Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/slab.h>
  21#include <linux/sched.h>
 
  22#include <linux/writeback.h>
  23#include <linux/pagemap.h>
  24#include <linux/blkdev.h>
 
 
 
  25#include "ctree.h"
  26#include "disk-io.h"
  27#include "transaction.h"
  28#include "locking.h"
  29#include "tree-log.h"
  30#include "inode-map.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
  31
  32#define BTRFS_ROOT_TRANS_TAG 0
  33
  34static noinline void put_transaction(struct btrfs_transaction *transaction)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35{
  36	WARN_ON(atomic_read(&transaction->use_count) == 0);
  37	if (atomic_dec_and_test(&transaction->use_count)) {
  38		BUG_ON(!list_empty(&transaction->list));
  39		memset(transaction, 0, sizeof(*transaction));
  40		kmem_cache_free(btrfs_transaction_cachep, transaction);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  41	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  42}
  43
  44static noinline void switch_commit_root(struct btrfs_root *root)
  45{
  46	free_extent_buffer(root->commit_root);
  47	root->commit_root = btrfs_root_node(root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48}
  49
  50/*
  51 * either allocate a new transaction or hop into the existing one
  52 */
  53static noinline int join_transaction(struct btrfs_root *root, int nofail)
 
  54{
  55	struct btrfs_transaction *cur_trans;
  56
  57	spin_lock(&root->fs_info->trans_lock);
  58	if (root->fs_info->trans_no_join) {
  59		if (!nofail) {
  60			spin_unlock(&root->fs_info->trans_lock);
  61			return -EBUSY;
  62		}
  63	}
  64
  65	cur_trans = root->fs_info->running_transaction;
  66	if (cur_trans) {
  67		atomic_inc(&cur_trans->use_count);
 
 
 
 
 
 
 
 
  68		atomic_inc(&cur_trans->num_writers);
  69		cur_trans->num_joined++;
  70		spin_unlock(&root->fs_info->trans_lock);
 
 
  71		return 0;
  72	}
  73	spin_unlock(&root->fs_info->trans_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  74
  75	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
  76	if (!cur_trans)
  77		return -ENOMEM;
  78	spin_lock(&root->fs_info->trans_lock);
  79	if (root->fs_info->running_transaction) {
  80		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  81		cur_trans = root->fs_info->running_transaction;
  82		atomic_inc(&cur_trans->use_count);
  83		atomic_inc(&cur_trans->num_writers);
  84		cur_trans->num_joined++;
  85		spin_unlock(&root->fs_info->trans_lock);
  86		return 0;
 
 
 
 
 
 
 
 
 
 
 
  87	}
 
 
 
 
  88	atomic_set(&cur_trans->num_writers, 1);
  89	cur_trans->num_joined = 0;
  90	init_waitqueue_head(&cur_trans->writer_wait);
  91	init_waitqueue_head(&cur_trans->commit_wait);
  92	cur_trans->in_commit = 0;
  93	cur_trans->blocked = 0;
  94	/*
  95	 * One for this trans handle, one so it will live on until we
  96	 * commit the transaction.
  97	 */
  98	atomic_set(&cur_trans->use_count, 2);
  99	cur_trans->commit_done = 0;
 100	cur_trans->start_time = get_seconds();
 101
 102	cur_trans->delayed_refs.root = RB_ROOT;
 103	cur_trans->delayed_refs.num_entries = 0;
 104	cur_trans->delayed_refs.num_heads_ready = 0;
 105	cur_trans->delayed_refs.num_heads = 0;
 106	cur_trans->delayed_refs.flushing = 0;
 107	cur_trans->delayed_refs.run_delayed_start = 0;
 108	spin_lock_init(&cur_trans->commit_lock);
 
 
 
 
 
 
 
 
 
 
 109	spin_lock_init(&cur_trans->delayed_refs.lock);
 110
 111	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
 112	list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
 113	extent_io_tree_init(&cur_trans->dirty_pages,
 114			     root->fs_info->btree_inode->i_mapping);
 115	root->fs_info->generation++;
 116	cur_trans->transid = root->fs_info->generation;
 117	root->fs_info->running_transaction = cur_trans;
 118	spin_unlock(&root->fs_info->trans_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 119
 120	return 0;
 121}
 122
 123/*
 124 * this does all the record keeping required to make sure that a reference
 125 * counted root is properly recorded in a given transaction.  This is required
 126 * to make sure the old root from before we joined the transaction is deleted
 127 * when the transaction commits
 128 */
 129static int record_root_in_trans(struct btrfs_trans_handle *trans,
 130			       struct btrfs_root *root)
 
 131{
 132	if (root->ref_cows && root->last_trans < trans->transid) {
 133		WARN_ON(root == root->fs_info->extent_root);
 134		WARN_ON(root->commit_root != root->node);
 
 
 
 135
 136		/*
 137		 * see below for in_trans_setup usage rules
 138		 * we have the reloc mutex held now, so there
 139		 * is only one writer in this function
 140		 */
 141		root->in_trans_setup = 1;
 142
 143		/* make sure readers find in_trans_setup before
 144		 * they find our root->last_trans update
 145		 */
 146		smp_wmb();
 147
 148		spin_lock(&root->fs_info->fs_roots_radix_lock);
 149		if (root->last_trans == trans->transid) {
 150			spin_unlock(&root->fs_info->fs_roots_radix_lock);
 151			return 0;
 152		}
 153		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
 154			   (unsigned long)root->root_key.objectid,
 155			   BTRFS_ROOT_TRANS_TAG);
 156		spin_unlock(&root->fs_info->fs_roots_radix_lock);
 157		root->last_trans = trans->transid;
 158
 159		/* this is pretty tricky.  We don't want to
 160		 * take the relocation lock in btrfs_record_root_in_trans
 161		 * unless we're really doing the first setup for this root in
 162		 * this transaction.
 163		 *
 164		 * Normally we'd use root->last_trans as a flag to decide
 165		 * if we want to take the expensive mutex.
 166		 *
 167		 * But, we have to set root->last_trans before we
 168		 * init the relocation root, otherwise, we trip over warnings
 169		 * in ctree.c.  The solution used here is to flag ourselves
 170		 * with root->in_trans_setup.  When this is 1, we're still
 171		 * fixing up the reloc trees and everyone must wait.
 172		 *
 173		 * When this is zero, they can trust root->last_trans and fly
 174		 * through btrfs_record_root_in_trans without having to take the
 175		 * lock.  smp_wmb() makes sure that all the writes above are
 176		 * done before we pop in the zero below
 177		 */
 178		btrfs_init_reloc_root(trans, root);
 179		smp_wmb();
 180		root->in_trans_setup = 0;
 181	}
 182	return 0;
 183}
 184
 185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 186int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
 187			       struct btrfs_root *root)
 188{
 189	if (!root->ref_cows)
 
 
 
 190		return 0;
 191
 192	/*
 193	 * see record_root_in_trans for comments about in_trans_setup usage
 194	 * and barriers
 195	 */
 196	smp_rmb();
 197	if (root->last_trans == trans->transid &&
 198	    !root->in_trans_setup)
 199		return 0;
 200
 201	mutex_lock(&root->fs_info->reloc_mutex);
 202	record_root_in_trans(trans, root);
 203	mutex_unlock(&root->fs_info->reloc_mutex);
 204
 205	return 0;
 
 
 
 
 
 
 
 206}
 207
 208/* wait for commit against the current transaction to become unblocked
 209 * when this is done, it is safe to start a new transaction, but the current
 210 * transaction might not be fully on disk.
 211 */
 212static void wait_current_trans(struct btrfs_root *root)
 213{
 214	struct btrfs_transaction *cur_trans;
 215
 216	spin_lock(&root->fs_info->trans_lock);
 217	cur_trans = root->fs_info->running_transaction;
 218	if (cur_trans && cur_trans->blocked) {
 219		atomic_inc(&cur_trans->use_count);
 220		spin_unlock(&root->fs_info->trans_lock);
 221
 222		wait_event(root->fs_info->transaction_wait,
 223			   !cur_trans->blocked);
 224		put_transaction(cur_trans);
 
 
 225	} else {
 226		spin_unlock(&root->fs_info->trans_lock);
 227	}
 228}
 229
 230enum btrfs_trans_type {
 231	TRANS_START,
 232	TRANS_JOIN,
 233	TRANS_USERSPACE,
 234	TRANS_JOIN_NOLOCK,
 235};
 236
 237static int may_wait_transaction(struct btrfs_root *root, int type)
 238{
 239	if (root->fs_info->log_root_recovering)
 240		return 0;
 241
 242	if (type == TRANS_USERSPACE)
 243		return 1;
 244
 245	if (type == TRANS_START &&
 246	    !atomic_read(&root->fs_info->open_ioctl_trans))
 247		return 1;
 248
 249	return 0;
 250}
 251
 252static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
 253						    u64 num_items, int type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 254{
 
 
 
 255	struct btrfs_trans_handle *h;
 256	struct btrfs_transaction *cur_trans;
 257	u64 num_bytes = 0;
 
 
 
 
 258	int ret;
 259
 260	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
 261		return ERR_PTR(-EROFS);
 262
 263	if (current->journal_info) {
 264		WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
 265		h = current->journal_info;
 266		h->use_count++;
 
 267		h->orig_rsv = h->block_rsv;
 268		h->block_rsv = NULL;
 269		goto got_it;
 270	}
 271
 272	/*
 273	 * Do the reservation before we join the transaction so we can do all
 274	 * the appropriate flushing if need be.
 275	 */
 276	if (num_items > 0 && root != root->fs_info->chunk_root) {
 277		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
 278		ret = btrfs_block_rsv_add(NULL, root,
 279					  &root->fs_info->trans_block_rsv,
 280					  num_bytes);
 
 
 
 
 281		if (ret)
 282			return ERR_PTR(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 283	}
 284again:
 285	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
 286	if (!h)
 287		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 288
 289	if (may_wait_transaction(root, type))
 290		wait_current_trans(root);
 291
 292	do {
 293		ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
 294		if (ret == -EBUSY)
 295			wait_current_trans(root);
 
 
 
 
 296	} while (ret == -EBUSY);
 297
 298	if (ret < 0) {
 299		kmem_cache_free(btrfs_trans_handle_cachep, h);
 300		return ERR_PTR(ret);
 301	}
 302
 303	cur_trans = root->fs_info->running_transaction;
 304
 305	h->transid = cur_trans->transid;
 306	h->transaction = cur_trans;
 307	h->blocks_used = 0;
 308	h->bytes_reserved = 0;
 309	h->delayed_ref_updates = 0;
 310	h->use_count = 1;
 311	h->block_rsv = NULL;
 312	h->orig_rsv = NULL;
 313
 314	smp_mb();
 315	if (cur_trans->blocked && may_wait_transaction(root, type)) {
 316		btrfs_commit_transaction(h, root);
 
 
 317		goto again;
 318	}
 319
 320	if (num_bytes) {
 321		h->block_rsv = &root->fs_info->trans_block_rsv;
 
 
 322		h->bytes_reserved = num_bytes;
 
 
 
 
 
 
 
 
 
 
 323	}
 324
 325got_it:
 326	btrfs_record_root_in_trans(h, root);
 327
 328	if (!current->journal_info && type != TRANS_USERSPACE)
 329		current->journal_info = h;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330	return h;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 331}
 332
 333struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
 334						   int num_items)
 335{
 336	return start_transaction(root, num_items, TRANS_START);
 
 337}
 
 
 
 
 
 
 
 
 
 338struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
 339{
 340	return start_transaction(root, 0, TRANS_JOIN);
 
 341}
 342
 343struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
 344{
 345	return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
 
 346}
 347
 348struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
 
 
 
 
 
 
 
 349{
 350	return start_transaction(root, 0, TRANS_USERSPACE);
 
 351}
 352
 353/* wait for a transaction commit to be fully complete */
 354static noinline void wait_for_commit(struct btrfs_root *root,
 355				    struct btrfs_transaction *commit)
 
 
 
 
 
 
 
 
 
 
 
 356{
 357	wait_event(commit->commit_wait, commit->commit_done);
 
 358}
 359
 360int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 361{
 362	struct btrfs_transaction *cur_trans = NULL, *t;
 363	int ret;
 364
 365	ret = 0;
 366	if (transid) {
 367		if (transid <= root->fs_info->last_trans_committed)
 368			goto out;
 369
 370		/* find specified transaction */
 371		spin_lock(&root->fs_info->trans_lock);
 372		list_for_each_entry(t, &root->fs_info->trans_list, list) {
 373			if (t->transid == transid) {
 374				cur_trans = t;
 375				atomic_inc(&cur_trans->use_count);
 
 376				break;
 377			}
 378			if (t->transid > transid)
 
 379				break;
 
 
 
 
 
 
 
 
 
 
 
 
 380		}
 381		spin_unlock(&root->fs_info->trans_lock);
 382		ret = -EINVAL;
 383		if (!cur_trans)
 384			goto out;  /* bad transid */
 385	} else {
 386		/* find newest transaction that is committing | committed */
 387		spin_lock(&root->fs_info->trans_lock);
 388		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
 389					    list) {
 390			if (t->in_commit) {
 391				if (t->commit_done)
 392					break;
 393				cur_trans = t;
 394				atomic_inc(&cur_trans->use_count);
 395				break;
 396			}
 397		}
 398		spin_unlock(&root->fs_info->trans_lock);
 399		if (!cur_trans)
 400			goto out;  /* nothing committing|committed */
 401	}
 402
 403	wait_for_commit(root, cur_trans);
 404
 405	put_transaction(cur_trans);
 406	ret = 0;
 407out:
 408	return ret;
 409}
 410
 411void btrfs_throttle(struct btrfs_root *root)
 412{
 413	if (!atomic_read(&root->fs_info->open_ioctl_trans))
 414		wait_current_trans(root);
 415}
 416
 417static int should_end_transaction(struct btrfs_trans_handle *trans,
 418				  struct btrfs_root *root)
 419{
 420	int ret;
 421	ret = btrfs_block_rsv_check(trans, root,
 422				    &root->fs_info->global_block_rsv, 0, 5);
 423	return ret ? 1 : 0;
 
 
 
 
 
 
 424}
 425
 426int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
 427				 struct btrfs_root *root)
 428{
 429	struct btrfs_transaction *cur_trans = trans->transaction;
 430	int updates;
 431
 432	smp_mb();
 433	if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
 434		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 435
 436	updates = trans->delayed_ref_updates;
 437	trans->delayed_ref_updates = 0;
 438	if (updates)
 439		btrfs_run_delayed_refs(trans, root, updates);
 440
 441	return should_end_transaction(trans, root);
 
 
 
 
 
 442}
 443
 444static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
 445			  struct btrfs_root *root, int throttle, int lock)
 446{
 
 447	struct btrfs_transaction *cur_trans = trans->transaction;
 448	struct btrfs_fs_info *info = root->fs_info;
 449	int count = 0;
 450
 451	if (--trans->use_count) {
 
 452		trans->block_rsv = trans->orig_rsv;
 453		return 0;
 454	}
 455
 456	while (count < 4) {
 457		unsigned long cur = trans->delayed_ref_updates;
 458		trans->delayed_ref_updates = 0;
 459		if (cur &&
 460		    trans->transaction->delayed_refs.num_heads_ready > 64) {
 461			trans->delayed_ref_updates = 0;
 462
 463			/*
 464			 * do a full flush if the transaction is trying
 465			 * to close
 466			 */
 467			if (trans->transaction->delayed_refs.flushing)
 468				cur = 0;
 469			btrfs_run_delayed_refs(trans, root, cur);
 470		} else {
 471			break;
 472		}
 473		count++;
 474	}
 475
 476	btrfs_trans_release_metadata(trans, root);
 477
 478	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
 479	    should_end_transaction(trans, root)) {
 480		trans->transaction->blocked = 1;
 481		smp_wmb();
 482	}
 483
 484	if (lock && cur_trans->blocked && !cur_trans->in_commit) {
 485		if (throttle) {
 486			/*
 487			 * We may race with somebody else here so end up having
 488			 * to call end_transaction on ourselves again, so inc
 489			 * our use_count.
 490			 */
 491			trans->use_count++;
 492			return btrfs_commit_transaction(trans, root);
 493		} else {
 494			wake_up_process(info->transaction_kthread);
 495		}
 496	}
 497
 498	WARN_ON(cur_trans != info->running_transaction);
 499	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
 500	atomic_dec(&cur_trans->num_writers);
 
 501
 502	smp_mb();
 503	if (waitqueue_active(&cur_trans->writer_wait))
 504		wake_up(&cur_trans->writer_wait);
 505	put_transaction(cur_trans);
 
 
 506
 507	if (current->journal_info == trans)
 508		current->journal_info = NULL;
 509	memset(trans, 0, sizeof(*trans));
 510	kmem_cache_free(btrfs_trans_handle_cachep, trans);
 511
 512	if (throttle)
 513		btrfs_run_delayed_iputs(root);
 514
 515	return 0;
 516}
 517
 518int btrfs_end_transaction(struct btrfs_trans_handle *trans,
 519			  struct btrfs_root *root)
 520{
 521	int ret;
 522
 523	ret = __btrfs_end_transaction(trans, root, 0, 1);
 524	if (ret)
 525		return ret;
 526	return 0;
 527}
 528
 529int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
 530				   struct btrfs_root *root)
 531{
 532	int ret;
 533
 534	ret = __btrfs_end_transaction(trans, root, 1, 1);
 535	if (ret)
 536		return ret;
 537	return 0;
 538}
 539
 540int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
 541				 struct btrfs_root *root)
 542{
 543	int ret;
 544
 545	ret = __btrfs_end_transaction(trans, root, 0, 0);
 546	if (ret)
 547		return ret;
 548	return 0;
 549}
 550
 551int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
 552				struct btrfs_root *root)
 553{
 554	return __btrfs_end_transaction(trans, root, 1, 1);
 555}
 556
 557/*
 558 * when btree blocks are allocated, they have some corresponding bits set for
 559 * them in one of two extent_io trees.  This is used to make sure all of
 560 * those extents are sent to disk but does not wait on them
 561 */
 562int btrfs_write_marked_extents(struct btrfs_root *root,
 563			       struct extent_io_tree *dirty_pages, int mark)
 564{
 565	int ret;
 566	int err = 0;
 567	int werr = 0;
 568	struct page *page;
 569	struct inode *btree_inode = root->fs_info->btree_inode;
 570	u64 start = 0;
 571	u64 end;
 572	unsigned long index;
 573
 574	while (1) {
 575		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
 576					    mark);
 577		if (ret)
 578			break;
 579		while (start <= end) {
 580			cond_resched();
 581
 582			index = start >> PAGE_CACHE_SHIFT;
 583			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
 584			page = find_get_page(btree_inode->i_mapping, index);
 585			if (!page)
 586				continue;
 587
 588			btree_lock_page_hook(page);
 589			if (!page->mapping) {
 590				unlock_page(page);
 591				page_cache_release(page);
 592				continue;
 593			}
 594
 595			if (PageWriteback(page)) {
 596				if (PageDirty(page))
 597					wait_on_page_writeback(page);
 598				else {
 599					unlock_page(page);
 600					page_cache_release(page);
 601					continue;
 602				}
 603			}
 604			err = write_one_page(page, 0);
 605			if (err)
 606				werr = err;
 607			page_cache_release(page);
 
 
 
 
 
 
 
 
 
 
 608		}
 
 
 
 
 
 
 
 
 
 
 609	}
 610	if (err)
 611		werr = err;
 612	return werr;
 613}
 614
 615/*
 616 * when btree blocks are allocated, they have some corresponding bits set for
 617 * them in one of two extent_io trees.  This is used to make sure all of
 618 * those extents are on disk for transaction or log commit.  We wait
 619 * on all the pages and clear them from the dirty pages state tree
 620 */
 621int btrfs_wait_marked_extents(struct btrfs_root *root,
 622			      struct extent_io_tree *dirty_pages, int mark)
 623{
 624	int ret;
 625	int err = 0;
 626	int werr = 0;
 627	struct page *page;
 628	struct inode *btree_inode = root->fs_info->btree_inode;
 629	u64 start = 0;
 630	u64 end;
 631	unsigned long index;
 632
 633	while (1) {
 634		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
 635					    mark);
 636		if (ret)
 637			break;
 638
 639		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
 640		while (start <= end) {
 641			index = start >> PAGE_CACHE_SHIFT;
 642			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
 643			page = find_get_page(btree_inode->i_mapping, index);
 644			if (!page)
 645				continue;
 646			if (PageDirty(page)) {
 647				btree_lock_page_hook(page);
 648				wait_on_page_writeback(page);
 649				err = write_one_page(page, 0);
 650				if (err)
 651					werr = err;
 652			}
 653			wait_on_page_writeback(page);
 654			page_cache_release(page);
 655			cond_resched();
 656		}
 
 
 
 
 657	}
 658	if (err)
 659		werr = err;
 660	return werr;
 661}
 662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 663/*
 664 * when btree blocks are allocated, they have some corresponding bits set for
 665 * them in one of two extent_io trees.  This is used to make sure all of
 666 * those extents are on disk for transaction or log commit
 
 
 667 */
 668int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
 669				struct extent_io_tree *dirty_pages, int mark)
 670{
 671	int ret;
 672	int ret2;
 
 
 
 
 
 
 
 
 
 
 673
 674	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
 675	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
 676	return ret || ret2;
 677}
 678
 679int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
 680				     struct btrfs_root *root)
 681{
 682	if (!trans || !trans->transaction) {
 683		struct inode *btree_inode;
 684		btree_inode = root->fs_info->btree_inode;
 685		return filemap_write_and_wait(btree_inode->i_mapping);
 686	}
 687	return btrfs_write_and_wait_marked_extents(root,
 688					   &trans->transaction->dirty_pages,
 689					   EXTENT_DIRTY);
 690}
 691
 692/*
 693 * this is used to update the root pointer in the tree of tree roots.
 694 *
 695 * But, in the case of the extent allocation tree, updating the root
 696 * pointer may allocate blocks which may change the root of the extent
 697 * allocation tree.
 698 *
 699 * So, this loops and repeats and makes sure the cowonly root didn't
 700 * change while the root pointer was being updated in the metadata.
 701 */
 702static int update_cowonly_root(struct btrfs_trans_handle *trans,
 703			       struct btrfs_root *root)
 704{
 705	int ret;
 706	u64 old_root_bytenr;
 707	u64 old_root_used;
 708	struct btrfs_root *tree_root = root->fs_info->tree_root;
 
 709
 710	old_root_used = btrfs_root_used(&root->root_item);
 711	btrfs_write_dirty_block_groups(trans, root);
 712
 713	while (1) {
 714		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
 715		if (old_root_bytenr == root->node->start &&
 716		    old_root_used == btrfs_root_used(&root->root_item))
 717			break;
 718
 719		btrfs_set_root_node(&root->root_item, root->node);
 720		ret = btrfs_update_root(trans, tree_root,
 721					&root->root_key,
 722					&root->root_item);
 723		BUG_ON(ret);
 
 724
 725		old_root_used = btrfs_root_used(&root->root_item);
 726		ret = btrfs_write_dirty_block_groups(trans, root);
 727		BUG_ON(ret);
 728	}
 729
 730	if (root != root->fs_info->extent_root)
 731		switch_commit_root(root);
 732
 733	return 0;
 734}
 735
 736/*
 737 * update all the cowonly tree roots on disk
 
 
 
 
 738 */
 739static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
 740					 struct btrfs_root *root)
 741{
 742	struct btrfs_fs_info *fs_info = root->fs_info;
 
 
 743	struct list_head *next;
 744	struct extent_buffer *eb;
 745	int ret;
 746
 747	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
 748	BUG_ON(ret);
 
 
 
 749
 750	eb = btrfs_lock_root_node(fs_info->tree_root);
 751	btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
 
 752	btrfs_tree_unlock(eb);
 753	free_extent_buffer(eb);
 754
 755	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
 756	BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 757
 
 758	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
 
 759		next = fs_info->dirty_cowonly_roots.next;
 760		list_del_init(next);
 761		root = list_entry(next, struct btrfs_root, dirty_list);
 
 762
 763		update_cowonly_root(trans, root);
 
 
 
 
 764	}
 765
 766	down_write(&fs_info->extent_commit_sem);
 767	switch_commit_root(fs_info->extent_root);
 768	up_write(&fs_info->extent_commit_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 769
 770	return 0;
 771}
 772
 773/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 774 * dead roots are old snapshots that need to be deleted.  This allocates
 775 * a dirty root struct and adds it into the list of dead roots that need to
 776 * be deleted
 777 */
 778int btrfs_add_dead_root(struct btrfs_root *root)
 779{
 780	spin_lock(&root->fs_info->trans_lock);
 781	list_add(&root->root_list, &root->fs_info->dead_roots);
 782	spin_unlock(&root->fs_info->trans_lock);
 783	return 0;
 
 
 
 
 
 
 
 
 
 784}
 785
 786/*
 787 * update all the cowonly tree roots on disk
 
 788 */
 789static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
 790				    struct btrfs_root *root)
 791{
 
 792	struct btrfs_root *gang[8];
 793	struct btrfs_fs_info *fs_info = root->fs_info;
 794	int i;
 795	int ret;
 796	int err = 0;
 
 
 
 
 
 797
 798	spin_lock(&fs_info->fs_roots_radix_lock);
 799	while (1) {
 800		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
 801						 (void **)gang, 0,
 802						 ARRAY_SIZE(gang),
 803						 BTRFS_ROOT_TRANS_TAG);
 804		if (ret == 0)
 805			break;
 806		for (i = 0; i < ret; i++) {
 807			root = gang[i];
 
 
 
 
 
 
 
 
 
 
 808			radix_tree_tag_clear(&fs_info->fs_roots_radix,
 809					(unsigned long)root->root_key.objectid,
 810					BTRFS_ROOT_TRANS_TAG);
 
 811			spin_unlock(&fs_info->fs_roots_radix_lock);
 812
 813			btrfs_free_log(trans, root);
 814			btrfs_update_reloc_root(trans, root);
 815			btrfs_orphan_commit_root(trans, root);
 816
 817			btrfs_save_ino_cache(root, trans);
 
 
 
 818
 819			if (root->commit_root != root->node) {
 820				mutex_lock(&root->fs_commit_mutex);
 821				switch_commit_root(root);
 822				btrfs_unpin_free_ino(root);
 823				mutex_unlock(&root->fs_commit_mutex);
 824
 825				btrfs_set_root_node(&root->root_item,
 826						    root->node);
 827			}
 828
 829			err = btrfs_update_root(trans, fs_info->tree_root,
 830						&root->root_key,
 831						&root->root_item);
 
 
 832			spin_lock(&fs_info->fs_roots_radix_lock);
 833			if (err)
 834				break;
 835		}
 836	}
 837	spin_unlock(&fs_info->fs_roots_radix_lock);
 838	return err;
 839}
 840
 841/*
 842 * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
 843 * otherwise every leaf in the btree is read and defragged.
 
 
 
 844 */
 845int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
 
 
 
 
 846{
 847	struct btrfs_fs_info *info = root->fs_info;
 848	struct btrfs_trans_handle *trans;
 849	int ret;
 850	unsigned long nr;
 851
 852	if (xchg(&root->defrag_running, 1))
 
 
 
 
 853		return 0;
 854
 855	while (1) {
 856		trans = btrfs_start_transaction(root, 0);
 857		if (IS_ERR(trans))
 858			return PTR_ERR(trans);
 859
 860		ret = btrfs_defrag_leaves(trans, root, cacheonly);
 861
 862		nr = trans->blocks_used;
 863		btrfs_end_transaction(trans, root);
 864		btrfs_btree_balance_dirty(info->tree_root, nr);
 865		cond_resched();
 866
 867		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
 868			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 869	}
 870	root->defrag_running = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 871	return ret;
 872}
 873
 874/*
 875 * new snapshots need to be created at a very specific time in the
 876 * transaction commit.  This does the actual creation
 
 
 
 
 
 877 */
 878static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
 879				   struct btrfs_fs_info *fs_info,
 880				   struct btrfs_pending_snapshot *pending)
 881{
 
 
 882	struct btrfs_key key;
 883	struct btrfs_root_item *new_root_item;
 884	struct btrfs_root *tree_root = fs_info->tree_root;
 885	struct btrfs_root *root = pending->root;
 886	struct btrfs_root *parent_root;
 887	struct btrfs_block_rsv *rsv;
 888	struct inode *parent_inode;
 889	struct dentry *parent;
 890	struct dentry *dentry;
 891	struct extent_buffer *tmp;
 892	struct extent_buffer *old;
 893	int ret;
 
 894	u64 to_reserve = 0;
 895	u64 index = 0;
 896	u64 objectid;
 897	u64 root_flags;
 
 
 898
 899	rsv = trans->block_rsv;
 
 900
 901	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
 902	if (!new_root_item) {
 903		pending->error = -ENOMEM;
 904		goto fail;
 905	}
 906
 907	ret = btrfs_find_free_objectid(tree_root, &objectid);
 908	if (ret) {
 909		pending->error = ret;
 910		goto fail;
 911	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912
 913	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
 914	btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
 915
 916	if (to_reserve > 0) {
 917		ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
 918					  to_reserve);
 919		if (ret) {
 920			pending->error = ret;
 921			goto fail;
 922		}
 923	}
 924
 925	key.objectid = objectid;
 926	key.offset = (u64)-1;
 927	key.type = BTRFS_ROOT_ITEM_KEY;
 928
 
 929	trans->block_rsv = &pending->block_rsv;
 930
 931	dentry = pending->dentry;
 932	parent = dget_parent(dentry);
 933	parent_inode = parent->d_inode;
 934	parent_root = BTRFS_I(parent_inode)->root;
 935	record_root_in_trans(trans, parent_root);
 
 
 
 936
 937	/*
 938	 * insert the directory item
 939	 */
 940	ret = btrfs_set_inode_index(parent_inode, &index);
 941	BUG_ON(ret);
 942	ret = btrfs_insert_dir_item(trans, parent_root,
 943				dentry->d_name.name, dentry->d_name.len,
 944				parent_inode, &key,
 945				BTRFS_FT_DIR, index);
 946	BUG_ON(ret);
 947
 948	btrfs_i_size_write(parent_inode, parent_inode->i_size +
 949					 dentry->d_name.len * 2);
 950	ret = btrfs_update_inode(trans, parent_root, parent_inode);
 951	BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 952
 953	/*
 954	 * pull in the delayed directory update
 955	 * and the delayed inode item
 956	 * otherwise we corrupt the FS during
 957	 * snapshot
 958	 */
 959	ret = btrfs_run_delayed_items(trans, root);
 960	BUG_ON(ret);
 
 
 
 961
 962	record_root_in_trans(trans, root);
 
 
 
 
 963	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
 964	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
 965	btrfs_check_and_init_root_item(new_root_item);
 966
 967	root_flags = btrfs_root_flags(new_root_item);
 968	if (pending->readonly)
 969		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
 970	else
 971		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
 972	btrfs_set_root_flags(new_root_item, root_flags);
 973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 974	old = btrfs_lock_root_node(root);
 975	btrfs_cow_block(trans, root, old, NULL, 0, &old);
 976	btrfs_set_lock_blocking(old);
 
 
 
 
 
 
 977
 978	btrfs_copy_root(trans, root, old, &tmp, objectid);
 
 979	btrfs_tree_unlock(old);
 980	free_extent_buffer(old);
 
 
 
 
 
 
 
 981
 982	btrfs_set_root_node(new_root_item, tmp);
 983	/* record when the snapshot was created in key.offset */
 984	key.offset = trans->transid;
 985	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
 986	btrfs_tree_unlock(tmp);
 987	free_extent_buffer(tmp);
 988	BUG_ON(ret);
 
 
 
 989
 990	/*
 991	 * insert root back/forward references
 992	 */
 993	ret = btrfs_add_root_ref(trans, tree_root, objectid,
 994				 parent_root->root_key.objectid,
 995				 btrfs_ino(parent_inode), index,
 996				 dentry->d_name.name, dentry->d_name.len);
 997	BUG_ON(ret);
 998	dput(parent);
 
 
 999
1000	key.offset = (u64)-1;
1001	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1002	BUG_ON(IS_ERR(pending->snap));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1003
1004	btrfs_reloc_post_snapshot(trans, pending);
1005	btrfs_orphan_post_snapshot(trans, pending);
1006fail:
1007	kfree(new_root_item);
 
1008	trans->block_rsv = rsv;
1009	btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1010	return 0;
 
 
 
 
 
 
 
 
 
 
1011}
1012
1013/*
1014 * create all the snapshots we've scheduled for creation
1015 */
1016static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1017					     struct btrfs_fs_info *fs_info)
1018{
1019	struct btrfs_pending_snapshot *pending;
1020	struct list_head *head = &trans->transaction->pending_snapshots;
1021	int ret;
1022
1023	list_for_each_entry(pending, head, list) {
1024		ret = create_pending_snapshot(trans, fs_info, pending);
1025		BUG_ON(ret);
 
 
1026	}
1027	return 0;
1028}
1029
1030static void update_super_roots(struct btrfs_root *root)
1031{
1032	struct btrfs_root_item *root_item;
1033	struct btrfs_super_block *super;
1034
1035	super = &root->fs_info->super_copy;
1036
1037	root_item = &root->fs_info->chunk_root->root_item;
1038	super->chunk_root = root_item->bytenr;
1039	super->chunk_root_generation = root_item->generation;
1040	super->chunk_root_level = root_item->level;
1041
1042	root_item = &root->fs_info->tree_root->root_item;
1043	super->root = root_item->bytenr;
1044	super->generation = root_item->generation;
1045	super->root_level = root_item->level;
1046	if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
1047		super->cache_generation = root_item->generation;
1048}
1049
1050int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1051{
1052	int ret = 0;
1053	spin_lock(&info->trans_lock);
1054	if (info->running_transaction)
1055		ret = info->running_transaction->in_commit;
1056	spin_unlock(&info->trans_lock);
1057	return ret;
1058}
1059
1060int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1061{
 
1062	int ret = 0;
 
1063	spin_lock(&info->trans_lock);
1064	if (info->running_transaction)
1065		ret = info->running_transaction->blocked;
 
1066	spin_unlock(&info->trans_lock);
1067	return ret;
1068}
1069
1070/*
1071 * wait for the current transaction commit to start and block subsequent
1072 * transaction joins
1073 */
1074static void wait_current_trans_commit_start(struct btrfs_root *root,
1075					    struct btrfs_transaction *trans)
1076{
1077	wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1078}
1079
1080/*
1081 * wait for the current transaction to start and then become unblocked.
1082 * caller holds ref.
1083 */
1084static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1085					 struct btrfs_transaction *trans)
1086{
1087	wait_event(root->fs_info->transaction_wait,
1088		   trans->commit_done || (trans->in_commit && !trans->blocked));
1089}
1090
1091/*
1092 * commit transactions asynchronously. once btrfs_commit_transaction_async
1093 * returns, any subsequent transaction will not be allowed to join.
1094 */
1095struct btrfs_async_commit {
1096	struct btrfs_trans_handle *newtrans;
1097	struct btrfs_root *root;
1098	struct delayed_work work;
1099};
1100
1101static void do_async_commit(struct work_struct *work)
1102{
1103	struct btrfs_async_commit *ac =
1104		container_of(work, struct btrfs_async_commit, work.work);
1105
1106	btrfs_commit_transaction(ac->newtrans, ac->root);
1107	kfree(ac);
 
 
 
 
 
 
 
1108}
1109
1110int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1111				   struct btrfs_root *root,
1112				   int wait_for_unblock)
1113{
1114	struct btrfs_async_commit *ac;
1115	struct btrfs_transaction *cur_trans;
1116
1117	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1118	if (!ac)
1119		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1120
1121	INIT_DELAYED_WORK(&ac->work, do_async_commit);
1122	ac->root = root;
1123	ac->newtrans = btrfs_join_transaction(root);
1124	if (IS_ERR(ac->newtrans)) {
1125		int err = PTR_ERR(ac->newtrans);
1126		kfree(ac);
1127		return err;
1128	}
1129
1130	/* take transaction reference */
1131	cur_trans = trans->transaction;
1132	atomic_inc(&cur_trans->use_count);
 
 
 
 
 
 
1133
1134	btrfs_end_transaction(trans, root);
1135	schedule_delayed_work(&ac->work, 0);
1136
1137	/* wait for transaction to start and unblock */
1138	if (wait_for_unblock)
1139		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1140	else
1141		wait_current_trans_commit_start(root, cur_trans);
 
 
 
 
 
 
 
 
1142
1143	if (current->journal_info == trans)
1144		current->journal_info = NULL;
1145
1146	put_transaction(cur_trans);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1147	return 0;
1148}
1149
 
 
 
 
 
 
1150/*
1151 * btrfs_transaction state sequence:
1152 *    in_commit = 0, blocked = 0  (initial)
1153 *    in_commit = 1, blocked = 1
1154 *    blocked = 0
1155 *    commit_done = 1
 
1156 */
1157int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1158			     struct btrfs_root *root)
1159{
1160	unsigned long joined = 0;
1161	struct btrfs_transaction *cur_trans;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1162	struct btrfs_transaction *prev_trans = NULL;
1163	DEFINE_WAIT(wait);
1164	int ret;
1165	int should_grow = 0;
1166	unsigned long now = get_seconds();
1167	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1168
1169	btrfs_run_ordered_operations(root, 0);
 
1170
1171	/* make a pass through all the delayed refs we have so far
1172	 * any runnings procs may add more while we are here
1173	 */
1174	ret = btrfs_run_delayed_refs(trans, root, 0);
1175	BUG_ON(ret);
 
 
1176
1177	btrfs_trans_release_metadata(trans, root);
 
1178
1179	cur_trans = trans->transaction;
1180	/*
1181	 * set the flushing flag so procs in this transaction have to
1182	 * start sending their work down.
1183	 */
1184	cur_trans->delayed_refs.flushing = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185
1186	ret = btrfs_run_delayed_refs(trans, root, 0);
1187	BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1188
1189	spin_lock(&cur_trans->commit_lock);
1190	if (cur_trans->in_commit) {
1191		spin_unlock(&cur_trans->commit_lock);
1192		atomic_inc(&cur_trans->use_count);
1193		btrfs_end_transaction(trans, root);
1194
1195		wait_for_commit(root, cur_trans);
1196
1197		put_transaction(cur_trans);
 
1198
1199		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1200	}
1201
1202	trans->transaction->in_commit = 1;
1203	trans->transaction->blocked = 1;
1204	spin_unlock(&cur_trans->commit_lock);
1205	wake_up(&root->fs_info->transaction_blocked_wait);
 
 
 
 
 
1206
1207	spin_lock(&root->fs_info->trans_lock);
1208	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1209		prev_trans = list_entry(cur_trans->list.prev,
1210					struct btrfs_transaction, list);
1211		if (!prev_trans->commit_done) {
1212			atomic_inc(&prev_trans->use_count);
1213			spin_unlock(&root->fs_info->trans_lock);
1214
1215			wait_for_commit(root, prev_trans);
1216
1217			put_transaction(prev_trans);
1218		} else {
1219			spin_unlock(&root->fs_info->trans_lock);
 
 
 
1220		}
1221	} else {
1222		spin_unlock(&root->fs_info->trans_lock);
 
 
 
 
 
 
 
 
 
 
1223	}
1224
1225	if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1226		should_grow = 1;
 
1227
1228	do {
1229		int snap_pending = 0;
 
 
 
1230
1231		joined = cur_trans->num_joined;
1232		if (!list_empty(&trans->transaction->pending_snapshots))
1233			snap_pending = 1;
1234
1235		WARN_ON(cur_trans != trans->transaction);
1236
1237		if (flush_on_commit || snap_pending) {
1238			btrfs_start_delalloc_inodes(root, 1);
1239			ret = btrfs_wait_ordered_extents(root, 0, 1);
1240			BUG_ON(ret);
1241		}
1242
1243		ret = btrfs_run_delayed_items(trans, root);
1244		BUG_ON(ret);
 
1245
1246		/*
1247		 * rename don't use btrfs_join_transaction, so, once we
1248		 * set the transaction to blocked above, we aren't going
1249		 * to get any new ordered operations.  We can safely run
1250		 * it here and no for sure that nothing new will be added
1251		 * to the list
1252		 */
1253		btrfs_run_ordered_operations(root, 1);
 
 
 
 
 
 
 
 
 
 
 
 
1254
1255		prepare_to_wait(&cur_trans->writer_wait, &wait,
1256				TASK_UNINTERRUPTIBLE);
1257
1258		if (atomic_read(&cur_trans->num_writers) > 1)
1259			schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1260		else if (should_grow)
1261			schedule_timeout(1);
1262
1263		finish_wait(&cur_trans->writer_wait, &wait);
1264	} while (atomic_read(&cur_trans->num_writers) > 1 ||
1265		 (should_grow && cur_trans->num_joined != joined));
1266
 
1267	/*
1268	 * Ok now we need to make sure to block out any other joins while we
1269	 * commit the transaction.  We could have started a join before setting
1270	 * no_join so make sure to wait for num_writers to == 1 again.
1271	 */
1272	spin_lock(&root->fs_info->trans_lock);
1273	root->fs_info->trans_no_join = 1;
1274	spin_unlock(&root->fs_info->trans_lock);
 
 
 
 
 
 
 
 
 
1275	wait_event(cur_trans->writer_wait,
1276		   atomic_read(&cur_trans->num_writers) == 1);
1277
1278	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1279	 * the reloc mutex makes sure that we stop
1280	 * the balancing code from coming in and moving
1281	 * extents around in the middle of the commit
1282	 */
1283	mutex_lock(&root->fs_info->reloc_mutex);
1284
1285	ret = btrfs_run_delayed_items(trans, root);
1286	BUG_ON(ret);
 
 
 
 
 
 
1287
1288	ret = create_pending_snapshots(trans, root->fs_info);
1289	BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
1290
1291	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1292	BUG_ON(ret);
 
1293
1294	/*
1295	 * make sure none of the code above managed to slip in a
1296	 * delayed item
1297	 */
1298	btrfs_assert_delayed_root_empty(root);
1299
1300	WARN_ON(cur_trans != trans->transaction);
1301
1302	btrfs_scrub_pause(root);
1303	/* btrfs_commit_tree_roots is responsible for getting the
1304	 * various roots consistent with each other.  Every pointer
1305	 * in the tree of tree roots has to point to the most up to date
1306	 * root for every subvolume and other tree.  So, we have to keep
1307	 * the tree logging code from jumping in and changing any
1308	 * of the trees.
1309	 *
1310	 * At this point in the commit, there can't be any tree-log
1311	 * writers, but a little lower down we drop the trans mutex
1312	 * and let new people in.  By holding the tree_log_mutex
1313	 * from now until after the super is written, we avoid races
1314	 * with the tree-log code.
1315	 */
1316	mutex_lock(&root->fs_info->tree_log_mutex);
1317
1318	ret = commit_fs_roots(trans, root);
1319	BUG_ON(ret);
1320
1321	/* commit_fs_roots gets rid of all the tree log roots, it is now
1322	 * safe to free the root of tree log roots
1323	 */
1324	btrfs_free_log_root_tree(trans, root->fs_info);
1325
1326	ret = commit_cowonly_roots(trans, root);
1327	BUG_ON(ret);
 
 
 
 
 
1328
1329	btrfs_prepare_extent_commit(trans, root);
 
 
1330
1331	cur_trans = root->fs_info->running_transaction;
 
 
 
 
 
 
 
1332
1333	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1334			    root->fs_info->tree_root->node);
1335	switch_commit_root(root->fs_info->tree_root);
1336
1337	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1338			    root->fs_info->chunk_root->node);
1339	switch_commit_root(root->fs_info->chunk_root);
 
1340
1341	update_super_roots(root);
 
 
 
1342
1343	if (!root->fs_info->log_root_recovering) {
1344		btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1345		btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
 
 
1346	}
1347
1348	memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1349	       sizeof(root->fs_info->super_copy));
 
 
 
1350
1351	trans->transaction->blocked = 0;
1352	spin_lock(&root->fs_info->trans_lock);
1353	root->fs_info->running_transaction = NULL;
1354	root->fs_info->trans_no_join = 0;
1355	spin_unlock(&root->fs_info->trans_lock);
1356	mutex_unlock(&root->fs_info->reloc_mutex);
1357
1358	wake_up(&root->fs_info->transaction_wait);
1359
1360	ret = btrfs_write_and_wait_transaction(trans, root);
1361	BUG_ON(ret);
1362	write_ctree_super(trans, root, 0);
 
1363
1364	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1365	 * the super is written, we can safely allow the tree-loggers
1366	 * to go about their business
1367	 */
1368	mutex_unlock(&root->fs_info->tree_log_mutex);
 
 
1369
1370	btrfs_finish_extent_commit(trans, root);
 
 
 
 
 
 
1371
1372	cur_trans->commit_done = 1;
1373
1374	root->fs_info->last_trans_committed = cur_trans->transid;
 
1375
 
 
 
 
 
 
1376	wake_up(&cur_trans->commit_wait);
 
1377
1378	spin_lock(&root->fs_info->trans_lock);
1379	list_del_init(&cur_trans->list);
1380	spin_unlock(&root->fs_info->trans_lock);
 
 
 
 
 
 
1381
1382	put_transaction(cur_trans);
1383	put_transaction(cur_trans);
1384
1385	trace_btrfs_transaction_commit(root);
1386
1387	btrfs_scrub_continue(root);
1388
1389	if (current->journal_info == trans)
1390		current->journal_info = NULL;
1391
1392	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1393
1394	if (current != root->fs_info->transaction_kthread)
1395		btrfs_run_delayed_iputs(root);
1396
1397	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1398}
1399
1400/*
1401 * interface function to delete all the snapshots we have scheduled for deletion
 
 
 
 
 
 
 
1402 */
1403int btrfs_clean_old_snapshots(struct btrfs_root *root)
1404{
1405	LIST_HEAD(list);
1406	struct btrfs_fs_info *fs_info = root->fs_info;
1407
1408	spin_lock(&fs_info->trans_lock);
1409	list_splice_init(&fs_info->dead_roots, &list);
 
 
 
 
 
 
1410	spin_unlock(&fs_info->trans_lock);
1411
1412	while (!list_empty(&list)) {
1413		root = list_entry(list.next, struct btrfs_root, root_list);
1414		list_del(&root->root_list);
1415
1416		btrfs_kill_all_delayed_nodes(root);
1417
1418		if (btrfs_header_backref_rev(root->node) <
1419		    BTRFS_MIXED_BACKREF_REV)
1420			btrfs_drop_snapshot(root, NULL, 0);
1421		else
1422			btrfs_drop_snapshot(root, NULL, 1);
1423	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424	return 0;
 
 
 
 
 
1425}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/slab.h>
   8#include <linux/sched.h>
   9#include <linux/sched/mm.h>
  10#include <linux/writeback.h>
  11#include <linux/pagemap.h>
  12#include <linux/blkdev.h>
  13#include <linux/uuid.h>
  14#include <linux/timekeeping.h>
  15#include "misc.h"
  16#include "ctree.h"
  17#include "disk-io.h"
  18#include "transaction.h"
  19#include "locking.h"
  20#include "tree-log.h"
  21#include "volumes.h"
  22#include "dev-replace.h"
  23#include "qgroup.h"
  24#include "block-group.h"
  25#include "space-info.h"
  26#include "fs.h"
  27#include "accessors.h"
  28#include "extent-tree.h"
  29#include "root-tree.h"
  30#include "dir-item.h"
  31#include "uuid-tree.h"
  32#include "ioctl.h"
  33#include "relocation.h"
  34#include "scrub.h"
  35
  36static struct kmem_cache *btrfs_trans_handle_cachep;
  37
  38/*
  39 * Transaction states and transitions
  40 *
  41 * No running transaction (fs tree blocks are not modified)
  42 * |
  43 * | To next stage:
  44 * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
  45 * V
  46 * Transaction N [[TRANS_STATE_RUNNING]]
  47 * |
  48 * | New trans handles can be attached to transaction N by calling all
  49 * | start_transaction() variants.
  50 * |
  51 * | To next stage:
  52 * |  Call btrfs_commit_transaction() on any trans handle attached to
  53 * |  transaction N
  54 * V
  55 * Transaction N [[TRANS_STATE_COMMIT_PREP]]
  56 * |
  57 * | If there are simultaneous calls to btrfs_commit_transaction() one will win
  58 * | the race and the rest will wait for the winner to commit the transaction.
  59 * |
  60 * | The winner will wait for previous running transaction to completely finish
  61 * | if there is one.
  62 * |
  63 * Transaction N [[TRANS_STATE_COMMIT_START]]
  64 * |
  65 * | Then one of the following happens:
  66 * | - Wait for all other trans handle holders to release.
  67 * |   The btrfs_commit_transaction() caller will do the commit work.
  68 * | - Wait for current transaction to be committed by others.
  69 * |   Other btrfs_commit_transaction() caller will do the commit work.
  70 * |
  71 * | At this stage, only btrfs_join_transaction*() variants can attach
  72 * | to this running transaction.
  73 * | All other variants will wait for current one to finish and attach to
  74 * | transaction N+1.
  75 * |
  76 * | To next stage:
  77 * |  Caller is chosen to commit transaction N, and all other trans handle
  78 * |  haven been released.
  79 * V
  80 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
  81 * |
  82 * | The heavy lifting transaction work is started.
  83 * | From running delayed refs (modifying extent tree) to creating pending
  84 * | snapshots, running qgroups.
  85 * | In short, modify supporting trees to reflect modifications of subvolume
  86 * | trees.
  87 * |
  88 * | At this stage, all start_transaction() calls will wait for this
  89 * | transaction to finish and attach to transaction N+1.
  90 * |
  91 * | To next stage:
  92 * |  Until all supporting trees are updated.
  93 * V
  94 * Transaction N [[TRANS_STATE_UNBLOCKED]]
  95 * |						    Transaction N+1
  96 * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
  97 * | need to write them back to disk and update	    |
  98 * | super blocks.				    |
  99 * |						    |
 100 * | At this stage, new transaction is allowed to   |
 101 * | start.					    |
 102 * | All new start_transaction() calls will be	    |
 103 * | attached to transid N+1.			    |
 104 * |						    |
 105 * | To next stage:				    |
 106 * |  Until all tree blocks are super blocks are    |
 107 * |  written to block devices			    |
 108 * V						    |
 109 * Transaction N [[TRANS_STATE_COMPLETED]]	    V
 110 *   All tree blocks and super blocks are written.  Transaction N+1
 111 *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
 112 *   data structures will be cleaned up.	    | Life goes on
 113 */
 114static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
 115	[TRANS_STATE_RUNNING]		= 0U,
 116	[TRANS_STATE_COMMIT_PREP]	= 0U,
 117	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
 118	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
 119					   __TRANS_ATTACH |
 120					   __TRANS_JOIN |
 121					   __TRANS_JOIN_NOSTART),
 122	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
 123					   __TRANS_ATTACH |
 124					   __TRANS_JOIN |
 125					   __TRANS_JOIN_NOLOCK |
 126					   __TRANS_JOIN_NOSTART),
 127	[TRANS_STATE_SUPER_COMMITTED]	= (__TRANS_START |
 128					   __TRANS_ATTACH |
 129					   __TRANS_JOIN |
 130					   __TRANS_JOIN_NOLOCK |
 131					   __TRANS_JOIN_NOSTART),
 132	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
 133					   __TRANS_ATTACH |
 134					   __TRANS_JOIN |
 135					   __TRANS_JOIN_NOLOCK |
 136					   __TRANS_JOIN_NOSTART),
 137};
 138
 139void btrfs_put_transaction(struct btrfs_transaction *transaction)
 140{
 141	WARN_ON(refcount_read(&transaction->use_count) == 0);
 142	if (refcount_dec_and_test(&transaction->use_count)) {
 143		BUG_ON(!list_empty(&transaction->list));
 144		WARN_ON(!RB_EMPTY_ROOT(
 145				&transaction->delayed_refs.href_root.rb_root));
 146		WARN_ON(!RB_EMPTY_ROOT(
 147				&transaction->delayed_refs.dirty_extent_root));
 148		if (transaction->delayed_refs.pending_csums)
 149			btrfs_err(transaction->fs_info,
 150				  "pending csums is %llu",
 151				  transaction->delayed_refs.pending_csums);
 152		/*
 153		 * If any block groups are found in ->deleted_bgs then it's
 154		 * because the transaction was aborted and a commit did not
 155		 * happen (things failed before writing the new superblock
 156		 * and calling btrfs_finish_extent_commit()), so we can not
 157		 * discard the physical locations of the block groups.
 158		 */
 159		while (!list_empty(&transaction->deleted_bgs)) {
 160			struct btrfs_block_group *cache;
 161
 162			cache = list_first_entry(&transaction->deleted_bgs,
 163						 struct btrfs_block_group,
 164						 bg_list);
 165			list_del_init(&cache->bg_list);
 166			btrfs_unfreeze_block_group(cache);
 167			btrfs_put_block_group(cache);
 168		}
 169		WARN_ON(!list_empty(&transaction->dev_update_list));
 170		kfree(transaction);
 171	}
 172}
 173
 174static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
 175{
 176	struct btrfs_transaction *cur_trans = trans->transaction;
 177	struct btrfs_fs_info *fs_info = trans->fs_info;
 178	struct btrfs_root *root, *tmp;
 179
 180	/*
 181	 * At this point no one can be using this transaction to modify any tree
 182	 * and no one can start another transaction to modify any tree either.
 183	 */
 184	ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
 185
 186	down_write(&fs_info->commit_root_sem);
 187
 188	if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
 189		fs_info->last_reloc_trans = trans->transid;
 190
 191	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
 192				 dirty_list) {
 193		list_del_init(&root->dirty_list);
 194		free_extent_buffer(root->commit_root);
 195		root->commit_root = btrfs_root_node(root);
 196		extent_io_tree_release(&root->dirty_log_pages);
 197		btrfs_qgroup_clean_swapped_blocks(root);
 198	}
 199
 200	/* We can free old roots now. */
 201	spin_lock(&cur_trans->dropped_roots_lock);
 202	while (!list_empty(&cur_trans->dropped_roots)) {
 203		root = list_first_entry(&cur_trans->dropped_roots,
 204					struct btrfs_root, root_list);
 205		list_del_init(&root->root_list);
 206		spin_unlock(&cur_trans->dropped_roots_lock);
 207		btrfs_free_log(trans, root);
 208		btrfs_drop_and_free_fs_root(fs_info, root);
 209		spin_lock(&cur_trans->dropped_roots_lock);
 210	}
 211	spin_unlock(&cur_trans->dropped_roots_lock);
 212
 213	up_write(&fs_info->commit_root_sem);
 214}
 215
 216static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
 217					 unsigned int type)
 218{
 219	if (type & TRANS_EXTWRITERS)
 220		atomic_inc(&trans->num_extwriters);
 221}
 222
 223static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
 224					 unsigned int type)
 225{
 226	if (type & TRANS_EXTWRITERS)
 227		atomic_dec(&trans->num_extwriters);
 228}
 229
 230static inline void extwriter_counter_init(struct btrfs_transaction *trans,
 231					  unsigned int type)
 232{
 233	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
 234}
 235
 236static inline int extwriter_counter_read(struct btrfs_transaction *trans)
 237{
 238	return atomic_read(&trans->num_extwriters);
 239}
 240
 241/*
 242 * To be called after doing the chunk btree updates right after allocating a new
 243 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
 244 * chunk after all chunk btree updates and after finishing the second phase of
 245 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
 246 * group had its chunk item insertion delayed to the second phase.
 247 */
 248void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
 249{
 250	struct btrfs_fs_info *fs_info = trans->fs_info;
 251
 252	if (!trans->chunk_bytes_reserved)
 253		return;
 254
 255	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
 256				trans->chunk_bytes_reserved, NULL);
 257	trans->chunk_bytes_reserved = 0;
 258}
 259
 260/*
 261 * either allocate a new transaction or hop into the existing one
 262 */
 263static noinline int join_transaction(struct btrfs_fs_info *fs_info,
 264				     unsigned int type)
 265{
 266	struct btrfs_transaction *cur_trans;
 267
 268	spin_lock(&fs_info->trans_lock);
 269loop:
 270	/* The file system has been taken offline. No new transactions. */
 271	if (BTRFS_FS_ERROR(fs_info)) {
 272		spin_unlock(&fs_info->trans_lock);
 273		return -EROFS;
 274	}
 275
 276	cur_trans = fs_info->running_transaction;
 277	if (cur_trans) {
 278		if (TRANS_ABORTED(cur_trans)) {
 279			spin_unlock(&fs_info->trans_lock);
 280			return cur_trans->aborted;
 281		}
 282		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
 283			spin_unlock(&fs_info->trans_lock);
 284			return -EBUSY;
 285		}
 286		refcount_inc(&cur_trans->use_count);
 287		atomic_inc(&cur_trans->num_writers);
 288		extwriter_counter_inc(cur_trans, type);
 289		spin_unlock(&fs_info->trans_lock);
 290		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
 291		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
 292		return 0;
 293	}
 294	spin_unlock(&fs_info->trans_lock);
 295
 296	/*
 297	 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
 298	 * current transaction, and commit it. If there is no transaction, just
 299	 * return ENOENT.
 300	 */
 301	if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
 302		return -ENOENT;
 303
 304	/*
 305	 * JOIN_NOLOCK only happens during the transaction commit, so
 306	 * it is impossible that ->running_transaction is NULL
 307	 */
 308	BUG_ON(type == TRANS_JOIN_NOLOCK);
 309
 310	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
 311	if (!cur_trans)
 312		return -ENOMEM;
 313
 314	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
 315	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
 316
 317	spin_lock(&fs_info->trans_lock);
 318	if (fs_info->running_transaction) {
 319		/*
 320		 * someone started a transaction after we unlocked.  Make sure
 321		 * to redo the checks above
 322		 */
 323		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
 324		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
 325		kfree(cur_trans);
 326		goto loop;
 327	} else if (BTRFS_FS_ERROR(fs_info)) {
 328		spin_unlock(&fs_info->trans_lock);
 329		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
 330		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
 331		kfree(cur_trans);
 332		return -EROFS;
 333	}
 334
 335	cur_trans->fs_info = fs_info;
 336	atomic_set(&cur_trans->pending_ordered, 0);
 337	init_waitqueue_head(&cur_trans->pending_wait);
 338	atomic_set(&cur_trans->num_writers, 1);
 339	extwriter_counter_init(cur_trans, type);
 340	init_waitqueue_head(&cur_trans->writer_wait);
 341	init_waitqueue_head(&cur_trans->commit_wait);
 342	cur_trans->state = TRANS_STATE_RUNNING;
 
 343	/*
 344	 * One for this trans handle, one so it will live on until we
 345	 * commit the transaction.
 346	 */
 347	refcount_set(&cur_trans->use_count, 2);
 348	cur_trans->flags = 0;
 349	cur_trans->start_time = ktime_get_seconds();
 350
 351	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
 352
 353	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
 354	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
 355	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
 356
 357	/*
 358	 * although the tree mod log is per file system and not per transaction,
 359	 * the log must never go across transaction boundaries.
 360	 */
 361	smp_mb();
 362	if (!list_empty(&fs_info->tree_mod_seq_list))
 363		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
 364	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
 365		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
 366	atomic64_set(&fs_info->tree_mod_seq, 0);
 367
 368	spin_lock_init(&cur_trans->delayed_refs.lock);
 369
 370	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
 371	INIT_LIST_HEAD(&cur_trans->dev_update_list);
 372	INIT_LIST_HEAD(&cur_trans->switch_commits);
 373	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
 374	INIT_LIST_HEAD(&cur_trans->io_bgs);
 375	INIT_LIST_HEAD(&cur_trans->dropped_roots);
 376	mutex_init(&cur_trans->cache_write_mutex);
 377	spin_lock_init(&cur_trans->dirty_bgs_lock);
 378	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
 379	spin_lock_init(&cur_trans->dropped_roots_lock);
 380	list_add_tail(&cur_trans->list, &fs_info->trans_list);
 381	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
 382			IO_TREE_TRANS_DIRTY_PAGES);
 383	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
 384			IO_TREE_FS_PINNED_EXTENTS);
 385	btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
 386	cur_trans->transid = fs_info->generation;
 387	fs_info->running_transaction = cur_trans;
 388	cur_trans->aborted = 0;
 389	spin_unlock(&fs_info->trans_lock);
 390
 391	return 0;
 392}
 393
 394/*
 395 * This does all the record keeping required to make sure that a shareable root
 396 * is properly recorded in a given transaction.  This is required to make sure
 397 * the old root from before we joined the transaction is deleted when the
 398 * transaction commits.
 399 */
 400static int record_root_in_trans(struct btrfs_trans_handle *trans,
 401			       struct btrfs_root *root,
 402			       int force)
 403{
 404	struct btrfs_fs_info *fs_info = root->fs_info;
 405	int ret = 0;
 406
 407	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 408	    root->last_trans < trans->transid) || force) {
 409		WARN_ON(!force && root->commit_root != root->node);
 410
 411		/*
 412		 * see below for IN_TRANS_SETUP usage rules
 413		 * we have the reloc mutex held now, so there
 414		 * is only one writer in this function
 415		 */
 416		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 417
 418		/* make sure readers find IN_TRANS_SETUP before
 419		 * they find our root->last_trans update
 420		 */
 421		smp_wmb();
 422
 423		spin_lock(&fs_info->fs_roots_radix_lock);
 424		if (root->last_trans == trans->transid && !force) {
 425			spin_unlock(&fs_info->fs_roots_radix_lock);
 426			return 0;
 427		}
 428		radix_tree_tag_set(&fs_info->fs_roots_radix,
 429				   (unsigned long)root->root_key.objectid,
 430				   BTRFS_ROOT_TRANS_TAG);
 431		spin_unlock(&fs_info->fs_roots_radix_lock);
 432		root->last_trans = trans->transid;
 433
 434		/* this is pretty tricky.  We don't want to
 435		 * take the relocation lock in btrfs_record_root_in_trans
 436		 * unless we're really doing the first setup for this root in
 437		 * this transaction.
 438		 *
 439		 * Normally we'd use root->last_trans as a flag to decide
 440		 * if we want to take the expensive mutex.
 441		 *
 442		 * But, we have to set root->last_trans before we
 443		 * init the relocation root, otherwise, we trip over warnings
 444		 * in ctree.c.  The solution used here is to flag ourselves
 445		 * with root IN_TRANS_SETUP.  When this is 1, we're still
 446		 * fixing up the reloc trees and everyone must wait.
 447		 *
 448		 * When this is zero, they can trust root->last_trans and fly
 449		 * through btrfs_record_root_in_trans without having to take the
 450		 * lock.  smp_wmb() makes sure that all the writes above are
 451		 * done before we pop in the zero below
 452		 */
 453		ret = btrfs_init_reloc_root(trans, root);
 454		smp_mb__before_atomic();
 455		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 456	}
 457	return ret;
 458}
 459
 460
 461void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
 462			    struct btrfs_root *root)
 463{
 464	struct btrfs_fs_info *fs_info = root->fs_info;
 465	struct btrfs_transaction *cur_trans = trans->transaction;
 466
 467	/* Add ourselves to the transaction dropped list */
 468	spin_lock(&cur_trans->dropped_roots_lock);
 469	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
 470	spin_unlock(&cur_trans->dropped_roots_lock);
 471
 472	/* Make sure we don't try to update the root at commit time */
 473	spin_lock(&fs_info->fs_roots_radix_lock);
 474	radix_tree_tag_clear(&fs_info->fs_roots_radix,
 475			     (unsigned long)root->root_key.objectid,
 476			     BTRFS_ROOT_TRANS_TAG);
 477	spin_unlock(&fs_info->fs_roots_radix_lock);
 478}
 479
 480int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
 481			       struct btrfs_root *root)
 482{
 483	struct btrfs_fs_info *fs_info = root->fs_info;
 484	int ret;
 485
 486	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 487		return 0;
 488
 489	/*
 490	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
 491	 * and barriers
 492	 */
 493	smp_rmb();
 494	if (root->last_trans == trans->transid &&
 495	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
 496		return 0;
 497
 498	mutex_lock(&fs_info->reloc_mutex);
 499	ret = record_root_in_trans(trans, root, 0);
 500	mutex_unlock(&fs_info->reloc_mutex);
 501
 502	return ret;
 503}
 504
 505static inline int is_transaction_blocked(struct btrfs_transaction *trans)
 506{
 507	return (trans->state >= TRANS_STATE_COMMIT_START &&
 508		trans->state < TRANS_STATE_UNBLOCKED &&
 509		!TRANS_ABORTED(trans));
 510}
 511
 512/* wait for commit against the current transaction to become unblocked
 513 * when this is done, it is safe to start a new transaction, but the current
 514 * transaction might not be fully on disk.
 515 */
 516static void wait_current_trans(struct btrfs_fs_info *fs_info)
 517{
 518	struct btrfs_transaction *cur_trans;
 519
 520	spin_lock(&fs_info->trans_lock);
 521	cur_trans = fs_info->running_transaction;
 522	if (cur_trans && is_transaction_blocked(cur_trans)) {
 523		refcount_inc(&cur_trans->use_count);
 524		spin_unlock(&fs_info->trans_lock);
 525
 526		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
 527		wait_event(fs_info->transaction_wait,
 528			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
 529			   TRANS_ABORTED(cur_trans));
 530		btrfs_put_transaction(cur_trans);
 531	} else {
 532		spin_unlock(&fs_info->trans_lock);
 533	}
 534}
 535
 536static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
 
 
 
 
 
 
 
 537{
 538	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
 539		return 0;
 540
 541	if (type == TRANS_START)
 
 
 
 
 542		return 1;
 543
 544	return 0;
 545}
 546
 547static inline bool need_reserve_reloc_root(struct btrfs_root *root)
 548{
 549	struct btrfs_fs_info *fs_info = root->fs_info;
 550
 551	if (!fs_info->reloc_ctl ||
 552	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
 553	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 554	    root->reloc_root)
 555		return false;
 556
 557	return true;
 558}
 559
 560static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
 561					enum btrfs_reserve_flush_enum flush,
 562					u64 num_bytes,
 563					u64 *delayed_refs_bytes)
 564{
 565	struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
 566	u64 bytes = num_bytes + *delayed_refs_bytes;
 567	int ret;
 568
 569	/*
 570	 * We want to reserve all the bytes we may need all at once, so we only
 571	 * do 1 enospc flushing cycle per transaction start.
 572	 */
 573	ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
 574
 575	/*
 576	 * If we are an emergency flush, which can steal from the global block
 577	 * reserve, then attempt to not reserve space for the delayed refs, as
 578	 * we will consume space for them from the global block reserve.
 579	 */
 580	if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
 581		bytes -= *delayed_refs_bytes;
 582		*delayed_refs_bytes = 0;
 583		ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
 584	}
 585
 586	return ret;
 587}
 588
 589static struct btrfs_trans_handle *
 590start_transaction(struct btrfs_root *root, unsigned int num_items,
 591		  unsigned int type, enum btrfs_reserve_flush_enum flush,
 592		  bool enforce_qgroups)
 593{
 594	struct btrfs_fs_info *fs_info = root->fs_info;
 595	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 596	struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
 597	struct btrfs_trans_handle *h;
 598	struct btrfs_transaction *cur_trans;
 599	u64 num_bytes = 0;
 600	u64 qgroup_reserved = 0;
 601	u64 delayed_refs_bytes = 0;
 602	bool reloc_reserved = false;
 603	bool do_chunk_alloc = false;
 604	int ret;
 605
 606	if (BTRFS_FS_ERROR(fs_info))
 607		return ERR_PTR(-EROFS);
 608
 609	if (current->journal_info) {
 610		WARN_ON(type & TRANS_EXTWRITERS);
 611		h = current->journal_info;
 612		refcount_inc(&h->use_count);
 613		WARN_ON(refcount_read(&h->use_count) > 2);
 614		h->orig_rsv = h->block_rsv;
 615		h->block_rsv = NULL;
 616		goto got_it;
 617	}
 618
 619	/*
 620	 * Do the reservation before we join the transaction so we can do all
 621	 * the appropriate flushing if need be.
 622	 */
 623	if (num_items && root != fs_info->chunk_root) {
 624		qgroup_reserved = num_items * fs_info->nodesize;
 625		/*
 626		 * Use prealloc for now, as there might be a currently running
 627		 * transaction that could free this reserved space prematurely
 628		 * by committing.
 629		 */
 630		ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
 631							 enforce_qgroups, false);
 632		if (ret)
 633			return ERR_PTR(ret);
 634
 635		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
 636		/*
 637		 * If we plan to insert/update/delete "num_items" from a btree,
 638		 * we will also generate delayed refs for extent buffers in the
 639		 * respective btree paths, so reserve space for the delayed refs
 640		 * that will be generated by the caller as it modifies btrees.
 641		 * Try to reserve them to avoid excessive use of the global
 642		 * block reserve.
 643		 */
 644		delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
 645
 646		/*
 647		 * Do the reservation for the relocation root creation
 648		 */
 649		if (need_reserve_reloc_root(root)) {
 650			num_bytes += fs_info->nodesize;
 651			reloc_reserved = true;
 652		}
 653
 654		ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
 655						   &delayed_refs_bytes);
 656		if (ret)
 657			goto reserve_fail;
 658
 659		btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
 660
 661		if (trans_rsv->space_info->force_alloc)
 662			do_chunk_alloc = true;
 663	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
 664		   !btrfs_block_rsv_full(delayed_refs_rsv)) {
 665		/*
 666		 * Some people call with btrfs_start_transaction(root, 0)
 667		 * because they can be throttled, but have some other mechanism
 668		 * for reserving space.  We still want these guys to refill the
 669		 * delayed block_rsv so just add 1 items worth of reservation
 670		 * here.
 671		 */
 672		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
 673		if (ret)
 674			goto reserve_fail;
 675	}
 676again:
 677	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
 678	if (!h) {
 679		ret = -ENOMEM;
 680		goto alloc_fail;
 681	}
 682
 683	/*
 684	 * If we are JOIN_NOLOCK we're already committing a transaction and
 685	 * waiting on this guy, so we don't need to do the sb_start_intwrite
 686	 * because we're already holding a ref.  We need this because we could
 687	 * have raced in and did an fsync() on a file which can kick a commit
 688	 * and then we deadlock with somebody doing a freeze.
 689	 *
 690	 * If we are ATTACH, it means we just want to catch the current
 691	 * transaction and commit it, so we needn't do sb_start_intwrite(). 
 692	 */
 693	if (type & __TRANS_FREEZABLE)
 694		sb_start_intwrite(fs_info->sb);
 695
 696	if (may_wait_transaction(fs_info, type))
 697		wait_current_trans(fs_info);
 698
 699	do {
 700		ret = join_transaction(fs_info, type);
 701		if (ret == -EBUSY) {
 702			wait_current_trans(fs_info);
 703			if (unlikely(type == TRANS_ATTACH ||
 704				     type == TRANS_JOIN_NOSTART))
 705				ret = -ENOENT;
 706		}
 707	} while (ret == -EBUSY);
 708
 709	if (ret < 0)
 710		goto join_fail;
 
 
 711
 712	cur_trans = fs_info->running_transaction;
 713
 714	h->transid = cur_trans->transid;
 715	h->transaction = cur_trans;
 716	refcount_set(&h->use_count, 1);
 717	h->fs_info = root->fs_info;
 718
 719	h->type = type;
 720	INIT_LIST_HEAD(&h->new_bgs);
 721	btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
 722
 723	smp_mb();
 724	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
 725	    may_wait_transaction(fs_info, type)) {
 726		current->journal_info = h;
 727		btrfs_commit_transaction(h);
 728		goto again;
 729	}
 730
 731	if (num_bytes) {
 732		trace_btrfs_space_reservation(fs_info, "transaction",
 733					      h->transid, num_bytes, 1);
 734		h->block_rsv = trans_rsv;
 735		h->bytes_reserved = num_bytes;
 736		if (delayed_refs_bytes > 0) {
 737			trace_btrfs_space_reservation(fs_info,
 738						      "local_delayed_refs_rsv",
 739						      h->transid,
 740						      delayed_refs_bytes, 1);
 741			h->delayed_refs_bytes_reserved = delayed_refs_bytes;
 742			btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
 743			delayed_refs_bytes = 0;
 744		}
 745		h->reloc_reserved = reloc_reserved;
 746	}
 747
 748got_it:
 749	if (!current->journal_info)
 
 
 750		current->journal_info = h;
 751
 752	/*
 753	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
 754	 * ALLOC_FORCE the first run through, and then we won't allocate for
 755	 * anybody else who races in later.  We don't care about the return
 756	 * value here.
 757	 */
 758	if (do_chunk_alloc && num_bytes) {
 759		u64 flags = h->block_rsv->space_info->flags;
 760
 761		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
 762				  CHUNK_ALLOC_NO_FORCE);
 763	}
 764
 765	/*
 766	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
 767	 * call btrfs_join_transaction() while we're also starting a
 768	 * transaction.
 769	 *
 770	 * Thus it need to be called after current->journal_info initialized,
 771	 * or we can deadlock.
 772	 */
 773	ret = btrfs_record_root_in_trans(h, root);
 774	if (ret) {
 775		/*
 776		 * The transaction handle is fully initialized and linked with
 777		 * other structures so it needs to be ended in case of errors,
 778		 * not just freed.
 779		 */
 780		btrfs_end_transaction(h);
 781		goto reserve_fail;
 782	}
 783	/*
 784	 * Now that we have found a transaction to be a part of, convert the
 785	 * qgroup reservation from prealloc to pertrans. A different transaction
 786	 * can't race in and free our pertrans out from under us.
 787	 */
 788	if (qgroup_reserved)
 789		btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
 790
 791	return h;
 792
 793join_fail:
 794	if (type & __TRANS_FREEZABLE)
 795		sb_end_intwrite(fs_info->sb);
 796	kmem_cache_free(btrfs_trans_handle_cachep, h);
 797alloc_fail:
 798	if (num_bytes)
 799		btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
 800	if (delayed_refs_bytes)
 801		btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info,
 802						    delayed_refs_bytes);
 803reserve_fail:
 804	btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
 805	return ERR_PTR(ret);
 806}
 807
 808struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
 809						   unsigned int num_items)
 810{
 811	return start_transaction(root, num_items, TRANS_START,
 812				 BTRFS_RESERVE_FLUSH_ALL, true);
 813}
 814
 815struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
 816					struct btrfs_root *root,
 817					unsigned int num_items)
 818{
 819	return start_transaction(root, num_items, TRANS_START,
 820				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
 821}
 822
 823struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
 824{
 825	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
 826				 true);
 827}
 828
 829struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
 830{
 831	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
 832				 BTRFS_RESERVE_NO_FLUSH, true);
 833}
 834
 835/*
 836 * Similar to regular join but it never starts a transaction when none is
 837 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
 838 * This is similar to btrfs_attach_transaction() but it allows the join to
 839 * happen if the transaction commit already started but it's not yet in the
 840 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
 841 */
 842struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
 843{
 844	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
 845				 BTRFS_RESERVE_NO_FLUSH, true);
 846}
 847
 848/*
 849 * Catch the running transaction.
 850 *
 851 * It is used when we want to commit the current the transaction, but
 852 * don't want to start a new one.
 853 *
 854 * Note: If this function return -ENOENT, it just means there is no
 855 * running transaction. But it is possible that the inactive transaction
 856 * is still in the memory, not fully on disk. If you hope there is no
 857 * inactive transaction in the fs when -ENOENT is returned, you should
 858 * invoke
 859 *     btrfs_attach_transaction_barrier()
 860 */
 861struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
 862{
 863	return start_transaction(root, 0, TRANS_ATTACH,
 864				 BTRFS_RESERVE_NO_FLUSH, true);
 865}
 866
 867/*
 868 * Catch the running transaction.
 869 *
 870 * It is similar to the above function, the difference is this one
 871 * will wait for all the inactive transactions until they fully
 872 * complete.
 873 */
 874struct btrfs_trans_handle *
 875btrfs_attach_transaction_barrier(struct btrfs_root *root)
 876{
 877	struct btrfs_trans_handle *trans;
 878
 879	trans = start_transaction(root, 0, TRANS_ATTACH,
 880				  BTRFS_RESERVE_NO_FLUSH, true);
 881	if (trans == ERR_PTR(-ENOENT)) {
 882		int ret;
 883
 884		ret = btrfs_wait_for_commit(root->fs_info, 0);
 885		if (ret)
 886			return ERR_PTR(ret);
 887	}
 888
 889	return trans;
 890}
 891
 892/* Wait for a transaction commit to reach at least the given state. */
 893static noinline void wait_for_commit(struct btrfs_transaction *commit,
 894				     const enum btrfs_trans_state min_state)
 895{
 896	struct btrfs_fs_info *fs_info = commit->fs_info;
 897	u64 transid = commit->transid;
 898	bool put = false;
 899
 900	/*
 901	 * At the moment this function is called with min_state either being
 902	 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
 903	 */
 904	if (min_state == TRANS_STATE_COMPLETED)
 905		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
 906	else
 907		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
 908
 909	while (1) {
 910		wait_event(commit->commit_wait, commit->state >= min_state);
 911		if (put)
 912			btrfs_put_transaction(commit);
 913
 914		if (min_state < TRANS_STATE_COMPLETED)
 915			break;
 916
 917		/*
 918		 * A transaction isn't really completed until all of the
 919		 * previous transactions are completed, but with fsync we can
 920		 * end up with SUPER_COMMITTED transactions before a COMPLETED
 921		 * transaction. Wait for those.
 922		 */
 923
 924		spin_lock(&fs_info->trans_lock);
 925		commit = list_first_entry_or_null(&fs_info->trans_list,
 926						  struct btrfs_transaction,
 927						  list);
 928		if (!commit || commit->transid > transid) {
 929			spin_unlock(&fs_info->trans_lock);
 930			break;
 931		}
 932		refcount_inc(&commit->use_count);
 933		put = true;
 934		spin_unlock(&fs_info->trans_lock);
 935	}
 936}
 937
 938int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
 939{
 940	struct btrfs_transaction *cur_trans = NULL, *t;
 941	int ret = 0;
 942
 
 943	if (transid) {
 944		if (transid <= btrfs_get_last_trans_committed(fs_info))
 945			goto out;
 946
 947		/* find specified transaction */
 948		spin_lock(&fs_info->trans_lock);
 949		list_for_each_entry(t, &fs_info->trans_list, list) {
 950			if (t->transid == transid) {
 951				cur_trans = t;
 952				refcount_inc(&cur_trans->use_count);
 953				ret = 0;
 954				break;
 955			}
 956			if (t->transid > transid) {
 957				ret = 0;
 958				break;
 959			}
 960		}
 961		spin_unlock(&fs_info->trans_lock);
 962
 963		/*
 964		 * The specified transaction doesn't exist, or we
 965		 * raced with btrfs_commit_transaction
 966		 */
 967		if (!cur_trans) {
 968			if (transid > btrfs_get_last_trans_committed(fs_info))
 969				ret = -EINVAL;
 970			goto out;
 971		}
 
 
 
 
 972	} else {
 973		/* find newest transaction that is committing | committed */
 974		spin_lock(&fs_info->trans_lock);
 975		list_for_each_entry_reverse(t, &fs_info->trans_list,
 976					    list) {
 977			if (t->state >= TRANS_STATE_COMMIT_START) {
 978				if (t->state == TRANS_STATE_COMPLETED)
 979					break;
 980				cur_trans = t;
 981				refcount_inc(&cur_trans->use_count);
 982				break;
 983			}
 984		}
 985		spin_unlock(&fs_info->trans_lock);
 986		if (!cur_trans)
 987			goto out;  /* nothing committing|committed */
 988	}
 989
 990	wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
 991	ret = cur_trans->aborted;
 992	btrfs_put_transaction(cur_trans);
 
 993out:
 994	return ret;
 995}
 996
 997void btrfs_throttle(struct btrfs_fs_info *fs_info)
 998{
 999	wait_current_trans(fs_info);
 
1000}
1001
1002bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
 
1003{
1004	struct btrfs_transaction *cur_trans = trans->transaction;
1005
1006	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1007	    test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1008		return true;
1009
1010	if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1011		return true;
1012
1013	return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
1014}
1015
1016static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1017
1018{
1019	struct btrfs_fs_info *fs_info = trans->fs_info;
 
1020
1021	if (!trans->block_rsv) {
1022		ASSERT(!trans->bytes_reserved);
1023		ASSERT(!trans->delayed_refs_bytes_reserved);
1024		return;
1025	}
1026
1027	if (!trans->bytes_reserved) {
1028		ASSERT(!trans->delayed_refs_bytes_reserved);
1029		return;
1030	}
1031
1032	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1033	trace_btrfs_space_reservation(fs_info, "transaction",
1034				      trans->transid, trans->bytes_reserved, 0);
1035	btrfs_block_rsv_release(fs_info, trans->block_rsv,
1036				trans->bytes_reserved, NULL);
1037	trans->bytes_reserved = 0;
1038
1039	if (!trans->delayed_refs_bytes_reserved)
1040		return;
 
 
1041
1042	trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1043				      trans->transid,
1044				      trans->delayed_refs_bytes_reserved, 0);
1045	btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1046				trans->delayed_refs_bytes_reserved, NULL);
1047	trans->delayed_refs_bytes_reserved = 0;
1048}
1049
1050static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1051				   int throttle)
1052{
1053	struct btrfs_fs_info *info = trans->fs_info;
1054	struct btrfs_transaction *cur_trans = trans->transaction;
1055	int err = 0;
 
1056
1057	if (refcount_read(&trans->use_count) > 1) {
1058		refcount_dec(&trans->use_count);
1059		trans->block_rsv = trans->orig_rsv;
1060		return 0;
1061	}
1062
1063	btrfs_trans_release_metadata(trans);
1064	trans->block_rsv = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1065
1066	btrfs_create_pending_block_groups(trans);
1067
1068	btrfs_trans_release_chunk_metadata(trans);
 
 
 
 
1069
1070	if (trans->type & __TRANS_FREEZABLE)
1071		sb_end_intwrite(info->sb);
 
 
 
 
 
 
 
 
 
 
 
1072
1073	WARN_ON(cur_trans != info->running_transaction);
1074	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1075	atomic_dec(&cur_trans->num_writers);
1076	extwriter_counter_dec(cur_trans, trans->type);
1077
1078	cond_wake_up(&cur_trans->writer_wait);
1079
1080	btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1081	btrfs_lockdep_release(info, btrfs_trans_num_writers);
1082
1083	btrfs_put_transaction(cur_trans);
1084
1085	if (current->journal_info == trans)
1086		current->journal_info = NULL;
 
 
1087
1088	if (throttle)
1089		btrfs_run_delayed_iputs(info);
1090
1091	if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1092		wake_up_process(info->transaction_kthread);
1093		if (TRANS_ABORTED(trans))
1094			err = trans->aborted;
1095		else
1096			err = -EROFS;
1097	}
 
 
 
 
 
 
 
 
 
 
 
1098
1099	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1100	return err;
 
 
1101}
1102
1103int btrfs_end_transaction(struct btrfs_trans_handle *trans)
 
1104{
1105	return __btrfs_end_transaction(trans, 0);
 
 
 
 
 
1106}
1107
1108int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
 
1109{
1110	return __btrfs_end_transaction(trans, 1);
1111}
1112
1113/*
1114 * when btree blocks are allocated, they have some corresponding bits set for
1115 * them in one of two extent_io trees.  This is used to make sure all of
1116 * those extents are sent to disk but does not wait on them
1117 */
1118int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1119			       struct extent_io_tree *dirty_pages, int mark)
1120{
 
1121	int err = 0;
1122	int werr = 0;
1123	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1124	struct extent_state *cached_state = NULL;
1125	u64 start = 0;
1126	u64 end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1127
1128	while (find_first_extent_bit(dirty_pages, start, &start, &end,
1129				     mark, &cached_state)) {
1130		bool wait_writeback = false;
1131
1132		err = convert_extent_bit(dirty_pages, start, end,
1133					 EXTENT_NEED_WAIT,
1134					 mark, &cached_state);
1135		/*
1136		 * convert_extent_bit can return -ENOMEM, which is most of the
1137		 * time a temporary error. So when it happens, ignore the error
1138		 * and wait for writeback of this range to finish - because we
1139		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1140		 * to __btrfs_wait_marked_extents() would not know that
1141		 * writeback for this range started and therefore wouldn't
1142		 * wait for it to finish - we don't want to commit a
1143		 * superblock that points to btree nodes/leafs for which
1144		 * writeback hasn't finished yet (and without errors).
1145		 * We cleanup any entries left in the io tree when committing
1146		 * the transaction (through extent_io_tree_release()).
1147		 */
1148		if (err == -ENOMEM) {
1149			err = 0;
1150			wait_writeback = true;
1151		}
1152		if (!err)
1153			err = filemap_fdatawrite_range(mapping, start, end);
1154		if (err)
1155			werr = err;
1156		else if (wait_writeback)
1157			werr = filemap_fdatawait_range(mapping, start, end);
1158		free_extent_state(cached_state);
1159		cached_state = NULL;
1160		cond_resched();
1161		start = end + 1;
1162	}
 
 
1163	return werr;
1164}
1165
1166/*
1167 * when btree blocks are allocated, they have some corresponding bits set for
1168 * them in one of two extent_io trees.  This is used to make sure all of
1169 * those extents are on disk for transaction or log commit.  We wait
1170 * on all the pages and clear them from the dirty pages state tree
1171 */
1172static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1173				       struct extent_io_tree *dirty_pages)
1174{
 
1175	int err = 0;
1176	int werr = 0;
1177	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1178	struct extent_state *cached_state = NULL;
1179	u64 start = 0;
1180	u64 end;
 
 
 
 
 
 
 
1181
1182	while (find_first_extent_bit(dirty_pages, start, &start, &end,
1183				     EXTENT_NEED_WAIT, &cached_state)) {
1184		/*
1185		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1186		 * When committing the transaction, we'll remove any entries
1187		 * left in the io tree. For a log commit, we don't remove them
1188		 * after committing the log because the tree can be accessed
1189		 * concurrently - we do it only at transaction commit time when
1190		 * it's safe to do it (through extent_io_tree_release()).
1191		 */
1192		err = clear_extent_bit(dirty_pages, start, end,
1193				       EXTENT_NEED_WAIT, &cached_state);
1194		if (err == -ENOMEM)
1195			err = 0;
1196		if (!err)
1197			err = filemap_fdatawait_range(mapping, start, end);
1198		if (err)
1199			werr = err;
1200		free_extent_state(cached_state);
1201		cached_state = NULL;
1202		cond_resched();
1203		start = end + 1;
1204	}
1205	if (err)
1206		werr = err;
1207	return werr;
1208}
1209
1210static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1211		       struct extent_io_tree *dirty_pages)
1212{
1213	bool errors = false;
1214	int err;
1215
1216	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1217	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1218		errors = true;
1219
1220	if (errors && !err)
1221		err = -EIO;
1222	return err;
1223}
1224
1225int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1226{
1227	struct btrfs_fs_info *fs_info = log_root->fs_info;
1228	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1229	bool errors = false;
1230	int err;
1231
1232	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1233
1234	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1235	if ((mark & EXTENT_DIRTY) &&
1236	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1237		errors = true;
1238
1239	if ((mark & EXTENT_NEW) &&
1240	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1241		errors = true;
1242
1243	if (errors && !err)
1244		err = -EIO;
1245	return err;
1246}
1247
1248/*
1249 * When btree blocks are allocated the corresponding extents are marked dirty.
1250 * This function ensures such extents are persisted on disk for transaction or
1251 * log commit.
1252 *
1253 * @trans: transaction whose dirty pages we'd like to write
1254 */
1255static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
 
1256{
1257	int ret;
1258	int ret2;
1259	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1260	struct btrfs_fs_info *fs_info = trans->fs_info;
1261	struct blk_plug plug;
1262
1263	blk_start_plug(&plug);
1264	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1265	blk_finish_plug(&plug);
1266	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1267
1268	extent_io_tree_release(&trans->transaction->dirty_pages);
1269
1270	if (ret)
1271		return ret;
1272	else if (ret2)
1273		return ret2;
1274	else
1275		return 0;
 
 
 
 
 
 
 
 
 
 
1276}
1277
1278/*
1279 * this is used to update the root pointer in the tree of tree roots.
1280 *
1281 * But, in the case of the extent allocation tree, updating the root
1282 * pointer may allocate blocks which may change the root of the extent
1283 * allocation tree.
1284 *
1285 * So, this loops and repeats and makes sure the cowonly root didn't
1286 * change while the root pointer was being updated in the metadata.
1287 */
1288static int update_cowonly_root(struct btrfs_trans_handle *trans,
1289			       struct btrfs_root *root)
1290{
1291	int ret;
1292	u64 old_root_bytenr;
1293	u64 old_root_used;
1294	struct btrfs_fs_info *fs_info = root->fs_info;
1295	struct btrfs_root *tree_root = fs_info->tree_root;
1296
1297	old_root_used = btrfs_root_used(&root->root_item);
 
1298
1299	while (1) {
1300		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1301		if (old_root_bytenr == root->node->start &&
1302		    old_root_used == btrfs_root_used(&root->root_item))
1303			break;
1304
1305		btrfs_set_root_node(&root->root_item, root->node);
1306		ret = btrfs_update_root(trans, tree_root,
1307					&root->root_key,
1308					&root->root_item);
1309		if (ret)
1310			return ret;
1311
1312		old_root_used = btrfs_root_used(&root->root_item);
 
 
1313	}
1314
 
 
 
1315	return 0;
1316}
1317
1318/*
1319 * update all the cowonly tree roots on disk
1320 *
1321 * The error handling in this function may not be obvious. Any of the
1322 * failures will cause the file system to go offline. We still need
1323 * to clean up the delayed refs.
1324 */
1325static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
 
1326{
1327	struct btrfs_fs_info *fs_info = trans->fs_info;
1328	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1329	struct list_head *io_bgs = &trans->transaction->io_bgs;
1330	struct list_head *next;
1331	struct extent_buffer *eb;
1332	int ret;
1333
1334	/*
1335	 * At this point no one can be using this transaction to modify any tree
1336	 * and no one can start another transaction to modify any tree either.
1337	 */
1338	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1339
1340	eb = btrfs_lock_root_node(fs_info->tree_root);
1341	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1342			      0, &eb, BTRFS_NESTING_COW);
1343	btrfs_tree_unlock(eb);
1344	free_extent_buffer(eb);
1345
1346	if (ret)
1347		return ret;
1348
1349	ret = btrfs_run_dev_stats(trans);
1350	if (ret)
1351		return ret;
1352	ret = btrfs_run_dev_replace(trans);
1353	if (ret)
1354		return ret;
1355	ret = btrfs_run_qgroups(trans);
1356	if (ret)
1357		return ret;
1358
1359	ret = btrfs_setup_space_cache(trans);
1360	if (ret)
1361		return ret;
1362
1363again:
1364	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1365		struct btrfs_root *root;
1366		next = fs_info->dirty_cowonly_roots.next;
1367		list_del_init(next);
1368		root = list_entry(next, struct btrfs_root, dirty_list);
1369		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1370
1371		list_add_tail(&root->dirty_list,
1372			      &trans->transaction->switch_commits);
1373		ret = update_cowonly_root(trans, root);
1374		if (ret)
1375			return ret;
1376	}
1377
1378	/* Now flush any delayed refs generated by updating all of the roots */
1379	ret = btrfs_run_delayed_refs(trans, U64_MAX);
1380	if (ret)
1381		return ret;
1382
1383	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1384		ret = btrfs_write_dirty_block_groups(trans);
1385		if (ret)
1386			return ret;
1387
1388		/*
1389		 * We're writing the dirty block groups, which could generate
1390		 * delayed refs, which could generate more dirty block groups,
1391		 * so we want to keep this flushing in this loop to make sure
1392		 * everything gets run.
1393		 */
1394		ret = btrfs_run_delayed_refs(trans, U64_MAX);
1395		if (ret)
1396			return ret;
1397	}
1398
1399	if (!list_empty(&fs_info->dirty_cowonly_roots))
1400		goto again;
1401
1402	/* Update dev-replace pointer once everything is committed */
1403	fs_info->dev_replace.committed_cursor_left =
1404		fs_info->dev_replace.cursor_left_last_write_of_item;
1405
1406	return 0;
1407}
1408
1409/*
1410 * If we had a pending drop we need to see if there are any others left in our
1411 * dead roots list, and if not clear our bit and wake any waiters.
1412 */
1413void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1414{
1415	/*
1416	 * We put the drop in progress roots at the front of the list, so if the
1417	 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1418	 * up.
1419	 */
1420	spin_lock(&fs_info->trans_lock);
1421	if (!list_empty(&fs_info->dead_roots)) {
1422		struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1423							   struct btrfs_root,
1424							   root_list);
1425		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1426			spin_unlock(&fs_info->trans_lock);
1427			return;
1428		}
1429	}
1430	spin_unlock(&fs_info->trans_lock);
1431
1432	btrfs_wake_unfinished_drop(fs_info);
1433}
1434
1435/*
1436 * dead roots are old snapshots that need to be deleted.  This allocates
1437 * a dirty root struct and adds it into the list of dead roots that need to
1438 * be deleted
1439 */
1440void btrfs_add_dead_root(struct btrfs_root *root)
1441{
1442	struct btrfs_fs_info *fs_info = root->fs_info;
1443
1444	spin_lock(&fs_info->trans_lock);
1445	if (list_empty(&root->root_list)) {
1446		btrfs_grab_root(root);
1447
1448		/* We want to process the partially complete drops first. */
1449		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1450			list_add(&root->root_list, &fs_info->dead_roots);
1451		else
1452			list_add_tail(&root->root_list, &fs_info->dead_roots);
1453	}
1454	spin_unlock(&fs_info->trans_lock);
1455}
1456
1457/*
1458 * Update each subvolume root and its relocation root, if it exists, in the tree
1459 * of tree roots. Also free log roots if they exist.
1460 */
1461static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
 
1462{
1463	struct btrfs_fs_info *fs_info = trans->fs_info;
1464	struct btrfs_root *gang[8];
 
1465	int i;
1466	int ret;
1467
1468	/*
1469	 * At this point no one can be using this transaction to modify any tree
1470	 * and no one can start another transaction to modify any tree either.
1471	 */
1472	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1473
1474	spin_lock(&fs_info->fs_roots_radix_lock);
1475	while (1) {
1476		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1477						 (void **)gang, 0,
1478						 ARRAY_SIZE(gang),
1479						 BTRFS_ROOT_TRANS_TAG);
1480		if (ret == 0)
1481			break;
1482		for (i = 0; i < ret; i++) {
1483			struct btrfs_root *root = gang[i];
1484			int ret2;
1485
1486			/*
1487			 * At this point we can neither have tasks logging inodes
1488			 * from a root nor trying to commit a log tree.
1489			 */
1490			ASSERT(atomic_read(&root->log_writers) == 0);
1491			ASSERT(atomic_read(&root->log_commit[0]) == 0);
1492			ASSERT(atomic_read(&root->log_commit[1]) == 0);
1493
1494			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1495					(unsigned long)root->root_key.objectid,
1496					BTRFS_ROOT_TRANS_TAG);
1497			btrfs_qgroup_free_meta_all_pertrans(root);
1498			spin_unlock(&fs_info->fs_roots_radix_lock);
1499
1500			btrfs_free_log(trans, root);
1501			ret2 = btrfs_update_reloc_root(trans, root);
1502			if (ret2)
1503				return ret2;
1504
1505			/* see comments in should_cow_block() */
1506			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1507			smp_mb__after_atomic();
1508
1509			if (root->commit_root != root->node) {
1510				list_add_tail(&root->dirty_list,
1511					&trans->transaction->switch_commits);
 
 
 
1512				btrfs_set_root_node(&root->root_item,
1513						    root->node);
1514			}
1515
1516			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1517						&root->root_key,
1518						&root->root_item);
1519			if (ret2)
1520				return ret2;
1521			spin_lock(&fs_info->fs_roots_radix_lock);
 
 
1522		}
1523	}
1524	spin_unlock(&fs_info->fs_roots_radix_lock);
1525	return 0;
1526}
1527
1528/*
1529 * Do all special snapshot related qgroup dirty hack.
1530 *
1531 * Will do all needed qgroup inherit and dirty hack like switch commit
1532 * roots inside one transaction and write all btree into disk, to make
1533 * qgroup works.
1534 */
1535static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1536				   struct btrfs_root *src,
1537				   struct btrfs_root *parent,
1538				   struct btrfs_qgroup_inherit *inherit,
1539				   u64 dst_objectid)
1540{
1541	struct btrfs_fs_info *fs_info = src->fs_info;
 
1542	int ret;
 
1543
1544	/*
1545	 * Save some performance in the case that qgroups are not enabled. If
1546	 * this check races with the ioctl, rescan will kick in anyway.
1547	 */
1548	if (!btrfs_qgroup_full_accounting(fs_info))
1549		return 0;
1550
1551	/*
1552	 * Ensure dirty @src will be committed.  Or, after coming
1553	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1554	 * recorded root will never be updated again, causing an outdated root
1555	 * item.
1556	 */
1557	ret = record_root_in_trans(trans, src, 1);
1558	if (ret)
1559		return ret;
 
 
1560
1561	/*
1562	 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1563	 * src root, so we must run the delayed refs here.
1564	 *
1565	 * However this isn't particularly fool proof, because there's no
1566	 * synchronization keeping us from changing the tree after this point
1567	 * before we do the qgroup_inherit, or even from making changes while
1568	 * we're doing the qgroup_inherit.  But that's a problem for the future,
1569	 * for now flush the delayed refs to narrow the race window where the
1570	 * qgroup counters could end up wrong.
1571	 */
1572	ret = btrfs_run_delayed_refs(trans, U64_MAX);
1573	if (ret) {
1574		btrfs_abort_transaction(trans, ret);
1575		return ret;
1576	}
1577
1578	ret = commit_fs_roots(trans);
1579	if (ret)
1580		goto out;
1581	ret = btrfs_qgroup_account_extents(trans);
1582	if (ret < 0)
1583		goto out;
1584
1585	/* Now qgroup are all updated, we can inherit it to new qgroups */
1586	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1587				   parent->root_key.objectid, inherit);
1588	if (ret < 0)
1589		goto out;
1590
1591	/*
1592	 * Now we do a simplified commit transaction, which will:
1593	 * 1) commit all subvolume and extent tree
1594	 *    To ensure all subvolume and extent tree have a valid
1595	 *    commit_root to accounting later insert_dir_item()
1596	 * 2) write all btree blocks onto disk
1597	 *    This is to make sure later btree modification will be cowed
1598	 *    Or commit_root can be populated and cause wrong qgroup numbers
1599	 * In this simplified commit, we don't really care about other trees
1600	 * like chunk and root tree, as they won't affect qgroup.
1601	 * And we don't write super to avoid half committed status.
1602	 */
1603	ret = commit_cowonly_roots(trans);
1604	if (ret)
1605		goto out;
1606	switch_commit_roots(trans);
1607	ret = btrfs_write_and_wait_transaction(trans);
1608	if (ret)
1609		btrfs_handle_fs_error(fs_info, ret,
1610			"Error while writing out transaction for qgroup");
1611
1612out:
1613	/*
1614	 * Force parent root to be updated, as we recorded it before so its
1615	 * last_trans == cur_transid.
1616	 * Or it won't be committed again onto disk after later
1617	 * insert_dir_item()
1618	 */
1619	if (!ret)
1620		ret = record_root_in_trans(trans, parent, 1);
1621	return ret;
1622}
1623
1624/*
1625 * new snapshots need to be created at a very specific time in the
1626 * transaction commit.  This does the actual creation.
1627 *
1628 * Note:
1629 * If the error which may affect the commitment of the current transaction
1630 * happens, we should return the error number. If the error which just affect
1631 * the creation of the pending snapshots, just return 0.
1632 */
1633static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
 
1634				   struct btrfs_pending_snapshot *pending)
1635{
1636
1637	struct btrfs_fs_info *fs_info = trans->fs_info;
1638	struct btrfs_key key;
1639	struct btrfs_root_item *new_root_item;
1640	struct btrfs_root *tree_root = fs_info->tree_root;
1641	struct btrfs_root *root = pending->root;
1642	struct btrfs_root *parent_root;
1643	struct btrfs_block_rsv *rsv;
1644	struct inode *parent_inode = pending->dir;
1645	struct btrfs_path *path;
1646	struct btrfs_dir_item *dir_item;
1647	struct extent_buffer *tmp;
1648	struct extent_buffer *old;
1649	struct timespec64 cur_time;
1650	int ret = 0;
1651	u64 to_reserve = 0;
1652	u64 index = 0;
1653	u64 objectid;
1654	u64 root_flags;
1655	unsigned int nofs_flags;
1656	struct fscrypt_name fname;
1657
1658	ASSERT(pending->path);
1659	path = pending->path;
1660
1661	ASSERT(pending->root_item);
1662	new_root_item = pending->root_item;
 
 
 
1663
1664	/*
1665	 * We're inside a transaction and must make sure that any potential
1666	 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1667	 * filesystem.
1668	 */
1669	nofs_flags = memalloc_nofs_save();
1670	pending->error = fscrypt_setup_filename(parent_inode,
1671						&pending->dentry->d_name, 0,
1672						&fname);
1673	memalloc_nofs_restore(nofs_flags);
1674	if (pending->error)
1675		goto free_pending;
1676
1677	pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1678	if (pending->error)
1679		goto free_fname;
1680
1681	/*
1682	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1683	 * accounted by later btrfs_qgroup_inherit().
1684	 */
1685	btrfs_set_skip_qgroup(trans, objectid);
1686
1687	btrfs_reloc_pre_snapshot(pending, &to_reserve);
 
1688
1689	if (to_reserve > 0) {
1690		pending->error = btrfs_block_rsv_add(fs_info,
1691						     &pending->block_rsv,
1692						     to_reserve,
1693						     BTRFS_RESERVE_NO_FLUSH);
1694		if (pending->error)
1695			goto clear_skip_qgroup;
1696	}
1697
1698	key.objectid = objectid;
1699	key.offset = (u64)-1;
1700	key.type = BTRFS_ROOT_ITEM_KEY;
1701
1702	rsv = trans->block_rsv;
1703	trans->block_rsv = &pending->block_rsv;
1704	trans->bytes_reserved = trans->block_rsv->reserved;
1705	trace_btrfs_space_reservation(fs_info, "transaction",
1706				      trans->transid,
1707				      trans->bytes_reserved, 1);
1708	parent_root = BTRFS_I(parent_inode)->root;
1709	ret = record_root_in_trans(trans, parent_root, 0);
1710	if (ret)
1711		goto fail;
1712	cur_time = current_time(parent_inode);
1713
1714	/*
1715	 * insert the directory item
1716	 */
1717	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1718	if (ret) {
1719		btrfs_abort_transaction(trans, ret);
1720		goto fail;
1721	}
1722
1723	/* check if there is a file/dir which has the same name. */
1724	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1725					 btrfs_ino(BTRFS_I(parent_inode)),
1726					 &fname.disk_name, 0);
1727	if (dir_item != NULL && !IS_ERR(dir_item)) {
1728		pending->error = -EEXIST;
1729		goto dir_item_existed;
1730	} else if (IS_ERR(dir_item)) {
1731		ret = PTR_ERR(dir_item);
1732		btrfs_abort_transaction(trans, ret);
1733		goto fail;
1734	}
1735	btrfs_release_path(path);
1736
1737	ret = btrfs_create_qgroup(trans, objectid);
1738	if (ret && ret != -EEXIST) {
1739		btrfs_abort_transaction(trans, ret);
1740		goto fail;
1741	}
1742
1743	/*
1744	 * pull in the delayed directory update
1745	 * and the delayed inode item
1746	 * otherwise we corrupt the FS during
1747	 * snapshot
1748	 */
1749	ret = btrfs_run_delayed_items(trans);
1750	if (ret) {	/* Transaction aborted */
1751		btrfs_abort_transaction(trans, ret);
1752		goto fail;
1753	}
1754
1755	ret = record_root_in_trans(trans, root, 0);
1756	if (ret) {
1757		btrfs_abort_transaction(trans, ret);
1758		goto fail;
1759	}
1760	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1761	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1762	btrfs_check_and_init_root_item(new_root_item);
1763
1764	root_flags = btrfs_root_flags(new_root_item);
1765	if (pending->readonly)
1766		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1767	else
1768		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1769	btrfs_set_root_flags(new_root_item, root_flags);
1770
1771	btrfs_set_root_generation_v2(new_root_item,
1772			trans->transid);
1773	generate_random_guid(new_root_item->uuid);
1774	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1775			BTRFS_UUID_SIZE);
1776	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1777		memset(new_root_item->received_uuid, 0,
1778		       sizeof(new_root_item->received_uuid));
1779		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1780		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1781		btrfs_set_root_stransid(new_root_item, 0);
1782		btrfs_set_root_rtransid(new_root_item, 0);
1783	}
1784	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1785	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1786	btrfs_set_root_otransid(new_root_item, trans->transid);
1787
1788	old = btrfs_lock_root_node(root);
1789	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1790			      BTRFS_NESTING_COW);
1791	if (ret) {
1792		btrfs_tree_unlock(old);
1793		free_extent_buffer(old);
1794		btrfs_abort_transaction(trans, ret);
1795		goto fail;
1796	}
1797
1798	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1799	/* clean up in any case */
1800	btrfs_tree_unlock(old);
1801	free_extent_buffer(old);
1802	if (ret) {
1803		btrfs_abort_transaction(trans, ret);
1804		goto fail;
1805	}
1806	/* see comments in should_cow_block() */
1807	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1808	smp_wmb();
1809
1810	btrfs_set_root_node(new_root_item, tmp);
1811	/* record when the snapshot was created in key.offset */
1812	key.offset = trans->transid;
1813	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1814	btrfs_tree_unlock(tmp);
1815	free_extent_buffer(tmp);
1816	if (ret) {
1817		btrfs_abort_transaction(trans, ret);
1818		goto fail;
1819	}
1820
1821	/*
1822	 * insert root back/forward references
1823	 */
1824	ret = btrfs_add_root_ref(trans, objectid,
1825				 parent_root->root_key.objectid,
1826				 btrfs_ino(BTRFS_I(parent_inode)), index,
1827				 &fname.disk_name);
1828	if (ret) {
1829		btrfs_abort_transaction(trans, ret);
1830		goto fail;
1831	}
1832
1833	key.offset = (u64)-1;
1834	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
1835	if (IS_ERR(pending->snap)) {
1836		ret = PTR_ERR(pending->snap);
1837		pending->snap = NULL;
1838		btrfs_abort_transaction(trans, ret);
1839		goto fail;
1840	}
1841
1842	ret = btrfs_reloc_post_snapshot(trans, pending);
1843	if (ret) {
1844		btrfs_abort_transaction(trans, ret);
1845		goto fail;
1846	}
1847
1848	/*
1849	 * Do special qgroup accounting for snapshot, as we do some qgroup
1850	 * snapshot hack to do fast snapshot.
1851	 * To co-operate with that hack, we do hack again.
1852	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1853	 */
1854	if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1855		ret = qgroup_account_snapshot(trans, root, parent_root,
1856					      pending->inherit, objectid);
1857	else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1858		ret = btrfs_qgroup_inherit(trans, root->root_key.objectid, objectid,
1859					   parent_root->root_key.objectid, pending->inherit);
1860	if (ret < 0)
1861		goto fail;
1862
1863	ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1864				    BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1865				    index);
1866	/* We have check then name at the beginning, so it is impossible. */
1867	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1868	if (ret) {
1869		btrfs_abort_transaction(trans, ret);
1870		goto fail;
1871	}
1872
1873	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1874						  fname.disk_name.len * 2);
1875	inode_set_mtime_to_ts(parent_inode,
1876			      inode_set_ctime_current(parent_inode));
1877	ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode));
1878	if (ret) {
1879		btrfs_abort_transaction(trans, ret);
1880		goto fail;
1881	}
1882	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1883				  BTRFS_UUID_KEY_SUBVOL,
1884				  objectid);
1885	if (ret) {
1886		btrfs_abort_transaction(trans, ret);
1887		goto fail;
1888	}
1889	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1890		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1891					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1892					  objectid);
1893		if (ret && ret != -EEXIST) {
1894			btrfs_abort_transaction(trans, ret);
1895			goto fail;
1896		}
1897	}
1898
 
 
1899fail:
1900	pending->error = ret;
1901dir_item_existed:
1902	trans->block_rsv = rsv;
1903	trans->bytes_reserved = 0;
1904clear_skip_qgroup:
1905	btrfs_clear_skip_qgroup(trans);
1906free_fname:
1907	fscrypt_free_filename(&fname);
1908free_pending:
1909	kfree(new_root_item);
1910	pending->root_item = NULL;
1911	btrfs_free_path(path);
1912	pending->path = NULL;
1913
1914	return ret;
1915}
1916
1917/*
1918 * create all the snapshots we've scheduled for creation
1919 */
1920static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
 
1921{
1922	struct btrfs_pending_snapshot *pending, *next;
1923	struct list_head *head = &trans->transaction->pending_snapshots;
1924	int ret = 0;
1925
1926	list_for_each_entry_safe(pending, next, head, list) {
1927		list_del(&pending->list);
1928		ret = create_pending_snapshot(trans, pending);
1929		if (ret)
1930			break;
1931	}
1932	return ret;
1933}
1934
1935static void update_super_roots(struct btrfs_fs_info *fs_info)
1936{
1937	struct btrfs_root_item *root_item;
1938	struct btrfs_super_block *super;
1939
1940	super = fs_info->super_copy;
1941
1942	root_item = &fs_info->chunk_root->root_item;
1943	super->chunk_root = root_item->bytenr;
1944	super->chunk_root_generation = root_item->generation;
1945	super->chunk_root_level = root_item->level;
1946
1947	root_item = &fs_info->tree_root->root_item;
1948	super->root = root_item->bytenr;
1949	super->generation = root_item->generation;
1950	super->root_level = root_item->level;
1951	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1952		super->cache_generation = root_item->generation;
1953	else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1954		super->cache_generation = 0;
1955	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1956		super->uuid_tree_generation = root_item->generation;
 
 
 
 
 
 
1957}
1958
1959int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1960{
1961	struct btrfs_transaction *trans;
1962	int ret = 0;
1963
1964	spin_lock(&info->trans_lock);
1965	trans = info->running_transaction;
1966	if (trans)
1967		ret = is_transaction_blocked(trans);
1968	spin_unlock(&info->trans_lock);
1969	return ret;
1970}
1971
1972void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
 
 
 
 
 
1973{
1974	struct btrfs_fs_info *fs_info = trans->fs_info;
1975	struct btrfs_transaction *cur_trans;
1976
1977	/* Kick the transaction kthread. */
1978	set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1979	wake_up_process(fs_info->transaction_kthread);
 
 
 
 
 
 
 
1980
1981	/* take transaction reference */
1982	cur_trans = trans->transaction;
1983	refcount_inc(&cur_trans->use_count);
 
 
 
 
 
 
1984
1985	btrfs_end_transaction(trans);
 
 
 
1986
1987	/*
1988	 * Wait for the current transaction commit to start and block
1989	 * subsequent transaction joins
1990	 */
1991	btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
1992	wait_event(fs_info->transaction_blocked_wait,
1993		   cur_trans->state >= TRANS_STATE_COMMIT_START ||
1994		   TRANS_ABORTED(cur_trans));
1995	btrfs_put_transaction(cur_trans);
1996}
1997
1998static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
 
 
1999{
2000	struct btrfs_fs_info *fs_info = trans->fs_info;
2001	struct btrfs_transaction *cur_trans = trans->transaction;
2002
2003	WARN_ON(refcount_read(&trans->use_count) > 1);
2004
2005	btrfs_abort_transaction(trans, err);
2006
2007	spin_lock(&fs_info->trans_lock);
2008
2009	/*
2010	 * If the transaction is removed from the list, it means this
2011	 * transaction has been committed successfully, so it is impossible
2012	 * to call the cleanup function.
2013	 */
2014	BUG_ON(list_empty(&cur_trans->list));
2015
2016	if (cur_trans == fs_info->running_transaction) {
2017		cur_trans->state = TRANS_STATE_COMMIT_DOING;
2018		spin_unlock(&fs_info->trans_lock);
2019
2020		/*
2021		 * The thread has already released the lockdep map as reader
2022		 * already in btrfs_commit_transaction().
2023		 */
2024		btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2025		wait_event(cur_trans->writer_wait,
2026			   atomic_read(&cur_trans->num_writers) == 1);
2027
2028		spin_lock(&fs_info->trans_lock);
 
 
 
 
 
 
2029	}
2030
2031	/*
2032	 * Now that we know no one else is still using the transaction we can
2033	 * remove the transaction from the list of transactions. This avoids
2034	 * the transaction kthread from cleaning up the transaction while some
2035	 * other task is still using it, which could result in a use-after-free
2036	 * on things like log trees, as it forces the transaction kthread to
2037	 * wait for this transaction to be cleaned up by us.
2038	 */
2039	list_del_init(&cur_trans->list);
2040
2041	spin_unlock(&fs_info->trans_lock);
 
2042
2043	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2044
2045	spin_lock(&fs_info->trans_lock);
2046	if (cur_trans == fs_info->running_transaction)
2047		fs_info->running_transaction = NULL;
2048	spin_unlock(&fs_info->trans_lock);
2049
2050	if (trans->type & __TRANS_FREEZABLE)
2051		sb_end_intwrite(fs_info->sb);
2052	btrfs_put_transaction(cur_trans);
2053	btrfs_put_transaction(cur_trans);
2054
2055	trace_btrfs_transaction_commit(fs_info);
2056
2057	if (current->journal_info == trans)
2058		current->journal_info = NULL;
2059
2060	/*
2061	 * If relocation is running, we can't cancel scrub because that will
2062	 * result in a deadlock. Before relocating a block group, relocation
2063	 * pauses scrub, then starts and commits a transaction before unpausing
2064	 * scrub. If the transaction commit is being done by the relocation
2065	 * task or triggered by another task and the relocation task is waiting
2066	 * for the commit, and we end up here due to an error in the commit
2067	 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2068	 * asking for scrub to stop while having it asked to be paused higher
2069	 * above in relocation code.
2070	 */
2071	if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2072		btrfs_scrub_cancel(fs_info);
2073
2074	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2075}
2076
2077/*
2078 * Release reserved delayed ref space of all pending block groups of the
2079 * transaction and remove them from the list
2080 */
2081static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2082{
2083       struct btrfs_fs_info *fs_info = trans->fs_info;
2084       struct btrfs_block_group *block_group, *tmp;
2085
2086       list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2087               btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2088               list_del_init(&block_group->bg_list);
2089       }
2090}
2091
2092static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2093{
2094	/*
2095	 * We use try_to_writeback_inodes_sb() here because if we used
2096	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2097	 * Currently are holding the fs freeze lock, if we do an async flush
2098	 * we'll do btrfs_join_transaction() and deadlock because we need to
2099	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2100	 * from already being in a transaction and our join_transaction doesn't
2101	 * have to re-take the fs freeze lock.
2102	 *
2103	 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2104	 * if it can read lock sb->s_umount. It will always be able to lock it,
2105	 * except when the filesystem is being unmounted or being frozen, but in
2106	 * those cases sync_filesystem() is called, which results in calling
2107	 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2108	 * Note that we don't call writeback_inodes_sb() directly, because it
2109	 * will emit a warning if sb->s_umount is not locked.
2110	 */
2111	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2112		try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2113	return 0;
2114}
2115
2116static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2117{
2118	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2119		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2120}
2121
2122/*
2123 * Add a pending snapshot associated with the given transaction handle to the
2124 * respective handle. This must be called after the transaction commit started
2125 * and while holding fs_info->trans_lock.
2126 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2127 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2128 * returns an error.
2129 */
2130static void add_pending_snapshot(struct btrfs_trans_handle *trans)
 
2131{
2132	struct btrfs_transaction *cur_trans = trans->transaction;
2133
2134	if (!trans->pending_snapshot)
2135		return;
2136
2137	lockdep_assert_held(&trans->fs_info->trans_lock);
2138	ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2139
2140	list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2141}
2142
2143static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2144{
2145	fs_info->commit_stats.commit_count++;
2146	fs_info->commit_stats.last_commit_dur = interval;
2147	fs_info->commit_stats.max_commit_dur =
2148			max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2149	fs_info->commit_stats.total_commit_dur += interval;
2150}
2151
2152int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2153{
2154	struct btrfs_fs_info *fs_info = trans->fs_info;
2155	struct btrfs_transaction *cur_trans = trans->transaction;
2156	struct btrfs_transaction *prev_trans = NULL;
 
2157	int ret;
2158	ktime_t start_time;
2159	ktime_t interval;
 
2160
2161	ASSERT(refcount_read(&trans->use_count) == 1);
2162	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2163
2164	clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2165
2166	/* Stop the commit early if ->aborted is set */
2167	if (TRANS_ABORTED(cur_trans)) {
2168		ret = cur_trans->aborted;
2169		goto lockdep_trans_commit_start_release;
2170	}
2171
2172	btrfs_trans_release_metadata(trans);
2173	trans->block_rsv = NULL;
2174
 
2175	/*
2176	 * We only want one transaction commit doing the flushing so we do not
2177	 * waste a bunch of time on lock contention on the extent root node.
2178	 */
2179	if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2180			      &cur_trans->delayed_refs.flags)) {
2181		/*
2182		 * Make a pass through all the delayed refs we have so far.
2183		 * Any running threads may add more while we are here.
2184		 */
2185		ret = btrfs_run_delayed_refs(trans, 0);
2186		if (ret)
2187			goto lockdep_trans_commit_start_release;
2188	}
2189
2190	btrfs_create_pending_block_groups(trans);
2191
2192	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2193		int run_it = 0;
2194
2195		/* this mutex is also taken before trying to set
2196		 * block groups readonly.  We need to make sure
2197		 * that nobody has set a block group readonly
2198		 * after a extents from that block group have been
2199		 * allocated for cache files.  btrfs_set_block_group_ro
2200		 * will wait for the transaction to commit if it
2201		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2202		 *
2203		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2204		 * only one process starts all the block group IO.  It wouldn't
2205		 * hurt to have more than one go through, but there's no
2206		 * real advantage to it either.
2207		 */
2208		mutex_lock(&fs_info->ro_block_group_mutex);
2209		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2210				      &cur_trans->flags))
2211			run_it = 1;
2212		mutex_unlock(&fs_info->ro_block_group_mutex);
2213
2214		if (run_it) {
2215			ret = btrfs_start_dirty_block_groups(trans);
2216			if (ret)
2217				goto lockdep_trans_commit_start_release;
2218		}
2219	}
2220
2221	spin_lock(&fs_info->trans_lock);
2222	if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2223		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
 
 
2224
2225		add_pending_snapshot(trans);
2226
2227		spin_unlock(&fs_info->trans_lock);
2228		refcount_inc(&cur_trans->use_count);
2229
2230		if (trans->in_fsync)
2231			want_state = TRANS_STATE_SUPER_COMMITTED;
2232
2233		btrfs_trans_state_lockdep_release(fs_info,
2234						  BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2235		ret = btrfs_end_transaction(trans);
2236		wait_for_commit(cur_trans, want_state);
2237
2238		if (TRANS_ABORTED(cur_trans))
2239			ret = cur_trans->aborted;
2240
2241		btrfs_put_transaction(cur_trans);
2242
2243		return ret;
2244	}
2245
2246	cur_trans->state = TRANS_STATE_COMMIT_PREP;
2247	wake_up(&fs_info->transaction_blocked_wait);
2248	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2249
2250	if (cur_trans->list.prev != &fs_info->trans_list) {
2251		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2252
2253		if (trans->in_fsync)
2254			want_state = TRANS_STATE_SUPER_COMMITTED;
2255
 
 
2256		prev_trans = list_entry(cur_trans->list.prev,
2257					struct btrfs_transaction, list);
2258		if (prev_trans->state < want_state) {
2259			refcount_inc(&prev_trans->use_count);
2260			spin_unlock(&fs_info->trans_lock);
2261
2262			wait_for_commit(prev_trans, want_state);
2263
2264			ret = READ_ONCE(prev_trans->aborted);
2265
2266			btrfs_put_transaction(prev_trans);
2267			if (ret)
2268				goto lockdep_release;
2269			spin_lock(&fs_info->trans_lock);
2270		}
2271	} else {
2272		/*
2273		 * The previous transaction was aborted and was already removed
2274		 * from the list of transactions at fs_info->trans_list. So we
2275		 * abort to prevent writing a new superblock that reflects a
2276		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2277		 */
2278		if (BTRFS_FS_ERROR(fs_info)) {
2279			spin_unlock(&fs_info->trans_lock);
2280			ret = -EROFS;
2281			goto lockdep_release;
2282		}
2283	}
2284
2285	cur_trans->state = TRANS_STATE_COMMIT_START;
2286	wake_up(&fs_info->transaction_blocked_wait);
2287	spin_unlock(&fs_info->trans_lock);
2288
2289	/*
2290	 * Get the time spent on the work done by the commit thread and not
2291	 * the time spent waiting on a previous commit
2292	 */
2293	start_time = ktime_get_ns();
2294
2295	extwriter_counter_dec(cur_trans, trans->type);
 
 
 
 
 
 
 
 
 
 
2296
2297	ret = btrfs_start_delalloc_flush(fs_info);
2298	if (ret)
2299		goto lockdep_release;
2300
2301	ret = btrfs_run_delayed_items(trans);
2302	if (ret)
2303		goto lockdep_release;
2304
2305	/*
2306	 * The thread has started/joined the transaction thus it holds the
2307	 * lockdep map as a reader. It has to release it before acquiring the
2308	 * lockdep map as a writer.
2309	 */
2310	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2311	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2312	wait_event(cur_trans->writer_wait,
2313		   extwriter_counter_read(cur_trans) == 0);
2314
2315	/* some pending stuffs might be added after the previous flush. */
2316	ret = btrfs_run_delayed_items(trans);
2317	if (ret) {
2318		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2319		goto cleanup_transaction;
2320	}
2321
2322	btrfs_wait_delalloc_flush(fs_info);
 
2323
2324	/*
2325	 * Wait for all ordered extents started by a fast fsync that joined this
2326	 * transaction. Otherwise if this transaction commits before the ordered
2327	 * extents complete we lose logged data after a power failure.
2328	 */
2329	btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2330	wait_event(cur_trans->pending_wait,
2331		   atomic_read(&cur_trans->pending_ordered) == 0);
2332
2333	btrfs_scrub_pause(fs_info);
2334	/*
2335	 * Ok now we need to make sure to block out any other joins while we
2336	 * commit the transaction.  We could have started a join before setting
2337	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2338	 */
2339	spin_lock(&fs_info->trans_lock);
2340	add_pending_snapshot(trans);
2341	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2342	spin_unlock(&fs_info->trans_lock);
2343
2344	/*
2345	 * The thread has started/joined the transaction thus it holds the
2346	 * lockdep map as a reader. It has to release it before acquiring the
2347	 * lockdep map as a writer.
2348	 */
2349	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2350	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2351	wait_event(cur_trans->writer_wait,
2352		   atomic_read(&cur_trans->num_writers) == 1);
2353
2354	/*
2355	 * Make lockdep happy by acquiring the state locks after
2356	 * btrfs_trans_num_writers is released. If we acquired the state locks
2357	 * before releasing the btrfs_trans_num_writers lock then lockdep would
2358	 * complain because we did not follow the reverse order unlocking rule.
2359	 */
2360	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2361	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2362	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2363
2364	/*
2365	 * We've started the commit, clear the flag in case we were triggered to
2366	 * do an async commit but somebody else started before the transaction
2367	 * kthread could do the work.
2368	 */
2369	clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2370
2371	if (TRANS_ABORTED(cur_trans)) {
2372		ret = cur_trans->aborted;
2373		btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2374		goto scrub_continue;
2375	}
2376	/*
2377	 * the reloc mutex makes sure that we stop
2378	 * the balancing code from coming in and moving
2379	 * extents around in the middle of the commit
2380	 */
2381	mutex_lock(&fs_info->reloc_mutex);
2382
2383	/*
2384	 * We needn't worry about the delayed items because we will
2385	 * deal with them in create_pending_snapshot(), which is the
2386	 * core function of the snapshot creation.
2387	 */
2388	ret = create_pending_snapshots(trans);
2389	if (ret)
2390		goto unlock_reloc;
2391
2392	/*
2393	 * We insert the dir indexes of the snapshots and update the inode
2394	 * of the snapshots' parents after the snapshot creation, so there
2395	 * are some delayed items which are not dealt with. Now deal with
2396	 * them.
2397	 *
2398	 * We needn't worry that this operation will corrupt the snapshots,
2399	 * because all the tree which are snapshoted will be forced to COW
2400	 * the nodes and leaves.
2401	 */
2402	ret = btrfs_run_delayed_items(trans);
2403	if (ret)
2404		goto unlock_reloc;
2405
2406	ret = btrfs_run_delayed_refs(trans, U64_MAX);
2407	if (ret)
2408		goto unlock_reloc;
2409
2410	/*
2411	 * make sure none of the code above managed to slip in a
2412	 * delayed item
2413	 */
2414	btrfs_assert_delayed_root_empty(fs_info);
2415
2416	WARN_ON(cur_trans != trans->transaction);
2417
2418	ret = commit_fs_roots(trans);
2419	if (ret)
2420		goto unlock_reloc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2421
2422	/* commit_fs_roots gets rid of all the tree log roots, it is now
2423	 * safe to free the root of tree log roots
2424	 */
2425	btrfs_free_log_root_tree(trans, fs_info);
2426
2427	/*
2428	 * Since fs roots are all committed, we can get a quite accurate
2429	 * new_roots. So let's do quota accounting.
2430	 */
2431	ret = btrfs_qgroup_account_extents(trans);
2432	if (ret < 0)
2433		goto unlock_reloc;
2434
2435	ret = commit_cowonly_roots(trans);
2436	if (ret)
2437		goto unlock_reloc;
2438
2439	/*
2440	 * The tasks which save the space cache and inode cache may also
2441	 * update ->aborted, check it.
2442	 */
2443	if (TRANS_ABORTED(cur_trans)) {
2444		ret = cur_trans->aborted;
2445		goto unlock_reloc;
2446	}
2447
2448	cur_trans = fs_info->running_transaction;
 
 
2449
2450	btrfs_set_root_node(&fs_info->tree_root->root_item,
2451			    fs_info->tree_root->node);
2452	list_add_tail(&fs_info->tree_root->dirty_list,
2453		      &cur_trans->switch_commits);
2454
2455	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2456			    fs_info->chunk_root->node);
2457	list_add_tail(&fs_info->chunk_root->dirty_list,
2458		      &cur_trans->switch_commits);
2459
2460	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2461		btrfs_set_root_node(&fs_info->block_group_root->root_item,
2462				    fs_info->block_group_root->node);
2463		list_add_tail(&fs_info->block_group_root->dirty_list,
2464			      &cur_trans->switch_commits);
2465	}
2466
2467	switch_commit_roots(trans);
2468
2469	ASSERT(list_empty(&cur_trans->dirty_bgs));
2470	ASSERT(list_empty(&cur_trans->io_bgs));
2471	update_super_roots(fs_info);
2472
2473	btrfs_set_super_log_root(fs_info->super_copy, 0);
2474	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2475	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2476	       sizeof(*fs_info->super_copy));
 
 
2477
2478	btrfs_commit_device_sizes(cur_trans);
2479
2480	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2481	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2482
2483	btrfs_trans_release_chunk_metadata(trans);
2484
2485	/*
2486	 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2487	 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2488	 * make sure that before we commit our superblock, no other task can
2489	 * start a new transaction and commit a log tree before we commit our
2490	 * superblock. Anyone trying to commit a log tree locks this mutex before
2491	 * writing its superblock.
2492	 */
2493	mutex_lock(&fs_info->tree_log_mutex);
2494
2495	spin_lock(&fs_info->trans_lock);
2496	cur_trans->state = TRANS_STATE_UNBLOCKED;
2497	fs_info->running_transaction = NULL;
2498	spin_unlock(&fs_info->trans_lock);
2499	mutex_unlock(&fs_info->reloc_mutex);
2500
2501	wake_up(&fs_info->transaction_wait);
2502	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2503
2504	/* If we have features changed, wake up the cleaner to update sysfs. */
2505	if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2506	    fs_info->cleaner_kthread)
2507		wake_up_process(fs_info->cleaner_kthread);
2508
2509	ret = btrfs_write_and_wait_transaction(trans);
2510	if (ret) {
2511		btrfs_handle_fs_error(fs_info, ret,
2512				      "Error while writing out transaction");
2513		mutex_unlock(&fs_info->tree_log_mutex);
2514		goto scrub_continue;
2515	}
2516
2517	ret = write_all_supers(fs_info, 0);
2518	/*
2519	 * the super is written, we can safely allow the tree-loggers
2520	 * to go about their business
2521	 */
2522	mutex_unlock(&fs_info->tree_log_mutex);
2523	if (ret)
2524		goto scrub_continue;
2525
2526	/*
2527	 * We needn't acquire the lock here because there is no other task
2528	 * which can change it.
2529	 */
2530	cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2531	wake_up(&cur_trans->commit_wait);
2532	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2533
2534	btrfs_finish_extent_commit(trans);
2535
2536	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2537		btrfs_clear_space_info_full(fs_info);
2538
2539	btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
2540	/*
2541	 * We needn't acquire the lock here because there is no other task
2542	 * which can change it.
2543	 */
2544	cur_trans->state = TRANS_STATE_COMPLETED;
2545	wake_up(&cur_trans->commit_wait);
2546	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2547
2548	spin_lock(&fs_info->trans_lock);
2549	list_del_init(&cur_trans->list);
2550	spin_unlock(&fs_info->trans_lock);
2551
2552	btrfs_put_transaction(cur_trans);
2553	btrfs_put_transaction(cur_trans);
2554
2555	if (trans->type & __TRANS_FREEZABLE)
2556		sb_end_intwrite(fs_info->sb);
2557
2558	trace_btrfs_transaction_commit(fs_info);
 
2559
2560	interval = ktime_get_ns() - start_time;
2561
2562	btrfs_scrub_continue(fs_info);
2563
2564	if (current->journal_info == trans)
2565		current->journal_info = NULL;
2566
2567	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2568
2569	update_commit_stats(fs_info, interval);
 
2570
2571	return ret;
2572
2573unlock_reloc:
2574	mutex_unlock(&fs_info->reloc_mutex);
2575	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2576scrub_continue:
2577	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2578	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2579	btrfs_scrub_continue(fs_info);
2580cleanup_transaction:
2581	btrfs_trans_release_metadata(trans);
2582	btrfs_cleanup_pending_block_groups(trans);
2583	btrfs_trans_release_chunk_metadata(trans);
2584	trans->block_rsv = NULL;
2585	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2586	if (current->journal_info == trans)
2587		current->journal_info = NULL;
2588	cleanup_transaction(trans, ret);
2589
2590	return ret;
2591
2592lockdep_release:
2593	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2594	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2595	goto cleanup_transaction;
2596
2597lockdep_trans_commit_start_release:
2598	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2599	btrfs_end_transaction(trans);
2600	return ret;
2601}
2602
2603/*
2604 * return < 0 if error
2605 * 0 if there are no more dead_roots at the time of call
2606 * 1 there are more to be processed, call me again
2607 *
2608 * The return value indicates there are certainly more snapshots to delete, but
2609 * if there comes a new one during processing, it may return 0. We don't mind,
2610 * because btrfs_commit_super will poke cleaner thread and it will process it a
2611 * few seconds later.
2612 */
2613int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2614{
2615	struct btrfs_root *root;
2616	int ret;
2617
2618	spin_lock(&fs_info->trans_lock);
2619	if (list_empty(&fs_info->dead_roots)) {
2620		spin_unlock(&fs_info->trans_lock);
2621		return 0;
2622	}
2623	root = list_first_entry(&fs_info->dead_roots,
2624			struct btrfs_root, root_list);
2625	list_del_init(&root->root_list);
2626	spin_unlock(&fs_info->trans_lock);
2627
2628	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2629
2630	btrfs_kill_all_delayed_nodes(root);
2631
2632	if (btrfs_header_backref_rev(root->node) <
2633			BTRFS_MIXED_BACKREF_REV)
2634		ret = btrfs_drop_snapshot(root, 0, 0);
2635	else
2636		ret = btrfs_drop_snapshot(root, 1, 0);
2637
2638	btrfs_put_root(root);
2639	return (ret < 0) ? 0 : 1;
2640}
2641
2642/*
2643 * We only mark the transaction aborted and then set the file system read-only.
2644 * This will prevent new transactions from starting or trying to join this
2645 * one.
2646 *
2647 * This means that error recovery at the call site is limited to freeing
2648 * any local memory allocations and passing the error code up without
2649 * further cleanup. The transaction should complete as it normally would
2650 * in the call path but will return -EIO.
2651 *
2652 * We'll complete the cleanup in btrfs_end_transaction and
2653 * btrfs_commit_transaction.
2654 */
2655void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2656				      const char *function,
2657				      unsigned int line, int error, bool first_hit)
2658{
2659	struct btrfs_fs_info *fs_info = trans->fs_info;
2660
2661	WRITE_ONCE(trans->aborted, error);
2662	WRITE_ONCE(trans->transaction->aborted, error);
2663	if (first_hit && error == -ENOSPC)
2664		btrfs_dump_space_info_for_trans_abort(fs_info);
2665	/* Wake up anybody who may be waiting on this transaction */
2666	wake_up(&fs_info->transaction_wait);
2667	wake_up(&fs_info->transaction_blocked_wait);
2668	__btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2669}
2670
2671int __init btrfs_transaction_init(void)
2672{
2673	btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle, SLAB_TEMPORARY);
2674	if (!btrfs_trans_handle_cachep)
2675		return -ENOMEM;
2676	return 0;
2677}
2678
2679void __cold btrfs_transaction_exit(void)
2680{
2681	kmem_cache_destroy(btrfs_trans_handle_cachep);
2682}