Linux Audio

Check our new training course

Loading...
v3.1
 
  1/******************************************************************************
  2*******************************************************************************
  3**
  4**  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
  5**  Copyright (C) 2004-2005 Red Hat, Inc.  All rights reserved.
  6**
  7**  This copyrighted material is made available to anyone wishing to use,
  8**  modify, copy, or redistribute it subject to the terms and conditions
  9**  of the GNU General Public License v.2.
 10**
 11*******************************************************************************
 12******************************************************************************/
 13
 14#include "dlm_internal.h"
 15#include "lockspace.h"
 16#include "dir.h"
 17#include "config.h"
 18#include "ast.h"
 19#include "memory.h"
 20#include "rcom.h"
 21#include "lock.h"
 22#include "lowcomms.h"
 23#include "member.h"
 24#include "recover.h"
 25
 26
 27/*
 28 * Recovery waiting routines: these functions wait for a particular reply from
 29 * a remote node, or for the remote node to report a certain status.  They need
 30 * to abort if the lockspace is stopped indicating a node has failed (perhaps
 31 * the one being waited for).
 32 */
 33
 34/*
 35 * Wait until given function returns non-zero or lockspace is stopped
 36 * (LS_RECOVERY_STOP set due to failure of a node in ls_nodes).  When another
 37 * function thinks it could have completed the waited-on task, they should wake
 38 * up ls_wait_general to get an immediate response rather than waiting for the
 39 * timer to detect the result.  A timer wakes us up periodically while waiting
 40 * to see if we should abort due to a node failure.  This should only be called
 41 * by the dlm_recoverd thread.
 42 */
 43
 44static void dlm_wait_timer_fn(unsigned long data)
 45{
 46	struct dlm_ls *ls = (struct dlm_ls *) data;
 47	mod_timer(&ls->ls_timer, jiffies + (dlm_config.ci_recover_timer * HZ));
 48	wake_up(&ls->ls_wait_general);
 49}
 50
 51int dlm_wait_function(struct dlm_ls *ls, int (*testfn) (struct dlm_ls *ls))
 52{
 53	int error = 0;
 
 54
 55	init_timer(&ls->ls_timer);
 56	ls->ls_timer.function = dlm_wait_timer_fn;
 57	ls->ls_timer.data = (long) ls;
 58	ls->ls_timer.expires = jiffies + (dlm_config.ci_recover_timer * HZ);
 59	add_timer(&ls->ls_timer);
 60
 61	wait_event(ls->ls_wait_general, testfn(ls) || dlm_recovery_stopped(ls));
 62	del_timer_sync(&ls->ls_timer);
 
 
 
 63
 64	if (dlm_recovery_stopped(ls)) {
 65		log_debug(ls, "dlm_wait_function aborted");
 66		error = -EINTR;
 67	}
 68	return error;
 69}
 70
 71/*
 72 * An efficient way for all nodes to wait for all others to have a certain
 73 * status.  The node with the lowest nodeid polls all the others for their
 74 * status (wait_status_all) and all the others poll the node with the low id
 75 * for its accumulated result (wait_status_low).  When all nodes have set
 76 * status flag X, then status flag X_ALL will be set on the low nodeid.
 77 */
 78
 79uint32_t dlm_recover_status(struct dlm_ls *ls)
 80{
 81	uint32_t status;
 82	spin_lock(&ls->ls_recover_lock);
 83	status = ls->ls_recover_status;
 84	spin_unlock(&ls->ls_recover_lock);
 85	return status;
 86}
 87
 
 
 
 
 
 88void dlm_set_recover_status(struct dlm_ls *ls, uint32_t status)
 89{
 90	spin_lock(&ls->ls_recover_lock);
 91	ls->ls_recover_status |= status;
 92	spin_unlock(&ls->ls_recover_lock);
 93}
 94
 95static int wait_status_all(struct dlm_ls *ls, uint32_t wait_status)
 
 96{
 97	struct dlm_rcom *rc = ls->ls_recover_buf;
 98	struct dlm_member *memb;
 99	int error = 0, delay;
100
101	list_for_each_entry(memb, &ls->ls_nodes, list) {
102		delay = 0;
103		for (;;) {
104			if (dlm_recovery_stopped(ls)) {
105				error = -EINTR;
106				goto out;
107			}
108
109			error = dlm_rcom_status(ls, memb->nodeid);
110			if (error)
111				goto out;
112
113			if (rc->rc_result & wait_status)
 
 
 
114				break;
115			if (delay < 1000)
116				delay += 20;
117			msleep(delay);
118		}
119	}
120 out:
121	return error;
122}
123
124static int wait_status_low(struct dlm_ls *ls, uint32_t wait_status)
 
125{
126	struct dlm_rcom *rc = ls->ls_recover_buf;
127	int error = 0, delay = 0, nodeid = ls->ls_low_nodeid;
128
129	for (;;) {
130		if (dlm_recovery_stopped(ls)) {
131			error = -EINTR;
132			goto out;
133		}
134
135		error = dlm_rcom_status(ls, nodeid);
136		if (error)
137			break;
138
139		if (rc->rc_result & wait_status)
140			break;
141		if (delay < 1000)
142			delay += 20;
143		msleep(delay);
144	}
145 out:
146	return error;
147}
148
149static int wait_status(struct dlm_ls *ls, uint32_t status)
150{
151	uint32_t status_all = status << 1;
152	int error;
153
154	if (ls->ls_low_nodeid == dlm_our_nodeid()) {
155		error = wait_status_all(ls, status);
156		if (!error)
157			dlm_set_recover_status(ls, status_all);
158	} else
159		error = wait_status_low(ls, status_all);
160
161	return error;
162}
163
164int dlm_recover_members_wait(struct dlm_ls *ls)
165{
166	return wait_status(ls, DLM_RS_NODES);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167}
168
169int dlm_recover_directory_wait(struct dlm_ls *ls)
170{
171	return wait_status(ls, DLM_RS_DIR);
172}
173
174int dlm_recover_locks_wait(struct dlm_ls *ls)
175{
176	return wait_status(ls, DLM_RS_LOCKS);
177}
178
179int dlm_recover_done_wait(struct dlm_ls *ls)
180{
181	return wait_status(ls, DLM_RS_DONE);
182}
183
184/*
185 * The recover_list contains all the rsb's for which we've requested the new
186 * master nodeid.  As replies are returned from the resource directories the
187 * rsb's are removed from the list.  When the list is empty we're done.
188 *
189 * The recover_list is later similarly used for all rsb's for which we've sent
190 * new lkb's and need to receive new corresponding lkid's.
191 *
192 * We use the address of the rsb struct as a simple local identifier for the
193 * rsb so we can match an rcom reply with the rsb it was sent for.
194 */
195
196static int recover_list_empty(struct dlm_ls *ls)
197{
198	int empty;
199
200	spin_lock(&ls->ls_recover_list_lock);
201	empty = list_empty(&ls->ls_recover_list);
202	spin_unlock(&ls->ls_recover_list_lock);
203
204	return empty;
205}
206
207static void recover_list_add(struct dlm_rsb *r)
208{
209	struct dlm_ls *ls = r->res_ls;
210
211	spin_lock(&ls->ls_recover_list_lock);
212	if (list_empty(&r->res_recover_list)) {
213		list_add_tail(&r->res_recover_list, &ls->ls_recover_list);
214		ls->ls_recover_list_count++;
215		dlm_hold_rsb(r);
216	}
217	spin_unlock(&ls->ls_recover_list_lock);
218}
219
220static void recover_list_del(struct dlm_rsb *r)
221{
222	struct dlm_ls *ls = r->res_ls;
223
224	spin_lock(&ls->ls_recover_list_lock);
225	list_del_init(&r->res_recover_list);
226	ls->ls_recover_list_count--;
227	spin_unlock(&ls->ls_recover_list_lock);
228
229	dlm_put_rsb(r);
230}
231
232static struct dlm_rsb *recover_list_find(struct dlm_ls *ls, uint64_t id)
233{
234	struct dlm_rsb *r = NULL;
235
236	spin_lock(&ls->ls_recover_list_lock);
 
 
 
 
 
 
237
238	list_for_each_entry(r, &ls->ls_recover_list, res_recover_list) {
239		if (id == (unsigned long) r)
240			goto out;
 
241	}
242	r = NULL;
243 out:
244	spin_unlock(&ls->ls_recover_list_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245	return r;
246}
247
248static void recover_list_clear(struct dlm_ls *ls)
249{
250	struct dlm_rsb *r, *s;
 
251
252	spin_lock(&ls->ls_recover_list_lock);
253	list_for_each_entry_safe(r, s, &ls->ls_recover_list, res_recover_list) {
254		list_del_init(&r->res_recover_list);
 
 
255		r->res_recover_locks_count = 0;
256		dlm_put_rsb(r);
257		ls->ls_recover_list_count--;
 
 
258	}
259
260	if (ls->ls_recover_list_count != 0) {
261		log_error(ls, "warning: recover_list_count %d",
262			  ls->ls_recover_list_count);
263		ls->ls_recover_list_count = 0;
264	}
265	spin_unlock(&ls->ls_recover_list_lock);
266}
267
268
269/* Master recovery: find new master node for rsb's that were
270   mastered on nodes that have been removed.
271
272   dlm_recover_masters
273   recover_master
274   dlm_send_rcom_lookup            ->  receive_rcom_lookup
275                                       dlm_dir_lookup
276   receive_rcom_lookup_reply       <-
277   dlm_recover_master_reply
278   set_new_master
279   set_master_lkbs
280   set_lock_master
281*/
282
283/*
284 * Set the lock master for all LKBs in a lock queue
285 * If we are the new master of the rsb, we may have received new
286 * MSTCPY locks from other nodes already which we need to ignore
287 * when setting the new nodeid.
288 */
289
290static void set_lock_master(struct list_head *queue, int nodeid)
291{
292	struct dlm_lkb *lkb;
293
294	list_for_each_entry(lkb, queue, lkb_statequeue)
295		if (!(lkb->lkb_flags & DLM_IFL_MSTCPY))
296			lkb->lkb_nodeid = nodeid;
 
 
 
297}
298
299static void set_master_lkbs(struct dlm_rsb *r)
300{
301	set_lock_master(&r->res_grantqueue, r->res_nodeid);
302	set_lock_master(&r->res_convertqueue, r->res_nodeid);
303	set_lock_master(&r->res_waitqueue, r->res_nodeid);
304}
305
306/*
307 * Propagate the new master nodeid to locks
308 * The NEW_MASTER flag tells dlm_recover_locks() which rsb's to consider.
309 * The NEW_MASTER2 flag tells recover_lvb() and set_locks_purged() which
310 * rsb's to consider.
311 */
312
313static void set_new_master(struct dlm_rsb *r, int nodeid)
314{
315	lock_rsb(r);
316	r->res_nodeid = nodeid;
317	set_master_lkbs(r);
318	rsb_set_flag(r, RSB_NEW_MASTER);
319	rsb_set_flag(r, RSB_NEW_MASTER2);
320	unlock_rsb(r);
321}
322
323/*
324 * We do async lookups on rsb's that need new masters.  The rsb's
325 * waiting for a lookup reply are kept on the recover_list.
 
 
 
 
 
326 */
327
328static int recover_master(struct dlm_rsb *r)
329{
330	struct dlm_ls *ls = r->res_ls;
331	int error, dir_nodeid, ret_nodeid, our_nodeid = dlm_our_nodeid();
 
 
 
 
 
 
 
332
 
 
 
 
333	dir_nodeid = dlm_dir_nodeid(r);
334
335	if (dir_nodeid == our_nodeid) {
336		error = dlm_dir_lookup(ls, our_nodeid, r->res_name,
337				       r->res_length, &ret_nodeid);
338		if (error)
339			log_error(ls, "recover dir lookup error %d", error);
340
341		if (ret_nodeid == our_nodeid)
342			ret_nodeid = 0;
343		set_new_master(r, ret_nodeid);
 
 
344	} else {
345		recover_list_add(r);
346		error = dlm_send_rcom_lookup(r, dir_nodeid);
347	}
348
 
349	return error;
350}
351
352/*
353 * When not using a directory, most resource names will hash to a new static
354 * master nodeid and the resource will need to be remastered.
355 */
356
357static int recover_master_static(struct dlm_rsb *r)
358{
359	int master = dlm_dir_nodeid(r);
360
361	if (master == dlm_our_nodeid())
362		master = 0;
363
364	if (r->res_nodeid != master) {
365		if (is_master(r))
366			dlm_purge_mstcpy_locks(r);
367		set_new_master(r, master);
368		return 1;
369	}
 
 
 
 
 
 
 
 
 
 
370	return 0;
371}
372
373/*
374 * Go through local root resources and for each rsb which has a master which
375 * has departed, get the new master nodeid from the directory.  The dir will
376 * assign mastery to the first node to look up the new master.  That means
377 * we'll discover in this lookup if we're the new master of any rsb's.
378 *
379 * We fire off all the dir lookup requests individually and asynchronously to
380 * the correct dir node.
381 */
382
383int dlm_recover_masters(struct dlm_ls *ls)
384{
385	struct dlm_rsb *r;
386	int error = 0, count = 0;
 
 
 
387
388	log_debug(ls, "dlm_recover_masters");
389
390	down_read(&ls->ls_root_sem);
391	list_for_each_entry(r, &ls->ls_root_list, res_root_list) {
392		if (dlm_recovery_stopped(ls)) {
393			up_read(&ls->ls_root_sem);
394			error = -EINTR;
395			goto out;
396		}
397
398		if (dlm_no_directory(ls))
399			count += recover_master_static(r);
400		else if (!is_master(r) &&
401			 (dlm_is_removed(ls, r->res_nodeid) ||
402			  rsb_flag(r, RSB_NEW_MASTER))) {
403			recover_master(r);
404			count++;
405		}
406
407		schedule();
 
 
 
408	}
409	up_read(&ls->ls_root_sem);
410
411	log_debug(ls, "dlm_recover_masters %d resources", count);
412
413	error = dlm_wait_function(ls, &recover_list_empty);
414 out:
415	if (error)
416		recover_list_clear(ls);
417	return error;
418}
419
420int dlm_recover_master_reply(struct dlm_ls *ls, struct dlm_rcom *rc)
421{
422	struct dlm_rsb *r;
423	int nodeid;
424
425	r = recover_list_find(ls, rc->rc_id);
426	if (!r) {
427		log_error(ls, "dlm_recover_master_reply no id %llx",
428			  (unsigned long long)rc->rc_id);
429		goto out;
430	}
431
432	nodeid = rc->rc_result;
433	if (nodeid == dlm_our_nodeid())
434		nodeid = 0;
435
436	set_new_master(r, nodeid);
437	recover_list_del(r);
 
 
438
439	if (recover_list_empty(ls))
 
 
 
 
 
 
 
440		wake_up(&ls->ls_wait_general);
441 out:
442	return 0;
443}
444
445
446/* Lock recovery: rebuild the process-copy locks we hold on a
447   remastered rsb on the new rsb master.
448
449   dlm_recover_locks
450   recover_locks
451   recover_locks_queue
452   dlm_send_rcom_lock              ->  receive_rcom_lock
453                                       dlm_recover_master_copy
454   receive_rcom_lock_reply         <-
455   dlm_recover_process_copy
456*/
457
458
459/*
460 * keep a count of the number of lkb's we send to the new master; when we get
461 * an equal number of replies then recovery for the rsb is done
462 */
463
464static int recover_locks_queue(struct dlm_rsb *r, struct list_head *head)
 
465{
466	struct dlm_lkb *lkb;
467	int error = 0;
468
469	list_for_each_entry(lkb, head, lkb_statequeue) {
470	   	error = dlm_send_rcom_lock(r, lkb);
471		if (error)
472			break;
473		r->res_recover_locks_count++;
474	}
475
476	return error;
477}
478
479static int recover_locks(struct dlm_rsb *r)
480{
481	int error = 0;
482
483	lock_rsb(r);
484
485	DLM_ASSERT(!r->res_recover_locks_count, dlm_dump_rsb(r););
486
487	error = recover_locks_queue(r, &r->res_grantqueue);
488	if (error)
489		goto out;
490	error = recover_locks_queue(r, &r->res_convertqueue);
491	if (error)
492		goto out;
493	error = recover_locks_queue(r, &r->res_waitqueue);
494	if (error)
495		goto out;
496
497	if (r->res_recover_locks_count)
498		recover_list_add(r);
499	else
500		rsb_clear_flag(r, RSB_NEW_MASTER);
501 out:
502	unlock_rsb(r);
503	return error;
504}
505
506int dlm_recover_locks(struct dlm_ls *ls)
507{
508	struct dlm_rsb *r;
509	int error, count = 0;
510
511	log_debug(ls, "dlm_recover_locks");
512
513	down_read(&ls->ls_root_sem);
514	list_for_each_entry(r, &ls->ls_root_list, res_root_list) {
515		if (is_master(r)) {
516			rsb_clear_flag(r, RSB_NEW_MASTER);
517			continue;
518		}
519
520		if (!rsb_flag(r, RSB_NEW_MASTER))
521			continue;
522
523		if (dlm_recovery_stopped(ls)) {
524			error = -EINTR;
525			up_read(&ls->ls_root_sem);
526			goto out;
527		}
528
529		error = recover_locks(r);
530		if (error) {
531			up_read(&ls->ls_root_sem);
532			goto out;
533		}
534
535		count += r->res_recover_locks_count;
536	}
537	up_read(&ls->ls_root_sem);
538
539	log_debug(ls, "dlm_recover_locks %d locks", count);
540
541	error = dlm_wait_function(ls, &recover_list_empty);
542 out:
543	if (error)
544		recover_list_clear(ls);
545	else
546		dlm_set_recover_status(ls, DLM_RS_LOCKS);
547	return error;
548}
549
550void dlm_recovered_lock(struct dlm_rsb *r)
551{
552	DLM_ASSERT(rsb_flag(r, RSB_NEW_MASTER), dlm_dump_rsb(r););
553
554	r->res_recover_locks_count--;
555	if (!r->res_recover_locks_count) {
556		rsb_clear_flag(r, RSB_NEW_MASTER);
557		recover_list_del(r);
558	}
559
560	if (recover_list_empty(r->res_ls))
561		wake_up(&r->res_ls->ls_wait_general);
562}
563
564/*
565 * The lvb needs to be recovered on all master rsb's.  This includes setting
566 * the VALNOTVALID flag if necessary, and determining the correct lvb contents
567 * based on the lvb's of the locks held on the rsb.
568 *
569 * RSB_VALNOTVALID is set if there are only NL/CR locks on the rsb.  If it
570 * was already set prior to recovery, it's not cleared, regardless of locks.
 
 
 
 
 
 
571 *
572 * The LVB contents are only considered for changing when this is a new master
573 * of the rsb (NEW_MASTER2).  Then, the rsb's lvb is taken from any lkb with
574 * mode > CR.  If no lkb's exist with mode above CR, the lvb contents are taken
575 * from the lkb with the largest lvb sequence number.
576 */
577
578static void recover_lvb(struct dlm_rsb *r)
579{
580	struct dlm_lkb *lkb, *high_lkb = NULL;
581	uint32_t high_seq = 0;
582	int lock_lvb_exists = 0;
583	int big_lock_exists = 0;
584	int lvblen = r->res_ls->ls_lvblen;
585
586	list_for_each_entry(lkb, &r->res_grantqueue, lkb_statequeue) {
587		if (!(lkb->lkb_exflags & DLM_LKF_VALBLK))
 
 
 
 
 
 
 
 
 
 
 
 
 
588			continue;
589
590		lock_lvb_exists = 1;
591
592		if (lkb->lkb_grmode > DLM_LOCK_CR) {
593			big_lock_exists = 1;
594			goto setflag;
595		}
596
597		if (((int)lkb->lkb_lvbseq - (int)high_seq) >= 0) {
598			high_lkb = lkb;
599			high_seq = lkb->lkb_lvbseq;
600		}
601	}
602
603	list_for_each_entry(lkb, &r->res_convertqueue, lkb_statequeue) {
604		if (!(lkb->lkb_exflags & DLM_LKF_VALBLK))
605			continue;
606
607		lock_lvb_exists = 1;
608
609		if (lkb->lkb_grmode > DLM_LOCK_CR) {
610			big_lock_exists = 1;
611			goto setflag;
612		}
613
614		if (((int)lkb->lkb_lvbseq - (int)high_seq) >= 0) {
615			high_lkb = lkb;
616			high_seq = lkb->lkb_lvbseq;
617		}
618	}
619
620 setflag:
621	if (!lock_lvb_exists)
622		goto out;
623
624	if (!big_lock_exists)
 
625		rsb_set_flag(r, RSB_VALNOTVALID);
626
627	/* don't mess with the lvb unless we're the new master */
628	if (!rsb_flag(r, RSB_NEW_MASTER2))
629		goto out;
630
631	if (!r->res_lvbptr) {
632		r->res_lvbptr = dlm_allocate_lvb(r->res_ls);
633		if (!r->res_lvbptr)
634			goto out;
635	}
636
637	if (big_lock_exists) {
638		r->res_lvbseq = lkb->lkb_lvbseq;
639		memcpy(r->res_lvbptr, lkb->lkb_lvbptr, lvblen);
640	} else if (high_lkb) {
641		r->res_lvbseq = high_lkb->lkb_lvbseq;
642		memcpy(r->res_lvbptr, high_lkb->lkb_lvbptr, lvblen);
643	} else {
644		r->res_lvbseq = 0;
645		memset(r->res_lvbptr, 0, lvblen);
646	}
647 out:
648	return;
649}
650
651/* All master rsb's flagged RECOVER_CONVERT need to be looked at.  The locks
652   converting PR->CW or CW->PR need to have their lkb_grmode set. */
653
654static void recover_conversion(struct dlm_rsb *r)
655{
 
656	struct dlm_lkb *lkb;
657	int grmode = -1;
658
659	list_for_each_entry(lkb, &r->res_grantqueue, lkb_statequeue) {
660		if (lkb->lkb_grmode == DLM_LOCK_PR ||
661		    lkb->lkb_grmode == DLM_LOCK_CW) {
662			grmode = lkb->lkb_grmode;
663			break;
664		}
665	}
666
667	list_for_each_entry(lkb, &r->res_convertqueue, lkb_statequeue) {
668		if (lkb->lkb_grmode != DLM_LOCK_IV)
669			continue;
670		if (grmode == -1)
 
 
671			lkb->lkb_grmode = lkb->lkb_rqmode;
672		else
 
 
673			lkb->lkb_grmode = grmode;
 
674	}
675}
676
677/* We've become the new master for this rsb and waiting/converting locks may
678   need to be granted in dlm_grant_after_purge() due to locks that may have
679   existed from a removed node. */
680
681static void set_locks_purged(struct dlm_rsb *r)
682{
683	if (!list_empty(&r->res_waitqueue) || !list_empty(&r->res_convertqueue))
684		rsb_set_flag(r, RSB_LOCKS_PURGED);
685}
686
687void dlm_recover_rsbs(struct dlm_ls *ls)
688{
689	struct dlm_rsb *r;
690	int count = 0;
691
692	log_debug(ls, "dlm_recover_rsbs");
693
694	down_read(&ls->ls_root_sem);
695	list_for_each_entry(r, &ls->ls_root_list, res_root_list) {
696		lock_rsb(r);
697		if (is_master(r)) {
698			if (rsb_flag(r, RSB_RECOVER_CONVERT))
699				recover_conversion(r);
700			if (rsb_flag(r, RSB_NEW_MASTER2))
701				set_locks_purged(r);
 
702			recover_lvb(r);
 
 
 
703			count++;
 
 
704		}
705		rsb_clear_flag(r, RSB_RECOVER_CONVERT);
 
706		rsb_clear_flag(r, RSB_NEW_MASTER2);
707		unlock_rsb(r);
708	}
709	up_read(&ls->ls_root_sem);
710
711	log_debug(ls, "dlm_recover_rsbs %d rsbs", count);
 
712}
713
714/* Create a single list of all root rsb's to be used during recovery */
715
716int dlm_create_root_list(struct dlm_ls *ls)
717{
 
718	struct dlm_rsb *r;
719	int i, error = 0;
720
721	down_write(&ls->ls_root_sem);
722	if (!list_empty(&ls->ls_root_list)) {
723		log_error(ls, "root list not empty");
724		error = -EINVAL;
725		goto out;
726	}
727
728	for (i = 0; i < ls->ls_rsbtbl_size; i++) {
729		spin_lock(&ls->ls_rsbtbl[i].lock);
730		list_for_each_entry(r, &ls->ls_rsbtbl[i].list, res_hashchain) {
 
731			list_add(&r->res_root_list, &ls->ls_root_list);
732			dlm_hold_rsb(r);
733		}
734
735		/* If we're using a directory, add tossed rsbs to the root
736		   list; they'll have entries created in the new directory,
737		   but no other recovery steps should do anything with them. */
738
739		if (dlm_no_directory(ls)) {
740			spin_unlock(&ls->ls_rsbtbl[i].lock);
741			continue;
742		}
743
744		list_for_each_entry(r, &ls->ls_rsbtbl[i].toss, res_hashchain) {
745			list_add(&r->res_root_list, &ls->ls_root_list);
746			dlm_hold_rsb(r);
747		}
748		spin_unlock(&ls->ls_rsbtbl[i].lock);
749	}
750 out:
751	up_write(&ls->ls_root_sem);
752	return error;
753}
754
755void dlm_release_root_list(struct dlm_ls *ls)
756{
757	struct dlm_rsb *r, *safe;
758
759	down_write(&ls->ls_root_sem);
760	list_for_each_entry_safe(r, safe, &ls->ls_root_list, res_root_list) {
761		list_del_init(&r->res_root_list);
762		dlm_put_rsb(r);
763	}
764	up_write(&ls->ls_root_sem);
765}
766
767/* If not using a directory, clear the entire toss list, there's no benefit to
768   caching the master value since it's fixed.  If we are using a dir, keep the
769   rsb's we're the master of.  Recovery will add them to the root list and from
770   there they'll be entered in the rebuilt directory. */
771
772void dlm_clear_toss_list(struct dlm_ls *ls)
773{
774	struct dlm_rsb *r, *safe;
 
 
775	int i;
776
777	for (i = 0; i < ls->ls_rsbtbl_size; i++) {
778		spin_lock(&ls->ls_rsbtbl[i].lock);
779		list_for_each_entry_safe(r, safe, &ls->ls_rsbtbl[i].toss,
780					 res_hashchain) {
781			if (dlm_no_directory(ls) || !is_master(r)) {
782				list_del(&r->res_hashchain);
783				dlm_free_rsb(r);
784			}
785		}
786		spin_unlock(&ls->ls_rsbtbl[i].lock);
787	}
 
 
 
788}
789
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/******************************************************************************
  3*******************************************************************************
  4**
  5**  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
  6**  Copyright (C) 2004-2005 Red Hat, Inc.  All rights reserved.
  7**
 
 
 
  8**
  9*******************************************************************************
 10******************************************************************************/
 11
 12#include "dlm_internal.h"
 13#include "lockspace.h"
 14#include "dir.h"
 15#include "config.h"
 16#include "ast.h"
 17#include "memory.h"
 18#include "rcom.h"
 19#include "lock.h"
 20#include "lowcomms.h"
 21#include "member.h"
 22#include "recover.h"
 23
 24
 25/*
 26 * Recovery waiting routines: these functions wait for a particular reply from
 27 * a remote node, or for the remote node to report a certain status.  They need
 28 * to abort if the lockspace is stopped indicating a node has failed (perhaps
 29 * the one being waited for).
 30 */
 31
 32/*
 33 * Wait until given function returns non-zero or lockspace is stopped
 34 * (LS_RECOVERY_STOP set due to failure of a node in ls_nodes).  When another
 35 * function thinks it could have completed the waited-on task, they should wake
 36 * up ls_wait_general to get an immediate response rather than waiting for the
 37 * timeout.  This uses a timeout so it can check periodically if the wait
 38 * should abort due to node failure (which doesn't cause a wake_up).
 39 * This should only be called by the dlm_recoverd thread.
 40 */
 41
 
 
 
 
 
 
 
 42int dlm_wait_function(struct dlm_ls *ls, int (*testfn) (struct dlm_ls *ls))
 43{
 44	int error = 0;
 45	int rv;
 46
 47	while (1) {
 48		rv = wait_event_timeout(ls->ls_wait_general,
 49					testfn(ls) || dlm_recovery_stopped(ls),
 50					dlm_config.ci_recover_timer * HZ);
 51		if (rv)
 52			break;
 53		if (test_bit(LSFL_RCOM_WAIT, &ls->ls_flags)) {
 54			log_debug(ls, "dlm_wait_function timed out");
 55			return -ETIMEDOUT;
 56		}
 57	}
 58
 59	if (dlm_recovery_stopped(ls)) {
 60		log_debug(ls, "dlm_wait_function aborted");
 61		error = -EINTR;
 62	}
 63	return error;
 64}
 65
 66/*
 67 * An efficient way for all nodes to wait for all others to have a certain
 68 * status.  The node with the lowest nodeid polls all the others for their
 69 * status (wait_status_all) and all the others poll the node with the low id
 70 * for its accumulated result (wait_status_low).  When all nodes have set
 71 * status flag X, then status flag X_ALL will be set on the low nodeid.
 72 */
 73
 74uint32_t dlm_recover_status(struct dlm_ls *ls)
 75{
 76	uint32_t status;
 77	spin_lock(&ls->ls_recover_lock);
 78	status = ls->ls_recover_status;
 79	spin_unlock(&ls->ls_recover_lock);
 80	return status;
 81}
 82
 83static void _set_recover_status(struct dlm_ls *ls, uint32_t status)
 84{
 85	ls->ls_recover_status |= status;
 86}
 87
 88void dlm_set_recover_status(struct dlm_ls *ls, uint32_t status)
 89{
 90	spin_lock(&ls->ls_recover_lock);
 91	_set_recover_status(ls, status);
 92	spin_unlock(&ls->ls_recover_lock);
 93}
 94
 95static int wait_status_all(struct dlm_ls *ls, uint32_t wait_status,
 96			   int save_slots, uint64_t seq)
 97{
 98	struct dlm_rcom *rc = ls->ls_recover_buf;
 99	struct dlm_member *memb;
100	int error = 0, delay;
101
102	list_for_each_entry(memb, &ls->ls_nodes, list) {
103		delay = 0;
104		for (;;) {
105			if (dlm_recovery_stopped(ls)) {
106				error = -EINTR;
107				goto out;
108			}
109
110			error = dlm_rcom_status(ls, memb->nodeid, 0, seq);
111			if (error)
112				goto out;
113
114			if (save_slots)
115				dlm_slot_save(ls, rc, memb);
116
117			if (le32_to_cpu(rc->rc_result) & wait_status)
118				break;
119			if (delay < 1000)
120				delay += 20;
121			msleep(delay);
122		}
123	}
124 out:
125	return error;
126}
127
128static int wait_status_low(struct dlm_ls *ls, uint32_t wait_status,
129			   uint32_t status_flags, uint64_t seq)
130{
131	struct dlm_rcom *rc = ls->ls_recover_buf;
132	int error = 0, delay = 0, nodeid = ls->ls_low_nodeid;
133
134	for (;;) {
135		if (dlm_recovery_stopped(ls)) {
136			error = -EINTR;
137			goto out;
138		}
139
140		error = dlm_rcom_status(ls, nodeid, status_flags, seq);
141		if (error)
142			break;
143
144		if (le32_to_cpu(rc->rc_result) & wait_status)
145			break;
146		if (delay < 1000)
147			delay += 20;
148		msleep(delay);
149	}
150 out:
151	return error;
152}
153
154static int wait_status(struct dlm_ls *ls, uint32_t status, uint64_t seq)
155{
156	uint32_t status_all = status << 1;
157	int error;
158
159	if (ls->ls_low_nodeid == dlm_our_nodeid()) {
160		error = wait_status_all(ls, status, 0, seq);
161		if (!error)
162			dlm_set_recover_status(ls, status_all);
163	} else
164		error = wait_status_low(ls, status_all, 0, seq);
165
166	return error;
167}
168
169int dlm_recover_members_wait(struct dlm_ls *ls, uint64_t seq)
170{
171	struct dlm_member *memb;
172	struct dlm_slot *slots;
173	int num_slots, slots_size;
174	int error, rv;
175	uint32_t gen;
176
177	list_for_each_entry(memb, &ls->ls_nodes, list) {
178		memb->slot = -1;
179		memb->generation = 0;
180	}
181
182	if (ls->ls_low_nodeid == dlm_our_nodeid()) {
183		error = wait_status_all(ls, DLM_RS_NODES, 1, seq);
184		if (error)
185			goto out;
186
187		/* slots array is sparse, slots_size may be > num_slots */
188
189		rv = dlm_slots_assign(ls, &num_slots, &slots_size, &slots, &gen);
190		if (!rv) {
191			spin_lock(&ls->ls_recover_lock);
192			_set_recover_status(ls, DLM_RS_NODES_ALL);
193			ls->ls_num_slots = num_slots;
194			ls->ls_slots_size = slots_size;
195			ls->ls_slots = slots;
196			ls->ls_generation = gen;
197			spin_unlock(&ls->ls_recover_lock);
198		} else {
199			dlm_set_recover_status(ls, DLM_RS_NODES_ALL);
200		}
201	} else {
202		error = wait_status_low(ls, DLM_RS_NODES_ALL,
203					DLM_RSF_NEED_SLOTS, seq);
204		if (error)
205			goto out;
206
207		dlm_slots_copy_in(ls);
208	}
209 out:
210	return error;
211}
212
213int dlm_recover_directory_wait(struct dlm_ls *ls, uint64_t seq)
214{
215	return wait_status(ls, DLM_RS_DIR, seq);
216}
217
218int dlm_recover_locks_wait(struct dlm_ls *ls, uint64_t seq)
219{
220	return wait_status(ls, DLM_RS_LOCKS, seq);
221}
222
223int dlm_recover_done_wait(struct dlm_ls *ls, uint64_t seq)
224{
225	return wait_status(ls, DLM_RS_DONE, seq);
226}
227
228/*
229 * The recover_list contains all the rsb's for which we've requested the new
230 * master nodeid.  As replies are returned from the resource directories the
231 * rsb's are removed from the list.  When the list is empty we're done.
232 *
233 * The recover_list is later similarly used for all rsb's for which we've sent
234 * new lkb's and need to receive new corresponding lkid's.
235 *
236 * We use the address of the rsb struct as a simple local identifier for the
237 * rsb so we can match an rcom reply with the rsb it was sent for.
238 */
239
240static int recover_list_empty(struct dlm_ls *ls)
241{
242	int empty;
243
244	spin_lock(&ls->ls_recover_list_lock);
245	empty = list_empty(&ls->ls_recover_list);
246	spin_unlock(&ls->ls_recover_list_lock);
247
248	return empty;
249}
250
251static void recover_list_add(struct dlm_rsb *r)
252{
253	struct dlm_ls *ls = r->res_ls;
254
255	spin_lock(&ls->ls_recover_list_lock);
256	if (list_empty(&r->res_recover_list)) {
257		list_add_tail(&r->res_recover_list, &ls->ls_recover_list);
258		ls->ls_recover_list_count++;
259		dlm_hold_rsb(r);
260	}
261	spin_unlock(&ls->ls_recover_list_lock);
262}
263
264static void recover_list_del(struct dlm_rsb *r)
265{
266	struct dlm_ls *ls = r->res_ls;
267
268	spin_lock(&ls->ls_recover_list_lock);
269	list_del_init(&r->res_recover_list);
270	ls->ls_recover_list_count--;
271	spin_unlock(&ls->ls_recover_list_lock);
272
273	dlm_put_rsb(r);
274}
275
276static void recover_list_clear(struct dlm_ls *ls)
277{
278	struct dlm_rsb *r, *s;
279
280	spin_lock(&ls->ls_recover_list_lock);
281	list_for_each_entry_safe(r, s, &ls->ls_recover_list, res_recover_list) {
282		list_del_init(&r->res_recover_list);
283		r->res_recover_locks_count = 0;
284		dlm_put_rsb(r);
285		ls->ls_recover_list_count--;
286	}
287
288	if (ls->ls_recover_list_count != 0) {
289		log_error(ls, "warning: recover_list_count %d",
290			  ls->ls_recover_list_count);
291		ls->ls_recover_list_count = 0;
292	}
 
 
293	spin_unlock(&ls->ls_recover_list_lock);
294}
295
296static int recover_idr_empty(struct dlm_ls *ls)
297{
298	int empty = 1;
299
300	spin_lock(&ls->ls_recover_idr_lock);
301	if (ls->ls_recover_list_count)
302		empty = 0;
303	spin_unlock(&ls->ls_recover_idr_lock);
304
305	return empty;
306}
307
308static int recover_idr_add(struct dlm_rsb *r)
309{
310	struct dlm_ls *ls = r->res_ls;
311	int rv;
312
313	idr_preload(GFP_NOFS);
314	spin_lock(&ls->ls_recover_idr_lock);
315	if (r->res_id) {
316		rv = -1;
317		goto out_unlock;
318	}
319	rv = idr_alloc(&ls->ls_recover_idr, r, 1, 0, GFP_NOWAIT);
320	if (rv < 0)
321		goto out_unlock;
322
323	r->res_id = rv;
324	ls->ls_recover_list_count++;
325	dlm_hold_rsb(r);
326	rv = 0;
327out_unlock:
328	spin_unlock(&ls->ls_recover_idr_lock);
329	idr_preload_end();
330	return rv;
331}
332
333static void recover_idr_del(struct dlm_rsb *r)
334{
335	struct dlm_ls *ls = r->res_ls;
336
337	spin_lock(&ls->ls_recover_idr_lock);
338	idr_remove(&ls->ls_recover_idr, r->res_id);
339	r->res_id = 0;
340	ls->ls_recover_list_count--;
341	spin_unlock(&ls->ls_recover_idr_lock);
342
343	dlm_put_rsb(r);
344}
345
346static struct dlm_rsb *recover_idr_find(struct dlm_ls *ls, uint64_t id)
347{
348	struct dlm_rsb *r;
349
350	spin_lock(&ls->ls_recover_idr_lock);
351	r = idr_find(&ls->ls_recover_idr, (int)id);
352	spin_unlock(&ls->ls_recover_idr_lock);
353	return r;
354}
355
356static void recover_idr_clear(struct dlm_ls *ls)
357{
358	struct dlm_rsb *r;
359	int id;
360
361	spin_lock(&ls->ls_recover_idr_lock);
362
363	idr_for_each_entry(&ls->ls_recover_idr, r, id) {
364		idr_remove(&ls->ls_recover_idr, id);
365		r->res_id = 0;
366		r->res_recover_locks_count = 0;
 
367		ls->ls_recover_list_count--;
368
369		dlm_put_rsb(r);
370	}
371
372	if (ls->ls_recover_list_count != 0) {
373		log_error(ls, "warning: recover_list_count %d",
374			  ls->ls_recover_list_count);
375		ls->ls_recover_list_count = 0;
376	}
377	spin_unlock(&ls->ls_recover_idr_lock);
378}
379
380
381/* Master recovery: find new master node for rsb's that were
382   mastered on nodes that have been removed.
383
384   dlm_recover_masters
385   recover_master
386   dlm_send_rcom_lookup            ->  receive_rcom_lookup
387                                       dlm_dir_lookup
388   receive_rcom_lookup_reply       <-
389   dlm_recover_master_reply
390   set_new_master
391   set_master_lkbs
392   set_lock_master
393*/
394
395/*
396 * Set the lock master for all LKBs in a lock queue
397 * If we are the new master of the rsb, we may have received new
398 * MSTCPY locks from other nodes already which we need to ignore
399 * when setting the new nodeid.
400 */
401
402static void set_lock_master(struct list_head *queue, int nodeid)
403{
404	struct dlm_lkb *lkb;
405
406	list_for_each_entry(lkb, queue, lkb_statequeue) {
407		if (!test_bit(DLM_IFL_MSTCPY_BIT, &lkb->lkb_iflags)) {
408			lkb->lkb_nodeid = nodeid;
409			lkb->lkb_remid = 0;
410		}
411	}
412}
413
414static void set_master_lkbs(struct dlm_rsb *r)
415{
416	set_lock_master(&r->res_grantqueue, r->res_nodeid);
417	set_lock_master(&r->res_convertqueue, r->res_nodeid);
418	set_lock_master(&r->res_waitqueue, r->res_nodeid);
419}
420
421/*
422 * Propagate the new master nodeid to locks
423 * The NEW_MASTER flag tells dlm_recover_locks() which rsb's to consider.
424 * The NEW_MASTER2 flag tells recover_lvb() and recover_grant() which
425 * rsb's to consider.
426 */
427
428static void set_new_master(struct dlm_rsb *r)
429{
 
 
430	set_master_lkbs(r);
431	rsb_set_flag(r, RSB_NEW_MASTER);
432	rsb_set_flag(r, RSB_NEW_MASTER2);
 
433}
434
435/*
436 * We do async lookups on rsb's that need new masters.  The rsb's
437 * waiting for a lookup reply are kept on the recover_list.
438 *
439 * Another node recovering the master may have sent us a rcom lookup,
440 * and our dlm_master_lookup() set it as the new master, along with
441 * NEW_MASTER so that we'll recover it here (this implies dir_nodeid
442 * equals our_nodeid below).
443 */
444
445static int recover_master(struct dlm_rsb *r, unsigned int *count, uint64_t seq)
446{
447	struct dlm_ls *ls = r->res_ls;
448	int our_nodeid, dir_nodeid;
449	int is_removed = 0;
450	int error;
451
452	if (is_master(r))
453		return 0;
454
455	is_removed = dlm_is_removed(ls, r->res_nodeid);
456
457	if (!is_removed && !rsb_flag(r, RSB_NEW_MASTER))
458		return 0;
459
460	our_nodeid = dlm_our_nodeid();
461	dir_nodeid = dlm_dir_nodeid(r);
462
463	if (dir_nodeid == our_nodeid) {
464		if (is_removed) {
465			r->res_master_nodeid = our_nodeid;
466			r->res_nodeid = 0;
467		}
468
469		/* set master of lkbs to ourself when is_removed, or to
470		   another new master which we set along with NEW_MASTER
471		   in dlm_master_lookup */
472		set_new_master(r);
473		error = 0;
474	} else {
475		recover_idr_add(r);
476		error = dlm_send_rcom_lookup(r, dir_nodeid, seq);
477	}
478
479	(*count)++;
480	return error;
481}
482
483/*
484 * All MSTCPY locks are purged and rebuilt, even if the master stayed the same.
485 * This is necessary because recovery can be started, aborted and restarted,
486 * causing the master nodeid to briefly change during the aborted recovery, and
487 * change back to the original value in the second recovery.  The MSTCPY locks
488 * may or may not have been purged during the aborted recovery.  Another node
489 * with an outstanding request in waiters list and a request reply saved in the
490 * requestqueue, cannot know whether it should ignore the reply and resend the
491 * request, or accept the reply and complete the request.  It must do the
492 * former if the remote node purged MSTCPY locks, and it must do the later if
493 * the remote node did not.  This is solved by always purging MSTCPY locks, in
494 * which case, the request reply would always be ignored and the request
495 * resent.
496 */
497
498static int recover_master_static(struct dlm_rsb *r, unsigned int *count)
499{
500	int dir_nodeid = dlm_dir_nodeid(r);
501	int new_master = dir_nodeid;
502
503	if (dir_nodeid == dlm_our_nodeid())
504		new_master = 0;
505
506	dlm_purge_mstcpy_locks(r);
507	r->res_master_nodeid = dir_nodeid;
508	r->res_nodeid = new_master;
509	set_new_master(r);
510	(*count)++;
511	return 0;
512}
513
514/*
515 * Go through local root resources and for each rsb which has a master which
516 * has departed, get the new master nodeid from the directory.  The dir will
517 * assign mastery to the first node to look up the new master.  That means
518 * we'll discover in this lookup if we're the new master of any rsb's.
519 *
520 * We fire off all the dir lookup requests individually and asynchronously to
521 * the correct dir node.
522 */
523
524int dlm_recover_masters(struct dlm_ls *ls, uint64_t seq)
525{
526	struct dlm_rsb *r;
527	unsigned int total = 0;
528	unsigned int count = 0;
529	int nodir = dlm_no_directory(ls);
530	int error;
531
532	log_rinfo(ls, "dlm_recover_masters");
533
534	down_read(&ls->ls_root_sem);
535	list_for_each_entry(r, &ls->ls_root_list, res_root_list) {
536		if (dlm_recovery_stopped(ls)) {
537			up_read(&ls->ls_root_sem);
538			error = -EINTR;
539			goto out;
540		}
541
542		lock_rsb(r);
543		if (nodir)
544			error = recover_master_static(r, &count);
545		else
546			error = recover_master(r, &count, seq);
547		unlock_rsb(r);
548		cond_resched();
549		total++;
550
551		if (error) {
552			up_read(&ls->ls_root_sem);
553			goto out;
554		}
555	}
556	up_read(&ls->ls_root_sem);
557
558	log_rinfo(ls, "dlm_recover_masters %u of %u", count, total);
559
560	error = dlm_wait_function(ls, &recover_idr_empty);
561 out:
562	if (error)
563		recover_idr_clear(ls);
564	return error;
565}
566
567int dlm_recover_master_reply(struct dlm_ls *ls, const struct dlm_rcom *rc)
568{
569	struct dlm_rsb *r;
570	int ret_nodeid, new_master;
571
572	r = recover_idr_find(ls, le64_to_cpu(rc->rc_id));
573	if (!r) {
574		log_error(ls, "dlm_recover_master_reply no id %llx",
575			  (unsigned long long)le64_to_cpu(rc->rc_id));
576		goto out;
577	}
578
579	ret_nodeid = le32_to_cpu(rc->rc_result);
 
 
580
581	if (ret_nodeid == dlm_our_nodeid())
582		new_master = 0;
583	else
584		new_master = ret_nodeid;
585
586	lock_rsb(r);
587	r->res_master_nodeid = ret_nodeid;
588	r->res_nodeid = new_master;
589	set_new_master(r);
590	unlock_rsb(r);
591	recover_idr_del(r);
592
593	if (recover_idr_empty(ls))
594		wake_up(&ls->ls_wait_general);
595 out:
596	return 0;
597}
598
599
600/* Lock recovery: rebuild the process-copy locks we hold on a
601   remastered rsb on the new rsb master.
602
603   dlm_recover_locks
604   recover_locks
605   recover_locks_queue
606   dlm_send_rcom_lock              ->  receive_rcom_lock
607                                       dlm_recover_master_copy
608   receive_rcom_lock_reply         <-
609   dlm_recover_process_copy
610*/
611
612
613/*
614 * keep a count of the number of lkb's we send to the new master; when we get
615 * an equal number of replies then recovery for the rsb is done
616 */
617
618static int recover_locks_queue(struct dlm_rsb *r, struct list_head *head,
619			       uint64_t seq)
620{
621	struct dlm_lkb *lkb;
622	int error = 0;
623
624	list_for_each_entry(lkb, head, lkb_statequeue) {
625		error = dlm_send_rcom_lock(r, lkb, seq);
626		if (error)
627			break;
628		r->res_recover_locks_count++;
629	}
630
631	return error;
632}
633
634static int recover_locks(struct dlm_rsb *r, uint64_t seq)
635{
636	int error = 0;
637
638	lock_rsb(r);
639
640	DLM_ASSERT(!r->res_recover_locks_count, dlm_dump_rsb(r););
641
642	error = recover_locks_queue(r, &r->res_grantqueue, seq);
643	if (error)
644		goto out;
645	error = recover_locks_queue(r, &r->res_convertqueue, seq);
646	if (error)
647		goto out;
648	error = recover_locks_queue(r, &r->res_waitqueue, seq);
649	if (error)
650		goto out;
651
652	if (r->res_recover_locks_count)
653		recover_list_add(r);
654	else
655		rsb_clear_flag(r, RSB_NEW_MASTER);
656 out:
657	unlock_rsb(r);
658	return error;
659}
660
661int dlm_recover_locks(struct dlm_ls *ls, uint64_t seq)
662{
663	struct dlm_rsb *r;
664	int error, count = 0;
665
 
 
666	down_read(&ls->ls_root_sem);
667	list_for_each_entry(r, &ls->ls_root_list, res_root_list) {
668		if (is_master(r)) {
669			rsb_clear_flag(r, RSB_NEW_MASTER);
670			continue;
671		}
672
673		if (!rsb_flag(r, RSB_NEW_MASTER))
674			continue;
675
676		if (dlm_recovery_stopped(ls)) {
677			error = -EINTR;
678			up_read(&ls->ls_root_sem);
679			goto out;
680		}
681
682		error = recover_locks(r, seq);
683		if (error) {
684			up_read(&ls->ls_root_sem);
685			goto out;
686		}
687
688		count += r->res_recover_locks_count;
689	}
690	up_read(&ls->ls_root_sem);
691
692	log_rinfo(ls, "dlm_recover_locks %d out", count);
693
694	error = dlm_wait_function(ls, &recover_list_empty);
695 out:
696	if (error)
697		recover_list_clear(ls);
 
 
698	return error;
699}
700
701void dlm_recovered_lock(struct dlm_rsb *r)
702{
703	DLM_ASSERT(rsb_flag(r, RSB_NEW_MASTER), dlm_dump_rsb(r););
704
705	r->res_recover_locks_count--;
706	if (!r->res_recover_locks_count) {
707		rsb_clear_flag(r, RSB_NEW_MASTER);
708		recover_list_del(r);
709	}
710
711	if (recover_list_empty(r->res_ls))
712		wake_up(&r->res_ls->ls_wait_general);
713}
714
715/*
716 * The lvb needs to be recovered on all master rsb's.  This includes setting
717 * the VALNOTVALID flag if necessary, and determining the correct lvb contents
718 * based on the lvb's of the locks held on the rsb.
719 *
720 * RSB_VALNOTVALID is set in two cases:
721 *
722 * 1. we are master, but not new, and we purged an EX/PW lock held by a
723 * failed node (in dlm_recover_purge which set RSB_RECOVER_LVB_INVAL)
724 *
725 * 2. we are a new master, and there are only NL/CR locks left.
726 * (We could probably improve this by only invaliding in this way when
727 * the previous master left uncleanly.  VMS docs mention that.)
728 *
729 * The LVB contents are only considered for changing when this is a new master
730 * of the rsb (NEW_MASTER2).  Then, the rsb's lvb is taken from any lkb with
731 * mode > CR.  If no lkb's exist with mode above CR, the lvb contents are taken
732 * from the lkb with the largest lvb sequence number.
733 */
734
735static void recover_lvb(struct dlm_rsb *r)
736{
737	struct dlm_lkb *big_lkb = NULL, *iter, *high_lkb = NULL;
738	uint32_t high_seq = 0;
739	int lock_lvb_exists = 0;
 
740	int lvblen = r->res_ls->ls_lvblen;
741
742	if (!rsb_flag(r, RSB_NEW_MASTER2) &&
743	    rsb_flag(r, RSB_RECOVER_LVB_INVAL)) {
744		/* case 1 above */
745		rsb_set_flag(r, RSB_VALNOTVALID);
746		return;
747	}
748
749	if (!rsb_flag(r, RSB_NEW_MASTER2))
750		return;
751
752	/* we are the new master, so figure out if VALNOTVALID should
753	   be set, and set the rsb lvb from the best lkb available. */
754
755	list_for_each_entry(iter, &r->res_grantqueue, lkb_statequeue) {
756		if (!(iter->lkb_exflags & DLM_LKF_VALBLK))
757			continue;
758
759		lock_lvb_exists = 1;
760
761		if (iter->lkb_grmode > DLM_LOCK_CR) {
762			big_lkb = iter;
763			goto setflag;
764		}
765
766		if (((int)iter->lkb_lvbseq - (int)high_seq) >= 0) {
767			high_lkb = iter;
768			high_seq = iter->lkb_lvbseq;
769		}
770	}
771
772	list_for_each_entry(iter, &r->res_convertqueue, lkb_statequeue) {
773		if (!(iter->lkb_exflags & DLM_LKF_VALBLK))
774			continue;
775
776		lock_lvb_exists = 1;
777
778		if (iter->lkb_grmode > DLM_LOCK_CR) {
779			big_lkb = iter;
780			goto setflag;
781		}
782
783		if (((int)iter->lkb_lvbseq - (int)high_seq) >= 0) {
784			high_lkb = iter;
785			high_seq = iter->lkb_lvbseq;
786		}
787	}
788
789 setflag:
790	if (!lock_lvb_exists)
791		goto out;
792
793	/* lvb is invalidated if only NL/CR locks remain */
794	if (!big_lkb)
795		rsb_set_flag(r, RSB_VALNOTVALID);
796
 
 
 
 
797	if (!r->res_lvbptr) {
798		r->res_lvbptr = dlm_allocate_lvb(r->res_ls);
799		if (!r->res_lvbptr)
800			goto out;
801	}
802
803	if (big_lkb) {
804		r->res_lvbseq = big_lkb->lkb_lvbseq;
805		memcpy(r->res_lvbptr, big_lkb->lkb_lvbptr, lvblen);
806	} else if (high_lkb) {
807		r->res_lvbseq = high_lkb->lkb_lvbseq;
808		memcpy(r->res_lvbptr, high_lkb->lkb_lvbptr, lvblen);
809	} else {
810		r->res_lvbseq = 0;
811		memset(r->res_lvbptr, 0, lvblen);
812	}
813 out:
814	return;
815}
816
817/* All master rsb's flagged RECOVER_CONVERT need to be looked at.  The locks
818   converting PR->CW or CW->PR need to have their lkb_grmode set. */
819
820static void recover_conversion(struct dlm_rsb *r)
821{
822	struct dlm_ls *ls = r->res_ls;
823	struct dlm_lkb *lkb;
824	int grmode = -1;
825
826	list_for_each_entry(lkb, &r->res_grantqueue, lkb_statequeue) {
827		if (lkb->lkb_grmode == DLM_LOCK_PR ||
828		    lkb->lkb_grmode == DLM_LOCK_CW) {
829			grmode = lkb->lkb_grmode;
830			break;
831		}
832	}
833
834	list_for_each_entry(lkb, &r->res_convertqueue, lkb_statequeue) {
835		if (lkb->lkb_grmode != DLM_LOCK_IV)
836			continue;
837		if (grmode == -1) {
838			log_debug(ls, "recover_conversion %x set gr to rq %d",
839				  lkb->lkb_id, lkb->lkb_rqmode);
840			lkb->lkb_grmode = lkb->lkb_rqmode;
841		} else {
842			log_debug(ls, "recover_conversion %x set gr %d",
843				  lkb->lkb_id, grmode);
844			lkb->lkb_grmode = grmode;
845		}
846	}
847}
848
849/* We've become the new master for this rsb and waiting/converting locks may
850   need to be granted in dlm_recover_grant() due to locks that may have
851   existed from a removed node. */
852
853static void recover_grant(struct dlm_rsb *r)
854{
855	if (!list_empty(&r->res_waitqueue) || !list_empty(&r->res_convertqueue))
856		rsb_set_flag(r, RSB_RECOVER_GRANT);
857}
858
859void dlm_recover_rsbs(struct dlm_ls *ls)
860{
861	struct dlm_rsb *r;
862	unsigned int count = 0;
 
 
863
864	down_read(&ls->ls_root_sem);
865	list_for_each_entry(r, &ls->ls_root_list, res_root_list) {
866		lock_rsb(r);
867		if (is_master(r)) {
868			if (rsb_flag(r, RSB_RECOVER_CONVERT))
869				recover_conversion(r);
870
871			/* recover lvb before granting locks so the updated
872			   lvb/VALNOTVALID is presented in the completion */
873			recover_lvb(r);
874
875			if (rsb_flag(r, RSB_NEW_MASTER2))
876				recover_grant(r);
877			count++;
878		} else {
879			rsb_clear_flag(r, RSB_VALNOTVALID);
880		}
881		rsb_clear_flag(r, RSB_RECOVER_CONVERT);
882		rsb_clear_flag(r, RSB_RECOVER_LVB_INVAL);
883		rsb_clear_flag(r, RSB_NEW_MASTER2);
884		unlock_rsb(r);
885	}
886	up_read(&ls->ls_root_sem);
887
888	if (count)
889		log_rinfo(ls, "dlm_recover_rsbs %d done", count);
890}
891
892/* Create a single list of all root rsb's to be used during recovery */
893
894int dlm_create_root_list(struct dlm_ls *ls)
895{
896	struct rb_node *n;
897	struct dlm_rsb *r;
898	int i, error = 0;
899
900	down_write(&ls->ls_root_sem);
901	if (!list_empty(&ls->ls_root_list)) {
902		log_error(ls, "root list not empty");
903		error = -EINVAL;
904		goto out;
905	}
906
907	for (i = 0; i < ls->ls_rsbtbl_size; i++) {
908		spin_lock(&ls->ls_rsbtbl[i].lock);
909		for (n = rb_first(&ls->ls_rsbtbl[i].keep); n; n = rb_next(n)) {
910			r = rb_entry(n, struct dlm_rsb, res_hashnode);
911			list_add(&r->res_root_list, &ls->ls_root_list);
912			dlm_hold_rsb(r);
913		}
914
915		if (!RB_EMPTY_ROOT(&ls->ls_rsbtbl[i].toss))
916			log_error(ls, "dlm_create_root_list toss not empty");
 
 
 
 
 
 
 
 
 
 
 
917		spin_unlock(&ls->ls_rsbtbl[i].lock);
918	}
919 out:
920	up_write(&ls->ls_root_sem);
921	return error;
922}
923
924void dlm_release_root_list(struct dlm_ls *ls)
925{
926	struct dlm_rsb *r, *safe;
927
928	down_write(&ls->ls_root_sem);
929	list_for_each_entry_safe(r, safe, &ls->ls_root_list, res_root_list) {
930		list_del_init(&r->res_root_list);
931		dlm_put_rsb(r);
932	}
933	up_write(&ls->ls_root_sem);
934}
935
936void dlm_clear_toss(struct dlm_ls *ls)
 
 
 
 
 
937{
938	struct rb_node *n, *next;
939	struct dlm_rsb *r;
940	unsigned int count = 0;
941	int i;
942
943	for (i = 0; i < ls->ls_rsbtbl_size; i++) {
944		spin_lock(&ls->ls_rsbtbl[i].lock);
945		for (n = rb_first(&ls->ls_rsbtbl[i].toss); n; n = next) {
946			next = rb_next(n);
947			r = rb_entry(n, struct dlm_rsb, res_hashnode);
948			rb_erase(n, &ls->ls_rsbtbl[i].toss);
949			dlm_free_rsb(r);
950			count++;
951		}
952		spin_unlock(&ls->ls_rsbtbl[i].lock);
953	}
954
955	if (count)
956		log_rinfo(ls, "dlm_clear_toss %u done", count);
957}
958