Linux Audio

Check our new training course

Loading...
v3.1
  1/******************************************************************************
  2*******************************************************************************
  3**
  4**  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
  5**  Copyright (C) 2004-2005 Red Hat, Inc.  All rights reserved.
  6**
  7**  This copyrighted material is made available to anyone wishing to use,
  8**  modify, copy, or redistribute it subject to the terms and conditions
  9**  of the GNU General Public License v.2.
 10**
 11*******************************************************************************
 12******************************************************************************/
 13
 14#include "dlm_internal.h"
 15#include "lockspace.h"
 16#include "dir.h"
 17#include "config.h"
 18#include "ast.h"
 19#include "memory.h"
 20#include "rcom.h"
 21#include "lock.h"
 22#include "lowcomms.h"
 23#include "member.h"
 24#include "recover.h"
 25
 26
 27/*
 28 * Recovery waiting routines: these functions wait for a particular reply from
 29 * a remote node, or for the remote node to report a certain status.  They need
 30 * to abort if the lockspace is stopped indicating a node has failed (perhaps
 31 * the one being waited for).
 32 */
 33
 34/*
 35 * Wait until given function returns non-zero or lockspace is stopped
 36 * (LS_RECOVERY_STOP set due to failure of a node in ls_nodes).  When another
 37 * function thinks it could have completed the waited-on task, they should wake
 38 * up ls_wait_general to get an immediate response rather than waiting for the
 39 * timer to detect the result.  A timer wakes us up periodically while waiting
 40 * to see if we should abort due to a node failure.  This should only be called
 41 * by the dlm_recoverd thread.
 42 */
 43
 44static void dlm_wait_timer_fn(unsigned long data)
 45{
 46	struct dlm_ls *ls = (struct dlm_ls *) data;
 47	mod_timer(&ls->ls_timer, jiffies + (dlm_config.ci_recover_timer * HZ));
 48	wake_up(&ls->ls_wait_general);
 49}
 50
 51int dlm_wait_function(struct dlm_ls *ls, int (*testfn) (struct dlm_ls *ls))
 52{
 53	int error = 0;
 
 54
 55	init_timer(&ls->ls_timer);
 56	ls->ls_timer.function = dlm_wait_timer_fn;
 57	ls->ls_timer.data = (long) ls;
 58	ls->ls_timer.expires = jiffies + (dlm_config.ci_recover_timer * HZ);
 59	add_timer(&ls->ls_timer);
 60
 61	wait_event(ls->ls_wait_general, testfn(ls) || dlm_recovery_stopped(ls));
 62	del_timer_sync(&ls->ls_timer);
 63
 64	if (dlm_recovery_stopped(ls)) {
 65		log_debug(ls, "dlm_wait_function aborted");
 66		error = -EINTR;
 67	}
 68	return error;
 69}
 70
 71/*
 72 * An efficient way for all nodes to wait for all others to have a certain
 73 * status.  The node with the lowest nodeid polls all the others for their
 74 * status (wait_status_all) and all the others poll the node with the low id
 75 * for its accumulated result (wait_status_low).  When all nodes have set
 76 * status flag X, then status flag X_ALL will be set on the low nodeid.
 77 */
 78
 79uint32_t dlm_recover_status(struct dlm_ls *ls)
 80{
 81	uint32_t status;
 82	spin_lock(&ls->ls_recover_lock);
 83	status = ls->ls_recover_status;
 84	spin_unlock(&ls->ls_recover_lock);
 85	return status;
 86}
 87
 
 
 
 
 
 88void dlm_set_recover_status(struct dlm_ls *ls, uint32_t status)
 89{
 90	spin_lock(&ls->ls_recover_lock);
 91	ls->ls_recover_status |= status;
 92	spin_unlock(&ls->ls_recover_lock);
 93}
 94
 95static int wait_status_all(struct dlm_ls *ls, uint32_t wait_status)
 
 96{
 97	struct dlm_rcom *rc = ls->ls_recover_buf;
 98	struct dlm_member *memb;
 99	int error = 0, delay;
100
101	list_for_each_entry(memb, &ls->ls_nodes, list) {
102		delay = 0;
103		for (;;) {
104			if (dlm_recovery_stopped(ls)) {
105				error = -EINTR;
106				goto out;
107			}
108
109			error = dlm_rcom_status(ls, memb->nodeid);
110			if (error)
111				goto out;
112
 
 
 
113			if (rc->rc_result & wait_status)
114				break;
115			if (delay < 1000)
116				delay += 20;
117			msleep(delay);
118		}
119	}
120 out:
121	return error;
122}
123
124static int wait_status_low(struct dlm_ls *ls, uint32_t wait_status)
 
125{
126	struct dlm_rcom *rc = ls->ls_recover_buf;
127	int error = 0, delay = 0, nodeid = ls->ls_low_nodeid;
128
129	for (;;) {
130		if (dlm_recovery_stopped(ls)) {
131			error = -EINTR;
132			goto out;
133		}
134
135		error = dlm_rcom_status(ls, nodeid);
136		if (error)
137			break;
138
139		if (rc->rc_result & wait_status)
140			break;
141		if (delay < 1000)
142			delay += 20;
143		msleep(delay);
144	}
145 out:
146	return error;
147}
148
149static int wait_status(struct dlm_ls *ls, uint32_t status)
150{
151	uint32_t status_all = status << 1;
152	int error;
153
154	if (ls->ls_low_nodeid == dlm_our_nodeid()) {
155		error = wait_status_all(ls, status);
156		if (!error)
157			dlm_set_recover_status(ls, status_all);
158	} else
159		error = wait_status_low(ls, status_all);
160
161	return error;
162}
163
164int dlm_recover_members_wait(struct dlm_ls *ls)
165{
166	return wait_status(ls, DLM_RS_NODES);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167}
168
169int dlm_recover_directory_wait(struct dlm_ls *ls)
170{
171	return wait_status(ls, DLM_RS_DIR);
172}
173
174int dlm_recover_locks_wait(struct dlm_ls *ls)
175{
176	return wait_status(ls, DLM_RS_LOCKS);
177}
178
179int dlm_recover_done_wait(struct dlm_ls *ls)
180{
181	return wait_status(ls, DLM_RS_DONE);
182}
183
184/*
185 * The recover_list contains all the rsb's for which we've requested the new
186 * master nodeid.  As replies are returned from the resource directories the
187 * rsb's are removed from the list.  When the list is empty we're done.
188 *
189 * The recover_list is later similarly used for all rsb's for which we've sent
190 * new lkb's and need to receive new corresponding lkid's.
191 *
192 * We use the address of the rsb struct as a simple local identifier for the
193 * rsb so we can match an rcom reply with the rsb it was sent for.
194 */
195
196static int recover_list_empty(struct dlm_ls *ls)
197{
198	int empty;
199
200	spin_lock(&ls->ls_recover_list_lock);
201	empty = list_empty(&ls->ls_recover_list);
202	spin_unlock(&ls->ls_recover_list_lock);
203
204	return empty;
205}
206
207static void recover_list_add(struct dlm_rsb *r)
208{
209	struct dlm_ls *ls = r->res_ls;
210
211	spin_lock(&ls->ls_recover_list_lock);
212	if (list_empty(&r->res_recover_list)) {
213		list_add_tail(&r->res_recover_list, &ls->ls_recover_list);
214		ls->ls_recover_list_count++;
215		dlm_hold_rsb(r);
216	}
217	spin_unlock(&ls->ls_recover_list_lock);
218}
219
220static void recover_list_del(struct dlm_rsb *r)
221{
222	struct dlm_ls *ls = r->res_ls;
223
224	spin_lock(&ls->ls_recover_list_lock);
225	list_del_init(&r->res_recover_list);
226	ls->ls_recover_list_count--;
227	spin_unlock(&ls->ls_recover_list_lock);
228
229	dlm_put_rsb(r);
230}
231
232static struct dlm_rsb *recover_list_find(struct dlm_ls *ls, uint64_t id)
233{
234	struct dlm_rsb *r = NULL;
235
236	spin_lock(&ls->ls_recover_list_lock);
 
 
 
 
 
 
237
238	list_for_each_entry(r, &ls->ls_recover_list, res_recover_list) {
239		if (id == (unsigned long) r)
240			goto out;
 
241	}
242	r = NULL;
243 out:
244	spin_unlock(&ls->ls_recover_list_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245	return r;
246}
247
248static void recover_list_clear(struct dlm_ls *ls)
249{
250	struct dlm_rsb *r, *s;
 
251
252	spin_lock(&ls->ls_recover_list_lock);
253	list_for_each_entry_safe(r, s, &ls->ls_recover_list, res_recover_list) {
254		list_del_init(&r->res_recover_list);
 
 
255		r->res_recover_locks_count = 0;
256		dlm_put_rsb(r);
257		ls->ls_recover_list_count--;
 
 
258	}
259
260	if (ls->ls_recover_list_count != 0) {
261		log_error(ls, "warning: recover_list_count %d",
262			  ls->ls_recover_list_count);
263		ls->ls_recover_list_count = 0;
264	}
265	spin_unlock(&ls->ls_recover_list_lock);
266}
267
268
269/* Master recovery: find new master node for rsb's that were
270   mastered on nodes that have been removed.
271
272   dlm_recover_masters
273   recover_master
274   dlm_send_rcom_lookup            ->  receive_rcom_lookup
275                                       dlm_dir_lookup
276   receive_rcom_lookup_reply       <-
277   dlm_recover_master_reply
278   set_new_master
279   set_master_lkbs
280   set_lock_master
281*/
282
283/*
284 * Set the lock master for all LKBs in a lock queue
285 * If we are the new master of the rsb, we may have received new
286 * MSTCPY locks from other nodes already which we need to ignore
287 * when setting the new nodeid.
288 */
289
290static void set_lock_master(struct list_head *queue, int nodeid)
291{
292	struct dlm_lkb *lkb;
293
294	list_for_each_entry(lkb, queue, lkb_statequeue)
295		if (!(lkb->lkb_flags & DLM_IFL_MSTCPY))
296			lkb->lkb_nodeid = nodeid;
 
 
 
297}
298
299static void set_master_lkbs(struct dlm_rsb *r)
300{
301	set_lock_master(&r->res_grantqueue, r->res_nodeid);
302	set_lock_master(&r->res_convertqueue, r->res_nodeid);
303	set_lock_master(&r->res_waitqueue, r->res_nodeid);
304}
305
306/*
307 * Propagate the new master nodeid to locks
308 * The NEW_MASTER flag tells dlm_recover_locks() which rsb's to consider.
309 * The NEW_MASTER2 flag tells recover_lvb() and set_locks_purged() which
310 * rsb's to consider.
311 */
312
313static void set_new_master(struct dlm_rsb *r, int nodeid)
314{
315	lock_rsb(r);
316	r->res_nodeid = nodeid;
317	set_master_lkbs(r);
318	rsb_set_flag(r, RSB_NEW_MASTER);
319	rsb_set_flag(r, RSB_NEW_MASTER2);
320	unlock_rsb(r);
321}
322
323/*
324 * We do async lookups on rsb's that need new masters.  The rsb's
325 * waiting for a lookup reply are kept on the recover_list.
 
 
 
 
 
326 */
327
328static int recover_master(struct dlm_rsb *r)
329{
330	struct dlm_ls *ls = r->res_ls;
331	int error, dir_nodeid, ret_nodeid, our_nodeid = dlm_our_nodeid();
 
 
332
 
 
 
 
 
 
 
 
 
333	dir_nodeid = dlm_dir_nodeid(r);
334
335	if (dir_nodeid == our_nodeid) {
336		error = dlm_dir_lookup(ls, our_nodeid, r->res_name,
337				       r->res_length, &ret_nodeid);
338		if (error)
339			log_error(ls, "recover dir lookup error %d", error);
340
341		if (ret_nodeid == our_nodeid)
342			ret_nodeid = 0;
343		set_new_master(r, ret_nodeid);
 
 
344	} else {
345		recover_list_add(r);
346		error = dlm_send_rcom_lookup(r, dir_nodeid);
347	}
348
 
349	return error;
350}
351
352/*
353 * When not using a directory, most resource names will hash to a new static
354 * master nodeid and the resource will need to be remastered.
 
 
 
 
 
 
 
 
 
 
355 */
356
357static int recover_master_static(struct dlm_rsb *r)
358{
359	int master = dlm_dir_nodeid(r);
 
360
361	if (master == dlm_our_nodeid())
362		master = 0;
363
364	if (r->res_nodeid != master) {
365		if (is_master(r))
366			dlm_purge_mstcpy_locks(r);
367		set_new_master(r, master);
368		return 1;
369	}
370	return 0;
371}
372
373/*
374 * Go through local root resources and for each rsb which has a master which
375 * has departed, get the new master nodeid from the directory.  The dir will
376 * assign mastery to the first node to look up the new master.  That means
377 * we'll discover in this lookup if we're the new master of any rsb's.
378 *
379 * We fire off all the dir lookup requests individually and asynchronously to
380 * the correct dir node.
381 */
382
383int dlm_recover_masters(struct dlm_ls *ls)
384{
385	struct dlm_rsb *r;
386	int error = 0, count = 0;
 
 
 
387
388	log_debug(ls, "dlm_recover_masters");
389
390	down_read(&ls->ls_root_sem);
391	list_for_each_entry(r, &ls->ls_root_list, res_root_list) {
392		if (dlm_recovery_stopped(ls)) {
393			up_read(&ls->ls_root_sem);
394			error = -EINTR;
395			goto out;
396		}
397
398		if (dlm_no_directory(ls))
399			count += recover_master_static(r);
400		else if (!is_master(r) &&
401			 (dlm_is_removed(ls, r->res_nodeid) ||
402			  rsb_flag(r, RSB_NEW_MASTER))) {
403			recover_master(r);
404			count++;
405		}
406
407		schedule();
 
 
 
408	}
409	up_read(&ls->ls_root_sem);
410
411	log_debug(ls, "dlm_recover_masters %d resources", count);
412
413	error = dlm_wait_function(ls, &recover_list_empty);
414 out:
415	if (error)
416		recover_list_clear(ls);
417	return error;
418}
419
420int dlm_recover_master_reply(struct dlm_ls *ls, struct dlm_rcom *rc)
421{
422	struct dlm_rsb *r;
423	int nodeid;
424
425	r = recover_list_find(ls, rc->rc_id);
426	if (!r) {
427		log_error(ls, "dlm_recover_master_reply no id %llx",
428			  (unsigned long long)rc->rc_id);
429		goto out;
430	}
431
432	nodeid = rc->rc_result;
433	if (nodeid == dlm_our_nodeid())
434		nodeid = 0;
435
436	set_new_master(r, nodeid);
437	recover_list_del(r);
 
 
438
439	if (recover_list_empty(ls))
 
 
 
 
 
 
 
440		wake_up(&ls->ls_wait_general);
441 out:
442	return 0;
443}
444
445
446/* Lock recovery: rebuild the process-copy locks we hold on a
447   remastered rsb on the new rsb master.
448
449   dlm_recover_locks
450   recover_locks
451   recover_locks_queue
452   dlm_send_rcom_lock              ->  receive_rcom_lock
453                                       dlm_recover_master_copy
454   receive_rcom_lock_reply         <-
455   dlm_recover_process_copy
456*/
457
458
459/*
460 * keep a count of the number of lkb's we send to the new master; when we get
461 * an equal number of replies then recovery for the rsb is done
462 */
463
464static int recover_locks_queue(struct dlm_rsb *r, struct list_head *head)
465{
466	struct dlm_lkb *lkb;
467	int error = 0;
468
469	list_for_each_entry(lkb, head, lkb_statequeue) {
470	   	error = dlm_send_rcom_lock(r, lkb);
471		if (error)
472			break;
473		r->res_recover_locks_count++;
474	}
475
476	return error;
477}
478
479static int recover_locks(struct dlm_rsb *r)
480{
481	int error = 0;
482
483	lock_rsb(r);
484
485	DLM_ASSERT(!r->res_recover_locks_count, dlm_dump_rsb(r););
486
487	error = recover_locks_queue(r, &r->res_grantqueue);
488	if (error)
489		goto out;
490	error = recover_locks_queue(r, &r->res_convertqueue);
491	if (error)
492		goto out;
493	error = recover_locks_queue(r, &r->res_waitqueue);
494	if (error)
495		goto out;
496
497	if (r->res_recover_locks_count)
498		recover_list_add(r);
499	else
500		rsb_clear_flag(r, RSB_NEW_MASTER);
501 out:
502	unlock_rsb(r);
503	return error;
504}
505
506int dlm_recover_locks(struct dlm_ls *ls)
507{
508	struct dlm_rsb *r;
509	int error, count = 0;
510
511	log_debug(ls, "dlm_recover_locks");
512
513	down_read(&ls->ls_root_sem);
514	list_for_each_entry(r, &ls->ls_root_list, res_root_list) {
515		if (is_master(r)) {
516			rsb_clear_flag(r, RSB_NEW_MASTER);
517			continue;
518		}
519
520		if (!rsb_flag(r, RSB_NEW_MASTER))
521			continue;
522
523		if (dlm_recovery_stopped(ls)) {
524			error = -EINTR;
525			up_read(&ls->ls_root_sem);
526			goto out;
527		}
528
529		error = recover_locks(r);
530		if (error) {
531			up_read(&ls->ls_root_sem);
532			goto out;
533		}
534
535		count += r->res_recover_locks_count;
536	}
537	up_read(&ls->ls_root_sem);
538
539	log_debug(ls, "dlm_recover_locks %d locks", count);
540
541	error = dlm_wait_function(ls, &recover_list_empty);
542 out:
543	if (error)
544		recover_list_clear(ls);
545	else
546		dlm_set_recover_status(ls, DLM_RS_LOCKS);
547	return error;
548}
549
550void dlm_recovered_lock(struct dlm_rsb *r)
551{
552	DLM_ASSERT(rsb_flag(r, RSB_NEW_MASTER), dlm_dump_rsb(r););
553
554	r->res_recover_locks_count--;
555	if (!r->res_recover_locks_count) {
556		rsb_clear_flag(r, RSB_NEW_MASTER);
557		recover_list_del(r);
558	}
559
560	if (recover_list_empty(r->res_ls))
561		wake_up(&r->res_ls->ls_wait_general);
562}
563
564/*
565 * The lvb needs to be recovered on all master rsb's.  This includes setting
566 * the VALNOTVALID flag if necessary, and determining the correct lvb contents
567 * based on the lvb's of the locks held on the rsb.
568 *
569 * RSB_VALNOTVALID is set if there are only NL/CR locks on the rsb.  If it
570 * was already set prior to recovery, it's not cleared, regardless of locks.
 
 
 
 
 
 
571 *
572 * The LVB contents are only considered for changing when this is a new master
573 * of the rsb (NEW_MASTER2).  Then, the rsb's lvb is taken from any lkb with
574 * mode > CR.  If no lkb's exist with mode above CR, the lvb contents are taken
575 * from the lkb with the largest lvb sequence number.
576 */
577
578static void recover_lvb(struct dlm_rsb *r)
579{
580	struct dlm_lkb *lkb, *high_lkb = NULL;
581	uint32_t high_seq = 0;
582	int lock_lvb_exists = 0;
583	int big_lock_exists = 0;
584	int lvblen = r->res_ls->ls_lvblen;
585
 
 
 
 
 
 
 
 
 
 
 
 
 
586	list_for_each_entry(lkb, &r->res_grantqueue, lkb_statequeue) {
587		if (!(lkb->lkb_exflags & DLM_LKF_VALBLK))
588			continue;
589
590		lock_lvb_exists = 1;
591
592		if (lkb->lkb_grmode > DLM_LOCK_CR) {
593			big_lock_exists = 1;
594			goto setflag;
595		}
596
597		if (((int)lkb->lkb_lvbseq - (int)high_seq) >= 0) {
598			high_lkb = lkb;
599			high_seq = lkb->lkb_lvbseq;
600		}
601	}
602
603	list_for_each_entry(lkb, &r->res_convertqueue, lkb_statequeue) {
604		if (!(lkb->lkb_exflags & DLM_LKF_VALBLK))
605			continue;
606
607		lock_lvb_exists = 1;
608
609		if (lkb->lkb_grmode > DLM_LOCK_CR) {
610			big_lock_exists = 1;
611			goto setflag;
612		}
613
614		if (((int)lkb->lkb_lvbseq - (int)high_seq) >= 0) {
615			high_lkb = lkb;
616			high_seq = lkb->lkb_lvbseq;
617		}
618	}
619
620 setflag:
621	if (!lock_lvb_exists)
622		goto out;
623
 
624	if (!big_lock_exists)
625		rsb_set_flag(r, RSB_VALNOTVALID);
626
627	/* don't mess with the lvb unless we're the new master */
628	if (!rsb_flag(r, RSB_NEW_MASTER2))
629		goto out;
630
631	if (!r->res_lvbptr) {
632		r->res_lvbptr = dlm_allocate_lvb(r->res_ls);
633		if (!r->res_lvbptr)
634			goto out;
635	}
636
637	if (big_lock_exists) {
638		r->res_lvbseq = lkb->lkb_lvbseq;
639		memcpy(r->res_lvbptr, lkb->lkb_lvbptr, lvblen);
640	} else if (high_lkb) {
641		r->res_lvbseq = high_lkb->lkb_lvbseq;
642		memcpy(r->res_lvbptr, high_lkb->lkb_lvbptr, lvblen);
643	} else {
644		r->res_lvbseq = 0;
645		memset(r->res_lvbptr, 0, lvblen);
646	}
647 out:
648	return;
649}
650
651/* All master rsb's flagged RECOVER_CONVERT need to be looked at.  The locks
652   converting PR->CW or CW->PR need to have their lkb_grmode set. */
653
654static void recover_conversion(struct dlm_rsb *r)
655{
 
656	struct dlm_lkb *lkb;
657	int grmode = -1;
658
659	list_for_each_entry(lkb, &r->res_grantqueue, lkb_statequeue) {
660		if (lkb->lkb_grmode == DLM_LOCK_PR ||
661		    lkb->lkb_grmode == DLM_LOCK_CW) {
662			grmode = lkb->lkb_grmode;
663			break;
664		}
665	}
666
667	list_for_each_entry(lkb, &r->res_convertqueue, lkb_statequeue) {
668		if (lkb->lkb_grmode != DLM_LOCK_IV)
669			continue;
670		if (grmode == -1)
 
 
671			lkb->lkb_grmode = lkb->lkb_rqmode;
672		else
 
 
673			lkb->lkb_grmode = grmode;
 
674	}
675}
676
677/* We've become the new master for this rsb and waiting/converting locks may
678   need to be granted in dlm_grant_after_purge() due to locks that may have
679   existed from a removed node. */
680
681static void set_locks_purged(struct dlm_rsb *r)
682{
683	if (!list_empty(&r->res_waitqueue) || !list_empty(&r->res_convertqueue))
684		rsb_set_flag(r, RSB_LOCKS_PURGED);
685}
686
687void dlm_recover_rsbs(struct dlm_ls *ls)
688{
689	struct dlm_rsb *r;
690	int count = 0;
691
692	log_debug(ls, "dlm_recover_rsbs");
693
694	down_read(&ls->ls_root_sem);
695	list_for_each_entry(r, &ls->ls_root_list, res_root_list) {
696		lock_rsb(r);
697		if (is_master(r)) {
698			if (rsb_flag(r, RSB_RECOVER_CONVERT))
699				recover_conversion(r);
700			if (rsb_flag(r, RSB_NEW_MASTER2))
701				set_locks_purged(r);
 
702			recover_lvb(r);
 
 
 
703			count++;
 
 
704		}
705		rsb_clear_flag(r, RSB_RECOVER_CONVERT);
 
706		rsb_clear_flag(r, RSB_NEW_MASTER2);
707		unlock_rsb(r);
708	}
709	up_read(&ls->ls_root_sem);
710
711	log_debug(ls, "dlm_recover_rsbs %d rsbs", count);
 
712}
713
714/* Create a single list of all root rsb's to be used during recovery */
715
716int dlm_create_root_list(struct dlm_ls *ls)
717{
 
718	struct dlm_rsb *r;
719	int i, error = 0;
720
721	down_write(&ls->ls_root_sem);
722	if (!list_empty(&ls->ls_root_list)) {
723		log_error(ls, "root list not empty");
724		error = -EINVAL;
725		goto out;
726	}
727
728	for (i = 0; i < ls->ls_rsbtbl_size; i++) {
729		spin_lock(&ls->ls_rsbtbl[i].lock);
730		list_for_each_entry(r, &ls->ls_rsbtbl[i].list, res_hashchain) {
 
731			list_add(&r->res_root_list, &ls->ls_root_list);
732			dlm_hold_rsb(r);
733		}
734
735		/* If we're using a directory, add tossed rsbs to the root
736		   list; they'll have entries created in the new directory,
737		   but no other recovery steps should do anything with them. */
738
739		if (dlm_no_directory(ls)) {
740			spin_unlock(&ls->ls_rsbtbl[i].lock);
741			continue;
742		}
743
744		list_for_each_entry(r, &ls->ls_rsbtbl[i].toss, res_hashchain) {
745			list_add(&r->res_root_list, &ls->ls_root_list);
746			dlm_hold_rsb(r);
747		}
748		spin_unlock(&ls->ls_rsbtbl[i].lock);
749	}
750 out:
751	up_write(&ls->ls_root_sem);
752	return error;
753}
754
755void dlm_release_root_list(struct dlm_ls *ls)
756{
757	struct dlm_rsb *r, *safe;
758
759	down_write(&ls->ls_root_sem);
760	list_for_each_entry_safe(r, safe, &ls->ls_root_list, res_root_list) {
761		list_del_init(&r->res_root_list);
762		dlm_put_rsb(r);
763	}
764	up_write(&ls->ls_root_sem);
765}
766
767/* If not using a directory, clear the entire toss list, there's no benefit to
768   caching the master value since it's fixed.  If we are using a dir, keep the
769   rsb's we're the master of.  Recovery will add them to the root list and from
770   there they'll be entered in the rebuilt directory. */
771
772void dlm_clear_toss_list(struct dlm_ls *ls)
773{
774	struct dlm_rsb *r, *safe;
 
 
775	int i;
776
777	for (i = 0; i < ls->ls_rsbtbl_size; i++) {
778		spin_lock(&ls->ls_rsbtbl[i].lock);
779		list_for_each_entry_safe(r, safe, &ls->ls_rsbtbl[i].toss,
780					 res_hashchain) {
781			if (dlm_no_directory(ls) || !is_master(r)) {
782				list_del(&r->res_hashchain);
783				dlm_free_rsb(r);
784			}
785		}
786		spin_unlock(&ls->ls_rsbtbl[i].lock);
787	}
 
 
 
788}
789
v4.6
  1/******************************************************************************
  2*******************************************************************************
  3**
  4**  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
  5**  Copyright (C) 2004-2005 Red Hat, Inc.  All rights reserved.
  6**
  7**  This copyrighted material is made available to anyone wishing to use,
  8**  modify, copy, or redistribute it subject to the terms and conditions
  9**  of the GNU General Public License v.2.
 10**
 11*******************************************************************************
 12******************************************************************************/
 13
 14#include "dlm_internal.h"
 15#include "lockspace.h"
 16#include "dir.h"
 17#include "config.h"
 18#include "ast.h"
 19#include "memory.h"
 20#include "rcom.h"
 21#include "lock.h"
 22#include "lowcomms.h"
 23#include "member.h"
 24#include "recover.h"
 25
 26
 27/*
 28 * Recovery waiting routines: these functions wait for a particular reply from
 29 * a remote node, or for the remote node to report a certain status.  They need
 30 * to abort if the lockspace is stopped indicating a node has failed (perhaps
 31 * the one being waited for).
 32 */
 33
 34/*
 35 * Wait until given function returns non-zero or lockspace is stopped
 36 * (LS_RECOVERY_STOP set due to failure of a node in ls_nodes).  When another
 37 * function thinks it could have completed the waited-on task, they should wake
 38 * up ls_wait_general to get an immediate response rather than waiting for the
 39 * timeout.  This uses a timeout so it can check periodically if the wait
 40 * should abort due to node failure (which doesn't cause a wake_up).
 41 * This should only be called by the dlm_recoverd thread.
 42 */
 43
 
 
 
 
 
 
 
 44int dlm_wait_function(struct dlm_ls *ls, int (*testfn) (struct dlm_ls *ls))
 45{
 46	int error = 0;
 47	int rv;
 48
 49	while (1) {
 50		rv = wait_event_timeout(ls->ls_wait_general,
 51					testfn(ls) || dlm_recovery_stopped(ls),
 52					dlm_config.ci_recover_timer * HZ);
 53		if (rv)
 54			break;
 55	}
 
 56
 57	if (dlm_recovery_stopped(ls)) {
 58		log_debug(ls, "dlm_wait_function aborted");
 59		error = -EINTR;
 60	}
 61	return error;
 62}
 63
 64/*
 65 * An efficient way for all nodes to wait for all others to have a certain
 66 * status.  The node with the lowest nodeid polls all the others for their
 67 * status (wait_status_all) and all the others poll the node with the low id
 68 * for its accumulated result (wait_status_low).  When all nodes have set
 69 * status flag X, then status flag X_ALL will be set on the low nodeid.
 70 */
 71
 72uint32_t dlm_recover_status(struct dlm_ls *ls)
 73{
 74	uint32_t status;
 75	spin_lock(&ls->ls_recover_lock);
 76	status = ls->ls_recover_status;
 77	spin_unlock(&ls->ls_recover_lock);
 78	return status;
 79}
 80
 81static void _set_recover_status(struct dlm_ls *ls, uint32_t status)
 82{
 83	ls->ls_recover_status |= status;
 84}
 85
 86void dlm_set_recover_status(struct dlm_ls *ls, uint32_t status)
 87{
 88	spin_lock(&ls->ls_recover_lock);
 89	_set_recover_status(ls, status);
 90	spin_unlock(&ls->ls_recover_lock);
 91}
 92
 93static int wait_status_all(struct dlm_ls *ls, uint32_t wait_status,
 94			   int save_slots)
 95{
 96	struct dlm_rcom *rc = ls->ls_recover_buf;
 97	struct dlm_member *memb;
 98	int error = 0, delay;
 99
100	list_for_each_entry(memb, &ls->ls_nodes, list) {
101		delay = 0;
102		for (;;) {
103			if (dlm_recovery_stopped(ls)) {
104				error = -EINTR;
105				goto out;
106			}
107
108			error = dlm_rcom_status(ls, memb->nodeid, 0);
109			if (error)
110				goto out;
111
112			if (save_slots)
113				dlm_slot_save(ls, rc, memb);
114
115			if (rc->rc_result & wait_status)
116				break;
117			if (delay < 1000)
118				delay += 20;
119			msleep(delay);
120		}
121	}
122 out:
123	return error;
124}
125
126static int wait_status_low(struct dlm_ls *ls, uint32_t wait_status,
127			   uint32_t status_flags)
128{
129	struct dlm_rcom *rc = ls->ls_recover_buf;
130	int error = 0, delay = 0, nodeid = ls->ls_low_nodeid;
131
132	for (;;) {
133		if (dlm_recovery_stopped(ls)) {
134			error = -EINTR;
135			goto out;
136		}
137
138		error = dlm_rcom_status(ls, nodeid, status_flags);
139		if (error)
140			break;
141
142		if (rc->rc_result & wait_status)
143			break;
144		if (delay < 1000)
145			delay += 20;
146		msleep(delay);
147	}
148 out:
149	return error;
150}
151
152static int wait_status(struct dlm_ls *ls, uint32_t status)
153{
154	uint32_t status_all = status << 1;
155	int error;
156
157	if (ls->ls_low_nodeid == dlm_our_nodeid()) {
158		error = wait_status_all(ls, status, 0);
159		if (!error)
160			dlm_set_recover_status(ls, status_all);
161	} else
162		error = wait_status_low(ls, status_all, 0);
163
164	return error;
165}
166
167int dlm_recover_members_wait(struct dlm_ls *ls)
168{
169	struct dlm_member *memb;
170	struct dlm_slot *slots;
171	int num_slots, slots_size;
172	int error, rv;
173	uint32_t gen;
174
175	list_for_each_entry(memb, &ls->ls_nodes, list) {
176		memb->slot = -1;
177		memb->generation = 0;
178	}
179
180	if (ls->ls_low_nodeid == dlm_our_nodeid()) {
181		error = wait_status_all(ls, DLM_RS_NODES, 1);
182		if (error)
183			goto out;
184
185		/* slots array is sparse, slots_size may be > num_slots */
186
187		rv = dlm_slots_assign(ls, &num_slots, &slots_size, &slots, &gen);
188		if (!rv) {
189			spin_lock(&ls->ls_recover_lock);
190			_set_recover_status(ls, DLM_RS_NODES_ALL);
191			ls->ls_num_slots = num_slots;
192			ls->ls_slots_size = slots_size;
193			ls->ls_slots = slots;
194			ls->ls_generation = gen;
195			spin_unlock(&ls->ls_recover_lock);
196		} else {
197			dlm_set_recover_status(ls, DLM_RS_NODES_ALL);
198		}
199	} else {
200		error = wait_status_low(ls, DLM_RS_NODES_ALL, DLM_RSF_NEED_SLOTS);
201		if (error)
202			goto out;
203
204		dlm_slots_copy_in(ls);
205	}
206 out:
207	return error;
208}
209
210int dlm_recover_directory_wait(struct dlm_ls *ls)
211{
212	return wait_status(ls, DLM_RS_DIR);
213}
214
215int dlm_recover_locks_wait(struct dlm_ls *ls)
216{
217	return wait_status(ls, DLM_RS_LOCKS);
218}
219
220int dlm_recover_done_wait(struct dlm_ls *ls)
221{
222	return wait_status(ls, DLM_RS_DONE);
223}
224
225/*
226 * The recover_list contains all the rsb's for which we've requested the new
227 * master nodeid.  As replies are returned from the resource directories the
228 * rsb's are removed from the list.  When the list is empty we're done.
229 *
230 * The recover_list is later similarly used for all rsb's for which we've sent
231 * new lkb's and need to receive new corresponding lkid's.
232 *
233 * We use the address of the rsb struct as a simple local identifier for the
234 * rsb so we can match an rcom reply with the rsb it was sent for.
235 */
236
237static int recover_list_empty(struct dlm_ls *ls)
238{
239	int empty;
240
241	spin_lock(&ls->ls_recover_list_lock);
242	empty = list_empty(&ls->ls_recover_list);
243	spin_unlock(&ls->ls_recover_list_lock);
244
245	return empty;
246}
247
248static void recover_list_add(struct dlm_rsb *r)
249{
250	struct dlm_ls *ls = r->res_ls;
251
252	spin_lock(&ls->ls_recover_list_lock);
253	if (list_empty(&r->res_recover_list)) {
254		list_add_tail(&r->res_recover_list, &ls->ls_recover_list);
255		ls->ls_recover_list_count++;
256		dlm_hold_rsb(r);
257	}
258	spin_unlock(&ls->ls_recover_list_lock);
259}
260
261static void recover_list_del(struct dlm_rsb *r)
262{
263	struct dlm_ls *ls = r->res_ls;
264
265	spin_lock(&ls->ls_recover_list_lock);
266	list_del_init(&r->res_recover_list);
267	ls->ls_recover_list_count--;
268	spin_unlock(&ls->ls_recover_list_lock);
269
270	dlm_put_rsb(r);
271}
272
273static void recover_list_clear(struct dlm_ls *ls)
274{
275	struct dlm_rsb *r, *s;
276
277	spin_lock(&ls->ls_recover_list_lock);
278	list_for_each_entry_safe(r, s, &ls->ls_recover_list, res_recover_list) {
279		list_del_init(&r->res_recover_list);
280		r->res_recover_locks_count = 0;
281		dlm_put_rsb(r);
282		ls->ls_recover_list_count--;
283	}
284
285	if (ls->ls_recover_list_count != 0) {
286		log_error(ls, "warning: recover_list_count %d",
287			  ls->ls_recover_list_count);
288		ls->ls_recover_list_count = 0;
289	}
 
 
290	spin_unlock(&ls->ls_recover_list_lock);
291}
292
293static int recover_idr_empty(struct dlm_ls *ls)
294{
295	int empty = 1;
296
297	spin_lock(&ls->ls_recover_idr_lock);
298	if (ls->ls_recover_list_count)
299		empty = 0;
300	spin_unlock(&ls->ls_recover_idr_lock);
301
302	return empty;
303}
304
305static int recover_idr_add(struct dlm_rsb *r)
306{
307	struct dlm_ls *ls = r->res_ls;
308	int rv;
309
310	idr_preload(GFP_NOFS);
311	spin_lock(&ls->ls_recover_idr_lock);
312	if (r->res_id) {
313		rv = -1;
314		goto out_unlock;
315	}
316	rv = idr_alloc(&ls->ls_recover_idr, r, 1, 0, GFP_NOWAIT);
317	if (rv < 0)
318		goto out_unlock;
319
320	r->res_id = rv;
321	ls->ls_recover_list_count++;
322	dlm_hold_rsb(r);
323	rv = 0;
324out_unlock:
325	spin_unlock(&ls->ls_recover_idr_lock);
326	idr_preload_end();
327	return rv;
328}
329
330static void recover_idr_del(struct dlm_rsb *r)
331{
332	struct dlm_ls *ls = r->res_ls;
333
334	spin_lock(&ls->ls_recover_idr_lock);
335	idr_remove(&ls->ls_recover_idr, r->res_id);
336	r->res_id = 0;
337	ls->ls_recover_list_count--;
338	spin_unlock(&ls->ls_recover_idr_lock);
339
340	dlm_put_rsb(r);
341}
342
343static struct dlm_rsb *recover_idr_find(struct dlm_ls *ls, uint64_t id)
344{
345	struct dlm_rsb *r;
346
347	spin_lock(&ls->ls_recover_idr_lock);
348	r = idr_find(&ls->ls_recover_idr, (int)id);
349	spin_unlock(&ls->ls_recover_idr_lock);
350	return r;
351}
352
353static void recover_idr_clear(struct dlm_ls *ls)
354{
355	struct dlm_rsb *r;
356	int id;
357
358	spin_lock(&ls->ls_recover_idr_lock);
359
360	idr_for_each_entry(&ls->ls_recover_idr, r, id) {
361		idr_remove(&ls->ls_recover_idr, id);
362		r->res_id = 0;
363		r->res_recover_locks_count = 0;
 
364		ls->ls_recover_list_count--;
365
366		dlm_put_rsb(r);
367	}
368
369	if (ls->ls_recover_list_count != 0) {
370		log_error(ls, "warning: recover_list_count %d",
371			  ls->ls_recover_list_count);
372		ls->ls_recover_list_count = 0;
373	}
374	spin_unlock(&ls->ls_recover_idr_lock);
375}
376
377
378/* Master recovery: find new master node for rsb's that were
379   mastered on nodes that have been removed.
380
381   dlm_recover_masters
382   recover_master
383   dlm_send_rcom_lookup            ->  receive_rcom_lookup
384                                       dlm_dir_lookup
385   receive_rcom_lookup_reply       <-
386   dlm_recover_master_reply
387   set_new_master
388   set_master_lkbs
389   set_lock_master
390*/
391
392/*
393 * Set the lock master for all LKBs in a lock queue
394 * If we are the new master of the rsb, we may have received new
395 * MSTCPY locks from other nodes already which we need to ignore
396 * when setting the new nodeid.
397 */
398
399static void set_lock_master(struct list_head *queue, int nodeid)
400{
401	struct dlm_lkb *lkb;
402
403	list_for_each_entry(lkb, queue, lkb_statequeue) {
404		if (!(lkb->lkb_flags & DLM_IFL_MSTCPY)) {
405			lkb->lkb_nodeid = nodeid;
406			lkb->lkb_remid = 0;
407		}
408	}
409}
410
411static void set_master_lkbs(struct dlm_rsb *r)
412{
413	set_lock_master(&r->res_grantqueue, r->res_nodeid);
414	set_lock_master(&r->res_convertqueue, r->res_nodeid);
415	set_lock_master(&r->res_waitqueue, r->res_nodeid);
416}
417
418/*
419 * Propagate the new master nodeid to locks
420 * The NEW_MASTER flag tells dlm_recover_locks() which rsb's to consider.
421 * The NEW_MASTER2 flag tells recover_lvb() and recover_grant() which
422 * rsb's to consider.
423 */
424
425static void set_new_master(struct dlm_rsb *r)
426{
 
 
427	set_master_lkbs(r);
428	rsb_set_flag(r, RSB_NEW_MASTER);
429	rsb_set_flag(r, RSB_NEW_MASTER2);
 
430}
431
432/*
433 * We do async lookups on rsb's that need new masters.  The rsb's
434 * waiting for a lookup reply are kept on the recover_list.
435 *
436 * Another node recovering the master may have sent us a rcom lookup,
437 * and our dlm_master_lookup() set it as the new master, along with
438 * NEW_MASTER so that we'll recover it here (this implies dir_nodeid
439 * equals our_nodeid below).
440 */
441
442static int recover_master(struct dlm_rsb *r, unsigned int *count)
443{
444	struct dlm_ls *ls = r->res_ls;
445	int our_nodeid, dir_nodeid;
446	int is_removed = 0;
447	int error;
448
449	if (is_master(r))
450		return 0;
451
452	is_removed = dlm_is_removed(ls, r->res_nodeid);
453
454	if (!is_removed && !rsb_flag(r, RSB_NEW_MASTER))
455		return 0;
456
457	our_nodeid = dlm_our_nodeid();
458	dir_nodeid = dlm_dir_nodeid(r);
459
460	if (dir_nodeid == our_nodeid) {
461		if (is_removed) {
462			r->res_master_nodeid = our_nodeid;
463			r->res_nodeid = 0;
464		}
465
466		/* set master of lkbs to ourself when is_removed, or to
467		   another new master which we set along with NEW_MASTER
468		   in dlm_master_lookup */
469		set_new_master(r);
470		error = 0;
471	} else {
472		recover_idr_add(r);
473		error = dlm_send_rcom_lookup(r, dir_nodeid);
474	}
475
476	(*count)++;
477	return error;
478}
479
480/*
481 * All MSTCPY locks are purged and rebuilt, even if the master stayed the same.
482 * This is necessary because recovery can be started, aborted and restarted,
483 * causing the master nodeid to briefly change during the aborted recovery, and
484 * change back to the original value in the second recovery.  The MSTCPY locks
485 * may or may not have been purged during the aborted recovery.  Another node
486 * with an outstanding request in waiters list and a request reply saved in the
487 * requestqueue, cannot know whether it should ignore the reply and resend the
488 * request, or accept the reply and complete the request.  It must do the
489 * former if the remote node purged MSTCPY locks, and it must do the later if
490 * the remote node did not.  This is solved by always purging MSTCPY locks, in
491 * which case, the request reply would always be ignored and the request
492 * resent.
493 */
494
495static int recover_master_static(struct dlm_rsb *r, unsigned int *count)
496{
497	int dir_nodeid = dlm_dir_nodeid(r);
498	int new_master = dir_nodeid;
499
500	if (dir_nodeid == dlm_our_nodeid())
501		new_master = 0;
502
503	dlm_purge_mstcpy_locks(r);
504	r->res_master_nodeid = dir_nodeid;
505	r->res_nodeid = new_master;
506	set_new_master(r);
507	(*count)++;
 
508	return 0;
509}
510
511/*
512 * Go through local root resources and for each rsb which has a master which
513 * has departed, get the new master nodeid from the directory.  The dir will
514 * assign mastery to the first node to look up the new master.  That means
515 * we'll discover in this lookup if we're the new master of any rsb's.
516 *
517 * We fire off all the dir lookup requests individually and asynchronously to
518 * the correct dir node.
519 */
520
521int dlm_recover_masters(struct dlm_ls *ls)
522{
523	struct dlm_rsb *r;
524	unsigned int total = 0;
525	unsigned int count = 0;
526	int nodir = dlm_no_directory(ls);
527	int error;
528
529	log_rinfo(ls, "dlm_recover_masters");
530
531	down_read(&ls->ls_root_sem);
532	list_for_each_entry(r, &ls->ls_root_list, res_root_list) {
533		if (dlm_recovery_stopped(ls)) {
534			up_read(&ls->ls_root_sem);
535			error = -EINTR;
536			goto out;
537		}
538
539		lock_rsb(r);
540		if (nodir)
541			error = recover_master_static(r, &count);
542		else
543			error = recover_master(r, &count);
544		unlock_rsb(r);
545		cond_resched();
546		total++;
547
548		if (error) {
549			up_read(&ls->ls_root_sem);
550			goto out;
551		}
552	}
553	up_read(&ls->ls_root_sem);
554
555	log_rinfo(ls, "dlm_recover_masters %u of %u", count, total);
556
557	error = dlm_wait_function(ls, &recover_idr_empty);
558 out:
559	if (error)
560		recover_idr_clear(ls);
561	return error;
562}
563
564int dlm_recover_master_reply(struct dlm_ls *ls, struct dlm_rcom *rc)
565{
566	struct dlm_rsb *r;
567	int ret_nodeid, new_master;
568
569	r = recover_idr_find(ls, rc->rc_id);
570	if (!r) {
571		log_error(ls, "dlm_recover_master_reply no id %llx",
572			  (unsigned long long)rc->rc_id);
573		goto out;
574	}
575
576	ret_nodeid = rc->rc_result;
 
 
577
578	if (ret_nodeid == dlm_our_nodeid())
579		new_master = 0;
580	else
581		new_master = ret_nodeid;
582
583	lock_rsb(r);
584	r->res_master_nodeid = ret_nodeid;
585	r->res_nodeid = new_master;
586	set_new_master(r);
587	unlock_rsb(r);
588	recover_idr_del(r);
589
590	if (recover_idr_empty(ls))
591		wake_up(&ls->ls_wait_general);
592 out:
593	return 0;
594}
595
596
597/* Lock recovery: rebuild the process-copy locks we hold on a
598   remastered rsb on the new rsb master.
599
600   dlm_recover_locks
601   recover_locks
602   recover_locks_queue
603   dlm_send_rcom_lock              ->  receive_rcom_lock
604                                       dlm_recover_master_copy
605   receive_rcom_lock_reply         <-
606   dlm_recover_process_copy
607*/
608
609
610/*
611 * keep a count of the number of lkb's we send to the new master; when we get
612 * an equal number of replies then recovery for the rsb is done
613 */
614
615static int recover_locks_queue(struct dlm_rsb *r, struct list_head *head)
616{
617	struct dlm_lkb *lkb;
618	int error = 0;
619
620	list_for_each_entry(lkb, head, lkb_statequeue) {
621	   	error = dlm_send_rcom_lock(r, lkb);
622		if (error)
623			break;
624		r->res_recover_locks_count++;
625	}
626
627	return error;
628}
629
630static int recover_locks(struct dlm_rsb *r)
631{
632	int error = 0;
633
634	lock_rsb(r);
635
636	DLM_ASSERT(!r->res_recover_locks_count, dlm_dump_rsb(r););
637
638	error = recover_locks_queue(r, &r->res_grantqueue);
639	if (error)
640		goto out;
641	error = recover_locks_queue(r, &r->res_convertqueue);
642	if (error)
643		goto out;
644	error = recover_locks_queue(r, &r->res_waitqueue);
645	if (error)
646		goto out;
647
648	if (r->res_recover_locks_count)
649		recover_list_add(r);
650	else
651		rsb_clear_flag(r, RSB_NEW_MASTER);
652 out:
653	unlock_rsb(r);
654	return error;
655}
656
657int dlm_recover_locks(struct dlm_ls *ls)
658{
659	struct dlm_rsb *r;
660	int error, count = 0;
661
 
 
662	down_read(&ls->ls_root_sem);
663	list_for_each_entry(r, &ls->ls_root_list, res_root_list) {
664		if (is_master(r)) {
665			rsb_clear_flag(r, RSB_NEW_MASTER);
666			continue;
667		}
668
669		if (!rsb_flag(r, RSB_NEW_MASTER))
670			continue;
671
672		if (dlm_recovery_stopped(ls)) {
673			error = -EINTR;
674			up_read(&ls->ls_root_sem);
675			goto out;
676		}
677
678		error = recover_locks(r);
679		if (error) {
680			up_read(&ls->ls_root_sem);
681			goto out;
682		}
683
684		count += r->res_recover_locks_count;
685	}
686	up_read(&ls->ls_root_sem);
687
688	log_rinfo(ls, "dlm_recover_locks %d out", count);
689
690	error = dlm_wait_function(ls, &recover_list_empty);
691 out:
692	if (error)
693		recover_list_clear(ls);
 
 
694	return error;
695}
696
697void dlm_recovered_lock(struct dlm_rsb *r)
698{
699	DLM_ASSERT(rsb_flag(r, RSB_NEW_MASTER), dlm_dump_rsb(r););
700
701	r->res_recover_locks_count--;
702	if (!r->res_recover_locks_count) {
703		rsb_clear_flag(r, RSB_NEW_MASTER);
704		recover_list_del(r);
705	}
706
707	if (recover_list_empty(r->res_ls))
708		wake_up(&r->res_ls->ls_wait_general);
709}
710
711/*
712 * The lvb needs to be recovered on all master rsb's.  This includes setting
713 * the VALNOTVALID flag if necessary, and determining the correct lvb contents
714 * based on the lvb's of the locks held on the rsb.
715 *
716 * RSB_VALNOTVALID is set in two cases:
717 *
718 * 1. we are master, but not new, and we purged an EX/PW lock held by a
719 * failed node (in dlm_recover_purge which set RSB_RECOVER_LVB_INVAL)
720 *
721 * 2. we are a new master, and there are only NL/CR locks left.
722 * (We could probably improve this by only invaliding in this way when
723 * the previous master left uncleanly.  VMS docs mention that.)
724 *
725 * The LVB contents are only considered for changing when this is a new master
726 * of the rsb (NEW_MASTER2).  Then, the rsb's lvb is taken from any lkb with
727 * mode > CR.  If no lkb's exist with mode above CR, the lvb contents are taken
728 * from the lkb with the largest lvb sequence number.
729 */
730
731static void recover_lvb(struct dlm_rsb *r)
732{
733	struct dlm_lkb *lkb, *high_lkb = NULL;
734	uint32_t high_seq = 0;
735	int lock_lvb_exists = 0;
736	int big_lock_exists = 0;
737	int lvblen = r->res_ls->ls_lvblen;
738
739	if (!rsb_flag(r, RSB_NEW_MASTER2) &&
740	    rsb_flag(r, RSB_RECOVER_LVB_INVAL)) {
741		/* case 1 above */
742		rsb_set_flag(r, RSB_VALNOTVALID);
743		return;
744	}
745
746	if (!rsb_flag(r, RSB_NEW_MASTER2))
747		return;
748
749	/* we are the new master, so figure out if VALNOTVALID should
750	   be set, and set the rsb lvb from the best lkb available. */
751
752	list_for_each_entry(lkb, &r->res_grantqueue, lkb_statequeue) {
753		if (!(lkb->lkb_exflags & DLM_LKF_VALBLK))
754			continue;
755
756		lock_lvb_exists = 1;
757
758		if (lkb->lkb_grmode > DLM_LOCK_CR) {
759			big_lock_exists = 1;
760			goto setflag;
761		}
762
763		if (((int)lkb->lkb_lvbseq - (int)high_seq) >= 0) {
764			high_lkb = lkb;
765			high_seq = lkb->lkb_lvbseq;
766		}
767	}
768
769	list_for_each_entry(lkb, &r->res_convertqueue, lkb_statequeue) {
770		if (!(lkb->lkb_exflags & DLM_LKF_VALBLK))
771			continue;
772
773		lock_lvb_exists = 1;
774
775		if (lkb->lkb_grmode > DLM_LOCK_CR) {
776			big_lock_exists = 1;
777			goto setflag;
778		}
779
780		if (((int)lkb->lkb_lvbseq - (int)high_seq) >= 0) {
781			high_lkb = lkb;
782			high_seq = lkb->lkb_lvbseq;
783		}
784	}
785
786 setflag:
787	if (!lock_lvb_exists)
788		goto out;
789
790	/* lvb is invalidated if only NL/CR locks remain */
791	if (!big_lock_exists)
792		rsb_set_flag(r, RSB_VALNOTVALID);
793
 
 
 
 
794	if (!r->res_lvbptr) {
795		r->res_lvbptr = dlm_allocate_lvb(r->res_ls);
796		if (!r->res_lvbptr)
797			goto out;
798	}
799
800	if (big_lock_exists) {
801		r->res_lvbseq = lkb->lkb_lvbseq;
802		memcpy(r->res_lvbptr, lkb->lkb_lvbptr, lvblen);
803	} else if (high_lkb) {
804		r->res_lvbseq = high_lkb->lkb_lvbseq;
805		memcpy(r->res_lvbptr, high_lkb->lkb_lvbptr, lvblen);
806	} else {
807		r->res_lvbseq = 0;
808		memset(r->res_lvbptr, 0, lvblen);
809	}
810 out:
811	return;
812}
813
814/* All master rsb's flagged RECOVER_CONVERT need to be looked at.  The locks
815   converting PR->CW or CW->PR need to have their lkb_grmode set. */
816
817static void recover_conversion(struct dlm_rsb *r)
818{
819	struct dlm_ls *ls = r->res_ls;
820	struct dlm_lkb *lkb;
821	int grmode = -1;
822
823	list_for_each_entry(lkb, &r->res_grantqueue, lkb_statequeue) {
824		if (lkb->lkb_grmode == DLM_LOCK_PR ||
825		    lkb->lkb_grmode == DLM_LOCK_CW) {
826			grmode = lkb->lkb_grmode;
827			break;
828		}
829	}
830
831	list_for_each_entry(lkb, &r->res_convertqueue, lkb_statequeue) {
832		if (lkb->lkb_grmode != DLM_LOCK_IV)
833			continue;
834		if (grmode == -1) {
835			log_debug(ls, "recover_conversion %x set gr to rq %d",
836				  lkb->lkb_id, lkb->lkb_rqmode);
837			lkb->lkb_grmode = lkb->lkb_rqmode;
838		} else {
839			log_debug(ls, "recover_conversion %x set gr %d",
840				  lkb->lkb_id, grmode);
841			lkb->lkb_grmode = grmode;
842		}
843	}
844}
845
846/* We've become the new master for this rsb and waiting/converting locks may
847   need to be granted in dlm_recover_grant() due to locks that may have
848   existed from a removed node. */
849
850static void recover_grant(struct dlm_rsb *r)
851{
852	if (!list_empty(&r->res_waitqueue) || !list_empty(&r->res_convertqueue))
853		rsb_set_flag(r, RSB_RECOVER_GRANT);
854}
855
856void dlm_recover_rsbs(struct dlm_ls *ls)
857{
858	struct dlm_rsb *r;
859	unsigned int count = 0;
 
 
860
861	down_read(&ls->ls_root_sem);
862	list_for_each_entry(r, &ls->ls_root_list, res_root_list) {
863		lock_rsb(r);
864		if (is_master(r)) {
865			if (rsb_flag(r, RSB_RECOVER_CONVERT))
866				recover_conversion(r);
867
868			/* recover lvb before granting locks so the updated
869			   lvb/VALNOTVALID is presented in the completion */
870			recover_lvb(r);
871
872			if (rsb_flag(r, RSB_NEW_MASTER2))
873				recover_grant(r);
874			count++;
875		} else {
876			rsb_clear_flag(r, RSB_VALNOTVALID);
877		}
878		rsb_clear_flag(r, RSB_RECOVER_CONVERT);
879		rsb_clear_flag(r, RSB_RECOVER_LVB_INVAL);
880		rsb_clear_flag(r, RSB_NEW_MASTER2);
881		unlock_rsb(r);
882	}
883	up_read(&ls->ls_root_sem);
884
885	if (count)
886		log_rinfo(ls, "dlm_recover_rsbs %d done", count);
887}
888
889/* Create a single list of all root rsb's to be used during recovery */
890
891int dlm_create_root_list(struct dlm_ls *ls)
892{
893	struct rb_node *n;
894	struct dlm_rsb *r;
895	int i, error = 0;
896
897	down_write(&ls->ls_root_sem);
898	if (!list_empty(&ls->ls_root_list)) {
899		log_error(ls, "root list not empty");
900		error = -EINVAL;
901		goto out;
902	}
903
904	for (i = 0; i < ls->ls_rsbtbl_size; i++) {
905		spin_lock(&ls->ls_rsbtbl[i].lock);
906		for (n = rb_first(&ls->ls_rsbtbl[i].keep); n; n = rb_next(n)) {
907			r = rb_entry(n, struct dlm_rsb, res_hashnode);
908			list_add(&r->res_root_list, &ls->ls_root_list);
909			dlm_hold_rsb(r);
910		}
911
912		if (!RB_EMPTY_ROOT(&ls->ls_rsbtbl[i].toss))
913			log_error(ls, "dlm_create_root_list toss not empty");
 
 
 
 
 
 
 
 
 
 
 
914		spin_unlock(&ls->ls_rsbtbl[i].lock);
915	}
916 out:
917	up_write(&ls->ls_root_sem);
918	return error;
919}
920
921void dlm_release_root_list(struct dlm_ls *ls)
922{
923	struct dlm_rsb *r, *safe;
924
925	down_write(&ls->ls_root_sem);
926	list_for_each_entry_safe(r, safe, &ls->ls_root_list, res_root_list) {
927		list_del_init(&r->res_root_list);
928		dlm_put_rsb(r);
929	}
930	up_write(&ls->ls_root_sem);
931}
932
933void dlm_clear_toss(struct dlm_ls *ls)
 
 
 
 
 
934{
935	struct rb_node *n, *next;
936	struct dlm_rsb *r;
937	unsigned int count = 0;
938	int i;
939
940	for (i = 0; i < ls->ls_rsbtbl_size; i++) {
941		spin_lock(&ls->ls_rsbtbl[i].lock);
942		for (n = rb_first(&ls->ls_rsbtbl[i].toss); n; n = next) {
943			next = rb_next(n);
944			r = rb_entry(n, struct dlm_rsb, res_hashnode);
945			rb_erase(n, &ls->ls_rsbtbl[i].toss);
946			dlm_free_rsb(r);
947			count++;
948		}
949		spin_unlock(&ls->ls_rsbtbl[i].lock);
950	}
951
952	if (count)
953		log_rinfo(ls, "dlm_clear_toss %u done", count);
954}
955