group *tg)
7502{
7503	unsigned long flags;
7504
7505	/* End participation in shares distribution: */
7506	unregister_fair_sched_group(tg);
7507
7508	spin_lock_irqsave(&task_group_lock, flags);
7509	list_del_rcu(&tg->list);
7510	list_del_rcu(&tg->siblings);
7511	spin_unlock_irqrestore(&task_group_lock, flags);
7512}
7513
7514static void sched_change_group(struct task_struct *tsk, int type)
7515{
7516	struct task_group *tg;
7517
7518	/*
7519	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7520	 * which is pointless here. Thus, we pass "true" to task_css_check()
7521	 * to prevent lockdep warnings.
7522	 */
7523	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7524			  struct task_group, css);
7525	tg = autogroup_task_group(tsk, tg);
7526	tsk->sched_task_group = tg;
7527
7528#ifdef CONFIG_FAIR_GROUP_SCHED
7529	if (tsk->sched_class->task_change_group)
7530		tsk->sched_class->task_change_group(tsk, type);
7531	else
7532#endif
7533		set_task_rq(tsk, task_cpu(tsk));
7534}
7535
7536/*
7537 * Change task's runqueue when it moves between groups.
7538 *
7539 * The caller of this function should have put the task in its new group by
7540 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7541 * its new group.
7542 */
7543void sched_move_task(struct task_struct *tsk)
7544{
7545	int queued, running, queue_flags =
7546		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7547	struct rq_flags rf;
7548	struct rq *rq;
7549
7550	rq = task_rq_lock(tsk, &rf);
7551	update_rq_clock(rq);
7552
7553	running = task_current(rq, tsk);
7554	queued = task_on_rq_queued(tsk);
7555
7556	if (queued)
7557		dequeue_task(rq, tsk, queue_flags);
7558	if (running)
7559		put_prev_task(rq, tsk);
7560
7561	sched_change_group(tsk, TASK_MOVE_GROUP);
7562
7563	if (queued)
7564		enqueue_task(rq, tsk, queue_flags);
7565	if (running) {
7566		set_next_task(rq, tsk);
7567		/*
7568		 * After changing group, the running task may have joined a
7569		 * throttled one but it's still the running task. Trigger a
7570		 * resched to make sure that task can still run.
7571		 */
7572		resched_curr(rq);
7573	}
7574
7575	task_rq_unlock(rq, tsk, &rf);
7576}
7577
7578static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7579{
7580	return css ? container_of(css, struct task_group, css) : NULL;
7581}
7582
7583static struct cgroup_subsys_state *
7584cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7585{
7586	struct task_group *parent = css_tg(parent_css);
7587	struct task_group *tg;
7588
7589	if (!parent) {
7590		/* This is early initialization for the top cgroup */
7591		return &root_task_group.css;
7592	}
7593
7594	tg = sched_create_group(parent);
7595	if (IS_ERR(tg))
7596		return ERR_PTR(-ENOMEM);
7597
7598	return &tg->css;
7599}
7600
7601/* Expose task group only after completing cgroup initialization */
7602static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7603{
7604	struct task_group *tg = css_tg(css);
7605	struct task_group *parent = css_tg(css->parent);
7606
7607	if (parent)
7608		sched_online_group(tg, parent);
7609
7610#ifdef CONFIG_UCLAMP_TASK_GROUP
7611	/* Propagate the effective uclamp value for the new group */
7612	cpu_util_update_eff(css);
7613#endif
7614
7615	return 0;
7616}
7617
7618static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7619{
7620	struct task_group *tg = css_tg(css);
7621
7622	sched_offline_group(tg);
7623}
7624
7625static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7626{
7627	struct task_group *tg = css_tg(css);
7628
7629	/*
7630	 * Relies on the RCU grace period between css_released() and this.
7631	 */
7632	sched_free_group(tg);
7633}
7634
7635/*
7636 * This is called before wake_up_new_task(), therefore we really only
7637 * have to set its group bits, all the other stuff does not apply.
7638 */
7639static void cpu_cgroup_fork(struct task_struct *task)
7640{
7641	struct rq_flags rf;
7642	struct rq *rq;
7643
7644	rq = task_rq_lock(task, &rf);
7645
7646	update_rq_clock(rq);
7647	sched_change_group(task, TASK_SET_GROUP);
7648
7649	task_rq_unlock(rq, task, &rf);
7650}
7651
7652static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7653{
7654	struct task_struct *task;
7655	struct cgroup_subsys_state *css;
7656	int ret = 0;
7657
7658	cgroup_taskset_for_each(task, css, tset) {
7659#ifdef CONFIG_RT_GROUP_SCHED
7660		if (!sched_rt_can_attach(css_tg(css), task))
7661			return -EINVAL;
7662#endif
7663		/*
7664		 * Serialize against wake_up_new_task() such that if its
7665		 * running, we're sure to observe its full state.
7666		 */
7667		raw_spin_lock_irq(&task->pi_lock);
7668		/*
7669		 * Avoid calling sched_move_task() before wake_up_new_task()
7670		 * has happened. This would lead to problems with PELT, due to
7671		 * move wanting to detach+attach while we're not attached yet.
7672		 */
7673		if (task->state == TASK_NEW)
7674			ret = -EINVAL;
7675		raw_spin_unlock_irq(&task->pi_lock);
7676
7677		if (ret)
7678			break;
7679	}
7680	return ret;
7681}
7682
7683static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7684{
7685	struct task_struct *task;
7686	struct cgroup_subsys_state *css;
7687
7688	cgroup_taskset_for_each(task, css, tset)
7689		sched_move_task(task);
7690}
7691
7692#ifdef CONFIG_UCLAMP_TASK_GROUP
7693static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7694{
7695	struct cgroup_subsys_state *top_css = css;
7696	struct uclamp_se *uc_parent = NULL;
7697	struct uclamp_se *uc_se = NULL;
7698	unsigned int eff[UCLAMP_CNT];
7699	enum uclamp_id clamp_id;
7700	unsigned int clamps;
7701
7702	css_for_each_descendant_pre(css, top_css) {
7703		uc_parent = css_tg(css)->parent
7704			? css_tg(css)->parent->uclamp : NULL;
7705
7706		for_each_clamp_id(clamp_id) {
7707			/* Assume effective clamps matches requested clamps */
7708			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7709			/* Cap effective clamps with parent's effective clamps */
7710			if (uc_parent &&
7711			    eff[clamp_id] > uc_parent[clamp_id].value) {
7712				eff[clamp_id] = uc_parent[clamp_id].value;
7713			}
7714		}
7715		/* Ensure protection is always capped by limit */
7716		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7717
7718		/* Propagate most restrictive effective clamps */
7719		clamps = 0x0;
7720		uc_se = css_tg(css)->uclamp;
7721		for_each_clamp_id(clamp_id) {
7722			if (eff[clamp_id] == uc_se[clamp_id].value)
7723				continue;
7724			uc_se[clamp_id].value = eff[clamp_id];
7725			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7726			clamps |= (0x1 << clamp_id);
7727		}
7728		if (!clamps) {
7729			css = css_rightmost_descendant(css);
7730			continue;
7731		}
7732
7733		/* Immediately update descendants RUNNABLE tasks */
7734		uclamp_update_active_tasks(css, clamps);
7735	}
7736}
7737
7738/*
7739 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7740 * C expression. Since there is no way to convert a macro argument (N) into a
7741 * character constant, use two levels of macros.
7742 */
7743#define _POW10(exp) ((unsigned int)1e##exp)
7744#define POW10(exp) _POW10(exp)
7745
7746struct uclamp_request {
7747#define UCLAMP_PERCENT_SHIFT	2
7748#define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
7749	s64 percent;
7750	u64 util;
7751	int ret;
7752};
7753
7754static inline struct uclamp_request
7755capacity_from_percent(char *buf)
7756{
7757	struct uclamp_request req = {
7758		.percent = UCLAMP_PERCENT_SCALE,
7759		.util = SCHED_CAPACITY_SCALE,
7760		.ret = 0,
7761	};
7762
7763	buf = strim(buf);
7764	if (strcmp(buf, "max")) {
7765		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7766					     &req.percent);
7767		if (req.ret)
7768			return req;
7769		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7770			req.ret = -ERANGE;
7771			return req;
7772		}
7773
7774		req.util = req.percent << SCHED_CAPACITY_SHIFT;
7775		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7776	}
7777
7778	return req;
7779}
7780
7781static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7782				size_t nbytes, loff_t off,
7783				enum uclamp_id clamp_id)
7784{
7785	struct uclamp_request req;
7786	struct task_group *tg;
7787
7788	req = capacity_from_percent(buf);
7789	if (req.ret)
7790		return req.ret;
7791
7792	static_branch_enable(&sched_uclamp_used);
7793
7794	mutex_lock(&uclamp_mutex);
7795	rcu_read_lock();
7796
7797	tg = css_tg(of_css(of));
7798	if (tg->uclamp_req[clamp_id].value != req.util)
7799		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7800
7801	/*
7802	 * Because of not recoverable conversion rounding we keep track of the
7803	 * exact requested value
7804	 */
7805	tg->uclamp_pct[clamp_id] = req.percent;
7806
7807	/* Update effective clamps to track the most restrictive value */
7808	cpu_util_update_eff(of_css(of));
7809
7810	rcu_read_unlock();
7811	mutex_unlock(&uclamp_mutex);
7812
7813	return nbytes;
7814}
7815
7816static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7817				    char *buf, size_t nbytes,
7818				    loff_t off)
7819{
7820	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7821}
7822
7823static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7824				    char *buf, size_t nbytes,
7825				    loff_t off)
7826{
7827	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7828}
7829
7830static inline void cpu_uclamp_print(struct seq_file *sf,
7831				    enum uclamp_id clamp_id)
7832{
7833	struct task_group *tg;
7834	u64 util_clamp;
7835	u64 percent;
7836	u32 rem;
7837
7838	rcu_read_lock();
7839	tg = css_tg(seq_css(sf));
7840	util_clamp = tg->uclamp_req[clamp_id].value;
7841	rcu_read_unlock();
7842
7843	if (util_clamp == SCHED_CAPACITY_SCALE) {
7844		seq_puts(sf, "max\n");
7845		return;
7846	}
7847
7848	percent = tg->uclamp_pct[clamp_id];
7849	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7850	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7851}
7852
7853static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7854{
7855	cpu_uclamp_print(sf, UCLAMP_MIN);
7856	return 0;
7857}
7858
7859static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7860{
7861	cpu_uclamp_print(sf, UCLAMP_MAX);
7862	return 0;
7863}
7864#endif /* CONFIG_UCLAMP_TASK_GROUP */
7865
7866#ifdef CONFIG_FAIR_GROUP_SCHED
7867static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7868				struct cftype *cftype, u64 shareval)
7869{
7870	if (shareval > scale_load_down(ULONG_MAX))
7871		shareval = MAX_SHARES;
7872	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7873}
7874
7875static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7876			       struct cftype *cft)
7877{
7878	struct task_group *tg = css_tg(css);
7879
7880	return (u64) scale_load_down(tg->shares);
7881}
7882
7883#ifdef CONFIG_CFS_BANDWIDTH
7884static DEFINE_MUTEX(cfs_constraints_mutex);
7885
7886const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7887static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7888/* More than 203 days if BW_SHIFT equals 20. */
7889static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
7890
7891static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7892
7893static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7894{
7895	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7896	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7897
7898	if (tg == &root_task_group)
7899		return -EINVAL;
7900
7901	/*
7902	 * Ensure we have at some amount of bandwidth every period.  This is
7903	 * to prevent reaching a state of large arrears when throttled via
7904	 * entity_tick() resulting in prolonged exit starvation.
7905	 */
7906	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7907		return -EINVAL;
7908
7909	/*
7910	 * Likewise, bound things on the otherside by preventing insane quota
7911	 * periods.  This also allows us to normalize in computing quota
7912	 * feasibility.
7913	 */
7914	if (period > max_cfs_quota_period)
7915		return -EINVAL;
7916
7917	/*
7918	 * Bound quota to defend quota against overflow during bandwidth shift.
7919	 */
7920	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
7921		return -EINVAL;
7922
7923	/*
7924	 * Prevent race between setting of cfs_rq->runtime_enabled and
7925	 * unthrottle_offline_cfs_rqs().
7926	 */
7927	get_online_cpus();
7928	mutex_lock(&cfs_constraints_mutex);
7929	ret = __cfs_schedulable(tg, period, quota);
7930	if (ret)
7931		goto out_unlock;
7932
7933	runtime_enabled = quota != RUNTIME_INF;
7934	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7935	/*
7936	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7937	 * before making related changes, and on->off must occur afterwards
7938	 */
7939	if (runtime_enabled && !runtime_was_enabled)
7940		cfs_bandwidth_usage_inc();
7941	raw_spin_lock_irq(&cfs_b->lock);
7942	cfs_b->period = ns_to_ktime(period);
7943	cfs_b->quota = quota;
7944
7945	__refill_cfs_bandwidth_runtime(cfs_b);
7946
7947	/* Restart the period timer (if active) to handle new period expiry: */
7948	if (runtime_enabled)
7949		start_cfs_bandwidth(cfs_b);
7950
7951	raw_spin_unlock_irq(&cfs_b->lock);
7952
7953	for_each_online_cpu(i) {
7954		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7955		struct rq *rq = cfs_rq->rq;
7956		struct rq_flags rf;
7957
7958		rq_lock_irq(rq, &rf);
7959		cfs_rq->runtime_enabled = runtime_enabled;
7960		cfs_rq->runtime_remaining = 0;
7961
7962		if (cfs_rq->throttled)
7963			unthrottle_cfs_rq(cfs_rq);
7964		rq_unlock_irq(rq, &rf);
7965	}
7966	if (runtime_was_enabled && !runtime_enabled)
7967		cfs_bandwidth_usage_dec();
7968out_unlock:
7969	mutex_unlock(&cfs_constraints_mutex);
7970	put_online_cpus();
7971
7972	return ret;
7973}
7974
7975static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7976{
7977	u64 quota, period;
7978
7979	period = ktime_to_ns(tg->cfs_bandwidth.period);
7980	if (cfs_quota_us < 0)
7981		quota = RUNTIME_INF;
7982	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7983		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7984	else
7985		return -EINVAL;
7986
7987	return tg_set_cfs_bandwidth(tg, period, quota);
7988}
7989
7990static long tg_get_cfs_quota(struct task_group *tg)
7991{
7992	u64 quota_us;
7993
7994	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7995		return -1;
7996
7997	quota_us = tg->cfs_bandwidth.quota;
7998	do_div(quota_us, NSEC_PER_USEC);
7999
8000	return quota_us;
8001}
8002
8003static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8004{
8005	u64 quota, period;
8006
8007	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8008		return -EINVAL;
8009
8010	period = (u64)cfs_period_us * NSEC_PER_USEC;
8011	quota = tg->cfs_bandwidth.quota;
8012
8013	return tg_set_cfs_bandwidth(tg, period, quota);
8014}
8015
8016static long tg_get_cfs_period(struct task_group *tg)
8017{
8018	u64 cfs_period_us;
8019
8020	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8021	do_div(cfs_period_us, NSEC_PER_USEC);
8022
8023	return cfs_period_us;
8024}
8025
8026static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8027				  struct cftype *cft)
8028{
8029	return tg_get_cfs_quota(css_tg(css));
8030}
8031
8032static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8033				   struct cftype *cftype, s64 cfs_quota_us)
8034{
8035	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8036}
8037
8038static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8039				   struct cftype *cft)
8040{
8041	return tg_get_cfs_period(css_tg(css));
8042}
8043
8044static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8045				    struct cftype *cftype, u64 cfs_period_us)
8046{
8047	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8048}
8049
8050struct cfs_schedulable_data {
8051	struct task_group *tg;
8052	u64 period, quota;
8053};
8054
8055/*
8056 * normalize group quota/period to be quota/max_period
8057 * note: units are usecs
8058 */
8059static u64 normalize_cfs_quota(struct task_group *tg,
8060			       struct cfs_schedulable_data *d)
8061{
8062	u64 quota, period;
8063
8064	if (tg == d->tg) {
8065		period = d->period;
8066		quota = d->quota;
8067	} else {
8068		period = tg_get_cfs_period(tg);
8069		quota = tg_get_cfs_quota(tg);
8070	}
8071
8072	/* note: these should typically be equivalent */
8073	if (quota == RUNTIME_INF || quota == -1)
8074		return RUNTIME_INF;
8075
8076	return to_ratio(period, quota);
8077}
8078
8079static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8080{
8081	struct cfs_schedulable_data *d = data;
8082	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8083	s64 quota = 0, parent_quota = -1;
8084
8085	if (!tg->parent) {
8086		quota = RUNTIME_INF;
8087	} else {
8088		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8089
8090		quota = normalize_cfs_quota(tg, d);
8091		parent_quota = parent_b->hierarchical_quota;
8092
8093		/*
8094		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
8095		 * always take the min.  On cgroup1, only inherit when no
8096		 * limit is set:
8097		 */
8098		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8099			quota = min(quota, parent_quota);
8100		} else {
8101			if (quota == RUNTIME_INF)
8102				quota = parent_quota;
8103			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8104				return -EINVAL;
8105		}
8106	}
8107	cfs_b->hierarchical_quota = quota;
8108
8109	return 0;
8110}
8111
8112static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8113{
8114	int ret;
8115	struct cfs_schedulable_data data = {
8116		.tg = tg,
8117		.period = period,
8118		.quota = quota,
8119	};
8120
8121	if (quota != RUNTIME_INF) {
8122		do_div(data.period, NSEC_PER_USEC);
8123		do_div(data.quota, NSEC_PER_USEC);
8124	}
8125
8126	rcu_read_lock();
8127	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8128	rcu_read_unlock();
8129
8130	return ret;
8131}
8132
8133static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
8134{
8135	struct task_group *tg = css_tg(seq_css(sf));
8136	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8137
8138	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8139	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8140	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8141
8142	if (schedstat_enabled() && tg != &root_task_group) {
8143		u64 ws = 0;
8144		int i;
8145
8146		for_each_possible_cpu(i)
8147			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
8148
8149		seq_printf(sf, "wait_sum %llu\n", ws);
8150	}
8151
8152	return 0;
8153}
8154#endif /* CONFIG_CFS_BANDWIDTH */
8155#endif /* CONFIG_FAIR_GROUP_SCHED */
8156
8157#ifdef CONFIG_RT_GROUP_SCHED
8158static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8159				struct cftype *cft, s64 val)
8160{
8161	return sched_group_set_rt_runtime(css_tg(css), val);
8162}
8163
8164static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8165			       struct cftype *cft)
8166{
8167	return sched_group_rt_runtime(css_tg(css));
8168}
8169
8170static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8171				    struct cftype *cftype, u64 rt_period_us)
8172{
8173	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8174}
8175
8176static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8177				   struct cftype *cft)
8178{
8179	return sched_group_rt_period(css_tg(css));
8180}
8181#endif /* CONFIG_RT_GROUP_SCHED */
8182
8183static struct cftype cpu_legacy_files[] = {
8184#ifdef CONFIG_FAIR_GROUP_SCHED
8185	{
8186		.name = "shares",
8187		.read_u64 = cpu_shares_read_u64,
8188		.write_u64 = cpu_shares_write_u64,
8189	},
8190#endif
8191#ifdef CONFIG_CFS_BANDWIDTH
8192	{
8193		.name = "cfs_quota_us",
8194		.read_s64 = cpu_cfs_quota_read_s64,
8195		.write_s64 = cpu_cfs_quota_write_s64,
8196	},
8197	{
8198		.name = "cfs_period_us",
8199		.read_u64 = cpu_cfs_period_read_u64,
8200		.write_u64 = cpu_cfs_period_write_u64,
8201	},
8202	{
8203		.name = "stat",
8204		.seq_show = cpu_cfs_stat_show,
8205	},
8206#endif
8207#ifdef CONFIG_RT_GROUP_SCHED
8208	{
8209		.name = "rt_runtime_us",
8210		.read_s64 = cpu_rt_runtime_read,
8211		.write_s64 = cpu_rt_runtime_write,
8212	},
8213	{
8214		.name = "rt_period_us",
8215		.read_u64 = cpu_rt_period_read_uint,
8216		.write_u64 = cpu_rt_period_write_uint,
8217	},
8218#endif
8219#ifdef CONFIG_UCLAMP_TASK_GROUP
8220	{
8221		.name = "uclamp.min",
8222		.flags = CFTYPE_NOT_ON_ROOT,
8223		.seq_show = cpu_uclamp_min_show,
8224		.write = cpu_uclamp_min_write,
8225	},
8226	{
8227		.name = "uclamp.max",
8228		.flags = CFTYPE_NOT_ON_ROOT,
8229		.seq_show = cpu_uclamp_max_show,
8230		.write = cpu_uclamp_max_write,
8231	},
8232#endif
8233	{ }	/* Terminate */
8234};
8235
8236static int cpu_extra_stat_show(struct seq_file *sf,
8237			       struct cgroup_subsys_state *css)
8238{
8239#ifdef CONFIG_CFS_BANDWIDTH
8240	{
8241		struct task_group *tg = css_tg(css);
8242		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8243		u64 throttled_usec;
8244
8245		throttled_usec = cfs_b->throttled_time;
8246		do_div(throttled_usec, NSEC_PER_USEC);
8247
8248		seq_printf(sf, "nr_periods %d\n"
8249			   "nr_throttled %d\n"
8250			   "throttled_usec %llu\n",
8251			   cfs_b->nr_periods, cfs_b->nr_throttled,
8252			   throttled_usec);
8253	}
8254#endif
8255	return 0;
8256}
8257
8258#ifdef CONFIG_FAIR_GROUP_SCHED
8259static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
8260			       struct cftype *cft)
8261{
8262	struct task_group *tg = css_tg(css);
8263	u64 weight = scale_load_down(tg->shares);
8264
8265	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
8266}
8267
8268static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
8269				struct cftype *cft, u64 weight)
8270{
8271	/*
8272	 * cgroup weight knobs should use the common MIN, DFL and MAX
8273	 * values which are 1, 100 and 10000 respectively.  While it loses
8274	 * a bit of range on both ends, it maps pretty well onto the shares
8275	 * value used by scheduler and the round-trip conversions preserve
8276	 * the original value over the entire range.
8277	 */
8278	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
8279		return -ERANGE;
8280
8281	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
8282
8283	return sched_group_set_shares(css_tg(css), scale_load(weight));
8284}
8285
8286static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
8287				    struct cftype *cft)
8288{
8289	unsigned long weight = scale_load_down(css_tg(css)->shares);
8290	int last_delta = INT_MAX;
8291	int prio, delta;
8292
8293	/* find the closest nice value to the current weight */
8294	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
8295		delta = abs(sched_prio_to_weight[prio] - weight);
8296		if (delta >= last_delta)
8297			break;
8298		last_delta = delta;
8299	}
8300
8301	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
8302}
8303
8304static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
8305				     struct cftype *cft, s64 nice)
8306{
8307	unsigned long weight;
8308	int idx;
8309
8310	if (nice < MIN_NICE || nice > MAX_NICE)
8311		return -ERANGE;
8312
8313	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
8314	idx = array_index_nospec(idx, 40);
8315	weight = sched_prio_to_weight[idx];
8316
8317	return sched_group_set_shares(css_tg(css), scale_load(weight));
8318}
8319#endif
8320
8321static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
8322						  long period, long quota)
8323{
8324	if (quota < 0)
8325		seq_puts(sf, "max");
8326	else
8327		seq_printf(sf, "%ld", quota);
8328
8329	seq_printf(sf, " %ld\n", period);
8330}
8331
8332/* caller should put the current value in *@periodp before calling */
8333static int __maybe_unused cpu_period_quota_parse(char *buf,
8334						 u64 *periodp, u64 *quotap)
8335{
8336	char tok[21];	/* U64_MAX */
8337
8338	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
8339		return -EINVAL;
8340
8341	*periodp *= NSEC_PER_USEC;
8342
8343	if (sscanf(tok, "%llu", quotap))
8344		*quotap *= NSEC_PER_USEC;
8345	else if (!strcmp(tok, "max"))
8346		*quotap = RUNTIME_INF;
8347	else
8348		return -EINVAL;
8349
8350	return 0;
8351}
8352
8353#ifdef CONFIG_CFS_BANDWIDTH
8354static int cpu_max_show(struct seq_file *sf, void *v)
8355{
8356	struct task_group *tg = css_tg(seq_css(sf));
8357
8358	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
8359	return 0;
8360}
8361
8362static ssize_t cpu_max_write(struct kernfs_open_file *of,
8363			     char *buf, size_t nbytes, loff_t off)
8364{
8365	struct task_group *tg = css_tg(of_css(of));
8366	u64 period = tg_get_cfs_period(tg);
8367	u64 quota;
8368	int ret;
8369
8370	ret = cpu_period_quota_parse(buf, &period, &quota);
8371	if (!ret)
8372		ret = tg_set_cfs_bandwidth(tg, period, quota);
8373	return ret ?: nbytes;
8374}
8375#endif
8376
8377static struct cftype cpu_files[] = {
8378#ifdef CONFIG_FAIR_GROUP_SCHED
8379	{
8380		.name = "weight",
8381		.flags = CFTYPE_NOT_ON_ROOT,
8382		.read_u64 = cpu_weight_read_u64,
8383		.write_u64 = cpu_weight_write_u64,
8384	},
8385	{
8386		.name = "weight.nice",
8387		.flags = CFTYPE_NOT_ON_ROOT,
8388		.read_s64 = cpu_weight_nice_read_s64,
8389		.write_s64 = cpu_weight_nice_write_s64,
8390	},
8391#endif
8392#ifdef CONFIG_CFS_BANDWIDTH
8393	{
8394		.name = "max",
8395		.flags = CFTYPE_NOT_ON_ROOT,
8396		.seq_show = cpu_max_show,
8397		.write = cpu_max_write,
8398	},
8399#endif
8400#ifdef CONFIG_UCLAMP_TASK_GROUP
8401	{
8402		.name = "uclamp.min",
8403		.flags = CFTYPE_NOT_ON_ROOT,
8404		.seq_show = cpu_uclamp_min_show,
8405		.write = cpu_uclamp_min_write,
8406	},
8407	{
8408		.name = "uclamp.max",
8409		.flags = CFTYPE_NOT_ON_ROOT,
8410		.seq_show = cpu_uclamp_max_show,
8411		.write = cpu_uclamp_max_write,
8412	},
8413#endif
8414	{ }	/* terminate */
8415};
8416
8417struct cgroup_subsys cpu_cgrp_subsys = {
8418	.css_alloc	= cpu_cgroup_css_alloc,
8419	.css_online	= cpu_cgroup_css_online,
8420	.css_released	= cpu_cgroup_css_released,
8421	.css_free	= cpu_cgroup_css_free,
8422	.css_extra_stat_show = cpu_extra_stat_show,
8423	.fork		= cpu_cgroup_fork,
8424	.can_attach	= cpu_cgroup_can_attach,
8425	.attach		= cpu_cgroup_attach,
8426	.legacy_cftypes	= cpu_legacy_files,
8427	.dfl_cftypes	= cpu_files,
8428	.early_init	= true,
8429	.threaded	= true,
8430};
8431
8432#endif	/* CONFIG_CGROUP_SCHED */
8433
8434void dump_cpu_task(int cpu)
8435{
8436	pr_info("Task dump for CPU %d:\n", cpu);
8437	sched_show_task(cpu_curr(cpu));
8438}
8439
8440/*
8441 * Nice levels are multiplicative, with a gentle 10% change for every
8442 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8443 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8444 * that remained on nice 0.
8445 *
8446 * The "10% effect" is relative and cumulative: from _any_ nice level,
8447 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8448 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8449 * If a task goes up by ~10% and another task goes down by ~10% then
8450 * the relative distance between them is ~25%.)
8451 */
8452const int sched_prio_to_weight[40] = {
8453 /* -20 */     88761,     71755,     56483,     46273,     36291,
8454 /* -15 */     29154,     23254,     18705,     14949,     11916,
8455 /* -10 */      9548,      7620,      6100,      4904,      3906,
8456 /*  -5 */      3121,      2501,      1991,      1586,      1277,
8457 /*   0 */      1024,       820,       655,       526,       423,
8458 /*   5 */       335,       272,       215,       172,       137,
8459 /*  10 */       110,        87,        70,        56,        45,
8460 /*  15 */        36,        29,        23,        18,        15,
8461};
8462
8463/*
8464 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8465 *
8466 * In cases where the weight does not change often, we can use the
8467 * precalculated inverse to speed up arithmetics by turning divisions
8468 * into multiplications:
8469 */
8470const u32 sched_prio_to_wmult[40] = {
8471 /* -20 */     48388,     59856,     76040,     92818,    118348,
8472 /* -15 */    147320,    184698,    229616,    287308,    360437,
8473 /* -10 */    449829,    563644,    704093,    875809,   1099582,
8474 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8475 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8476 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8477 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8478 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8479};
8480
8481void call_trace_sched_update_nr_running(struct rq *rq, int count)
8482{
8483        trace_sched_update_nr_running_tp(rq, count);
8484}